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Introduction

According to the inflationary paradigm, the Universe experimented an early stage of acceler-

ated expansion. Inflation can explain why our Universe is flat and homogeneous at large scales.

More importantly, it provides a natural mechanism for structure formation: the accelerated

expansion generates an almost scale-invariant spectrum of scalar fluctuations, which eventually

become seeds for matter accretion, and allow the formation of galaxies and clusters. Infla-

tion also produces tensor perturbations (gravitational waves), which remain for the moment

undetected. The inflationary paradigm is one of the cornerstones of modern cosmology.

The particle physics realization of inflation is, however, unknown. In the simplest scenarios,

inflation is sustained by the slow-roll motion of a scalar field called the inflaton. The existence

of such field is hypothetical, and an explanation of its origin usually requires physics beyond

the Standard Model (SM). Many extensions of the SM provide different inflaton candidates,

which can sustain the accelerated expansion, and are compatible with results from Cosmic

Microwave Background experiments.

In this thesis we focus on the period following immediately after inflation. The inflationary

epoch dilutes any matter that might have previously existed. As a result, the energetic budget

of the Universe when inflation ends is dominated by the inflaton, which is typically in the

form of a condensate. This is very different to the Universe in which we live. Hence, inflation

must be followed by a process of reheating: an energy transfer from the inflationary sector to

Standard Model species. Reheating constitutes, this way, the link between inflation and the

onset of the hot Big Bang theory.

A full understanding of reheating is complicated, because details depend a lot on the as-

sumed particle physics model at high energies. It usually proceeds through a series of different

stages, the first one of them being preheating: an explosive, out-of-equilibrium production of

particles due to non-perturbative effects. An example of preheating mechanism is parametric
resonance, which occurs when the inflationary potential is monomial after inflation. In this case,

the inflaton oscillates around the minimum of its potential, and in each oscillation, particles

coupled to it are excited due to adiabaticity violation. This stage is normally followed by a

process of perturbative reheating, in which the inflaton decays perturbatively. Finally, all particle

species thermalize at a certain temperature.
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This general picture is similar in many reheating scenarios, but details are still unknown.

For example, the form of the inflationary potential or the inflaton couplings to other species

can only be specified within the context of a particle-physics model. Fortunately, the second

decade of the 21st century has witnessed two important breakthroughs, which might help us

understand better the physics of the early Universe: the discovery of the Higgs boson, and the

first direct detection of gravitational waves.

The Standard Model Higgs was detected for the first time in 2012, in the Large Hadron

Collider at CERN. The Higgs was the last missing particle of the Standard Model, and it could

be, so far, the only fundamental scalar field ever discovered in nature. Scalar fields might

play an essential role in cosmology, such as in inflation. Consequently, this has prompted the

development of Higgs Cosmology: the research on the implications of the Higgs field in the

physics of the early Universe.

Afterwards, the LIGO collaboration detected in 2015, for the first time, the gravitational

wave signal from the collision of two Black Holes, which has been followed by additional

detections from other colliding astrophysical binaries. Gravitational waves (GW) are ripples of

spacetime which propagate at the speed of light. The Universe is expected to be permeated

by various GW backgrounds of cosmological origin, and non-equilibrium phenomena after

inflation constitute a powerful source. Each process generates a particular GW spectrum, with

its own distinct features. If these backgrounds were detected, we could probe particle physics

scenarios inaccessible otherwise.

In this thesis we study various aspects of the out-of-equilibrium dynamics of the Universe

after inflation. With an extensive use of analytical and numerical techniques, we reexamine

the process of preheating after inflation, as well as study some of their implications for Higgs
Cosmology and primordial production of gravitational waves. The aim of this thesis is threefold:

• First, we want to improve our knowledge of preheating in the early universe. Previous

analysis in the literature have usually been focused on specific high-energy physics

models, and specific couplings between the inflationary sector and the preheated particles.

In this thesis we carry out a systematic parametrization of parametric resonance in the

case of quartic and quadratic potentials, for a wide range of particle couplings. We will

capture the full non-linear dynamics of the process with classical lattice simulations,

from the initial resonant excitation until the later non-linear regime. We will also study

parametric resonance when the oscillating field is energetically subdominant.

• Second, we want to understand better the role that the Standard Model might have played

in the early Universe, and in particular, after inflation. We will work in scenarios where

the Higgs is not the inflaton. The Higgs typically forms a condensate when inflation

ends, which decays afterwards into the SM gauge bosons and fermions. Our aim is to

study this process in detail, by fully parametrizing the postinflationary dynamics of the
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Higgs field and its decay products. For this, we will use lattice techniques extensively,

modelling the Higgs-gauge interactions with different degrees of complexity. We will also

study the effects of a non-minimal Higgs-curvature coupling in the Higgs postinflationary

dynamics, and its implications for vacuum stability after inflation.

• Third, we want to connect preheating to our currently most promising observable: grav-

itational waves. During preheating, various peaks form in the GW spectrum, with a

frequency and amplitude dictated by the coupling constants in the involved theory. We

want to provide parametrizations for the gravitational wave spectra generated during

preheating in certain models. This could be useful to interpret results from future gravita-

tional wave observatories. As we shall see, the decay of the Higgs field after inflation also

produces a GW background, which we also study.

This thesis is structured in one introductory chapter, six chapters based on results (divided

in two parts), and one concluding chapter. In Chapter 1 we review the theoretical framework

in which the thesis is based. Part I of our research results (chapters 2 and 3) is focused on

preheating. In Chapter 2 we provide a fitting analysis of parametric resonance through all

its different stages, based on lattice simulations in 3+1 dimensions. In Chapter 3 we expand

the previous lattice simulations to study GW production during preheating, and compute the

amplitude and frequency of the GW backgrounds today. Part II (chapters 4 to 7) is focused on

the non-perturbative, out-of-equilibrium dynamics of the Standard Model after inflation. In

Chapter 4 we study the post-inflationary decay of the Higgs condensate into gauge bosons after

inflation, using lattice simulations of global and Abelian-Higgs models. We characterize in

detail the evolution of the Higgs and its decay products, and provide a master formula for the

Higgs decay time as a function of all unknowns. In Chapter 5 we study the gravitational waves

produced during the Higgs decay with lattice simulations, and provide a full parametrization of

the GW spectra. In Chapter 6 we extend the previous work to include explicitly the SU(2)×U(1)

gauge structure of the SM in the lattice, and quantify the effect of the non-Abelian interactions

in the Higgs post-inflationary dynamics. In Chapter 7 we study the post-inflationary dynamics

of the Standard Model Higgs, when it is coupled to the scalar curvature. We also study the

implications of such term for vacuum stability after inflation. Finally, in Chapter 8 we will

summarize the main findings of our thesis, as well as present future research avenues. The

thesis is also complemented with two appendices of technical nature. In Appendix A we

provide a complete lattice formulation of scalar and gauge theories in an expanding universe.

Finally, in Appendix B we consider the case of non-perturbative excitation of fermionic species.



Introducción

De acuerdo con el paradigma inflacionario, el Universo experimentó una etapa temprana de

expansión acelerada. Inflación podría explicar por qué nuestro universo es plano y homogéneo

a grandes escalas. Aún más importante, proporciona un mecanismo natural de formación de

estructura: la expansión acelerada genera un espectro de fluctuaciones escalares casi-invariante

de escala, que con el tiempo acumulan materia, y permiten la formación de galaxias y cúmulos.

Inflación también produce perturbaciones tensoriales (ondas gravitacionales), que de momento

no han sido detectadas. El paradigma inflacionario es, sin duda, una de las piedras angulares

de la cosmología moderna.

Sin embargo, desconocemos cuál es el mecanismo concreto que genera inflación a altas

energías. En los escenarios más simples, la inflación es sostenida por un campo escalar llamado

inflatón. La existencia de dicho campo es hipotética, y para explicar su origen, se require

normalmente física más allá del Modelo Estándar (ME). Muchas extensiones del ME proponen

distintos candidatos para el inflatón, que podrían mantener la expansión acelerada durante el

tiempo necesario, y que son compatibles con los resultados experimentales del Fondo Cósmico

de Microondas.

En esta tesis nos centrarnos en lo que ocurre inmediatamente después de inflación. La época

inflacionaria diluye cualquier materia que pudiera haber existido previamente. Por lo tanto, al

terminar inflación, la energía del Universo está dominada por el inflatón, que normalmente

forma un condensado. Por lo tanto, a continuación debe haber un proceso de recalentamiento:

una transferencia de energía del sector inflacionario a las distintas especies del Modelo Estándar.

El recalentamiento constituye, de esta manera, la conexión entre la inflación y el Big Bang

caliente.

Es difícil alcanzar un entendimiento completo del proceso de recalentamiento, porque los

detalles dependen en gran medida del modelo de física de partículas a altas energías. Por

lo general, se pueden distinguir varias fases. La primera de ellas es el precalentamiento: una

producción explosiva de partículas fuera de equilibrio, debida a efectos no perturbativos. Un

ejemplo de mecanismo de precalentamiento es resonancia paramétrica, que tiene lugar cuando

el potencial inflacionario después de inflación es monomial. En este caso, el inflatón oscila

alrededor del mínimo de su potencial, y en cada oscilación, las partículas a las que está acoplado

4
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se excitan debido a efectos de resonancia. Esta etapa va normalmente seguida por un proceso

de recalentamiento perturbativo. Finalmente, todas las partículas termalizan a cierta temperatura.

Esta descripción es similar en muchos escenarios de recalentamiento, pero los detalles del

proceso son desconocidos. Por ejemplo, la forma del potencial inflacionario, o los acoplamientos

de inflatón a otras especies, sólo pueden hallarse en el contexto de un modelo de física de

partículas. Afortunadamente, la segunda década del siglo XXI ha sido testigo de dos avances

importantes, que podrían ayudarnos a comprender mejor la física del Universo primitivo: el

descubrimiento del bosón de Higgs y la primera detección directa de ondas gravitacionales.

El Higgs del Modelo Estándar fue detectado por primera vez en 2012, en el Gran Coli-

sionador de Hadrones del CERN. El Higgs, una partícula escalar, ha sido la última partícula

del Modelo Estándar en ser descubierta. Creemos que los campos escalares podrían haber

desempeñado un papel importante en cosmología, como en inflación. En consecuencia, ésto

ha impulsado el desarrollo de Higgs Cosmology: la investigación sobre las implicaciones del

campo de Higgs en la física del Universo primitivo.

Posteriormente, la colaboración LIGO detectó en 2015, por primera vez, una señal de ondas

gravitacionales (OG) proveniente de la colisión de dos agujeros negros, que ha sido seguida

por otras detecciones posteriores. Las OG son ondas del espacio-tiempo que se propagan a la

velocidad de la luz. Creemos que el Universo está impregnado de diversos fondos de OG de

origen cosmológico, y los procesos fuera del equilibrio después de inflación son, precisamente,

una fuente poderosa de éstos. Cada proceso genera un espectro de ondas gravitacionales

específico, con unas características particulares que se pueden parametrizar. Si se detectaran

estos fondos, podríamos explorar rangos de energía inaccesibles actualmente.

En esta tesis estudiamos varios procesos fuera del equilibrio después de inflación. Usando

técnicas analíticas y numéricas, reexaminaremos el proceso de precalentamiento después

de inflación, y estudiaremos algunas de sus implicaciones en Higgs Cosmology y producción

primordial de ondas gravitacionales. Los objetivos de la tesis son tres:

• En primer lugar, como hemos dicho, queremos mejorar nuestro conocimiento del preca-

lentamiento en el universo primordial. La mayor parte de análisis previos se han centrado,

generalmente, en modelos concretos y acoplamientos específicos entre el sector infla-

cionario y las partículas precalentadas. En esta tesis llevamos a cabo una parametrización

sistemática del proceso de resonancia paramétrica, en el caso de potenciales cuártico y

cuadrático, para una amplio rango de acoplamientos. Capturaremos completamente la

dinámica no lineal del proceso con simulaciones lattice, desde el regimen linear inicial

hasta el régimen estacionario final. También estudiaremos resonancia paramétrica cuando

los campos oscilantes son energéticamente subdominantes.
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• En segundo lugar, queremos comprender mejor el papel que el Modelo Estándar podría

haber desempeñado en el Universo primitivo y, en particular, después de inflación. Nos

centraremos en escenarios donde el Higgs no es el inflatón. Cuándo termina inflación, el

Higgs forma normalmente un condensado, y a continuación se desintegra en bosones

gauge y fermiones. Nuestro objetivo es estudiar este proceso en detalle, parametrizando

por completo la dinámica postinflacionaria del Higgs y sus productos de desintegración.

Para ésto, usaremos técnicas lattice, modelando las interacciones Higgs-gauge de distintas

maneras. También estudiaremos los efectos de un acoplamiento Higgs-curvatura en la

dinámica postinflacionaria del Higgs, así cómo sus implicaciones para la estabilidad del

vacío.

• En tercer lugar, queremos conectar el precalentamiento con nuestro observable más

prometedor: las ondas gravitacionales. Durante el precalentamiento, se forman varios

picos en el espectro de ondas gravitacionales, con una frecuencia y amplitud dictadas por

las constantes de acoplamiento. Queremos proporcionar parametrizaciones para el fondo

de ondas gravitacionales generado durante el precalentamiento en ciertos modelos. Esto

podría ser útil para interpretar resultados de futuros detectores de ondas gravitacionales.

Como veremos, la desintegración del campo de Higgs después de inflación también

produce un fondo de ondas gravitacionales, que también estudiaremos.

Esta tesis se estructura en un capítulo introductorio, seis capítulos de resultados (divididos

en dos partes) y un capítulo final. En el Capítulo 1 revisamos el marco teórico en el que se

basa la tesis. La Parte I de los resultados de nuestra investigación (capítulos 2 y 3) se centra en

el precalentamiento. En el Capítulo 2 proporcionamos un análisis del proceso de resonancia

paramétrica a través de todas sus diferentes etapas (crecimiento lineal inicial, evolución no

lineal y relajación hacia el equilibrio), basada en simulaciones lattice en 3+1 dimensiones. En

el Capítulo 3 extendemos las simulaciones lattice anteriores para estudiar la producción de

ondas gravitacionales durante el precalentamiento, y calculamos su amplitud y frecuencia

en la actualidad. La Parte II (capítulos 4 a 7) se centra en la dinámica no perturbativa y

fuera de equilibrio del Modelo Estándar después de inflación. En el Capítulo 4 estudiamos

la desintegración postinflacionaria del condensado de Higgs en bosones gauge después de

inflación, utilizando simulaciones lattice. Caracterizaremos en detalle la evolución del Higgs

y sus productos de desintegración, y obtenemos una fórmula maestra para el tiempo de

desintegración de Higgs en función de todas la circunstancias y parámetros. En el Capítulo

5 estudiamos las ondas gravitacionales producidas durante la desintegración de Higgs con

simulaciones lattice, y proporcionamos una parametrización completa de los espectros de ondas

gravitacionales. En el Capítulo 6, ampliamos el trabajo anterior para incluir explícitamente

la estructura gauge SU(2)×U(1) del Modelo Estándar en la lattice, y cuantificamos el efecto

de los términos de interacción no abelianos. En el Capítulo 7 estudiamos la dinámica post-

inflacionaria del Modelo Estándar, en presencia de un acoplamiento no mínimo del Higgs a
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la curvatura. También estudiamos las implicaciones de dicho término para la estabilidad del

vacío después de inflación. Finalmente, en el Capítulo 8 resumimos los principales hallazgos

de nuestra investigación, así como presentamos posibles extensiones de nuestro trabajo. La

tesis también incluye dos apéndices de naturaleza técnica. En el Apéndice A proporcionamos

una formulación lattice completa de teorías escalares y gauge en un Universo en expansión.

Finalmente, en el Apéndice B estudiamos el caso de excitación no perturbativa de fermiones.



Chapter 1.

Theoretical framework

1.1. Matter and spacetime

In this chapter we review some key aspects of cosmology and particle physics, which are

necessary for the development of this thesis. In particular, we review the Friedmann equations,

as well as basic aspects of background inflationary cosmology.

In the theory of General Relativity, matter and energy determine the local geometry of

spacetime. This relation is dictated by the Einstein field equations,

Rµν −
1
2

Rgµν + Λgµν = 8πGTµν , (1.1)

where gµν is the spacetime metric, Rµν is the Ricci curvature tensor, R is the Ricci scalar, G and

Λ are the gravitational and cosmological constants respectively, and Tµν is the stress-energy

tensor. Note that the gravitational constant is usually written in terms of the full Planck mass,

MP ≡ G−1, or the reduced Planck mass, mP ≡ (8πG)−1.

According to the Cosmological Principle, the Universe at large scales is homogeneous and

isotropic. This is in agreement with observations of the Cosmic Microwave Background (CMB)

and Large Scale Structure (LSS). The only 4-dimensional spacetime metric gµν compatible with

these two properties is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, which can

be written in polar coordinates [xµ = (t, r, θ, φ)] as

ds2 ≡ gµνdxµdxν = −dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
. (1.2)

Here, a(t) is the scale factor describing the time-evolution of the spatial slices, and k =

−1,+0,+1 is the spatial curvature. In the k = 0 case, the FLRW metric can be written in

cartesian coordinates simply as ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). On the other hand,

compatibility with the cosmological principle requires the following perfect-fluid form for the

8



Theoretical framework 9

stress-energy tensor,

Tµν = (ρ + p)uµuν + pgµν , (1.3)

where ρ is the energy density of the fluid, p is the pressure, and uµ is the 4-velocity (with

uµuµ = −1). By substituting Eqs. (1.2)-(1.3) into (1.1), we find the first and second Friedmann

equations,

(
ȧ
a

)2

=
8πG

3
ρ +

Λ
3
− k

a2 , (1.4)

ä
a

= −4πG
3

(ρ + 3p) +
Λ
3

, (1.5)

where ˙ = d/dt. We also define the Hubble parameter as H(t) ≡ ȧ/a. By combining ap-

propriately the two Friedmann equations, the following energy-conservation constraint is

found,

ρ̇ + 3
ȧ
a
(p + ρ) = 0 . (1.6)

The Friedmann equations describe how the scale factor of the Universe evolves with time

as a function of the energy density and pressure. The content of the Universe can successfully

be modelled, for most of its history, as a sum of different perfect fluids with constant equation

of state w ≡ p/ρ. In particular, during different expansion epochs, the energy density of our

Universe has been dominated by either radiation (RD, w = 1/3) or matter (MD, w = 0). The

cosmological constant term can also be interpreted as coming from a fluid with w = −1. In

each of these regimes, the time-evolution of the scale factor is different,

MD : w = 0 ⇒ a(t) ∝ t1/2 ,

RD : w = 1/3 ⇒ a(t) ∝ t2/3 ,

ΛD : w = −1 ⇒ a(t) ∝ eHt . (1.7)

Note also that, for a generic constant equation of state w with w > −1, we have a(t) ∝ t
2

3(1+w) . It

is useful to define the following density parameters for radiation, matter, cosmological constant,

and curvature,

ΩR ≡
8πG
3H2 ρR , ΩM ≡

8πG
3H2 ρM , ΩΛ ≡

Λ
3H2 , ΩK ≡ −

k
H2a2 . (1.8)

With these definitions, the first Friedmann equation (1.4) can be rewritten as

H2(a) = H2
0

(
Ω(0)

R

( a0

a

)4
+ Ω(0)

M

( a0

a

)3
+ Ω(0)

K

( a0

a

)2
+ Ω(0)

Λ

)
, (1.9)
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where the (0) superindex indicates the values of the density parameters today, and H0 is the

current Hubble parameter, which according to the measurements of the Planck experiment [8],

it is constrained as H0 = (67.8± 0.9)km s−1 Mpc−1. Observations of the Cosmic Microwave

Background indicate that we live in a flat Universe with |Ω(0)
K | < 0.005, formed by a combi-

nation of a cosmological constant with Ω(0)
Λ ≈ 0.7, and matter with Ω(0)

M ≈ 0.3, as well as a

small fraction of radiation Ω(0)
R ∼ 10−4 [9]. However, due to the different dilution rates in (1.9),

these ratios changed in the past: there was a period of radiation-domination in the very early

Universe, followed by a later stage of matter-domination. It is also convenient to define a new

parameter as Ω ≡ ΩR + ΩM + ΩΛ. With this, Eq. (1.9) simply becomes

Ω− 1 = Ωk . (1.10)

From here, we work out that Ω > 1 implies an open Universe (k < 0), Ω < 1 implies a closed

Universe (k > 0), and Ω = 1 implies a flat Universe (k = 0).

The Einstein field equations (1.1) can be obtained from the minimization of the Einstein-

Hilbert action with respect the metric gµν. This action is written as the sum of two contributions,

S ≡ Sg + Sm where Sg is the gravitational part, and Sm is the matter part. They are defined as

Sg =
1

16πG

∫
d4x
√
−g(R− 2Λ) , Sm ≡

∫
d4x
√
−gLm , (1.11)

where g is the determinant of the metric, and Lm is the matter Lagrangian. From the condition

δS/δgµν = 0 we recover the Einstein equations (1.1), with the stress-energy tensor defined as

Tµν ≡ 2√−g
δ(
√−gLm)

δgµν
. (1.12)

In this thesis, we will describe the content of the Universe as a sum of different interacting

matter fields. We will typically consider different combinations of real scalar fields (which we

denote generically as χ), complex scalar fields (ϕ), Abelian gauge fields (Aµ), and non-Abelian

gauge fields (Ba
µ). The typical Lagrangians we will consider are of the form [10]

−Lm =
1
2

∂µχ∂µχ +
1
2
(Dµ ϕ)†(Dµ ϕ) +

1
4

FµνFµν +
1
4

Ga
µνGµν

a + V(|ϕ|, χ) , (1.13)

where Fµν and Ga
µν are the Abelian and non-Abelian field strengths respectively, and Dµ is the

gauge covariant derivative. They are defined in terms of components as

Fµν ≡ ∂µ Aν − ∂ν Aµ , (1.14)

Ga
µν ≡ Ga

µνTa , Ga
µν ≡ ∂µBa

ν − ∂νBa
µ +

g2

2
f abcBb

µBc
ν ,

(Dµ)ij ≡ δij
(
∂µ − i(g1 /2)Aµ

)
− i(g2 /2)Ba

µ(σa)ij . (1.15)
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Here, g1 and g2 are the Abelian and non-Abelian gauge couplings respectively, and Ta ≡ σa/2

are the generators of the SU(2) group, where σa (a = 1, 2, 3) are the Pauli matrices obeying

[σa, σb] = i fabcσc with fabc = 2εabc. This Lagrangian is invariant under local transformations of

the SU(2)×U(1) group. The Lagrangian includes a potential V = V(χ, |ϕ|), containing all the

interactions and self-interactions of the different real and complex scalar fields. The equations

of motion are simply obtained from the minimization of Eq. (1.13) with respect the different

field variables. These are

χ̈− 1
a2 ∂i∂iχ + 3

ȧ
a

χ̇ = −∂V
∂χ

, (1.16)

ϕ̈− 1
a2 DiDi ϕ + 3

ȧ
a

ϕ̇ = − ∂V
∂ϕ† , (1.17)

∂0F0ν −
1
a2 ∂iFiν + (1− α)

ȧ
a

F0ν =
g1

2
Im[ϕ†(Dν ϕ)] , (1.18)

(D0)ab(G0ν)
b − 1

a2 (Di)ab(Giν)
b +

ȧ
a
(G0ν)

b =
g2

2
Im[ϕ†σa(Dν ϕ)]. (1.19)

In practice, we will typically solve self-consistently these equations in cubic lattices of

different sizes. In particular, in Appendix A we present an equivalent action to the one of

Eq. (1.13), written in this case in a discrete spacetime. The action is written in Eq. (A.55), and

its minimization yields the discrete equations of motion (A.68)-(A.71), which are the ones we

solve in the lattice. Note also that we have not included fermion spieces in action (1.13): we

will briefly consider them in Appendix B.

1.2. Inflation

The theoretical framework reviewed in the previous section constitutes an important part of the

hot Big Bang theory, which successfully describes the evolution of the Universe from the first

fraction of a second till today. Its validity is sustained on three observational evidences. The

first one is the expansion of space, as confirmed by the redshift of distant galaxies. The second

is the existence of the cosmic microwave background (CMB), which is a relic radiation coming

from the recombination epoch, when electrons and protons formed the first bound hydrogen

atoms. The third one is the observed abundance of primordial elements, which agrees with the

predictions of Big Bang nucleosynthesis (BBN). According to this theory, the scale factor has

evolved, during nearly the whole cosmic history, as a power law a(t) ∝ tn, where n = 1
2 , 2

3 for

the RD and MD stages respectively.

However, the hot Big Bang theory possesses several shortcomings or problems of theoretical

nature, related with the initial conditions of the Universe. The most important one is the

horizon problem, which is associated to the observed homogeneity and isotropy of the Universe.
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For example, cosmological observations have confirmed that the CMB is very homogeneous,

with very small anisotropies of the order ∆T/T0 ≈ 10−5, with T0 ≈ 2.726K the average

temperature [11]. Another example is the distribution of galaxies in the Universe, which is also

homogeneous at large scales.

Homogeneity could be explained if all the regions of our visible universe were causally

connected in the past. This can be characterized in terms of the Hubble comoving radius,

defined as H−1 ≡ (aH)−1: causal connection requires the Hubble comoving radius to be a

decreasing function with time. However, this is not possible for the power-law expansions

considered above: for a scale factor evolving as a ∼ tn, we find that H ∼ (1/n)tn−1, which

grows with time for both n = 1
2 , 2

3 . This seems to be in contradiction with the observed

uniformity of the CMB.

Another important shortcoming of the hot Big Bang theory is the flatness problem. From

cosmological observations, we know that our Universe is approximately flat at present time,

i.e. |Ωk| � 1. However, when the scale factor is a power-law function with time, the solution

|Ωk| = 0 is a point of unstable equilibrium in the Friedmann equations, Eq. (1.9). Compatibility

with observations requires then the extreme fine-tuning Ωk ≈ 10−16 at the time of BBN, and

even a smaller value at earlier times [9].

Inflation was introduced originally by Alan Guth in the 1980s to overcome the shortcomings

of the hot Big Bang theory, and it was immediately extended by others [12, 13, 14, 15]. As noted

by Guth, all shortcomings could be solved if the Universe went through a stage of accelerated

expansion in the past, defined as ä > 0. The key point is that, unlike in a power-law expansion,

in this case the Hubble comoving radius decreases with time,

d2a
dt2 > 0 ⇐⇒ d

dt
H−1 < 0 . (1.20)

We can compute a simple estimate of the required number e-folds of inflation to solve the

horizon problem. For this, let us denote the scale factor and Hubble rates at the onset of

inflation with the subindex ’i’. Similarly, let us also indicate the same quantities evaluated

at the end of inflation with the subindex ’f’, and evaluated today with the subindex ’0’. We

require then that (a0H0)−1 < (ai Hi)
−1. Let us assume for simplicity, that the Universe expands

exponentially during inflation, so that a = aieHit and Hi = H f . Let us also assume that the

Universe expands as RD after inflation. In this case, we find

(a0H0)−1

(ai Hi)−1 =
(a0H0)−1

(a f H f )−1

(a f H f )
−1

(ai Hi)−1 =
a0

a f

ai

a f
=

Tf

T0

ai

a f
' 1029

(
ai

a f

)
, (1.21)

where in second equality we have used that H0/H f ∝ (a0/a f )
−2 and Hi = H f , in the third

equality we have used a ∝ T−1, and in the last equality we have used Tf ∼ 1016GeV for
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definiteness. Then, we require

a f

ai
> 1029 =⇒ N ≡ log

(
a f

ai

)
≈ 67 , (1.22)

where N is the number of e-folds of inflation. Hence, an early phase of accelerated expansion

that lasts ∼70 e-folds could explain the homogeneity of the Universe. One can also prove that

during an accelerated expansion ä > 0, the solution |Ωk| � 1 becomes, instead an attractor

solutions of the Friedmann equations. This could also explain the observed flatness of the

Universe.

Compelling evidence supports the idea of an inflationary phase in the early Universe [16].

However, the specific particle physics realization of inflation is uncertain. In many scenarios,

inflation can be sustained by the slow-roll motion of a scalar field φ, denoted as inflaton, as

long as the form of its potential V(φ) obeys certain conditions, as we shall explain below. The

action of such field is written as

S = −
∫ √

−gd4x
(

1
2

∂µφ∂µφ + V(φ)

)
. (1.23)

The inflaton stress-energy tensor is, from Eq. (1.12),

Tµν = ∂µφ∂νφ−
(

1
2

∂αφ∂αφ

)
gµν . (1.24)

The inflaton EOM is obtained by minimizing action (1.23) with respect φ, while the time-

evolution of the scale factor is obtained from the Friedmann equation (1.4). These are

φ̈−∇2φ + 3Hφ̇ = −dV(φ)

dφ
, (1.25)

H2(t) =
8πG

3

(
1
2

φ̇2 +
1
2
(∇φ)2 + V(φ)

)
. (1.26)

On the other hand, the energy density ρφ and pressure pφ of the inflaton are, from Eq. (1.12),

ρφ ≡ T00 =
1
2

φ̇2 +
1
2
(∇φ)2 + V(φ) , (1.27)

pφ ≡ 1
3 ∑

i
Ti

i =
1
2

φ̇2 − 1
6
(∇φ)2 −V(φ) . (1.28)

As commented, in order to explain the initial conditions of the hot Big Bang theory, we

need to achieve an accelerated expansion of the Universe, defined as ä > 0. By inspecting the

Friedmann Eq. (1.5), we see that this is achieved if

ρφ + 3pφ < 0 ⇐⇒ ωφ ≡
pφ

ρφ
< −1

3
, (1.29)
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where ωφ is the effective equation of state of the inflaton. From the expressions of ρφ and pφ,

we observe that if the inflaton satisfies the conditions φ̇2 � |∇φ|2, |V(φ)|, then pφ ≈ −ρφ and

wφ ≈ −1, and an accelerated expansion is achieved. As we want to explain the homogeneity

and isotropy of the Universe, we will assume a homogeneous inflaton φ ≡ φ(t). Hence, the

first condition for successful inflation is simply written as

φ̇2 � |V(φ)| . (1.30)

Before moving on, let us derive a useful relation between the time-derivatives of the inflaton

and the Hubble parameter. If we differentiate Eq. (1.26) with respect time, we get

2HḢ =
8πG

3
φ̇

(
φ̈ +

dV
dφ

)
, (1.31)

and substituting Eq. (1.25) into the right hand side of this expression, we obtain

Ḣ = −4πGφ̇2 . (1.32)

We have seen in Eq. (1.22) that inflation must last during at least N ∼ 70 e-folds, in order

to solve the horizon problem of the hot Big Bang theory. The inflaton must obey then the

condition (1.30) during all that time, and for this to happen, it must not accelerate much during

inflation. From the inflaton EOM (1.25), this second condition can be written as (′ ≡ d/dφ)

|φ̈| � 3H|φ̇|, V ′(φ) . (1.33)

Conditions (1.30) and (1.33) are written in terms of the slow-roll parameters ε and η as

ε ≡ 3φ̇2

2V(φ)
� 1 , η ≡ − φ̈

Hφ̇
� 1 . (1.34)

If these conditions are obeyed, we say that the scalar field is in a slow-roll regime. In this regime,

the field and Friedmann equations, Eqs. (1.25) and (1.26), are written as

H2 ' 8πG
3

V(φ) , (1.35)

φ̇ ' −V ′(φ)
3H

, (1.36)

By substituting Eq. (1.35) into (1.36), we can find an expression for the inflaton EOM of the

form φ̇ = φ̇(φ),

φ̇ ' − V ′(φ)√
24πGV(φ)

, (1.37)
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where we have removed the explicit dependence on H. Finally, the solution for the scale factor

in this regime corresponds to a quasi-de Sitter spacetime,

a(t) ' aie
∫ t

ti
H(φ)dt′ . (1.38)

Slow-roll conditions (1.30) and (1.33) are guaranteed if the potential function obeys the

following relations,

εV ≡
m2

p

2

(
V ′(φ)
V(φ)

)2

� 1 , ηV ≡ m2
p

(
V ′′(φ)
V(φ)

)
� 1 , (1.39)

where εV and ηV are two new slow-roll parameters, defined in this case in terms of the potential.

We can prove that in the slow-roll regime, the new parameters are related with the old ones with

the identities εV ' ε and η ' ηV − εV . The first expression can be easily proven by substituting

Eq. (1.36) into the definition of ε, given in Eq. (1.34). To prove the second expression, let us first

differentiate Eq. (1.36) with respect time

φ̈ ' −V ′′(φ)
3H

φ̇ +
V ′(φ)Ḣ

3H2 = −V ′′(φ)
3H

φ̇− 4πG
V ′(φ)φ̇2

3H2 , (1.40)

where in the second equality, we have used (1.32). We have then, for η,

η ≡ − φ̈

Hφ̇
' V ′(φ)

3H2 + 4πG
V ′(φ)φ̇

9H3 ≡ 1
8πG

(
V ′′(φ)
V(φ)

− 1
2

V ′(φ)2

V(φ)2

)
= ηV − εV , (1.41)

where in the second equality we have used Eq. (1.40), and in the third equality, we have used

Eqs. (1.35) and (1.36).

Note that the scale factor can be equivalently expressed in terms of the number of e-folds

N (t) as a(t) ≡ aieN (t). By differentiating this expression with respect time, we find

H(t) ≡ ȧ
a
=

dN
dt

. (1.42)

We can then write the number of e-folds as a function of εV(φ) as

N (t) ≡
∫ t

ti

dt′H(t′) =
∫ φ(t)

φ(ti)

H
φ̇

dφ '
√

8πG
∫ φ(t)

φ(ti)

dφ√
2εV(φ)

, (1.43)

where in the third equality, we have used that εV ' ε ' 4πGφ̇2/H2. As obtained in Eq. (1.22),

we need at least N ≈ 70 e-folds to solve the initial condition shortcomings of the hot Big Bang

theory.

Many particle-physics models exist, that provide a potential function V(φ) such that

conditions (1.39) are fulfilled. For an extensive review on inflationary models, see e.g. Ref. [17].
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A paradigmatic example are models of chaotic inflation, in which the potential has a monomial

shape of the type

V(φ) =
1
n

λM4−nφn , (1.44)

with λ a dimensionless parameter, M a mass scale, and n ≥ 1. In particular, for n = 2, 4,

V(φ) =


1
4 λφ4, λ ≈ 9× 10−14

1
2 m2φ2, m ≈ 6× 10−6mp

, (1.45)

where the strengths of the λ and m parameters are fixed observationally by the measured

amplitude of the observed CMB anisotropies. For these kind of potentials, the slow-roll

parameters are, from Eq. (1.39),

εV(φ) =
n2

2

(
mp

φ

)2

, ηV(φ) = n(n− 1)
(

mp

φ

)2

. (1.46)

Hence, in these models, inflation is sustained for field values greater than the Planck mass,

φ� mp, for which the slow-roll parameters are εV , ηV � 1.

Inflaton ends when the slow-roll parameters become approximately of order unity, ε(t f ) ≈
1. In the case of the chaotic models of Eq. (1.45), this happens when φ ∼ mp. As inflation dilutes

all matter previously present, the inflaton dominates the energetic budget of the Universe at

this time. Hence, inflation must be followed by a process of reheating, in which the energy of

the inflationary sector must be transferred to Standard Model species, which will eventually

thermalize and provide the initial conditions for the hot Big Bang era. The first part of

reheating usually consists in a out-of-equilibrium, non-perturbative production of particles

called preheating. In the next Chapter, we will analyze preheating for the chaotic inflationary

models presented in Eq. (1.45).



Part I.

Fitting analysis of preheating
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Chapter 2.

