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Chapter 1

Overview

With experimental data from missions like Planck [Planck Collaboration, 2018], SDSS
[SDSS Collaboration, 2012], Euclid [Euclid Collaboration, 2013], HETDEX [Hill et al.,
2008], Gaia [Gaia Collaboration, 2018] and many more mapping the cosmic microwave
background (CMB), cosmic web and the Milky Way, cosmology has entered an era of high
precision physics. With large numerical simulations, including the Millenium-II [Boylan-
Kolchin et al., 2009], IllustrisTNG [Springel et al., 2017], EAGLE [McAlpine et al., 2016]
and FIRE [Hopkins et al., 2018] collaborations, theoretical models can be tested against
observations with ever higher accuracy. In this way the standard model of cosmology has
been established, which quantifies the different energy density budgets of the universe.
Joined observations of photons, gravitational waves and neutrinos have transformed cos-
mology into a multi-messenger research area [The LIGO Scientific Collaboration and The
Virgo Collaboration, 2017; The IceCube Collaboration, 2018].

Despite being a cornerstone of the standard model, the exact nature of dark matter
(DM) remains unknown. The lack of evidence for weakly interacting massive particles
(WIMPs) that could constitute DM is generating increasing interest in alternative candi-
dates. These include the theoretically well-motivated QCD axion [Peccei and Quinn, 1977],
which solves the strong CP problem, and axion-like particles (ALPs) generically arising in
string theories [Arvanitaki et al., 2010; Hui et al., 2017]. This thesis focuses on the latter.
While indistinguishable from cold dark matter (CDM) on large scales, these ultra-light
(pseudo-)scalar particles are thought to form a coherent state on galactic scales. Wave
effects then induce a Jeans scale rJ below which gravitational collapse is suppressed [Hu
et al., 2000].

If non-gravitational interactions can be neglected, this form of DM is known as fuzzy
dark matter (FDM) [Hu et al., 2000]. If coherently produced due to e.g. the misalignment
mechanism or evolved to a Bose-Einstein condensate (BEC), it can be mathematically
described by a massive scalar field Ψ(t, x) whose evolution is consequently governed by the
Klein-Gordon equation with a potential reflecting the metric back reaction defined via the
Einstein equation.

On sub-horizon scales, and in the Newtonian gauge, growth of density perturbations is
suppressed on small scales due to an effective sound speed that is not present in standard
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CDM. For masses m . 10−22 eV structure formation is suppressed to a degree that is
inconsistent with large-scale structure data. Slightly weaker constraints can be inferred
from alterations in the cosmic microwave background (CMB) power spectrum.

Using initial conditions compatible with CMB data, structures are numerically found to
form hierarchically by the merging of increasingly larger local overdensities. A suppression
on small scales thus delays the collapse to DM halos and the subsequent galaxy and star
formation in their potential wells. This shifts reionization to lower redshifts and alters the
optical depth and gravitational lensing potential of the CMB.

Since deviations between FDM and CDM are larger on scales below rJ , stronger bounds
on m can be expected from observables quantifying the distribution of DM overdensities
on galactic scales. These include Lyman-α and 21cm-line spectra that measure the energy
spectrum of neutral hydrogen. Gravitational (micro-)lensing and stellar kinematics mea-
surements provide data to construct the halo mass function, subhalo mass function and the
luminosity function for various redshifts. Since the effective sound speed leads to a steep
increase in the critical overdensity needed for collapse on scales below rJ and consequently
to a sharp cutoff in the halo mass function below a minimum mass, these measurements
can probe FDM masses m . 10−21 eV.

On even smaller scales, the observation, or non-observation, of the formation and binary
mergers of solitons and soliton neutron star encounters can provide stringent constraints
on the FDM mass and hypothetical non-gravitational interactions. Furthermore, FDM
in the vicinity of a rotating black hole with mass M can efficiently decrease the black
hole’s angular momentum via superradiance if mM ∼ 1, in natural units. The observation
of spinning black holes within a wide range of masses can thus significantly reduce the
possible parameter space for FDM. In addition, DM constraints from direct and indirect
DM detection experiments rely heavily on the predicted local DM distribution.

As the model dependent phenomena on (sub-)galactic scales are due to highly non-linear
dynamics, numerical simulations are of paramount importance in order to make stringent
model-dependent predictions that can discriminate between different DM theories. This
thesis contributes to the endeavor of linking theoretical FDM models to astrophysical
observations by defining and quantifying phenomenological predictions.

In doing so, the author utilized different numerical schemes in order to discretize the
Schrödinger-Poisson (SP) system which governs the non-relativistic, Newtonian dynamics
of FDM. These include finite difference methods [Schwabe et al., 2016], pseudo spectral
methods [Du et al., 2018] and Lagrangian fluid descriptions with FDM initial conditions
[Veltmaat et al., 2018]. All three numerical approaches will be extensively discussed below
focussing on their advantages and disadvantages as well as on their various results from
cosmological to sub-galactic scales. The overall aim of these simulations is to constrain the
FDM mass m as the single parameter of the theory.

The thesis is organized as follows. In chapter 2 ALPs are introduced as well motivated
candidates for FDM and important evolution equations for FDM are summarized. We
then present a detailed discussion on the above outlined FDM mass constraints.

FDM simulations and their results are summarized in chapter 3. They include a novel
hybrid simulation method that combines the efficiency of Lagrangian n-body schemes on
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cosmological scales with the precision of finite difference methods for pre-selected FDM
halos. The author and his collaborator Jan Veltmaat equally contributed to the code
development, while the subsequent numerical simulations were conducted by the latter.
The results are presented in a publication printed in Physical Review D [Veltmaat et al.,
2018]. The simulated FDM halos are found to have a granular structure on de Broglie scales
while, on average, NFW profiles, as obtained from CDM simulations, are recovered. This
numerically confirms the Schrödinger-Vlasov correspondence as discussed below, which is
only broken by the formation of a bound solitonic core in central halo regions. The main
numerical challenge is the construction of appropriate initial and boundary conditions
between the two schemes. Discretizing the problem initially in an overcomplete set of
Gauss kernels and evolving them separately, assuming classical Newtonian gravitation, has
the potential to significantly improve them or even replace the finite difference scheme on
intermediate scales.

Chapter 4 describes the evolution of these solitonic cores. The numerical results from
binary and multi-soliton mergers constitute the first half of this thesis and were predom-
inantly obtained by the author. Initial code development and the publication in Physical
Review D were done in collaboration with Jens C. Niemeyer and Jan F. Engels [Schwabe
et al., 2016]. The results were subsequently confirmed and extended by Mocz et al. [2017].
They were utilized to semi-analytically show that the numerically found relation between
the core and halo mass can be seen as a consequence of the merger history of FDM halos
[Du et al., 2017]. The analysis was supported by the author of this thesis, who also helped
in writing the final draft. Finally, tidal disruption of FDM subhalo cores were investigated
by Du et al. [2018], where the author of this thesis again contributed to the final version.

A detailed status report on the ongoing application of the so-called Gaussian Beam
Method (GBM) to FDM cosmology simulations is given in chapter 5. Numerical tests
including spherical collapse simulations in an expanding universe already show promising
results motivating further research in the future.

We conclude the thesis in chapter 6 and outline promising directions for future numerical
investigations of FDM cosmologies.
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Chapter 2

Fuzzy Dark Matter Cosmology

In this thesis, DM is assumed to consist solely of ultralight scalar particles with mass
m ∼ 10−22 eV and negligible self-interaction. This sort of DM is commonly referred to as
fuzzy dark matter (FDM). Since thermally produced DM below the keV scale is excluded by
observations of structure formation due to its excessive free streaming length, these bosonic
particles need to have a non-thermal production mechanism, like misalignment in axion
theories, in the early universe that creates them at approximately zero temperature, or
vanishing velocity dispersion. Owing to their extremely light masses, their cold initial state
and large average energy density ΩFDMh

2 ∼ 0.12, occupation numbers within de Broglie
wavelength volumes are extraordinary high. This motivates us to treat the collection of
particles in a mean field limit as a non-relativistic scalar field under the influence of self-
gravity [Marsh, 2016b].

Standard CDM is evolved as a pressureless fluid in phase-space using the Vlasov-Poisson
system of equations whose first moments give rise to the Euler equations. They are im-
plemented in N-body cosmology codes like Gadget. FDM is different in that it is treated
as a non-relativistic scalar field in position space. Its evolution is therefore governed by
the Schrödinger-Poisson (SP) system. Since the Schrödinger equation admits wave-like
behaviour on de Broglie scales, FDM is expected to differ strongly from CDM on these
scales as the latter does not have any characteristic length scale [Hu et al., 2000].

After establishing axion-like particles as well motivated candidates for FDM, we collec-
tively present the evolution equations relevant for this thesis. We continue with a summary
of FDM mass constraints from cosmological observations, review small-scale tensions be-
tween CDM observations and simulations and end this section with a presentation of FDM
imprints in halo density profiles.

2.1 Axion-like Particles as Candidates for FDM

Axions have originally been introduced to solve the strong CP problem of quantum chromo-
dynamics that stems from the CP violating part of the QCD Lagrangian L ⊃ θF̃µνF

µν that
is not forbidden by any symmetry within the standard model of particle physics [Peccei
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and Quinn, 1977]. It arises due to the θ-vacua of QCD [Coleman, 1985]. The experimental
constraint θ < 10−10 suggests an extremely fine-tuned cancellation between the bare angle
θ̃ ∈ [0, 2π] and the argument of the quark mass matrices’ determinant [Baker et al., 2006]

θ = θ̃ + arg detMuMd . 10−10 , (2.1)

or a mechanism to dynamically drive the parameter θ to zero. The Peccei and Quinn
solution to the strong CP problem is to consider θ to be the pseudo Nambu Goldstone
boson of a global U(1) symmetry that is spontaneously broken at an energy scale fa [Peccei
and Quinn, 1977]. At a lower scale µ < fa, QCD instantons can then non-perturbatively
induce a potential that drives θ to zero, thus dynamically restoring CP conservation [Vafa
and Witten, 1984]. The corresponding quantum excitation is the so called (QCD-)axion.

Similarly, axions appear in string theory compactifications as Kaluza-Klein zero modes
of antisymmetric tensor fields [Witten, 1984]. Due to their complex topology, realistic
string theories indeed feature a multitude of axions over a wide mass range [Arvanitaki
et al., 2010; Kreuzer and Skarke, 2002; Svrcek and Witten, 2006; Svrcek, 2006; He, 2013;
Hui et al., 2017]. These axions are well motivated candidates for FDM.

2.2 FDM Evolution Equations

FDM is modeled as a self-gravitating scalar field φ with mass m. Its action is given by

S =
1

16πG

∫
d4x
√
−gR−

∫
d4x
√
−gLm (2.2)

with Lagrangian density (c = 1)

Lm =
1

2
gµν∇µφ

∗∇νφ+
1

2

m2

~2
|φ|2. (2.3)

The corresponding Euler-Lagrange equations (equations of motion) are the Klein-Gordon
equation(

�− m2

~2

)
φ =

(
gµν∇µ∇ν −

m2

~2

)
φ =

(
1√
−g

∂µ[
√
−ggµν∂ν ]−

m2

~2

)
φ = 0 (2.4)

and the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (2.5)

with energy-momentum tensor

Tµν =
2√
−g

δ(
√
−gLm)

δgµν
= ∇µφ∇νφ−

1

2
gµν

(
gρσ∇ρφ∇σφ+

m2

~2
φ

)
. (2.6)
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We are considering the perturbed Friedmann-Lemâıtre-Robertson-Walker line element in
Newtonian gauge

ds2 = −(1 + 2V )dt2 + a2(1− 2U)(dx2 + dy2 + dz2). (2.7)

Here, V is the Newtonian gravitational potential, which satisfies the Poisson equation

∇2V = 4πGa2δρ, (2.8)

where ρ is the energy density of the axion field φ. We assume vanishing anisotropic stress.
Then, the Einstein equations yield V = U and we have

ρ = −T 0
0 =

1

2

[
(1− 2V )φ̇2 +

m2

~2
φ2 + a−2(1 + 2V )∂iφ

]
+O(V 2). (2.9)

As in Seidel and Suen [1990], we assume the mass of the scalar field to be a quantity of
order unity, whereas the wave number k of the field is of order εNR. Furthermore, V ∼ ε2NR

in the post Newtonian limit [Weinberg, 1972]. The fully relativistic theory has been worked
out by Suárez and Chavanis [2015], showing that the relativistic corrections are small for
structure formation during matter domination. Under the above assumptions, (2.4) reads[

−(1− 2V )(∂2
t + 3H∂t) + a−2(1 + 2V )∇2 − m2

~2
+O(ε4NR)

]
φ = 0. (2.10)

Neglecting the subdominant potential V � 1, it implies a dispersion relation

ω =

√
m2

~2
+
k2

a2
=
m

~
+

k2~
2a2m

+O(ε4NR). (2.11)

Since the frequency ω is constant to leading order we can use the WKB theory in the limit
H/m ∼ εWKB when the axion field behaves like CDM. We can then use the ansatz solution
[Widrow and Kaiser, 1993]:

φ =
~√
2m

ψe−imt/~ (2.12)

where ψ is only slowly varying with time (|~ψ̇|/|mψ| ∼ εWKB). If the field φ is real, we
have to consider only the real part of the equation or equivalently have to add the complex
conjugate in the above ansatz. Performing a double expansion to O(ε2NR,WKB), the non-
relativistic limit of the Klein-Gordon equation (2.10) gives the equation for the amplitude
ψ [Marsh, 2015]:

i~∂tψ −
3i~H

2
ψ +

~2

2ma2
∇2ψ −mV ψ = 0. (2.13)
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Independently, the conjugate equation applies to ψ
∗
. Moreover, taking the same limits,

(2.9) becomes

ρ = |ψ|2 +O(ε). (2.14)

Note that ψ is the physical field. It is related to the comoving field ψ ≡ ψa3/2 obeying
|ψ|2 = ρa3 ≡ ρ and the comoving Schrödinger equation

i~∂tψ = − ~2

2a2m
∇2ψ +mV ψ. (2.15)

Using Madelung’s transformation [Madelung, 1927]

ψ =
√
ρeiS/~ (2.16)

the imaginary part of the Schrödinger Equation 2.15 yields

∂t
√
ρ = − 1

2ma2

[
2(∇√ρ) · (∇S) +

√
ρ∇2S

]
. (2.17)

Additionally defining the fluid velocity

v = ∇ S
m
, (2.18)

we can cast (2.17) into a comoving continuity equation

∂tρ+
1

a2
∇ · (ρv) = 0. (2.19)

Similarly, the real part of (2.15) becomes the comoving quantum Hamilton-Jacobi equation
[Bohm, 1952]

∂tS = −
[

(∇S)2

2a2m
+mV +Q

]
. (2.20)

It differs from the classical comoving Hamilton-Jacobi Equation 3.42 only by the Bohm
quantum potential

Q = − ~2

2ma2

∇2√ρ
√
ρ
, (2.21)

which depends on the curvature of the amplitude of the wavefunction. Thus, v as defined
above can again be interpreted as the fluid velocity [Bohm, 1952]. We will refine these
arguments below. Spatial differentiation of Equation 2.20 then yields the force equation

∂tv +
1

a2
v · ∇v +∇V − ~2

2m2a2
∇
(
∇2√ρ
√
ρ

)
= 0 . (2.22)
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If linearized, Equation 2.19 and Equation 2.22 become

0 = a2∂tδρ+ ρ0∇ · v , (2.23)

0 = ρ0∂tv + ρ0∇V −
~2

4m2a2
∇
(
∇2δρ

)
, (2.24)

where δρ = ρ − ρ0 denotes the comoving density perturbation above the constant back-
ground ρ0. Taking the time derivative of the first equation and the spatial derivative of
the second one, we can combine these equations with the Poisson equation

∇2V =
4πG

a
δρ =

3H2
0

2a
ΩFDM

δρ

ρ0

, (2.25)

where ΩFDM is the current FDM density parameter. The result is a second-order differential
equation for δρ:

∂ta
2∂tδρ−

3H2
0

2a
ΩFDMδρ+

~2

4m2a2
∇2∇2δρ = 0. (2.26)

Spatial Fourier transformation of δρ then yields

∂ta
2∂tρk −

3H2
0

2a
ΩFDMρk +

~2k4

4m2a2
ρk = 0. (2.27)

As in Woo and Chiueh [2009], assuming a FDM dominated universe with ΩFDM = 1 we
have a = (t/t0)2/3 and therefore H = 2/(3t). Defining x = ~k2/(mH0

√
a) yields

dt

dx
= −3mH0t0

~k2
a2. (2.28)

Thus, in an FDM dominated universe, (2.27) is equivalent to

d2

dx2
ρk + ω2ρk = 0 with ω2 = 1− 6

x2
. (2.29)

The solution to (2.29) is given by [Woo and Chiueh, 2009]:

ρk(x) = c1

(
3 sinx− x2 sinx− 3x cosx

x2

)
+ c2

(
3 cosx− x2 cosx+ 3x sinx

x2

)
, (2.30)

where c1, c2 are constants of integration that need to be fixed by appropriate initial condi-
tions. On the one hand, for x2 ≥ 6, ω2 is positive, and Equation 2.29 yields an oscillatory
solution corresponding to a propagating sound wave with effective sound speed [Hu et al.,
2000; Hwang and Noh, 2009]

c2
eff =

~2k2/4a2m2

1 + ~2k2/4a2m2
. (2.31)
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On the other hand, for x2 ≤ 6, we have an increasing or decreasing solution. In this case,
the support from the correction Q in Equation 2.21 is no longer strong enough to prevent
gravitational instability. The boundary x2 = 6 defines the Jeans wave number in the linear
regime [Khlopov et al., 1985]

kJ = (6a)1/4

(
mH0

~

)1/2

(2.32)

and the corresponding Jeans length

rJ =
2πa

kJ
=

(
8

3

)1/4

π

√
~

mH0

a3/4 = a3/4~1/2π3/4(Gρ0)−1/4m−1/2. (2.33)

Setting a = ~ = 1, this exactly coincides with the Jeans length found by Hu et al. [2000],
which was derived directly from the Schrödinger equation. It is then argued that the Jeans
length can be interpreted as the de Broglie wavelength

λ = 2π~(mv)−1 '
√

12

32
π3/2~m−1(Gρ)−1/2r−1 =

√
12

32
π3/2a3/2~m−1(Gρ0)−1/2r−1 (2.34)

of the ground state of a particle in a potential well if all scales fall together (λ ' r ⇔
λ ' rJ). Then, stability below the Jeans length is ensured by gradient energy. Above we
assumed that the free-fall time

tff =

√
3π

32Gρ
(2.35)

of a spherically symmetric distribution of mass is the relevant dynamical time scale. Note
that rJ ∝ ρ

−1/4
0 . When investigating soliton solutions of the Schrödinger equation, we will

find the same scaling relation. Note further that in the classical limit (Q→ 0) appropriate
for ordinary CDM, Equation 2.29 reduces to

d2

dx2
ρk −

6

x2
ρk = 0 (2.36)

and therefore ρk = x−2 (ρk = x3 is a solution as well but not square-integrable). In this
case we have gravitational instability even on the smallest scales.

2.3 FDM Mass Constraints

The goal of FDM research is to constrain the mass m of the underlying boson as the
only free parameter of the system. Assuming a homogeneous background, Equation 2.10
reduces to [

∂2
t + 3H∂t +

m2

~2

]
φ = 0 . (2.37)
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Figure 2.1: Summary of FDM mass constraints from various observational techniques
together with the preferred mass range from dwarf galaxy phenomenology within the Milky
Way assuming that FDM constitutes all DM.

This defines the dynamics of a damped harmonic oscillator. We therefore infer two very
different limiting cases. If m < H, the system is overdamped. The homogeneous energy
density and pressure

ρ =
(∂tφ)2

2a2
+
m2φ2

2

P =
(∂tφ)2

2a2
− m2φ2

2
(2.38)

imply a dark energy component with equation of state ω = P/ρ = −1 and constant energy
density for a slowly rolling field ∂tφ ' 0. Only for m > H is the field oscillating around ω =
0 and its energy density drops as a−3 making it a viable DM candidate [Turner, 1983; Press
et al., 1990; Hložek et al., 2015]. Particles with masses m ≤ H0 ∼ 10−33 eV still behave as
dark energy today and are thus mainly unconstrained as long as the expansion history does
not depart too far from standard ΛCDM cosmology. Similarly, for masses m > 10−20 eV
the corresponding Jeans scale (cf. Equation 2.33) becomes so small that FDM is almost
indistinguishable from CDM. Within this wide mass range there is a plethora of possible
observational phenomena that can help to discriminate between standard CDM and FDM
cosmologies. They are summarized in this section. The derived FDM mass constraints are
collectively shown in Figure 2.1 together with the preferred mass range from dwarf galaxy
phenomenology within the Milky Way.
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2.3.1 CMB and LSS

The effects of a FDM component on the two-point temperature auto-correlation power
spectrum of the CMB have been investigated by Hložek et al. [2015]. In order to ensure
structure formation on all scales, matter-radiation equality is fixed to its standard value
zeq ∼ 3000 in all considered scenarios by appropriately lowering ΩCDM for m ≥ H(zeq) ∼
10−27 eV. Otherwise, FDM starts oscillating after matter-radiation equality and therefore
contributes to dark energy at zeq. For m ≥ H(zeq), FDM behaves like matter during
the entire matter-dominated era. It therefore only alters higher order peaks of the power
spectrum. FDM with m ≤ H(zeq) has stronger effects on the CMB power spectrum.
Keeping the current Hubble rate H0 fixed, a non-negligible FDM fraction reduces the
contributions from a cosmological constant by implying an enhanced current DM energy
density. This in turn reduces the inferred age of the universe and thus the distance to
the surface of last scattering. The consequentially increased angular size of the sound
horizon θA results in a shift of the locations of the CMB acoustic peaks to lower angles.
Additionally, the late time evolution is altered enhancing the integrated Sachs-Wolf (ISW)
plateau. Instead of fixing H0, we can also fix the position of the acoustic peaks to their
standard values. Deviations are than mainly restricted to the ISW plateau which is less well
restricted due to cosmic variance. Keeping the acoustic peaks fixed requires a significant
reduction in H0.

The large-scale structure of the universe (LSS) can be used to constrain the matter
power spectrum assuming that galaxies trace DM perturbations with a scale-dependent
bias. In the absence of dedicated numerical simulations for FDM, the bias has to be
approximated analytically [LoVerde, 2014; Hložek et al., 2015]. As before, Hložek et al.
[2015] obtain constraints by either fixing θA or H0, while appropriately changing the other
with varying FDM fraction. Keeping H0 fixed again implies a reduced age of the universe.
The power spectrum is therefore lower on all scales since perturbations have less time to
grow. The shape of the power spectrum is only altered for m ≥ H(zeq). Changing instead
H0 considerably alters the power spectrum emphasizing the complementarity between CMB
and LSS data.

Refining the analysis of Amendola and Barbieri [2006], Hložek et al. [2015] investi-
gate CMB data gathered by the Planck [Planck Collaboration, 2014] and WMAP missions
[WMAP Collaboration, 2013] complemented by the high angle data sets provided by the
Atacama Cosmology Telescope [ACT Collaboration, 2014] and the South Pole Telescope
[George et al., 2015] in order to constrain the two-dimensional parameter space. Ad-
ditionally, they compare FDM matter power spectra obtained with AxionCAMB with the
observed ones from the WiggleZ survey [WiggleZ Collaboration, 2012] on linear scales with
the CosmoMC code [Lewis and Bridle, 2002] using nested sampling, as implemented in the
MultiNest code [Feroz et al., 2009]. They conclude that within the large mass range
−32 ≤ log10(m/eV) ≤ −25.5 the FDM to total DM fraction can not exceed five percent at
a 95%-confidence. If CDM is entirely made of FDM, masses m ≤ 10−24 eV are ruled out by
observations. The analysis was refined by Hložek et al. [2018] using the full Planck data set.
Including CMB lensing, constraints could be improved by up to a factor of two compared
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to using temperature anisotropies alone. The authors also investigate FDM isocurvature
perturbations. Future CMB-S4 experiments will significantly improve the above limits
[Hložek et al., 2017, 2018]. Introducing a new set of physically more insightful quantities
to evolve initial FDM density perturbations, Ureña-López and Gonzalez-Morales [2016]
arrive at similar exclusions employing an amended version of the CMB code CLASS [Les-
gourgues, 2011]. Possible degeneracies with massive neutrinos have been investigated by
Marsh et al. [2012] and Hložek et al. [2017]

Finally, the suppression of small-scale perturbations in FDM cosmologies alters the
sub-horizon evolution of the Newtonian potential in the pre-recombination era. This in
turn modifies spectral distortions in the CMB caused by Silk damping. Sarkar et al. [2017]
estimate the deviations to be detectable by the upcoming PIXIE experiment [Kogut et al.,
2011].

2.3.2 Halo Mass Function

The halo mass function (HMF) quantifies the redshift dependent number density of DM
halos n(M, z) per logarithmic mass interval. From Press-Schechter theory, it follows that
[Press and Schechter, 1974]

dn

d lnM
= − ρ

M
f(δcrit/σ)

∣∣∣∣d lnσ2

d lnM

∣∣∣∣ . (2.39)

Extending the original analysis to ellipsoidal collapse, Sheth and Tormen [1999] found

f(ν) = A

√
1

2π

√
qν
[
1 + (

√
qν)−2p

]
exp

[
−qν

2

2

]
(2.40)

with A = 0.3222, p = 0.3, and q = 0.707. This semi-analytic result agrees reasonably
well with CDM N-body simulations. Smoothing the density field by convolution with an
appropriate window function W (x|R(M)) of characteristic radius R corresponding to a
mass M ∼ ρR3, the mass variance S(M, z) is defined via the power spectrum P (k, z) of
the density perturbations:

S(M, z) = σ2(M, z) =
1

2π

∫ ∞
0

P (k, z)W 2(k|R(M))k2dk . (2.41)

Due to scale-independent growth, the critical overdensity of collapse is constant in an
Einstein-de Sitter universe — appropriate for a standard ΛCDM universe during struc-
ture formation — implying δcrit,EdS(z) ' 1.686D(0)/D(z). Here, D(z) is the linear growth
factor. For FDM, δcrit(M, z) steeply rises for masses below M(rJ(z)) as Jeans stability
prevents overdensities to collapse on those scales [Marsh, 2016a]. Together with the sup-
pression of small-scale density perturbations quantified by the FDM transfer function, this
results in a sharp cutoff in the HMF below a minimum mass. Even if there were initial den-
sity perturbations below the Jeans scale they could not collapse into virialized objects. The
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Jeans scale rJ is especially large for high redshifts, since in the early universe perturbations
had less time to grow. For an FDM mass m22 ≡ 10−22 eV we have M(rJ(z)) ∼ 109M�
[Marsh and Silk, 2013; Bozek et al., 2015]. Using the above halo model and a modified
concentration-mass relationship for the halo density profiles, the non-linear power spectrum
was semi-analytically constructed by Marsh [2016a].