Parametric resonance in the early
universe: a fitting analysis

Particle production via parametric resonance in the early Universe, is a non-perturbative,

non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever

a new scenario exhibits parametric resonance, a full re-analysis is normally required. To

avoid this tedious task, many works present often only a simplified linear treatment of the

problem. In order to surpass this circumstance in the future, we provide a fitting analysis of

parametric resonance through all its relevant stages: initial linear growth, non-linear evolution,

and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1

dimensions, we parametrize the dynamics’ outcome scanning over the relevant ingredients:

role of the oscillatory field, particle coupling strength, initial conditions, and background

expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of

the oscillatory field, and propose a more appropriate definition of this scale based on the

subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle

energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios,

where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory

field can be e.g. a curvaton.

Results presented in this Chapter have been published in Ref. [3].

2.1. Introduction

In this chapter we consider inflaton potentials with simple monomial shapes. This gives rise to

a relevant particle creation phenomena in the early universe: parametric resonance. This is

the case of chaotic inflation models, like the ones of Eq. (1.45), where the inflaton rolls down a

monomial potential during the whole inflationary period. Although these scenarios are under

tension with cosmological data [16], the simple addition of a small non-minimal gravitational

18
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coupling could reconcile them with the observations [18]. Some scenarios which fit perfectly

well the observational data, e.g. Higgs-Inflation [19, 20] and Starobinsky inflation [13], also

exhibit a monomial potential with a single minimum, but only during the stages following

inflation.

In all the scenarios we consider, soon after the end of inflation, the inflaton is in the form

of a homogeneous condensate, and starts oscillating around the minimum of its potential.

Each time the inflaton crosses zero, all particle species coupled to the inflaton are created

in energetic bursts. In the case of bosonic species, the production of particles is resonant,

and the energy transferred grows exponentially within few oscillations of the inflaton [21, 22,

23, 24, 25, 26, 27, 28]. In the case of fermionic species, there is also a significant transfer of

energy [29, 30, 31, 32, 33, 34], but Pauli blocking prevents resonance from developing. The

production of particles in this way, either of fermions or bosons, represents the archetypical

example of what is meant by an initial ’preheating’ stage of reheating. For recent reviews on

parametric resonance and preheating mechanisms in general, see [35, 36].

Inflationary preheating is, however, not the only case where parametric resonance takes

place in the early Universe. If a light spectator field is present during inflation, this field

forms a homogeneous condensate during the inflationary period, and oscillates around the

minimum of its potential afterwards. This is the case e.g. of the curvaton scenario [37, 38, 39, 40].

The curvaton may decay after inflation via parametric resonance, transferring abruptly all its

energy to the particle species coupled to it [41, 42, 43, 44]. Another example of a spectator

field, naturally decaying through parametric resonance after inflation, is the SM Higgs field.

In this chapter, we will consider the case of a curvaton with quadratic potential, while the

post-inflationary decay of the SM Higgs will be studied in more detail in Chapters 4 and 6.

In this thesis, we will often refer to the oscillatory field as the mother field, and to the

created species as the daughter fields. Particle production of daughter fields via parametric

resonance, corresponds to a non-perturbative effect, which cannot be captured by perturbative

coupling expansions, not even if the couplings involved are small [25]. During the initial

stage of parametric resonance, the system is linear, and analytical methods can be applied.

As the particle production is exponential for bosonic species, the daughter field(s) eventually

’backreact’ onto the mother field, making the system non-linear. In order to fully capture

the non-linearities of the system, we need to study this phenomenon in the lattice. The

approach of classical field theory real-time lattice simulations can be considered valid as long

as the occupation number of the different species is much larger than one, and hence their

quantum nature can be ignored [45, 46]. Lattice simulations have been successfully carried

out for different preheating scenarios during the last years (see e.g. [35, 36] and references

therein), but each time a new scenario exhibits parametric resonance, a new analysis is often

required. Moreover, lattice simulations are computationally expensive and time consuming,

and not everybody has the expertise on the appropriate numerical packages [47, 48, 49, 50, 51].
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Consequently, many studies often resort to over-simplified analytical analysis, which capture

only the initial linear stage.

In this chapter, we present a systematic study of parametric resonance, fitting the dynamics

through all the relevant stages, from the initial linear growth till the relaxation towards equilib-

rium, passing through an intermediate non-linear stage. We have used massively parallelized

lattice simulations to characterize the dynamics of parametric resonance through all its stages.

We have parametrized the dynamics by scanning over the relevant circumstances and parame-

ters: role of the oscillating field, particle coupling, initial conditions, and background rate of

expansion. We have obtained in this way, for the first time, simple fits to the most significant

quantities, like the characteristic time scales and energy fractions of the different particle species.

Our fitted formulas can be applied to the study of parametric resonance in scenarios where

the mother field dominates the energy budget of the universe (i.e. preheating), or in scenarios

where the mother field represents only a sub-dominant component (e.g. inflationary spectator

fields).

This chapter is structured as follows. In Section 2.2 we describe in more detail the scenarios

in which parametric resonance takes place and introduce some notation. We present in Section

2.3 and 2.4 the results from lattice simulations for preheating with quartic and quadratic

potentials respectively. I also show, for each case, analytical estimations for the time decay of

the mother field. In Section 2.5 we present the analogous lattice study for scenarios where the

mother field represents only a sub-dominant energy component of the Universe. Finally, in

Section 2.6 we summarize our results and conclude.

2.2. Parametric resonance: general description

In this section we describe the general features of parametric resonance, as well as introduce

some notation, which will be useful for the rest of the thesis. Let us denote the oscillating

mother field as φ, and the daughter field as X. In this thesis, we will consider scenarios where

the potential Vinf(φ) of the mother field is monomial. In particular, we consider

V(φ, χ) = Vinf(φ) +
1
2

g2φ2X2 , Vinf(φ) =
1
n

λM4−nφn , (2.1)

where λ is a dimensionless coefficient, M is some mass scale, g2 is a dimensionless coupling

constant, and n = 2, 4, 6 . . . . Here, we have assumed that the mother and the daughter fields

are coupled with a quadratic interaction term g2φ2X2. This interaction has been often assumed

in the context of preheating, and has two important advantages. First, it does not lead to a tree

level decay of the mother field into the daughter species, so all the transfer of energy from φ

into X will be due only to the non-perturbative effects characteristic of parametric resonance.
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And second, this choice is particularly convenient when the theory is simulated in the lattice,

since any other form of interaction would require the introduction of a new mass scale.

We will study the particular cases of quartic potential (n = 4) and quadratic potential

(n = 2) in Sections 2.3 and 2.4 respectively. For each case, we will first study their properties in

the initial linear regime, and then present results from lattice simulations, which fully capture

all the non-linearities of the system. However, we will treat first the case of arbitrary power-law

potentials, so that we can explain the general features of parametric resonance and introduce

notation.

By substituting Eq. (2.1) into (1.16), we find the following equations of motion (EOM),

φ̈− 1
a2∇

2φ + 3Hφ̇ + g2X2φ +
dVinf(φ)

dφ
= 0 , (2.2)

Ẍ− 1
a2∇

2X + 3HẊ + g2φ2X = 0 , (2.3)

where ˙ = d/dt with t cosmic time, and H ≡ ȧ/a is the Hubble rate. Let us assume for the

moment that φ corresponds to an inflaton, and that Eqs. (2.2) and (2.3) describe parametric

resonance during preheating after inflation. Inflation homogeneizes the Universe, as well as

dilutes the number density of other matter that could have previously existed. Hence, we can

safely consider φ as homogeneous initially, and we can forget about the gradient term a−2∇2φ

in the EOM. Backreaction effects are also initially negligible, so we can ignore the interaction

term g2X2φ. The solution for φ under the previous circumstances admits an oscillatory solution

as [52]

φ(t) ≈ Φ(t)F(t) , Φ(t) ≡ φi

(
t
ti

)−2/n

, (2.4)

with Φ(t) a decreasing amplitude from some initial time ti, and F(t) an oscillatory function. The

time ti corresponds to the onset of the oscillatory regime, defined as the time when the effective

mass of the inflaton becomes larger than the Hubble rate. From Eq. (2.3), it is characterized by

the relation

H(ti) =
1

φ(ti)

dVinf

dφ
(ti) . (2.5)

The details of Φ(t) and F(t) depend, of course, on the specific choice of potential. In fact, F(t)
is not periodic (except for n = 2), but the frequency of oscillations changes only relatively

slowly in time as

Ωosc ≡

√
d2Vinf

dφ2 ≡ ω∗

(
t
ti

)1−2/n

, ω∗ ≡
√

λM2−n/2φ
(n/2−1)
i . (2.6)
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We can therefore use the initial field amplitude φi and angular frequency ω∗, to define natural

field and space-time variables as

~x → ~y ≡ ω∗~x , t→ z ≡ ω∗τ , τ ≡
∫ dt

a(t)
, (2.7)

φ→ ϕ ≡ a(t)
φ

φi
, X → Xc ≡ a(t)X ,

which, with the exception of Xc, are all dimensionless. The EOM of the Xc field can be written,

from Eq. (2.3), as

d2Xc

dz2 +
(

qϕ2 −∇2
y

)
Xc =

1
a

d2a
dz2 Xc , (2.8)

where q is the so-called resonance parameter, defined as

q ≡ g2φ2
i

ω2
∗

. (2.9)

Note that for certain potentials, the definition for the resonance parameter conventionally

includes a numerical factor of ∼ O(1) multiplying the dimensionless ratio in Eq. (2.9). This

is the case, for example, of the quadratic potential Vinf(φ) = m2φ2/2, which we consider in

detail in Section 2.4. In this case, the resonance parameter is usually defined as q ≡ g2φ2
i /4m2,

introducing the extra factor 1/4 to match the definition in the Mathieu equation, see Eq. (2.44).

For the quartic potential V(φ) = λφ4/4, studied in Section 2.3, Eq. (2.9) gives q = g2/λ,

matching exactly the resonance parameter definition in the Lamé equation, see Eq. (2.17). Of

course, this is purely conventional, and what really matters is just the dimensionless ratio

∝ g2(φi/ω∗)2 captured in Eq. (2.9).

In most of the relevant situations in the early Universe where parametric resonance takes

place, the field Xc is considered to be a quantum field, initially in vacuum. The scalar field Xc

can be promoted into a quantum operator by means of the standard quantization procedure

Xc(x, t) ≡ a(t)X(x, t) =
∫ dk

(2π)3 e−ik·x
[

âkX(c)
k (t) + â†

−kX(c)
k

∗
(t)
]

, (2.10)

where the creation/annihilation operator satisfies the canonical commutation relations

[âk, â†
k′ ] = (2π)3 δ(3)(k− k′), (2.11)

with other commutators vanishing. The (initial) vacuum state is defined as usual as âk|0〉 = 0.

From Eq. (2.8) we obtain the EOM for the latter as

d2

dz2 X(c)
k +

(
κ2 + qϕ2)X(c)

k ' 0 , κ ≡ k
ω∗

, (2.12)
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where we have discarded a term ∝ 1
a

d2a
dz2 in this equation, as it is negligible at sub-horizon scales

κ2 � 1
a (

da
dz )

2 ∼ 1
a

d2a
dz2 . Given the oscillatory nature of ϕ, Eq. (2.12) can exhibit unstable solutions

of the type X(c)
k ∼ eµq(κ)z, with µq(κ) some complex exponent. For certain values of {q, κ},

Re[µκ] > 0, causing an exponential growth of the given field mode amplitude. It is precisely

this unstable behavior, occurring only within finite-momenta resonance bands with Re[µκ] > 0,

that we call parametric resonance.

In this chapter we consider two circumstances in which parametric resonance can be

realized: i) when the mother field dominates the energy budget of the Universe, and ii) when

the mother field is only a sub-dominant energy component of the Universe.

i) Inflaton Preheating. In this case we identify the mother field with the field responsible

for inflation, the inflaton. In particular, we will consider chaotic inflation models with

quartic and quadratic potentials. Short after inflation ends, the Hubble rate just becomes

smaller than the inflaton mass. As the inflaton has a very large vacuum expectation value

(VEV), the inflaton amplitude starts then oscillating around the minimum of its potential.

This induces a strong creation of all particles coupled to it, if the coupling strength is

sufficiently large. The creation of these particles represents possibly the most important

particle creation stage in the history of the Universe: as the inflaton and its decay products

are the dominant energy component of the Universe, this stage represent the creation of

(most of) the matter in the universe. This adds an extra difficulty, as the time-evolution of

the scale factor must be obtained by solving self-consistently the field EOM together with

the Friedmann equations.

ii) Inflationary Spectator Fields. In this second type of scenarios, we consider the mother

field to be just a spectator field during inflation, hence representing a very subdominant

component of the energy budget. However, this does not prevent the amplitude of

these fields to be rather large at the end of inflation (though not as large, in principle,

as in single field chaotic inflation scenarios). When inflation ends and the Hubble rate

becomes smaller than the effective mass of the spectator field, the amplitude of the

field starts oscillating around the minimum of its potential. The expansion rate of the

universe after inflation is determined by the inflationary sector, which we will not model

explicitly. The most obvious case of a spectator-field is a curvaton, which is normally

described with a quadratic potential1 of the type V(φ) = 1
2 m2φ2 in the context of a RD

background [37, 38, 39]. We will restrict our numerical analysis to this case (Section 2.5),

taking m as a free parameter varied over a certain range.

Before moving on, let us remember that another relevant case of a spectator-field (with

quartic ∝ φ4 potential) is the Standard Model (SM) Higgs in the weak coupling limit [54, 55, 56],

1Other polynomial potentials have been considered, but the realization of the curvaton mechanism
seems much more contrived in those cases [53].
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which also undergoes a regime of parametric resonance after inflation. We will extensively

study the properties of the Higgs decay in Part II of this thesis.

2.3. Preheating with quartic potential

2.3.1. Analysis in the linear regime

Let us consider the case of a massless self-interacting inflaton with potential

Vinf(φ) =
1
4

λφ4 , (2.13)

coupled to another scalar field X through the interaction term g2φ2X2. In the case of chaotic

inflation, we have λ ≈ 10−13 , while the strength of the coupling g2 is in principle arbitrary.

However, in order not to spoil inflation, radiative corrections in the effective inflaton potential

must be under control. This sets the constraint g . 10−3 [17].

When φ� mp, the inflationary potential is in a slow-roll regime: the inflaton slowly rolls

down its potential, and its potential energy drives the inflationary expansion. However, when

φ ∼ mp, the inflaton starts oscillating around the minimum of its potential, and preheating

starts. In the previous section, we defined the time ti as the onset of the oscillatory regime,

when the condition (2.5) is obeyed. In our case, this translates to the condition H(ti) =
√

λφ(ti).

Imposing the slow-roll condition to the field φ at very early times, and solving numerically

Eqs. (1.25) and (1.26) in a self-consistent way, we find that at time t = ti, the amplitude and

time-derivative of the inflaton are

φ(ti) ≡ φi ' 3.05mp , φ̇(ti) ' −3.54
√

λm2
p . (2.14)

It is convenient to write the system in terms of dimensionless variables, in a similar fashion

as in Eq. (2.7). From Eq. (2.6), the natural oscillation frequency is ω∗ ≡
√

λφi. Hence, let us

define the following new set of natural field and spacetime variables,

ϕ ≡ a
φi

φ , χ ≡ a
φi

X , z ≡
√

λφi

∫ t

ti

dt′

a(t′)
, ~y ≡

√
λφi~x . (2.15)

In these variables, the equation for the inflaton and daughter fields, Eqs. (2.2) and (2.3), are

written as

ϕ′′ − a′′

a
ϕ−∇2

y ϕ +
(

ϕ2 + qχ2) ϕ = 0 , χ′′ − a′′

a
χ−∇2

yχ + qϕ2χ = 0 , (2.16)
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where ′ ≡ d/dz, ∇y is the laplacian in terms of spacetime dimensionless variables, and q is the

resonance parameter, defined as

q ≡ g2

λ
. (2.17)

As explained in the previous section, we can take the inflaton as homogeneous at initial

times, as well as ignore the interaction term in the mother field equation. The EOM of the

homogeneous part of ϕ reduces in this case to

ϕ′′ + ϕ3 =
a′′

a
ϕ . (2.18)

In the quartic model, the energy density of the inflaton scales (after averaging over oscillations)

as in a RD background with ρφ ∝ 1/a4 [52], so the scale factor behaves as a ∝
√

t ∝ z. In this

case, the term on the rhs of Eq. (2.18) simply vanishes, a′′/a = 0. The solution of Eq. (2.18),

with initial conditions ϕ(0) = 1 and ϕ′(0) = 0, is the Elliptic function

ϕ(z) = cn(z; 1/2) . (2.19)

On the other hand, the equation for the Fourier modes of the field χ becomes

χ′′k +
(
κ2 + qϕ(z)2) χk = 0 , κ ≡ k√

λϕi
, (2.20)

where we have conveniently defined a dimensionless momentum κ. Given the behavior of

ϕ(z) in Eq. (2.19), Eq. (2.20) corresponds to the Lamé equation. This equation has a well-known

structure of resonance bands, whose properties have been studied in detail, for example, in

Ref. [26]. The solution of Eq. (2.20) admits solutions of the type χk ∝ eµkz, with µk a parameter

known as the Floquet index. In some regions of the (κ,q) parameter space, the Floquet index is

positive Re[µk] > 0, and the amplitude of the daughter field modes grows exponentially. The

instability χk ∝ eµkz of the resonant modes is naturally interpreted as a strong particle creation

of the χ field, because the occupation number grows as nk ∼ |χk|2 ∝ e2µkz.

We show in the left panel of Fig. 2.1 the dependence of µk on κ and q, which is usually

called the stability/instability chart of the Lamé equation. In the white regions of the parameter

space, Re[µk] = 0, so there is no field excitation. On the contrary, in the coloured regions,

Re[µk] > 0. The darker the colour, the greater the Floquet index, with a maximum value given

by µk ≤ µk,max ≡ 0.2377... [26].

From the violation of the adiabaticity condition for q� 1, i.e. ω′k > ω2
k , we can determine

an estimation of the maximum (comoving) momentum possibly excited in broad resonance.

For resonance parameters q ∈ 1
2 [n(n + 1), (n + 1)(n + 2)] with n = 1, 3, 5, ... (i.e. q ∈ [1, 3], [6,
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Figure 2.1.: Left: We show the stability/instability chart of the Lamé equation (2.20). Coloured
bands indicate the regions of the (q,κ) parameter space in which the real part of
the Floquet index is a positive number Re[µκ] > 0 and hence the solution of the
Lamé equation is exponential. The darker the colour, the greater the index, up to
a maximum of µκ ≈ 0.237 for black areas. White areas are the regions in which
Re[µκ] = 0. Right: Some examples of the Floquet index derived numerically
from the Lamé equation for resonance parameters ranging between q = 5 and
q = 3000. In each panel, we plot the corresponding Floquet index µκ as a function
of the momentum κ. We have divided the different q’s in two groups: those inside
one of the resonance bands q ∈ [1, 3], [6, 10], [15, 21], ... (blue solid lines), which
excite modes down to κ = 0, and those which are in between resonance bands
(red dashed lines), which only excite modes down to some minimum momentum
κmin > 0.

10], ...), the excited modes form an infrared band that go from k = 0 up to

k . kL ∼
( q

2π2

)1/4√
λφi . (2.21)

On the other hand, for q ∈ (3, 6), (10, 15), ..., there is still a resonance of the type χk ∝ eµkz, but

within a shorter range of momenta kmin ≤ k . kL (with kmin > 0), and also with a smaller

Floquet index µk. Hence, for this second set of resonance parameters, the resonance is weaker.

These properites are clearly observed in the stability/instability chart plotted in the left panel

of Fig. 2.1. We also show the resonance bands for different values of q in the right panel of

Fig. 2.1.

Remember that in this explanation, we have ignored the non-linear interaction terms ∝ χ2ϕ

and ∝ ϕ2χ in the field EOM (2.16). This is only valid at initial times, when the energy from the

daughter field, despite growing exponentially, is still subdominant with respect the inflaton.

When this is no longer true, the daughter field backreacts onto the mother field through the

non-linear terms, inducing the decay of the inflaton condensate amplitude. This regime can be

captured with classical lattice simulations, like the ones we will present in Section 2.3.2.
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Before moving to the analysis of our lattice results, we would like to present an analytical

estimate of the time scale of the mother field decay. Using a linear approximation, we can

estimate the moment zeff at which an efficient transfer of energy has taken place from φ into

the χ field. This time is characterized by the condition ρχ(zeff) = ρφ(zeff), where ρφ and ρχ are

the energy densities of the mother and daughter fields respectively. This will just be a crude

estimate of the time scale of the mother field decay, since by then backreaction and rescattering

effects will have become important, invalidating the linear approach. However, the nonlinear

effects due to backreaction of the decay products simply tend to shut off the resonance, so the

calculation in the linear regime should provide, in principle, a reasonable estimate.

For simplicity, let us consider the resonance parameter to be within one of the resonant

bands, q ∈ [1, 3], [6, 10], [15, 21], .... The growth of the fluctuations in the initial stages of

resonance is described by the linear Eq. (2.20). The energy density of the created particles due

to the resonance, is given by

ρχ =
1

2π2a3

∫
dkk2nkΩk , Ω2

k ≡
k2

a2 + g2φ2 , (2.22)

where we have introduced an oscillation-averaged effective mass for the χ field,

m2
χ = g2φ2 = g2 φ2

i
a2 ϕ2 , ϕ2 ≡ 1

ZT

∫ z+ZT

z
dz′ϕ2(z′) ' 0.46 , (2.23)

with ZT ' 7.416 the oscillation period of the inflaton solution, Eq. (2.19). From Eqs. (2.21) and

(2.23), we conclude that

m2
χ

(kL/a)2 ∼ O(1)q
1/2 > 1 . (2.24)

In other words, in broad resonance q � 1, the decay products are always non-relativistic.

Correspondingly we can approximate the effective mode frequency as Ωk ' mχ ∼ g φi
a ϕrms,

where ϕrms ≡
√

ϕ2 ' 2
3 . If q is within a resonant band, then all modes with momenta

0 ≤ k . kL are excited with some Floquet index varying within [0, µk,max(q)]. This corresponds

to the cases with blue solid lines in the right panel of Fig. 2.1. We can therefore model the

occupation number of the excited modes simply as a step function nk = e2µzΘ(1− k/kL), with

µ ' 0.2 a mean Floquet index. It follows that

ρχ(z) '
ϕrms

6π2a4 e2µz gφik3
L '

q5/4

23/4 · 32 · π7/2
e2µz

a4 H4
i , (2.25)

where we have used Hi ≡ H(ti) =
√

λφi in the second equality. This is how the energy density

of the daughter fields will grow, at least as long as their backreaction into the mother field

remains negligible. On the other hand, the energy of the oscillating field, since the onset of the
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oscillations, decays as

ρϕ(z) =
1

2a2 φ̇2 +
λ

4
φ4 =

λφ4
i

4a4

[
2
(

ϕ′ − ϕ
a′

a

)2

+ ϕ4

]
' 3λφ4

i
4a4 =

H4
i

4λa4 , (2.26)

where in the second equality we have transformed to the natural variables of Eq. (2.15), and

in the third equality we have done an oscillation average. We can now find zeff by simply

equating Eqs. (2.25) and (2.26),

q1/4e2µzeff =
2−1/4 · 32 · π7/2

g2 . (2.27)

By isolating zeff, we then find

zeff ' +
1

2µ

[
6− ln λ− 5

4
ln q
]

. (2.28)

For instance, for chaotic inflation with quartic potential, λ ' 10−13, and hence ln λ ' −30.

Moreover, looking at Fig. 2.1 we see that the mean Floquet index of the resonant modes when q
is within a resonant band is approximately µ ' 0.2. Hence, we find in this case

zeff ∼ 2.5
(
36− 2.9 log10 q

)
⇒ 83 & zeff & 18 , for q ∈ [10, 1010] . (2.29)

It is clear that the larger the q, the shorter it takes for the mother field to transfer energy

efficiently into the daughter fields. This is expected, as the stronger the interaction is, the faster

the decay should be. However, the dependence is only logarithmic, so the time scale does not

change appreciably, and is always some value of the order zeff ∼ O(10) according to the above

calculation.

2.3.2. Lattice simulations of preheating with quartic potential

In this section, we present results from lattice simulations of preheating with quartic potential.

Before, in order to gain some insight on the field dynamics, we only used the homogeneous

part of the equation for ϕ, as well as the Fourier transformed equation of χ. Now, we will be

rather solving the (lattice version) of the full Eqs. (2.16) in real space. Simulations have been

carried out with a modified version of Latticeeasy, which is a software for lattice simulations of

preheating with scalar fields [47].

We have simulated resonance parameters in the range 0.4 . q . 104. We have taken

λ = 9 · 10−14 for the inflaton self-coupling, so this corresponds to couplings in the range

6 · 10−7 . g . 3 · 10−5. We are not capable of simulating appropriately resonance parameters

outside of this range: the lower limit is due to the natural limitations of the lattice to simulate
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Figure 2.2.: We show the initial oscillations of the volume-averaged conformal amplitude of
the inflaton field ϕ. We show the cases q = 3, q = 8, q = 105, and q = 500 for
the preheating scenario with quartic potential. We use notation of Eq. (2.15). The
dashed vertical red line indicates the time zbr, when backreaction of the daughter
fields become relevant, triggering the decay of the inflaton amplitude and energy
density (see also Fig. 2.4).

fields with narrow resonance bands, while the upper limit emerges due to lack of UV coverage.

Fortunately, as we shall see, the results for the q’s simulated are well described by simple

power-law fits, allowing in principle to extrapolate the outcome to larger q.

Let us move now into the results from the lattice simulations. In Fig. 2.2 we plot the

conformal amplitude of the inflaton field for the resonance parameters q = 3, 8, 105 and 500. It

is clearly appreciated that during a certain number of oscillations, the conformal amplitude of

the inflaton ϕ remains just constant, like if it was not coupled to the daughter field(s). However,

there is a time (which differs for the different q’s) when the amplitude of the conformal inflaton

starts decreasing significantly. This is the initial moment when the inflaton starts decaying due

to the backreaction from the daughter fields. We shall refer to that time as zbr (the br subindex

meaning backreaction). During the time 0 ≤ z . zbr, the daugther fields have been experiencing

parametric resonance, so their energy density has been growing exponentially from initially

small quantum fluctuations. As the energy flows from the mother field into the daughter fields,

at z ' zbr the amount of energy transferred onto the χ bosons is not anymore a negligible

fraction of energy stored in the mother field. Therefore, from then onwards, the (conformal)

inflaton amplitude starts to decrease noticeable, see Fig. 2.2. The time zbr corresponds, in other
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Figure 2.3.: We depict zbr as a function of q for the range 0.4 < q < 500. Each point corresponds
to the value obtained directly from a lattice simulation, and we have joined the
different points with straight lines. Yellow vertical bands indicate the position
of the resonance bands of the Lamé equation q ∈ (1, 3), (6, 10) . . . . The dashed,
purple, lower line indicate the estimate zbr(q) ≈ 40 [Eq. (2.30)] for q values within
resonance bands, while the upper one indicates the fit Eq. (2.31) for the relative
maxima.

words, to the onset of the inflaton decay, when the backreaction effects from excited daughter

fields become non-negligible. In practice, we have determined zbr as the moment when the

(conformal) energy of the mother field drops ∼ 5% with respect its initial amplitude.

In Fig. 2.3 we have plotted the different zbr’s obtained from our simulations, for several

resonance parameters in the range 0.4 < q < 500. We observe that zbr(q) follows a clear

oscillatory pattern, in clear correspondence with the particular structure of resonance bands

shown in Fig. 2.1. In general, the wider the resonance band in the Lamé equation for a given q,

the shorter zbr is. For those values of q emplaced within resonance bands, we find in fact an

almost constant value

zbr(q) ∼ 40 , q ∈ (1, 3), (6, 10) . . . (2.30)

On the other hand, the behavior of zbr for q values outside the resonance bands, i.e. for

q ∈ [3, 6], [10, 15], . . . , is quite different. For q values that are in the left extreme of these

intervals, i.e. q ' 3, 10, ..., zbr takes its maximum value, as this corresponds to the right end of a

resonance band at κ = 0, see Fig. 2.1. We provide the following phenomenological fit to these

relative maxima (excluding the particular case q = 3), which we also plot in the Figure,

zbr(q) ≈ 552e−| log10 q|0.48
, q = 10, 21, 36 . . . (2.31)
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As q increases inside one of the intervals outside the resonance bands, zbr decreases until hitting

zbr(q) ∼ 40 at the center (more or less) of the nearest resonance band, see Fig. 2.3. In conclusion,

we observe a direct translation of the resonance structure of Fig. 2.1 into the lattice simulations.

This happens because for z . zbr, the backreaction effects of χ onto the ϕ are negligible, and

hence the Lamé equation (2.20) is really at work.

Let us compare now this result with the analytical calculation from Section 2.3.1. For the

range of q values shown in Fig. 2.3, we obtain zeff ∼ 78 from Eq. (2.28), so the analytical

prediction only overestimates in a factor ∼ 2 the actual number zbr ∼ 40, found in the

simulations at the onset of backreaction. Failing in a factor ∼ 2 is not surprising, as the

estimation of zeff in Eq. (2.28) involved in fact many approximations. However, the relevant

point is that zeff should not be identified with a decay time, but rather, with the moment when

the linear approximation breaks down. The time scale for determining the end of the transfer

of energy from the mother field into the decay products, which we shall identified as the truly

’decay time’ scale of the inflaton, will be referred to as zdec. As we shall see, it corresponds in

fact to a much longer time scale, zdec � zeff, zbr, which cannot be estimated analytically, as the

dynamics at z & zbr become non-linear.

To follow the post-inflationary dynamics in the non-linear regime, it is useful to see how

the different contributions to the total energy of the system evolve as a function of time. The

total energy can be written as a sum of its different contributions as

ρt(z) ≡
λφ4

i
a4 Et ≡

λφ4
i

a4

(
EK,ϕ + EK,χ + EG,ϕ + EG,χ + Eint + EV

)
, (2.32)

with

EK, f =
1
2

(
f ′ − f

a′

a

)2

, EG, f =
1
2
|∇y f |2 , Eint =

1
2

qϕ2χ2 , EV =
1
4

ϕ4 , (2.33)

where EK, f and EG, f are the kinetic and gradient energy of the fields φ, χ, and Eint and EV are

the interaction and potential energies, all written in terms of the natural variables of Eq. (2.15)

(i.e. in terms of the field variables f = ϕ, χ and derivatives of these with respect zµ).

In the left panel of Fig. 2.4 we show the evolution of the volume-averaged amplitude

of the different energy components of the system. We can clearly observe how, at first, the

inflaton energy dominates the energy budget of the system, alternating between kinetic and

potential energies as the oscillations go on. Short after the onset of the simulation, the rest of

energies start growing (including the inflaton gradient energy, which indicates the formation of

inhomogeneities), becoming very soon an important part of the total energy. At time zbr, these

energies have grown enough and start backreacting onto the inflaton condensate, inducing

its decay (i.e. the decrease of the inflaton kinetic and potential energies). This can also be
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Figure 2.4.: Evolution of the different energy components of the system as a function of time,
see Eq. (2.32), for the inflationary scenario V(φ) ∝ φ4, where q = 500. Left: We plot
Ei/Et for the initial stages of the inflaton decay, and we have indicated zbr with a
vertical dashed red line. Right: We plot the same case for later times. To see better
how the equipartition regime holds, we have removed the oscillations by taking
the oscillation average of the different functions. We have added two new lines
that indicate the sums EG,ϕ + Eint + EV and EG,χ + Eint, see Eq. (2.35).

appreciated in Fig. 2.2, where from z & zbr the (conformal) inflaton amplitude starts decreasing

significantly.

Let us note that the energy fractions at z ' zbr are quite independent of the resonance

parameter. From the numerical outcome we find

Energy Fractions at zbr:

EK,ϕ

Et
' (62.5± 2.4)% ,

EV

Et
' (29.0± 2.7)% , (2.34)

EK,χ

Et
' (4.1± 2.5)% ,

Eint

Et
' (3.6± 2.2)% ,

with the errors ±∆Ex/Et, simply reflecting a small scattering of energies with q. We see from

this that at z = zbr, most of the energy remains yet in the inflaton. However, we also learn that

backreaction really becomes noticeable when∼ 1% of the total energy has been transferred into

the daughter field(s). The other energy components EG,ϕ, EG,χ remain always at sub-percentage

levels during 0 < z . zbr.

At times z & zbr, the energy components evolve substantially from the given values in

Eq. (2.34). In particular, the energies evolve towards an ’equiparted’ distribution among com-

ponents, until the system eventually reaches a stationary regime, where the energy components

do not change appreciably. This is observed in the right panel of Fig. 2.4, where we have

removed the oscillations by taking the oscillation average of the different energies. We observe

different equipartition identities for the ϕ and χ fields respectively,

EK,ϕ ' EG,ϕ + Eint + EV , EK,χ ' EG,χ + Eint . (2.35)
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Figure 2.5.: Points show the different zdec obtained for different lattice simulations with differ-
ent values of q, for preheating with quartic potential. The dashed line indicates the
best fit (2.36).

As it can be appreciated in Fig. 2.4, the second identity holds almost exactly for all times, while

the first one only holds for late times (though it is not a bad approximation at earlier times).

From the analysis of the energies we see that a new time scale, much longer than zbr, can be

naturally identified with the decay time of the mother field. This scale can be defined by how

long it takes the system to relax from z & zbr into the stationary regime. We denote this time

scale as zdec. It is this time, and not zbr, that signals the true end of the inflaton decay, because

it is at z & zdec that there is no (appreciable) transfer of energy anymore from the inflaton into

the daughter field(s). Although the exact definition of zdec is more arbitrary than zbr, we find

appropriate to provide an operative definition based on the level of accuracy of equipartition.

In particular, at the moment when the inflaton equipartition energy holds at a better level than

2%, i.e. (EK,ϕ − EG,ϕ − Eint − EV)/(EK,ϕ + EG,ϕ + Eint + EV) & 0.02, the inflaton kinetic and

gradient energies are stabilized and do not evolve appreciably further, see Fig. 2.4.

We show in Fig. 2.5 the value of zdec − zbr as a function of q, as extracted from our lattice

simulations with different q’s. We see that zdec grows with the resonance parameter q, following

a simple power-law fit. We obtain

zdec(q)− zbr(q) =

 51q0.28 if q < 100 ,

11q0.56 if q ≥ 100 ,
(2.36)

which we also show in Fig. 2.5. Note that for q . 100, the scales zbr and zdec are not particularly

separated, with |zdec − zbr| . zbr. This explains why these point must be fitted with a different

power law. Note that the inflaton decay takes longer the greater the resonance parameter

(i.e. the larger the mother-daughter coupling), which is in principle counter-intuitive. This is a

direct consequence of the non-linearities of the system.
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As mentioned, we can only obtain our fits for resonance parameters up to q ∼ 104 due

to the limitations of the lattice approach. However there is nothing specially different in the

physics of parametric resonance for q� 104. Therefore, there is no impediment, in principle,

to extrapolate the scaling law (2.36) to higher q’s.

Let us note that the energy fractions at z & zdec do not change appreciably any more in our

simulations. Some small change should be expected nonetheless, as the system approaches

equilibrium. However this is not captured in our simulations. The energy from the end of the

inflaton decay onwards are actually rather independent of q, given by the fractions

Energy Fractions at z & zdec:

EK,χ

Et
' (29.5± 3.3)% ,

EK,ϕ

Et
' (22.6± 3.4)% ,

EG,χ

Et
' (26.2± 3.4)% , (2.37)

EG,ϕ

Et
' (17.7± 3.0)% ,

Eint

Et
' (3.2± 0.7)% ,

EV

Et
' (0.8± 0.2)% , (2.38)

again with the errors ±∆Ej/Et reflecting some (rather random) scattering of the energies with

q. We see from this that at z & zdec, the energy is almost ’democratically’ split between the

mother and the daughter field(s), though with some more energy stored in the latter, with

Eχ/Et ' (EG,χ + EK,χ)/Et ∼ (54.7± 4.7)%, Eϕ/Et ≡ (EK,ϕ + EG,ϕ + EV)/Et ' (41.1± 4.5)%,

and Eint/Et ' (4.3± 0.5)%. At these moments it is also verified the approximate equipartition

EK,ϕ/Et ' (EG,ϕ + Eint + EV)/Et ∼ 21%− 23% and EK,χ/Et ' (EG,χ + Eint)/Et ∼ 29%− 30%.

2.4. Preheating with quadratic potential

2.4.1. Analysis in the linear regime

Let us now consider preheating in the case of an inflaton with quadratic potential,

Vinf(φ) =
1
2

m2φ2 , (2.39)

where m ≈ 6× 10−6mp is the appropriate mass scale for chaotic inflation, and the inflaton is

coupled to another scalar field X with an interaction term g2φ2X2. For field values φ � mp,

the slow-roll conditions (1.39) are fulfilled, and the potential energy sustains inflation. In this

regime, the inflaton slowly rolls down its potential, and when φ ∼ mp, the slow-roll conditions

break and preheating starts. We defined the time ti of the onset of the inflaton oscillatory

regime when the condition (2.5) holds, which in this case is simply H(ti) = m. We can obtain

the inflaton amplitude at t = ti by imposing the slow-roll conditions at φ� mp, and solving
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numerically Eqs. (1.25) and (1.26) self-consistently. We find

φi ≡ φ(ti) ≈ 2.32mp , φ̇(ti) ≈ −0.78mmp . (2.40)

It is convenient to define a new set of natural variables, as we did in Eq. (2.7). From Eq. (2.6),

we see that the frequency of oscillation is simply ω∗ = m. Hence, we define the following

dimensionless field and spacetime variables as

ϕ =
1
φi

a3/2φ , χ =
1
φi

a3/2X , z ≡ mt , ~z ≡ m~x , κ ≡ k
m

. (2.41)

As before, we indicate differentiation with respect dimensionless time as ′ ≡ d/dz, and define

∇y as the laplacian with respect dimensionless space variables. Note also that here, we have

decided to keep using (dimensionless) cosmic time, instead of changing to (dimensionless)

conformal time, as we did in in Eq. (2.7). This is convenient in this case, because this way, the

inflaton oscillation period is constant. The fields’ EOM in these variables are

ϕ′′ −
(

3
4

a′2

a2 +
3
2

a′′

a

)
ϕ− 1

a2∇
2
y ϕ +

(
1 +

4
a3 qiχ

2
)

ϕ = 0 , (2.42)

χ′′ −
(

3
4

a′2

a2 +
3
2

a′′

a

)
χ− 1

a2∇
2
yχ +

4
a3 qiϕ

2χ = 0 , (2.43)

where the resonance parameter is defined this time as

qi =
g2φ2

i
4m2 . (2.44)

Note that this definition includes an extra factor 1/4 with respect the general definition in

Eq. (2.9). As discussed there, this is simply conventional, and what matters is the dimensionless

ratio ∝ g2φ2
i /m2.

Let us focus first on the case of a non-expanding universe, so we set a = 1 and a′ = a′′ = 0

in the above equations. At initial times, we can safely neglect the interaction and gradient

terms, ∝ χ2ϕ and ∝ ∇2
y ϕ, in the inflaton EOM (2.42). In this case it becomes ϕ′′ + ϕ = 0, whose

solution is, for initial conditions ϕ(0) = 1 and ϕ′(0) = 0, simply ϕ = cos(z). In this case, the

mode equation of the daughter fields χk, Eq. (2.43), can be written as

d2χk

dz2 + (Ak − 2qi cos 2z)χk = 0 , Ak = κ2 + 2qi . (2.45)

This is the Mathieu equation, which similarly to the Lamé equation, is characterized by a

well-known structure of resonance bands [25]. For some regions in the (qi, κ) plane, there

is a solution of the type χk ∼ eµκz with Re[µκ] > 0, where µk is the so-called Floquet index.

Again, the instability of the field modes means a strong growth of the occupation number

nk ∼ |χk|2 ∝ e2µkz, which can be intrepreted as a strong regime of particle creation. Depending
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on the particular value of qi, we can distinguish two different kinds of resonance. If qi < 1,

the width ∆κ of the resonance bands is very narrow, with ∆κ/κ � 1. This regime is referred

as narrow resonance. On the other hand, for qi � 1, the width of the resonance bands is

significantly larger, ∆κ/κ ∼ O(1), and the resonance is, consequently, much stronger. This

regime is referred as broad resonance.

Let us now include the expansion of the Universe in our analysis. In the quadratic model,

the energy density of the inflaton (again after oscillations-averaging) evolves as in a MD

background, with ρφ ∝ 1/a3, and the scale factor evolves correspondingly as a(t) ∼ t2/3 [52].

In this case, the amplitude of the inflaton oscilations decrease with time, and at late times, the

inflaton approaches the following asymptotic solution [25],

φ(t) ' Φ(t) sin(mt) , Φ(t) ≡
Mp√
3πmt

. (2.46)

The equation of motion of the daughter field modes can also be written as the Mathieu equation

(2.45), but in this case, with the following time-dependent parameters,

Ak(z) =
κ2

a2 + 2qeff(z) , qeff(z) ≡
qi

a3 . (2.47)

Hence, when the expansion of the universe is introduced, the scale factor affects the EOM

of ϕ in a non-trivial way: even if the system starts in broad resonance with qi � 1, as the

Universe expands, the system rapidly redshifts towards neighboring bands of lower resonance

parameter. This is due to the term qia−3 in Eq. (2.43), which makes the effective resonance

parameter qeff ≡ qia−3 decrease as time goes by. Therefore, the system does not remain in a

single resonance band, but redshifts due to the expansion of the universe. As a consequence,

even if the system starts in a broad resonance regime, it can only be maintained as such for

some finite time, until it ends up in a narrow resonance regime.

For a detailed analysis of the behavior of the mode functions obeying the Mathieu equation,

both in Minkowski and in an expanding Universe, we recommend to read the seminal work [25].

In that work, it was found that the maximum momentum excited during parametric resonance

in broad resonance is approximately

k . kM ≡
√

2
π

q1/4
i m . (2.48)

In Section 2.3.1 we presented, for parametric resonance with quartic potential, an estimation

for the time scale zeff, which indicates when a significant energy transfer from the mother

to the daughter field has occurred. A similar computation was carried out in Ref. [25] for a

mother field with a quadratic potential V(φ) = 1
2 m2φ2. The details are more cumbersome in

this case, because contrary to the quartic model previously described, in the quadratic case the
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Figure 2.6.: We plot the different times zbr obtained from the lattice simulations of the m2φ2

inflationary model with different resonance parameters. We have joined the points
with a straight line, and the orange band corresponds to the values of Eq. (2.50).

Floquet index is not fixed for a given mode: each mode scans several resonance bands due to

the expansion of the Universe, and the evolution of a resonant mode function χk is stochastic.

Taking µ̄ ' 0.15 as a reasonable averaged value of the stochastic Floquet index µκ, for chaotic

inflation with V(φ) ∝ φ2, Eq. (112) of [25] is equivalent to

zeff ' 8.3(15.1− 1.1 log10 qi) ⇒ 89 & zeff & 34 , for qi ∈ [104, 1010] , (2.49)

with qi ≡ g2φ2
i /(4m2). As in the quartic case, this time scale is always of the order of zeff ∼

O(10), changing only logarithmically with the resonance parameter.

In our discussion we have ignored the backreaction effects coming from the non-linear

interaction terms ∝ χ2ϕ and ∝ ϕ2χ in the field EOM (2.41). To fully capture the dynamics of

the system, we will present results from a set of lattice simulations of the preheating process in

the next subsection.

2.4.2. Lattice simulations of preheating with quadratic potential

We now present the results from our lattice simulations of preheating with quadratic potential.

We have simulated cases in the interval qi ∈ [7.5× 103, 2.5× 106], which are the ones that we

can capture well in the lattice.

In Fig. 2.6 we show the backreaction time zbr as a function of qi, obtained from our lattice

simulations. We define zbr again as the moment when the inflaton conformal amplitude ϕ

starts decreasing abruptly. For all simulations, we obtain

zbr ∈ [40, 135] . (2.50)
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We do not observe a clear pattern for zbr as a function of qi, as we saw in the λϕ4 case. This

is, however, expected. The reason is that, in the present case, we cannot differentiate whether

a mode is placed in the middle of a resonance band or not. On the contrary, the resonance

in this system is stochastic, because each mode experiences a rapid scanning of bands due to

the expansion of the Universe [25]. The ’wiggly’ pattern of zbr as a function of qi is, therefore,

just a reflection of the stochastic nature of the resonance in this system. To our knowledge, the

pattern depicted in Fig. 2.6 has never been shown before. Due to the stochastic nature of the

resonance, one cannot predict exactly zbr for a specific initial resonance parameter qi.

Looking at Fig. 2.6, we appreciate that the onset of the backreaction, and hence the start

of the inflaton decay, happens always at a time zbr ∼ few×O(10). On the other hand, the

analytical estimate of Eq. (2.49) gives, for qi ∼ 104 − 106, the range of values 68 . zeff . 86. As

in the quartic case, we see that zeff is a good estimation of the back-reaction time zbr (ignoring

of course the stochastic pattern seen in Fig. 2.6). It is not, however, a good approximation to

the decay time zdec of the inflaton, which we estimate next.

We can understand better the post-inflationary dynamics at z � zbr if we analyze again

how the different energy contributions evolve as a function of time. The total energy can be

written as a sum of its components as

ρ =
m2φ2

i
a3 Et =

m2φ2
i

a3

(
EK,ϕ + EK,χ + EG,ϕ + EG,χ + Eint + EV

)
, (2.51)

with

EK, f =
1
2

(
f ′ − 3

2
a′

a
f
)2

, EG, f =
1

2a2 |∇y f |2 , Eint =
2qi

a3 χ2ϕ2 , EV =
1
2

ϕ2 , (2.52)

where EK, f and EG, f are the kinetic and gradient energy of the fields ϕ, X ( f = ϕ, χ labelling

their conformal amplitude), and Eint and EV are the interaction and potential energies.

In Fig. 2.7 we show the evolution of the energy contributions as a function of time for a

particular resonance parameter. We take, as before, the oscillation average of the different

functions. One of the most interesting properties of this system is that the equipartition

identities

EK,ϕ ' EG,ϕ + Eint + EV , EK,χ ' EG,χ + Eint , (2.53)

hold for all times. This can be observed in Fig. 2.7.

Let us begin by noting that, despite the spiky patter of zbr exhibited in Fig. 2.6, the dominant

energy fractions at z ' zbr show much less scattering with qi than in the case of φ4. The energy

fractions are mostly independent of the resonance parameter, and are given by

Energy Fractions at zbr:
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Figure 2.7.: Left: We show for the quadratic preheating case and qi = 25000, the evolution of
the different energy components of the system as a function of time, see Eq. (2.53).
We normalize them to the total energy at initial times, Et(ti). The grey, red, and
blue vertical dashed lines indicate the times zbr, zdec and z0.80. Right: We show the
times zdec (red circles) and z0.80 (blue squares) as a function of qi obtained from
lattice simulations.

EK,ϕ

Et
' (49.4± 0.1)% ,

EV

Et
' (48.7± 0.6) ,

EK,χ

Et
' (0.9± 0.3)% ,

Eint

Et
' (0.8± 0.3)% . (2.54)

The errors ±∆Ex/Et simply reflect the (random) scattering of energies with qi. We see again

that at z = zbr, almost all of the energy remains yet in the inflaton. When the inflaton transfers

∼ 0.5% of its energy, backreaction becomes noticeable, and the inflaton amplitude starts

decaying. The other energy components, EG,ϕ/Et, EG,χ/Et, remain always at less than ∼ 0.1%

levels during 0 < z . zbr, independently of qi.

We can define again a time scale zdec that characterizes the moment when the system enters

into a stationary regime. As equipartition holds all the time, we cannot determine now a

specific moment when equipartition is verified to better than a certain degree (as we did in

the inflationary λφ4 case). However, we can define zdec at the onset of the stationary regime,

understanding the latter now as the regime when the inflaton kinetic and potential energies

do not evolve appreciably anymore within one inflaton oscillation period. In practice, we

define zdec at the moment when these energies do not change more than ∼ 0.5% within one

oscillation. Let us note, that this does not mean that these energies do not evolve in time at

z & zdec. Actually they evolve smoothly, but the relative change (within an oscillation time

scale) is simply very small. Extracting zdec that way from our lattice simulations, we find the

data to be very well fitted (see right panel of Fig. 2.7) by,

zdec(qi) ≈ 19.9 q0.27
i . (2.55)
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Once again, we see that the larger the resonance parameter qi, the longer it takes the flow of

energy from the inflaton to the daughter fields to cease. At this time, the dominant energy

components are actually rather independent of the resonance parameter for qi & 5 · 104. Their

relative fractions are given by

Dominant Energy Fractions at z & zdec (qi & 5 · 104):

EK,χ

Et
' (25.2± 2.2)% ,

EK,ϕ

Et
' (26.0± 2.3)% ,

EG,χ

Et
' (22.9± 2.5)% , (2.56)

again with the errors±∆Ej/Et reflecting some scattering of the energies with qi. The interaction

energy Eint/Et is a very sub-dominant component, which remains also almost constant after

z & zdec. The inflaton gradient energy EG,ϕ/Et and the potential energy density EV/Et are also

sub-dominant components, but show some trend of energy exchange: as qi increases, EG,ϕ/Et

grows and EV/Et decreases. We provide the following estimations based on fits obtained

within the range qi ∈ [7500, 2.5 · 106],

Sub-dominant Energy Fractions at z ≈ zdec (qi & 7 · 103):

EG,ϕ

Et
' 19

(1 + 30000/qi)1/2 % ,
EV

Et
' 27

(qi/2000− 1)1/3 % ,
Eint

Et
' (2.3± 0.5)% . (2.57)

For qi & 5 · 105, we observe that the potential energy becomes marginal, with EV/Et . 5%,

while the inflaton gradient energy seems to saturate to a fraction EG,ϕ/Et ' 19%− 20%, which

still remains subdominant as compared to EK,χ, EG,χ, EK,ϕ. In other words, at z ≈ zdec, the

energy is ’democratically’ split between the mother and the daughter fields, with final fractions

given as Eχ/Et ∼ Eϕ/Et ∼ 50%, where we have defined Eχ ≡ (EK,χ + EG,χ + 1
2 Eint) and

Eϕ ≡ (EK,ϕ + EG,ϕ + EV + 1
2 Eint).

Finally, let us note that at times z > zdec, the energy fractions EK,ϕ/Et and EV/Et still evolve:

they grow slowly, but monotonically. At this stage, the total energy density is not scaling

anymore as 1/a3, so the total contribution Et = EK,ϕ + EK,χ + EG,ϕ + EG,χ + Eint + EV [see

Eq. (2.51)] decreases further in time after z & zdec. This is clearly seen in the left panel of Fig. 2.7.

Actually, at very late times z� zdec, the inflaton dominant energies seem to evolve very slowly

towards some value close to (but presumably smaller than) EK,ϕ/Et ' 50%, EV/Et ' 50%.

Correspondingly, the rest of energy fractions decrease gradually to very small values. Our

simulations however do not capture the very long times required to probe the final asymptotic

values of the inflaton energy components. It is very likely that neither EK,ϕ/Et or EV/Et really

reach 50%, but a somewhat smaller value. To quantify this, we have introduced a new time

scale zX, indicating the time it takes for the inflaton energy components (kinetic and potential

energies) to represent a given X% of the total energy of the system. Within our simulation

capabilities, the latest time we have been able to reach is z0.80, when (EK,ϕ + EV)/Et ' 80%
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(i.e. when EK,ϕ/Et and EV/Et reach individually∼ 40%, as there is equipartition). Even though

80% does not represent the final asymptotic value of the inflaton energy, it clearly signals a

moment where the total energy density is well dominated by the inflaton. We observe in our

simulations that the rate of growth of the inflaton energy components (between some time after

zdec and z0.80) follows a well defined power-law in time. Extrapolating such growth to later

times, we can in principle predict the moment z0.99. In Eqs. (2.58) we provide fits to z0.80 and to

z0.99. Whereas z0.80 is measured directly from the numerical simulations, z0.99 should be taken

only as indicative, as it is only an extrapolation based on the growth of the inflaton energy

components at z ≤ z0.80. In reality, we do not know if eventually the inflaton will dominate up

to ∼ 99%, or whether it will saturate (most likely) to a somewhat smaller fraction. The time

scales are

z0.80 ' 0.26 qi (measured) → z0.99 ∼ 30 qi (extrapolated) . (2.58)

The values of z0.80 follow a well defined power law, see right panel of Fig. 2.7. The fit is obtained

only for the cases qi . 40000, since for bigger resonance parameters we cannot reach z0.80 in

our simulations. Assuming the fit of z0.80 in Eq. (2.58) is valid for every resonance parameter,

we then expect z0.80 ∼ 105 for qi ∼ 105, or z0.80 ∼ 106 for qi ∼ 106.

In conclusion, even though the system manages to transfer approximately ∼ 50% of the

inflaton energy into the daughter field(s) at zdec, unless some new ingredient is added into the

scenario (e.g. new coupling to new particle species), the system tends to go back, slowly but

systematically, to a complete inflaton energy domination in the long term z� zdec. Contrary

to the φ4 case, the energy density in the daughter field(s) is eventually red-shifted away.

2.5. Lattice simulations: Decay of spectator fields

We move now into the study of scenarios where the oscillating field φ does not dominate the

energy budget of the Universe. This is the case of any scalar field with a monomial potential

that was a spectator field during inflation. We will assume again that φ is coupled to some extra

species, in particular to another scalar field X, with coupling g2φ2X2. A paradigmatic example

of a spectator-field in cosmology is the curvaton [37, 38, 39], which is typically assumed to

have a quadratic potential,

V(φ) =
1
2

m2φ2 . (2.59)

We will restrict our numerical study to this case. This scenario can be analyzed in a very

similar way to the quadratic preheating case studied in Section 2.4. If we redefine the spacetime

and field variables as in Eq. (2.41), the field EOM are identical to Eqs. (2.42)-(2.43), with the
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resonance parameter defined as (we rewrite Eq. (2.44) for convenience)

qi =
g2

4

(
φi

m

)2

. (2.60)

As before, we choose the initial time of our simulations at the onset of the oscillatory regime of

the spectator field, which we set when H(t = ti) ≡ Hi = m.

There are two essential differences with respect to the analogue inflationary case. In the

latter, we obtain the time-evolution of the scale factor by solving the Friedmann equations

self-consistently with the fields’ EOM. However, in our present scenario neither of the fields φ

or X dominate the energy content of the Universe. The evolution of the background expansion

rate is determined by the inflationary sector, which we do not model explicitly. We will simply

fix the expansion rate as a power law characterized by an equation of state w, i.e.

a(t) = ai

(
1 +

1
p

Hi(t− ti)

)p

=

(
1 +

1
p

z
)p

, p =
2

3(1 + w)
. (2.61)

We will consider w = 1/3 for a RD background, and w = 0 for a MD background. In practice,

for the quadratic potential scenario we will focus mostly in the RD case, as this represents

the most relevant cosmological case of viable curvaton [37, 38, 39]. For completeness, we will

present some results of the quadratic spectator field in a MD background, even if this case

seems not to have any cosmological relevance.

The second difference with respect the quadratic inflaton is that now there are more free

parameters, which makes the parametrization of the system in principle more complex. In the

inflationary case the mass m and the amplitude φi were constrained by the CMB observations,

whereas now these are free parameters. Fortunately, if we look at the EOM Eqs. (2.42)-(2.43), we

notice that the dynamics only depends on the combination g2(φi/m)2 through qi. At the same

time, one can check that the spectrum of the initial modes mimicking quantum fluctuations,

when written in natural units, only depends on the ratio φi/m. Therefore, the system only

depends ultimately on two independent parameters, φi/m and g2 (or alternatively φi/m and

qi). Whereas in the inflationary case φi/m was fixed, now this ratio represents an extra free

parameter. Finally, the velocity of the field at the onset of the oscillatory regime is determined

from the slow-roll condition, which still holds approximately when Hi = m. We take therefore

as initial velocity the approximation φ̇i ' −m2φ/(3Hi) = −mφi/3.

Fig. 2.8 is a diagram of the (qi, m/φi) parameter space, where the coupling strength can be

read as g = 2(m/φi)
√

qi. We have excluded the region g > 1, depicted in grey in the figure,

as this corresponds to non-perturbative coupling strengths. There are different regions in the

parameter space (qi, m/φi), according to the different dynamics of the system discussed in

Section 2.4. The narrow resonance region correspond to values qi < 1, which lattice simulations

cannot capture well. For 1 < qi . 104, the inflaton is in broad resonance regime initially, but
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Figure 2.8.: We show different regions in the (qi, m/φi) parameter space of a spectator field
with ∝ φ2 potential, according to their different dynamics. Note that the coupling
is g = 2(m/φi)

√
qi from (2.60). Explanation of the meaning of these regions is

given in the bulk text.

due to the expansion of the Universe, it enters into narrow resonance before backreaction

effects from the daughter field activate the decay of the mother field. Hence, we denote this

region as ’short broad resonance’. A broad resonance regime sustained for a sufficiently long

time, corresponds to qi & 104 values. We will only study in the lattice this regime, sampling qi

from ∼ 104 to ∼ 107.

We will parametrize the system as a function of g2 and m/φi, in light of the previous

discussion. In the left panel of Fig. 2.9 we show the backreaction time zbr, as a function of the

coupling g, for different combinations of qi and post-inflationary expansion rates. We see that

the dependence of zbr on g is mostly insensitive (within some scatter) to the choice of qi and

expansion rate. We find the following fit to the data,

zbr(g) ≈ 16.9− 20.9 log10 g . (2.62)

As detailed in Section 2.4.1, the logarithmic dependence appears as a consequence of the

initial linear behavior of the mode functions, which obey the Mathieu equation until their

backreaction into φ is noticed. The reason why we see now the logarithmic dependence in

this Figure, is that now we have varied g across many orders of magnitude, unlike in the

inflationary case (recall Fig. 2.6).

In the right panel of Fig. 2.9 we plot zdec as a function of qi. In this case, we only provide

fits for the RD case. We see that independently of the numerical value of (m/φi), all points can
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Figure 2.9.: Left: We show zbr as a function of coupling g obtained from lattice simulations, for
an oscillating spectator-field with quadratic potential. Each symbol corresponds
to a specific resonance parameter qi and expansion rate (RD or MD). We see that
independently of the particular case, all values coincide approximately in a single
straight line, which we fit in Eq. (2.62) and show with a dashed line. Right: We plot
zdec as a function of qi, for an oscillating spectator-field with quadratic potential and
a RD Universe. We consider different values of m/φi. The dashed line corresponds
to the fit of zdec, Eq. (2.63).

be fitted very well to

zdec(qi) ≈ 27.3q0.33
i . (2.63)

The energy of this system can be written in terms of its different contributions in the same

way as in the quadratic preheating case [Eqs. (2.51) and (2.52)]. Their time-evolution is also

very similar to the one seen in Fig. 2.7 for chaotic inflation, so we just specify the different

energy contributions at both zbr and zdec. We find that the numbers are quite independent from

φi/m and qi. At zbr, we have

Energy Fractions at z ≈ zbr (qi & 104) :

EK,ϕ

Et
' (49.8± 0.5)% ,

EV

Et
' (48.7± 1.0)% , (2.64)

EK,χ

Et
' (0.7± 0.7)% ,

Eint

Et
' (0.7± 0.7)% , (2.65)

with the other energies contributing less than 0.1%. The error bars ∆Ei/Et account for the

dispersion due to different choices of qi and φi/m. As in the quadratic preheating case, at zbr

most of the energy is stored in the mother field (in the kinetic and potential energies), while

only ∼ 1% is stored in the daughter field. This percentage is enough to induce the onset of the

mother field decay due to backreaction effects.

On the other hand, at zdec, the energies are distributed in the following manner,
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Dominant Energy Fractions at zdec (qi & 104):

EK,ϕ

Et
' (24.3± 0.9)% ,

EG,ϕ

Et
' (20.0± 0.8)% , (2.66)

EK,χ

Et
' (26.4± 1.0)% ,

EG,χ

Et
' (24.8± 1.2)% , (2.67)

which are also approximately independent on qi and φi/m. The other two energies are sub-

dominant and have a certain dependence in qi, which we have fitted as

Sub-dominant Energy Fractions at z ≈ zdec (qi & 104):

EV

Et
' 80

(1 + qi)0.3 % ,
Eint

Et
' 13

(1 + qi)0.2 % . (2.68)

Note that, unlike the quadratic preheating case, for the spectator-field both the potential and

interaction energy contributions have a decreasing behavior with qi.

At z & zdec the system enters into a stationary regime, where the energies EK,ϕ and EV

evolve very slowly in time. However, similarly to the analogous preheating scenario, each of

the energy fractions EK,ϕ/Et and EV/Et still grow, slowly but monotonically, towards some

value of the order of, but (presumably) somewhat smaller than, ∼ 50%. This asymptotic regime

is however attained at very large times, much larger than in the quadratic inflaton case for

the same qi’s. Due to this, we have only been able to capture partially this regime in our

lattice simulations with spectator fields. We define zX as the moment when the mother field

energy components represent a fraction X% of the total energy of the mother-daughter fields

system, analogously as in the preheating case. We can only reach up to z0.40 in our numerical

simulations of spectator fields (let us recall that in the case of preheating we reached z0.80).

However the trend of growth of EK,ϕ/Et and EV/Et between zdec and z0.40 follows again a well

defined power-law, which is expected to hold at later times. Thus, extrapolating the behavior

of the energy fractions at later times, we can predict again z0.99. The fits we obtain are

z0.4 ' 0.18 qi (measured) → z0.99 ∼ 8 · 10−6 q3
i (extrapolated) . (2.69)

In reality, as in the preheating case, we do not know to which final value EK,ϕ/Et and EV/Et

settle eventually down, and hence the extrapolated z0.99 must be considered only as indicative

of the time scale of the final asymptotic state.

2.6. Summary

In this chapter we have studied parametric resonance using classical real time field theory

lattice simulations. We have simulated an oscillating mother field φ coupled to a daughter
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field X, which is excited due to an interaction term g2φ2X2. We have considered two main

scenarios. First, when the mother field is the inflaton field, oscillating around the minimum of

its potential after inflation. We have considered the case of chaotic inflation with V ∝ φ2 and

V ∝ φ4 potentials. In a second type of scenarios, the oscillating field was just a spectator-field

during inflation with V ∝ φ2 potential, playing no dynamical role on the expansion of the

Universe.

Our results show very clearly that the computation in the linear regime of the moment of

efficient transfer of energy zeff, see Eqs. (2.29), (2.49), does not represent a good estimation of

the decay time scale zdec of the mother field. Instead, zeff indicates well (up to O(1) factors) the

onset of the mother field decay at zbr, when the back-reaction of the daughter field becomes

noticeable. Despite the exponential transfer of energy into the daughter fields during the

time z < zbr, the daughter field fluctuations follow a linear equation, whilst the mother field

amplitude remains almost unperturbed. At z & zbr, the presence of the excited daughter fields

makes the amplitude and energy of the mother field to abruptly decrease. At z & zbr the

dynamics become non-linear, and there is a noticeable transfer of energy between the mother

and the daughter fields. Eventually, at z & zdec the amplitude of the fields settle down to

stationary values, with the energy equiparted among the different components. As for z ≥ zdec

the dominant energy components do not evolve any more noticeably, we identify the onset of

that stationary stage as the truly time scale of the decay of the mother field. In the case of a

quadratic potential, at z & zdec, in reality only the mother field kinetic and potential (conformal)

terms remain almost constant, as the (conformal) energy components of the daughter fields

decay slowly at long times.

The linear calculation of zeff ∼ zbr indicates that the stronger the coupling between mother

and daughter fields, the faster the system becomes non-linear. However, the dependence is only

logarithmic, so in practice zbr only changes by a factor O(1) when varying the strength of the

coupling in more than 10 orders of magnitude, see e.g. the left panel of Fig. 2.9. Nevertheless,

as the system becomes non-linear after z & zbr, our numerical results show a rather counter-

intuitive result, opposite to the intuition gained from the analytic estimations: the stronger the

mother-daughter coupling, the longer the time decay zdec scale is, with a typical power-law

behavior with respect the resonance parameter, zdec ∝ qr, with r ∼ 1/4, 1/3 or 1/2, depending

on the case.

Let us note that we have defined and obtained the decay time scale zdec at the onset of

the stationary regime, but we have not analyzed the evolution of the equation of state or the

departure from thermal equilibrium. For a study of the subsequent evolution of the system at

z & zdec towards thermalization, see [57, 58, 59, 60]. We have found nonetheless a remarkable

result: in the case of quadratic potentials, the energy components of the daughter field tend to

decay at the very late times z� zdec, so that slowly but monotonically the mother field tends

to dominate the energy budget of the mother-daughter system.
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Let us remark that in this chapter we have considered the decay products to be scalar fields.

However, parametric resonance can also take place for all bosonic species, including gauge

fields (either Abelian and non-Abelian). There are many scenarios where the decay products

are gauge fields, see e.g. [61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72], although not in all of them

the driving particle production mechanism is parametric resonance. We will demonstrate in

Chapter 4 that the dynamics of parametric resonance into Abelian gauge fields (at least for

a mother field with quartic potential), is only slightly modified in the linear regime, i.e. zbr

changes slightly. The late time non-linear dynamics remain however basically unchanged.

Therefore, in principle, our fitted formulas can be applied equally to the case of parametric

resonance of gauge bosons.

There are some scenarios of preheating where the daughter fields are scalar fields, but the

mechanism responsible for the particle production is not parametric resonance, e.g. hybrid

preheating [73, 74, 75, 76, 77, 78, 79, 80]. Our fitted formulas, unfortunately, cannot be applied to

these scenarios. The case of trilinear or non-renormalizable interactions between the mother and

the daughter field(s) [81, 82, 83, 84] are neither captured by our analysis. The case of oscillations

of a multi-component field is neither captured well by our analysis, see e.g. [85, 86, 87, 88, 89].

We speculate nonetheless, that the non-linear dynamics after the initial excitation in all these

scenarios, is probably very similar to the one after parametric resonance. However, only proper

lattice simulations can prove this.



Chapter 3.

Gravitational wave production from
preheating: parameter dependence

Parametric resonance is among the most efficient phenomena generating gravitational waves

(GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs,

depend exclusively on the resonance parameter q. The latter is determined by the properties

of each scenario: the initial amplitude and potential curvature of the oscillating field, and its

coupling to other species. Previous works have only studied the GW production for fixed

value(s) of q. In this chapter we study the production of GW in post-inflationary preheating

scenarios driven by parametric resonance, by running lattice simulations for a wide range of q
values. We present simple fits for the final amplitude and position of the local maxima in the

GW spectrum. Our parametrization allows to predict the location and amplitude of the GW

background today, for an arbitrary q. The GW signal can be rather large, as h2ΩGW( fp) . 10−11,

but it is always peaked at high frequencies fp & 107Hz. We also discuss the case of spectator-

field scenarios, where the oscillatory field can be e.g. a curvaton.

Results presented in this Chapter have been published in Ref. [5].

3.1. Introduction

Gravitational waves (GW) are ripples of the spacetime which propagate at the speed of light.

Since the first direct detection of two GW signal coming from the collision of astrophysi-

cal binaries [90], a new window into the Universe has opened, which allows us to probe

astrophysical and cosmological environments previously inaccessible. In particular, the Uni-

verse is presumed to be permeated by various GW backgrounds of cosmological origin. For

example, we expect an almost scale-invariant background from inflation [91]. We also ex-

pect a strong production of GW from non-equilibrium phenomena after inflation, such as

(p)reheating [92, 93, 94, 78, 79, 95, 80], phase transitions [96, 97, 98, 99, 100], or cosmic de-

48
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fects [67, 101, 102, 103, 104, 105]. A direct detection of these backgrounds would probe physical

phenomena at energies beyond the reach of particle colliders. For a recent review on gravita-

tional wave backgrounds of cosmological origin, see Ref. [106].

Parametric resonance is a non-perturbative, non-linear, and out-of-equilibrium phenomenon.

Due to this, the violent excitation of field species via parametric resonance is expected to pro-

duce a significant amount of gravitational waves [92, 94, 107, 78, 79, 95, 80, 108, 109, 110]. Our

aim in this chapter is, precisely, to parametrize the production of GW from parametric reso-

nance in the early Universe1. This is a natural continuation of the research results presented in

Chapter 2, where we have parametrized the mother and daughter field dynamics, in different

preheating and spectator-field scenarios where parametric resonance is naturally expected to

occur.

In this chapter we focus on the paradigmatic cases of preheating after chaotic inflation

models, though our results can be extended to other cases, as long as they exhibit a potential

with a monomial shape during the stages following inflation. We will also briefly comment

the case of parametric resonance from inflationary spectator fields, and in particular, their

inability to produce a large amount of GW. We have characterized the GW production from

parametric resonance during all its relevant stages, from the initial linear growth of the daughter

field fluctuations, through the intermediate non-linear stage, till the relaxation towards a

stationary distribution. We have also parametrized the GW spectra by surveying the relevant

circumstances and parameters in each case. For this, we have used massively parallelized

lattice simulations, obtaining simple fits to the most significant quantities, like the characteristic

peak scales and associated amplitudes of the matter and GW spectra.

The chapter is divided as follows. In Section 3.2 we present an estimation of the frequency

and amplitude of the GW background produced during parametric resonance, based on the

analytic understanding of the linear stage of the daughter field(s) excitation. In Section 3.3

we present our results from numerical lattice simulations of preheating for a quartic inflaton

potential, and in Section 3.4 for a quadratic inflation potential. In Section 3.5 we briefly study

the production of GW from spectator fields undergoing parametric resonance. In Section 3.6

we summarize our results and conclude.

1Note that we do not consider the case of ’oscillons’, which correspond to stable field configurations
formed whenever a field oscillates around the minimum of its potential, as long as the potential
shape meets certain circumstances, see e.g. [111, 112]. For the GW production from oscillons
see [113, 114, 115, 116].
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3.2. Gravitational waves from parametric resonance:

scenarios and analytical calculations

In this section, we consider the gravitational waves produced by a scalar field, being excited

due to a parametric resonance process. We consider the same scenario as in Section 2.2, where

the potential of the mother field is monomial. In this case, the mother field starts oscillating

around the minimum of its potential after inflation. In this situation, the equation of the

daughter field modes, Eq. (2.12), admits unstable solutions of the type X(c)
κ ∼ eµq(κ)z, with

Re[µq] > 0 for certain regions in the (κ,q) parameter space. This exponential growth of certain

daughter field modes, is what we understand as parametric resonance. As we shall see, this

generates a significant anisotropic stress Πij ∼ ∂iXc∂jXc, which in turn creates GW.

Gravitational waves correspond to the transverse and traceless (TT) degrees of freedom of

metric perturbations,

ds2 = a2(τ)
(
−dτ2 + δij + hij

)
dxidxj , (3.1)

where dτ = dt/a(t) is conformal time, and hij verify the conditions ∂ihij = 0 (transversality)

and hi
i = 0 (tracelessness). Linearizing the Einstein equations (1.1) lays down the EOM for the

generation and propagation of GW in a FLRW background,

h′′ij + 2Hh′ij −∇2hij =
2

m2
p

ΠTT
ij , (3.2)

where ′ ≡ d/dτ represents derivatives with respect to conformal time, and we have defined

H ≡ a′/a as the comoving Hubble rate. The source of GW, ΠTT
ij , is the TT-part of the anisotropic

stress of the system, defined as

ΠTT
ij ≡

{
∂iX ∂jX

}TT
=

1
a2

{
∂iXc ∂jXc

}TT . (3.3)

The anisotropic stress should really be sourced by the gradients of all excited fields, including

the mother field term ∂iφ∂jφ. However, we take the mother field as approximately homoge-

neous at initial times, so we ignore such term for the moment. The contribution of the mother

field will be automatically included in the lattice simulations that we will present in sections

3.3 and 3.4.