Equation 2.40 is obtained by integrating [Bond et al., 1991; Benson et al., 2012]∫ S

0

f(S ′)erfc

[
B(S)−B(S ′)√

2(S − S ′)

]
dS ′ = erfc

[
B(S)√

2S

]
(2.42)

for

B(S) = δcrit,EdS(z)
√
q

[
1 + b

(
1

qν2

)c]
(2.43)

with b = 0.5 and c = 0.6, appropriate for ellipsoidal collapse of CDM. Since the barrier B
deviates from Equation 2.43 for FDM, so does f(S). Taking this into account results in
an order one higher, less redshift-dependent cutoff [Du et al., 2016].

From numerical simulations, Schive et al. [2016] found that for (m ∼ 10−22 eV,z ∼
4− 10,M & 109M�) the FDM HMF can be well fitted by

dn

dM

∣∣∣∣
FDM

(M, z) =
dn

dM

∣∣∣∣
CDM

(M, z)

[
1 +

(
M

M0

)]−2.2

, (2.44)

where M0 = 1.6×1010m
−4/3
22 M� again marks the characteristic mass scale below which the

HMF starts to drop noticeably. The FDM HMF fit in Equation 2.44 is redshift-independent
since FDM physics entered the employed N-body simulations only via modified initial con-
ditions. While the low-mass end of the HMF depends on the detailed FDM physics, M0

should be only mildly redshift-dependent since it is mainly determined during the radiation-
dominated epoch [Hu et al., 2000]. While this is confirmed by semi-analytic constructions
of the FDM HMF [Du et al., 2016], they imply a much steeper cutoff. The less-pronounced
cutoff from Schive et al. [2016] might be a result of the N-body scheme employed which
does not suppress small-scale growth. Indeed, first modified N-body simulations approxi-
mately accounting for coherence effects also during non-linear evolution suggest additional
suppression on small scales [Zhang et al., 2018a]. Further dedicated FDM simulations are
needed to confirm this result. A different parameterization was used by Corasaniti et al.
[2017]

dn

dM

∣∣∣∣
FDM

(M, z) =
dn

dM

∣∣∣∣
CDM

(M, z)
[
1− exp

− M
M0

]γ
10α+β

M0
M , (2.45)

where now α, β, γ and M0 have been fitted to numerical simulations at various redshifts.
The suppression of small-scale structures formed from FDM delays galaxy formation

relative to standard CDM for which structures start growing already at matter-radiation
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equality. Numerical simulations show that with FDM the first bound objects collapse at
z ' 13 [Schive et al., 2014a], whereas under ΛCDM the first objects should form at z ' 50
[Abel et al., 2001]. Currently, the oldest galaxy was observed at a redshift of z ' 11.09
[Oesch et al., 2016], close to the FDM bound for m22 ∼ 1.

Modifying the merger tree algorithm implemented in GALACTICUS [Cole et al., 2000;
Benson, 2012], Du et al. [2016] were able to also construct subhalo mass functions of Milky
Way-sized halos. They show a similar suppression on small scales. Unfortunately, most of
the model assumptions needed for the semi-analytic approach have not yet been calibrated
to FDM, as high-resolution large-scale FDM simulations are still missing.

2.3.3 UV Luminosity Function

Due to experimental improvements there are increasingly large data sets on galaxies all
the way to redshifts of z ∼ 11 [Oesch et al., 2016; Bouwens et al., 2015b]. The upcoming
JWST experiment will significantly extend this catalogue also to higher redshifts [Gardner
et al., 2006]. The rest frame UVLF φ(MAB) quantifies the number density per absolute
magnitude MAB of star forming galaxies. The observed UVLF is well-fitted by a Schechter
function [Schechter, 1976]:

φ(L) =
φ?
L?

(
L

L?

)α
exp

(
− L

L?

)
(2.46)

with M = −2.5 log(L/erg s−1Hz−1) + 51.6 and best fit parameters [Bouwens et al., 2015b]

φ? = 0.47× 10−0.27(z−6)−3Mpc−3 (2.47)

M? = −20.95 + 0.01(z − 6) (2.48)

α = −1.87− 0.10(z − 6) (2.49)

Similar parameter values were obtained by Kuhlen and Faucher-Giguère [2012]. Assuming
that each DM halo hosts a single galaxy whose luminosity is monotonically related to the
halo mass Mh(MAB), the abundance matching technique assigns a galaxy of a given MAB

to the corresponding mass Mh by requiring

Φ(< MAB, z) = n(> Mh, z) . (2.50)

Here, Φ is the cumulative galaxy luminosity function counting all bright galaxies below
MAB, which equates to the most massive DM halos in a specific DM scenario [Vale and
Ostriker, 2004]. The above equality can only be enforced if the underlying DM model
predicts enough low-mass halos to match the faint end of the observed luminosity function.
It can therefore provide an upper bound on the allowed suppression of low-mass halos which
in turn translated to a lower bound on the FDM mass. The thus obtained bound is model
independent since no specific relation Mh(MAB) is assumed. Abundance matching to the
CDM HMF, Schive et al. [2016] findm22 ≥ 1.5 (2σ), while matching to the FDM HMF given
in Equation 2.44 yields m22 ≥ 0.9 (2σ). These bounds are relaxed if FDM contributes only



16 2. Fuzzy Dark Matter Cosmology

a fraction of all DM [Bozek et al., 2015]. Updated analyses produced comparable bounds
m22 ≥ 8.0 (3σ) [Menci et al., 2017] and m22 ≥ 1.6 (> 2σ) [Corasaniti et al., 2017].

The Mh(MAB) relation can additionally be used as a prediction of a given theory. This
would require dedicated high resolution FDM simulations including baryonic physics which
are not yet available. Generally, a suppression on small scales implies an enhanced star
formation rate within small FDM halos Mh < M0 compared to CDM halos [Corasaniti
et al., 2017].

A similar bound on the FDM mass m22 ≥ 1.2 (2σ) was obtained by Schive et al.
[2016] using the conditional UVLF [Cooray and Milosavljević, 2005], which describes the
probability density of halos with mass Mh to host galaxies with luminosity L:

φc(L|Mh, z) =
1√

2π ln(10)ΣL
exp

{
− log[L/Lc(Mh, z)]

2

2Σ2

}
(2.51)

with [Bouwens et al., 2015b]

Lc(Mh, z) = L0
(Mh/M1)p

1 + (Mh/M1)q

(
1 + z

4.8

)r
. (2.52)

The UVLF is then obtained by integrating

φ(L, z) =

∫ ∞
0

φc(L|Mh, z)
dn

dMh

(Mh, z)dMh (2.53)

and finding appropriate parameters (L0,M1,Σ, p, q, r) [Schive et al., 2016; Bouwens et al.,
2015b]. The thus predicted UVLF is well fitted by [Schive et al., 2016]

φFDM(L) = φ(L)

[
1 +

(
L

LFDM

)γ]β/γ
(2.54)

with best fit parameters

MFDM = −17.6 + 4.5 log(m22/0.8)− 5.0 log((1 + z)/7)

β = 1.70 + 0.04(z − 6) (2.55)

γ = −1.20 .

The additional factor in Equation 2.54 parametrizes the suppression of the UVLF at the
faint end due to FDM physics compared to the CDM UVLF φ(L). Constructing the condi-
tional UVLF from the semi-analytically obtained HMF [Du et al., 2016] would potentially
yield an even stronger bound on the FDM mass due to the steeper cutoff.

The conditional UVLF approach was also used by Corasaniti et al. [2017], who obtain
a lower bound m22 ≥ 1.6 (> 2σ). The analysis was done on an updated data sample for
the observed UVLF, accounting for dust extinction corrections that shift the UVLF to
smaller magnitudes. Additionally, Lc(Mh, z) was modelled as the ensemble average of the
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luminosity at fixed halo mass and redshift. This reduces the free parameter space to Σ
and a redshift dependent overall amplitude of the ensemble averaged luminosity.

The small-scale suppression of the UVLF can be best constrained with multiply lensed
high redshift galaxies which are typically magnified by an order of magnitude, decreasing
the limiting intrinsic luminosity down to MAB ∼ −15 in the Hubble Frontier Field [Lam
et al., 2014] and indicating vigorous star formation in halos with Mh ∼ 109M� [Finla-
tor et al., 2016]. The gravitational lensing bias Nlensed(> L)/Nunlensed(> L) modifies the
number density of high-redshift galaxies above a limiting luminosity [Broadhurst et al.,
1995]

Nlensed(> L) = (1/µ)Nunlensed(> L/µ) , (2.56)

where µ is the magnification factor. Due to the difference in sign in the faint-end slope of
the UVLF, the bias for CDM enhances the number of faint high-redshift galaxies, while
for FDM the turnover in the UVLF leads to fewer galaxies magnified above the flux limit
[Schive et al., 2016]. This turnover has indeed been found by investigating the Hubble
Frontier Field (HFF) data, suggesting a best fit FDM mass 0.8 < m22 < 3.2 [Leung et al.,
2018]. JWST has the potential to probe even fainter lensed galaxies [Mason et al., 2015]
especially employing the same deep lenses as the HFF for which magnification maps are
best understood [Lam et al., 2014; Diego et al., 2015].

2.3.4 Reionization History

The reionization history — the time evolution of the volume filling fraction of ionized
hydrogen QHII(z) — balances the ionization of the neutral intergalactic medium (IGM)
with the recombination of free electrons and protons [Kuhlen and Faucher-Giguère, 2012;
Madau et al., 1999; Robertson et al., 2013; Schultz et al., 2014]

dQHII

dt
=
ṅion

nH

− QHII

trec

, (2.57)

where nH is the mean comoving hydrogen number density, ṅion is the comoving production
rate of ionizing photons per unit volume and

trec =
1

CHIIαB(T0)nH(1 + Y/4X)(1 + z)3
∼ 0.93

(
7

1 + z

)3

GeV (2.58)

is the volume averaged recombination time of ionized hydrogen. The clumping factor of
ionized gas CHII = 〈n2

H〉 / 〈nH〉2 = 2 ∼ 5 varies based on definition and method [Robertson
et al., 2013], but is typically chosen to be CHII = 3 [Kuhlen and Faucher-Giguère, 2012;
Schultz et al., 2014; Robertson et al., 2015]. αB is the case B hydrogen recombination
coefficient depending on the IGM temperature, commonly assumed to be T0 ∼ 2× 104 K,
which is appropriate for ionized gas at the mean density during the epoch of reionization
[Hui and Haiman, 2003]. The primordial hydrogen and helium mass fractions are well
modeled by X = 0.76 and Y = 0.24 [Kuhlen and Faucher-Giguère, 2012; Schultz et al.,
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2014], consistent with both CMB measurements [Planck Collaboration, 2018] and estimates
from low-metallicity extragalactic regions [Izotov and Thuan, 2004; Steigman, 2007]. The
production rate of ionizing photons

ṅion =
2× 1025

erg Hz−1 ζionfesc

∫ ∞
Llim

φ(L)LdL (2.59)

depends on the UVLF φ(L) defined in Equation 2.54, on the efficiency of converting galaxy
UV luminosity to ionizing photon luminosity ζion = 0.5 ∼ 2.0, on their escape fraction
fesc = 0.1 ∼ 0.5, and on the limiting UV magnitude Mlim = −17 ∼ −10 [Bozek et al.,
2015; Schive et al., 2016; Kuhlen and Faucher-Giguère, 2012; Schultz et al., 2014; Bouwens
et al., 2015a].

Energetic photons from early forming stars fully reionize the IGM by z ∼ 6 with
QHII(z ∼ 6) > 0.99 [Madau et al., 1999; Loeb and Barkana, 2001; Bunker et al., 2004;
Yan and Windhorst, 2004; Oesch et al., 2009]. This can be inferred from observations of
the Gunn-Peterson trough [Gunn and Peterson, 1965] in quasar spectra at z > 6 [Fan
et al., 2006; Schroeder et al., 2012; McGreer et al., 2014; Dijkstra, 2014] and Lyman-
α forest measurements at z < 6 [Becker et al., 2001; Djorgovski et al., 2001]. A more
conservative constraint is obtained using the covering fraction of “dark” pixels in quasar
spectra implying QHII(z = 5.5) > 0.8 and QHII(z = 6) > 0.5 [McGreer et al., 2011]. Other
sources of reionization were found to be sub-dominant [Haiman and Loeb, 1998; Fontanot
et al., 2012]. The observed reionization history suggests a significant ionizing photon escape
fraction and a UVLF extending beyond the observed intrinsic luminosity and redshift
[Kuhlen and Faucher-Giguère, 2012; Robertson et al., 2013]. Since FDM delays structure
formation, reionization starts at smaller redshifts compared to CDM. Reionization must
thus be more efficient in FDM scenarios. Even for ζionfesc ∼ 0.6 as opposed to the standard
CDM value ζionfesc ∼ 0.2, the FDM mass is constrained to m22 ≥ 0.73 [Schive et al.,
2016]. This bound can be relaxed if FDM constitutes only a fraction of DM [Bozek et al.,
2015]. Recent measurements suggest even higher values ζionfesc ∼ 1.0 for faint high-redshift
galaxies [Meyer et al., 2018; Dijkstra et al., 2016]. Additionally, an investigation of the
Hubble Frontier Field suggests an enhanced star formation rate at redshifts z ∼ 8 − 10
[Leung et al., 2018]. Reionization can also suppress galaxy formation with observable
imprints in the luminosity function of galaxies [Bose et al., 2018].

Using an N-body scheme with FDM initial conditions to simulate the DM distribution
at z = 8, Sarkar et al. [2016] confirm the FDM HMF found by Schive et al. [2016] expect for
a sudden increase for very small halo masses. It can be attributed to the non-subtraction of
spurious halos appearing as numerical artifacts. This weakens the derived FDM mass con-
straints. They continue their analysis by semi-analytically generating the ionization map
and neutral hydrogen (HI) distribution employing a homogeneous recombination scheme
[Choudhury et al., 2009]. It assumes that hydrogen exactly traces the matter density dis-
tribution and ionizing photons are only produced within halos in proportion to the halo
mass. The ionization map is then constructed by comparing the smoothed photon num-
ber density to the smoothed hydrogen number density. Regions with higher photon than
hydrogen number density are counted as ionized. The remaining HI distribution is finally
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mapped to redshift space [Bharadwaj and Ali, 2004; Majumdar et al., 2013] in order to
calculate the brightness temperature fluctuation [Bharadwaj and Ali, 2005]

δTb = 4mK
ρHI

ρH

(1 + z)2

(
Ωbh

2

0.02

)(
0.7

h

)
H0

Hz

, (2.60)

where ρHI/ρH is the ratio of HI to the mean hydrogen density. Since FDM simulations
show fewer halos, the remaining ones have to produce ionizing photons more efficiently in
order to reionize the universe similarly to CDM scenarios. For m22 < 0.26 no halos form
excluding this mass range. In simulations with slightly higher masses, the needed photon
production efficiency was still unrealistically high. However, large uncertainties prohibit
conclusions on FDM mass constraints. Since FDM predicts fewer but brighter ionizing
sources during the epoch of reionization, JWST will be able to distinguish between FDM
and CDM by directly detecting them [Gardner et al., 2006].

The suppression of small halos results in larger ionized regions with stronger contrast
compared to CDM simulations. This alters the mean squared brightness temperature
fluctuation ∆2

b(k) = k3Pb(k)/2π2 of the HI field for FDM, which is enhanced over a wide
range of scales 0.1 < k < 4 Mpc−1 [Sarkar et al., 2016]. Generally, a suppression in
the matter power spectrum implies an enhancement in ∆2

b(k) [Furlanetto et al., 2004; Lidz
et al., 2008]. The HI signal is measured by various experiments including LOFAR [Hörandel
et al., 2009], MWA [Webster, 2017], PAPER [Pober et al., 2015], but data does not yet
have the required precision for FDM mass constraints.

An additional constraint on the FDM mass can be derived from damped Lyman-α
absorption data [Noterdaeme et al., 2009; Péroux et al., 2003; Noterdaeme et al., 2012;
Zafar et al., 2013; Crighton et al., 2015; Songaila and Cowie, 2010]. Simulations indicate
damped-α clouds in the mass range 109 − 1010M� [Pontzen et al., 2008]. Observations at
z ' 2.5 suggest even more massive clouds up to 1012M� [Font-Ribera et al., 2012]. A lower
bound on the collapsed fraction of FDM can be obtained from their combined observed
mass that can be compared to the fraction of FDM mass within the heaviest FDM halos.
Integrating the HMF above a limiting mass of ∼ 1010M�, Sarkar et al. [2016] rule out
FDM with mass m22 < 0.1.

The reionization history can be best constrained by the CMB Thomson scattering
optical depth, which is an integral over the full reionization history

τ = cσTnH

∫ ∞
0

(1 + z)2

H(z)
QHII(z)(1 + η(z)Y/4X)dz . (2.61)

Here, c is the speed of light, H(z) is the Hubble parameter, σT is the Thomson scattering
cross-section, and η(z) represents the ionization state of helium. It is typically taken to be
η(z > 4) = 1 for singly and η(z ≤ 4) = 2 for doubly ionized helium [Bozek et al., 2015;
Schive et al., 2016; Kuhlen and Faucher-Giguère, 2012]. The optical depth was observed to
be τ = 0.054±0.007 [Planck Collaboration, 2018]. Since previous data yielded larger values
for τ , the FDM mass limits obtained by Schive et al. [2016] and Bozek et al. [2015] are
slightly too tight but suggest a rough limit of m22 ≥ 0.5 compatible with above presented
limits.
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Small-scale polarization data from CMB experiments like the Atacama Cosmology Tele-
scope [ACT Collaboration, 2014] and South Pole Telescope [George et al., 2015] combined
with Planck data [Planck Collaboration, 2016b] can accurately measure the kinematic
Sunyaev-Zel’dovich (kSZ) effect. The kSZ power spectrum amplitude constrains the time
zre = z(QHII = 0.5) of reionization to be between z = 7.8 and 8.8 and its duration
δzre = z(QHII = 0.75)−z(QHII = 0.25) < 2.8 [Planck Collaboration, 2016a]. Together with
the small value for τ this suggests a delayed, more efficient reionization then previously
assumed. These measurements could distinguish between CDM and FDM even for larger
FDM masses m22 ∼ 10 [Bozek et al., 2015]. Unfortunately, an updated analysis including
the newest Planck data [Planck Collaboration, 2018] has not been done yet.

2.3.5 Lyman-Alpha Forest

The Lyman-α (Lyα) forest is a set of absorption lines in high-redshift quasar spectra. While
propagating to earth the quasar photons are redshifted to larger wavelength. Photons
passing the Lyα resonance at a wavelength of λ ' 1216 Å are efficiently absorbed by
HI clouds at the corresponding redshift. The observed absorption lines blue-ward the
(redshifted) Lyα resonance thus directly trace the HI distribution along the line-of-sight
quantified by the one dimensional matter power spectrum

P1D(k) =
1

2π

∫ ∞
k

k′P3D(k′)dk′ . (2.62)

If sufficiently resolved, the forest can be modelled by fitting each individual line with a
Voigt profile using χ2 minimization [Mo et al., 2010]. Their depth measures the column
density while their width quantifies the temperature of the individual HI cloud.

The Lyα forest has already been successfully used to constrain the warm DM (WDM)
mass mWDM & 4.09 keV [Baur et al., 2016], which suppresses DM density perturbations
below a Jeans scale set by free-streaming. Relating the Jeans scales for WDM at T ∼
mWDM and FDM at H(T ) ∼ mFDM during radiation domination [Marsh and Silk, 2013;
Marsh, 2016b]

mWDM

keV
'
√
mFDMMPl

keV
' 0.5

( mFDM

10−22eV

)0.5

, (2.63)

it can be expected that Lyα forest measurements can constrain FDM masses m22 & 70.
Early Lyα analyses indeed disfavor m22 < 1 [Amendola and Barbieri, 2006]. Using hy-
drodynamical simulations including star formation in cold and dense baryon environments
[Bolton et al., 2016] with FDM initial conditions and comparing them to high-statistics
Lyα power spectra measured by the BOSS survey [Palanque-Delabrouille et al., 2013], VLT
[López et al., 2016] and spectra summarized in Viel et al. [2013], Armengaud et al. [2017]
find m22 & 29, while Iršič et al. [2017] obtain m22 & 20 and m22 & 37.5 depending on the
assumed thermal history. In both simulations, the redshift-dependent IGM temperature is
modelled by

TIGM = T0(z)(1 + δρ/ρ)γ(z)−1 , (2.64)
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while the effective optical depth is given by

τeff = α× (1 + z)β . (2.65)

The parameters were set to T0(z = 3) = 1400 K and γ(z = 3) = 1.3 in agreement with
Becker et al. [2010] subject to a power-law redshift dependence and α = 0.0025 and β = 3.7
in Armengaud et al. [2017] and similar values in Iršič et al. [2017]. The above analysis was
refined by Kobayashi et al. [2017], investigating also scenarios in which FDM constitutes
only a fraction of the total DM energy density.

The results indicate FDM might suffer from the same catch − 22 problem as WDM.
This tension could be alleviated if the axion is initially near its potential maximum [Zhang
and Chiueh, 2017b,a]. Due to parametric instabilities in this extremal misalignment case,
the power spectrum at high redshifts z ∼ 100 is enhanced above the Jeans scale with
respect to its CDM and standard FDM counterparts [Schive and Chiueh, 2017; Cedeño
et al., 2017]. A caveat in the employed simulations is the use of an N-body scheme as
implemented in Gadget-3 [Springel, 2005] in order to model the time evolution of FDM.
The small-scale coherence effects of FDM are therefore neglected. An a posteriori analysis
of the force due to coherence effects verses the gravitational force suggests that a full FDM
treatment would produce similar bounds [Armengaud et al., 2017]. However, the granular
structure and solitonic cores in filaments and halos found in full FDM simulations [Schive
et al., 2014a] could not be properly accounted for. Since dedicated simulations have proven
that large scales are not affected by these non-linearities [Veltmaat and Niemeyer, 2016], it
is argued that especially the BOSS data is insensitive to these effects as only larger scales
are probed. This is different for the high-resolution spectra additionally used. Constraints
deduced from them can be expected to slightly change when using full FDM simulations.
Indeed, a first numerical N-body study, in which coherence effects are approximately taken
into account, suggests enhanced suppression of small-scale density perturbations [Zhang
et al., 2018a].

2.3.6 EDGES and the 21 cm Line

Since Lyα forest measurements rely on a limited number of high-redshift quasars, it is
difficult to statistically quantify the structure of reionization, while the large optical depth
of HI even prevents accurate measurements of the redshift-dependent ionization fraction
at the beginning of reionization, and the observed optical depth of the CMB provides only
redshift-integrated constraints.

These limitations can be overcome by measuring HI 21 cm lines that correspond to
a spin-flip transition in the ground state of hydrogen. The details of 21 cm cosmology
summarized here can be found in Mo et al. [2010] and Lidz and Hui [2018], while a more
in depth discussion is presented in Furlanetto et al. [2006] and Pritchard and Loeb [2012].
Historically it was first investigated by Wouthuysen [1952], Field [1958], Field [1959] and
then Madau et al. [1997].

The spin-spin coupling of the proton and electron breaks the degeneracy of the ground
state resulting in a hyperfine structure splitting depending on the parallel (triplet state
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F = 1) or anti-parallel (singlet state F = 0) spin alignment. Its energy difference, E10 =
E1−E0 ' 5.9×10−6 eV, corresponds to a wavelength of λ10 ' 21 cm, a frequency ν10 ' 1.4
GHz, and a temperature T10 ' 0.068 K. In equilibrium, the relative abundance of atoms
in the two different states is characterized by the spin temperature Ts:

n1

n0

= 3 exp

[
−T10

Ts

]
, (2.66)

where the factor of three accounts for the degeneracy of the triplet F = 1 state. Travelling
through HI, photons with temperature Tγ — for example from the CMB — can be absorbed
by exciting hydrogen atoms from the singlet to the triplet state. The resulting change in
brightness temperature in the limit of small optical depth τ � 1 and high redshift z � 1

δT =Tb − Tγ =
(1− exp−τ(z)) [Ts(z)− Tγ(z)]

(1 + z)

'28 mK

(
Ωb,0h

0.03

)(
Ωm,0

0.3

)−1/2(
1 + z

10

)(
1− Tγ

Ts

)
(1 + δ)xHI (2.67)

then depends on the neutral fraction xHI and overdensity δ. If the photons are in ther-
mal equilibrium with the gas, Tγ = Ts, there is no net effect since absorption is exactly
compensated by emission. Instead, Tγ > Ts (Tγ < Ts) leads to net absorption (emission).