Obtaining the TT-part of a tensor in configuration space amounts to a non-local operation,

so it is more convenient to work in Fourier space, where a geometrical TT-projection can be

easily built. The EOM of the GW in Fourier space reads

h′′ij(k, τ) + 2Hh′ij(k, τ) + k2hij(k, τ) =
2

m2
p

ΠTT
lm (k, τ) . (3.4)
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In momentum space, the TT operation is defined as ΠTT
lm (k, τ) ≡ Λij,lm(k̂)Πlm(k, τ), with

Πij(k, τ) the Fourier transform of Πij(x, τ), and Λij,lm(k̂) a projector defined as2

Λij,lm(k̂) ≡ Pil(k̂)Pjm(k̂)−
1
2

Pij(k̂)Plm(k̂), Pij = δij − k̂i k̂ j , k̂i = ki/k . (3.5)

The energy density spectrum of a stochastic (isotropic) background of GW (at subhorizon

scales) takes the form [106]

dρGW

d log k
=

k3m2
p

8π2a2Ph′(k, τ) , (3.6)

where 〈h′(k, τ)h∗
′
(k′, τ)〉 = (2π)3Ph′(κ, τ)δ(3)(k − k′). This can be written as an explicit

function of the source matter fields as

dρGW

d log k
(k, τ) =

1
4π2a4(τ)

k3

m2
p

∫ τ

τi

dτ′
∫ τ

τi

dτ′′ a(τ′) a(τ′′) cos[k(τ′ − τ′′)]Π2(k, τ′, τ′′), (3.7)

where Π2 is the Unequal-Time-Correlator (UTC) of the source of ΠTT
ij , defined as

〈0|ΠTT
ij (k, τ)ΠTT∗

ij (k′, τ′)|0〉 ≡ (2π)3Π2(k, τ, τ′)δ(3)(k− k) . (3.8)

Substituting the quantized field Eq. (2.10) into Eq. (3.3), leads to the expression in Fourier space,

ΠTT
ij (k, τ) = (3.9)

Λij,lm(k̂)
(2π)3a2(τ)

∫
dp pl pm

(
âpX(c)

p (τ) + â†
−pX(c)∗

p (τ)
) (

âk−pX(c)
k−p(τ) + â†

−(k−p)X
(c)∗

k−p(τ)
)

.

The only combinations of creation/annihilation operators which contribute to the expectation

value in Eq. (3.8), turn out to be

〈0|âp âk−p â†
q â†

k′−q|0〉 = (2π)6 [δ(3)(k− p− q) + δ(3)(p− q)
]
δ(3)(k− k′), (3.10)

〈0|âp â†
−(k−p) âq â†

−(k′−q)|0〉 = (2π)6δ(3)(k)δ(3)(k′ − k), (3.11)

where we have used the commutation rule in Eq. (2.11). Since the second term Eq. (3.11) can

be re-written as proportional to δ(3)(k)δ(3)(k′), it does not contribute to Π2(k, t, t′) at finite

momenta k = k′ 6= 0. Thus, only the term Eq. (3.10) contributes to the final expression of the

UTC, which reads

Π2(k, τ, τ′) =
1

4π2a2(τ)a2(τ′)

∫
dp dθ p6 sin5 θ X(c)

p (τ)X(c)
k−p(τ)X(c)∗

k−p(τ
′)X(c)∗

p (τ′), (3.12)

2Note that when we define the analogous TT-projector on a lattice grid for numerical simulations, this
requires a different definition than that in Eq. (3.5) for the continuum, see Ref. [108] for more details.
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where we have used the result Λij,lm(k̂)
(

pi(k− p)j(k− p)l pm + pi(k− p)j pl(k− p)m
)
= p4 sin4 θ,

with θ the angle between p and k. The spectrum of GW Eq. (3.7) is finally given by

dρGW

d log k
(k, t) =

Gk3

2π3

∫
dp dθ p6 sin5 θ

(∣∣∣I(c)(k, p, θ, τ)
∣∣∣2 + ∣∣∣I(s)(k, p, θ, τ)

∣∣∣2) , (3.13)

with

I(c) ≡
∫ τ

τi

dτ′

a(τ′)
cos(kτ′)X(c)

k−p(τ
′)X(c)

p (τ′) , I(s) ≡
∫ τ

τi

dτ′

a(τ′)
sin(kτ′)X(c)

k−p(τ
′)X(c)

p (τ′) . (3.14)

Eqs. (3.13) and (3.14) are the master formulae that allow to compute the Gravitational Wave

production, as a function of the field modes undergoing parametric resonance.

3.2.1. Redshift of gravitational wave backgrounds

Let us derive now how a GW background generated in the early universe redshifts till today.

Since GW decouple immediately after production, we simply need to redshift appropriately

the frequency and amplitude of the spectrum computed at the end of the GW generation. Let

us denote as ti the initial time at the onset of GW production, tf as the end of GW production,

tRD as the first moment when the Universe becomes radiation dominated (RD), and finally to as

the present time. The ratio between the scale factors at the end of inflaton and today can be

written as

ai

ao
=

ai

aRD

aRD

ao
= ε1/4

i

(
gs,o

gs,RD

) 1
3
(

go

gRD

)− 1
4
(

ρo

ρi

) 1
4

. (3.15)

In the second equality, we have used that during the thermal phase of the Universe, ρ ∝ gtT4

and aT ∝ g−1/3
s,t , with gs,t and gt the entropic and relativistic degrees of freedom respectively at

a time t, and T the temperature. We have also used that between ti and tRD , the energy density

scales as ρ ∝ a−3(1+ω) with w = p/ρ the effective equation of state (pressure-to-density ratio)

of the Universe. We have introduced the factor

εi ≡
(

ai

aRD

)(1−3w)

, (3.16)

which quantifies the (averaged) expansion rate of the Universe between ti and tRD . Taking into

account that gs,t ∼ gt, we see that (gs,o/gs,RD)
1/3 (go/gRD)

−1/4 ∼ (go/gRD)
1/12 ∼ O(1) [≈ 1.77

if go/gRD = 103, ≈ 1.47 if go/gRD = 102]. Putting all together, and using the energy density

of relativistic species today ρo ≈ 2 · 10−15eV4, the frequency today associated to a co-moving
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mode k of a GW background created in the early universe between ti and tf, reads

f ≡
(

ai

ao

)
k

2π
= ε1/4

i

(
gs,o

gs,RD

) 1
3
(

go

gRD

)− 1
4
(

ρo

ρi

) 1
4 k

2π

' ε1/4
i

(
k

ρ1/4
i

)
× 8 · 109 Hz . (3.17)

On the other hand, the spectral amplitude of the GW background today, normalized to the

actual critical energy density ρc, can be obtained as

h2ΩGW ≡
h2

ρc

dρGW

d log k
= h2Ωrad

(
af

aRD

)1−3w ( gs,o

gs,RD

) 4
3
(

gRD

go

)
Ω(f)

GW

' h2Ωrad

(
go

gRD

)1/3

× εi

(
af

ai

)1−3w

Ω(f)
GW

≈ O(10−6)× 4εi

(
af

ai

)1−3w

Ω(f)
GW

, (3.18)

where Ω(f)
GW
≡ 1

ρf

(
dρGW
d log k

)
f
. For this derivation, in the second line we have used that gs,t ∼ gt,

and in the third line that h2Ωrad ' 4 · 10−5 and (go/gRD)
1/3 ∼ O(0.1).

If the Universe is in a RD phase already at the onset of GW production at ti (i.e. tRD ≤ ti),

then w = 1
3 , and the expansion history factors in Eqs. (3.17) and (3.18) are simply εi = 1 and

(af/ai)1−3w = 1. This is the case, e.g. for preheating from an inflaton with potential V(φ) ∝ φ4,

as discussed in Section 2.3. However, if the Universe is in an expanding phase with w < 1
3

between ti and tRD , then there is always a frequency shift to the IR by a factor ε1/4
i < 1, as well

as an amplitude suppression by a factor εi(af/ai)(1−3w) = (af/aRD)
(1−3w) ≡ εf < 1. This is the

case for example for preheating with quadratic potential V(φ) ∝ φ2, as discussed in Section

2.4. If on the contrary, the equation of state is stiff with w > 1/3, then the frequency shifts to

the UV, while the amplitude of the GW background is enhanced by a factor εi(af/ai)(1−3w) =

(af/aRD)
(1−3w) ≡ εf > 1.

3.2.2. Estimation of the GW production from parametric resonance

In this section, we present an estimation of the gravitational waves produced during parametric

resonance after inflation. Gravitational waves are sourced by field gradients, so it is useful

to understand first the dynamics of parametric resonance in momentum space. A scalar field

undergoing broad resonance with q > 1, experiences an excitation of the field modes up to a
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given (comoving) cut-off κ . κ∗ , which for quartic and quadratic potentials, it is given byκ∗ ∼ q1/4 , V(φ) ∝ φ4 ,

κ∗ ∼ (a/ai)1/4q1/4
i , V(φ) ∝ φ2 ,

(3.19)

(see Eqs. (2.48) and (2.21) respectively). Here, q is the resonance parameter in each case,

κ ≡ k/ω∗ is momentum, and ai is the scale factor at the end of inflation. In other words, the

excitation of a field in broad resonance consists in the development of large field amplitudes

for modes with momentum inside a radius κ . κ∗. We will refer to this configuration as a

’Bose-sphere’, outside which (κ > κ∗) the field occupation number vanishes, hence suppressing

the GW production. Consequently, GW will only be created inside the Bose-sphere κ < κ∗. Of

course, after a number of oscillations of the mother field, the excited daughter field backreacts

into the former. This results in an excitation of finite modes of the mother field, breaking

apart its homogeneous condition. From that moment onward, the two-field system becomes

non-linear, and one expects higher modes κ & κ∗ of the daughter field to be excited. This re-

scattering effect enhances the radius of the Bose-sphere as κ∗ −→ α(q)κ∗, with α(q) a function

of q. For moderate q values, a factor O(1) . α(q) . O(10) is typically observed.

We expect on general grounds, that the GW spectrum will have a peak at some scale κ = κp,

located roughly around the maximally excited momentum of the scalar field spectrum, i.e.

κp ∼ κ∗. On the other hand, we found in Eq. (3.17) an expression for the redshift of the

frequency of a GW background produced after inflation. Substituting (3.19) into Eq. (3.17), we

find the following estimate for the frequency of the peak in the GW background,

fp ∼ 8 · 109

(
ω∗

ρ1/4
i

)
ε

1
4
i q

1
4+η Hz×


1 , V(φ) ∝ φ4 ,(

af
ai

) 1
4

, V(φ) ∝ φ2 .
(3.20)

We have introduced a parameter η to quantify the goodness of our analytical estimation, and in

particular, of our assumption κp ∼ κ∗ ∝ q1/4. As our derivation ignores the enhancement effect

κ∗ → α(q)κ∗ mentioned before, it is likely that the scaling of fp as ∝ q1/4 does not hold, as α(q)
is in general expected to be a function of the resonance parameter q. Only when confronting

Eq. (3.20) with our lattice simulations, we will be able to quantify whether η represents only a

small correction.

We also found an estimation for the q-dependence of the GW amplitude in Ref. [5]. These

estimations are based on Eqs. (3.13) and (3.18), as well as dimensional arguments, and are more

complicated to obtain. Here we simply quote our results: the interested reader can find all the

details of the derivation in the indicated reference.
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In particular, in Ref. [5] we found that, during the linear stage of parametric resonance, the

peak of the daughter field spectrum k3|X(c)
k |2 should scale as

k3
∗|X

(c)
k∗
|2 ∝ q−1/2 . (3.21)

As we will show, our numerical simulations display precisely this behavior. Moreover, we

found that the GW peak amplitude at the end of GW production is given by

Ω(f)
GW

(κp) =
C2

8π4
ω6
∗

ρim2
p

q−
1
2+δ , (3.22)

with C a dimensionless constant, and δ another parameter quantifying the goodness of the

estimation as a function of q. Substituting this into Eq. (3.18), the corresponding amplitude of

the GW peak today can be written as

h2ΩGW( fp) ∼ O(10−9)× εi C2 ω6
∗

ρim2
p

q−
1
2+δ , (3.23)

where we have used 1
8π4 ∼ 1.3 · 10−3, and absorbed the factor 1.3 · 4 · (af/ai)1−3ω into the C2

constant.

We shall compare our prediction for the q-dependence of the GW amplitude and frequency,

given in Eqs. (3.20) and (3.23), with the results from our lattice simulations, presented in the

next two sections.

3.3. Lattice simulations: gravitational waves from

preheating with quartic potential

In this section we study GW production during preheating, when the inflaton has a quartic

potential Vinf(φ) = 1
4 λφ4. We have carried out several lattice simulations of the preheating

process, including in this case the tensor fields representing the GW as extra dynamical fields.

We have considered different values of the resonance parameter q in the interval 0.4 < q < 5000.

Lower values cannot be simulated because the resonance bands are too narrow to be captured

in the lattice, while any larger values cannot be considered due to a lack of a good UV coverage.

All the results presented in this section have been obtained from simulations with N3 = (256)3

points, and minimum momenta κmin ∼ O(0.1), the specific number depending on the particular

case.

Before moving on to the analysis of the GW production in these scenarios, it is interesting

to see first how the times zbr and zdec are reflected in the matter field spectra. In Fig. 3.1 we
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Figure 3.1.: We show the time-evolution of the daughter-field energy density spectra
κ3ρκ,χ/(λφ4

i ) [Eq. (3.24)] as a function of the momentum, for different values
of the resonance parameter q. The spectra correspond to times z = 0, 10, 20, . . . ,
with red lines corresponding to early times, and purple lines to late times. In panels
q = 5, 26, 148, 1000, 3000, which correspond to cases with a main resonance band of
the type κ− < κ < κ+, we indicate κ− and κ+ with dashed, vertical lines. In the rest
of panels, in which the main band has the form 0 < κ < κ+, we simply indicate the
position of κ+. The values of κ± have been obtained from the numerical properties
of the Lamé equation. We also show with black dashed and black dot-dashed
curves the spectra at times z ≈ zbr and z ≈ zdec respectively.

show the time-evolution of the energy density spectra of the daughter field, defined as

k3ρk,χ =
λφ4

i
2

κ3
(
|χ′κ|2 + ω2

κ,χ|χκ|2
)

, ωκ,χ =
√

κ2 + qϕ2 − (a′′/a) , (3.24)

obtained from lattice simulations, and for different values of the resonance parameter q. For

q = 5, 26, 148, 1000, 3000, the main resonance band is of the form κ− < κ < κ+, while for

q = 2, 8, 50, 500, the band is of the type 0 < κ < κ+. As expected, for initial times z . zbr, the

linear analysis is approximately valid, and the growth of the daughter field takes place mainly

inside the resonance bands delimited with dashed, vertical lines. This generates a structure

of peaks in the field spectra, due to the particular structure of resonance bands of the Lamé
equation, (2.20). However, for late times z & zbr, i.e. when the backreaction effects on the

inflaton condensate are already significant, the spectra grow outside these bands, washing out

the structure of peaks created during the initial stages. The daughter field populates modes

of higher-momenta, due to the scattering among modes induced by the coupling between
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Figure 3.2.: Left: Position of the peak κ∗ as a function of q, for the inflaton and daughter fields,
when a final saturated amplitude has already been reached. Right: Spectral ampli-
tude κ3

∗| fκ∗ |2 at the peak position κ∗, for both the inflaton and the daughter fields
( f = ϕ, χ). In both panels, each point corresponds to a single lattice simulation,
and the dashed straight lines correspond to the fits in Eq. (3.25).

fields. When the stationary regime is achieved at times z & zdec, the spectra does not evolve

appreciably anymore, and its amplitude reaches a final saturated value3.

Let us check whether the matter spectra obtained from lattice simulations obey the scaling

with q presented in Section 3.2. Essentially, due to the structure of resonance bands, the

position of the peak should scale as κ∗ ∝ q1/4 [Eq. (3.19)], while according to our calculations,

the amplitude of such peak should scale as κ3
∗|χκ∗ |2 ∝ q−1/2 [Eq. (3.21)]. In Fig. 3.2 we plot both

quantities as a function of q, extracted from our lattice simulations when the fields spectra have

saturated. We obtain the following fits,

Daughter field χ : κ∗ ≈ 13
( q

100

)0.33
, κ3

∗|χκ∗ |2 ≈ 7 · 10−2
( q

100

)−0.57
,

Mother field ϕ : κ∗ ≈ 13
( q

100

)0.25
, κ3

∗|ϕκ∗ |2 ≈ 7 · 10−2
( q

100

)−0.60
. (3.25)

The power-law scaling for the daughter field spectral peak, obtained from lattice simulations,

coincides quite well with the theoretical prediction ∝ q−1/2 [Eq. (3.21)] , with a deviation of

the mean exponent with respect the theoretical value of only 100× (0.57−0.5)
0.5 ∼ 14%. On the

other hand, the theoretical location of the daughter field’s peak at κ∗ ∼ q1/4 [Eq. (3.19)] is

realized with a correction of the exponent of 100× (0.33−0.25)
0.25 ∼ 30%. This deviation from the

theoretical expectation should not be seen as surprising: strictly speaking, such predictions are

only expected to be valid during the linear regime of the daughter fluctuations growth. The

spectra fitted in Eq. (3.25), however, are measured at z & zdec, so non-linear effects cannot be

ignored.

3In reality, the ’saturated’ amplitudes will evolve smoothly at times z� zdec, as the field distributions
adapt themselves on their way towards equilibrium, as seen in Chapter 2. However, during this
regime no GW are emitted, so we are not interested in this late stage right now.
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It is also remarkable that the mother field ϕ follows a similar scaling as the daughter field,

even though we did not have a clear expectation in this respect. The (mean value of the) peak

position of the mother field spectra is actually located exactly at ∼ q1/4, whereas the exponent

of the spectral peak amplitude presents only a deviation of 100× (0.6−0.5)
0.5 ∼ 20% with respect

the theoretical predicted scaling. We think this is due to the coupling between the daughter

and the mother fields: slightly before z ' zbr, when the daughter field modes have already

grown significantly (following the resonance pattern of the linear analysis), the same modes

of the mother field are excited, thanks to the interaction term. This ’dragging’ effect is clearly

seen in the inflaton spectra, see e.g. Fig 11 (top panels) in Appendix A of Ref. [3].

3.3.1. Gravitational wave parametrization

Let us discuss now the production of GW during preheating with quartic potential. Let us

define a rescaled tensor field as h̄ij ≡ ahij. Using the rescalings defined in Eq. (2.15), the

equation of motion of the GW Eq. (3.2) takes the form

h̄
′′
ij −∇2

yh̄ij −
a′′

a
h̄ij =

2φ2
i

am2
p

[
∂i ϕ∂j ϕ + ∂iχ∂jχ

]TT . (3.26)

The total energy of the system ρt (contributed by the matter fields, as the GW are energetically

very sub-dominant) can be written as

ρt(z) =
λφ4

i
a4 ×

[
1
2 ∑

f=χ,ϕ

(
f ′ − f

a′

a

)
+

1
2 ∑

f=χ,ϕ
|∇y f |2 + 1

2
qϕ2χ2 +

1
4

ϕ4

]
≡ λφ4

i
a4 Et . (3.27)

The spectrum of GW in Eq. (3.6), normalized over the total energy density of the system, can

be written as

ΩGW(κ, z) ≡ 1
ρt(z)

dρGW

d log k
(κ, z) =

m2
p

φ2
i

(
√

λφiκ)
3

8π2VEt(z)

∫ dΩk

4π

∣∣∣(h̄′ij −Hh̄ij)(κ, z)
∣∣∣2 . (3.28)

We show in Fig. 3.3 the time-evolution of the GW spectra for the resonance parameters

q = 5, 30, 200, 500, obtained from our lattice simulations. We observe that the GW spectra

grow several orders of magnitude in a short time ∆z ∼ O(10), saturating eventually at a

given time scale zf, which signals the end of GW production. We have observed that typically,

zbr < zf < zdec, with the last order-of-magnitude growth of the GW spectrum amplitude taking

place when the non-linear effects are becoming noticeable z & zbr. For the given parameters

of the figure, the final amplitude of the GW after saturation is Ω(f)
GW ∼ O(10−5)−O(10−6)

approximately, relative to the total energy at reheating.
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Figure 3.3.: Numerical spectra of GW ΩGW(κ, z), Eq. (3.28), as a function of the momentum
κ ≡ k/(

√
λφi), for the resonance parameters q = 5, q = 30, q = 200 and q = 500. In

all panels, the spectra go from red at early times, to purple at late times, measured
at regular intervals ∆z = 10, from z = 10 up to z = 690. The vertical lines
indicate the position of the peaks in the final saturated spectra, with the red dotted,
yellow dashed, and blue dot-dashed lines indicating the position of κ1, κ2, and κhb
respectively (see bulk text).

Let us note that certain peaks emerge in the GW spectra during its evolution towards

saturation, and some of these remain as features in the final saturated spectra (whereas others

disappear). As seen in the EOM of the GW (3.26), GW are sourced by the matter fields, or more

specifically, by their gradients. Therefore, one should be capable to explain the origin of the

peaks in the GW spectra, in terms of the dynamics of the matter fields in momentum space. For

this, let us us look at Fig. 3.4, where we show both the matter and GW spectra for two different

resonance parameters, q = 5 and q = 300, at different times.

Let us focus first in the case q = 5 shown in the top two panels of Fig. 3.4. The first

spectra in the left-top panel is measured at z = 70 (< zbr ≈ 80), when the backreaction

effects from the daughter field have not yet affected significantly the inflaton homogeneous

condensate. As expected, the daughter field is excited inside its main resonance band, while

the inflaton fluctuations are still sub-dominant. At this time, the GW amplitude is of the order

ΩGW ∼ O(10−9), as shown by the first spectra in the top-right panel. The second spectra in

the top-left panel is measured at the time z = 105 (> zbr ≈ 80), some time after the onset of

backreaction, when the dynamics of the system is already fully non-linear. At that moment,
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Figure 3.4.: In the top-left panel we show, for q = 5, the energy density spectra of the inflaton
and daughter fields [Eq. (3.24)] at times z = 70, 105, 340. The same spectra are
shown in the bottom-left panel for the same times, but for the resonance parameter
q = 300. The right panels show the corresponding GW spectra at the same times.
We also show here with dashed vertical lines the position of the peaks in the final
saturated spectra: κ1 in red, κ2 in orange, and κhb in blue (explanations for these
quantities are given in the bulk text).

we can observe two important features in the field spectra: first, the spectral amplitude of the

inflaton and daughter fields have become comparable for all modes, and second, a detailed

structure of peaks have appeared in both spectra. Such structures get imprinted in the GW

spectra, which also show different peaks, whose position is correlated with the one of the

peaks of the matter fields. The amplitude of the corresponding GW spectra has become much

larger at this time, of the order ΩGW ∼ O(10−6) at its maximum. Finally, the last spectra in the

top-left panel are measured at time z = 340 (> zdec ≈ 160). At this time, the initial peaks in

the matter spectra have disappeared. Moreover, due to the mode-to-mode coupling generated

by the non-linearities of the system, both spectra have transferred power to higher modes,

developing a peak at shorter scales with a characteristic hunchback shape. Correspondingly,

the GW spectral power has also moved towards the UV, and its amplitude has gained a final

order of magnitude growth, with the maximum reaching up to ΩGW ∼ O(10−5). Let us remark

that even though the structure of peaks is partially maintained in the final spectrum of GW

(specifically, the peaks indicated with red and orange vertical dashed lines), it is also partially

washed out, as the peaks at the shorter scales are smoothed-out.
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A similar analysis can be done for the case q = 300, shown in the lower panels of Fig. 3.4. In

the bottom-left panel we show the spectra of the matter fields, again for times z = 70, 105, 340.

As in the previous q = 5 case, we observe a couple of peaks that are generated during the

initial dynamics of the system. We indicate these peaks with red and orange dashed lines

in the figure. We can clearly see that these peaks are still maintained in the last spectra, at

z = 340 (> zdec ≈ 160). On the other hand, as observed in the bottom-right panel, the largest

amplitude of the final saturated GW spectra [shown again at the time z = 340] is of the order

ΩGW ∼ O(10−6). The main difference with respect to the previous case q = 5, is that now

the ’displacement’ of the matter spectra towards the UV, creates an additional peak in the GW

spectra at short scales, with the same hunchback shape as for the matter fields. This peak is

indicated with a blue dashed line in the GW spectra shown in the lower panels of Fig. 3.3 and

right-bottom panel of Fig. 3.4. This peak is absent for lower values of q, like those in the top

panels of Fig. 3.3 and right-top panel of Fig. 3.4. The hunchback peak is clearly generated

during the late dynamics of the system, due to the mode-to-mode coupling between short and

long modes, when the system is fully non-linear.

The location of the hunchback peak grows monotonically with q, and hence only when q is

sufficiently large, it becomes a well separated peak from the other more IR peaks. Phenomeno-

logically, we have found that such threshold is precisely q & 60. On the other hand, the IR

peaks in the GW spectra are, remarkably, always placed at the same position, independently of

q (see location of red and yellow dashed vertical lines in Figs. 3.3 and 3.4).

Let us try to explain the origin and q-dependence of these peaks. As said, we observe IR

peaks at fixed scales, plus an extra peak in the UV at a q-dependent scale. We think this is due

to a combination of effects: on the one hand, the daughter field spectrum is peaked at κ ∼ q1/4,

as we already discussed and quantified in Eq. (3.25). As we also discussed and quantified in

Eq. (3.25), the large and rapidly growing amplitude of the daughter fluctuations ’drags’, via

the interaction term, the inflaton fluctuations at the same scale κ ∼ q1/4. Secondly, at the same

time, the inflaton, due to its own self-interactions, possesses a self-resonance for q = 3 [26].

Thus, the inflaton fluctuations start growing at some fixed IR scales due to its self-resonance,

and the inflaton spectrum develops a structure of peaks, located always at the same scales,

independently of q. However, since the two fields are coupled, the interaction term between

them, leads eventually to the development of the same pattern of peaks in both daughter

and mother field spectra. This happens mostly when the system becomes fully non-linear

around z & zbr, so it is hard to develop an analytical description of it. However we note

that, phenomenologically, we always observe this effect, independently of the value of q. For

instance, this is clearly seen in the spectra at time z ≈ 105, plotted in the top-left and bottom-left

panels of Fig. 3.4. As a consequence, the GW spectrum ends also exhibiting some peaks in the

IR at fixed positions. On the other hand, if the resonance parameter is sufficiently large (q > 60),

then also a hunchback peak appears in the GW spectrum, at shorter scales. The hunchback
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Figure 3.5.: Left: We show the position κi ≡ ki/(
√

λφi) of the different peaks in the saturated
GW spectra, for the peaks κ1 (red diamonds), κ2 (orange squares), κ3 (green trian-
gles), and κhb (blue circles). The dashed lines indicate the fits Eqs. (3.29)-(3.32) to
these quantities.

peak becomes prominent mostly when the system becomes non-linear at z & zbr. We expect

that, due to the non-linear interactions among modes, the q-dependence of the location of

the hunchback peak may differ from the linear prediction. Presumably, given that it grows

out of the initial peak developed at κ ∼ q1/4, it will still depend on q. However, given that it

evolves significantly during to the non-linear stages of the system, some new q-dependence

will most likely arise. Only by fitting the outcome of our simulations, we can figure out the

final q-dependence of the hunchback peak.

In light of the discussion above, we proceed to parametrize the peaks in the final GW

spectra Ω(f)
GW, as a function of the resonance parameter q. Our main results are presented in

Figs. 3.5 and 3.6. Let us start with Fig. 3.5, where we show the position of the peaks in the GW

spectra, as obtained from the lattice simulations. We first observe two peaks, the location of

which we denote as κ1 and κ2, whose position is clearly independent on the choice of q. These

peaks appear for the whole range of resonance parameters simulated (q ∈ [1, 5000]), although

in some cases the scales or the two peaks are so near that only one of them can be distinguished.

These peaks are formed during the initial linear regime of the system, as described in the

previous paragraph. An additional third peak is also observed in the (few) simulations done

for q & 1000, whose position is also independent on the particular choice of q. We denote the

location of this peak as κ3. We have fitted the position of these IR peaks as

κ1 ≈ 2.4± 0.3 , (3.29)

κ2 ≈ 4.6± 0.3 , (3.30)

κ3 ≈ 7.1± 0.3 , (q & 1000) , (3.31)

with the error indicating some random scattering with q.
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Figure 3.6.: We show the amplitude of the GW spectra Ω(f)
GW at peaks κ1 (red diamonds), κ2

(orange squares), and κhb (blue circles), as a function of q, in the interval 1 <
q < 500. The yellow vertical bands indicate the values of q in which the main
resonance band of the corresponding Lamé equations is of the type 0 < κ < κ+.
The diagonal dashed lines indicate the upper and lower bounds, whose fit we
provide in Eqs. (3.33)-(3.34).

On the other hand, for q & 60 we observe an additional peak in the spectra, with its location

growing monotonically with q. This is the peak with a hunchback shape that we reported before,

for instance for the case q = 300 shown in the right-bottom panel of Fig. 3.4. This peak emerges

visibly in the GW spectrum during the non-linear dynamics of the system. We denote its

position as κhb, and we find the following power-law fit in the range q & 60,

κhb ≈ 8.5
( q

100

)0.54
, (q & 60) . (3.32)

As said, for q . 60, we cannot differentiate this peak from the others. The location of the

hunchback peak depends on q, but as expected, it does not scale accordingly to the linear

theory as ∼ q1/4. It rather scales as κhb ∼ q1/2, demonstrating – as argued above – that the

non-linear dynamics changes the location of this peak in a non-trivial way. The monotonic

dependence on q implies that the GW spectra exhibit a clear separation between IR and UV

scale features, which grows with the strength of the interaction coupling. This is, in fact, one

of the main reasons why it is unfeasible to simulate systems with arbitrarily large resonance

parameter above q & 104. Besides, the reason for κ3 to only appear when q is sufficiently large

becomes now clear: only for q > 103, the hunchback peak is separated enough in the UV, so

that its IR tail does not exceed the amplitude of the peak κ3.

Let us now analyze how the amplitude of these peaks depend on the resonance parameter.

In Fig. 3.6 we show the GW amplitudes Ω(f)
GW(κ1), Ω(f)

GW(κ2) and Ω(f)
GW(κhb) as a function of q in
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the interval 1 < q < 500, obtained directly from lattice simulations. We have also indicated,

with yellow bands, the values of q for which the main resonance band is of the type 0 < κ < κ+,

where the resonance is stronger (i.e. q ∈ [1, 3], [6, 10], · · · ).

First, we observe that Ω(f)
GW(κhb) follows a clear oscillatory pattern, with a dependence on

q correlated with the structure of resonance bands of the Lamé equation. This was clearly

expected, as the strength of the resonance of the daughter field determines the strength of the

source of the GW, and consequently the strength of the GW final amplitude. Interestingly,

both Ω(f)
GW(κ1) and Ω(f)

GW(κ2) also follow the same oscillatory pattern, correlated again with

the structure of resonance bands of the Lamé equation. Quite remarkably, the IR structure of

peaks developed in the GW spectrum is then such that: on the one hand, the location of the

peaks is fixed (as determined initially by the inflaton resonance bands for q = 3), while on

the other hand, the amplitude of the peaks is modulated by the strength of the resonance of

the daughter field, as dictated by the Lamé equation (for the given resonance parameter q). In

other words, for the IR peaks, the GW production becomes stronger (larger amplitude) the

stronger the resonance of the daughter field is. Let us note that, even though Ω(f)
GW(κ2) follows

the same oscillatory pattern as Ω(f)
GW(κ1), for values q . 50 it can be difficult to differentiate the

two peaks, and hence the smaller number of data points associated to κ2 in both Figs. 3.5, 3.6.

In all cases, the peak amplitudes ΩGW decay with q. In particular, the upper and lower

envelopes of the oscillatory pattern of the ΩGW peak amplitudes, can be fitted as a decaying

power-law with q. The decaying behavior of the amplitude is expected from the analytical

prediction in Eq. (3.22). The exponent of the power-law decay differs however from the

analytical result ΩGW ∝ q−1/2. We have fitted the upper and lower envelopes of the amplitude

oscillations, from the numerical data measured at the relative maxima and minima. The fits are

8.4 · 10−7
( q

100

)−0.42
. Ω(f)

GW(κ1, κ2) . 5.9 · 10−6
( q

100

)−0.56
, (q > 1) , (3.33)

8.4 · 10−7
( q

100

)−0.68
. Ω(f)

GW(κhb) . 4.2 · 10−6
( q

100

)−0.94
, (q > 60) . (3.34)

Note that we find Ω(f)
GW(κ2) ≈ Ω(f)

GW(κ1) (when κ2 can be distinguished from κ1), while the

amplitude of the peak κ3 is observed to be Ω(f)
GW(κ3) ≈ 10−7, i.e. always sub-dominant with

respect the peaks at κ1 and κ2.

As the analytical prediction d log ΩGW
d log q = − 1

2 is based on the linear regime analysis, it is not

surprising that the real dependence of the GW amplitudes at the saturation time, bounded by

Eqs. (3.33)-(3.34), differs from it. Yet, it is nice to observe that the GW amplitudes follow, at least,

a decaying power-law with q. The deviation of the measured exponents −0.42 . d log ΩGW
d log q .

−0.94 with respect to the linear prediction −0.5 is attributed to the non-linear dynamics, and

could have not been predicted a priori without numerical simulations.
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We can now redshift the amplitude and position of the GW peaks. Using Eq. (3.17) we

obtain the following frequencies today

fp = κp × 6 · 106 Hz . (3.35)

Substituting Eqs. (3.29)-(3.34) into Eq. (3.35), we obtain that the exact frequencies of the peaks

today are

f1 ≈ 1.5 · 107 Hz , (3.36)

f2 ≈ 2.8 · 107 Hz , (3.37)

f3 ≈ 4.5 · 107 Hz , (only for q & 103) , (3.38)

fhb ≈
( q

100

)0.54
× 5.3 · 107 Hz , (only for q & 60) . (3.39)

Using Eq. (3.18) we also find that the redshifted amplitude(s) today of this background is

h2ΩGW( fp) ' 4 · 10−6Ω(f)
GW(κp). This translates into the following (interval of) amplitudes for

the measured peaks,

3.4 · 10−12
( q

100

)−0.42
. h2ΩGW( f1,2) . 2.4 · 10−11

( q
100

)−0.56
, (3.40)

3.4 · 10−12
( q

100

)−0.68
. h2ΩGW( fhb) . 1.6 · 10−11

( q
100

)−0.94
. (3.41)

These amplitudes are in perfect agreement with the background amplitudes computed in

the past for this scenario in the case g2/λ = 120, where it was also obtained h2ΩGW ∼ 10−11

[107, 79, 117, 118].