There are three known processes that change the ratio of atoms in the two hyperfine
states and thus determine the spin temperature. The absorption/emission of radio back-
ground photons with temperature Tγ — usually associated to the CMB — couples Ts to
Tγ ' Ts. Additionally, HI atoms can change their hyperfine state when colliding with each
other or via the Wouthuysen-Field effect [Wouthuysen, 1952; Field, 1958] whereby a HI
atom resonantly scatters off a Lyα photon and thus flips spin via an intermediate excited
state. The last two processes couple the spin temperature to the kinetic temperature of
the gas TK and the brightness temperature of the radiation field Tα, respectively:

Ts =
Tγ + yαTα + ycTK

1 + yα + yc
, (2.68)

where

yc =
C10

A10

T10

TK
and yα =

P10

A10

T10

Tα
. (2.69)

Here, C10(TK) is the rate of collisional de-excitation of the triplet state, A10 ' 2.9× 10−15

s−1 is its spontaneous decay rate, and P10 = 4Pα/27 is the de-excitation rate due to the
total Lyα photon scattering rate Pα. At high redshift, Compton scattering between CMB
photons and residual free electrons in the IGM drives TK towards Tγ ' TK ∼ (1 + z) when
the energy density of the CMB and the ionization fraction in the hydrogen density are still
large. Below z ∼ 200 this process becomes inefficient and TK ∼ (1 + z)2 instead decreases
like an adiabatically expanding non-relativistic gas. This reduces Ts with respect to Tγ as
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long as collisional (de-)excitation drives Ts towards TK . Around z ∼ 70 the IGM became
too dilute and cold for a sufficient collision rate and Ts is again tightly coupled to Tγ
[Furlanetto et al., 2006]. This in turn makes the IGM essentially invisible by z ∼ 30 until
star formation produces Lyα photons that trigger the Wouthuysen-Field effect. Neglecting
collisional (de-)excitation, (2.68) can then be rearranged to

1− Tγ
Ts

=
yα

1 + yα

(
1− Tγ

TK

)
, (2.70)

assuming that the large cross section of HI near the Lyα resonance and the photons’ ability
to exchange energy with the gas through the recoil of atoms while emitting Lyα photons,
thermalizes the radiation spectrum near Lyα with the gas, which drives Tα quickly to TK
[Field, 1959].

The observed negative brightness temperature between z ∼ 20 and z ∼ 15 by the
EDGES experiment [Bowman et al., 2018] thus places the onset of star formation around
z ∼ 20 (yα(z < 20) > 0). At this redshift, the gas temperature is expected to be 9.3
K, further dropping to 5.4 K at z = 15 [Bowman et al., 2018]. Since the CMB temper-
ature T0(1 + z) with T0 = 2.725 scales linearly with redshift the corresponding radiation
background temperature is expected to be Tγ ' 57.2 K and Tγ ' 43.6 K, respectively.
Thus, even for the most extreme case, in which Ts is fully coupled to TK (yα � 1), the
implied maximum absorption amplitude is 0.2 K at z = 20 and 0.23 K at z = 15, in clear
contradiction to the EDGES results showing a deficit of ' 0.5 K [Bowman et al., 2018].
This indicates an increased Tγ ' 104 K or a decreased TK ' 3.2 K at z ∼ 17. The ten-
sion further increases when matter perturbations are taken into account [Xu et al., 2018].
Eventually, Lyα and X-ray photons heat the gas above the radiation temperature, ending
the absorption signal. EDGES data suggests this transition to happen around z ∼ 15
[Bowman et al., 2018]. It was found that these results are consistent with an extrapolation
of the declining integrated UVLF measured at 4 ≤ z ≤ 9 [Bouwens et al., 2015b], if the
UVLF does not decline more rapidly for z & 10 and the ionizing photon escape fraction is
fesc . 0.2 [Madau, 2018]. The reliability of the EDGES results is strongly debated. In fact,
[Hills et al., 2018] obtained a satisfactory fit to the data without any absorption feature, if
there is a periodic feature with an amplitude of ∼ 0.05 K present in the data.

The redshift-dependent coupling coefficient yα quantifies the Wouthuysen-Field effect
and thus the star formation history in the early universe. It is given by [Pritchard and
Loeb, 2012; Lidz and Hui, 2018]

yα =
16π2T10e

2fα
27A10Tγmec

SαJα '
Jα(z)/J0(z)

0.069

(
1 + z

21

)2

, (2.71)

where [Chen and Miralda-Escude, 2004]

J0 =
cnH(z)

4πνα
(2.72)

is the specific intensity equivalent to one Lyα photon per hydrogen atom. In order to
achieve the fiducial value yα = 1 at z = 20 suggested by the EDGES results therefore
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requires a specific intensity of 0.069 Lyα photons per hydrogen atom [Lidz and Hui, 2018].
It can be calculated according to [Hirata, 2006; Furlanetto, 2006]

Jα(z) =
c

4π
(1 + z)2

nmax∑
n=2

frecycle(n)

∫ zmax(n)

z

ε(ν, z′)

H(z′)
dz′ , (2.73)

where

zmax(n) = (1 + z)
1− (n+ 1)−2

1− n−2
− 1 (2.74)

and the sum over n runs over Lyman-series resonances and frecycle(n) quantifies the creation
of Lyα photons due to de-excitation cascades from the nth energy level. The coefficients
frecycle(n) were calculated by Pritchard and Furlanetto [2006], and nmax = 23 is suggested
in Furlanetto [2006]. Assuming that the UV emissivity traces the fraction of DM collapsed
into halos of sufficient minimal mass Mmin to trigger star formation, it is approximated by
[Furlanetto, 2006]

ε(ν, z′) = ε(ν)f?nH(z = 0)
dfcoll(> Mmin, z

′)

dt
, (2.75)

where f? is the star formation efficiency and ε(ν) = Nαν
−αs−1 is the specific emissivity

with fiducial parameters Nα = 9690 and αs = −0.14 [Barkana and Loeb, 2005].
Employing the above analysis, Schneider [2018] and Lidz and Hui [2018] obtain a lower

bound on the FDM mass by using the above described FDM HMFs of Schive et al. [2016],
Marsh and Silk [2013] and Marsh [2016a]. In their analysis Lidz and Hui [2018] vary
Mmin = 106 − 109M�, but find no strong dependence of the specific value due to the low
mass suppression in the FDM HMF. Assuming f? = 0.05, Lidz and Hui [2018] conclude
that only FDM masses m22 > 50 can produce yα > 1 at z = 20. The lower star formation
efficiency f? = 0.03 considered by Schneider [2018] increases this bound to m22 > 80.

2.3.7 Pulsar Timing Arrays

We have already shown that the temporal part of the energy momentum tensor of the
scalar FDM field given in Equation 2.9 reduces to a constant density equal to the absolute
square of the wavefunctions amplitude in Equation 2.14. On the contrary, for H � m,
the dominant term in the spatial components oscillate in time [Khmelnitsky and Rubakov,
2014]:

Tij = −ρ cos(2mt+ 2α(x))δij = p(x, t)δij . (2.76)

Since the momentum p(x, t) oscillates harmonically around zero on the Compton time
scale, averaging over one period results in a negligible pressure and an average equation of
state ω = 0 as required for DM and discussed below Equation 2.38. However, as shown
by Khmelnitsky and Rubakov [2014], the oscillating pressure induces oscillations in the
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gravitational potential, which can lead to observable effects in pulsar timing experiments.
In this section we closely follow their derivation as presented by Khmelnitsky and Rubakov
[2014].

Using Equation 2.7, the trace of spatial components of the Einstein Equation 2.5 yields

−6∂2
tU + 2∇2(U − V ) = 8πGTkk = 24πGp . (2.77)

Decomposing the potential

V (x, t) ' V0(x) + Vc cos(2mt+ 2α(x)) + Vs sin(2mt+ 2α(x)) (2.78)

into a time-independent component V0 and oscillating parts proportional to Vc and Vs,
and similarly for U(x, t), it follows that V0 = U0, obeying the usual Poisson Equation 2.8.
Thus, V0 ∼ Gρk−2 is quadratically suppressed by the wave number k. Neglecting spatial
derivatives, the time-dependent parts are proportional to

Vs(x) = 0 Vc(x) = Gπρ(x)m−2 . (2.79)

In the non-relativistic regime, the oscillations are therefore small perturbations with rela-
tive amplitude Vc/V0 ∼ k2/m2 = v2 ∼ 10−6. Similar to the Sachs-Wolf effect for CMB pho-
tons discussed above, the time variations in the metric induce frequency shifts (Ω(t′)−Ω0)
and a corresponding time delay

∆t(t) = −
∫ t

0

Ω(t′)− Ω0

Ω0

dt′ (2.80)

for any signal with pulse emission frequency Ω0 at the pulsar. It can show up as a residual
variation of an arriving signal in pulsar timing array experiments. The integrand is given
by

Ω(t)− Ω0

Ω0

= V (x, t)− V (x0, t0)−
∫ t

t0

ni∂i(V (x′, t′) + U(x′, t′))dt′ , (2.81)

where ni is the unit vector in the direction of the signal propagation and the integral
is taken over its unperturbed trajectory. The distance to observed pulsars is typically
D & 100 pc� m−1. The integrand in Equation 2.81 is thus highly oscillatory, suppressed
by k/m = v ∼ 10−3, and can therefore safely be neglected. Then,

∆t(t) =
Vc
m

sin (mD + α(x)− α(x0)) cos (2mt+ α(x) + α(x0 −mD)) , (2.82)

where now t denotes the signal propagation time from the pulsar at x0 to the observer at
x separated by a distance D. Averaging the square of the amplitude in Equation 2.82 over
the distance D yields √

〈∆t2FDM〉 =
√

2
Vc(x)

ω
, (2.83)
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with angular frequency ω = 2m. This result can be compared to gravitational wave signals√
〈∆tGW〉 =

1√
3

hc
ω

(2.84)

with characteristic strain

hc =
√

6Vc = 2× 10−17

(
ρ

0.3 GeV/cm3

)
m−2

22 (2.85)

at frequency

f = 2πω = 5× 10−8m22 Hz . (2.86)

Khmelnitsky and Rubakov [2014] conclude that the SKA experiment is potentially sensitive
enough to detect an FDM signal if m22 ∼ 0.1. Since it is monochromatic, it can be
distinguished from a stochastic gravitational wave background. Employing a Bayesian
analysis, it is shown by Porayko and Postnov [2014], that the best current limits obtained
by the NANOGrav PTA experiment [NANOGrav Collaboration, 2018] are an order of
magnitude above the required sensitivity even for this best constrainable FDM mass range
m22 ∼ 0.1.

It was emphasized by Martino et al. [2017], that the above analysis assumes a constant
density background. However, many observable pulsars can be expected to lie in the
solitonic core region of the Milky Way. Since the strain as defined in Equation 2.85 is
proportional to the local FDM density, the signal can be enhanced by up to three orders of
magnitude, such that even current experiments start to be able to constrain the parameter
space around m22 ∼ 0.1. Additionally, the strong density contrast on de Broglie length
scales in the granular density profile of FDM halos found in cosmological simulation Schive
et al. [2014a] could potentially be detected by investigating residual time modulations
between individual pairs of pulsars.

2.3.8 Gravitational Lensing

From general relativity it is known that light is bent around massive objects, that can
therefore serve as gravitational lenses [Bartelmann and Schneider, 2001; Kilbinger, 2018].
Quantifying this effect, we follow Mo et al. [2010] and start defining the photon trajec-
tories under the influence of a Newtonian potential V . Employing the line element from
Equation 2.7 in comoving coordinates

ds2 = a2(τ)[(1 + 2V )dτ 2 − (1− 2V )(dχ2 + f 2
K(χ)dΩ2)] (2.87)

they are given via the corresponding geodesic equation

dû

dχ
= −2∇⊥V , (2.88)
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where u = dx/dτ represents the direction of the light propagation and ∇⊥ denotes the
gradient perpendicular to the unit vector û. The right hand side quantifies the photon de-
flection δαd = −2∇⊥V δχ. Considering a source at χS (x⊥,S) in a perturbed (unperturbed)
universe, its image position at the observer’s position x⊥,0 is thus deflected by

x⊥,0 = x⊥,S − 2

∫ 0

χS

fK(χS − χ)∇⊥V (χ)dχ , (2.89)

proportional to the angular diameter distance fK(χS − χ) in comoving coordinates. Re-
formulating the above equation in angular positions of the source θS = x⊥,SfK(χS)−1 and
image θ0 = x⊥,0fK(χS)−1 relative to that of the lens, we obtain the lensing equation

θS = θ0 − 2

∫ χS

0

fK(χS − χ)

fK(χS)
∇⊥V (χ)dχ . (2.90)

In typical astrophysical applications significant lensing happens only in a small region
around the gravitational lens much smaller than the lens-to-source or the observer-to-lens
distance. Equation 2.90 can then be approximated by

θS ' θ0 − 2
fK(χS − χL)

fK(χS)

∫ χS

0

∇⊥V (χ)dχ . (2.91)

If we further assume a thin spherically symmetric lens like an NFW halo with solitonic
core, the deflection angle

αd = 2

∫ χS

0

∇⊥V (χ)dχ =
4GM(ξ)

ξ
where M(ξ) = 2π

∫ ξ

0

ξ̂Σ(ξ̂)dξ̂ (2.92)

becomes a function of the projected surface mass density

Σ(ξ) =

∫
ρ(ξ, z)dz . (2.93)

Here, z is the distance to the lens projected along the photon trajectory and ξ denotes
the distance from the symmetry point of the lens in the lens plane. Defining the critical
surface density

Σcr =
dS

4πGdLdLS
, (2.94)

where di = fK(∆χi)(1 + zi)
−1 are angular diameter distances in physical coordinates, the

lens Equation 2.90 can be rewritten as

θS ' θ0 −
M(θL)

πΣcrd2
LθL

, (2.95)
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with ξ = dlθL. By definition, at the Einstein radius θE, the mean surface density

Σ(ξ) =
M(ξ)

πξ2
(2.96)

within ξ is equal to Σcr and therefore θS = 0.
Gravitational lensing from FDM halos has been investigated by Herrera-Mart́ın et al.

[2017] in order to constrain the FDM profile given in Equation 2.83 below and thereby
also the FDM mass. As the profile ρ(r) in Equation 2.83 is assumed to be universal for
all FDM halos with characteristic density ρs and radius rs, the above equations can be
rewritten in dimensionless quantities relative to these characteristic scales with a single
scale-dependent parameter

λ =
ρsrs
πΣcr

=
θ?2E

M?(θ?E)
= 10−3 0.57

h

(
ρsrs

M�pc−2

)
dLdLS
dS

. (2.97)

Denoting dimensionless quantities with an asterisk the lens Equation 2.90 becomes

θ?S = θ?0 − λ
M?(θ?)

θ?
. (2.98)

There is a critical value

λ−1
cr = πΣ?(0) = 2π

∫
ρ?(r?)dr? (2.99)

below which no Einstein ring can appear. It was found that λcr,NFW = 0 for an NFW profile
and λcr,sol ' 0.5 for a solitonic profile [Herrera-Mart́ın et al., 2017]. From Equation 2.97
we see, that while an NFW profile always allows for an Einstein ring, the solitonic profile
can only produce Einstein rings if

2.4× 1012

(
rs
pc

)−3

m−2
22 =

ρsrs
M�pc−2

≥ 103 h

0.57

dS
dLdLS

λcr . (2.100)

Unfortunately, the general profile given in Equation 2.83 has too many free parameters
in order to produce a stringent bound on the FDM mass. Using SLACS data [Auger
et al., 2009] for several lens candidates with strong lensing, Herrera-Mart́ın et al. [2017]
conclude that reasonable FDM halo profiles compatible with the data can be obtained
if m22 > 0.01. Employing the universal profiles numerically found by Mocz et al. [2017]
together with the core-halo mass relation given in Equation 3.8 could further constrain the
investigated system and potentially produce stronger bounds on the FDM mass.

FDM cosmologies can potentially also be constrained by measurements of weak gravi-
tational lensing with statistically distributed galaxies [Marsh et al., 2012]. For this inves-
tigation the lensing Equation 2.90, describing the deflection of a single photon trajectory
has to be extended to infinitesimal regions around these beams. They are characterized by
the Jacobian matrix [Mo et al., 2010]

Aij(θ0, χS) =
∂θSi
∂θ0j

= δij − ∂i∂jΨ(fK(χ)θ0, χS) , (2.101)
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where

Ψ(x⊥, χS) =2

∫ χh

0

g(χ)V (x⊥, χ)dχ ,

g(χ) =fK(χ)

∫ χh

χ

fK(χ′ − χ)

fK(χ′)
P(χ′)dχ′ , (2.102)

with χh the horizon radius and P(χ) an assumed galaxy distribution. This could be the
redshift distribution P(z(χ)) of faint blue galaxies, which is well described by [Bartelmann
and Schneider, 2001]

P(z(χ)) =
3

2z0

(
z

z0

)2

exp

[
−
(
z

z0

)3/2
]
, (2.103)

where z0 depends on the magnitude cutoff and the colour selection of the galaxy sample.
Further defining the convergence

κ(θ0) =
1

2
(∂1∂1Ψ + ∂2∂2Ψ) (2.104)

and shear

γ(θ0) = γ1 + iγ2 =
1

2
(∂1∂1Ψ− ∂2∂2Ψ) + i∂1∂2Ψ (2.105)

the Jacobian matrix can be rewritten as

A(θ) = (1− κ)

(
1 0
0 1

)
−
(
γ1 γ2

γ2 −γ1

)
. (2.106)

The convergence thus isotropically magnifies the angular size in the neighborhood of θ,
while the shear causes anisotropy in the mapping. Using the Poisson Equation 2.25, the
convergence can be expressed as a function of overdensity δ as

κ(θ0) =
3

2
H2

0 ΩFDM

∫ χh

0

g(χ)

a(χ)
δ(fK(χ)θ0, χ)dχ . (2.107)

Finally, expanding the convergence in multipoles κlm, the convergence power spectrum P k
l

defined via

〈κlmκl′m′〉 = δll′δmm′P
k
l (2.108)

can be approximated by

P k
l =

9

4
Ω2

FDMH
4
0

∫ χh

0

(
g(χ)

a(χ)fk(χ)

)2

P (l/fK(χ), z) , (2.109)
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where P (l/fK(χ), z) is the matter power spectrum. This formula was used in [Marsh
et al., 2012] in order to estimate the suppression of P k

l as a direct consequence of the
suppression in P (l/fK(χ), z) for large l if the growth rate is partially reduced due to
an FDM component in the dark sector [Marsh and Ferreira, 2010]. Marsh et al. [2012]
additionally investigate possible degeneracies with relativistic neutrinos and dark energy
models. As only scales above the Jeans length are observed by their assumed large future
survey, the suppression does not depend on the FDM mass, but only on the FDM fraction
to CDM. They conclude that with current and next generation galaxy surveys alone, it
should be possible to unambiguously detect FDM if contributing at least a few percent to
the overall DM density.

2.3.9 Black Hole Superradiance

Superradiance describes the exponential wave amplification of bosonic fields around rotat-
ing black holes (BH). The interaction of the FDM wavefunction with the central BH re-
sults in massive scalar FDM clouds distributed similarly to the electron probability density
within the hydrogen atom. This gravitational macroscopic atom configuration resonantly
extracts angular momentum from the spinning BH if the FDM Compton wavelength is
comparable to the Schwarzschild radius of the BH with mass MBH. This leads to char-
acteristic exclusion regions in the BH mass-spin Regge plane [Arvanitaki and Dubovsky,
2011; Brito et al., 2015; Endlich and Penco, 2017; Stott and Marsh, 2018].

In this section we use natural units setting c = ~ = G = 1. In order to avoid confusion
with the magnetic quantum number m, we denote the FDM mass by µ. Following the
standard textbook by Wald [1984], we start explaining superradiance by stating that the
spacetime around a spinning BH is characterized by the Kerr metric

ds2
Kerr =−

(
1− 2MBHr

Σ

)
dt2 − 4MBHar sin2 θ

Σ
dtdφ+

Σ

∆
dr2 (2.110)

+ Σdθ2 +
(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θdφ2 ,

with

Σ =r2 + a2 cos2 θ , (2.111)

∆ =(r − r+)(r − r−) , (2.112)

r± =MBH ±
√
M2

BH − a2 , (2.113)

and a = J/MBH, where J is the BH’s spin. The larger root of ∆, r+, defines the physical
event horizon with area AK = 8πMBHr+, while r− is a Cauchy horizon. They coincide in
the extremal limit a → MBH. The ergoregion is the region bounded by the outer horizon
and the static surface at which gtt = 0 with radius

rergo = MBH +
√
M2

BH − a2 cos2 θ . (2.114)
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Since rergo = r+ for a→ 0, the existence of this region is a defining property of a spinning
BH. An observer with zero angular momentum at infinity is dragged by the rotating BH
and forced to co-rotate until reaching an angular momentum

Ω+ =
a

2MBHr+

(2.115)

at the physical event horizon. Indeed, a static observer with tangential vector proportional
to the Killing vector ξµ = (1, 0, 0, 0) associated with time invariance of the Kerr metric is
not allowed within the ergoregion as ξµ becomes space-like there. The observer cannot stay
still and is forced to co-rotate in the ergoregion. The Kerr metric is additionally invariant
under rotation in φ-direction. The linear combination of associated Killing vectors

χ = ∂t + Ω+∂φ (2.116)

is normal to the horizon and null there. The event horizon at r+ can thus be interpreted
as rotating with angular velocity Ω+. Since ξµ becomes space-like in the ergoregion, the
energy

E = −pµξµ (2.117)

of a test particle with four momentum pµ can be negative there. By absorbing it, the BH
will therefore lose energy. This process was first described by Penrose and Floyd [1971].
From

0 > pµχµ = −E + Ω+L → L < E/Ω+ (2.118)

with L = pµξµ. A particle with negative energy thus carries negative angular momentum.
Then, absorption of the test particle not only reduces MBH by δM = E but also its spin J
by δJ = L. Once all rotational energy

Ω+δJ = MBH −Mirr = δMBH (2.119)

was extracted from the BH, its background metric reduces to the Schwarzschild solution
without an ergoregion and the Penrose process stops. Equation 2.118 then implies a min-
imal irreducible BH mass [Christodoulou, 1970]

M2
irr =

1

2

[
M2

BH +
√
M4

BH − J2

]
=

1

4
(r2

+ + a2) =
1

16π
AS (2.120)

proportional to the Schwarzschild BH area AS that ensures the validity of the area theorem.
While the Penrose process verifies the possibility of extracting the maximum amount

of energy from a rotating BH permitted by the area theorem, it itself is not a practical
energy extraction method. Its wave analog, called superradiant scattering, is physically
more relevant. If an incident scalar wave

Ψ = exp [−iωt+ imφ] f(r, θ) + h.c. (2.121)
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with frequency ω and azimuthal number m, which obeys the Klein-Gordon Equation 2.4,
reaches the BH, part of the wave will be transmitted and thus absorbed by the BH. The
rest will be reflected. Typically, the absorbed wave will carry positive energy reducing the
energy transported by the reflected wave with respect to the incident wave. As for particles
within the Penrose process, this is not necessarily true for rotating BHs. Contracting the
stress tensor Tµν corresponding to the scalar field Ψ with ξµ yields a conserved energy
current

Jµ = −Tµνξν . (2.122)

By Gauss’s law the difference between the incoming and outgoing energies is equal to the
integrated flux

F = −〈Jµχµ〉 =
1

2
ω(ω −mΩ+)|f(r, θ)|2 (2.123)

of Jµ on the horizon, where the brackets denote time averaging. If

0 < ω < mΩ+ (2.124)

this flux is negative and superradiance occurs, amplifying the energy of the outgoing wave.
Alternatively, Equation 2.124 can also be derived from the area theorem [Bekenstein, 1973].

As a side remark, superradiant scattering is the classical limit of the stimulated emission
associated with the spontaneous particle creation near a Kerr BH [Starobinsky, 1973;
Unruh, 1974; Wald, 1976]. This means that initial bosonic quantum fluctuations around
the Kerr BH can be macroscopically amplified by superradiance without the need for an
initially non-vanishing energy density. This is comparable to the emission of a thermal
spectrum of particles, called Hawking radiation, near a Schwarzschild BH. Studying FDM,
we anyways assume a non-vanishing energy density of scalar fields around Kerr BHs.

The Klein-Gordon equation in a Kerr BH background permits separation of variables
of a massive scalar field [Brill et al., 1972]:

ψ =
∑
n,l,m

exp [−iωnlmt+ imφ]Snlm(θ)Rnlm(r) + h.c. (2.125)

obeying

1

sin(θ)
∂θ (sin(θ)∂θSnlm) +

[
a2(ω2

nlm − µ2) cos2 θ − m2

sin2 θ
+ Λlm

]
Snlm =0 , (2.126)

and

(ω2
nlm(r2 + a2)2 − 4aMBHrmωnlm + a2m2 −∆(a2ω2

nlm + µ2r2 + Λlm))Rnlm

+ ∆∂r(∆∂rRnlm) = 0 . (2.127)
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The angular Equation 2.126 is the oblate spheroidal angular wave equation [Abramowitz,
1974]. Expanding the angular eigenvalues

Λlm = l(l + 1) +
∞∑
k=1

fkc
k (2.128)

as a power series in c = a2(ω2− µ2), its solutions were constructed by Zouros and Eardley
[1979] and Dolan [2007]. Defining

R̃ =
√
r2 + a2R and dr? = (r2 + a2)∆−1dr , (2.129)

the radial Equation 2.127 can be written as a Schrödinger equation

∂2
r?R̃ + [ω2 − V (ω)]R̃ = 0 (2.130)

with an effective potential [Zouros and Eardley, 1979]

V (ω) =
∆µ2

r2 + a2
+

4MBHramω − a2m2 + ∆[Λlm + (ω2 − µ2)a2]

(r2 + a2)2

+
∆(3r2 − 4MBHr + a2)

(r2 + a2)3
− 3∆2r2

(r2 + a2)4
(2.131)

The asymptotic solutions of an incoming wave at the BH horizon and an outgoing wave at
spatial infinity are [Teukolsky, 1972]

R(r) ∼ exp [−i(ω −mΩ+)r?] for r → r+ (r? → −∞) ,

R(r) ∼ exp [−kr?] /r for r →∞ (r? → +∞) , (2.132)

with the FDM momentum k =
√
µ2 − ω2, showing that the wave is confined around the

BH for

0 < ω < µ . (2.133)

The solution for the radial equation has been computed both in the small coupling limit
α = MBHµ� 1 [Detweiler, 1980] and for α� 1 [Zouros and Eardley, 1979]. Since α� 1
implies a Schwarzschild radius much smaller then the Compton wavelength of the scalar
wave, the computations in this regime are comparable to those of the hydrogen atom. For
large r far away from the BH the radial component is therefore

Rfar(r) = (2kr)l exp[−kr]U(l + 1− α2

MBHk
, 2l + 2, 2kr) , (2.134)

where U is the confluent hypergeometric function of the second kind [Abramowitz, 1974].
For the hydrogen atom n = α2/MBHk = l + 1 + n would be an integer depending on
the principal n and the azimuthal quantum number l ensuring regularity of the electron



34 2. Fuzzy Dark Matter Cosmology

wavefunction at the origin. Here, regularity has to be enforced at the finite BH horizon. In
the assumed limit α� 1 this introduces a small complex correction to the above relation
and

ω ' µ
√

1− α2/n2 ' µ(1− α2/2n2) (2.135)

is only approximately true. The radial component near the horizon takes the form

Rnear(r) =

(
r − r+

r − r−

)−iP
2F1(−l, l + 1, 1 + 2iP,

r − r−
r+ − r−

) (2.136)

where

P = 2r+
ω −mΩ+

r+ − r−
(2.137)

and 2F1 is Gauss’s hypergeometric function. For small enough α� 1 both Equation 2.134
and Equation 2.136 are valid at an intermediate radius r0 and can be matched there
[Detweiler, 1980]. While the real part of the matching frequency is still well approximated
by Equation 2.135, the imaginary correction is approximately given by

ωI =2µα4l+4r+(mΩ+ − µ)
24l+2(2l + n+ 1)

(l + n+ 1)2l+4n!