Even though our analytical prediction in Eq. (3.23) was based on the linear analysis, we

can still calibrate it based on the numerical outcome. In particular, we can use the highest

GW signal, occurring at the local maxima of the oscillatory pattern in Fig. 3.6, to extract the

parameters C2 and δ characterizing the theoretical prediction. In particular, as εi = 1, ω2
∗ ≡ λφ2

i ,

and ρi ≈ λ
4 φ4

i , from equating

ΩGW
∣∣
th ' 10−9 × εiC2 ω6

∗
ρim2

p
q−

1
2+δ = ΩGW

∣∣
num ' 1.6 · 10−11

( q
100

)−0.94
, (3.42)

we deduce,

δ & −0.44 , and C ' 0.61
λ

(
mp

φi

)
. (3.43)
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Figure 3.7.: We show the time-evolution of the daughter-field energy density spectra ρκ,χ
[Eq. (3.44)] as a function of the momentum, for the resonance parameters q =
10000, 45000, 160000, 500000. The spectra are measured at equally spaced times
z = 10, 20, . . . , with red lines corresponding to early times, and purple lines to late
times (after a stationary regime has been established). The gray, vertical dashed
lines indicate the position of the maximum momentum excited according to the
linear analysis, which scales as ∝ q1/4. We also show with black dashed and
dot-dashed lines the spectra at times z ≈ zbr and z ≈ zdec.

3.4. Lattice simulations: gravitational waves from

preheating with quadratic potential

We switch now to study the production of GW during preheating with quadratic potential,

Vinf(φ) =
1
2 m2φ2, in the case where the inflaton is coupled to another scalar daughter field with

coupling g2φ2X2. We have done real-time classical lattice simulations of the preheating process,

and computed the associated GW production. Our simulations have been done in lattice cubes

of N3 = 2563 points, and their size has been chosen so that the lattice captures all the relevant

momenta for the dynamics. We have run simulations varying the resonance parameter within

the interval qi ∈ [6 · 103, 106].

We will parametrize the GW production from preheating with quadratic potential below.

However, before moving on, let us briefly analyze and parametrize the matter field spectra

in this scenario. In Fig. 3.7 we plot the time-evolution of the energy density spectra of the

daughter field as a function of the momentum,

k3ρk,χ =
m2φ2

i
2

κ3a
(
|χ′κ −

a′

2a
χκ|2 + ω2

κ,χ|χκ|2
)

, ωκ,χ =

√
κ2

a2 +
4
a3 qi ϕ2 , (3.44)
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Figure 3.8.: We plot, for the inflaton and daughter fields, the position of the peak κ∗ in the
spectra after saturation as a function of q (left panel), and the corresponding
amplitude κ3

∗| fκ∗ |2 ( f = ϕ, χ) (right panel). Dashed lines in both panels correspond
to the fits in Eq. (3.45).

for four different resonance parameters. We have highlighted the spectra at times zbr and zdec

with dashed black lines. As expected, we clearly observe that before z . zbr, the excitation of

the field modes occurs mainly inside the resonance band κ < κM ∝ q1/4
i , while for z & zbr the

system becomes non-linear and power is transferred to higher modes in the UV. At z ≈ zdec,

the spectra have already saturated, as the fields have just reached a stationary regime, and

hence do not source GW anymore. During the process, only a single peak emerges in the matter

spectra, and consequently, only a single peak is expected in the GW spectra. In Fig. 3.8 we

show the position κ∗ where a peak appears in the fields spectra κ3| fκ|2 (left panel), as well as

the corresponding peak amplitude κ3
∗| fκ∗ |2 (right panel), obtained from our lattice simulations

for different choices of q. We obtain the following fits for these quantities,

Daughter field χ : κ∗ ≈ 69
( qi

104

)0.19
, κ3

∗|χκ∗ |2 ≈ 53
( qi

104

)−0.49
,

Mother field ϕ : κ∗ ≈ 136
( qi

104

)0.26
, κ3

∗|ϕκ∗ |2 ≈ 14
( qi

104

)−0.49
. (3.45)

As in the case of a quartic inflationary potential, the expected power-law scaling ∝ q−1/2
i for

the daughter spectral peak holds also quite well (within the sampling), with a deviation of

the mean exponent with respect the theoretical prediction of only 100× |0.49−0.5|
0.5 ∼ 2%. The

theoretical location of the daughter field’s peak at κ∗ ∼ q1/4
i is however only realized with a

correction (of the exponent) of 100× |0.19−0.25|
0.25 ∼ 24%. The fact that the location of the peak of

the daughter field spectra deviates to some extent from the theoretical expectation is actually

expected, as strictly speaking such prediction is only valid when the linear regime applies. The

spectra fitted in Eq. (3.45) are however measured at z ' zdec, after the system went non-linear.

The fact that the amplitude of the spectrum follows so well the theoretical scaling as ∝ q−1/2
i is

certainly remarkable.
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Analogously to the quartic case, the mother field ϕ also follows a similar scaling as the

daughter field. The (mean value of the) peak position of the mother field spectra is actually

located almost exactly at the theoretical expectation ∼ q1/4
i , whereas the exponent of the

spectral peak amplitude presents only a deviation of 100× (0.49−0.5)
0.5 ∼ 2%. This can only be

explained, again, due to the coupling between the daughter and the mother fields: slightly

before z ' zbr, when the daughter field mode amplitudes have grown significantly (following

the linear analysis resonance), the modes of the mother field become excited through the

interaction term. This ’dragging’ effect excites exactly the same inflaton modes as in the

daughter field spectra.

3.4.1. Gravitational wave parametrization

We now proceed to study the GW production in the quadratic potential model. To do so, let us

define a rescaled GW field as h̄ij ≡ a3/2hij. The EOM of the GW, Eq. (3.2), can then be written as

h̄′′ij −∇2
yh̄ij −

(
3
4

a′2

a2 +
3
2

a′′

a

)
h̄ij =

2φ2
i

m2
pa7/2 (∂i ϕ∂j ϕ + ∂iχ∂jχ)

TT . (3.46)

The total energy ρt of the system contributed by the matter fields (the contribution from the

GW is negligible) is

ρt =
m2φ2

i
2a3 ×

[
∑

f=ϕ,χ

(
f ′ − 3

2
a′

a
f
)2

+
1
a2 ∑

f=ϕ,χ
|∇y f |2 +

(
1 +

4q
a3 χ2

)
ϕ2

]
≡ m2φ2

i
2a3 Et . (3.47)

The amplitude of the stochastic background of GW is then, from Eq. (3.6),

ΩGW(k, z) =
1
ρt

dρGW

d log k
(k, z) =

m2
p

φ2
i

(mκ)3

4π2VEt(z)

∫ dΩk

4π

∣∣h̄′ij − 3
2
Hh̄ij

∣∣2 . (3.48)

In the top panels of Fig. 3.9 we show the time-evolution of the GW spectra produced during

preheating, for the cases qi = 2.1 · 104 and qi = 105. We observe that the initial fluctuations

imposed in the matter fields generate an initial GW amplitude of the order ΩGW ∼ 10−22.

During the subsequent preheating stage, the amplitude grows fifteen orders of magnitude,

saturating at an amplitude of the order Ω(f)
GW ∼ 10−6 at the end of GW production. During the

GW creation there is a significant population of higher modes beyond the initial cut-off scale

Eq. (2.48). Therefore, a significant displacement of the GW spectra towards UV scales occurs, as

higher modes of the GW are also populated. During this displacement, a peak forms at a given

scale κp > κM. We will refer to the final amplitude of this peak as Ω(f)
GW(κp). As the position of

this peak cannot be properly observed in the top panels of Fig. 3.9, we have plotted the same

spectra in the bottom panels, zooming in the last stages of GW production. The position κp
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Figure 3.9.: The top panels show the time-evolution of the GW spectra ΩGW(κ, z) for the
quadratic preheating model, for both q = 21000 (top-left) and q = 100000 (top-
right). The spectra are depicted at times z = 0, 5, 10, . . . , and go from red (early
times) to blue (late times). The bottom panels show the same quantities, but
zoomed to observe the peak better.

clearly indicates the transition from short to large momenta, so that for κ > κp, the amplitude

of the GW spectra starts decreasing significantly. It constitutes therefore an estimate of the

maximum momenta attained by the GW spectra, due to the population of UV modes outside

the initial radius κ . κM, when the system becomes non-linear at z & zbr.

In Fig. 3.10 we show the position κp and amplitude ΩGW(κp) of the peak in the GW spectra,

extracted from our lattice simulations for different values of q. We observe that as we increase

q, the position of the peak κp in the saturated spectra moves to the UV, while the amplitude of

the peak decreases. We have found the following fits to the peak amplitude and position,

κp ≈ 48
( q

104

)0.67
, Ω(f)

GW(κp) ≈ 3.8× 10−6
( q

104

)−0.43
. (3.49)

Not surprisingly, we see that the linear prediction for the peak position at κp ∼ q1/4 is not

well verified, given that the fit in Eq. (3.49) is measured after the system becomes non-linear

and ceases to source GW. The mentioned shift of power into shorter scales by the matter

fields, translates into a different q-dependence of the peak position kp ∝ q2/3, which cannot be

predicted with the linear theory. This is a direct result of the non-linearities in the system, and

can only be obtained with numerical simulations like ours. At the same time, the amplitude of
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Figure 3.10.: We show, for the quadratic preheating model, the position of the peak κp in the
saturated GW spectra (left panel) as a function of q, as well as its corresponding
amplitude Ω(f)

GW(κp) (right panel). Each point corresponds to a lattice simulation.
The fits to both quantities [Eq. (3.49)] are shown with dashed lines.

the peak approaches very well the theoretical scaling predicted by the linear theory d log ΩGW
d log q =

− 1
2 , with a deviation of the measured exponent of only 100× (|0.43− 0.5|/0.5) = 14%. We

believe the reason for this is that the scaling of the GW amplitude with q is set during the

linear stage, when the GW grow exponentially fast due to the resonance of the daughter field.

Hence, during the non-linear regime, the peak position is modified non-trivially from κp ∼ q1/4

to κp ∼ q2/3, but the amplitude receives only a boost that is independent of the resonance

parameter q. This behavior is certainly remarkable, and certainly could not be anticipated by

the linear theory.

Let us finally compute the redshifted GW spectra today. In this scenario, the post-inflationary

expansion rate corresponds to a matter-dominated Universe [52], as the inflaton energy density

after averaging over its oscillations, behaves as ρφ ∝ 1/a3. The equation of state is then ω ' 0,

so the redshifting factor from Section 3.2, [defined in Eq. (3.16)], becomes

εi ≡
(

ai

aRD

)
=

(
ai

af

)
εf , with εf ≡

(
af

aRD

)
. (3.50)

From our simulations we measure directly the final time of GW production tf, and hence

determine the pre-factor (ai/af), which is typically of the order of ∼ O(10−2). Therefore, it is

better to express the amplitude and frequency today, Eqs. (3.17)- (3.18), in terms of εf:

f ' ε1/4
f

(
k

ρ1/4
i

)
× 2.5 · 109 Hz , h2ΩGW ' 4 · 10−6εf ×Ω(f)

GW
. (3.51)

Plugging our fits in Eq. (3.49) into Eq. (3.51), we obtain

fp = ε1/4
f

( q
104

)0.67
× 2.0 · 108 Hz , (3.52)

h2ΩGW( fp) = εf

( q
104

)−0.43
× 1.5 · 10−11 , (qi & 6 · 103) . (3.53)
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The longer the Universe takes to reach a RD stage, the smaller the factor εf is. This means that

the longer the post-inflationary matter-dominated expansion phase lasts, the more the GW

peak moves to the IR, but the more suppressed its amplitude becomes.

Based on the numerical outcome, we can calibrate our analytical prediction of Section 3.2.

Knowing that ω2
∗ ≡ m2, and ρi ' 1

2 m2φ2
i , we can extract the parameters C2 and δ characterizing

the theoretical GW amplitude in Eq. (3.23). In particular, equating

ΩGW
∣∣
th ' 2 · 10−11 × ε f C2 m4

φ2
i m2

p
q−

1
2+δ

i = ΩGW
∣∣
num ' ε f

( qi

104

)−0.43
× 1.5 · 10−11 , (3.54)

we deduce

δ ' 0.06 , and C ' 6.3
(

mpφi

m2

)
. (3.55)

3.5. Gravitational waves from parametric resonance in

spectator field scenarios

Finally, let us briefly consider gravitational wave production from parametric resonance

scenarios, in the case where the energy of the mother and daughter fields are subdominant

with respect the total energy of the Universe. This is the case, for example, of the curvaton

scenarios discussed in Section 2.5, as well as the SM Higgs after inflation, analyzed in Part II.

The EOM of the GW Eq. (3.2), can be written symbolically as

�h∗∗ =
2

m2
p

ΠTT
∗∗ , ΠTT

∗∗ =

{
∂φ

∂x∗
∂φ

∂x∗

}TT

, (3.56)

where φ is some field involved in the process of parametric resonance. For the sake of the

argument, let us consider φ as the mother field. This field will only start oscillating after

inflation, when its (effective) mass becomes of the order of the Hubble rate ∼ H. Let us denote

φi as the initial amplitude of the oscillations. We can then ’parametrically’ re-scale the source

of GW as

ΠTT
∗∗ ∼ H2φ2

i ×
{

∂ϕ

∂y∗
∂ϕ

∂y∗

}TT

∼ H2φ2
i , (3.57)

with~y ≡ H~x, ϕ ≡ φ/φi, and where we have (crudely) estimated that { ∂ϕ
∂y∗

∂ϕ
∂y∗ }TT ∼ (∆ϕ/∆y)2 ∼

O(1), as within a spatial scale ∆y ∼ O(1), the field amplitude typically oscillates (in real space),

and hence ∆ϕ ∼ ϕ ∼ O(1). As crude as our estimation of { ∂ϕ
∂y∗

∂ϕ
∂y∗ }TT might be, this does

not change the fact that the amplitude of the source of the GW is parametrically controlled
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by ∝ H2φ2
i . Thus, in order to estimate the GW production from a spectator field, we need to

determine first the typical amplitude φi of such a field.

The amplitude of a spectator field excited during (pure de Sitter) inflation is [119]

〈
φ2〉 = 3H2

8π2

(
H
m

)2 (
1− exp

{
−2

3
m2

H2 N
})

−→


H2

4π2 N , N � H2

m2

3H4

8π2m2 , N � H2

m2

, (3.58)

where we have implicitly assumed that the initial field amplitude (say at the onset of inflation)

is zero, and the mass is bounded as 0 ≤ m� H. The typical amplitude of a strictly massless

spectator field is then of the order of φrms ' O(1)H(N/100)1/2. In other words, φrms ∼ H,

modulo some mild dependence on the number of e-folds. For a massive but light field with

m < H, after a (typically large) number of efolds N � (H/m)2, the spectator field reaches its

saturation amplitude φrms → O(0.1)(H/m)H.

Unless N≫ 1 and m/H≪ 1, it is fair to say that the typical amplitude of a spectator field

is, roughly speaking, φ ∼ H. Using this fact and Eq. (3.57), we conclude that the source of GW,

in the case of a spectator field (with initially vanishing amplitude) is bounded as ΠTT
∗∗ . H4

(modulo some mild dependence on the number of efolds).

Let us note that ΠTT
∗∗ . H4 is in reality an upper bound because in reality, the initial source

of GW in any process of parametric resonance, are the daughter field(s) rather than the mother

field. The mother field typically contributes to the GW production when it finally develops

sizeable time-dependent gradients. This happens when the daughter field backreacts over the

mother field, manifesting the truly non-linear nature of the field dynamics due to the coupling

between the field species. The daughter fields, however, never become significantly more

energetic than the mother field (see, for example, Figs. 2.4 and 2.7). Therefore, even though

the parametrization of the GW source due to the daughter field(s) may differ from Eq. (3.57),

Eq. (3.57) should still represent a good estimation of an upper bound for the GW source in a

process of parametric resonance.

As the energy density spectrum of GW is proportional to (ΠTT
∗∗ )

2, see Eqs. (3.7), (3.8), we can

estimate now the GW production of fields in parametric resonance when the mother field is a

spectator field. More specifically, we can parametrically compare it to the GW production when

parametric resonance is due to the oscillations of an inflaton. In the latter case, the estimation

Eq. (3.57) also applies, though in this occasion the typical amplitude of the inflaton at the end

of (large-field) inflation is φi ∼ mp. The GW source of parametric resonance during inflationary

preheating, using Eq. (3.57), is then bounded as ΠTT
∗∗ . m2

pH2. The ratio of the GW energy

density produced by parametric resonance due to the oscillations of a spectator field, Ω(s)
GW, to

the GW energy density created (for the same daughter-mother coupling) by the oscillations of
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an inflaton, Ω(i)
GW, can be parametrically estimated as

Ω(s)
GW

Ω(i)
GW

∼ (Π(s)
∗∗ )

2

(Π(i)
∗∗)2

∼
(

H
mp

)4

� 1 . (3.59)

The GW production due to parametric resonance from a spectator field (with initially vanishing

amplitude), can then only be much smaller than that of the analogous production from the

parametric resonance of an inflaton field (with a large amplitude like in single-field slow-roll

inflation). This result is actually expected, as the typical energy of a spectator field is always

very sub-dominant compared to the inflaton energy. If the fraction of energy converted in GW

in the process of parametric resonance is fixed by the daughter-mother coupling, it is therefore

natural to expect that the absolute GW production from the parametric resonance of a spectator

field, is very sub-dominant as compared to the analogous GW production from an inflaton

field, as the latter exceeds the energy budget of the spectator field.

3.6. Summary

Preheating in the early Universe is expected to generate a large amount of gravitational waves

(GW). The non-equilibrium dynamics of the fields after inflation develop energy gradients,

which source very efficiently tensor perturbations. When the fields relax into a stationary

state, the GW production ceases, and GW decouple and travel freely ever since, redshifting

until now. One of the most paradigmatic situations is when the inflaton field exhibits a

monomial potential as V(φ) ∝ φn after the end of inflation. Following the end of inflation,

when the inflaton (mother field) oscillates around the minimum of its potential, it provides

a non-adiabatic time-dependent mass to all field species (daughter fields) coupled to it. As a

result, the fluctuations of such species grow exponentially in the process known as parametric

resonance. This sources a significantly large background of GW.

In this chapter we have studied and parametrized the production of GW during parametric

resonance in standard preheating scenarios. The dynamics of the matter fields is characterized

in terms of the dimensionless resonance parameter q, which depends on the coupling strength,

as well as on the initial amplitude and curvature potential of the mother field. We have

carried out lattice simulations of two main scenarios where parametric resonance takes place:

preheating with quartic V(φ) ∝ φ4 potential in Section 3.3 and preheating with quadratic

V(φ) ∝ φ2 potential in Section 3.4. We have computed and parametrized the spectra of both

GW and matter fields, and confronted the numerical results with analytical estimations.

In Section 3.3 we focused in the quartic case. We observed that there are two types of

peaks imprinted in the GW spectra: infrared peaks located at fixed scales independently of

q, and a higher frequency peak located at a scale κ ∼ q1/2. In all cases, the amplitude shows
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a characteristic oscillatory pattern between −0.42 . d log ΩGW
d log q . −0.94, depending on the

strength of the resonance (which is determined by q). See Eqs. (3.33)-(3.34). In the range

explored numerically of resonance parameters, q ∈ [1, 5000], we find all peaks at around

fp ≈ O(107)−O(108) Hz, and the amplitude today as h2ΩGW ≈ O(10−11)−O(10−13). See

Eqs. (3.40)-(3.41). In Section 3.4 we focused in the quadratic case. In this scenario we observe

just a single peak in the GW spectrum, with an amplitude scaling with the resonance parameter

as ∝ q−0.43. See Eqs. (3.52)-(3.53). The final position and amplitude of the spectrum today are

however more uncertain than in the quartic case, as there is a dependence on the unknown

duration of the period following the end of GW production, during which the universe

maintains an expansion rate different than RD. Assuming that such period does not last for

long after GW generation ceases, the redshifted amplitude can reach amplitudes today up to

h2ΩGW ≈ O(10−11)−O(10−13) (for the simulated range 6000 . q . 2.5 · 106). For larger q’s,

as the amplitude decays as ∼ q−1/2, the signal becomes weaker and weaker.

One of the most remarkable results we have obtained is that the peak amplitudes of the

GW background decrease with increasingly larger resonance parameters q. Naively, one would

expect the opposite, as the larger the q, the broader the resonance. However, although more

(daughter field) modes are excited for larger values of q, there is also less power transferred

per mode: the daughter field spectrum may be wider, but it is also lower in amplitude.

The two effects combine in such a way, that both the spectra of the fields, and of the GW,

decrease in amplitude with increasingly bigger values of q. This is to be contrasted with the

case when the daughter fields experiencing a parametric excitation (due to the oscillations

of some coherent field) are either gauge fields [64, 65, 66, 67, 68, 69, 70, 71, 72] or fermions

[29, 30, 31, 32, 33, 34, 120, 121, 122]. For both gauge and fermion species, it is found that the

corresponding GW background scales as ΩGW ∼ q3/2+δ, with δ� 1 some small correction. In

the case of gauge bosons, this can be easily explained: even though they experience the same

dynamics as scalar fields when coupled to an oscillatory (homogeneous) field (this is explicitly

demonstrated in Chapter 4 for Abelian gauge fields), their anisotropic stress (i.e. the source

of GW) has a different structure than in the scalar field case. We will see an example of this

behaviour in Chapter 5, where we study the GW produced during the post-inflationary decay

of the SM Higgs after inflation into gauge bosons. In the case of fermionic daughter fields, the

theoretical analysis also predicts that ΩGW ∼ q3/2 [121, 122].

As a final remark, let us note that there are scenarios of preheating where our analysis

cannot be applied. The case of trilinear or non-renormalizable interactions between the mother

and the daughter field(s) [81, 82, 83, 84] are not captured well by our fitted formulae. The case

of oscillations of a multi-component field is neither captured by our analysis, see e.g. [85, 86, 87,

88, 89, 123]. Besides, there are also scenarios where the mechanism responsible for the particle

production is not parametric resonance, e.g. tachyonic preheating [74, 75, 76, 77, 78, 79, 80, 67,

124], in which case our analysis does obviously not apply.



Part II.

Standard Model dynamics after
inflation

75



Chapter 4.

Decay of the Standard Model Higgs
field after inflation

In this chapter we study the non-perturbative dynamics of the standard model (SM) after

inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary

sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modelling

the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider

different postinflationary expansion rates. During inflation, the Higgs forms a condensate,

which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations

lead to a fast decay of the Higgs into the SM species, transferring most of the energy into

Z and W± bosons. All species are initially excited far away from equilibrium, but their

interactions lead them into a stationary stage, with exact equipartition among the different

energy components. From there on, the system eventually reaches equilibrium. We have

characterized in detail, in the different expansion histories considered, the evolution of the

Higgs and of its dominant decay products until equipartition is established. We provide

a useful mapping between simulations with different parameters, from which we derive a

master formula for the Higgs decay time as a function of the coupling constants, Higgs initial

amplitude and postinflationary expansion rate.

Results presented in this Chapter have been published in Ref. [1].

4.1. Introduction

The discovery of the standard model (SM) Higgs in the Large Hadron Collider (LHC) [125, 126]

initiated the quest for understanding its cosmological implications. The Higgs could have

played different roles in the early Universe, depending for example on the running of the Higgs

potential at large scales, or the existence of interactions between the Higgs and the inflationary

sector or the scalar curvature. One interesting possibility is Higgs-inflation, where the SM Higgs
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is the field responsible for the inflation of the Universe. In this case, the Higgs must have a

non-minimal coupling to spacetime curvature, which is fixed by the amplitude of the CMB

anisotropies [19].

In the following three chapters, we will rather explore a different route for the role of

the Higgs during and after inflation. We will merely assume that inflation was driven by a

very slowly evolving energy density, without specifying the nature of the field responsible

for it. We will also assume that the SM Higgs is not coupled directly to the inflationary sector

[127, 56, 55, 128]. Under these circumstances, the Higgs behaves during inflation as a spectator

field living in a (quasi-)de Sitter background. Consequently, the Higgs fluctuates, with the

effective potential of the Higgs ultimately dictating its behavior. If the instability scale of the

Higgs potential is at sufficiently large energies, the Higgs field does not decay to the negative-

energy vacuum during inflation, and forms a condensate with high amplitude. When inflation

ends, the Higgs condensate starts oscillating around the minimum of its potential, and decays

to the SM gauge bosons and fermions due to parametric effects.

In this chapter we investigate in detail the Higgs’s decay into its most energetically domi-

nant decay products, the SM electroweak gauge bosons, during the immediate stages following

the end of inflation. This was previously studied in [55, 128], where analytical techniques

were employed to study the same problem. In this thesis we use instead lattice simulations

in an expanding box in (3+1) dimensions, modelling the SM interactions with global and

Abelian-Higgs setups, which go beyond the assumptions behind any analytical calculation.

Besides this, we also consider different Higgs initial amplitudes and postinflationary expansion

rates. The analysis presented here will be followed, in Chapter 5, by an analysis of the grav-

itational waves produced during the Higgs decay process, based also on lattice simulations

of an Abelian-Higgs setup. Afterwards, I will present in Chapter 6 a set of lattice simulations

of the electroweak SU(2)× U(1) gauge sector of the SM, in order to quantify the effects on

the non-Abelian interactions in the Higgs post-inflationary dynamics. Finally, I will discuss

in Chapter 7 the effects of a non-minimal Higgs-curvature coupling in the Higgs and gauge

post-inflationary dynamics, and its implications for vacuum stability after inflation.

This chapter is organized in such a way that we increase progressively the complexity of the

different approaches used to describe the dynamics of the system, approximating the structure

of the SM interactions better and better at each new step. In Section 4.2 we first present a brief

analysis of the behavior of the Higgs after inflation, ignoring its coupling to the rest of the

SM species. In Section 4.3 we switch on the coupling to the SM fields, but ignore the gauge

nature of the interactions. We obtain analytical estimates for a later comparison with numerical

simulations. In Section 4.4 we present the first set of lattice simulations, where we follow

the Higgs and its decay products, yet under the assumption that the gauge nature of the SM

interactions can be neglected. In Section 4.5 we finally incorporate gauge interactions into the

simulations, by modelling the SM with an Abelian-Higgs setup. This is just an approximation
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to the gauge structure of the SM, but the outcome of these simulations fully incorporates the

nonlinear and nonperturbative effects of the SM, while considering the gauge nature of its

interactions. In Section 4.6 we present a useful mapping between simulations with different

parameters, from which we obtain a characterization of the Higgs decay width as a function

of the coupling constants, initial Higgs amplitude, and postinflationary expansion rate. In

Section 4.7 we summarize our results and conclude.

4.2. Higgs dynamics during and after inflation

In this section we consider the dynamics of the Standard Model Higgs during and after inflation.

The relevant part of the SM Lagrangian is

SSM ⊃
∫

d4x
√
−g
(
|DµΦ|2 + ξR|Φ|2 + V(Φ)

)
, (4.1)

where g is the determinant of the spacetime metric, Φ is the Higgs field (a complex doublet),

and Dµ is the gauge covariant derivative. We have also included a coupling of the Higgs

to the scalar curvature ξR|Φ|2, which is necessary for renormalization in curved spacetime.

We will consider for the moment the minimal scenario ξ = 0, and postpone to Chapter 7 the

discussion about the effects of such term in the Higgs dynamics1. The SM Higgs doublet can

be parametrized in the unitary gauge by a single scalar real degree of freedom, Φ ≡ ϕ/
√

2.

The Higgs potential is, at tree level,

V(Φ) ≡ λ

4
(ϕ† ϕ− v2)2 , (4.2)

where v ≡ 246GeV is the electroweak scale. In this thesis, we will always consider Higgs

amplitudes ϕ� v, so we can safely ignore the vacuum term in Eq. (4.2).

When the theory is renormalized, the different coupling constants run with energy. Let us

focus on the Higgs self-coupling. The renormalized-group-improved Higgs potential can be

written as

V(ϕ) =
λ(ϕ)

4
|ϕ|4 , (4.3)

where λ(ϕ) is the renormalised Higgs self-coupling at the renormalization scale µ = ϕ. The

running behavior has been computed up to three loops in Minkowski spacetime [131, 132]. The

running is very sensitive to the strong coupling constant αs, the Higgs mass mh, and the Yukawa

top coupling yt, the latter being currently the strongest source of uncertainty. We show in the

1In reality, when the theory is renormalized, ξ = ξ(µ) runs with energy, so it cannot be set exactly to 0
at all scales. For example, according to the calculation of Ref. [129] at one-loop level, a value ξ(v) = 0
at the electroweak scale v ∼ O(102)GeV corresponds to ξ(H∗) ≈ −0.03 at the scale H∗ ∼ 1014GeV.
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Figure 4.1.: Left: Running of λ(ϕ) as a function of the Higgs field ϕ for αs = 0.1184, mh =
125.5GeV, and different values of the top quark mass mt, obtained from the public
package provided in Ref. [130]. Right: Improved renormalized Higgs potential
at next-to-next-to-leading order (red continuous line) computed for αs = 0.1184,
mH = 125.5 GeV, and mt = 171.2 GeV. Also shown, from comparison, the function
1
4 λ+ϕ4 (blue dashed line), where λ+ ≡ λ(µ+) ' 3× 10−5.

left panel of Fig. 4.1 the running of λ(ϕ) for the central values αs = 0.1184, mh = 125.5GeV,

and different values of the top quark mass. The figure has been obtained with the public

package of [130]. We observe that, for top quark masses larger than mt ≥ mt,c ≈ 171.1GeV, the

Higgs self-coupling (and hence the effective Higgs potential) becomes negative for amplitudes

ϕ > ϕ0, with ϕ0 a certain scale. In the right panel of Fig. 4.1, we have plotted the Higgs

potential for the particular case mt = 171.2GeV ≥ mt,c. The effective potential develops a

barrier at large field amplitudes, reaching a maximum height at some scale ϕ = ϕ+, so that at

higher energies ϕ > ϕ+ the effective potential goes down, crosses zero at ϕ = ϕ0, and becomes

negative, possibly reaching a (negative) minimum at some scale ϕ− � ϕ0. We indicate the

scales ϕ+ and ϕ0 for different choices of the top quark mass in Table 4.1. For the world-average

top quark mass mt = 172.44±0.13(stat)
±0.47(syst)GeV [133], the instability scale is ϕ0 ≈ 1011GeV. This

may have important implications for the stability of the Higgs vacuum in the early Universe,

because the Higgs field could achieve these amplitudes during or after inflation. However,

for top quark masses mt < mt,c, the Higgs potential is positive at all scales, and there is not a

second negative-energy vacuum at large amplitudes.

In this chapter and the next two ones, we will consider that the Higgs amplitude during

inflation remains always in the ’safe’ side of the effective potential, where λ(ϕ) is positive. This

can be guaranteed if ϕ+ is sufficiently large compared to the inflationary scale, or alternatively,

if beyond-the-SM physics stabilizes the potential at high energies. With these considerations,

the Higgs fluctuates during inflation, like any light degree of freedom. The fluctuations then

pile up at super-Hubble scales, creating a condensate [134, 119]. The amplitude of the Higgs

condensate, however, does not grow unbounded with the numbers of e-folds, as it happens

in the case of a massless free field. On the contrary, the Higgs self-interactions provide an

effective (sub-Hubble) mass to the fluctuations, which eventually saturates the growth of the
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mt(GeV) ϕ+(GeV) ϕ0(GeV)

172.12 7.83× 1011 1.01× 1012

172.73 5.20× 1010 6.70× 1010

173.34 7.49× 109 9.65× 109

173.95 1.67× 109 2.15× 109

174.56 4.92× 108 6.34× 108

Table 4.1.: The values of the Higgs field where the potential Eq. (4.3) has a maximum (ϕ+) and
crosses zero (ϕ0), obtained for αs = 0.1184, mh = 125.5GeV, and different values of
the top quark mass. These quantities have been obtained with the public package
of [130].

condensate amplitude [54]. In particular, the Higgs amplitude during inflation reaches, within

few e-folds, the equilibrium distribution [54]

Peq(ϕ) = N exp
{
−2π2

3
λϕ4

H4
∗

}
, N ≡ 2

1
4 λ

1
4
√

4π

3
1
4 Γ( 1

4 )H∗
, (4.4)

where H∗ � v is the Hubble rate of inflation, characterized as a de Sitter period.

The correlation length, i.e. the physical scale above which the Higgs amplitude ϕ fluctuates

according to Eq. (4.4), is given by l∗ ≈ exp{3.8/
√

λ}H−1
∗ [54], so it is exponentially larger

than the inflationary Hubble radius H−1
∗ . After the equilibrium distribution is reached at

some point during inflation, the correlation length remains invariant until the end of the

exponential expansion. Hence, immediately after inflation, the Higgs amplitude ϕ can safely

be considered homogeneous within any volume of size l � l∗. The Higgs amplitude varies

randomly according to Eq. (4.4), but only at scales l � l∗, much larger than the correlation

length.

A typical Higgs amplitude at the end of inflation is given by the root mean square (rms),

ϕrms =
√
〈ϕ2〉 ' 1.15 H∗

(
0.01

λ

)−1/4

. (4.5)

For reasonable values λ ∈ [10−2, 10−5] (see left panel of Fig. 4.1), the typical Higgs amplitudes

are of the order ϕrms ∼ H∗. We do not know the actual value of ϕ within the ’progenitor’

patch from which our visible Universe grew up. Actually, we do not know the value of the

Higgs condensate within any patch, we just know that typically ϕ/H∗ ∼ O(0.01)−O(1) for

reasonable values of λ. That means that just after inflation, within any patch of size l . l∗, the

Higgs has a nonzero amplitude that could be really large, almost as big as H∗ depending on its

realization. The most updated upper bound for the inflationary Hubble rate is [16]

H∗ ≤ H(max)
∗ ' 8.4× 1013GeV ,
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so the Higgs amplitude at the end of inflation could be ranging around |ϕ| . (1012 − 1014)

GeV ×(H∗/H(max)
∗ ).

Before moving on, let us note that we have not considered a coupling between the Higgs

field and the inflationary sector. The need to reheat the Universe after inflation requires

somehow a coupling between the SM and the inflationary sector, though there is no particular

constraint on this. Therefore, effective operators are expected to connect the Higgs with the

inflaton when integrating out some possible mediator field(s). However, as we will show in

the following sections, the Higgs decays very fast after inflation into all SM species. Hence,

even if there is a Higgs-inflaton effective coupling, we will assume in practice that its effects

are negligible.

4.2.1. Higgs oscillations after inflation

The amplitude of the Higgs after inflation is nonzero, and given that the Higgs potential is

symmetric, the Higgs condensate is forced to oscillate around its minimum at ϕ = 0. As we

shall see, the larger the Higgs amplitude, the sooner the oscillations will start after the end of

inflation. The EOM (equation of motion) of the Higgs just after inflation is

ϕ̈ + 2Hϕ̇ + a2λϕ3 = ∇2ϕ , (4.6)

where · ≡ d/dt, with t being conformal time, andH = ȧ/a being the comoving Hubble rate.