(
l!

(2l)!(2l + 1)!

)2

×
l∏

j=1

(
j2

(
1− a2

M2
BH

)
+ 4r2

+(mΩ+ − µ)2

)
. (2.138)

It is positive for ω ' µ < mΩ+ signaling an unstable mode in the superradiant regime.
Since ωI decreases exponentially with l, it is largest for the lowest possible l = m fulfilling
the superradiant condition in Equation 2.124. This mode is therefore the fastest growing
mode with growth time τ = ω−1

I . There is also a mild dependency on n. A slightly
different, semi-analytical, matching was employed by Arvanitaki and Dubovsky [2011].
Their instability rates correspond better to numerically obtained results [Dolan, 2007], but
yield the same qualitative behaviour. In particular the maximum rate,

ωI,max ' 1.5 · 10−7M−1
BH , (2.139)

is found for α ' 0.42 and an almost maximally spinning BH a = 0.99MBH.
The strong coupling regime α� 1 was investigated by Zouros and Eardley [1979] using

a WKB approximation. The superradiance rate is then determined by the tunneling prob-
ability through the potential barrier at r? = 0 of the effective potential in Equation 2.131
that separates the bound Keplerian orbits from the near horizon region where superradiant
amplification takes place. Figure 2 in Zouros and Eardley [1979] shows the typical form of
the effective potential V (r?). The flux through the BH horizon as given in Equation 2.123
is therefore exponentially suppressed for α� 1 and

ωI ∼ (mΩ+ − ω) exp [−2I] (2.140)
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depends on the tunneling integral

I =

∫
∆r?(r)

√
V (r?)− ω2dr? =

∫
∆r

√
V (r)− ω2(r2 + a2)∆−1dr (2.141)

over the classically forbidden region ∆r. Equation 2.141 can be integrated numerically. It
was analytically calculated by Zouros and Eardley [1979] for µ = ω = mΩ+ right at the
boundary of superradient scattering. Under these assumptions I defines the upper envelope
of the family of superradiant rates for different levels l [Arvanitaki and Dubovsky, 2011].
The integral is found to be a decreasing function of a and P = ω/mΩ+. For P = 1, the
limiting values are [Zouros and Eardley, 1979]

I →α(8MBH/a)[ln(8MBH/a)− 1] as a/MBH → 0 ,

I →α(2−
√

2)π ' 1.84α as a/MBH → 1 . (2.142)

Matching the prefactor with Equation 2.139 sets the approximate maximum superradiant
scattering rate in the large coupling limit α� 1 to [Arvanitaki and Dubovsky, 2011]

ωI,max ' 10−7M−1
BH exp

[
−2πα(2−

√
2)
]
' 10−7M−1

BH exp [−3.7α] , (2.143)

in agreement with results obtained by Zouros and Eardley [1979] and Gaina [1989].
Due to the exponential suppression for large α� 1 and the polynomial suppression for

small α� 1, in order for superradiance to be physically relevant we therefore need α ∼ 1.
Then,

MBH

µ
∼
(
MBH

mp

)2

∼ 1096

(
MBH

1010M�

)2

(2.144)

where mp denotes the Planck mass. Thus, ∼ 2×102 e-foldings of superradiance are needed
to form an FDM cloud comparable to BH mass. That corresponds to a time scale

tSR ∼ 2× 102ω−1
I,max ∼ 1014

(
MBH

1010M�

)
s ∼ 107

(
MBH

1010M�

)
yr , (2.145)

much shorter than the Hubble time scale tH ∼ 1010 yr or the Eddington time tE ∼ 4×108 yr
for BH smooth mass accretion without significant mergers but seven orders of magnitude
larger than the dynamical time scale of the BH tBH ∼ (MBH/1010M�) yr [Arvanitaki and
Dubovsky, 2011]. Figure 2 in Arvanitaki and Dubovsky [2011] depicts the band around
α ∼ 1 as a function of FDM and BH mass for which tSR is smaller than tH or tE. This
can serve as a zeroth order estimate for parameter ranges with observable superradiant
phenomenology, the main limitation being the assumption that all BH are maximally
spinning.

The analysis can be refined by calculating FDM mass dependent exclusion regions in
the BH spin verses mass plane, called the Regge plot. Observed BHs with parameters
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inside the forbidden region then exclude the corresponding FDM mass. Representative
Regge plots over a large range of FDM masses are shown in Stott and Marsh [2018].

The exclusion region can be understood by considering an initially rapidly spinning
BH with a . MBH. From the above discussion, assuming α . 1/2, the most unstable
superradiant level is given by l = m = 1. Due to superradiance this level is exponentially
amplified with a rate given in Equation 2.138. This rapidly decreases the BH spin until
the superradiance condition Equation 2.124 is not satisfied anymore. At this point the
l = m = 2 level becomes most unstable. However, due to its smaller rate, spin is less
effectively extracted from the BH. Additionally, for low spins the l = m = 1 level is now
stable and starts spinning up the BH. There is thus an intermediate time interval during
which the BH spin stays roughly constant while mass is transferred from the l = m = 1
to the l = m = 2 level until the occupation number from the former drops below the
occupation number of the latter decreased by the ratio of there respective superradiance
rates. At that point the BH spin starts decreasing until the second level saturates as
well. In this way, successively highers level become important until their superradiance
time scales become comparable to tH or tE. BHs with smaller spin are then not able to
exclude the considered FDM mass. Non-linear effects and smooth accretion tend to slightly
enhance the duration during which the BH spin stays approximately constant [Arvanitaki
and Dubovsky, 2011]. These stability points constitute the so called Regge trajectories in
the Regge plane that should be traced by observed BHs.

Using data from observed spinning super massive BHs, Stott and Marsh [2018] could
exclude FDM masses

7× 10−20 eV < µ < 1× 10−16 eV (2.146)

at a 95 % confidence level in good agreement with earlier results [Cardoso et al., 2018].
Superradiance thus constraints a complimentary mass range with respect to the previous
observational methods and leaves only an order of magnitude gap around m22 ∼ 102 that
can potentially be closed within the next years.

The presence of an FDM cloud around a BH can also be observed by its associated
gravitational wave signal due to FDM particle transitions between different levels and FDM
particle annihilation into gravitons [Arvanitaki and Dubovsky, 2011]. Prospects for LISA
suggest an exclusion region comparable to Equation 2.146 [Brito et al., 2017a,b]. The
expected gravitational wave signatures of FDM clouds around BHs in binary inspirals has
been investigated by Baumann et al. [2018].

2.4 Small-Scale Tensions

Standard ΛCDM cosmology has proven extremely successful over the last decades. How-
ever, CDM has vanishing equation of state and sound speed (w = cs = 0) and thus
clusters on all scales. This leads to a number of identified small-scale problems [Bullock
and Boylan-Kolchin, 2017; Buckley and Peter, 2017].
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The missing satellite problem arises from the over-prediction of the abundance of satel-
lite halos of a particular velocity dispersion in numerical simulation compared to the num-
ber of galaxies of similar velocities that have actually been observed in the Milky Way
[Klypin et al., 1999; Moore et al., 1999; Springel et al., 2008; Bullock, 2010]. High-resolution
cosmological simulations of Milky Way-sized halos show a continuously increasing subhalo
mass function towards lighter subhalos with no break down to the numerical convergence
as a consequence of the self-similar gravitational collapse of CDM. Thus thousands of sub-
halos heavy enough to support molecular cooling and thus star formation are expected
while less then a hundred satellite galaxies are observed around the Milky Way. The ob-
served stellar mass functions of field galaxies and satellite galaxies in the Local Group are
therefore much flatter at low masses than predicted CDM HMFs. The discrepancy could
be alleviated if star formation within CDM halos becomes increasingly inefficient for low
halo masses and stops at a minimum mass due to suppressed gas accretion in halos with
strong reionization UV feedback (Mvir . 109M�) [Efstathiou, 1992; Bullock et al., 2000;
Sawala et al., 2016] or insufficient atomic cooling in the early universe (Mvir . 108M�)
[Rees and Ostriker, 1977]. If true, a simple abundance matching as discussed above could
successfully relate simulated CDM halo masses Mvir with observed star masses M?(Mvir)
[Garrison-Kimmel et al., 2014].

The cusp core problem [Flores and Primack, 1994; Moore, 1994] refers to the fact
that DM only simulations show cuspy and dense NFW-like profiles with an inner slope
of γ ' 0.8 − 1.4 [Navarro et al., 2009], while measured rotation curves of low mass CDM
dominated galaxies prefer fits with constant CDM density cores γ ' 0.0 − 0.5 [McGaugh
et al., 2001; Simon et al., 2005; Walker and Peñarrubia, 2011; Alam et al., 2002; Oman
et al., 2015] as parametrized by Burkert [1995].

If abundance matching indeed solves the missing satellite problem, then the inferred
central masses of Milky Way satellites should coincide with the central masses of the most
massive subhalos of simulated Milky Way-sized halos. Comparing data with simulations
[Springel et al., 2008; Diemand et al., 2008], Boylan-Kolchin et al. [2011] concluded that
the centers of the most massive CDM subhalos were systematically too dense in order to
host the detected bright Milky Way satellites. Thus, the so-called too-big-to-fail problem
describes the apparent insufficient star formation within the most massive satellites that
is not seen in lower mass halos. Generally, the inferred central masses of galaxies with
105 . M?/M� . 108 are ∼ 50 % smaller than expected from CDM simulations [Bullock
and Boylan-Kolchin, 2017].

A variety of possible solutions have been proposed to overcome these shortcomings.
Baryonic feedback from supernova explosion might solve or at least reduce the discrepancies
by transporting CDM from within the central halo region outwards [Mashchenko et al.,
2008; Governato et al., 2012; Pontzen and Governato, 2014; Madau et al., 2014; Oñorbe
et al., 2015; Read and Erkal, 2018]. On the one hand, this is only sufficient to form cores
in halos with enough star formation. On the other hand, too high stellar mass fractions
result in excess central masses that can compensate supernova feedback and drag CDM
back in. Large hydrodynamical simulations suggest that feedback can potentially solve the
cusp-core and too-big-to-fail problem for mass ratios M?/Mvir ∼ 0.005 [Tollet et al., 2016;
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Fitts et al., 2017; Wetzel et al., 2016; Hopkins et al., 2018; Garrison-Kimmel et al., 2017]
found in bright dwarfs with Mstar & 106M� and Mvir & 1010M�, but is insufficient for
classical dwarfs and ultra-faint dwarfs with orders of magnitude lower mass ratios. Even
though results from various simulations start to converge, they strongly depend on the
adopted parameters modeling galaxy formation. Additionally, environmental interactions
between the satellites and their host can alleviate small-scale tensions on all satellite mass
scales [Zolotov et al., 2012; Arraki et al., 2013; Dutton et al., 2016; Wetzel et al., 2016;
Sawala et al., 2016]. Examples are tidal and ram pressure stripping or disk shocking.

Another approach is to modify the CDM paradigm. Warm dark matter (WDM) could
erase density perturbations below its effective free-streaming length [Bode et al., 2001; Viel
et al., 2005; Schneider et al., 2012]

λeff
fs ' 49

(mWDM

keV

)−1.11
(

ΩDM

0.25

)0.11(
h

0.7

)1.22

kpc/h . (2.147)

On the one hand, this leads to a very distinctive cutoff in the matter power spectrum
conventionally characterized by the wave number at which the ratio between the linear
WDM and CDM power drops below one half. The corresponding wavelength λ1/2 ' 14λfs

is the scale below which modified growth of linear perturbations strongly suppresses halo
formation [Schneider et al., 2012]. This can potentially solve the missing satellite and
too-big-to-fail problem for WDM masses ' 3 keV [Lovell et al., 2014] still allowed by Lyα
measurements [Baur et al., 2016]. On the other hand, O(keV) WDM masses produce dwarf
galaxy cores with radii rc ∼ 10 pc, two orders of magnitude smaller in size than observed for
large Milky Way satellites [Walker and Peñarrubia, 2011]. This gives rise to the catch−22
problem [Macciò et al., 2012a,b; Schneider et al., 2014].

FDM masses favored by observations suggesting cored halos will be discussed in the
next section. Comparing them to the above outlined lower bounds, FDM starts to have
a catch− 22 problem as well. Due to the very different suppression mechanisms of WDM
and FDM density perturbations, it is by far not as severe as in the WDM scenario.

Strong self-interactions within the DM sector could also change small-scale clustering
[Kaplinghat et al., 2016] but would require self-interactions orders of magnitude above those
expected for weakly interacting massive particles [Spergel and Steinhardt, 2000]. Numerical
simulations suggest that scattering cross sections per unit mass σ/m ∼ 0.5− 10 cm2/g can
produce large enough cores to alleviate the cusp-core and too-big-to-fail problems discussed
above [Vogelsberger et al., 2012; Elbert et al., 2015; Fry et al., 2015]. These high cross
sections are marginally excluded by the observed central DM densities in galaxy clusters
[Elbert et al., 2018; Kaplinghat et al., 2016]. Velocity dependent cross sections can reconcile
this tension.

2.5 Halo Density Profiles

Using stellar spectroscopic data from dwarf spheroidal (dSph) Milky Way satellites, Walker
and Peñarrubia [2011] infer on the radial slopes of their mass profiles. They conclude that
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both investigated dSph galaxies Fornax and Sculptor have slopes compatible with inner
cores of constant density within the central few-hundred parsecs of each galaxy, ruling
out NFW-like cusps with high statistical significance and providing a lower limit on the
core sizes. However, these results are still under debate, since other analyses did not
yield significant exclusions for cuspy profiles [Breddels and Helmi, 2013; Richardson and
Fairbairn, 2014; Strigari et al., 2014]. If true, the non-observation would again provide a
lower limit on the FDM mass. Here, we summaries results obtained by taking the results
of Walker and Peñarrubia [2011] at face value. An upper limit on the core size can be
inferred from the requirement that dynamical friction time scales for both dSphs [Gerhard
and Spergel, 1992]

tfric '
1010 yr

ln Λ

(
r

60 kpc

)2(
vc

220 km/s

)(
2× 1010M�

M

)
(2.148)

should not be too small compared to the Hubble time, restricting the dSph masses to
M . 1010M�.

Fitting an analytic radial density profile

ρ(r) = Θ(rε − r)ρsol(r) + Θ(r − rε)ρNFW(r) (2.149)

to the data, Marsh and Pop [2015] conclude that it can be explained purely by FDM
physics if m22 . 1.1 at 95% confidence level. Here, ρsol(r) is the soliton density profile
found in numerical simulations [Schive et al., 2014a] discussed in the next chapter, and
rε defines the radius at which the inner solitonic profile continuously turns into an NFW
outer tail. Numerically, it is found that rε ' 3.5rc, where rc denotes the solitonic core
radius [Mocz et al., 2017]. Performing a Jeans analysis for the dominant intermediate
metallicity stellar population of Fornax, Schive et al. [2014a] find m22 ' 0.81+1.6

−1.7 (1σ)
implying a solitonic core radius rc ' 0.92+0.15

−0.11 kpc. This FDM mass produces a Milky Way
core with mass Mc ' 2× 109M�, radius rc ' 180 pc and potential depth corresponding to
a line-of-sight velocity dispersion σ|| ' 115 km/s consistent with data suggesting a Milky
Way bulge with rc ' 200 pc and σ|| ' 110 km/s [Schive et al., 2014a; Minniti, 1996; Rich
et al., 2007; Ness et al., 2013]. The analysis of the FDM implications on the Milky Way
bulge properties was refined by Martino et al. [2018], confirming the previously found
best fit FDM mass. Extending the Jeans analysis to a larger data set of eight classical
dSphs, Chen et al. [2017] obtain m22 ' 1.18+0.28

−0.24 and m22 ' 1.79+0.35
−0.33 for the two data

sets studied [Walker et al., 2007, 2009]. Fitting the luminosity-averaged velocity dispersion
of the individual chemodynamical components of Fornax and Sculptor, González-Morales
et al. [2017] find a more restrictive upper bound m22 . 0.4 at 97.5 % confidence level.
The rotation curves of high-resolution low surface brightness and SPARC galaxies can be
reproduced if FDM is even lighter with m22 ' 0.0554 [Bernal et al., 2017]. Investigating
the longevity of the cold clump in Ursa Minor and the rapid orbital decay of the globular
clusters in Fornax and dwarf ellipticals, Lora et al. [2012] obtain a best fit FDM mass
0.3 < m22 < 1.0. Measurements of the half-light mass in the ultra-faint dwarf galaxies
Draco II and Triangulum II imply 3.7 < m22 < 5.6 [Calabrese and Spergel, 2016]. The M-
sigma relation between the mass of super massive black holes in galaxies and the velocity
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dispersions of their bulge can be explained if m22 ' 5 [Lee et al., 2015]. Employing a
quasi particle approach to simulate the granular structure of FDM halos [Hui et al., 2017],
Amorisco and Loeb [2018] numerically investigate the thickening of thin stellar streams.
Comparing their results to Milky Way data, they obtain a lower limit m22 > 1.5. We will
comment on potential limitations of their effective FDM approach below. An additional
component of heavier FDM with mass m22 ' (3.2 ± 0.62) × 104 can also account for the
observed compact dark masses at the centers of globular clusters around the Milky Way
[Emami et al., 2018]. Finally, it was claimed that FDM with m22 ∼ 1 can produce caustic
rings observable in the Milky Way [Chakrabarty and Sikivie, 2018; Banik et al., 2017;
Sikivie, 1998]. All these analyses on the Milky Way substructure coherently indicate a
best fit FDM mass m22 ∼ 1, while the above listed lower bounds, derived from large-scale
structure formation, suggest m22 > O(10). Thus, FDM starts to have a similar catch− 22
problem as WDM. This tension is strengthened when estimating survival times of Milky
Way satellites. Using empirical data from Wolf et al. [2010], Du et al. [2018] conclude
that the lightest satellites close to the Galactic center will only survive for more than one
orbital time if the particle is as heavy as m ' 2× 10−21 eV. We summarize their analysis
and results in the next chapter.

Unfortunately, there is a caveat in the above analyses. It is empirically found that the
product of the core density ρc and the core radius rc is constant [Kormendy and Freeman,
2004]. While Spano et al. [2007] and Donato et al. [2009] find ρcrc = 140+80

−30M�pc−2,
Burkert [2015] obtain ρcrc = 75+85

−45M�pc−2. In Lin and Loeb [2016] interacting DM is
considered. Assuming generic two-body interactions, it is shown that

ρcrc = 75M�pc−2 ×
(

M200

1010M�

)0.18

(2.150)

where the fiducial value M200 ∼ 1010M� is the mass within the radius r200 interior to
which the average density is 200 times the critical density of the universe [Oñorbe et al.,
2015]. Equation 2.150 is obtained without any assumptions on the DM mass or interaction
strength. The mild dependence on the halo mass naturally explains the deviation by a
factor of two between the first two results above Equation 2.150 [Lin and Loeb, 2016].

For a power spectrum of initial density fluctuations that is a power law in wave number
k, |δk|2 ∼ kn, the density of bound object is related to its size by ρ ∼ r3(3+n)/(5+n) [Kor-
mendy and Freeman, 2004]. The above relation thus implies n = −2 in good agreement
with ΛCDM theory predicting n = −2.1 for halo masses of 1012M� [Shapiro and Iliev,
2002].

On the contrary, FDM solitons admit a scaling ρc ∼ r−4
c . This let Deng et al. [2018] to

conclude that the solution to the core-cusp problem is more likely due to either baryonic
effects or some other type of DM interactions. Even if FDM does not solve the core-cusp
problem, it might be responsible for some of the above summarized phenomenology.



Chapter 3

Fuzzy Dark Matter Simulations

From the previous discussion it is obvious that full FDM simulations that take coher-
ence effects into account also during the non-linear evolution of density perturbations can
strengthen the lower bounds on the FDM mass and are imperative for studies of halo sub-
structure. Fortunately, there is a growing numerical toolbox available to which the author
contributed as described within the subsequent chapters. Generally, four main approaches
have emerged, namely Eulerian finite difference [Widrow and Kaiser, 1993; Schive et al.,
2014a; Schwabe et al., 2016; Kopp et al., 2017] and spectral [Woo and Chiueh, 2009; Mocz
et al., 2018; Du et al., 2018; Edwards et al., 2018] methods, Lagrangian particle based
schemes [Veltmaat and Niemeyer, 2016; Zhang et al., 2018b; Chan et al., 2018; Nori and
Baldi, 2018] and semi-analytic methods [Du et al., 2016; Lin et al., 2018]. The Gaussian
beam method described below extends the pool of Lagrangian discretizations for FDM
simulations.

3.1 Eulerian Grid Based Simulations

Following Press et al. [2007], the Eulerian approach to solve the SP system is to provide
initial information of the wavefunction at a finite set of fixed grid points. Spacial gradients

∇ψ(x) = lim
∆x→0

ψ(x+ ∆x)− ψ(x)

∆x
(3.1)

can then be evaluated between neighboring grid points by dropping the analytic limit.
Since ∆x corresponds to the grid resolution — the distance between two points — the
approximate calculation of gradients convergences to the analytic result as the grid spacing
∆x is decreased. Higher-order convergence can be achieved by using information from more
neighboring points in a knowledgeable way. From the Madelung transformation defined in
Equation 2.16, we can infer that ψ changes significantly on de Broglie scales λ = h/mv,
setting the spacial resolution requirement to ∆x . λ.

Using the same discretization scheme in the temporal dimension, the wavefunction can
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be explicitly evolved in time

ψ(t+ ∆t, x) = i

[
~

2a2m
∇2 − m

~
V

]
∆t+ ψ(t, x) . (3.2)

Better convergence can be achieved by sub-dividing time steps in a favorable manner. One
such scheme is the Runge-Kutta four algorithm employed for the soliton mergers below. In
Equation 3.2, the Laplace operator ∇2 is discretized comparable to Equation 3.1. Due to
the diffusive nature of the Schrödinger equation, it is unconditionally stable if the Courant-
Friedrichs-Lewy stability criterion

∆t ≤ min

[
m

6~
∆x2,

~
m|V |max

]
, (3.3)

is satisfied. Physically, this inequality requires time steps ∆t to be small compared to the
coherence time scale tc ∼ (∆x)2m/~ ∼ ~/mv2. Additionally, it has to be smaller than the
time scale tp ∼ ~/mV characterized by the potential V , such that information is transferred
at most between adjacent grid points in each temporal iteration. The latter time scale is
inversely proportional to the absolute value of the potential. If global time steps over a
certain sub-region of the entire problem are preferred in numerical implementations, the
strongest constraint, coming from the maximal absolute value |V |max, has to be fulfilled. In
contrast, the SP system is unconditionally stable if implicit or pseudo spectral methods are
used that redistribute information over the entire problem size in every time step. Then,
the time step size is only limited by the desired minimum level of accuracy. However,
implicit methods involve the construction of the inverse of a large square matrix N × N ,
where N is the number of grid points. This typically restricts this method to uniform
rectangular grids with constant spacing and is difficult to parallelize for multi-processor
applications.

Pseudo spectral methods take advantage of the fact that gradients become products
of wave numbers in Fourier space. Thus, gradients can be calculated analytically without
further numerical approximations. They are only present in the finite number of wave
numbers ki matching the number of grid points in position space. While again restricted
to uniform rectangular grids with constant spacing, discrete Fourier transformations can
be efficiently calculated with numerical cost scaling as N logN , and admit good scalability
when parallelized on a large number of processors. On uniform grids, spectral methods are
usually the preferred method. For example, within the Enzo code, the Poisson equation
on the uniformly spaced root grid is calculated in this way. On higher non-uniform levels,
more involved algorithms have to be employed.