In order to analyze the dynamics of the Higgs after inflation, it is necessary first to fix the

postinflationary expansion rate. Since we do not specify the nature of the inflationary sector

here, we can parametrize the scale factor after inflation like

a(t) = a∗

(
1 +

1
p

a∗H∗(t− t∗)
)p

, p ≡ 2
(1 + 3w)

, (4.7)

with a∗ being the scale factor at the initial time t = t∗ (i.e. at the end of inflation), and w being

the equation of state of the Universe characterizing the expansion rate of the period following

inflation2. For instance, if the inflationary sector is described by an inflaton with a quadratic

potential, the Universe expands as in a matter-domination (MD) regime after inflation, so w = 0

and p = 2. If it is described by an inflaton with a quartic potential, the Universe expands as in a

radiation-domination (RD) regime, with w = 1/3 and p = 1. We are also free to consider other

possibilities, such as a kination-domination (KD) regime, with w = 1 and p = 1/2, obtained

when an abrupt drop of the inflaton potential takes place at the end of inflation, transferring all

2Note that for t ≈ t∗, there should be a transition period between (quasi) de Sitter and power-law
expansion, which we do not take into account.
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the energy into kinetic degrees of freedom [135, 136]. The Hubble rate is then given by

H(t) ≡ ȧ
a
=

a∗H∗
[1 + p−1a∗H∗(t− t∗)]

≡ a∗H∗
p
√

a(t)/a∗
. (4.8)

We will consider the evolution of the Higgs in an arbitrary patch, inside which its amplitude

[randomly drawn from Eq. (4.4)] can be regarded as homogeneous. The correlation length is

exponentially bigger compared to the Hubble radius, so if we just follow the Higgs within a

causal domain of initial size l ∼ 1/H∗ � l∗, then we can drop the Laplacian term on the rhs of

Eq. (4.6). It is convenient to define dimensionless conformal time and Higgs field variables as

z ≡ a∗H∗(t− t∗) , h(z) ≡ a
a∗

ϕ

ϕ∗
, (4.9)

with ϕ∗ being the initial amplitude of the Higgs. The scale factor can then be written as

a(z) = a∗(1 + p−1z)p. Hence, we can write the Higgs EOM in a more convenient form as

h′′ + β2h3 =
a′′

a
h , β2 ≡ λϕ2

∗
H2
∗

, (4.10)

where ′ ≡ d/dz, and β characterizes the frequency of oscillations. The term on the rhs

scales as a′′/a ∼ (a∗/a)2/p, and hence it becomes irrelevant very soon, since it decays as

a′′/a ∼ z−2/p � 1. The initial condition for the Higgs amplitude in the new variables is,

by construction, h∗ ≡ 1. The initial condition for the derivative h′∗ ≡ dh∗/dz, taking into

account that the Higgs was in slow roll during inflation [i.e. ϕ̇(t∗) = −λa2
∗ϕ

3
∗/2H∗], reads out

h′∗ ≡ 1− β2/2.

We have plotted in Fig. 4.2 different solutions to the Higgs Eq. (4.10), for a RD background

and different values of β. We observe that the initial velocity of the Higgs and the frequency of

its oscillations (in the dimensionless variables) both depend, through β, on the initial amplitude

of the Higgs ϕ∗, and the actual value of λ. Therefore, at different patches of the Universe

(separated at distances larger than the correlation length l � l∗), the Higgs will start oscillating

with different amplitudes, and the oscillation frequency will also be different.

At the end of inflation, the Higgs has, within any arbitrary patch of size smaller than l∗,
an initial velocity in slow roll and a nonzero amplitude as large as ϕ/H∗ ∼ O(0.01)−O(1).
This amplitude remains ’frozen’ for a finite time until the start of the oscillations. Looking at

Eq. (4.6), and denoting as zosc(β) the time at which oscillations start at each patch, we see that

the condition for the onset of oscillations is a(zosc)
√

λϕ(zosc) = H(zosc). For simplicity, we will

set the initial value of the scale factor to unity a∗ ≡ a(t∗) = 1, so thatH∗ ≡ H∗, z ≡ H∗(t− t∗),
and a(z) = (1 + z/p)p. We will also denote any quantity evaluated at zosc with the suffix osc,

so for example aosc ≡ a(zosc). It follows that aosc
√

λϕosc = aoscHosc = H∗/a1/p
osc , from which we
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Figure 4.2.: Evolution of the Higgs field for β = 10−2, 2.5× 10−2, 5.0× 10−2, 7.5× 10−2 and
10−1 (corresponding to the red solid, orange dotted, blue dotted-dashed, green
long-dashed and purple short-dashed lines, respectively). The background is RD,
so w = 1/3. Dashed vertical lines mark the time zosc(β) when the oscillation
condition is attained, a

√
λϕ ≡ H, whereas continuous vertical lines mark the time

zM(β) when the first maximum in the oscillations is reached, characterized by the
condition h′(zM) ≡ 0. Left: Evolution of h(z). Right: Evolution of the physical
Higgs ϕ/ϕ∗, which is initially frozen until the oscillations start, and then decreases
as ∝ 1/a afterwards, as it oscillates.

find

ϕosc ≡
H∗√

λ

1

(aosc)
1+ 1

p
⇒ p
√

aosc β hosc = 1 . (4.11)

We have obtained fits for zosc, hosc as a function of β and ω. These fits will turn out to be

useful later on. We find

hosc = 0.98 β
− 2

3(1+w) , (4.12)

zosc =
2

(1 + 3w)

(
1.02 β

− (1+3w)
3(1+w) − 1

)
. (4.13)

On the other hand, let us define zM as the time when h(z) reaches its first maximum [character-

ized by h′(zM) = 0], as well as the oscillation period as ZT. We can show that h(zM) and ZT

also depend on β and the post-inflationary equation of state w, according to the following fits,

h(zM) = Ahosc , ZT = Bβ
− (1+3w)

3(1+w) , (4.14)

where the constants A and B are (A, B) ' (1.28, 6.30), (1.22, 6.25), (1.17, 6.25) for w = 0, 1/3,

and 1, respectively.
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At the end of inflation, the Higgs energy density at a given patch is mostly dominated by

its potential energy,

V∗ ≡
λϕ4
∗

4
, (4.15)

which represents a very small contribution of the total energy budget at that moment. In

particular, averaging over realizations, we find

〈V∗〉
3m2

pH2
∗
' 4× 10−12

(
H∗

H(max)
∗

)2

� 1 . (4.16)

At the onset of oscillations, part of the potential energy will become kinetic, with the two

contributions – kinetic and potential – becoming of the same magnitude. In order to see this,

let us first write the total energy density of the Higgs as

ρϕ =
1

2a2 ϕ̇2 +
λ

4
ϕ4 =

V∗
a4(z)

E(z, β) , (4.17)

with the kinetic and potential contributions given by

E(z, β) =
1
β2

(
h′ − a′

a
h
)2

+ h4 ≡ EK(z, β) + EV(z, β) . (4.18)

We can then take the average over the Higgs oscillations as3

ρϕ(z, β) =
V∗

a4(z)
E(β) , E(β) =

1
ZT(β)

∫ z+ZT(β)

z
dz′E(z′, β) , (4.19)

and again split the result into potential and kinetic contributions, E(β) = EK(β) + EV(β),

where

EV(β) ≡ 1
ZT(β)

∫ z+ZT(β)

z
h4(z′)dz′ =

1
3

E(β) , (4.20)

EK(β) ≡ 1
ZT(β)

∫ z+ZT(β)

z
dz′

1
β2

(
h′ − a′

a
h
)2

=
2
3

E(β) . (4.21)

(4.22)

The averaged components verify EV(β) = 1
3 E(β) and EK(β) = 2

3 E(β). We observe that the

Higgs energy density scales as a−4 with the expansion of the Universe [52], behaving as if it

were a fluid of relativistic species.

3Note that we are not including in the average the prefactor 1/a4(t) factorized out in Eq. (4.17), since
the scale factor changes only marginally during each oscillation. Therefore, we are only averaging
the contribution due to the Higgs oscillatory behavior.
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4.3. Higgs decay: Analytical estimates

As just explained, the Higgs oscillates everywhere in the Universe, although the time to start

the oscillations depends sensitively on the initial condensate amplitude, which varies from

patch to patch according to Peq(ϕ) [Eq. (4.4)]. Once the oscillations have begun within a given

patch, all fields coupled directly to the Higgs are excited every time the Higgs goes through

the minimum of its potential. In the case of bosonic species, this occurs through a process of

parametric resonance, similar to the one described in Section 2.3.1 in the context of preheating.

Consequently, there is a resonant growth of the number density of species due to a cumulative

effect [21, 22, 25, 26, 137, 55, 128]. In the case of fermionic species there is no parametric

resonance, but an interesting effect occurs, since modes with successively higher momenta are

excited as the oscillations carry on [29, 138, 32, 30, 31, 122].

First, all charged leptons of the SM are directly coupled to the Higgs via a Yukawa interac-

tion, so all fermions of the SM will be excited during the oscillations of the Higgs [122], with

the possible exception of neutrinos. Among the SM fermions, the top quark has the largest

coupling to the Higgs, so most of the energy transferred into fermions goes into top quarks.

The SU(2)L gauge bosons are also coupled directly to the Higgs, and indeed the strength of

their coupling is very similar to that of the Yukawa top quark. When two species, one fermionic

and another bosonic, are coupled with the same strength to an oscillatory homogeneous field,

the first burst of particle production is actually spin independent, and hence an equal number

of bosons and fermions are created [33]. However, the successive particle creation bursts at

each Higgs zero crossing take place on top of an already existing number density of previously

created species. The spin statistics becomes then crucial, differentiating bosons from fermions

in a noticeable way: bosonic occupation numbers start growing exponentially as the oscillations

accumulate, whereas the fermion occupation numbers are always Pauli-blocked, forcing the

transfer of energy into modes with higher and higher momenta. Due to this, the transfer of

energy is much more efficient into the bosonic species [32] than into fermions. Therefore, in the

following three chapters we will only focus on the production of the W± and Z gauge bosons,

which are the most energetically dominant species among the Higgs decay products. Besides,

in the context under study here – the decay of the Higgs after inflation –, the subdominant

production of the SM charged leptons has been already addressed in [122].

In order to study the dynamics after inflation of the Higgs and its most energetic decay

products, one should in principle consider the full SU(2)×U(1) gauge structure of the SM

electroweak sector. However, one can make reasonable approximations for both analytical

and computational purposes. In this chapter we consider the following approximate schemes,

mimicking the structure of the SM interactions:

i) Abelian model. This consists in modelling the interactions between the electroweak

gauge bosons and the Higgs with an Abelian-Higgs set-up. Since gauge fields are initially
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excited by the Higgs from the vacuum, it is clear that nonlinearities due to the truly

non-Abelian nature of SU(2) are expected to be negligible during the initial growth of

the gauge field occupation numbers [63]. The authors of Ref. [128] have shown, using

the Hartree approximation, that the effective contribution induced by the created gauge

bosons onto themselves (due to the non-Abelian nonlinearities) can be neglected as long

as the backreaction from the gauge fields onto the Higgs does not become significant.

We shall see in Section 4.5.1 that this fact justifies, in principle, ignoring the non-Abelian

structure of the SM interactions, while maintaining only the Abelian dominant part.

ii) Global model. A more crude approximation can yet be done, by ignoring the gauge

structure of the interactions. This does not mean that we ignore the interactions them-

selves, but rather that we consider them as if they were dictated by a global symmetry,

instead of a gauge one. In this scenario, one simply solves the mode equations of various

scalar fields coupled to the Higgs with a quadratic interaction. Each of these scalar fields

mimics a component of the gauge fields, with the quadratic interactions reproducing

the coupling of the gauge bosons and the Higgs obtained from the SM gauge covariant

derivative terms. This way, one can presumably capture the initial stages of the parametric

resonance of W± and Z bosons.

The approach i is our most precise modelling of the SM interactions, but also the most

involved one. On the other hand, although the approach ii is less accurate, it allows for an

analytical treatment. The order of presentation of our different approaches is thus based on

increasing progressively the degree of proximity to the real system. First, in the remainder

of this section, we start with the analytical treatment of the global modelling, ignoring all

nonlinearities of the system. In Section 4.4 we implement the global model ii) on the lattice.

Afterwards, in Section 4.5, we present a lattice implementation of the Abelian model i). Finally,

in Chapter 6 we will present lattice simulations of the exact SU(2)×U(1) gauge theory. We will

then be able to accurately assess the validity of the global and Abelian models.

4.3.1. Analytical approach to the Higgs decay in the global model

In this approach, we simply solve the mode equation for a scalar field χ, coupled to the Higgs

with an interaction term of the form e2

2 χ2ϕ2. In order to identify e2 with the gauge coupling g2

between the Higgs and a gauge field, we need to make the identification e2 → g2/4, with g2

the gauge coupling g2
Z or g2

W of either the Z or the W± gauge bosons. This matches correctly

the interaction derived from the covariant gauge derivative of the electroweak sector of the SM.

Analytical results following this approach were previously presented in Ref. [55]. We develop

nevertheless some new formulas which will be useful later on.
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The equation for the Fourier modes of the field χ, after an appropriate conformal redefini-

tion χk ≡ Xk/a, and assuming RD, can be mapped into [26]

X′′k +
(
κ2 + q(h/hosc)

2)Xk = 0 , q ≡ e2

λ
, (4.23)

with q being the resonance parameter, κ ≡ k/(
√

λϕosc), ′ ≡ d/dz, and z ≡ Hosct. Given the

behavior of h(z), dictated by the Higgs quartic potential, this equation corresponds indeed

to the Lamé equation (2.20), which was studied in detail in Section 2.3.1 in the context of

preheating with quartic potential. This equation has a well-understood structure of resonances.

Whenever q ∈ 1
2 [n(n + 1), (n + 1)(n + 2)], with n = 1, 3, 5, ... (i.e. q ∈ [1, 3], [6, 10], ...), there is

an infrared band of resonance 0 ≤ k . k∗ ≡ 1√
2π

q1/4Hosc, for which Xk ∝ eµkz with Re[µk] > 0.

If the resonance parameter q > 1 is not within one of the resonant bands, but lies in between

two adjacent bands, then there is still a resonance of the type Xk ∝ eµkz, but within a shorter

range of momenta kmin ≤ k . k∗ (with kmin > 0), and hence with a smaller Floquet index µk.

For resonant parameters q� 1, µk is typically of order ∼ O(0.1).

Considering the range 10−2 . λ . 10−5, and taking into account the strength of the W±, Z
gauge couplings at high energies, we obtain that the resonant parameters are within the range

O(10) . q . O(103). In particular, since at high energies g2 = g2
W ' 0.3 for W gauge bosons,

we obtain q = 7.5 for λ = 10−2, and q = 3000 for λ = 2.5× 10−5. For Z bosons we obtain

resonance parameters twice as big. For completeness, we have sampled resonance parameters

within the interval q ∈ [5, 3000], which corresponds to a range λ = 1.5× 10−2 − 2.5× 10−5 for

W bosons and λ = 3.0× 10−2 − 5.0× 10−5 for Z bosons.

For simplicity, we will consider until the end of this section that the resonance parameter

q = e2/λ always falls within one of the resonant bands, q ∈ [1, 3], [6, 10], [15, 21], .... This

assumption is quite reasonable: note that the gauge couplings of the Z and W± gauge bosons

verify g2
Z ≈ 2g2

W ≈ 0.6 at very high energies, so it is likely that either qW ≡ g2
W/4λ or

qZ ≡ g2
Z/4λ ≈ 2qW , will fall within one of the instability bands.

Let us find an estimate for the time scale zeff at which an efficient transfer of energy has

taken place from the Higgs into the gauge bosons, characterized by ρA(zeff) = ρϕ(zeff), with

ρi (i = A, ϕ) the energy density of each species. This will be just a crude estimate of the time

scale of the Higgs decay, but it should provide, at least, a reasonable estimate of the order of

magnitude. Note that this calculation will be very similar to the one carried out in Section 2.3.1

[see Eqs. (2.22) to (2.29)].

For our calculations, we represent the gauge field as if it were simply a collection of three

scalar fields (one for each spatial component), all coupled with the same coupling strength g2

to the Higgs. The growth of the fluctuations in the initial stages of resonance is described by

the linearized Eq. (4.23). The energy density of the created particles due to the resonance is
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then given by

ρA =
3

2π2a3

∫
dkk2nkωk , ω2

k ≡
k2

a2 +
g2

4
ϕ2 , (4.24)

with the factor 3 accounting for the three spatial components of a gauge field, and where we

have introduced an oscillation-averaged effective mass for the gauge boson,

m2
A =

g2

4
ϕ2 =

g2

4
ϕ2
∗

a2 h2 ≡ g2

4
ϕ2
∗

a2
1

ZT(β)

∫ z+ZT(β)

z
dz′h2(z′) (4.25)

For q� 1, the maximum (comoving) momentum possibly excited in broad resonance is given

by

k2
∗ ≡

q1/2

2π2 a2
oscλϕ2

osc =
q1/2

2π2 h2
oscλϕ2

∗ , (4.26)

from which, given that h2 ∼ h2
osc, we see that

m2
A

(k∗/a)2 ∼ O(10)q1/2 � 1 . (4.27)

In broad resonance q � 1, the decay products are always nonrelativistic, and we can ap-

proximate the effective mode frequency as ωk ' mA ∼ g
2

ϕ∗
a hrms, where hrms ≡

√
h2. It turns

out that hrms ' hosc independently of β. If q is within a resonant band, then all modes with

momenta 0 ≤ k . k∗ are excited with some Floquet index varying within [0, µ
(max)
k (q)]. We

can therefore model the occupation number of the excited modes simply as a step function

nk = e2µkyΘ(1− k/k∗), where µk ∼ O(0.1) is the mean Floquet index of the resonance band,

and y ≡ Hosc(t − tosc) = aosc
√

λ(ϕosc/H∗)(z − zosc) = (aosc)
− 1

p (z − zosc), with z = H∗t. It

follows that

ρA(z) '
(hrms/hosc)2

4π2
1
a4 e

2µk
p√aosc

(z−zosc) gϕ∗hosck3
∗

' q5/4 (hrms/hosc)2

25/2π5 e
2µk

p√aosc
(z−zosc) H4

∗
(a p
√

aosc)4 , (4.28)

where we have used that βhosc = 1/ p
√

aosc.

On the other hand, the energy of the Higgs, since the onset of the oscillations, decays as

ρϕ(z) = V∗
1
a4 3EV(β) =

3
4

λϕ4
∗

a4 h4 =
3

4λ
(h/hosc)4 H4

∗
(a p
√

aosc)4 , (4.29)

where (h/hosc)4 ∼ O(1). We can now find zeff by simply equating Eqs. (4.28) and (4.29),

q1/4

25/2π5

√
(h/hosc)2e

2µk
p√aosc

(zeff−zosc) =
3
g2 (h/hosc)4 , (4.30)
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so that

zeff = zosc +
p
√

aosc

2µk

[
log

(
(h/hosc)4

(hrms/hosc)

)
+ log

(
3 · 25/2π5

g2

)
− 1

4
log q

]
. (4.31)

Let us recall that g2 ' 0.3, 0.6 at large energies, and q ≡ g2/(4λ) ∼ O(10)−O(103), depending

on the value of λ. Taking this into account, we find that the first term in the brackets of the rhs

is always irrelevant, the second term is constant and of the order ' 9, and the last term is of

order ∼ −1. Therefore, we can approximate the above expression, using p
√

aosc = (1 + 1
p zosc),

as

zeff ∼ 20×
(

0.2
µk

)
β
− (1+3w)

3(1+w) . (4.32)

Moreover, using Eq. (4.7), the scale factor at z = zeff is given by

aeff ≡ a(zeff) ∼ (20(1 + 3w))
2

(1+3w) · β−
2

3(1+w) . (4.33)

It is clear that depending on how small the initial value of β is within a given path of the

Universe, the longer it takes for the Higgs to transfer energy efficiently into the gauge bosons,

simply because the longer it takes (since the end of inflation) to start oscillating. Since βrms ∼
O(0.1), we see that typically the Higgs decays at a time zeff(βrms) ∼ O(102). Although the

time varies from patch to patch depending on the values of β, it is clear that the Higgs tends to

decay really fast after inflation, within a few dozens of oscillations. In the following sections

we will check the validity of this estimate by comparing it with the outcome obtained from

lattice simulations.

4.4. Lattice simulations, Part 1: Global modelling

In this section, we model the SM interactions with a set of scalar fields. More specifically, we

consider the Lagrangian

−L =
1
2

∂µ ϕ∂µ ϕ +
1
2

∂µχi∂
µχi +

λ

4
ϕ4 +

e2

2
ϕ2 ∑

i
χ2

i , (4.34)

with i = 1, 2, 3. Varying the action S =
∫

d4xL leads to the classical EOM

ϕ̈ + 2Hϕ̇−∇2ϕ + a2(λϕ2 + e2 ∑
i

χ2
i )ϕ = 0 , (4.35)

χ̈i + 2Hχ̇i −∇2χi + a2e2ϕ2χi = 0 . (4.36)
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The term e2ϕ2χi, under the identification e2 = g2/4, mimics precisely the interaction term from

the covariant derivative of the EW gauge bosons, g2

2 Φ†ΦAµ, where Aµ stands for either Zµ or

W±µ , and Φ is the Higgs doublet. More concretely, choosing the unitary gauge for the Higgs

Φ = (0, ϕ/
√

2), and fixing A0 = 0, we can identify each χi with each spatial component of

the gauge boson Ai, and ϕ with the unitary representation of the Higgs. This way, by solving

the system of scalar field equations (4.35) and (4.36), we can study the properties of the Higgs

interactions with gauge bosons in an approximative way.

We now present the main results of the lattice simulations carried out for this scenario. Let

us define new field variables as

h ≡ a
a∗

ϕ

ϕ∗
, Xi ≡

χi

H∗
a
a∗

. (4.37)

It is also convenient to redefine new spacetime coordinates zµ = (z0, zi) with respect to the

conformal ones xµ = (x0, xi) ≡ (t, xi), as

z ≡ z0 = H∗t , zi = H∗xi . (4.38)

With these redefinitions, we eliminate the friction terms in Eqs. (4.35) and (4.36), and produce

the following equivalent set of dynamical equations,

h′′ −∇2h + β2h3 + e2h ∑
j

X2
j =

a′′

a
h , (4.39)

X′′i −∇2Xi + qβ2h2Xi =
a′′

a
Xi , (4.40)

with ′ ≡ d/dz, and the spatial derivatives taken with respect to the zi variables. The resonance

parameter that appears naturally in Eq. (4.40), q ≡ e2

λ , should therefore be interpreted as q ≡ g2

4λ .

We have solved Eqs. (4.39) and (4.40) in three-dimensional lattices with periodic boundary

conditions. We consider initial conditions given by a homogeneous Higgs mode h(0) ≡ 1 and

h′(0) ≡ 1− β2/2 (as described in Section 4.2), and a null zero mode for the scalar fields coupled

to the Higgs, Xi(0) = 0 and X′i(0) = 0. We add, on top of the homogeneous contributions,

a set of Fourier modes with spectrum 〈| fk|2〉 = 1
2a2ωk

(in physical variables), mimicking the

quantum vacuum fluctuations of the ground state of a scalar field in a FRW background. Let

us recall that the Higgs is frozen in slow roll until the oscillation condition Eq. (4.11) is attained

at z = zosc; see the right panel of Fig. 4.2. Hence, during the time 0 ≤ z < zosc, we only evolve

in the lattice Eq. (4.39), corresponding to the slow rolling of the Higgs field (the homogeneous

mode of the χi fields is kept to zero). At z = zosc, we add the small inhomogeneous Fourier

modes to all fields, and from then on, we evolve together Eqs. (4.39) and (4.40).
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Figure 4.3.: Volume-averaged value of the Higgs field |h| as a function of time, for four different
resonance parameters, q = 8, 14, 101 and 354. Also plotted, the corresponding
envelope functions of the oscillations. All cases correspond to β = 0.01.

Our simulations depend on three parameters: q, β, and w. We have run simulations for

β = 0.5, 0.1, 10−2, 10−3 and 10−4, and for each value of β, we have chosen a set of 26 resonance

parameters q ≡ g2

4λ , logarithmically spaced between q = 5 and q = 3000. This corresponds

to sampling the Higgs self-coupling from λ ∼ 10−5 to λ ∼ 10−2. Scanning this way β and q
lead us to characterize the behavior of the system, scrutinizing all possible different outcomes

depending on λ and ϕ∗. We have guaranteed that we include both the cases in which q is

within a resonance band of the Lamé equation, or in the middle of two bands (see Section 2.3.1).

We have also run different simulations for three different expansion rates: a MD universe

(w = 0), a RD universe (w = 1/3), and a KD universe (w = 1).

We now present the main results of the lattice simulations carried out for this scenario. The

following results will be presented for a RD background (w = 1/3) and β = 0.01, the general-

ization to other expansion rates will be considered in Section 4.6. We have run simulations on a

lattice with N = 128 points per dimension, with periodic boundary conditions. We have made

sure that our results are not sensitive to the lattice spacing and time step.

In Fig. 4.3 we plot, as a function of time, the volume-average of the modulus of the

(conformally transformed) Higgs field |h|. In this figure, we show the outcome corresponding

to β = 0.01, and four different resonance parameters, q = 8, 14, 101 and 354. One conclusion

is immediately clear: the time scale of the Higgs amplitude decay depends noticeably on q.

Looking at the different panels of Fig. 4.3, it seems that the Higgs decay is slower the greater

the resonance parameter q is. This is very opposite to the intuition gained by the study of the

Lamé equation in Section 4.3, which dictates that the larger the q, the shorter the decay time of

the Higgs [see Eq. (4.31)]. We thus see on this the first difference between the simplified study
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Figure 4.4.: We plot in the left panel the volume-averaged value of the Higgs modulus for
q = 23, β = 0.01 and RD. We indicate the time z = zbr with a vertical dashed
line. We plot in the right panel the corresponding physical Higgs amplitude
|ϕ|/ϕ∗ = |h|/a. The decay of the Higgs into the other fields at later times is
manifested by a significant decrement of |ϕ|well below the 1/a decaying envelope.

of the system of scalar fields in the linear regime, and the real outcome when nonlinearities are

incorporated in lattice simulations. We will further comment on this issue later on.

One can distinguish two different stages in each decay process. Let us look, for instance,

at the left panel of Fig. 4.4, where the conformal Higgs modulus |h| is plotted for q = 23, and

where we also include the envelope curve of the oscillations. One can clearly appreciate that

initially, and for some time, the envelope is approximately constant. This is observed as a

plateau feature in the upper panel of Fig. 4.4. The vertical dashed line in the figure indicates the

end of this initial behavior, after which a second stage of rapid decay follows. Note, however,

that the amplitude of the physical Higgs ϕ/ϕ∗ = h/a(t) is always decaying with the scale

factor, no matter what its coupling to other species is. Before the second stage starts, the

physical Higgs amplitude ϕ decays mostly due to the expansion of the Universe, and not

because of an efficient transfer of energy into the scalars. However, both effects are combined

afterwards, producing an even more sharp decay of the physical amplitude. This is clearly

seen in the right panel of Fig. 4.4.

In order to understand better this two-stage behavior, we plot the different contributions to

the total energy of the system as a function of time. The energy density can be conveniently

written as

ρ(z) = V∗
Et(z)
a(z)4 , V∗ ≡

λϕ4
∗

4
, (4.41)

Et(z) = Eϕ
K + EV + Eϕ

G + Eχ
K + Eχ

G + Eint , (4.42)
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Figure 4.5.: Left: We show the envelope curves of the oscillations of the different contributions
to the total energy Et(z), obtained for q = 8, β = 0.01 and RD. The vertical dashed
line corresponds to the decay time zdec. Bottom: Same quantities as in the upper
figure (same color coding), but zooming in the area of interest. We also add two
new lines, a pink one corresponding to the sum of the Higgs gradient energy and
the interaction energy, and a light blue line, representing the sum of the χ fields’
gradient energy plus the interaction energy.

where, for our choice of variables, the Higgs and χ field contributions to the kinetic (K) energy

are given by ( ˙≡ d/dt, ′ ≡ d/dz)

Eϕ
K =

2
β2

(
h′ − h

a′

a

)2

, Eχ
K =

2λ

β4

3

∑
i=1

(
X′i − Xi

a′

a

)2

, (4.43)

the gradient (G) contributions by

Eϕ
G =

2
β2 |~∇h|2 , Eχ

G =
2λ

β4

3

∑
i=1
|~∇Xi|2 , (4.44)

and finally, the Higgs potential (V) energy and the interaction (int) term, by

EV = h4 , Eint =
2e2

β2 h2 ∑
i

X2
i . (4.45)

In Fig. 4.5 we have plotted the different contributions to Et(z) for the parameters β = 0.01

and q = 8. Initially, the system is dominated by the kinetic and potential energy densities of

the Higgs. This corresponds to the regime of anharmonic oscillations of the Higgs condensate

described in Section 4.2.1, for when the coupling to other fields was ignored (g2 → 0). However,

in reality, as soon as the Higgs starts to oscillate, there is an energy transfer into any species

coupled to the Higgs. Each time the Higgs crosses zero, a fraction of its energy goes into the χ

fields. Initially, the amount of energy transferred at each zero crossing is small relative to the

total energy stored in the Higgs, so it takes some time until the transfer becomes noticeable.

Eventually, at the time z = zbr, the energy transferred into the χ fields becomes significant

enough compared to the Higgs energy itself, so the Higgs condensate becomes affected. From
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then onwards, the Higgs continues pumping energy into the other fields at z > zbr, but

the amount of energy transferred at each zero crossing is no longer a small fraction of the

energy available in the Higgs condensate itself. Therefore, soon after backreaction becomes

noticeable at z = zbr, the previously exponential growth of the χ fields energy densities stops,

eventually saturating to a fixed amplitude. This is clearly seen in Fig. 4.5, where the gradient

and kinetic energy densities of the χ fields saturate to an almost constant amplitude. At the

same time, immediately after z = zbr, the energy of the Higgs (mostly dominated by the kinetic

contribution) drops abruptly, as can be clearly seen, for instance, from z ≈ 175 to z ≈ 900, for

the case depicted in Fig. 4.5.

A very relevant aspect to note is that when all the energy contributions stop growing

or decreasing abruptly (with the exception of the Higgs potential energy, which keeps on

falling for a long time), the energy components reach equipartition. In particular, at some time

z > zbr, the kinetic energy Eϕ
K of the Higgs becomes equal to the sum of the Higgs gradient

energy plus the interaction energy, Eϕ
G + Eint; see the lower panel of Fig. 4.5. In other words,

equipartition in the Higgs sector holds4 as Eϕ
K = Eϕ

G + Eint. Similarly, in the χ fields, the sum of

their gradient energy plus the interaction term achieves equipartition with their kinetic energy,

Eχ
K = Eχ

G + Eint, as can also be well appreciated in the lower panel of Fig. 4.5.

All features described so far are, of course, not specific to the particular case q = 8,

β = 0.01 and RD, shown in Fig. 4.5. A similar behavior is observed in the outcome of the

field distribution for other choices of β, q and ω, although the duration of the different stages

changes. In particular, the duration of the initial plateau is directly dependent on the band

structure of the Lamé equation.

We have characterized the dependence of zbr with the resonant parameter q; see Fig. 4.6.

Let us recall that zbr corresponds to the moment when the energy transferred into the χ fields is

sufficiently large so that the Higgs amplitude and energy density starts to decrease. Therefore,

this is the moment that should be compared to the analytical estimate Eq. (4.32) of the Higgs

decay time zeff, derived in Section 4.3.1. The zbr(q) behavior can be characterized by

zbr(q) ∼

 160 , q ∈ Resonant Band ,

869− 92 log q , q /∈ Resonant Band .
(4.46)

If a given q is within a resonant band, zbr(q) is almost independent of q, as appreciated

in the left panel of Fig. 4.6. For RD and β = 0.01, our analytical estimate Eq. (4.32) predicts

zeff ' 200, which is reasonably similar to the fit found from our numerical outcome, zbr(q) ≈
160. The analytical estimates are only an approximation to the real dynamics, and one cannot

expect anything more than a reasonable order-of-magnitude prediction, as is indeed the case.

4In reality, it should be Eϕ
K = Eϕ

G + Eint + EV , but EV is so small by then, that it does not make a
difference to add it or not.
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Figure 4.6.: Left: The different times zbr(q) obtained from our simulations, for RD (ω = 1/3)
and β = 0.01. Purple triangles and blue circles correspond to q parameters inside or
outside a resonance band of the Lamé equation respectively. The blue and purple
continuous lines correspond to the best fit to the circles and triangles respectively;
Eq. (4.46). The dashed line corresponds to the analytical estimate zeff ≈ 200,
obtained from Eq. (4.32) with µ̄k = 0.2. Right: The different points show the
Higgs time decay zdec(q) as a function of q obtained from our simulations for the
same (ω, β) values as the upper panel. The brown line corresponds to the best fit,
Eq. (4.47).

More importantly, the analytical calculation predicts that zeff should be only dependent on

q logarithmically [Eq. (4.31)], which implies that for mildly broad resonance parameters as

the ones we have, q ∼ O(10)−O(103), zeff is essentially independent of q, as is indeed well

appreciated in Fig. 4.6.

The dependence of zbr(q) with q’s outside resonance bands is also logarithmic, though with

a big coefficient. As it can be appreciated in the upper panel of Fig. 4.6, for q . 102 it is a

factor ∼2-4 larger than the analytical prediction Eq. (4.32), but becomes of the same order for

q ∼ 102 − 103, modulo a factor ∼1-2. Possibly, for q� 103, zbr(q) will become smaller, but as

said before, such regime is never valid in our case of study.

In light of the results of this section, we see that the Higgs decay should be identified,

rather than with zbr, with the abrupt drop of the Higgs energy density, some time afterwards at

z > zbr. After the drop, the kinetic contribution Eϕ
K (which is the dominant energy component

of the Higgs) enters into a stationary regime, equipartitioned with Eϕ
G + Eint. The onset of this

regime signals the end of the decrease of the Higgs kinetic energy. We therefore provide a

definition of the decay time of the Higgs, zdec, as the moment when equipartition (within the

Higgs sector) holds better than a given percentage. In practice, we operationally determine

zdec as the moment when the equality Eϕ
K ' Eϕ

G + Eint holds to better than 1%. Defining

the Higgs decay like this might seem arbitrary, but when looking carefully at the evolution

of the energy components, we see that the end of the drop of the Higgs kinetic energy Eϕ
K,

coincides always with the onset of its equipartition with Eϕ
G + Eint, for all resonant parameters.

From then onwards, i.e. for z > zdec, all energy components (with the exception of the Higgs
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Figure 4.7.: Left: Spectra for q = 14 of one of the scalar fields, χ1, plotted at times z =
11, 94, 258, 504, 668, 1160, 2308. Right: Same spectra for q = 101, plotted at times
z = 11, 94, 174, 254, 335, 657, 1302. The dashed vertical lines in the four figures
indicate the position of the corresponding band of the Lamé equation.

potential) enter into a stationary regime, evolving very slowly, and preserving all the time the

equipartition condition, Eϕ
K ' Eϕ

G + Eint and Eχ
K ' Eχ

G + Eint.

The dependence of the decay time scale zdec versus q is shown in the right panel of Fig. 4.6.

A fit to this relation is given by

zdec(q) = 507q0.44 . (4.47)

This is valid for β = 0.01 and for a RD (w = 1/3) background. As we shall explain in Section

4.6, this fit can be generalized to other β values within our range of interest, and to other

expansion rates (characterized by the equation of state w), as

zdec(q) ≈ 50.7β
−(1+3ω)
3(1+ω) q0.44 . (4.48)

As we can see, the behavior of zdec(q) is actually independent of whether q is within or outside

a resonance band. More remarkably, the growth of zdec(q) with q is actually quite contrary to

the intuition obtained from solving the Lamé equation. In the linear regime, when the Lamé

equation is valid, we expect that the larger the resonance parameter, the faster the transfer of

energy from the Higgs to its decay products [see Eq. (4.32)]. However, the behavior of zdec is

set by the nonlinearities of the problem, as opposed to zbr, which is determined by the linear

regime. This results in a completely opposite trend to zbr, given the growth of zdec with q.

To conclude the section, we will briefly describe the dynamics of the system in the spectral

domain. During the initial stages, the modes that are excited correspond to those in the band

structure of the Lamé equation. We clearly see this for z < zbr(q) in Fig. 4.7, where we plot, for

q = 14 and q = 101, the field spectra k3|Xk|2. We also indicate with dashed lines the resonance

bands. As the amplitude of the modes within the resonance bands grows, the system becomes

more and more nonlinear. Rescattering among modes occurs, and the bands become wider.
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Due to the coupling of the modes through Eqs. (4.39) and (4.40), the initial parametric resonance

of the χk modes within the resonance bands, excite at the same time Higgs modes ϕk′ , which

then rescatter off other modes χk′′ , and so on. As a consequence, the power spectrum of the

fields grows exponentially and widens, with a typical width 0 ≤ k . O(10)kL. As we have

discussed in detail, at late times z & zdec the fields enter into a stationary stage, characterized

by equipartition and a very slow evolution of the energy densities.