The first FDM simulation numerically solving the SP system was presented by Widrow
and Kaiser [1993]. The authors already pointed out that velocity dispersion in the clas-
sical phase-space distribution results in interference patterns on de Broglie scales clearly
visible in the quantum mechanical probability distribution that is identified with the FDM
density field. The classical CDM density is recovered when smoothed over multiple de
Broglie wavelengths. Later, it was shown that this granular structure strongly fluctuates
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on dynamical time scales, while leaving almost no imprint in the gravitational potential
[Hu et al., 2000]. Employing Cayley’s implicit finite-difference scheme [Goldberg et al.,
1967] for the Schrödinger equation and a fast Fourier transformation in order to solve for
the gravitational potential, Widrow and Kaiser [1993] further prove that the SP system
accurately reproduces non-linear dynamics during gravitational collapse by comparing the
associated classical phase-space distribution with results from pure N-body simulations.
Both reveal the same shell-crossing and multi-streaming characteristics after multiple free-
fall times. Additionally, the SP system does not produce caustics at shell-crossing as no
point-like entities with definite trajectories are assumed and perturbation theory within
the SP system does not produce negative densities [Coles and Spencer, 2003; Szapudi and
Kaiser, 2003]. The SP system can thus also be seen as a regularization scheme for standard
N-body systems. The correspondence between the SP and the Vlasov-Poisson system rep-
resented by CDM N-body techniques was further investigated in Uhlemann et al. [2014];
Uhlemann [2018]; Garny and Konstandin [2018]; Mocz et al. [2018]. It will be discussed
in depth below. Widrow and Kaiser [1993] conclude their paper by presenting a two
dimensional cosmological simulation. While density perturbations above the de Broglie
wavelength evolve identically between FDM and CDM, the obtained density distributions
clearly deviate on small scales.

Running three dimensional cosmological simulations by integrating the SP system with
a pseudo spectral method, Woo and Chiueh [2009] showed that the growth of the initial
CDM density perturbations is strongly suppressed below the Jeans scale rJ ∼ a1/4 while
more extended overdensities increase with a as expected from linear theory. This was
confirmed by Veltmaat and Niemeyer [2016]. During non-linear gravitational collapse, halos
are found to relax into virialized configurations by emitting pronounced density waves that
transport excess angular momentum and kinetic energy into the IGM [Woo and Chiueh,
2009]. This gravitational cooling, comparable to violent relaxation, has been thoroughly
investigated by [Seidel and Suen, 1994; Guzmán and Ureña-López, 2004]. Similar dynamics
were reported by [Schwabe et al., 2016]. The resulting radial profiles suggest NFW-like
halo shapes similar to CDM scenarios. The granular structure on small scales, due to wave
interference, could be recovered in the filaments and halos. Furthermore, identifying the
gradient of the complex wavefunction with the systems velocity, Woo and Chiueh [2009]
found a clear separation between linear infall in the outer regions and strong velocity
dispersions in the inner regions of FDM halos where shell-crossing already happened. This
strong shock front in the velocity field has no visible analog in the density field.

3.2 Simulating Solitonic Cores in FDM Halos

Employing a pseudo spectral method, the simulation was restricted to a uniform grid. The
halos within the simulated one Mpc/h cosmological box could thus be resolved only down
to comoving kpc. This limitation was overcome by using a finite difference scheme on an
adaptively refined mesh [Schive et al., 2014a]. With increased resolution a gravitationally
self-bound core developed in the center of each halo. Apart from small perturbations,
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it was found to be the boson star or soliton previously studied as the ground state of a
self-gravitating scalar field [Ruffini and Bonazzola, 1969; Guzmán and Ureña-López, 2004;
Liebling and Palenzuela, 2017]. Its radial density profile is well approximated by [Schive
et al., 2014b]

ρc(r) ' ρ0

[
1 + 0.091 · (r/rc)2

]−8
(3.4)

where rc is the radius at which the density drops to one-half its peak value and the central
density is given by

ρ0 ' 3.1× 1015

(
2.5× 10−22eV

m

)2(
kpc

rc

)4
M�

Mpc3 . (3.5)

The core mass Mc is typically defined as the mass enclosed by rc and corresponds to roughly
a fourth of the total soliton mass M [Schive et al., 2014b]:

Mc

M�
' 0.237

M

M�
(3.6)

' 8.64× 106

(
2.5× 10−22eV

m

)2(
kpc

rc

)
' 1.81× 106

(
2.5× 10−22eV

m

)(
E

M

)1/2
s

km
.

Schive et al. [2014b] show evidence for the same scaling relation between Mc, E, and M
for the final state of multiple core mergers where E and M refer to the total energy and
mass of the system instead of just the core. We revisit this claim in section 4.4 below.

The SP system and consequently the stationary solutions obey a scaling symmetry of
the form [Ji and Sin, 1994]:

{t, x, U, ψ, ρ} → {λ−2t̂, λ−1x̂, λ2Û , λ2ψ̂, λ4ρ̂}, (3.7)

where λ is an arbitrary parameter. Note that x ∝ ρ−1/4 consistent with the relation
between the average density of the core and its Jeans length [Hu et al., 2000].

Given a fixed FDM mass, the spherically symmetric soliton is fully characterized by its
radius rc, which in turn is roughly set by the de Broglie wavelength corresponding to the
local velocity in the inner region of the host halo. Since the velocity dispersion varies only
mildly within the virial radius of a host halo, the core mass Mc ∼ r−1

c ∼ vh ∼ M
1/3
h can

be directly related to the halo mass Mh, where vh denotes the virial velocity of the halo.
Concretely, it was found that [Schive et al., 2014b]

Mc =
1

4
a−1/2

(
ζ(z)

ζ(0)

)1/6(
Mh

Mmin,0

)1/3

Mmin,0 , (3.8)
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where the factor of four stems from the definition of Mc,

ζ(z) = [18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2]/Ωm(z) ' 350(180) at z = 0 (z ≥ 1)
(3.9)

as obtained from numerical simulations of cluster formation [Bryan and Norman, 1998],
and

Mmin,0 = 375−1/432πζ(0)1/4ρm0(H0m/~)−3/2Ω
−3/4
FDM ' 4.4× 107m

−3/2
22 M� . (3.10)

is the present minimum halo mass below which coherence effects prevent gravitational
collapse. For m22 = 0.8 this delays galaxy formation until redshifts z . 13, followed by
a potentially enhanced star formation rate within the denser solitonic cores compared to
CDM. This fits well to the above discussions on the HMF and UVLF.

The cores admit a scaling relation Mc ∼ r−1
c [Guzmán and Ureña-López, 2004]. It was

shown by Mocz et al. [2017]; Chan et al. [2018] that this relation extends also into the NFW
tail surrounding the soliton in the halo mass range Mh ∼ 109 − 1010M�. When rescaled,
all considered radial halo profiles could be matched, consistently showing that the solitonic
core profile transforms into an NFW-like tail when the central density dropped by a factor
∼ 100. It was further shown by Chan et al. [2018], that a population of initially stationary
stars in the inner halo region can efficiently transport kinetic energy outwards resulting in
more compact FDM core configurations and narrower granules. While not yet displaying
a realistic scenario, it highlights the need for full FDM simulations including baryons.

Soliton formation has also been studied in depth by Levkov et al. [2018]. Within a box
of size L, they numerically evolve isotropic and homogeneous initial conditions constructed
from a superposition of plane waves with Gaussian distributed momenta |ψ̃p̃|2 ∼ exp−p̃

2/p̃20

with standard deviation p̃0 � ~/L and random phase arg ψ̃p̃. In this kinetic regime, it is
found that after time

τgr '
√

2

12π3

p̃6
0

m5G2n2 log(p̃0L)
, (3.11)

where n is the mean particle density, a solitonic core emerges out of the random fluctuations
with growing mass

Mc(t) ' p̃0(t/τgr − 1)1/2/Gm2 , (3.12)

and Brownian motion. The formation was equally found for other initial momentum dis-
tributions |ψ̃p̃|2 ∼ δ(|p̃| − p̃0) and |ψ̃p̃|2 ∼ θ(|p̃| − p̃0). Since Mc is inversely proportional
to the soliton radius, it formally extends over the entire box initially and dynamically
shrinks to an increasingly compact object with decreasing radius. The energy spectrum
corresponding to the Gaussian distributed initial momenta F (0, ω) ∼ ω1/2 exp−2ω evolves
according to the Landau kinetic equation for t < τgr [Zakharov and Karas, 2013]. Around
t ∼ τgr, it becomes thermal, F (τgr, ω) ∼ ω−1/2θ(ω), and starts showing a δ-peak moving
from ωc ' 0 to increasingly negative ωc < 0 over time t > τgr. Here, ωc is the binding
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energy of the soliton resulting in its coherent oscillation ψ(r, t) = ψc(r) exp−iωct. Finally,
it was numerically proven, that the same nucleation process happens in virializing halos of
size R > ~/p̃0. Since the soliton formation time τgr is orders of magnitude lower than the
free-fall time τff in these systems, the central solitonic core forms alongside the collapsing
halo in agreement with cosmological FDM simulations [Schive et al., 2014a].

3.3 Self-consistent Construction of FDM Halos

Even with the adaptively refining mesh used by Schive et al. [2014a], box sizes are limited
by the high-resolution demand of FDM simulations. This restricts the simulated halos to
masses below ∼ 1011M� with decreasing statistics of such heavy halos. One possibility to
alleviate this problem is the self-consistent construction of isolated virialized FDM halos as
done by Lin et al. [2018]. Assuming approximately spherical halo profiles, a shell-averaged
gravitational potential V (r) can be computed from an initially defined density profile.
The wavefunction at time t0 is then constructed from the superposition of eigen-functions
Φnlm = Rnl(r)Y

m
l (θ, φ) similar to the hydrogen atom except for the employed non-Coulomb

potential V (r):

ψ(t, x) =
∑
nlm

anlmΦnlm(x) exp [−iEnl(t− t0)] . (3.13)

The complex coefficients anlm were calibrated using data of five isolated halos with masses
∼ 1010M� from the cosmological FDM simulation conducted by Schive et al. [2014a]. Due
to its strongly non-linear dynamics, the solitonic core is not appropriately accounted for by
this approach which is meant to provide a good approximation to the almost interaction-
free, excited state wavefunction representing the halo. This is a clear sign of the break
down of the Schrödinger-Vlasov correspondence in solitonic core formation discussed below.
After the construction of the virialized halo the core is manually added using the core-halo
mass relation in Equation 3.8. The method was verified by comparing the evolution and
stability of the thus constructed halo with its original analog. While the simulated halo
has tangentially elongated granules in the outer halo, revealing its dependence on angular
momentum, this is not captured in the self-consistent construction resulting in halos with
isotropic granules.

Assuming the same functional dependency of the coefficients anlm with appropriately
adopted parameters, a series of self-consistent heavy halos with masses Mh = 8× 1011M�
could be constructed. They were found to have relatively flat inner halo profiles with
radial slopes of α ' −1/2 compared to the hypothesized corona around the core with
α = −5/3 [Vicens et al., 2018], or even to the inner slope of the NFW profile decaying
radially outward with α = −1.
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3.4 Lagrangian Particle Based Simulations

Unfortunately, directly solving the SP system with either finite difference or pseudo spectral
methods is computationally expensive due to the resolution requirements ∆x ∼ ~/mv and
∆t ∼ ~/mv2. Otherwise, the dynamics of the simulated system is unphysically slowed
down. Thus, not only the interference patterns within halos and filaments with large
density contrasts have to be highly resolved spatially and temporally, but also low-density
voids with large infall velocities towards nearby overdensities.

In order to conduct large-scale cosmological simulations it is therefore imperative to
directly evolve the fluid’s velocity by utilizing the Madelung transformation yielding the
modified Euler Equation 2.22. It is typically discretized using particles that trace the
dynamics of the fluid’s phase-space density. These Lagrangian N-body particles can then
be interpolated onto an Eulerian grid by smoothing them with an appropriately chosen
kernel W (r, h), where r defines the distance between the ith particle at qi and cell center
at xj, and h represents the characteristic kernel width. The density on the grid is then
approximated by

ρ(xj) =
∑
i

miW (|xj − qi|, h) (3.14)

Discretizing the underlying Lagrangian before deducing the corresponding Euler Lagrange
equation, Veltmaat and Niemeyer [2016] model the contribution to the particles’ accelera-
tion q̈i due to the quantum potential Q by

q̈ =
~2

2m2
(∆x)3

∑
j

∆n
√
ρ

√
ρ
∇W (|xj − qi|, h) , (3.15)

where (∆x)3 denotes the cell volume and ∆n is the discretized Laplace operator with seven-
point stencil. In contrast to standard smooth particle hydrodynamic approaches the sum
is over grid points and not over particle positions [Monaghan, 1992]. This parametrization
is explicitly mass and energy conserving and can stably evolve solitonic cores. It therefore
lacks only the ability to recover the interference pattern in multi-streaming regions as Q
formally diverges in those regions. Instead, the information of the non-vanishing velocity
dispersion is directly encoded in the particles’ motion. Running cosmological simulations,
this approach correctly suppressed small-scale perturbations, while conserving large-scale
dynamics and revealing a slight increase in power on scales around the Jeans length.

Since the acceleration depends on the gradient of the artificial kernel W it is not
straightforward to generalize the method to variable smoothing widths h without spoiling
energy conservation. One possibility could by to construct the density field with dynam-
ically changing kernels but keeping the kernel gradients fixed. Without such an adaptive
mesh refinement, the possible grid resolution in cosmological simulations remains limited,
rendering it impossible to recover solitonic cores in halos. Slightly different parametriza-
tions were chosen by Mocz and Succi [2015]; Zhang et al. [2018b]; Nori and Baldi [2018].
It remains to be seen if any of them can reproduce solitonic cores and the same degree of
energy conservation.
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Building on the above analysis, Armengaud et al. [2017] employed a standard N-body
simulation with FDM initial conditions in order to constrain the FDM mass from Lyα
data as outlined above. Numerically reconstructing the force due to coherence effects
∇Q/m from the interpolated density field, they find it to be negligible compared to the
gravitational force ∇V � ∇Q/m outside of regions with collapsed overdensities. In these
outer regions, multi-streaming, and the resulting granular structure found in filaments and
halos, should not significantly enhance ∇Q/m. Thus, both numerical analyses consistently
verify, that standard N-body simulations can correctly reproduce FDM dynamics in low
density regions with linear dynamics, while breaking down in overdense regions with non-
linear dynamics and multi-streaming.

We used these results to devise a hybrid method that exploits the efficiency of N-body
schemes on large cosmological scales, while using the accuracy of finite difference schemes
for a handful of isolated highly resolved halos [Veltmaat et al., 2018]. We did so by mod-
ifying the publicly available Enzo code [Bryan et al., 2014]. Employing initial conditions
generated by Music [Hahn and Abel, 2011] using a transfer function for FDM obtained by
AxionCAMB [Hložek et al., 2017], most of the simulation box is evolved with the standard
N-body scheme already implemented in Enzo. Isolated halos are then individually selected
from low resolution runs and subsequently highly resolved utilizing Enzo’s adaptive mesh
refinement routines. The FDM wavefunction itself is evolved by a finite difference method
only on the highest resolution level. It thus has to be chosen large enough so that coherence
effects not captured by the N-body scheme are still negligible at its boundaries, where the
wavefunction has to be approximately reconstruct from the N-body particles. They there-
fore have to carry information about the local value of the wavefunction’s complex phase
S(x, t). We provide this information by attributing an initial phase S0 to each particle. It
is obtained by interpolating initial particle velocities v0 onto a uniform grid, and solving

∇ · v0 = a−1∇2S0 (3.16)

by employing the Poisson solver implemented in Enzo. Equation 3.16 directly follows from
Equation 2.18. S0 is interpolated back onto the particle positions and evolved in time using
the classical wavefunction approach which is applicable if interference effects are negligible
— an assumption we made anyways by simulating FDM dynamics with N-body particles.
The phase evolution is then governed by the Hamilton-Jacobi equation [Trahan and Wyatt,
2005]

dSi
dt

=
1

2
vi

2 − V (xi), (3.17)

where vi and xi are the velocity and location of the ith particle, respectively. Again, since
the boundary was chosen far enough outside the collapsed halo, we can safely define the
wavefunction’s amplitude as the square root of the classical density

A(x) =

√∑
i

W (x− xi) . (3.18)
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The complex phase is approximated as the argument of the wavefunction obtained by
superposing particles weighted by their respective kernels

S(x) =
~
m

arg

[∑
i

√
W (x− xi)ei(Si+vi·a(x−xi))m/~

]
. (3.19)

The velocity dependence is a result of the identification vi = ∇Si, making the above
exponent a linearized Taylor series around the particles center of mass xi. The underlying
theory will be explained in detail below.

The cosmological simulations confirmed solitonic core formation in the central region
of virialized halos with NFW-like radial density profiles first found by Schive et al. [2014a].
The core-halo mass relation Equation 3.8 could be qualitatively reproduced with a scatter
of at most a factor of two. Since only isolated halos without major merger history have
been investigated, their core masses are typically underpredicted by Equation 3.8 as the
simulated halos have more time to relax towards an equilibrium state. A semi analytic
derivation of Equation 3.8 including halo merger histories is presented below. The slight
core mass underprediction in isolated halos is also found in the original simulation [Schive
et al., 2014a] as commented by the same authors in Lin et al. [2018]. Lin et al. [2018] suggest
to increase the core mass approximated in Equation 3.8 by a factor of 1.7 if isolated halos
are considered. This is consistent with core mass increase of the two most strongly growing
cores investigated by Veltmaat et al. [2018].

The core was found to have strong quasi-normal excitations failing to relax to the
ground state by gravitational cooling on evolutionary time scales. Their frequency

f = 10.94

(
ρc

109 M�kpc−3

)1/2

Gyr−1 , (3.20)

agrees with theoretical investigations by Guzmán and Ureña-López [2004]. These oscilla-
tions have been re-investigated by Bošković et al. [2018]. For the first time, Veltmaat et al.
[2018] showed that the core is the only gravitationally self-bound virialized object while
the granules that constitute the incoherent surrounding halo are unbound. A quantitative
investigation of their correlations revealed, that they are spatially coherent on de Broglie
wavelength scales λ = h/mvvir. The intuitive coherence time scale tc ' h/mv2

vir could be
numerically confirmed. It is typically short compared to the halos’ dynamical time scales,
challenging their approximation as quasi particles as suggested by Hui et al. [2017] and ap-
plied by Amorisco and Loeb [2018]. Finally, Veltmaat et al. [2018] confirm that the Wigner
quasi-probability distribution of the wavefunction matches the classical phase-space dis-
tribution function corresponding to the Vlasov-Poisson system when coarse-grained with
a Gaussian filter obeying σxσp ≥ ~/2. For the first time this numerically proves quanti-
tatively the applicability of the Schrödinger-Vlasov correspondance discussed in the next
section. As expected for virialized halos their spacially averaged velocity distribution is
well fit by a Maxwellian distribution

f(v)dv =
4

π

(
3

2

)3/2
v2

v3
rms

exp

(
−3

2

v2

v2
rms

)
dv , (3.21)
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where vrms ∼ vvir is the root-mean-square velocity [Choi et al., 2014].

3.5 Schrödinger-Vlasov Correspondence

With dedicated cosmological FDM simulations [Schive et al., 2014a; Veltmaat and Niemeyer,
2016; Veltmaat et al., 2018] it was shown that FDM and CDM structure formation is indis-
tinguishable on scales above the de Broglie wavelength — expect maybe for the condensat-
ing solitonic core in virialized halos. In this section we present the underlying theoretical
framework following Uhlemann et al. [2014].

The time evolution of the classical phase-space distribution function fcl is governed by
the Liouville equation ensuring its conservation over time. If effective long-range potentials
like the gravitational potential obtained from the Poisson equation are considered, it is
referred to as collisionless Boltzmann or Vlasov equation

∂tfcl(t, x, p) = − p

a2m
· ∇xfcl(t, x, p) +m∇xV (t, x) · ∇pfcl(t, x, p) , (3.22)

which describes collisionless DM without two-body correlations. CDM, being defined as
a pressureless fluid with density ρd(x) and single valued irrotational momentum p(t, x) =
∇xφ(t, x), can be modelled by so-called dust initial conditions

fd(t, x, p) = ρd(t, x)δ(p−∇xφ(t, x)) . (3.23)

Since gravity is a conservative force, it does not allow particle trajectories to cross each
other in phase-space, and conserves the irrotationality of the flow. Within this so-called
dust model there is initially no velocity dispersion. The fluid thus starts in an absolutely
cold condition. Multiple streams only develops after shell-crossing mainly in filaments
and virializing halos effectively warming up CDM in those regions. Inserting the first two
moments

M (0)(t) =

∫
fd(t, x, p)d3p = ρd(t, x) , (3.24)

M (1)(t) =

∫
p(t, x)fd(t, x, p)d3p = ρd(t, x)∇xφ(t, x)

into the Vlasov equation then yields the Euler equations of an irrotational fluid

∂tρd(t, x) =− 1

a2m
∇x · [ρd(t, x)p(t, x)] , (3.25)

∂tp(t, x) =− 1

a2m
[p(t, x) · ∇x] p(t, x)−mV (t, x)

∇x × p(t, x) =0 .

ensuring density and momentum conservation. Combining these equations, we obtain the
Bernoulli equation for a time dependent flow

∂tφ(t, x) = − 1

a2m
[∇xφ(t, x)]2 −mV (t, x) . (3.26)
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Identifying the velocity potential φ with the classical action S(t, x) as done in Equation 2.18
yields the classical Hamilton-Jacobi Equation 3.17. Comparing the classical Euler equa-
tions with Equation 2.19 and Equation 2.21, they only deviate by the quantum potential
Q, which is second order in ~/m. It thus vanished in the classical limit ~/m→ 0 if density
gradients are not diverging. This already points to a close resemblance between CDM
and FDM in certain limits and admits the SP approach for fluid dynamics put forward by
Spiegel [1980]; Widrow and Kaiser [1993]. These limits can be better quantified when con-
trasting phase-space distribution functions of FDM and CDM. In order to do so, we need
to identify the quantum mechanical density operator ρ̂ = |ψ〉 〈ψ|, assumed to represent
a pure state, with an associated phase-space function, typically referred to as a symbol.
This can be done via the Wigner transformation yielding the Wigner quasi-probability
distribution [Schaller et al., 2014]

fW (t, x, p) =(2π~)−3

∫
〈x− x̃/2|ρ̂(t)|x+ x̃/2〉 exp

[
i

~
p · x̃

]
d3x̃ (3.27)

=(2π~)−3

∫
ψ∗(t, x− x̃/2)ψ(t, x+ x̃/2) exp

[
i

~
p · x̃

]
d3x̃ ,

which is constructed from the wavefunction ψ evolved by the SP system. There are two
critical issues here. On the one hand, the distribution strongly oscillates on de Broglie scales
preventing it from converging to the classical distribution function in the limit ~ → 0. A
direct comparison of the time evolution yields [Takahashi, 1989; Schaller et al., 2014]

∂t(fW − fcl) =
∑

r≥3,odd

1

r!

(
~
2i

)r−1

∂rxV (x)∂rpfW ∼ ~−1 . (3.28)

The last identification is a result of the strong oscillations in fW . From Equation 3.27 we
see that each derivative of the distribution function with respect to its momentum is of
order ~−1. Thus, all terms on the right hand side of Equation 3.28 are of order ~−1 and
fW is ill defined in the classical limit ~→ 0. This problem was analytically investigated by
Takahashi [1989] and numerically confirmed by Uhlemann et al. [2014]. On the other hand,
fW is only a quasi probability distribution as it can have negative values. Both problems
can be simultaneously overcome by coarse graining fW with a Gaussian filter [Cartwright,
1976; Takahashi, 1989]

fFDM(t, x, p) = (2πσxσp)
−3

∫
exp

[
−(x− x′)2

2σ2
x

− (p− p′)2

2σ2
p

]
fW (t, x′, p′)d3x′d3p′ , (3.29)

if σxσp ≥ ~/2. Physically, this corresponds to smoothing over fluctuations on the de
Broglie wavelength scale. Alternatively, one can directly use the Husimi representation of
the wavefunction itself

ψH(t, x, p) = (2π~)−3/2(2πσ2
x)

3/4

∫
exp

[
ip · (x− x′)/~− (x− x′)2

4σ2
x

]
ψ(t, x′)d3x′ , (3.30)
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for which

fFDM = |ψH |2 if σxσp = ~/2 . (3.31)

In Equation 3.30, ψ is convoluted with a coherent Gaussian wave packet in order to obtain
the smoothed distribution function defined in Equation 3.29. Establishing the Gaussian
beam method in the next section, it is shown that this filtering does not erase information
stored in the original wavefunction ψ.

From Equation 3.27 it can be seen that the time evolution for fW follows exactly the
classical fcl if free particles (V = 0), uniform densities (V ∼ x) or harmonic oscillators
(V ∼ x2) are considered. In general, there are additional terms that can be interpreted as
quantum corrections or simply higher-order corrections [Schaller et al., 2014]. Apart from
numerical discretization errors, the Gaussian beam method presented below can reproduce
analytic results exactly, if these corrections are negligible [Kay, 2006]. Conversely, it can
be expected to work in regions in which the right-hand side of Equation 3.27 vanishes. It
was numerically proven by Veltmaat et al. [2018], that in FDM cosmology simulations this
is the case even in collapsed halo with multiple shell-crossings.

A similar smoothing is implicitly employed when the classical distribution fcl is numer-
ically evolved with N-body schemes, as particles with finite size and discrete momenta are
advanced in time. In order to be comparable with Equation 3.29 the numerical smoothing
is approximated by

fCDM(t, x, p) = (2πσxσp)
−3

∫
exp

[
−(x− x′)2

2σ2
x

− (p− p′)2

2σ2
p

]
fd(t, x′, p′)d3x′d3p′ , (3.32)

where now σx and σp are set by the simulation resolution. Comparing the evolution of the
coarse grained distribution functions formally produces the same results as in Equation 3.28
[Uhlemann et al., 2014]

∂t(fFDM − fCDM) ' ~2

24
∂3
xV (x)∂3

pfFDM +O((~)4) ∼ ~2 . (3.33)

But now momentum derivatives are of order unity and fFDM convergence quadratically to
fCDM in the classical limit ~→ 0. This quantifies the Schrödinger-Vlasov correspondence.
Deviations between CDM and FDM are suppressed by (~/m)2 and thus become dominant
only in highly oscillatory regions. The correspondance was verified in many cosmological
FDM simulations [Woo and Chiueh, 2009; Schive et al., 2014a; Veltmaat and Niemeyer,
2016] and quantitatively investigated by Veltmaat et al. [2018].

One aspect is not covered by the Schrödinger-Vlasov correspondence. The formation
of bound states with discrete negative energy spectra does not have a classical analog.
Levkov et al. [2018] have shown, that the solitonic cores indeed are analogs of quantum
mechanical bound states. They are thus macroscopic deviations between CDM and FDM
that do not necessarily converge to the classical limit even when coarse grained on the de
Broglie scale.
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3.6 Gaussian Beam Method

The Gaussian beam method (GBM) was first introduced by Popov [1982]. It allows ac-
curate computations of the wavefunction even around caustics where standard ray tracing
methods including the classical wave approximation used by Veltmaat et al. [2018] or the
quantum trajectory method [Trahan and Wyatt, 2005] become singular and break down
[Ralston, 1982; Engquist and Runborg, 2003]. The main underlying problem is the prop-
agation of point-like entities that are artificially spread out in space by associating them
with a kernel function. In contrast, the GBM explicitly evolves spatially extended objects
—coherent Gaussian wave packets — that contain non-trivial information also away from
there center-of-mass. That way, their superposition correctly reproduces the time evolu-
tion of the wavefunction even after shell-crossing. In this section, the GBM is presented
following Kay [1994, 2006]. The employed semi-classical approximations were rigorously
investigated by Swart and Rousse [2007].

The GBM strongly relies on the fact, that the wavefunction 〈x|ψ〉 ≡ ψ(x) ∈ L2(Rd,C)
can be decomposed into coherent Gaussian wave packets

〈x|p, q, γ, 0〉 ≡ det

(
2Re γ

π

)1/4

exp [ip · (x− q)/~

− (x− q)Tγ(x− q)] , (3.34)

via the Fourier-Bros-Iagolnitzer (FBI) transformation Tγ : L2(Rd,C) 7→ L2(T ∗Rd,C):

Tγ[ψ](q, p) ≡ 1

(2π~)d/2

∫
Rd

〈p, q, γ, 0|x〉 〈x|ψ〉 dx

≡ 〈p, q, γ, 0|ψ〉 (3.35)

and its inverse T ∗γ : L2(T ∗Rd,C) 7→ L2(Rd,C):

T ∗γ [u](x) ≡ 1

(2π~)d/2

∫
T ∗Rd

〈x|p, q, γ, 0〉 〈p, q, γ, 0|u〉 dpdq (3.36)

since [Bach, 2002]

〈x|ψ〉 = 〈x|T ∗γTγψ〉 . (3.37)

Given any initial wavefunction ψ we can thus populate phase-space T ∗Rd with coherent
Gaussian beams 〈x|p, q, γ, 0〉 weighted by (2π~)−d/2 〈p, q, γ, 0|ψ〉. Equation 3.37 then im-
plies that we can recover ψ as the integral over all beams. Here, γ ∈ Cn×n is symmetric
and its real part is positive definite. Its imaginary part can be used to extend the Taylor
expansion in the initial phase reconstruction to second order. The FBI transformation is
identical to the Husimi representation in Equation 3.30. Using the FBI-transformation, it
was shown by Kay [1994] that the time integration of ψ can be done by a time integration
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of the beam parameters

ψ(x, t) =
1

(2π~′)d

∫
T ∗Rd

〈x|p′t, qt, γt, t〉

×
∫
Rd

〈p′0, q0, γ0, 0|y〉 〈y|ψ0〉 dydp′0dq0 , (3.38)

with initial conditions ψ(x, 0) ≡ ψ0 and time-dependent Gaussian beams

〈x|p′t, qt, γt, t〉 ≡ Cpqte
iS′pqt/~′ 〈x|p′t, qt, γt, 0〉 . (3.39)

Given the classical Hamiltonian function corresponding to Equation 2.15

H ′(pt, qt) =
p′2t
2a2

+ V (qt) , (3.40)

the beams move on their classical trajectories

dqt
dt

=
∂H ′

∂p′t
=

p′t
a2

,
dp′t
dt

= −∂H
′

∂qt
= −dV

dqt
, (3.41)

where primes denote mass-scaled quantities (e.g. p′ = p/m). We introduce primed quanti-
ties in order to avoid an explicit mass dependence in the Schrödinger equation which does
not depend separately on ~ and m, but only on their ratio ~′.

As for ray tracing methods, the time evolution of the central phase Spqt, being the
action of the system, is governed by its Lagrangian L:

S ′pqt =

∫ t

0

L′dt =

∫ t

0

[
p′2t
2a2
− V (qt)

]
dt . (3.42)

The pre-factor Cpqt accounts for the time varying Jacobian of the system. It is given by
the so-called Herman-Kluk prefactor [Herman and Kluk, 1984]

Cpqt = det

(
π

2Re γt

)1/4

det

(
π

2Re γ0

)1/4(
1

2πi~′

)d/2
× det

[
−∂p

′
t

∂q0

+ 2i~′γt
∂qt
∂q0

− 2i~′
(
−∂p

′
t

∂p′0
+ 2i~′γt

∂qt
∂p′0

)
γ∗0

]1/2

(3.43)

with initial Jacobian matrices

J0 =

(
∂q0/∂q0 ∂q0/∂p

′
0

∂p′0/∂q0 ∂p′0/∂p
′
0

)
=

(
1 0
0 1

)
. (3.44)

Their time evolution is obtained by differentiating Equation 3.41:

dJt
dt

= UJt , U =

(
0 a−2

−d2V
dq2t

0

)
. (3.45)
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The matrix γt can be arbitrarily chosen as long as it fulfills the requirements of γ, changes
continuously with time and stays finite. However, it was found that time-independent
γ(t) = γ(0) yield more accurate results [Kay, 1994; Harabati et al., 2004]. We therefore
adopt this strategy in the following, although it would be interesting to investigate its
ability to adopt to changing grid resolutions in adaptive mesh refinement schemes. Since
γt = γ0 initially, we have Cpq0 = 1, S ′pq0 = 0 and Equation 3.38 reduces to Equation 3.37
as required.

As stated before, the GBM is exact if the considered potential is at most second order,
V (x) ∝ x2 [Kay, 2006]. The evolution of the wavefunction in inharmonic potentials was
found to agree with analytic results only after normalization [Kluk et al., 1986]. Since the
normalization of the wavefunction is impractical in FDM cosmology simulations, the GBM
breaks down in regions with large inharmonic corrections to the potential. Equation 3.33
shows, that this is the case when the Schrödinger-Vlasov correspondence breaks down as
well. Preliminary tests of the GBM already show promising results. They are summarized
in chapter 5. In the future, it would also be possible to extend the GBM to higher orders
[Kay, 2006; Swart and Rousse, 2007].



56 3. Fuzzy Dark Matter Simulations



Chapter 4

Evolution of Solitonic Cores

This section mostly presents the work published in Schwabe et al. [2016] for which the
author of this thesis was mainly responsible for. Initial code development and the final
draft was supported by co-authors Jens C. Niemeyer and Jan F. Engels. Dynamics and
end states of binary and multimergers of solitonic core were investigated and universal
behaviour could be deduced. The results were subsequently utilized in a semi-analytic
scheme with which the core-halo mass relation in Equation 3.8 could be reproduced as
a consequence of the FDM halos’ merger histories. While Xiaolong Du was responsible
for the numerical results, the author of this thesis contributed through discussions and
assisting in the final draft [Du et al., 2017]. Finally, tidal disruption of solitonic cores,
subject to the gravitational field of their host halos, was investigated in Du et al. [2018].
The author of this thesis contributed in the interpretation and presentation of the numerical
results obtained from simulations run by Xiaolong Du. The latter papers were additionally
co-authored by Jens C. Niemeyer, Christoph Behrens and David Bürger.

4.1 Numerical Methods

In Schwabe et al. [2016], we implemented the Schrödinger Equation 2.15 into the cosmolog-
ical hydro code Nyx [Almgren et al., 2013], discretizing the wavefunction ψ on an Eulerian
grid. The wavefunction was treated as an additional DM component and integrated us-
ing a fourth-order Runge-Kutta solver. Time steps were chosen such that they fulfill the
stability constrained of Equation 3.3. We employed the multigrid Gauss-Seidel red-black
Poisson solver provided by Nyx to compute the gravitational potential. The cosmological
scale factor was always fixed to a = 1. The FDM mass was set to a fiducial value m22 = 2.5.
All simulations were run on grids with 5123 cells. We monitored the total mass

M [ψ] =

∫
V

ρd3x (4.1)
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energy

E[ψ] =

∫
V

[
~2

2m2
|∇ψ|2 +

1

2
U |ψ|2

]
d3x (4.2)

=

∫
V

~2

2m2
(∇√ρ)2d3x+

∫
V

ρ

2
v2d3x+

∫
V

ρ

2
Ud3x

= Kρ +Kv +W

and angular momentum

L[ψ] =
1

m

∫
V

ψ∗ [r × (−i~)∇]ψd3x (4.3)

=
1

m

∫
V

[
r × ρ∇S +

i~
2
∇× rρ

]
d3x

=

∫
V

r × ρvd3x

of the system. In the second line of Equation 4.2, we used the Madelung representation
defined in Equation 2.16 and Equation 2.18, whereas in the last line we divided the total
energy into gradient energy Kρ, kinetic energy Kv, and potential energy W . The third
equality in Equation 4.3 is true if the density falls off sufficiently rapidly that boundary
terms vanish. While conservation of total mass, energy and angular momentum was veri-
fied, each energy contribution was measured separately in order to follow the dynamics of
a particular system more closely. We used units [M ] = M� and [E] = M�km2s−2. Owing
to Equation 3.7, the above defined quantities obey the scaling relations

{M,Kρ, Kv,W, L→ λM̂, λ3K̂ρ, λ
3K̂v, λ

3Ŵ , λL̂}. (4.4)

During the relaxation of the system, waves emitted by the merger carry mass and energy
toward the numerical boundaries. In order to avoid spurious reheating from reflected waves,
we followed Guzmán and Ureña-López [2004] and placed a ’sponge’ in the outer regions of
the grid by adding an imaginary potential

V (r) = − i
2
V0{2 + tanh[(r − rs)/δ]− tanh(rs/δ)}Θ [r − rp] , (4.5)

to the Schrödinger equation which efficiently absorbs matter. Here r is the distance from
the center of the numerical domain. The Heaviside function Θ ensures that the non-physical
sponge is only added in the outer regions r > rp. Let rN be half the box size. We then set
rp = 7/8rN , rs = (rN +rp)/2, δ = (rN−rp) and V0 = 0.6. Although our numerical domains
were always cubic, we used a spherical sponge since the final states of our simulations are
approximately spherically symmetric.

We tested our code by considering a single solitonic core. It was shown by Seidel
and Suen [1994]; Guzmán and Ureña-López [2004]; Bernal and Guzmán [2006] that it is
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a virialized attractor solution of a broad class of initial conditions. Hence, the core is
expected to be stable with low-amplitude excitations caused by numerical errors.

The excitation manifested itself in a periodic variation in the central density. Its ampli-
tude decreased faster than quadratically with resolution implying fast convergence of our
code. The central density varied at most on the percent level if rc was resolved by at least 3
cells. For the simulations described below, the typical resolution is greater than 4 cells for
all binary mergers and most multiple mergers. The oscillation frequency matches the one
found by Guzmán and Ureña-López [2004]. While kinetic and potential energy oscillate
with opposite phase, total mass and energy are conserved to better than 10−3. The oscil-
lation of ψ in the complex plane has the expected frequency [Guzmán and Ureña-López,
2004].

We checked convergences of our code also for binary mergers. Increasing the resolution
by a factor of two alters the results only negligibly. In all runs conserved quantities stay
constant to better than 10−3 until matter is absorbed by the sponge.

We used the yt toolkit [Turk et al., 2010] for our analysis of numerical data and for
the volume rendering of Figure 4.4 and Figure 4.9. Core profiles were fitted employing
the radial density profile routines around the density maxima. Although cores with non-
vanishing angular momentum are not expected to be perfectly spherical, we find that they
can be well fitted by Equation 3.4. Below, we therefore always assume spherical symmetry
of the final state.

4.2 Binary Core Mergers

We ran a set of binary mergers in order to investigate their dynamics and final states. As a
consequence of the scaling relations in Equation 3.7, the initial conditions for an arbitrary
binary collision are fully parametrized by few defining parameters, i.e. the relative velocity
v|| and distance d between the cores, the mass ratio µ and total massM , the phase difference
Φ, and the angular momentum Lz perpendicular to the orbital plane chosen to be in the
x-y-plane.

There are two distinct regimes. If the two cores are unbound (E > 0) they superpose
and pass through each other almost undisturbed [Bernal and Guzmán, 2006; González
and Guzmán, 2011; Naraschewski et al., 1996; Röhrl et al., 1997], behaving like solitons
in this regime. If instead the cores are bound (E < 0), they merge rapidly forming a new
core [Bernal and Guzmán, 2006]. We found that the mass of the emerging core is largely
independent of the initial angular momentum, distance and relative phase, but depends on
the ratio of initial core masses and total energy.

In order to analyse the unbound case, we considered two solitonic cores with µ ≡
M1/M2 = Mc,1/Mc,2 = 2, Lz = 0M� Mpc km/s and v|| = 4 km/s. The cores were scaled
such that the heavier one had a central density

ρ(0) = 1.36× 1011M�Mpc−3 , (4.6)

roughly corresponding to the present cosmic critical density, giving a core radius rc '
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Figure 4.1: Head-on collision of two cores with mass ratio µ = 2 and high relative velocity.
Upper panels: density profiles at different times for relative phases Φ = 0 (left) and
Φ = π (right) along the symmetry axis. Numerical results are shown for the initial and
final state as well as for the time of maximal interference. For comparison, we plot the
interference pattern predicted from Equation 4.7 at the same time. Deviations can be
attributed mostly to a small offset in the time of maximal interference. Lower panels:
mass and energy contributions. Total energy and mass are conserved, while kinetic energy
associated to the cores’ relative motion (Kv) is transferred into the interference pattern
yielding large values of Kρ during the interaction. The equality of the lower panels shows
the independence of the evolution with respect to the initial phase shift Φ.
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11.6 kpc. However, all results are independent of this overall scaling of the problem. The
two cores were placed centrally in a 512 kpc cubic box with d = 256 kpc yielding E '
8.2× 106M�km2s−2.

Figure 4.1 shows the density profiles along the symmetry axis and the evolution of
global quantities (mass and energy components) for two runs with relative phases Φ = 0
and Φ = π. The final density distribution as well as the evolution of the global quantities
are practically indistinguishable in both cases. Only the interference pattern at the time
of superposition depends on the relative phase.

The observed interference pattern follows directly from a superposition of the two soli-
tonic cores. Initially, the cores were placed at ±x̂(t = 0) = ±d/2. The corresponding
wavefunction ψ(t, x) is given by

ψ(t, x) =A1(|x+ x̂|)ei(kx/2+ωt+Φ/2) (4.7)

+ A2(|x− x̂|)ei(−kx/2+ωt−Φ/2)

where (A1)2 and (A2)2 are the density profiles of the two cores and k = mv||/~ is the wave
number corresponding to their relative velocity. The time tint of maximal interference is
defined by x̂(tint) = 0. At that time,

|ψ(tint, x)|2 =A1(|x|)2 + A2(|x|)2 (4.8)

+ 2A1(|x|)A2(|x|) cos(kx+ Φ)) .

The excepted period of the interference pattern is thus given by the de Broglie wave length

λ =
2π

k
=

2π~
mv||

(4.9)

corresponding to the relative velocity. Here, λ ' 12 kpc. It was therefore well resolved by
12 cells.

The interference pattern predicted by Equation 4.8 matches the numerical results pre-
sented in Figure 4.1. During the interaction, gravity slightly contracts the density profiles.
Neglecting this small effect, we see that they remain in a superposition state of two soli-
tonic cores even during their interaction. As expected, the potential energy mildly increases
during the collision, while mass and total energy are conserved. During the collision, the
kinetic energy from the cores’ relative motion is stored in the interference pattern, strongly
boosting the gradient energy contribution Kρ. At later times, the energy is transferred
back to the cores’ motion. There is no significant decrease in velocity or deformation of
the density profiles due to the collision. The cores thus indeed behave like solitons in this
regime. This is in contrast to head-on collisions of higher modes resulting in sizable mass
exchange during the encounter [Guzmán and Avilez, 2018].

The evolution of a bound binary system with negative total energy is very different.
In this case, the cores rapidly merge and relax to a new solitonic core by gravitational
cooling [Seidel and Suen, 1994; Bernal and Guzmán, 2006]. One interesting exception is
the case of binary collisions with perfect phase opposition Φ = π and equal masses µ = 1
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Figure 4.2: Mass, energy and angular momentum evolution of two representative binary
collisions with initial values µ = 1, v|| = 0 km/s, and Lz = 2.4 × 104M� Mpc km/s
(rescaled by 102). Cores with equal phase (Φ = 0) immediately merge (left). In perfect
phase opposition (Φ = π), the two cores first mutually repel each other multiple times
before merging (right). The bounces are indicated by black arrows. The emerging cores
are excited as seen by the oscillations of gradient and gravitational energy, Kρ and W . The
loss of total mass, energy, and angular momentum results from matter absorption inside
the sponge.

during which the destructive interference gives rise to a repulsive effect, causing the cores
to bounce off each other [Paredes and Michinel, 2016].

For our study of bound binary collisions, we placed two halos along the central axis in
a 1024 kpc cubic box with d = 256 kpc. As before, the cores were scaled such that the
central density of the heavier core obeyed ρ(0) = ρcr. Since the two halos emit strongly
accelerated mass while merging, a comparatively large box was required such that the mass
is able to propagate sufficiently far away from the merger before being absorbed inside the
sponge.

In Figure 4.2, we show the mass, energy and angular momentum evolution of two
representative runs with µ = 1, v|| = 0 km/s and Lz = 2.4 × 104M� Mpc km/s. On
the left, the two cores were in phase. They merged after approximately one free-fall time,
tff ' 0.94 Mpc/km s, and formed a new excited solitonic core within roughly one oscillation
period. The core’s frequency f ' 8 km/Mpc/s, implies that it consists of only 70% of the
initial mass [Guzmán and Ureña-López, 2004] whereas approximately 30 % of the initial
total mass was radiated off by gravitational cooling. This estimate was confirmed by
the evolution of the total core mass Mc = Mc,1 + Mc,2 and the total mass M shown in
Figure 4.3. Initially, Mc ' 1

4
M as expected, decreasing roughly by 30% during the merger.

After a while, the ejected mass reached the sponge and was absorbed. This did not alter
the results, since in all conducted runs, the ejected mass is roughly an order of magnitude
above the escape velocity vesc =

√
2GM/r and would not have fallen back onto the core.

In the case of solitonic cores with equal mass (µ = 1) but opposite phase (Φ = π), the
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Figure 4.3: Evolution of the core (solid lines) and total (dashed lines) mass for binary
mergers. The triplets identify the point (µ,Φ, Lz) in parameter space. Angular momentum
is given in units of [Lz] = 104M� Mpc km/s.
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Figure 4.4: Volume rendered images of two representative binary mergers in phase (top)
and with opposite phase (bottom) showing the central region of the computational domain
at t = 0.7, t = 0.94, t = 2.0 and t = 7.0 in Mpc/km s.

destructive interference gives rise to a repulsive interaction, causing the cores to bounce
off each other several times before merging (cf. right panel of Figure 4.2). This behaviour
was also observed by Paredes and Michinel [2016]. The arrows indicate the bounces which
result in a noticeable compression of the individual cores. Radiation produced by each
encounter results in a damping of the bounces and a decreasing amplitude of the compres-
sion. Eventually, the symmetry is broken by the accumulation of small numerical errors
producing a slight phase shift, causing the cores to merge in the end. At later times, the
evolution is qualitatively identical to the case with Φ = 0 as can be seen by comparing the
core and halo mass evolution in Figure 4.3.

Volume rendered images of both runs are shown in Figure 4.4. Especially in the upper
panels, a noticeable eccentricity of the newly formed core can be recognized. These rotating
ellipsoids are qualitatively those investigated by Rindler-Daller and Shapiro [2009, 2012,
2013, 2014]; Li et al. [2014]. In particular, their internal velocity fields roughly confine
density distributions on elliptical orbits. A slice through a representative ellipsoid is shown
in Figure 4.5.

We tested the sensitivity of the repulsive interaction to small deviations from exact
phase opposition by considering a phase difference Φ = 7/8π. In this case, only a single
bounce occurs before the cores merge. Similarly, for a mass ratio µ = 2 and Φ = π the
cores merge without any observable repulsion. These results suggest that in any realistic
scenario absent finely tuned phase opposition and mass equality, repulsive behavior of
colliding solitonic cores can be ignored for all practical purposes.

We conducted a series of binary mergers spanning the parameter space (µ,Φ, Lz). For
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Figure 4.5: Slice through the symmetry plane of a representative ellipsoid. Its density is
color-coded while arrows denote the strength and direction of its velocity field. It roughly
forms closed elliptical orbits.
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Figure 4.6: Binary mergers with different mass ratios µ. Left: evolution of the core mass
of the more massive core. Right: final radial density profiles. Solid lines represent fitted
core profiles as defined in Equation 3.4. The black line corresponds to r−3 as expected for
the outer parts of an NFW profile.

all runs, we set v|| = 0 km/s, µ ≤ 2, and Lz ≤ 7.2 × 104M� Mpc km/s so that the cores
are bounded and overlap when reaching the semi-minor axis. Our main result is that
the core mass evolution is nearly independent of these parameters within the considered
ranges. In all cases, the mass of the emerging core is approximately 70% of the sum of the
progenitors’ core masses. The core and total mass evolution of eight representative runs
are shown in Figure 4.3. The ratio between final core and total masses is approximately
one fifth implying that 80% of the remaining bound mass resides in the solitonic core while
the remainder has formed a diffuse halo around it. Note that due to the restriction to small
angular momenta and mass ratios, the total energy varies only very little for all runs. The
energy dependent final core masses Mc(E) of the above runs are shown in Figure 4.7 (run
1).

Assuming a constant fraction of final to initial core masses of ∼ 70% even for µ 6= 1
implies that the final core is less massive than the more massive progenitor if µ & 7/3. We
therefore expect the change of Mc of the more massive core to saturate at roughly this mass
ratio. This is qualitatively confirmed by our simulations. For µ & 2, the less massive core
is completely disrupted and forms a diffuse halo. Figure 4.6 shows the core mass evolution
for different mass ratios (left). Here, the initial core mass corresponds to the more massive
core. On the right, the final radial density profiles can be seen. They consist of a solitonic
core well fitted by Equation 3.4 and a shallow outer tail. Interestingly, the tails in all
cases approximately follow a power law decline with a logarithmic slope of roughly −3 as
expected for the outer parts of a NFW halo profile. This behavior is consistent with the
results of Schive et al. [2014b] but finding NFW-like halos already in the case of binary
mergers suggests that it may be more robust than previously expected.

The fitted core masses are mildly energy dependent as can be seen in Figure 4.7 (run



4.2 Binary Core Mergers 67

Figure 4.7: Core mass as a function of the total energy and mass. The star indicates the
relation for a single solitonic core. Run 1 denotes the simulations with almost equal total
energy for different angular momenta and phases. Runs 2 and 3 show the dependence on
mass ratio µ and total energy E, respectively. Multiple core mergers are shown as run 4
(cf. section 4.4). See main text for details.
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2). They very broadly follow a power law with

Mc

M
= 656

(
|E|
M3

)1/4

M
1/2
� km−1/2s1/2. (4.10)

In Figure 4.7, the final core mass Mc is normalized to the initial total mass M in order to
obtain an invariant relation with respect to the scaling properties given in Equation 3.7. For
a single solitonic core, Mc/M ' 0.237 and |E|/M3 ' 1.7× 10−14M−2

� km2s−2 as indicated
by the black star in the upper right corner. This point is consistent with Equation 4.10
since a single core is the limit of infinite mass ratio. A single core is the ground state
solution of the SP system. It is therefore the point of minimum energy and maximum core
mass per total mass.

Finally, we conducted a series of runs with Φ = 0, µ = 1, Lz = 0 and varying d and
v|| over a wide range of energies. The fitted final core masses are collectively shown in
Figure 4.7 (run 3). The dashed line corresponds to

Mc

M
= 46.7

(
|E|
M3

)1/6

M
1/3
� km−1/3s1/3 , (4.11)

indicating a weaker energy dependence for µ = 1 than for larger mass ratios.

Our results demonstrate a number of robust features of binary core mergers. Qualita-
tively, bound systems rapidly merge within roughly one oscillation period of the emerging
core after approaching to a distance at which the characteristic core radii overlap. This
implies that one of the distinctive features of hierarchical structure formation in FDM
cosmologies is the presence of halo and subhalo cores evolving under a sequence of binary
mergers which, to very good approximation, can be considered as isolated events. It was
shown by Guzmán et al. [2016] that luminous matter cannot follow these extreme dynamics
and is expelled from the gravitational potential.

During this dynamical phase, gravitational cooling is most efficient and essentially
determines the loss of mass and angular momentum of the merged core, while continuing
to dampen its excitations during the ensuing several oscillation periods. One exception
is the case of perfect phase opposition and equal masses in which case the cores initially
repel each other, leading to a bouncing behavior until small accumulated phase differences
again cause a rapid merger on a dynamical time scale. Owing to the fine tuning required
for this situation, we do not consider it relevant in the context of cosmology.