In the next section, we will present a similar analysis of the properties of the Higgs decay

process, but finally introducing the gauge nature of the interactions. Before we move on, let

us recall again that all our results of Section 4.4, correspond to RD and were obtained for a

fixed value β = 0.01. We will devote Section 4.6 to an analysis of how the results change when

varying the Higgs initial amplitude (i.e. β) and the background expansion rate (i.e. w).

4.5. Lattice Simulations, Part 2: Abelian-Higgs

modelling

In this section, we study the properties of the Higgs decay, modelling the system with an

Abelian-Higgs framework. In this approach, and in contrast with the global scenario, we intro-

duce a gauge structure in the interactions. We will approximate the action of the electroweak

sector of the standard model, invariant under the local SU(2)×U(1) symmetry group, by a local

U(1) gauge theory. In Section 4.5.1, we will see that the corrections due to the non-Abelian

nature of the SM interactions are not expected to play any significant role, at least at initial

times. Let us also note that we will continue considering a system where the Higgs is only

coupled to a single gauge boson, with resonance parameter q = g2/4λ. In Section 4.5.2 we will

consider the real case of the Higgs decaying simultaneously into the three gauge bosons W+,

W− and Z.

The Abelian-Higgs model with one gauge boson is described by the action S =
∫
L d4x,

with Lagrangian

−L = (DµΦ)∗(DµΦ) +
1

4e2 FµνFµν + λ(Φ∗Φ)2 , (4.49)

where the covariant derivative is Dµ = ∂µ − iAµ, the field strength is Fµν ≡ ∂µ Aν − ∂ν Aµ, and

e is the Abelian coupling strength representing the coupling of either one of the W± or Z gauge

fields. As before, in order to mimic correctly the Higgs-gauge interactions, we need to take

e2 = g2/4, with g2 = g2
W or g2

Z, respectively for W or Z bosons. The Higgs is here a complex

field written in terms of its real components as

Φ ≡ 1√
2

ϕ ≡ 1√
2
(ϕ1 + iϕ2) , ϕi ∈ Re . (4.50)
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From action (4.49) we derive the following equations of motion

Φ̈− DiDiΦ + 2HΦ̇ + 2λa2(t)|Φ|2Φ = 0 , (4.51)

∂0Fµ0 − ∂iFµi + 2e2a2(t)Im[Φ∗DµΦ] = 0 . (4.52)

As we are dealing with a gauge theory, we have a gauge freedom in the choice of the field

components. This allows us to set, from now on, the condition A0 = 0. In this case, the EOM of

the gauge fields, Eq. (4.52), can be written in terms of its components as

Äj + ∂j∂i Ai − ∂i∂i Aj = 2e2a2(t)Im[Φ∗DjΦ] , (4.53)

∂i Ȧi = 2e2a2(t)Im[Φ∗Φ] . (4.54)

Eq. (4.54) is the Gauss law, which represents a constraint that the solution to Eqs. (4.51) and

(4.53) must preserve at all times. We also define the gauge-invariant electric and magnetic

fields as usual, Ei ≡ Ȧi and Bi =
1
2 εijk(∂j Ak − ∂k Aj).

As in the global scenario, it is really useful to redefine the spacetime and field variables. On

the one hand, we change to the same set of dimensionless spacetime coordinates zµ = (z0, zi)

introduced in Section 4.4,

z ≡ z0 = H∗t , zi = H∗xi , (4.55)

and on the other hand, we define new Higgs and gauge field dimensionless variables as

hj ≡
a(z)
a∗

ϕj

ϕ∗
, Vi ≡

1
H∗

Ai . (4.56)

(with j = 1, 2; i = 1, 2, 3) where ϕ∗ ≡ |ϕ(t∗)| is the initial modulus of the complex Higgs field

at the end of inflation. To distinguish between different variables, we use a dot or a prime

to denote differentiation with respect conformal or natural variables ( ˙ ≡ d/dt, ′ ≡ d/dz),

respectively. From now on, all spatial derivatives will also be with respect the new variables,

unless otherwise stated. We also define a dimensionless covariant derivative as

Di ≡
∂

∂z
− iVi .

With these changes, Eqs. (4.51)-(4.54) can be written as

h′′1 −Re[DiDi(h1 + ih2)] + β2(h2
1 + h2

2)h1 = h1
a′′

a
, (4.57)

h′′2 − Im[DiDi(h1 + ih2)] + β2(h2
1 + h2

2)h2 = h2
a′′

a
, (4.58)

V ′′j + ∂j∂iVi − ∂i∂iVj = ji(z) , (4.59)

∂iV ′i = j0(z) , (4.60)
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where the current jµ(x) is defined as

jµ(x) ≡ qβ2Im[(h1 − ih2)Dµ(h1 + ih2)] . (4.61)

Finally, we also define dimensionless electric and magnetic fields as

Ei ≡ V ′i =
Ei

H2
∗

, Bi ≡
1
2

εijk(∂jVk − ∂kVj) =
Bi

H2
∗

. (4.62)

Let us consider now the initial conditions of the different fields. For the homogenous mode

of the Higgs field, we have, from Eq. (4.56) and by construction, |h∗| ≡ |h(t∗)| =
√

h2
1∗ + h2

2∗ =

1 at the end of inflation. As long as this condition is satisfied, we can freely distribute this

initial value between the components hi∗ ≡ hi(t∗), thanks to the symmetries of the model.

A convenient choice is h1∗ = 1 and h2∗ = 0. Moreover, as we are evolving the system of

equations from the end of inflation, the Higgs initial velocity must obey the slow-roll condition

ϕ̇i(t∗) = −λa2
∗ϕ

2
∗ϕi/2H∗. With the previous choice for h1∗ and h2∗, the slow-roll condition

reads h′1∗ = 1− β2

2 and h′2∗ = 0. We also set the homogeneous mode of the gauge bosons to

zero, Vi∗ = V ′i∗ = 0, until the onset of the oscillations at z = zosc.

In this chapter, we have solved the system of Eqs. (4.57)-(4.60) in three-dimensional lattices.

More specifically, we have solved a gauge-invariant set of analogous equations in a discrete

spacetime. In all simulations, we have ensured that the lattice analogue of the Gauss conserva-

tion law Eq. (4.60) is preserved by the time evolution of the system to the machine precision.

More details of the lattice formulation of the theory, as well as the preservation of the Gauss

laws, are given in Appendix A of the thesis.

The system is solved in the following way. First, for the times 0 < z < zosc, we only evolve

the homogeneous Higgs field with Eqs. (4.57) and (4.58), while the homogeneous gauge fields

are kept to zero. At z = zosc, we add fluctuations on top of the homogeneous modes of the

different fields, allowing the gauge boson production to take place. Over the homogeneous

mode of each Higgs component, we add Fourier modes with a spectrum 〈| fk|2〉 = 1
2a2ωk

(in

physical variables), which mimics again the vacuum fluctuations of the ground state of a scalar

field in a FRW background. On the other hand, the initialization of the gauge fields is more

subtle and delicate than in the case of scalar fields. In this case, the fluctuations we add to the

gauge fields must preserve the Gauss constraint Eq. (4.60) initially at every lattice point. We fix

the gauge fields’ amplitude in momentum space as

V ′i (~k, zosc) = i
ki

k2 j0(~k, zosc) , (4.63)

where in the lattice this is done with the corresponding lattice momenta. The implementation

of these initial conditions is described in more detail in Section A.2.4 of Appendix A. From
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Figure 4.8.: We show in blue the volume-average value of the conformal Higgs field |h| as a
function of time for the resonance parameters q = 23 and q = 167, and in purple
the maximum amplitude of the oscillations. The dashed vertical line indicates the
approximate time at which the initial plateau finishes and the Higgs decay starts.

z ≥ zosc onwards, the Gauss law is then preserved to machine precision by the gauge-invariant

evolution of the system.

We now present the main results of the lattice simulations carried out for the Abelian-Higgs

model. Like in the global scenario of Section 4.4, we have run simulations for several resonance

parameters ranging from q = 5 to q = 3000. These values correspond to λ values between

2.5× 10−5 and 1.5× 10−2 for the W boson, and 5× 10−5 and 3× 10−2 for the Z boson. All

results presented in this section will be obtained for a RD background (w = 1/3) and for

β = 0.01. In Section 4.6 we will explain how these results can be extrapolated to other values of

ω and β.

One of the main differences of the Abelian-Higgs model with respect to the global scenario

is that now the Higgs field is described by a set of two components h1, h2, combined in a

complex variable h = h1 + ih2. The quantity of interest that we must study is then the average

value of the Higgs modulus, |h| ≡
√

h2
1 + h2

2. We have plotted in Fig. 4.8 the volume-average

of the Higgs modulus |h| as a function of time, for the two resonance parameters q = 23 and

q = 167. We find that the Higgs amplitude behaves qualitatively in a similar way as in the

global scenario. This can be rapidly seen by comparing Fig. 4.8 to the equivalent Fig. 4.4 of

the global scenario. In both scenarios, there is first a stage of few oscillations during which

the (conformal) Higgs amplitude does not decay, corresponding to a plateau in the envelope

function. After that, at times z & zbr(q), the Higgs amplitude starts decaying strongly. This

time is indicated in both panels of Fig. 4.8 with a red dashed vertical line.

The time scale zbr(q) signals, as in the global modelling, the moment at which the decay

products (in this case, gauge bosons) have accumulated sufficient energy to start affecting the

dynamics of the Higgs condensate. As before, this is understood better if we plot the different

contributions to the energy, as a function of time. The energy density of the Abelian-Higgs
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model is found to be

ρ(z) =
V∗

a4(z)
Et(z) , V∗ ≡

λ

4
|ϕ∗|4 , (4.64)

where V∗ is the value of the Higgs potential at the end of inflation. The function Et(z) is formed

by the sum of the following contributions:

Et(z) = EK + EGD + EE + EM + EV . (4.65)

Here EK and EV are the kinetic and potential energies of the Higgs field

Eϕ
K =

2
β2

2

∑
i

(
h′i − hi

a′

a

)2

, EV = (h2
1 + h2

2)
2 ,

EGD is a gauge-invariant term formed by the product of two covariant derivatives of the Higgs

field (hence containing the spatial Higgs gradients plus the interaction terms)

EGD =
2
β2 ∑

i
Re[(Di(h1 + ih2))

∗Di(h1 + ih2)] , (4.66)

and EE and EM are the electric and magnetic energy densities

EE =
2

qβ4 ∑
i
E2

i , EM =
2

qβ4 ∑
i
B2

i . (4.67)

We have plotted in the left panel of Fig. 4.9 the volume-averaged quantities as a function

of time for the resonance parameter q = 9. We also show in the right panel of Fig. 4.9 the

contribution of each energy component to the total, Ei/Et, removing the oscillations of each

component, and hence showing only the corresponding envelope functions. We see that initially

the dominant contributions come from the kinetic and potential energies of the Higgs field.

This corresponds to the oscillations of the condensate around the minimum of its potential,

before it ‘feels’ the gauge fields. Meanwhile, the other components of the energy, EE, EM and

EGD, grow really fast, due to the energy transfer from the Higgs into the gauge fields. Note

that for the whole evolution of the system (until equipartition is reached), the electric energy

clearly dominates over the magnetic energy.

As in the global analogue, although gauge bosons are being strongly created, the Higgs

condensate is at first unaffected. At z ≈ zbr(q) (indicated by a dashed red vertical line in

the figures) the gauge energy has grown enough to start affecting significantly the Higgs

condensate, and a sharp decrease of both the Higgs potential and kinetic energy start from

then on. Physically, this happens when the fraction δ ≡ EE/Et < 1 becomes sizeable, of the

order δ & 0.1
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Figure 4.9.: Left panel: We plot the different contributions to the total energy of the system as
a function of time, Ei/Et [see Eq. (4.65)], for q = 9. All functions are oscillating,
so we take the envelope of the corresponding oscillations for clarity. The dashed
vertical line signals the Higgs decay time zdec(q). Right panel: We plot the same
quantities with the same color code as in the upper panel, but now EGD and EV
appear dashed, and we have added a new pink line corresponding to EGD + EV,
which is the quantity that equipartitionates with EK. Let us note that equipartition
in the gauge sector, between the electric and magnetic contributions, is achieved
later than in the scalar sector, at some time z > zdec(q).

As in the global scenario, for z & zbr(q) the Higgs kinetic and potential energies decrease

sharply. The potential energy very soon becomes irrelevant compared to the other energy

contributions, while the kinetic energy approaches an almost constant amplitude. Simultane-

ously, EGD and EE stop their growth, and also saturate to almost constant values. However,

the magnetic energy continues to grow even after EGD and EE have been stabilized. Finally,

at z = zdec, the system arrives again at a stationary regime, in which equipartition between

different components is clearly achieved. In this regime, 30% of the total energy goes to the

Higgs kinetic part, 30% to EGD, 20% to electric energy EE, and 20% to magnetic energy EM. The

potential energy EV also saturates to a constant, but it is very subdominant with respect to

the other contributions. Quite remarkably, these numerical percentages are independent of

the values q and β taken in our simulations. In other words, the final fractions of energies are

universal within the Abelian-Higgs formulation5.

We observe that the kinetic energy of the Higgs field EK eventually becomes equal to

EGD + EV. Since EGD is gauge invariant, it contains both the Higgs gradient terms plus the

Higgs interactions with the gauge fields. The evolution of the different energy components

and the achievement of equipartition can be well appreciated in Fig. 4.9. Note that the quantity

EGD + EV can be naturally identified, in the global scenario, with the quantity Eϕ
G + Eint + EV.

In that case we also observed equipartition according to the analogous equality EK ≈ Eϕ
G +

Eint + EV.

5We shall see in Chapter 6 that this is still true if the non-Abelian nature of the interactions is considered.
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Figure 4.10.: Left: Different values of zbr(q) obtained for different resonance parameters q, for a
RD universe and for β = 0.01. Blue squares correspond to q values that are within
a resonance band of the Lamé equation, while purple diamonds are points which
are not. The purple line corresponds to the best fit (4.68), while the dashed blue
line corresponds to the analytical estimate zeff ≈ 200, obtained from Eq. (4.32)
(µ̄k = 0.2). Right: Red points indicate the obtained Higgs decay times zdec(q) as
a function of q, for the same Abelian-Higgs simulations, while the red thick line
shows the best fit (4.69). The dashed yellow line shows the best fit of this same
quantity obtained from the global simulations in Eq. (4.47).

It is useful to define the Higgs decay time as the moment when the Higgs kinetic energy

results stabilized at the onset of the stationary regime. As in the global scenario, we will call

this quantity zdec(q). Naturally, there is again some degree of arbitrariness in this definition. In

the global scenario, we observed that a good operative criterion for defining zdec was based on

the degree of equipartition achieved. In our present gauge context, we have observed that an

appropriate criterion is to take the moment when the relative difference between EK and the

sum EGD + EV becomes less than 1%. We have indicated this time in Fig. 4.9, with a dashed

vertical line. As we can observe in Fig. 4.9, our criterion EK ' EGD + EV holding better than

1%, coincides very well with the moment when all relevant energy densities have just stopped

either growing or decreasing. Hence it defines very well what we mean by the end of the Higgs

decay.

We have characterized again the dependence of zbr and zdec with the different q’s considered.

We show in the upper panel of Fig. 4.10 the behavior of zbr(q). In the figure, blue squares

correspond to q values within a resonance band, and purple circles correspond to values

outside bands. We see a clear trend, such that simulations with q within resonance bands

have a smaller zbr(q) than those with q between adjacent bands. Like in the global scenario,

the order of magnitude of zbr for blue squares is approximated quite well with the analytical

estimate zeff ≈ 200, obtained from Eq. (4.32), with µ̄k = 0.2. At the same time, the purple circles

can be fitted as

zbr(q) ∼ 1066− 127 log q , q /∈ Resonant Band , (4.68)
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Figure 4.11.: Electric spectra k3|Ek|2 and magnetic spectra k3|Bk|2 for different times and for
q = 5 (upper panels) and q = 9 (lower panels). The dashed, vertical lines indicate
the corresponding position of the resonance band. The corresponding times at
which the spectra are plotted are written at the right.

but their dispersion is much worse than in the global case (recall the left panel of Fig. 4.6).

In the right panel of Fig. 4.10, we also plot zdec as a function of the resonance parameter q.

We have obtained the following phenomenological fit

zdec(q) = 588q0.42 , (4.69)

indicated in the figure with a red continuous line. Note that we have plotted as well the

corresponding fit obtained from the global simulations, Eq. (4.47), with a dashed line. Both

fits coincide pretty well, indicating that the Higgs decay time zdec(q) obtained in the global

scenario constitutes already a very good estimation. To some extent this is surprising, since

one could expect that the extra terms in the gauge field’s EOM could play some role, like for

example modulating the decay time zdec(q) differently than in the case of only scalar fields.

However, our results prove that this is not the case. In fact, they imply that the interaction term

g2 Aµ Aµ ϕ2 (which is the only one kept in the global scenario) is the most relevant one when

determining the Higgs decay time scale and the onset of the stationary regime.

Let us note again that the fit Eq. (4.69) is only valid for β = 0.01 and for a RD background.

Using the theoretical extrapolation that we will present in Section 4.6, this can be generalized
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to other β and w values as

zdec(q) ≈ 58.8β
−(1+3ω)
3(1+ω) q0.42 . (4.70)

An alternative source of information about the Abelian-Higgs system comes from the

spectra of the different fields. Since we are dealing with a gauge theory, all quantities of

physical interest must be gauge invariant. We then plot in Fig. 4.11 the spectra of the electric

and magnetic fields k3|Ek|2 and k3|Bk|2 for two different resonance parameters, q = 5 and q = 9.

The latter is placed in the middle of a resonance bands, while the former is between the first

and second resonance bands. The dashed vertical lines in the figures indicate the position of

the resonantly excited momenta in each case. In the case q = 5, a peak clearly appears in both

spectra at initial times, centered in the corresponding main resonance band. This confirms that

the behavior derived from the Lamé equation describes well enough the real dynamics during

the initial stages, even for the gauge theory. When the gauge bosons start to affect significantly

the Higgs condensate, i.e. for z & zbr(q), both spectra start to displace to the right, populating

modes of higher momenta. In this process, new subdominant peaks appear. As time goes

on, the peaks disappear, and when the Higgs condensate has decayed [i.e for z & zdec(q)],
the stationary state is established. For the case q = 9, the band of excited momenta is much

wider (including modes down to k = 0), and consequently, the time scale zbr(q) ≈ 150 is much

smaller than for q = 5. For q = 9, the population of higher modes is much faster than for q = 5,

and we do not observe additional subdominant peaks in the spectra.

4.5.1. Beyond the Abelian-Higgs

The real nature of the SM interactions is non-Abelian, since the EW sector of the SM is SU(2)×
U(1) gauge invariant. In the EOM of the gauge bosons there are therefore nonlinear terms6

of the form ∼ g2A3, gA∂A, g∂A2, where we omit charge and Lorentz indices for simplicity.

Following [128], one obtains that within the Hartree approximation, the terms ∼ gA∂A, g∂A2

vanish, so that in principle only the terms ∼ g2A3 contribute effectively to the dynamics of

the gauge fields. We can write the effective mass entering into the gauge fields’ EOM, as

given by their interactions with the Higgs, plus a contribution from their own non-Abelian

self-interactions. Symbolically, we will write this as

m2
A = g2ϕ2 +

〈
A2〉 . (4.71)

The Abelian-Higgs simulations capture the first term g2ϕ2, which is due to the interaction

with the Higgs, and is responsible for the resonant excitation of the gauge fields. The self-

6For the sake of clarity of the physics, we switch back to physical variables in the discussion of this
subsection.
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induced mass due to the gauge-field self-interactions is, of course, not present in the Abelian

approach. This second term describes the nonlinearities of the non-Abelian nature of the SM

interactions. Hence, only when the gauge fields have been excited with a sufficiently high

amplitude
〈

A2〉 & g2ϕ2 may their presence have any relevance. The question is then: when do

the gauge fields reach the critical amplitude A ∼ Ac ≡ gϕ?

The answer can be easily found by analyzing the effective mass of the Higgs. The non-

Abelian nature of the interactions does not add any extra contribution into the effective mass

of the Higgs field, given by

m2
ϕ = λϕ2 + g2 〈A2〉 . (4.72)

These terms are already captured in our simulations, so the only difference in a non-Abelian

simulation would come from the fact that Aµ is affected by the nonlinearities of its own EOM.

The gauge fields backreact into the Higgs dynamics at the time z = zbr(q), which corresponds

physically with the moment when the amplitude of the gauge fields has grown – due to

parametric resonance – up to
〈

A2〉 & λϕ2/g2. This condition corresponds, however, to a

typical amplitude of the gauge fields A ∼ A(zbr) ≡
√

λϕ/g, which is much smaller than Ac.

In particular, A(zbr)
Ac
∼ 1

g
√

q < 1, for the typical broad resonant parameters q ∼ O(10)−O(103).

The effective mass of the gauge bosons at z ≈ zbr is

m2
A(zbr) = g2ϕ2 +

〈
A2〉

zbr
≈ g2ϕ2

(
1 +

1
g2q

)
, (4.73)

where 1
g2q � 1 for the typical values in this scenario. It is then clear that m2

A(zbr) ≈ g2ϕ2, as if

there were no effect from the gauge-field self-interactions. By the time the gauge-field resonant

production backreacts on the Higgs dynamics, the gauge fields stop growing, as explained

in detail in Section 4.5. Therefore, the non-Abelian terms (neglected in the Abelian-Higgs

approach), are not expected to play any significant role in the dynamics of the system, except

for low resonance parameters of the order q ∼ O(10). It is, however, likely that the presence of

the non-Abelian terms will possibly change the details of the achievement of the equipartition

regime. Therefore, although we do not expect the time scale zbr(q) to change significantly, the

time scale zdec(q) will probably change moderately in the presence of non-Abelian corrections.

In light of this analysis, we see a posteriori that neglecting the nonlinearities due to the non-

Abelian nature of the SM interactions can be justified.

In any case, note that only lattice simulations of a SU(2)×U(1) gauge system can really

assess whether the approach of ignoring the non-Abelianities is correct, or they have a sizeable

effect in the Higgs and gauge post-inflationary dynamics. We will present such simulations in

Chapter 6.
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4.5.2. Abelian-Higgs model with three gauge fields

So far, we have studied the postinflationary Higgs dynamics in the lattice, mimicking its

interaction with a single gauge boson using an Abelian-Higgs modelling. This has allowed us

to obtain a bunch of interesting results, which depend greatly on the choice of the gauge boson

resonance parameter, q ≡ g2/(4λ), with g2 being the corresponding standard model coupling

of either W or Z bosons. Naturally, we should include the three massive gauge bosons in our

simulations (i.e. the W+, W− and Z), as in the EW sector of the standard model. Remarkably,

the results presented so far for a single gauge field can be easily translated into the three-boson

case, with an appropriate field redefinition. We explain this in what follows.

In the case of a Higgs decaying into three Abelian gauge fields, the Higgs equation can be

written as

h′′ −DiDih + β2|h|2h = h
a′′

a
, (4.74)

where h ≡ h1 + ih2, and the covariant derivative is now

Di ≡
∂

∂zi − i(W+
i + W−i + Zi) . (4.75)

Here, W+
µ , W−µ , and Zµ are the corresponding fields of the W+, W−, and Z bosons, respectively.

We describe the three fields in the temporal gauge, so that their 0 components are null. The

EOMs of either of the W bosons are then

W ′′j + ∂j∂iWi − ∂i∂iWj = qW β2Im[h∗Dih] , (4.76)

∂iW ′i = qW β2Im[h∗h′] , (4.77)

with qW ≡ g2
W/(4λ). Equivalently, the EOMs of the Z boson are

Z′′j + ∂j∂iZi − ∂i∂iZj = qZβ2Im[h∗Dih] , (4.78)

∂iZ′i = qZβ2Im[h∗h′] , (4.79)

with qZ ≡ g2
Z/(4λ). Note that there is a Gauss law for each gauge field, representing as

before, dynamical constraints of the system. Interestingly, this system can be reduced, with an

appropriate redefinition of the gauge fields, to the case of a Higgs decaying into a single gauge

field studied above. To see this, let us define the following effective gauge field and resonance

parameter,

Sµ ≡W+
µ + W−µ + Zµ , q ≡ qZ + 2qW =

g2
Z + 2g2

W
4λ

. (4.80)
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If we consider the mapping

W±µ ≡
qW

q
Sµ , Zµ ≡

qZ

q
Sµ , (4.81)

automatically S0 = 0, and we can then reduce both the W EOM (4.76)-(4.77) and the Z EOM

(4.78)-(4.79) to just

S′′j + ∂j∂iSi − ∂i∂iSj = qβ2Im[h∗Dih] , (4.82)

∂iS′i = qβ2Im[h∗h′] , (4.83)

where the covariant derivative of Eq. (4.75) is now simply Dµ ≡ ∂µ − iSµ.

Therefore, the three gauge bosons can be described7 by a single effective gauge boson Si,

coupled to the Higgs with the resonance parameter q of Eq. (4.80). This property is very useful,

since we just need to introduce only one effective gauge field, Eq. (4.80), and the system is

then fully described by Eqs. (4.74), (4.82) and (4.83). As an example, if we have qW = 14 and

qZ ' 2qW = 28, all three gauge bosons can be described by the EOM of a single gauge field

with resonance parameter q = 28 + 14 + 14 = 56. In other words, the system behaves in such a

way that the three gauge bosons have the same effective resonance parameter. From Eq. (4.81),

we find the following relation between the W and Z amplitudes

Zi(z) =
qZ

qW
W+

i (z) =
qZ

qW
W−i (z) , (4.84)

which at very high energies, when qZ ≈ 2qW , reduces simply to Zi(z) ≈ 2W+
i (z) ≈ 2W−i (z).

Eq. (4.84) follows in all spacetime (and in the lattice, in all sites at all times).

We have just seen that the dynamical equations of the Higgs coupled to three gauge bosons

can be reduced to a system with the Higgs coupled to only one gauge boson, with resonance

parameter q = qZ + 2qW . However, strictly speaking, both scenarios are not really identical,

if we compare them for the same q and β. On the one hand, in the simulations with just one

gauge boson (say the W boson), the Higgs self-coupling is simply λ = λ1B ≡ g2
W/4q. On

the other hand, in the simulations with three gauge bosons, it is λ = λ3B ≡ (2g2
W + g2

Z)/4q
[see Eq. (4.80)], which differs in a factor (2 + (gZ/gW)2) with respect to λ1B. The spectrum

of initial fluctuations of the Higgs field depends explicitly on λ, so initial conditions change,

and consequently, both systems are not exactly equivalent. It is crucial, then, that we figure

out the importance of these differences. For this, we have run a new set of lattice simulations,

including one effective gauge boson Sµ, with the appropriate Higgs self-coupling λ = λ3B

(which as explained, exactly imitates the three Abelian gauge bosons). We have then compared

our results with the ones obtained previously, for a single gauge boson with coupling λ = λ1B.

7As we shall see in Section 6.2, this property can be generalized to the case of an arbitrary number of
Abelian gauge bosons.
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Figure 4.12.: Left: Filled points show the zbr(q) times obtained from simulations with an
effective gauge boson Sµ, whereas empty points show the analogous results from
simulations with a single Wµ boson shown in Fig. 4.10. Blue squares and purple
diamonds correspond to q values inside and outside a resonance band of the Lamé
equation. Right: points represent the zdec(q) values obtained for the effective Sµ

boson, whereas the blue line corresponds to the phenomenological fit of Eq. (4.85).

In Fig. 4.12 we have plotted the new time scales zbr (left panel) and zdec (right panel) as

a function of q, obtained from the simulations with λ = λ3B. In the first panel, we have also

plotted the results for zbr, obtained above from the simulations with λ = λ1B. We observe that

the times zbr at which the plateau ends are reduced slightly with respect to the W-boson case

when q is outside a resonance band, but they are almost identical when it is within a band; see

Fig. 4.12. There are, however, virtually no differences in the time scale zdec, which signals again

both the end of the Higgs decay and the onset of equipartition. The new fit of zdec from the

simulations with an effective gauge boson Sµ is

zdec(q) = 581q0.42 = 581(qZ + 2qW)0.42 , (4.85)

very similar to the old fit Eq. (4.69). Note that, as mentioned before, this fit is done for a RD

universe with β = 0.01. Anticipating again the results that we will explain in Section 4.6, the

generalization of this fit to other β values and expansion rates (characterized by ω) is

zdec(q) ≈ 58.1β
−(1+3ω)
3(1+ω) (2qW + qZ)

0.42 , (4.86)

This equation probably represents the most relevant result of this chapter. We see that the real

decay time zdec of the Higgs into the three gauge bosons W±, Z is, using again the approximate

high-energy relation qZ ≈ 2qW , a factor ((qZ + 2qW)/qW)0.42 ≈ 40.42 ≈ 1.79 times longer than

if we only considered the decay of the Higgs into a single W boson [equivalently, a factor

((qZ + 2qW)/qZ)
0.42 ≈ 20.42 ≈ 1.34 longer if we considered the decay of the Higgs into a Z

boson].

It seems surprising at first glance, that the decay takes longer when the resonance parameter

is effectively larger, q = 2qW + qZ > qW ; naively one would expect a faster decay if there are
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more bosons into which to decay. This is, however, a reflection again of the nonlinear behavior

of the system at z & zbr, responsible for the previously discussed counterintuitive growth of

zdec(q) with q.

We have also observed that the energy equipartition does not to change with respect to the

single W boson case. The final equipartition state is identical to the previously studied case of

one single boson, reaching at late times,

EK

Et
≈ 0.3 ,

EGD

Et
≈ 0.3 ,

EE

Et
≈ 0.2 ,

EM

Et
≈ 0.2 , (4.87)

and EV/Et � 1. Note also that, in the case of three gauge bosons, we have three different

electric and magnetic fields. From the relation Zi(z) = 2Wi(z) (valid at high energies), and

given the definition of the electric and magnetic energies, we see that 50% of the total electric

energy corresponds to the Z boson, while the other 50% is divided equally between the other

two W bosons. The same distribution takes place for the magnetic energy.

4.6. Varying the Higgs initial amplitude and the

expansion rate

All results from sections 4.4 and 4.5 have been presented for a scale factor evolving in a RD

universe (ω = 1/3), and for β = 0.01. Naturally, in order to fully understand the dynamical

properties of the Higgs decay after inflation, we have explored other β parameters, and we

have also considered other expansion rates such as MD (ω = 0) or KD (ω = 1). Fortunately,

one can easily extrapolate the results from one particular set of parameters, say (β1, ω1), to

another set (β2, ω2), using the analytical properties of the Higgs equation described in Section

4.2.

More specifically, we saw in Eq. (4.14) that in the case of no coupling to the gauge bosons,

the conformal period ZT and the value of the transformed Higgs field at the first maximum

h(zM), can be approximated as ZT = c1β
−(1+3ω)
3(1+ω) and h(zM) = c2β

− 2
3(1+ω) , where c1 and c2 are

constants independent of ω and β. From these properties we can see that, if for a given set of

values (ω1, β1), the volume-averaged Higgs field takes the value h(β1, ω1) at the time z(β1, ω1),

then for (ω2, β2) the Higgs field at the time

z(β2, ω2) ' β
−(1+3ω2)
3(1+ω2)

2 β
(1+3ω1)
3(1+ω1)

1 z(β1, ω1) , (4.88)

should take the value

h(β2, ω2) ≈ β
−2

3(1+ω2)

2 β
2

3(1+ω1)

1 h(β1, ω1) . (4.89)
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Figure 4.13.: We plot the volume-averaged value of the Higgs conformal field |h| as a function
of time, obtained directly from our simulations, for either different β parameters
or expansion rates. Lines with the symbol ‘(r)’ have been extrapolated, using an
inversion of Eqs. (4.88) and (4.89), to obtain a theoretical prediction of the results
of a RD universe (ω = 1/3) with β = 0.01. The top panels correspond to global
simulations with q = 8, and the bottom panels correspond to Abelian-Higgs
simulations with q = 6. In the left panels, we vary β, while in the right panels, we
vary ω. We see that the lattice results for (ω, β) = (1/3, 0.01) coincide quite well
with the different theoretical extrapolations obtained from the lattice results for
other (ω, β) parameters.

Notably, this property is maintained quite well even in the presence of a Higgs coupling

to its decay products (either scalars in the global simulations or gauge bosons in the Abelian-

Higgs simulations). This extrapolation is therefore very powerful8. In Fig. 4.13, we have

plotted the volume-averaged value of |h| as a function of time, for both global (top panels) and

Abelian-Higgs simulations (bottom panels). Let us focus for instance on the top-left panel. We

have obtained for q = 8 the behavior of |h| as a function of time for β = 10−4, 10−3, 10−2, 10−1,

and 0.5, directly from the simulations. Using the outcome from these simulations with different

β parameters, we have then inverted Eqs. (4.88) and (4.89), and obtained the (extrapolated)

behavior corresponding to β = 0.01. These are different predictions for the Higgs decay when

β = 0.01, but obtained from the real data from simulations with different β values. We see that

the four different extrapolated theoretical predictions obtained for β = 10−4, 10−3, 10−1 and 0.5

coincide very well with the real simulation for β = 0.01.

8As we shall see in Chapter 6, this extrapolation also works in the lattice simulations of the SU(2)×U(1)
gauge-invariant system.
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The same is done in the top-right panel, but changing the scale factor instead of β (which

we fix in this figure as β = 0.01). There, we compare the result of the Higgs decay for w = 1/3

(RD), on one hand obtained directly from simulations with ω = 1/3, and on the other hand

from the corresponding extrapolated predictions from the lattice simulations with ω = 0 (MD)

and ω = 1 (KD). The three lines also coincide very well. The same analysis is repeated for

Abelian-Higgs simulations in the two bottom figures, with identical conclusions.

This property allows us to extrapolate easily the results for the Higgs decay time for a RD

universe with β = 0.01, presented in the last two sections, to another set of (ω, β) parameters.

In particular, from Eq. (4.47) we obtain Eq. (4.48), from Eq. (4.69) we obtain Eq. (4.70), and from

Eq. (4.85) we obtain Eq. (4.86).

4.7. Summary

If the EW vacuum is stable with the Higgs self-coupling kept positive, the Higgs typically

develops a large VEV during inflation, representing a classical condensate, homogeneous

over scales exponentially larger than the inflationary radius 1/H∗. In this chapter we have

studied the relaxation of the Higgs, i.e. its decay, during the stages following immediately

after inflation. We have used different methods of progressive complexity, accuracy and

proximity to the real case of the SM. We have modelled the SM interactions in a two-step

manner. First, considering a global scenario, ignoring the gauge structure of the SM, and

representing the gauge fields as a collection of scalar fields appropriately coupled to the Higgs.

Secondly, we have considered an Abelian gauge scenario, with the gauge fields and the Higgs

embedded within an Abelian-Higgs framework, but ignoring the nonlinearities due to the

truly non-Abelian nature of the SM. For the global model we have presented both analytical

(Section 4.3.1) and lattice calculations (Section 4.4), whereas in the most precise and involved

gauge modelling, we have just presented the outcome from lattice simulations (Section 4.5).