The mass of the emerging core does not directly depend on the binary angular momen-
tum, initial distance, and phase shift between the solitonic cores, but only on their mass
ratio and total energy. The mass of the more massive core can only be enhanced by binary
mergers with mass ratio µ < 7/3. Otherwise, the smaller core is completely disrupted and
forms a NFW-like halo around the more massive one.
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4.3 Core-Halo Mass Relation

Subsequently, it was shown by Du et al. [2017] that a mass loss fraction (1 − β) = 1/3
— close to the one reported on above — can reproduce the numerically found core-halo
mass relation given in Equation 3.8. In this study, the modifications to the semi-analytic
code Galacticus [Benson, 2012; Benson et al., 2012] for FDM described in Du et al. [2016]
were employed in order to build 2000 merger trees for root halos with 4 × 1011 < Mh <
4 × 1013M�. The mass resolution was set to 2 × 108M�. First, the merger history for
each root halo was constructed by successively drawing branching events backward in time
until the halo mass of the progenitors was below the mass resolution. The branching rate
was calculated from the extended Press-Schechter formalism [Press and Schechter, 1974;
Bond et al., 1991; Lacey and Cole, 1993]. Halos which have no progenitors were then
evolved forward in time, taking into account different physical effects such as mergers,
dynamical friction and tidal stripping. The core mass was traced along the merger history
and recalculated at each merger event. It was verified that the final core-halo mass relation
is independent of the initial core-halo mass relation for halos close to the minimum cutoff
mass in the HMF that form from direct collapse without progenitors. Since there is no
other preferred choice, Equation 3.8 was used to set the initial core mass as it is probably
most applicable for halos that have just collapsed and not undergone many mergers.

To study the impact of the core mass loss fraction on the final core-halo mass relation,
Du et al. [2016] varied β between 0.5 and 1.0. Utilizing our above presented simple recipe
for the core mass evolution during merger histories, the core mass of the newly formed
halo after a major merger with core mass ratio µ < β/(1 − β) is calculated according to
Mc = β(Mc1 +Mc2), were Mc1 and Mc2 are the masses of the initial cores. Minor mergers
with µ > β/(1− β) including smooth accretion do not change Mc. While for β = 0.5 the
core mass is not evolving in time as there are no major mergers, β = 1.0 counts every
merger as major, yielding a strongly increasing core mass. The thus semi-analytically
obtained final core-halo mass relation was found to be well fitted by the simple scaling
power law relation

Mc =
1

4
B

(
Mh

Mmin,0

)2β−1

Mmin,0 , (4.12)

where the fudge factor B accounts for the slight redshift dependence of the minimum halo
mass Mmin(z). Thus, β = 2/3 reproduces the numerically found core-halo mass relation in
Equation 3.8.

4.4 Mergers of Multiple Cores

In Schwabe et al. [2016], we also investigated mergers of multiple cores. From our previous
analysis we know that the merging time of binaries is negligible with respect to the typical
free-fall time. We can therefore safely assume that a multimerger consists of a series of
binary mergers within a deeper gravitational well.
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For all runs, we draw halo masses from a Gaussian distribution within the 2σ-band
around a chosen average halo mass. We then place the halos uniformly inside the central
numerical domain, rejecting positions that would result in an overlap of halos or close
proximity to the outer sponge. Rejected halo positions are redrawn until acceptable. Halos
are initialized with random phases. We simulated multimergers of up to 13 halos. As a
typical example, Figure 4.9 shows the volume rendered images of a multimerger with 13
halos at three different times.

The final radial density profiles for all runs are presented in Figure 4.8. As in the case
of binary mergers and in full agreement with previous studies by Schive et al. [2014b], their
central regions can be fitted with a solitonic core profile, Equation 3.4, while the tails fall
off like r−3 consistent with the outer profile of a NFW-like halo. The final core masses
are summarized in Figure 4.7 (run 4). We cannot confirm the Mc ∼ (E/M)1/2 scaling
shown by Schive et al. [2014b] which may in part be a consequence of the fact that, in
contrast with their analysis, all results in Figure 4.7 are normalized to the initial total mass
M . This eliminates any scaling with energy originating only from the scale invariance of
the SP system, making the results more sensitive to the intrinsic energy dependence of
multimergers. We verified that this discrepancy is unrelated to the initial phase shifts of
individual halos. If the system is initialized with non-zero total angular momentum, we
qualitatively recover the rotating ellipsoidal cores studied by Rindler-Daller and Shapiro
[2009, 2012, 2013, 2014]; Li et al. [2014].

Our results were largely confirmed by Mocz et al. [2017]. Noticing that the SP system
has an additional scaling relation with respect to the FDM mass m→ αm

{t, x, V, ψ, ρ,M,E, L} → {αt̂, x̂, α−2V̂ , α−1ψ̂, α−2ρ̂, α−2M̂, α−4Ê, α−3L̂} , (4.13)

they define the invariant quantity

Ξ = |E|/M3/(Gm/~)2 . (4.14)

Simulating a hundred virialized multimergers, they find

Mc

M
' 2.6Ξ1/3 = 2.6

(
|E|

M3(Gm/~)2

)1/3

(4.15)

over two orders of magnitude in Ξ. Note that their definition of Mc differs from ours
by an additional factor of four. From Equation 3.6 the above relation implies |Ec| ∼
|Eh| suggesting that core and halo equilibrate with respect to their energies. Mocz et al.
[2017] used periodic boundary conditions. Our slightly smaller core masses are therefore
probably due mass and kinetic energy escape at the boundaries or the inclusion of angular
momentum. However, our above presented results are broadly consistent with Mocz et al.
[2017]. After normalizing each final halo to its central density a uniform density profile
emerges. The transition between the central solitonic core and outer NFW tail is found
to be at rε = 3.5rc where the density has dropped by roughly two orders of magnitude.
Investigating the kinetic energy power spectrum, it was shown that it peaks at dpeak ∼ 2rε,
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Figure 4.8: Final radial density profiles for all conducted multimerger runs. Solid lines
represent fitted core profiles as defined in Equation 3.4. The black line corresponds to r−3

as expected for the outer parts of an NFW profile.

Figure 4.9: Density distribution of a multimerger simulation with 13 halos at different
times.
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which is the total width of the soliton within the NFW halo. Plotting the separate radial
energy densities of the final virialized haloes, Mocz et al. [2017] find that the core is purely
stabilized against gravitational collapse by gradient energy. In the transitional region
between rc < r < rε the classical kinetic energy fraction steeply rises until equipartition is
roughly reached in the NFW tail outside rε.

Taking higher modes into account, Vicens et al. [2018] conclude, that the solitonic core
should be surrounded by a corona with radial density profile falling as ρ ∝ r−5/3. Un-
fortunately, the radial density profiles in Figure 4.8 obtained in our simulations strongly
fluctuate around the solitonic core making the proposed scaling hard to verify quantita-
tively. For some final states we see a transient region between the solitonic core profile and
the NFW tail with a slope compatible with ρ ∝ r−5/3. This region is not recovered in the
averaged density profiles obtained by Mocz et al. [2017], suggesting that it might not be
present in fully virialized halos.

4.5 Tidal Disruption of Subhalo Cores

Using a fourth-order pseudo spectral code, Du et al. [2018] investigate the tidal disruption
of a solitonic core — already stripped off its NFW halo — orbiting around a host halo
modelled as a uniform sphere with mass Mh well inside the core’s circular orbit. The initial
ratio µ between the central density of the soliton ρc and the average density of the host
within the orbital radius is set such that the core radius rc is initially smaller than the
tidal radius

rt =

(
GMsat(< rt)

3ω2

)1/3

, (4.16)

whereMsat is the satellite mass enclosed within the tidal radius and ω is the angular velocity
of the satellite. Following Hui et al. [2017], Du et al. [2018] investigate a simple system in
which the solitonic core is subject to a spherically symmetric tidal potential Φt(r) = −γω2r2

as a function of distance r to the center of the satellite. Solving the complex eigenvalue
problem of the corresponding time-independent SP system, they derive a fitting formula
for the satellite’s mass loss rate

Ṁc

Mc

=
1

4

ρ̇c
ρc

= −T−1
orbit exp

[
a

(
3

2γ
µ

)2

+ b

(
3

2γ
µ

)
+ c

]
, (4.17)

with the best-fitting parameters {a, b, c} = {5.89794 × 10−5,−8.72733 × 10−2, 1.6774}.
Here, T orbit ≡ 2π/ω is the orbital period. Hui et al. [2017] use γ = 3

2
which includes the

effect of the centrifugal force owing to synchronous rotation of the satellite, assuming it to
be a rigid body. However, a solitonic core was found to form an irrotational Riemann-S
ellipsoid when subject to the tidal force. Therefore, for a solitonic core, γ in the tidal
potential should be between 1 (without self-rotation) and 3

2
(with uniform self-rotation

that equals the orbital angular velocity). The predicted mass loss rate (4.17) is verified
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numerically. At very early times, the core mass decreases more slowly than the prediction.
This can be attributed to the initial conditions. Initially the soliton was set up without
self-rotation. The proportionality coefficient in the tidal potential should thus be γ = 1
at the beginning. The core subsequently acquires angular momentum and starts to spin
up due to tidal torque, so γ approaches 3/2. It was found that the core becomes tidally
locked within one orbital period.

One important difference between FDM subhalo cores and rigid-body satellites is that
the solitonic core does not sustain uniform self-rotation. Du et al. [2018] found numerically
that an initially spherical solitonic core without self-rotation gradually spins up and forms
an irrotational Riemann-S ellipsoid in the tidal field of the host, comparable to final states
of binary mergers with non-zero angular momentum detailed above. The core is elongated
towards the host’s center, indicating that the core is tidally locked. However, unlike a rigid
body, the core does not rotate uniformly.

As the central density of the core decreases over time, the shape of the ellipsoid also
changes. Denoting the semiaxes of the core as a1, a2, and a3 (a1 ≥ a2 ≥ a3), the change
can be characterized by the eccentricities εij = [1 − (aj/ai)

2]1/2 of the ellipsoid. From
simulations it is found that ε12 ' ε13, implying that the core is approximately spheroidal.

Assuming constant densities ρh and ρsat for the host and satellite, it was found that the
ellipticity of an equilibrated, tidally locked, fluid satellite can be calculated analytically as
a function of its density ratio [Roche, 1850]

ρh/ρsat =
1− ε2

2ε3
[(

3− ε2
)

artanh ε− 3ε
]
. (4.18)

Since the satellite’s density inside the core radius does not change significantly, Du et al.
[2018] set ρh/ρsat = µ and calculated the expected ellipticity from Equation 4.18. They
numerically confirmed the approximate solution as long as the core stayed tidally locked.

The rotation of the core can be parameterized by the dimensionless spin parameter as
defined in Bullock et al. [2001] for DM halos

λ′ =
Lc√

2McV R
, (4.19)

where Lc is the core angular momentum with respect to its center, R ≡ (a1a2a3)1/3 is the
mean core radius, and V is the circular velocity at R. Since the core’s eccentricity increases
over time, in order for the core to stay tidally locked, the spin parameter has to increase
as well. Thus the core will slightly deviate from tidal locking until it obtains additional
angular momentum due to tidal torque and becomes tidally locked again. At late time,
angular momentum transfer from orbital motion to self-rotation of the satellite becomes
insufficient to maintain tidal locking. The core rotation lags behind its orbital frequency
and the core quickly becomes tidally disrupted.

Using (4.17), Du et al. [2018] estimate the survival time of satellite galaxies in the Milky
Way. Requiring satellites to survive Nsur orbits translates to a minimum core mass

Mc > 5.82× 108 [µmin(Nsur)]
1/4m

−3/2
22

(
D

kpc

)−3/4(
Mh

1012M�

)1/4

M� , (4.20)
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where D denotes the satellite’s distance to the center of the host. Assuming the satellite
to be disrupted when its core lost 90% of its mass and taking γ = 3/2 and Nsur = 10, Du
et al. [2018] find µmin = 74 which is slightly larger than estimated by Hui et al. [2017].
Taking γ = 1 and Nsur = 1, provides a more conservative constraint µmin = 8.4. Using
empirical data of Milky Way satellites from Wolf et al. [2010], Du et al. [2018] conclude the
lightest satellites close to the Galactic center will only survive for more than one orbital
time if the particle is as heavy as m22 ' 20.

4.6 Relativistic Axion Stars

Naively matching the soliton mass and radius in Equation 3.6 to the Schwarzschild radius

rs = 2GMs/c
2 (4.21)

of a black hole with mass Ms yields a mass scale M ∼ 1012M�/m22 above which FDM
solitons are so compact that they should form black holes [Seidel and Suen, 1990; Cotner,
2016]. This is roughly two orders of magnitude above the core masses expected from
Equation 3.8 even for the larges halos observed. Nonetheless, if FDM is made out of ultra
light axions, attractive self-interactions result in even more compact objects [Braaten et al.,
2016; Visinelli et al., 2018], that could potentially form BHs. In this regime relativistic
corrections have to be taken into account. A review on this more general class of boson
stars is given by Liebling and Palenzuela [2017].

The formation and stability of relativist axion stars subject to the standard instanton
potential

V (φ) = m2f 2
a [1− cos(φ/fa)] (4.22)

was investigated in Helfer et al. [2017] using spherically symmetric initial conditions based
on solutions for oscillatons in an m2φ2 potential, for which the full solutions in space and
time are known [Alcubierre et al., 2003; Ureña-López et al., 2002; Ureña-López, 2002]. In a
two parameter diagram spanned by initial ADM mass and axion decay constants fa, three
different regions around a triple point (M, f) ∼ (2.4M2

pl/m, 0.3Mpl) could be identified, in
which axion stars are either long-lived oscillating axion star solutions, collapse to BHs, or
disperse. BH formation was observed only for large enough initial masses M > 2.8M2

pl/m.
For the QCD axion, the typical BH mass formed from axion star collapse is therefore
MBH ∼ 3.4(fa/0.6Mpl)

1.2M�. A re-investigation of the phase diagram by Michel and
Moss [2018] revealed that boundaries between these region have a complicated diffuse
structure. The phase diagram was recovered in Proca star simulations involving vector
bosons [Sanchis-Gual et al., 2017].

The stability analysis of axion stars was extended to aspherical initial overdensities by
Widdicombe et al. [2018]. They are found to rapidly sphericalize and relax to a final state
of collapse that closely follows the known mass-radius relationship for different axion decay
constants fa. The final state is not fully relaxed as it still shows oscillating perturbations
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similar to the non-relativistic analogs found by Veltmaat et al. [2018]. Applying their
stability analysis to a toy model density field with large random fluctuations, Widdicombe
et al. [2018] show how field information can be utilized to predict the number densities
and masses of axion stars and BHs. They find a mass gap between both species and infer
on possible LIGO detection signals. Simulated collapses of overdense regions to compact
axion stars show a universal, self-similar behaviour [Levkov et al., 2017].

Binary mergers of two bound boson stars, similar to the non-relativistic case represented
above, and their corresponding gravitational wave signal were analyzed by Helfer et al.
[2018]; Palenzuela et al. [2017]; Baumann et al. [2018]; Bezares et al. [2017]. Comparable
simulations for Proca stars were undertaken by Sanchis-Gual et al. [2018]. In Eby et al.
[2017], collisions of axion stars with ordinary stars and neutron stars and the possible
subsequent collapse of the axion star were investigated. Recently, potential multi-messenger
signals from binary collisions of axion stars with BHs and neutron stars were studied by
Clough et al. [2018]; Dietrich et al. [2018].



76 4. Evolution of Solitonic Cores



Chapter 5

Gaussian Beam Method in Fuzzy
Dark Matter Simulations

This chapter summarizes preliminary results obtained by the author utilizing the GBM
presented in section 3.6. The ultimate goal is to use the GBM in FDM simulations as a
moderator between low-resolution, large-scale N-body methods in underdense regions well
approximated by CDM techniques and the highly resolved, overdense FDM filaments and
halos best evolved employing finite difference methods. Ideally, it can be used to extend
the classical wavefunction formulation already used in our hybrid simulation method as
published in Veltmaat et al. [2018].

The application of the GBM is thereby constrained to regions with intermediate den-
sities. On the one hand, if the density in voids becomes too low, the limited number of
beams per unit volume results in an under-sampling of the density field. Insufficient inter-
ference between beams then yields unphysical density profiles. In this regime, mass and
energy conservation cannot be ensured as both quantities will significantly increase. On
the other hand, as outlined in section 3.5, in highly overdense regions strong inharmonic
contributions to the gravitational potential result in the break down of the GBM especially
around the highly non-linear core region. The exact boundaries between these regimes are
yet to be determined. The presented results are to be extended upon completion of this
thesis. In all simulations we assumed m22 = 2.5.

5.1 Implementation of the Gaussian Beam Method

We implemented the GBM within the publicly available cosmology code Enzo [Bryan et al.,
2014]. The N-body particles were therefore promoted to Gaussian beams by adding at-
tributes S ′pqt, A0, Cpqt, Jt and γt to each particle. The new parameters are advanced in
time alongside the beam positions and velocities using a fourth-order Runge-Kutta (RK4)
algorithm. We added the real and imaginary part of ψ and the corresponding density ρ as
further baryonic fields.

In addition to the preexisting timestep criteria enforcing the CFL condition for the
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beams and the cosmological constraint that limits the timestep so that the simulated
universe only expands by some fractional amount, we require the change of the beam
phases to be at most a fraction κbeam of 2π:

∆tbeam,kin =min

(
κbeam

4π~′a2

p′2t

)
L

, (5.1)

∆tbeam,pot =min

(
κbeam

2π~′

V

)
L

, (5.2)

where the potential V is evaluated at the beam centers. As in Bryan et al. [2014] the
subscript L emphasizes that the minimum is taken over all beams on a given level L.
These criteria ensure stability and accuracy of the RK4 method.

A major obstacle in the implementation was an inconsistency in the AMR routines
in Enzo that needed to be fixed. Beams on the boundary between two AMR levels with
different resolution contribute to the density field of both levels. The density field on the
less resolved level is constructed first by interpolating beams from all levels yielding a
fully consistent density profile. Subsequently however, the density field on the finer level is
incorrectly constructed at the boundaries between levels. Initially, ghost cells are filled with
the interpolated density from the lower level. Then, beams from the finer level are added.
Thus, lower level particles overlapping with the finer level are not interpolated onto the
active region of the density field of the finer level. This results in smaller density values in
the active region of the finer levels at the boundary between two levels. Additionally, since
ghost cells on the finer level are first filled by interpolating the density field from the lower
level, which was constructed using also particles from the finer level, and then particles
from the finer level are added on top, particles from the finer level contribute twice within
the ghost zones of the finer level. This unphysically enhances density values in ghost cells.
Due to the cloud-in-cell method typically used for CDM N-body simulations, the error
is restricted to a single layer of cells directly at the boundary. It is therefore negligible.
This is not the case anymore within the GBM. Since Gaussian beams span over multiple
cells, the density field is incorrectly constructed in a significantly larger region around level
boundaries.

The problem could be fixed by interpolating beams from every grid to every other
grid independent of their respective levels. This also includes interpolation onto the ghost
cells overlapping with neighboring grids. Special care has to be taken since different grid
resolutions have to be considered. Unfortunately, this approach requires significantly more
communication between processors. This can potentially slow down the algorithm if a high
number of grids on many different resolution levels are used.

Additionally, employing large Gaussian shaped kernels for the construction of the real
and imaginary part of the wavefunction is computationally much more expensive than
the typically used cloud-in-cell method within the usual CDM N-body scheme. For the
spherical collapse presented below we therefore constructed the gravitational potential used
within the GBM from CDM N-body particles that were evolved alongside the Gaussian
beams. This approach re-introduces the inconsistent construction of the CDM density field
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at level boundaries which in turn leads to small discontinuities in the gravitational poten-
tial. Below we observe the break down of the GBM in highly resolved overdense regions.
It is unclear if this is due to non-negligible inharmonic behaviour in the gravitational po-
tential or its inconsistent reconstruction. In the future, the CDM density field should be
constructed with the routines already used for the interpolation of the Gaussian beams.
On the contrary, the employed RK4r algorithms with which the beams are evolved in time
do not conserve momentum resulting in a slight drift of simulated overdensities. The time
integration of the Gaussian beams should therefore be reformulated utilizing the leap frog
algorithm already used within Enzo for standard N-body particles.

5.2 Numerical Tests

We test our implementation of the GBM by analyzing the analytically calculable time
evolution of a Gaussian initial wavefunction

ψ0(x) =

(
2α

π

)d/4
exp[−α(x− x)2 + ip′(x− x)/~′] . (5.3)

The beams are initialized by a Monte Carlo sampling algorithm as described in Kluk et al.
[1986]. Starting from

(2π~′)−d/2 〈p0, q0, γ0, 0|ψ0〉A−1
0 exp[−iS ′0/~′] =[ √

αγ0

2π~′(α + γ0)

]d
exp

[
−
(

γ0α

α + γ0

(q0 − x)2 − (p′0 − p′)2

4(α + γ0)~′2

)]
(5.4)

with

A0 =

[
2(α + γ0)
√
αγ0

]d/2
S ′0 =

[
(p′0α + p′γ0)(q0 − x)

(α + γ0)

]
(5.5)

the right-hand side of Equation 5.4 can be cast into the normalized density

ρ(y, z) = (1/π)d exp[−(y2 + z2)] = (1/π)d exp[−r2] (5.6)

with

y =
√
γ0α/(α + γ0)(q0 − x) = r cos θ ,

z =(p′0 − p′)/
√

4(α + γ0)~′2 = r sin θ .

(5.7)
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Setting

η =θ/(2π) ,

ξ =2

∫ r

0

R exp[−R2]dR = 1− exp[−r2] (5.8)

or rather

r =
√
− ln(1− ξ) ,

θ =2πη , (5.9)

we see that y and z are distributed according to Equation 5.6 if η and ξ are distributed
uniformly between zero and one. We can thus initialize an ensemble of N beams by
drawing N pairs (ηi, ξi), setting up (p′0,i, q0,i) according to Equation 5.7 and Equation 5.9
and multiplying each beam by A0 exp[iS ′0/~′]/N .

In all test problems a = 1. We start with V = 0. The Gaussian wave packet
(Equation 5.3) then correctly moves linearly with velocity p′ while spreading with αt =
α0/(1+2i~′α0t). Being the ground state of an harmonic oscillator potential, we additionally
checked that the Gaussian wave packet stays constant for x = p′ = 0 and V = 2(~′αx)2.

In [Guzmán and Ureña-López, 2004] spherically symmetric, stationary solutions of the
SP system otherwise known as non-relativistic boson stars were investigated. Using di-
mensionless units in which ~′ = 4πG = 1, their radial amplitude is well fitted by [Schive
et al., 2014b]

ψbs(r) = ψc[1 + 0.091(r/rc)
2]−4 (5.10)

with ψc = λ2, rc = 1.308/λ, and arbitrary λ ∈ R+. This in turn can be approximated by
a Gaussian profile

ψG(r) = ψc exp[−αr2] (5.11)

with α = 0.18λ2. It was shown by Guzmán and Ureña-López [2004], that slightly perturbed
boson stars quickly settle into their equilibrium solution ψbs. We thus expect ψG to quickly
settle into ψbs with possibly varying λ. The collision of two unbound beams produces
the correct interference pattern [Schwabe et al., 2016]. Due to non-negligible inharmonic
contributions to the gravitational potential of the soliton, it is only stable for a limited time
before eventually dissolving, while mass and energy conservation are increasingly violated.
This shows the limitation of the approach to harmonic potentials.

5.3 WKB approximation

Assuming WKB initial data

ψ0(y) ' A0(q0) exp[i(S ′0(q0) + p′(q0)(y − q0))/~′] (5.12)
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with arbitrary reference point q0, the beam weights are given by Widrow and Kaiser [1993]

(2π~′)−d/2 〈p′0, q0, γ0, 0|ψ0〉

= det

(
2Re γ0

π

)1/4

A0 exp[iS ′0(q0)/~′]f(p′0|p′, σp′) (5.13)

with normal distribution

f(p′0|p′, σp′) = det

(
1

4π~′2Reγ0

)1/2

× exp
[
−(p′0 − p′)γ−1

0 (p′0 − p′)/(4~′2)
]
. (5.14)

Thus, the convolution of ψ0(y) with 〈y|p′0, q0, γ0, 0〉 localizes the wavefunction around q0

with standard deviation σq = 1/
√

2Reγ0 (cf. Equation 3.35) and around p′ with σp′ =
~′
√

2Reγ0. This ensures the uncertainty principle σqσp′ = ~′. Note that the usual factor of
one half enters when squaring the amplitude in order to obtain the density. Equation 5.13
can be obtained by taking the limit of α going to infinity in Equation 5.3.

Since γ0 is a free parameter, we can formally take it to be zero. In this limit, Equa-
tion 5.14 becomes a delta distribution δ(p′0 − p′(q0)). It can be used to get rid of the
momentum integral in Equation 3.38. Additionally, the term proportional to γ0 vanishes
in Equation 3.43. We thus only need to evolve half of the Jacobian matrix in Equation 3.45.

After time integration of each beam according to Equation 3.41-Equation 3.45, the final
wavefunction is recovered by summing over all N simulated beams

ψ(x, t) =
∑

beams

cpqt exp [i(s′pqt + p′t · (x− qt)/~′

− (x− qt)Tγt(x− qt)]θ(x− qt) , (5.15)

with

cpqt =
A0

π3/2N
det

[
γt
∂qt
∂q0

− 1

2i~′
∂p′t
∂q0

]1/2

(5.16)

and

s′pqt = S ′0 + S ′pqt . (5.17)

Here, θ denotes a truncation function. We truncate beams at θ = 4σq in all runs. Equa-
tion 5.15 corresponds to the integral operator defined in Equation 67 in Kay [1994] applied
to WKB initial wavefunctions.

5.4 Spherical Collapse

In order to test the suitability of the GBM in cosmological simulations, we simulated the
spherical collapse of an initial overdensity with Gaussian shaped radial profile proportional
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to the one given in Equation 5.3 with p′ = 0 in a cosmological setup. We therefore set the
central overdensity to δρc = 100, α = 6.4 × 103 relative to a box size of l = 1.2 Mpc/h at
redshift z = 4 and choose cosmological parameters as provided by Planck Collaboration
[2018]. In order to make the simulation less numerically expensive, we approximate the
gravitational potential from the CDM density generated by 107 standard N-body particles
as already implemented in Enzo. Equally many Gaussian beams are initialized with widths
γ0 = 0.25∆x, four times smaller than the root grid’s cell width ∆x. The N-body and GBM
were evolved on a 1283 root grid with up to five levels of adaptive refinement, while the
reference finite difference simulation was run on a 5123 grid. The initial overdensities for
all approaches match the analytic profile at least at the per mill level over five orders
of magnitude in density contrast. Slice plots through the central plains are shown in
Figure 5.1 at different redshifts for all three numerical methods. It can be seen that
initially the results obtained by the GBM and finite difference scheme correspond well to
each other. The collapse integrated with the GBM slightly lags behind the one from the
finite difference method as most visible in the phase evolution. The two methods start
to significantly deviate after the formation of a solitonic core in the center at z = 3.0.
This can be attributed either to the break down of the GBM itself in this regime or the
inconsistent gravitational potential — obtained from the CDM N-body density — used
within it. The evolution of the density field implied by the N-body approach immediately
starts to deviate.

As stated before, employing finite difference techniques on a uni-grid restricts one to
small box sizes. We therefore could only simulate overdensities that had already collapsed
to high central densities δρc = 100 indicating an already strongly non-linear regime. In
order to take full advantage of the GBM we subsequently simulated Gaussian overdensi-
ties with δρc = 1 and α = 1.6 × 103 relative to a box size of l = 20.0 Mpc/h at redshift
z = 100. The CDM density was sampled by 106 N-body particles and again generates the
gravitational potential for all employed methods. 107 Gaussian beams with γ0 = 0.25∆x
were initialized on a 2563 root grid with up to five levels of adaptive refinement. Addition-
ally, we initialized 106 normally distributed beams with zero initial momentum and phase
appropriately normalized to serve as initial conditions for the WKB approximated GBM
presented in section 5.3. They are evolved according to Equation 5.15 - Equation 5.17. As
before, initial overdensities for all approaches are sampled well enough in order to match
the analytic profile at least at the per mill level over five orders of magnitude in density
contrast.

Slice plots through the central plains of the overdensities at redshift z = 7 are shown in
Figure 5.2 for the different employed Lagrangian methods together with the corresponding
radial density profiles. They coincide well in the outer halo while strongly deviating in
the core region. Since we averaged over radial density shells, we expect the radial profiles
obtained by employing the GBMs to coincide with the N-body density profile by means
of the Schrödinger-Vlasov correspondence. It is interesting to see that the GBM with
WKB approximation fits the N-body profile significantly better than the standard GBM.
We emphasise again that the large deviations in the central halo region can be attributed
either to the break down of the GBM itself in this regime or the inconsistent gravitational
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Figure 5.1: Gravitational collapse of a spherical overdensity at different redshifts z =
{4.0; 3.5; 3.0; 2.0}. From top to bottom the density obtained from our (1st row) finite dif-
ference, (2nd row) Gaussian beam, and (3rd row) N-body scheme are shown together with
the evolution of the corresponding phase integrated within the (4th row) finite difference,
and (5th row) Gaussian beam method. It can be seen that the GBM and the finite dif-
ference scheme initially yield comparable results. The collapse integrated with the GBM
slightly lags behind the one from the finite difference method. The two methods start to
significantly deviate after the formation of a solitonic core in the center at z = 3.0. Density
scales are identical in all plots, while phases vary in the interval [−π, π].
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(a) N-body (nb) (b) standard GBM (gb)

(c) GBM with WBK approximation (gb wkb) (d) Corresponding radial density profiles

Figure 5.2: Shown are slice plots through the final density profiles after gravitational
collapse of a spherical overdensity evolved from redshift z = 100 to z = 7 with various
numerical methods as indicated by plot labels. The corresponding final radial density
profiles are also shown. They match well in the outer halo while strongly deviating in the
core region. Since we average over radial density shells, we expect the profiles obtained
by employing the GBMs to coincide with the N-body density profile by means of the
Schrödinger-Vlasov correspondence. It is interesting to see that the GBM with WKB
approximation fits the N-body profile significantly better than the standard GBM.
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Figure 5.3: Evolution of the complex phase during spherical collapse of a Gaussian over-
density with zero initial momentum at different redshifts z = {100, 50, 7}. Top panels show
results obtained by the standard GBM, while lower panels were produced with the WKB
approximated GBM. The similarity between both phases verifies the correct implemen-
tation of both methods and their suitability for the simulation of gravitational collapse.
Importantly, the phase is consistently reconstructed by both methods even though it is
badly resolved. This has to be contrasted with finite difference approaches needing highly
resolved phases. By construction, the initial phase within the WKB approximated GBM
is globally zero. Within the standard GBM this is only true in the central regions, where
beams overlap enough in order to reproduce the correct phase.

potential. The problem could be alleviated in future simulations by evolving the core region
on a highly resolved grid with a finite difference approach.

The evolution of the complex phase during the spherical collapse is shown in Figure 5.3
at different redshifts z = {100, 50, 7}. The similarity between the phases obtained by
the standard and WKB approximated GBM verifies the correct implementation of both
methods and their applicability for the simulation of gravitational collapse. Importantly,
the phase is consistently reconstructed by both methods even though it is badly resolved.
This has to be contrasted with finite difference approaches needing highly resolved phases.

The already promising results show the enormous potential the GBM has for large
cosmological simulations. The WBK approximated GBM is particularly well-suited for
those simulations as it is easier to implement and significantly less numerically expensive.
The standard approach should be to promote the original N-body particles to Gaussian
beams by adding the phase, initial amplitude, beam width and necessary Jacobian matrix
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elements.
On the one hand, since the number of beams per unit volume in underdense regions can

be low, their corresponding density profile can not be expected to be correctly modeled
by the limited sample of beams. On the other hand, in these linear regions we expect
the FDM and CDM densities to coincide well as velocity dispersion should be negligible.
The density on the root grid should thus be obtained by the standard N-body cloud-in-cell
techniques. On intermediate refinement levels the WKB approximated GBM can then
be employed, which can serve as a moderator between the CDM N-body approach and
finite difference techniques on the highest refinement levels. In this way, the strengths
of all three methods can be combined most effectively. Unfortunately, those cosmological
simulations are beyond the scope of this thesis. In the next section we restrict ourselves
to the successful implementation of cosmological initial conditions incorporating this new
hybrid approach.

5.5 Cosmological Simulation

Cosmological initial conditions appropriate for the WKB approximated GBM are con-
structed using AxionCAMB for an FDM transfer function T (k) [Hložek et al., 2015]. This is
then used as an input for MUSIC in order to sample the initial phase-space distribution at
redshift z = 300 within a cosmological box of comoving length l = 50.0 Mpc/h with 5123

N-body particles [Hahn and Abel, 2011]. Within Enzo, these particles are interpolated onto
Euclidian grids (ρ(q0), p′(q0)) with 5123 cells using a Gaussian shaped kernel with width
σq = ∆q0. In Figure 5.4, the power spectrum of ρ(q0) is compared to the input power
spectrum P (k) ∼ knsT (k)2. As in Veltmaat et al. [2018], the amplitude A0 of the initial
wavefunction

ψ0(q0) = A0(q0) exp[iS ′0(q0)/~′] (5.18)

is then obtained by taking the square root of the density ρ(q0). The initial phase S ′0(q0) is
reconstructed employing Enzo’s Poisson solver for integrating

∇2S ′0(q0) = ∇ · p′(q0) . (5.19)

Subsequently, we set up beams on each cell center q0 with initial momenta p′0(q0) = p′(q0),
phases S ′0(q0), amplitudes A0(q0), widths σq = ∆q0, and Jacobian elements (∂q0/∂q0 =
1 , ∂p′0/∂q0 = 0). The power spectrum of their corresponding density, reconstructed using
Equation 5.15, is also shown in Figure 5.4.

All spectra show the characteristic drop in power at the Jeans scale k ∼ 10 h/Mpc.
While the original spectrum exhibits large oscillations on small scales, they are smoothed
over during the construction of the beams due to the convolution with Gaussian kernels.
Since the overall shape is in good agreement, we do not consider this a problem.
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Figure 5.4: Initial power spectra at z = 300 as obtained from AxionCAMB (black) and
within Enzo after wavefunction construction from MUSIC generated phase-space sampling
(red) and after reconstruction from Gaussian beams (orange). See text for details.
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Chapter 6

Conclusion

Despite being an integral part of the standard model of cosmology, the precise particle na-
ture of dark matter is still unknown. Several well-motivated candidates have emerged over
the last couple of decades. Besides the traditional weakly interacting massive particle, orig-
inally motivated by the so-called WIMP miracle and arising naturally in supersymmetric
extensions of the standard model of particle physics, the QCD axion and axion-like particles
have gained increasing attention. In particular, some axions arising from string theories
are extremely light. Due to their non-thermal production mechanisms they are nonetheless
suitable cold dark matter candidates, if they populate a coherent state effectively represent
by a non-relativistic scalar field in a mean field approach. If non-gravitational interactions
are suppressed to a degree that renders them negligible for the dynamics of its density evo-
lution, it is commonly referred to as fuzzy dark matter. Its wave-like behaviour on scales
below the Jeans scale, formally comparable to the de Broglie wavelength in quantum me-
chanics, makes it phenomenologically distinguishable from standard pressureless cold dark
matter which does not exhibit such a scale. Within fuzzy dark matter cosmologies, gravita-
tional collapse is therefore counteracted and suppressed by the wave-like behaviour of this
dark matter candidate on small scales. This can potentially reduce the tension between
cold dark matter simulations and observations on galactic scales if particle masses as light
as m = 10−22 eV are considered. In contrast, lower bounds on the mass can be inferred
from their resulting degree of small-scale structure suppression that can be larger than
compatible with observations. Currently, fuzzy dark matter research thus concentrates on
constraining the boson mass as the single parameter of the theoretical model.

As small scales are the first to become non-linear, the most stringent mass constraints
coming, for example, from Lyα measurements, cannot be analytically derived. They in-
stead require dedicated simulations of non-linear structure formation ultimately including
baryonic physics as well. In recent years a growing numerical toolbox for such simulations
has been developed to which this thesis contributes.

First the author and his collaborators implemented a finite difference method within the
preexisting cosmology code Nyx in order to investigate binary mergers of solitonic cores.
While unbound binaries showed the expected solitonic behaviour, bound configurations
rapidly merged within a single dynamical time scale. The merger history of cores can thus
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be well modelled as a series of binary mergers. The mass of the emerging core was found
to dominantly depend on the two progenitor core masses. A simple description could be
numerically derived stating that the final core mass is the maximum of the larger progenitor
mass and the sum of both initial core masses scaled down by a fraction β = 0.7. Therefore,
while smooth accretion and minor mergers with very dissimilar progenitor masses do not
result in a mass increase of the heavier core, major mergers with comparable initial core
masses yield an increased final mass proportional to the sum of the progenitor masses.

Subsequently, this recipe was implemented into the semi-analytic code Galacticus.
It could be verified that the previously found core-halo mass relation can be viewed as a
direct consequence of our specified merger history.

Additionally, the author assisted in the investigation of tidal disruption of solitonic
cores in the gravitational field of their host halos employing a newly devised spectral code.
A fitting formula for the mass loss rate could be derived with which constraints on the
fuzzy dark matter mass could be derived via the longevity of Milky Way satellites.

Next, a hybrid cosmology code was implemented within the Enzo framework. It com-
bines the numerical efficiency of standard N-body codes in large underdense regions, where
fuzzy and cold dark matter densities are expected to approximately coincide, with the
accuracy of finite difference techniques in small overdense filament and halo regions, where
interference effects of fuzzy dark matter need to be precisely modelled. The boundary
between both regimes was constructed employing the classical wavefunction approach. For
the first time, the Schrödinger-Vlasov correspondence could be convincingly shown to hold
even in halos outside their core regions. Moreover, the granular interference pattern ob-
served within fuzzy dark matter halos was demonstrated to be unbound, leaving the core to
be the only long-living, gravitationally self-bound object within a halo. These results are
especially important for semi-analytical halo models and self-consistent halo constructions.

The employed classical wavefunction approach is only valid in the linear regime where
gradient energy, comparable to velocity dispersion in standard cold dark matter scenarios,
is sub-dominant with respect to gravitational energy. Thus, large regions outside the virial
radius of a considered halo have to be modelled with finite difference methods requiring
high resolutions in the entire domain in which they are applied in. Pushing the boundary
to higher densities increases the numerical error introduced by the classical wavefunction
approach.

It can be improved by extending it to the Gaussian beam method which correctly
evolves the fuzzy dark matter wavefunction even after shell-crossing as long as inharmonic
contributions to the underlying gravitational potential are negligible. The first promising
results obtained by implementing the Gaussian beam method in Enzo verify its applicability
in highly non-linear cosmic structure formation simulations. This includes a newly devised
Gaussian beam method based algorithm utilizing the WKB approximation appropriate
for cosmological initial conditions. It is particularly easy to implement in preexisting
cosmology code and is significantly less numerically expensive compared to the standard
Gaussian beam approach. Full cosmological fuzzy dark matter simulations employing this
new technique are beyond the scope of this thesis but will be undertaken by the author in
the near future.
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These simulations have the potential to further strengthen the constraints on the fuzzy
dark matter particle mass thus paving the way to the possible detection of sub-electronvolt
bosons.
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A. Nigl, O. Scholten, and K. Singh. LOFAR - A new experiment to record radio emis-
sion from cosmic particles. Nuclear Physics B - Proceedings Supplements, 196:289–292,
December 2009. doi: 10.1016/j.nuclphysbps.2009.09.055.

W. Hu, R. Barkana, and A. Gruzinov. Fuzzy Cold Dark Matter: The Wave Properties
of Ultralight Particles. Physical Review Letters, 85(6):1158–1161, August 2000. doi:
10.1103/physrevlett.85.1158.



106 BIBLIOGRAPHY

L. Hui and Z. Haiman. The Thermal Memory of Reionization History. The Astrophysical
Journal, 596(1):9–18, October 2003. doi: 10.1086/377229.

L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten. Ultralight scalars as cosmological dark
matter. Physical Review D, 95(4), February 2017. doi: 10.1103/physrevd.95.043541.

J.-C. Hwang and H. Noh. Axion as a Cold Dark Matter Candidate. Physics Letters B, 680
(1):1–3, September 2009. doi: 10.1016/j.physletb.2009.08.031.
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terdaeme, I. Pâris, P. Petitjean, M. M. Pieri, J. Rich, E. Rollinde, N. P. Ross, D. J.
Schlegel, D. P. Schneider, A. Slosar, and D. H. Weinberg. The one-dimensional Lyαforest
power spectrum from BOSS. Astronomy & Astrophysics, 559:A85, November 2013. doi:
10.1051/0004-6361/201322130.

C. Palenzuela, P. Pani, M. Bezares, V. Cardoso, L. Lehner, and S. Liebling. Gravita-
tional wave signatures of highly compact boson star binaries. Physical Review D, 96(10),
November 2017. doi: 10.1103/physrevd.96.104058.

A. Paredes and H. Michinel. Interference of dark matter solitons and galactic offsets.
Physics of the Dark Universe, 12:50–55, June 2016. doi: 10.1016/j.dark.2016.02.003.

R. D. Peccei and H. R. Quinn. CP Conservation in the Presence of Pseudoparticles. Physical
Review Letters, 38(25):1440–1443, June 1977. doi: 10.1103/physrevlett.38.1440.

R. Penrose and R. M. Floyd. Extraction of Rotational Energy from a Black Hole. Nature
Physical Science, 229(6):177–179, February 1971. doi: 10.1038/physci229177a0.

C. Péroux, R. G. McMahon, L. J. Storrie-Lombardi, and M. J. Irwin. The evolution of ΩHI
and the epoch of formation of damped Lyman α absorbers. Monthly Notices of the Royal
Astronomical Society, 346(4):1103–1115, December 2003. doi: 10.1111/j.1365-2966.2003.
07129.x.

Planck Collaboration. Planck2013 results. I. Overview of products and scientific results.
Astronomy & Astrophysics, 571:A1, October 2014. doi: 10.1051/0004-6361/201321529.

Planck Collaboration. Planck intermediate results. Astronomy & Astrophysics, 596:A108,
December 2016a. doi: 10.1051/0004-6361/201628897.

Planck Collaboration. Planck 2015 results. Astronomy & Astrophysics, 594:A11, September
2016b. doi: 10.1051/0004-6361/201526926.

Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv, July 2018.
1807.06209.



114 BIBLIOGRAPHY

J. C. Pober, Z. S. Ali, A. R. Parsons, M. McQuinn, J. E. Aguirre, G. Bernardi, R. F.
Bradley, C. L. Carilli, C. Cheng, D. R. DeBoer, M. R. Dexter, S. R. Furlanetto,
J. Grobbelaar, J. Horrell, D. C. Jacobs, P. J. Klima, S. A. Kohn, A. Liu, D. H. E.
MacMahon, M. Maree, A. Mesinger, D. F. Moore, N. Razavi-Ghods, I. I. Stefan, W. P.
Walbrugh, A. Walker, and H. Zheng. PAPER-64 Constraints On Reionization II: The
Temperature Of The z=8.4 Intergalactic Medium. The Astrophysical Journal, 809(1):
62, August 2015. doi: 10.1088/0004-637x/809/1/62.

A. Pontzen and F. Governato. Cold dark matter heats up. Nature, 506:171–178, February
2014. doi: 10.1038/nature12953.

A. Pontzen, F. Governato, M. Pettini, C. M. Booth, G. Stinson, J. Wadsley, A. Brooks,
T. Quinn, and M. Haehnelt. Damped Lyman α systems in galaxy formation sim-
ulations. Monthly Notices of the Royal Astronomical Society, October 2008. doi:
10.1111/j.1365-2966.2008.13782.x.

M. M. Popov. A new method of computation of wave fields using Gaussian beams. Wave
Motion, 4(1):85–97, January 1982. doi: 10.1016/0165-2125(82)90016-6.

N. K. Porayko and K. A. Postnov. Constraints on ultralight scalar dark matter from pulsar
timing. Physical Review D, 90(6), September 2014. doi: 10.1103/physrevd.90.062008.

W. H. Press and P. Schechter. Formation of Galaxies and Clusters of Galaxies by Self-
Similar Gravitational Condensation. The Astrophysical Journal, 187:425, February 1974.
doi: 10.1086/152650.

W. H. Press, B. S. Ryden, and D. N. Spergel. Single mechanism for generating large-scale
structure and providing dark missing matter. Physical Review Letters, 64(10):1084–1087,
March 1990. doi: 10.1103/physrevlett.64.1084.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York,
NY, USA, 3 edition, 2007. ISBN 0521880688, 9780521880688.

J. R. Pritchard and S. R. Furlanetto. Descending from on high: Lyman-series cascades and
spin-kinetic temperature coupling in the 21-cm line. Monthly Notices of the Royal Astro-
nomical Society, 367(3):1057–1066, April 2006. doi: 10.1111/j.1365-2966.2006.10028.x.

J. R. Pritchard and A. Loeb. 21 cm cosmology in the 21st century. Reports on Progress
in Physics, 75(8):086901, July 2012. doi: 10.1088/0034-4885/75/8/086901.

J. Ralston. Gaussian beams and the propagation of singularities. MAA Studies in Mathe-
matics, 23:206–248, 1982.

J. I. Read and D. Erkal. Abundance matching with the mean star formation rate: there is
no missing satellites problem in the Milky Way. arXiv, July 2018.



BIBLIOGRAPHY 115

M. J. Rees and J. P. Ostriker. Cooling, dynamics and fragmentation of massive gas clouds:
clues to the masses and radii of galaxies and clusters. Monthly Notices of the Royal
Astronomical Society, 179(4):541–559, August 1977. doi: 10.1093/mnras/179.4.541.

R. M. Rich, D. B. Reitzel, C. D. Howard, and H. S. Zhao. The Bulge Radial Velocity
Assay: Techniques and a Rotation Curve. The Astrophysical Journal, 658(1):L29–L32,
March 2007. doi: 10.1086/513509.

T. Richardson and M. Fairbairn. On the dark matter profile in Sculptor: breaking the β
degeneracy with Virial shape parameters. Monthly Notices of the Royal Astronomical
Society, 441(2):1584–1600, May 2014. doi: 10.1093/mnras/stu691.

T. Rindler-Daller and P. R. Shapiro. Vortices and Angular Momentum in Bose-Einstein-
Condensed Cold Dark Matter Halos. arXiv, December 2009. 0912.2897.

T. Rindler-Daller and P. R. Shapiro. Angular momentum and vortex formation in Bose-
Einstein-condensed cold dark matter haloes. Monthly Notices of the Royal Astronomical
Society, 422(1):135–161, March 2012. doi: 10.1111/j.1365-2966.2012.20588.x.

T. Rindler-Daller and P. R. Shapiro. Finding New Signature Effects on Galactic Dynamics
to Constrain Bose–Einstein-Condensed Cold Dark Matter. In Astrophysics and Space
Science Proceedings, pages 163–182. Springer International Publishing, November 2013.
doi: 10.1007/978-3-319-02063-1 12.

T. Rindler-Daller and P. R. Shapiro. Complex scalar field dark matter on galactic
scales. Modern Physics Letters A, 29(02):1430002, January 2014. doi: 10.1142/
s021773231430002x.

B. E. Robertson, S. R. Furlanetto, E. Schneider, S.Charlot, R. S. Ellis, D. P. Stark, R. J.
McLure, J. S. Dunlop, A. Koekemoer, M. A. Schenker, M. Ouchi, Y. Ono, E. Curtis-
Lake, A. B. Rogers, R. A. A. Bowler, and M. Cirasuolo. New Constraints on Cosmic
Reionization from the 2012 Hubble Ultra Deep Field Campaign. The Astrophysical
Journal, 768(1):71, April 2013. doi: 10.1088/0004-637x/768/1/71.

B. E. Robertson, R. S. Ellis, S. R. Furlanetto, and J. S. Dunlop. Cosmic Reionization
and Early Star-forming Galaxies: A Joint Analysis of New Constraints from Planck and
the Hubble Space Telescope. The Astrophysical Journal, 802(2):L19, April 2015. doi:
10.1088/2041-8205/802/2/l19.
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E. Tollet, A. V. Macciò, A. A. Dutton, G. S. Stinson, L. Wang, C. Penzo, T. A. Gutcke,
T. Buck, X. Kang, C. Brook, A. Di Cintio, B. W. Keller, and J. Wadsley. NIHAO –
IV: core creation and destruction in dark matter density profiles across cosmic time.
Monthly Notices of the Royal Astronomical Society, 456(4):3542–3552, January 2016.
doi: 10.1093/mnras/stv2856.



120 BIBLIOGRAPHY

C. J. Trahan and R. E. Wyatt. Quantum Dynamics with Trajectories: Introduction to
Quantum Hydrodynamics. Interdisciplinary Applied Mathematics. Springer New York,
2005. ISBN 9780387229645.

M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Norman.
yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The Astrophysical
Journal Supplement Series, 192(1):9, December 2010. doi: 10.1088/0067-0049/192/1/9.

M. S. Turner. Coherent scalar-field oscillations in an expanding universe. Physical Review
D, 28(6):1243–1247, September 1983. doi: 10.1103/physrevd.28.1243.

C. Uhlemann. Finding closure: approximating Vlasov-Poisson using finitely generated
cumulants. arXiv, July 2018. 1807.07274.

C. Uhlemann, M. Kopp, and T. Haugg. Schrödinger method as N-body double and UV
completion of dust. Physical Review D, 90(2), July 2014. doi: 10.1103/physrevd.90.
023517.

W. G. Unruh. Second quantization in the Kerr metric. Physical Review D, 10(10):3194–
3205, November 1974. doi: 10.1103/physrevd.10.3194.
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M. G. Walker and J. Peñarrubia. A Method for Measuring (Slopes of) the Mass Profiles of
Dwarf Spheroidal Galaxies. The Astrophysical Journal, 742(1):20, November 2011. doi:
10.1088/0004-637x/742/1/20.

M. G. Walker, M. Mateo, E. W. Olszewski, O. Y. Gnedin, X. Wang, B. Sen, and
M. Woodroofe. Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. The
Astrophysical Journal, 667(1):L53–L56, September 2007. doi: 10.1086/521998.

M. G. Walker, M. Mateo, and E. W. Olszewski. Stellar Velocities in the Carina, Fornax,
Sculptor and Sextans dSph Galaxies: Data from the Magellan/MMFS Survey. The
Astronomical Journal, 137(2):3100–3108, January 2009. doi: 10.1088/0004-6256/137/2/
3100.

R. L. Webster. Results from the MWA EoR Experiment. Proceedings of the International
Astronomical Union, 12(S333):77–82, October 2017. doi: 10.1017/s1743921318000893.

S. Weinberg. Gravitation and cosmology: principles and applications of the general theory
of relativity. Wiley, 1972. ISBN 9780471925675.

A. R. Wetzel, P. F. Hopkins, J.-H. Kim, C.-A. Faucher-Gigure, D. Keres, and E. Quataert.
Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating a Realistic Population
of Satellites around a Milky Waymass Galaxy. The Astrophysical Journal Letters, 827
(2):L23, August 2016.



122 BIBLIOGRAPHY

J. Y. Widdicombe, T. Helfer, D. J. E. Marsh, and E. A. Lim. Formation of Relativistic
Axion Stars. arXiv, June 2018. 1806.09367.

L. M. Widrow and N. Kaiser. Using the Schroedinger Equation to Simulate Collisionless
Matter. The Astrophysical Journal, 416:L71, October 1993. doi: 10.1086/187073.

WiggleZ Collaboration. The WiggleZ Dark Energy Survey: Final data release and cosmo-
logical results. Physical Review D, 86(10), November 2012. doi: 10.1103/physrevd.86.
103518.

E. Witten. Some properties of O(32) superstrings. Physics Letters B, 149(4-5):351–356,
December 1984. doi: 10.1016/0370-2693(84)90422-2.

WMAP Collaboration. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208
(2):20, September 2013. doi: 10.1088/0067-0049/208/2/20.

J. Wolf, G. D. Martinez, J. S. Bullock, M. Kaplinghat, M. Geha, R. R. Muñoz, J. D.
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