The analytical results of the global modelling estimate correctly the right order of magnitude

of the Higgs decay time. When studying such scenario in the lattice, including all nonlinearities

within such a scheme, we find that the actual Higgs decay takes longer, typically a factor

zdec/zeff ∼ 3.17q0.44 larger: see Eq. (4.48) for zdec and Eq. (4.32) for zeff. This is because the

analytical calculations are only capable of estimating the order of magnitude of the time scale

when sufficient energy has been transferred into the extra scalar fields (mimicking the EW gauge

bosons). However, that time only signals the moment z = zbr(q) when the Higgs condensate

really starts noticing that it is coupled to extra species. From then on, at times z & zbr(q), the

Higgs energy density begins to decrease in a noticeable manner, being transferred to the most

strongly coupled species, the EW gauge bosons. It is this decrease of the energy of the Higgs

that should be interpreted as the decay of the Higgs. Eventually, the Higgs energy density
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saturates to an approximately constant value, at some moment zdec(q) > zbr(q). Around the

same time, the energy of the species coupled to the Higgs has also stopped growing, and

saturates into slowly evolving magnitudes.

Very interestingly, the same pattern and time scales are observed in the gauge scenario,

though the final fractions of energies are different. The time scale zdec(q) that characterizes

the end of the Higgs decay in the gauge case is given by Eq. (4.70), which represents a factor

zdec/zeff ∼ 3.68q0.42 larger than the analytical prediction zeff of Eq. (4.32). We see therefore

that, at the end, the differences between the global and gauge modelings are not so relevant,

at least in terms of the estimation of the Higgs decay time zdec(q). It is worth stressing that

zdec(q) grows with q (both in the global and gauge scenarios), which could be thought as being

a counter-intuitive fact. This is due to the nonlinearities characteristic of the system, which

become relevant from z & zbr onwards.

One of our more interesting results is the extrapolation laws Eqs. (4.88),(4.89). We have

seen that the dynamics of the system depend basically on three parameters: q, β, and the

expanding background equation of state ω. Eqs. (4.88),(4.89) allow us to extrapolate the lattice

results for parameters (ω1, β1) into a very good approximation of the results of another set of

parameters (ω2, β2). This technique works very well indeed for both global and Abelian-Higgs

simulations (see Fig. 4.13), and as we shall see in Chapter 6, it also works in the simulations of

the SU(2)×U(1) system. This has led us to obtain the generic formula for the Higgs decay time

zdec, Eq. (4.86), as a function of β, q and ω.

Remarkably, we have also shown that the case of the SM, where the Higgs is coupled

simultaneously to the three EW gauge bosons W+, W− and Z, behaves identically to the case

in which the Higgs is only coupled to one effective gauge boson, with resonance parameter

q = qZ + 2qW . We have found that when the three gauge bosons are considered, zdec(q) =

581(qZ + 2qW)0.42 [Eq. (4.85)]. The decay of the Higgs takes then a factor (2 + qZ/qW)0.42 larger

than if the Higgs were coupled to only one W boson, or equivalently (1 + 2qW/qZ)
0.42 times

larger than if it were coupled to only Z gauge bosons. Again, this counterintuitive result is due

to the nonlinearities that dominate the system at z & zbr.

Interestingly, at the time z ≈ zdec(q), in both in the global and gauge scenarios, we see that

the distributions of fields reach equipartition. In the global model we find that the kinetic

energy of the Higgs becomes equal to the sum of the gradient energy of the Higgs plus the

interaction with the χi fields, Eϕ
K ' Eϕ

G + Eint. This equality holds to better than 1 % from

z & zdec onwards. In the gauge scenario, we find that the kinetic energy of the Higgs becomes

equal to the sum of the covariant gradient energy (which includes the Higgs-gauge interactions)

plus the Higgs potential, EK ' EGD + EV. This equality also holds to better than 1% from

z & zdec(q) onwards. At some later time z & zdec, the electric and magnetic energy densities

also reach equipartition to better than 1%, EE ' EM. The distribution of energy in the gauge
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scenario is actually universal, since the system always reaches equipartition, with EK ' EGD

representing 30% of the total energy, and EE ≈ EM representing 20% each. In both global and

gauge scenarios, once in the stationary equipartitioned regime, the potential energy becomes

gradually more and more irrelevant.

The decay of the Higgs condensate during the early postinflationary stages constitutes an

important event in the evolution of the Universe, which might have interesting cosmological

consequences. For example, the possibility has been proposed in Ref. [139, 140] of realizing

baryogenesis via leptogenesis, thanks to the Higgs oscillatory behavior. Also, if dark matter is

a gauge singlet field coupled to the Higgs, it is also possible that the Higgs oscillations could

produce the right amount of dark matter, such that its distribution could account for the correct

relic abundance [141]. Finally, as we shall see in the next chapter, the fields excited from the

decay of the Higgs may act as a source of gravitational waves.



Chapter 5.

Gravitational wave production from
the Higgs decay after inflation

We study in this chapter the gravitational waves produced during the post-inflationary decay of

the SM Higgs after inflation. The out-of-equilibrium dynamics of the process converts a fraction

of the available energy into gravitational waves (GW). We study this process with classical lat-

tice simulations in an expanding box, following the energetically dominant electroweak gauge

bosons W± and Z. We characterize the GW spectrum as a function of the running couplings,

Higgs initial amplitude, and post-inflationary expansion rate. Our study demonstrates the

efficiency of GW emission by gauge fields undergoing parametric resonance. The initial energy

of the Higgs condensate represents however, only a tiny fraction of the inflationary energy.

Consequently, the resulting background is very suppressed, with an amplitude h2Ω(o)
GW . 10−29

today. The amplitude can be boosted to h2Ω(o)
GW . 10−16, if following inflation the universe

undergoes a kination-domination stage; however the background is shifted in this case to high

frequencies fp . 1011Hz. In all cases the signal is out of the range of current or planned GW

detectors. This background will therefore remain, most likely, as a curiosity of the SM.

Results presented in this Chapter have been published in Ref. [2].

5.1. Introduction

In this chapter we study the production of gravitational waves within the framework of the

Standard Model of particle physics. We consider the same scenario as in Chapter 4: we assume

that the Higgs fluctuates during inflation, and forms a condensate at the end of inflation with

typical amplitude given by Eq. (4.5). After inflation, the Higgs condensate starts oscillating

around the minimum of its potential. This gives rise to its decay into all the species of the SM, as

the latter are non-perturbatively excited through parametric effects. All the SM species coupled

directly to the Higgs, i.e. the electroweak gauge bosons W±, Z, and the massive fermions

115
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(quarks and charged leptons), are all highly excited. This is a violent non-equilibrium process,

that create large time-dependent matter density inhomogeneities, which therefore act as a

classical source of gravitational waves.

The GW production coming form the decay of the Higgs field into fermions was studied

in [122], following the formalism of [120, 121]. Fermions are excited through parametric

effects [29, 30], though the growth of their occupation numbers is Pauli blocked. The most

energetic fermion species excited is the top quark, since its Yukawa coupling is the largest one

within the SM. In this chapter we focus instead in the production of GW by the gauge bosons.

The gauge field production is expected indeed to be more efficient than that of fermions, as

their occupation numbers grow exponentially through a process of parametric resonance. Most

of the energy of the Higgs condensate is actually transferred into the electroweak W±, Z gauge

bosons. Therefore, even if the final GW background is contributed by all the Higgs decay

product species, the gauge fields we study here represent in fact the dominant contributors.

In Chapter 4 we presented a full set of lattice simulations of the Higgs decay process

into gauge bosons, modeling the SM gauge interactions with both global and Abelian-Higgs

setups. In this chapter, we will study the GW production, again with lattice simulations of an

Abelian-Higgs setup. This is just an approximation to the gauge structure of the electroweak

interactions. However, as analyzed in Section 4.5.1, the non-Abelian corrections are suppressed

by the smallness of the Higgs self-coupling. In high-energy inflationary models, the Higgs

self-coupling runs in fact into small values [132, 131], making the non-Abelian corrections less

relevant. In this chapter we are mostly interested in scenarios with the highest possible energy

scale of inflation, as this enhances the production of GW in the system. Therefore, the use of an

Abelian modeling will suffice for our aim to study the GW production from the SM fields after

inflation.

The structure of this chapter is as follows. In Section 5.2 we discuss our formalism to

study GW production in this process. In Section 5.3 we present our results, describing the

general features of the GW spectra obtained from our lattice simulations. In Section 5.4 we

parametrize the GW spectra as a function of the Higgs initial amplitude, Higgs self-coupling,

and post-inflationary expansion rate, and discuss how the GW background redshifts until

today. Finally, in Section 5.5 we wrap up our results and conclude.

5.2. Gravitational wave production

Gravitational waves (GW) follow the equations of motion

ḧij + 2
ȧ
a

ḣij − ∂k∂khij =
2

m2
p

ΠTT
ij , (5.1)
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where the source of GW, ΠTT
ij , is the transverse-traceless (TT) part of the anisotropic stress tensor

Πij. In this Chapter, we will mimic the interactions between the Higgs and gauge fields with

the Abelian-Higgs modelling described in Section 4.5. The action of the theory was written in

Eq. (4.49), and the corresponding field equations of motion were displayed in Eqs. (4.51)-(4.54).

In our case, in the presence of both scalar and vector fields, the source is effectively given

by [142]

ΠTT
ij =

{
2Re[(Di ϕ)

∗(Dj ϕ)]−
1

e2a2 (EiEj + BiBj)

}TT

, (5.2)

where {...}TT represents the TT part of the quantity inside the brackets. Here, we fix e2 =

(2g2
W + g2

Z)/4, , so that the gauge field Aµ effectively describes the simultaneous decay of the

Higgs field into the the Z and W± bosons (see Section 4.5.2 for an extensive discussion about

this). From Eq. (5.2), we clearly see that both the Higgs and the gauge bosons contribute as a

source of GW.

It is convenient to redefine the tensor mode amplitude through a conformal redefinition

like hij ≡ h̄ij/a (recall that initially we take a∗ = 1), so that Eq. (5.1) can be written in terms of

the dimensionless variables Eqs. (4.55) and (4.56) as

h̄′′ij −
(

∂k∂k +
a′′

a

)
h̄ij =

2
a

1
λ

(
H∗
mp

)2

PTT
ij , (5.3)

with

Pij = P [h]
ij + P [g]

ij , (5.4)

P [h]
ij ≡ β2Re[(Dih)∗(Djh)] , P [g]

ij ≡ −
1
q
(EiEj + BiBj) . (5.5)

Here, Ei and Bi are the natural electric and magnetic fields, defined in Eq. (4.62), and the

effective resonance parameter is q ≡ (2g2
W + g2

Z)/(4λ).

The spectrum of the GW energy density contained within a volume V, and normalized to

the total energy density ρtot of the Universe (at the time of GW production), can be written in

the continuum as

ΩGW(k, z) ≡ 1
ρtot

dρGW

d log k
(k, z) =

1
8π2a2

m2
p k3

ρtotV

〈
ḣ∗ij(k, z)ḣij(k, z)

〉
4π

(5.6)

where 〈...〉4π ≡ 1
4π

∫
dΩk ..., with dΩk a solid angle differential in k-space. In light of the

parameters factorized out in the source term of Eq. (5.3), it is convenient to define a new

gravitational wave variable ωij as

h̄ij(k, z) ≡ 2
λ

(
H∗
mp

)2

wij(k, z) . (5.7)
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We can hence express ΩGW(k, z) in terms of the natural variables of the problem as

ΩGW(k, z) ≡ δ∗ εw(a)ΘGW(k, z) , δ∗ ≡
(

H∗
mp

)4

, εw(a) ≡
(

a
a∗

)3w−1

, (5.8)

where we define

ΘGW(k, z) ≡ k3

6π2λ2
1
V

〈
(w′ij −Hwij)(w′ij −Hwij)

〉
4π

. (5.9)

with H ≡ a′/a. This way, we have factorized out the dependence with the Hubble scale H∗
and the background expansion rate. In order to derive Eqs. (5.8)-(5.9), we have used that the

total energy density of the Universe can be expressed as ρtot = 3m2
pH2
∗a−3(1+w), with w the

post-inflationary equation of state. The factorization ΩGW = δ∗εwΘGW in Eq. (5.8) is indeed

very convenient: the dependence on {qs, β, w} of ΘGW(k, z), comes only from the effect of these

parameters on the solution of the field eom, Eqs. (4.57)-(4.60).

Note that the prefactor δ∗ in Eq. (5.8), implies a suppression of the GW (energy density)

as ∼ (H∗/mp)4 ≪ 1. This effect is related to the fact that the typical initial amplitude of

the Higgs condensate is ϕ2
∗ ∼ ϕ2

rms ∼ H2
∗, which is then suppressed by the appearance of a

Planck mass factor as 1/m2
p in the rhs of the GWs’ Eq. (5.1). The scaling ∝ δ∗ is ultimately

responsible for the smallness of the GW background today, as we will emphasize later on

in section 5.4.1. Note that in standard preheating scenarios, say after chaotic inflation, the

inflaton and preheat fields dominate the energy budget of the universe, and have typically

much larger field amplitudes. Therefore, there is no such suppression in standard preheating

via parametric resonance. However, the production of GW from subdominant field(s), like

inflationary spectator fields as in our case, will be always suppressed by the smallness of the

fields amplitude ϕ ∼ H∗ � mp, as seen in Section 3.5.

Depending on whether the post-inflationary equation of state is stiff, w > 1/3, or not,

w ≤ 1/3, the background energy density of the Universe will correspondingly decrease slower

or faster than relativistic species. The prefactor εw = (a/a∗)3w−1 in Eq. (5.9) will, therefore,

either suppress the GW background as ∝ εw < 1 for w < 1/3 (e.g. w = 0 for MD), or enhance

it as ∝ εw > 1 for w > 1/3 (e.g. w = 1 for KD). For w = 1/3 the background energy density

corresponds to a RD Universe, and hence εw = 1, so that there is neither a suppression nor

an enhancement. In a KD scenario with w = +1, the amplitude of the GW background will

be maximally enhanced since εw � 1. However, as we shall see in Section 5.4.1, the large

suppression due to δ∗ � 1 will still dominate over this enhancement, so that the overall

modulation of the signal is ΩGW ∝ δ∗ εw ∼ (H∗/mp)2, which still represents a suppression,

though a milder one.

In order to solve the eom Eq. (5.3) for the GW, we have followed the standard procedure

first introduced in [79], solving a relativistic wave-like equation in real space sourced by the
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full Pij, with no TT projection,

u′′ij −
(

∂k∂k +
a′′

a

)
uij =

1
a
Pij . (5.10)

We can then recover wij at any moment, in Fourier space, through the relation

wij(k, z) = uTT
ij (k, z) = Λij,lk(k̂)ulk(k, z) , (5.11)

Λij,lk(k̂) = Pil Pjk −
1
2

PijPlk , Pij = δij − k̂i k̂ j , (5.12)

where Λij,lk(k̂) is a geometrical projector that filters out the TT degrees of freedom in Fourier

space. Since Λij,pq(k̂)Λpq,lm(k̂) = Λij,lm(k̂), the argument inside the angular-average 〈...〉 in

Eq. (5.9) can be computed as(
w′ij(k, z)−Hwij(k, z)

) (
w′ij(k, z)−Hwij(k, z)

)
=(

u′ij(k, z)−Huij(k, z)
)

Λij,lm(k̂)
(
u′lm(k, z)−Hulm(k, z)

)
. (5.13)

We have studied the GW creation process in lattices of N = 256 points per dimension. To

solve the Higgs + gauge fields eom Eqs. (4.57) and (4.59), we have used the lattice formulation

presented in Appendix A. For the discrete version of the GW EOM (5.10), we have simply

substituted the continuous derivatives ∂µ in Eq. (5.10), with standard forward/backward lattice

derivatives. Also, in order to introduce a lattice version of the energy density spectrum of GW

Eq. (5.9), we followed the prescription introduced in [108]. In our case, this translates into

ΘGW(ñ, z) =
1

6π2λ2
dx̃3 κ(ñ)3

N3 ×
〈
(u′ij −Huij)Λ

(L)
ij,lm(u

′
lm −Hulm)

〉
4π

, (5.14)

where dx̃ ≡ H∗dx is the dimensionless lattice spacing, κ(ñ) ≡ k(ñ)/H∗ the dimensionless

momenta, k(ñ) ≡ (2π/L)|ñ| the momentum at the Fourier lattice site ñ, L the length of the

lattice box, and wij ≡ wij(ñ, z) the discrete Fourier transform of wij(n, z), with n labelling the

lattice sites. Note that Λ(L)
ij,lm is a discretized version of the TT projector given in Eq. (5.12), and

multiple choices are possible. We have chosen a lattice projector based on forward derivatives,

noticing that other choices did not change the GW spectra appreciably, see [108] for a thoughtful

discussion on this point. In all simulations we have ensured that the lattice resolution covers

well the dynamical range of momenta excited in the process, for both the matter and the GW

fields.
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5.3. Results from lattice simulations

As described in Chapter 4, the exact dynamics of the Higgs decay process depend sensitively

on three parameters: the resonance parameter q; the initial amplitude of the Higgs field ϕ∗,

characterized by the parameter β defined in Eq. (4.10); and the post-inflationary equation of

state w. Similarly, it is expected that the exact details of the GW spectra will also depend

sensitively on q. However, the qualitative aspects of these spectra can be easily understood,

without the need to specify the particular value of q. To see this, let us look at Fig. 5.1. There

we show the temporal evolution of the spectrum ΘGW(k, z; q, β, w). The plots correspond to the

resonance parameters q = 61 and 750, and for each case, to KD (w = 1), RD (w = 1/3) and MD

(w = 0) post-inflationary expansion rates. Within each plot, each line corresponds to the GW

spectra at a particular time, showing its evolution from approximately the start of the Higgs

oscillations until well after the production of GW ceases. Note that in these plots we consider

the particular value β = 0.01, but a scaling of the results to arbitrary β values will be presented

in the next section.

Let us now discuss three qualitative aspects of the ΘGW(k, z; q, β, w) spectra shown in the

figure: their time evolution, the amplitude when the GW stop growing, and the appearance of

peaks.

Let us focus first on the time evolution of the spectra, and its relation with the time scales

of the post-inflationary Higgs dynamics introduced in Section 4.5: zosc (onset of the Higgs

oscillatory regime), zbr (time at which the backreaction of the gauge bosons onto the Higgs

condensate starts becoming effective), and zdec (stabilization of the Higgs energy density and

the onset of equipartition). We observe in Fig. 5.1 that the GW production begins shortly after

the start of the Higgs oscillations, i.e. at the onset of parametric resonance at z & zosc. From

then on, we observe a significant growth of the GW amplitude during the linear stage z . zbr.

This is due to the initial exponential excitation of the gauge bosons, due to the parametric

resonance induced by the Higgs condensate oscillations. However, the final amplitude of the

spectra is mostly determined by the non-linear dynamics during some time after the onset of

backreaction z > zbr, while the Higgs condensate is decaying noticeably. We can define zGW as

the time scale at which GW stop being produced, so that ΘGW saturates to a fixed amplitude.

In general, one finds that zGW < zdec. In other words, the GW stop being produced before the

onset of equipartition. This can be clearly observed in Fig. 5.1. Using Eq. (4.86), we find that

for q = 67, we have zdec ≈ 1520, 3270, 7040 for KD, RD and MD respectively, and for q = 750,

we have zdec ≈ 4350, 9370, 20190. Note that these times are much longer than the final times

displayed in Fig. 5.1, when the spectra have already saturated.

The fact that zGW < zdec is indeed not surprising. The precise moment when GW cease to

be produced is better determined when the Higgs energy density stops dropping abruptly, and

this happens sometime after z = zbr but before z = zdec. From this time onwards (z > zGW),
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Figure 5.1.: Evolution in time of ΘGW(k, z; q, β, w) as the GW are being created, computed for
the resonance parameters q = 61 and 750, and for each parameter, for KD, RD and
MD post-inflationary expansion rates. The time step between spectra is ∆z ≈ 32.7
for KD, ∆z ≈ 15.5 for RD, and ∆z ≈ 7.3 for MD. The last spectra plotted in each
figure corresponds to the output time z ≈ 3280 in KD, and to z ≈ 750 in both RD
and MD. The dotted-dashed, dashed, and dotted vertical lines indicate the position
of various peaks k1, k2 and k3 in the spectra, see bulk text.

even if the Higgs energy density is still decaying until the onset of equipartition at z = zdec,

the matter fields are only evolving smoothly, adjusting themselves towards equipartition. The

time zdec simply indicates when the Higgs (comoving) energy density is finally stabilized to a

fixed amplitude, coinciding with the onset of equipartition. In conclusion, there is no more GW
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Figure 5.2.: We show ΘGW (red continuous line), Θ[h]
GW

(dashed blue line) and Θ[g]
GW (dotted-

dashed purple line) at the times z = 62 (left figure) and z = 373 (right figure). The
two figures correspond to q = 61 and β = 0.01.

production after z = zGW . The growth of the GW spectra saturates at that moment, and the GW

simply redshift from then on, due to the expansion of the Universe.

Let us now discuss the final amplitude of ΘGW after it has saturated, i.e. for z > zGW . If we

focus on the panels where q = 61, we see that, independently of the chosen post-inflationary

expansion rate (either KD, RD or MD), the maximum amplitude of the GW spectra is of the

same order of magnitude, ΘGW ∼ O(10−10). Of course, the particular shape of the final

spectra is different in each case, but the final amplitude seems to very similar. The same

happens if we focus on the q = 750 case, where for the three KD, RD and MD spectra, we

have ΘGW ∼ O(10−8). This indicates that the final amplitude of ΘGW at saturation is roughly

independent on the post-inflationary expansion rate. However, note that this should not be

confused with the standard change of amplitude of the GW due to their nature as relativistic

species. The prefactor εw in Eq. (5.8), which verifies εw1 > εw2 if w1 > w2, accounts precisely

for this effect. The final amplitude of the GW is indeed much more affected by their natural

redshifting, than by the small dependence of ΘGW on the rate of expansion.

Let us finally discuss the appearance of peaks in the GW spectra. In Fig. 5.1 we can see that,

during the growth of the GW spectra, a structure of peaks develops. The GW are sourced by

both the Higgs and gauge fields through the terms Pij of Eq. (5.5), acting in the rhs of Eq. (5.3).

In momentum space, the spectrum of GW is then sourced by a convolution of the Higgs and

gauge fields spectra. Therefore, the position of the peaks is correlated with the appearance of

peaks in the spectra of both the Higgs and the gauge fields.

To see this, let us denote by u[g]
ij the contribution to the GW sourced only by the gauge

fields term P [g]
ij (E ,B), and by u[h]

ij the contribution sourced by the Higgs covariant derivatives
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P [h]
ij (Dh), see Eq. (5.5). From the linearity of Eq. (5.10), it follows that

u[g]′′

ij −
(

∂k∂k +
a′′

a

)
u[g]

ij =
1
a
{P [g]

ij }
TT , (5.15)

u[h]′′
ij −

(
∂k∂k +

a′′

a

)
u[h]

ij =
1
a
{P [h]

ij }
TT . (5.16)

Similarly, let us denote as Θ[g]
GW and Θ[h]

GW
the contribution to the GW spectra associated to these

fields respectively. Clearly, as the GW spectrum is quadratic in uij, then ΘGW = Θ[h]
GW

+ Θ[g]
GW

+ Θ[gh]
GW , where Θ[gh]

GW represents an interference contribution from the convolution of a term

like ∼ P [g]
ij P

[h]
ij . In Fig. 5.2 we show, for the case q = 61 and β = 0.01, both Θ[g]

GW and Θ[h]
GW

, as

well as the total spectrum ΘGW for two different times. One can see that Θ[g]
GW and Θ[h]

GW
evolve

in a similar manner, being almost identical, especially in the infrared regime. In particular,

they both show some peaks at certain scales. This is a reflection of the dynamics of the system,

which creates similar peaks in the spectra of Ei, Bj and Dih, and transfers those peaks to P [g]
ij

and P [h]
ij . During the linear regime of parametric resonance, the fast creation of gauge bosons

induces a similar growth of the electric and magnetic fields, as well as of the Higgs covariant

derivatives. As a consequence, P [g]
ij and P [h]

ij contribute very similarly to the total spectrum of

GW. This has a very interesting effect, as it produces a destructive interference in the infrared,

suppressing the total amplitude ΘGW with respect the individual amplitudes Θ[h]
GW
≈ Θ[g]

GW . At

the same time, this softens (in some cases it almost washes out) the peak structure, which

becomes much more smoothed in the final spectrum. This is clearly shown by the continuous

curves in Fig. 5.2, as compared with the dashed and dotted-dashed curves.

The origin of the peaks can be understood by examining the spectra of the matter fields,

i.e. of the Higgs and gauge bosons. In particular, we plotted in Fig. 4.11 the electric and

magnetic spectra for the resonance parameters q = 5 and q = 9. Looking at the initial stages of

the process, a growth in both the Higgs and gauge fields spectra takes place in infrared scales

(small k). In particular, peaks are generated in the matter fields spectra, according to the band

structure of the Lamé equation, and these scales are essentially imprinted in the spectrum of

the GW. The position of the most-infrared peak in the GW spectra, common to both the q = 61

and 750 cases in Fig. 5.1, is indicated with a dotted-dashed line. This peak corresponds to the

initial resonance band in the spectra of the gauge fields. In the q = 750 case, there is even a

second peak in the GW spectrum, indicated with a dotted line. It corresponds to another peak

appearing in the spectrum of the Higgs field. When the system becomes fully non-linear, the

spectra of both fields show a rescattering effect towards the ultraviolet, populating modes of

higher and higher momenta. This generates a characteristic feature in the fields’ spectra, which

develop a relatively wide peak with a ’hunchback’ shape in the ultraviolet scales. This last

peak is shifted towards higher momenta according to how large the resonance parameter q is.

Again, this scale is imprinted in the GW spectrum, and it is indicated with a dashed line in

both cases q = 61 and 750 in Fig 5.1.
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Figure 5.3.: Location of the different peaks ki/H∗ that appear in the GW spectra, as a function
of the resonance parameter q. The panels correspond to KD (top), RD (middle) and
MD (bottom), all obtained for β = 0.01. Red circles, purple squares and orange
triangles correspond to k1, k2 and k3, respectively. Dashed lines correspond to the
best fits to k1, k2 and k3, as given by Eqs. (5.17)- (5.21).

5.4. Parametrization of the gravitational wave spectra

In this section we parametrize the position and amplitude of the final peaks in the GW spectra

as a function of q, w, and β. We will focus first on the particular case β = 0.01, and from this, we

will apply the scaling found in Section 4.6 to extrapolate and generalize this parametrization to

other β values.

Let us start with the position of the peaks. We show in Figure 5.3 the momenta ki at which

the peaks appear as a function of q, for the β = 0.01 case, and for the different expansion rates

we have simulated: KD, RD and MD. The maximum number of peaks we can observe in the

spectra is three: one associated to the hunchback, whose position we denote by k3 (red circles),

and two associated with the initial parametric resonance dynamics, whose position we denote

by k1 (purple squares) and k2 (orange triangles). However, for some values of q we do not see

all three peaks: for q . 200 the k2 peak is not clearly observed, as it overlaps with either of the

two. Also, for some q the peaks k1 and k3 are too near to each other, and hence it is difficult to

attribute a particular peak to either of them. This explains why, for some specific values of q
(particularly at low q), we just show the red circles corresponding to k3.
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The key idea is that, except for very low q, we appreciate a clear separation between the

hunchback k3 scale and the other scales k1, k2. This separation is appreciated in all the post-

inflationary expansion rates. More specifically, the position of the hunchback peak increases

with q, exhibiting a clear power-law dependence. We find the fit

k3 ≈ A3 qr H∗ (5.17)

with the parameter values (for β = 0.01) as

A3 ≈


0.0315, if KD

0.0593, if RD

0.0627, if MD

, r ≈


0.44, if KD

0.59, if RD

0.82, if MD

(5.18)

On the other hand, the position of k1 and k2 are mostly independent on q. We find these

peaks to be well fitted by

k1 ≈ A1H∗ , (5.19)

k2 ≈ A2H∗ [ q & 200 ] , (5.20)

with parameter values (again for β = 0.01) as

A1 ≈


0.091, if KD

0.20, if RD

0.42, if MD

, A2 ≈


0.18, if KD

0.38 if RD

0.81, if MD

. (5.21)

These fits are depicted with straight lines in Fig. 5.3.

On the other hand, we show in Fig. 5.4, the amplitude of the spectrum evaluated at

the highest peak ΘGW(kp), for the different q considered, and for different post-inflationary

expansion rates. For β = 0.01, we find the following phenomenological fit

ΘGW(kp) ≈ AGW

( q
100

)αGW , (β = 0.01) , (5.22)

where

AGW ≈


3.1× 10−9, if KD

2.4× 10−9, if RD

2.1× 10−9, if MD

, αGW ≈


1.50, if KD

1.58, if RD

1.61, if MD

. (5.23)

This peak corresponds to the maximum amplitude of the GW at the moment when they stop

being actively created, i.e., at z = zGW . However, note that kp does not necessarily correspond

always to the same peak k1, k2 or k3; rather, it alternates among these [for KD and RD expansion
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Figure 5.4.: Amplitudes ΘGW of the highest peak of the GW spectra as a function of q, and for
different post-inflationary expansion rates: KD (brown triangles), RD (blue dia-
monds) and MD (green squares). Dashed lines correspond to the best-fit functions
of Eqs. (5.22)-(5.23).

rates we normally have ΘGW(kp) ' ΘGW(k3), while for MD we have ΘGW(kp) ' ΘGW(k1)].

We see in Fig. 5.4 that the three fits for KD, RD, and MD coincide pretty well, confirming what

we pointed out in the last section: the maximum amplitude of ΘGW at saturation time zGW is

roughly independent of the post-inflationary expansion rate (the shape, however, is not; see

Fig. 5.1).

These fits have been obtained for the particular β = 0.01 case, but a generic extrapolation to

other β values can be easily carried out. We just need to use the rescaling laws that we found in

Section 4.6, which connect scales and field amplitudes, from one simulation with Higgs initial

amplitude and post-inflationary equation of state (β1, w1), to another simulation with different

parameters (β2, w2). In particular, we found

z(β2, ω2) ≈ β
p(ω1)
1 β

−p(ω2)
2 z(β1, ω1) , (5.24)

k(β2, ω2) ≈ β
−p(ω1)
1 β

p(ω2)
2 k(β1, ω1) , (5.25)

h(β2, ω2) ≈ β
p(ω1)−1
1 β

1−p(ω2)
2 z(β1, ω1) , (5.26)

where

p(w) ≡ 1 + 3ω

3(1 + ω)
=


2/3, if KD
1/2, if RD
1/3, if MD

. (5.27)

Using these rescaling laws, we predict the position of the peaks in the GW spectrum for

arbitrary initial Higgs amplitudes β as

k1 ≈ A1 ×
(

β

0.01

)p(w)

H∗ ,
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Figure 5.5.: We show the final spectra ΘGW for the cases of β = 0.2, (continuous red line), of
β = 0.03 (dashed yellow line), and of β = 0.004 (dot-dashed blue line), obtained
directly from lattice simulations. This corresponds to the q = 354 case, and for
RD (left panel) and KD (right panel). We also indicate with arrows the theoretical
predictions for the β = 0.2 case, obtained from the β = 0.03 and β = 0.004 lattice
results, using the extrapolation laws Eqs. (5.28), (5.29). We can see that the two
extrapolated predictions match quite well the output of the real lattice simulations
of the β = 0.2 case.

k2 ≈ A2 ×
(

β

0.01

)p(w)

H∗ , (5.28)

k3 ≈ A3 ×
(

β

0.01

)p(w)

qr H∗ .

On the other hand, rescaling the terms involved in the GW source Eq. (5.5) by means of

Eqs. (5.24)-(5.26), we can predict now the scaling of ΘGW [Eq. (5.14)], and, hence, how the

amplitude of the background of GW scales with β. We find that

ΩGW ∝ ΘGW ∝ β4+v(w) , v(w) = 2
(w− 1/3)
(w + 1)

. (5.29)

We have confirmed the validity of these predictions by carrying out several lattice simula-

tions with different β and w parameters. As an example, in Fig. 5.5 we show various spectra of

GW for q = 354, for both RD (w = 1/3) and KD (w = 1). The continuous red, dashed yellow,

and dotted-dashed blue lines, show the spectra for β = 0.2, 0.03, 0.004 respectively, obtained

directly from lattice simulations. We indicate with arrows the theoretical predictions for β = 0.2,

as obtained from the β = 0.03 and β = 0.004 lattice simulations, using the extrapolation laws

Eqs. (5.28), (5.29). We see that the two extrapolated predictions match quite well the output of

the real β = 0.2 lattice simulations within errors.
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Using Eqs. (5.8), (5.22) and (5.29), we obtain that the maximum amplitude of the GW

background at the end of the production stage, as a function of β, q, w, is given by

ΩGW(kp) ≈ AGW δ∗ εw

( q
100

)αGW

(
β

0.01

)4+v(w)

, (5.30)

where εw, δ∗ are given by Eq. (5.9), and AGW , αGW by Eq. (5.23). The amplitude in Eq. (5.30)

constitutes one of the key results of our analysis. However, in order to quantify the amplitude

of the signal today, we need to redshift its amplitude and frequency.

5.4.1. The gravitational wave background today

We now compute how the GW background redshifts until today. The highest peak of the

GW spectrum today is of course characterized by the highest peak of ΘGW , parametrized1 by

Eqs. (5.17), (5.22). Using Eqs. (3.17) and (3.18), the frequency and amplitude of highest peak

today is found to be

fp ' ε1/4
RD

(
H∗

H(max)
∗

) 1
2 (

β

0.01

)p(w)

qr × 107 Hz , (5.31)

h2Ω(o)
GW

( fp) ' 10−24 × εRD AGW

( q
100

)αGW

(
H∗

H(max)
∗

)4 (
β

0.01

)4+v(w)

. (5.32)

In order to understand what frequencies and amplitudes these expressions really imply, we

need to consider specific cases. For instance, let us assume that the universe is RD after inflation,

so that εRD = 1, and let us consider that the inflationary Hubble rate is close to its upper bound,

H∗ . H(max)
∗ . Taking q = 100 and βrms ' 0.1, we obtain

RD : h2Ω(o)
GW

( fp) . 10−29 , at fp . 3 · 108 Hz. (5.33)

This amplitude is tiny, so unfortunately there is not much hope to expect to detect it in the

future, unless high-frequency GW detection technology undergoes unforeseen development.

The main reason why this signal is so small lies in the suppression ∝ δ∗ = (H∗/mp)4 ∼
10−18(H∗/H(max)

∗ )4 � 1. As described in Section 3.5, this suppression of the GW amplitude is

generic in scenarios where the energy of the oscillating field undergoing parametric resonance

is subdominant with respect the total energy of the Universe, see Eq. (3.59). If the Universe

was MD after inflation, the situation becomes even worse, because there is an extra dilution of

the signal, as the latter is now proportional to some factor εRD � 1. This dilution is simply a

1Although the highest-amplitude peak kp is normally k3, this is not always the case. However, when
kp is instead associated with k1 or k2 (typically for low qs), the spectral amplitude at the k3 peak is
still very similar to that of the highest peak. Therefore, for simplicity, we are going to associate here
the amplitude ΘGW(kp) [Eq. (5.22)] to the peak k3 [Eq. (5.18)].
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consequence of the fact that GW scale with the expansion of the Universe as relativistic species,

ρGW ∝ 1/a4, whereas a MD background energy density dilutes slower as ρ ∝ 1/a3.

If the Universe is KD after inflation, the GW signal is, however, enhanced significantly.

In particular, given the initial ratio of energies ∆ ≡ V∗/ρ∗ ∼ 10−12 [Eq. (4.16)], the Uni-

verse will sustain a KD expansion rate until the moment when the relativistic SM fields

become dominating the energy budget. This implies that the GW signal is enhanced by a

factor ∝ εRD = 1/∆ ∼ 1012. The scaling of the signal also goes as ∝ (β/0.01)4+v(1) with

v(1) = 2/3, instead of v(1/3) = 0 as in RD. Moreover, AKD
GW
& ARD

GW
. Compared to a RD

background, and for β = 0.1, there is therefore another enhancement (however milder) by a

factor (AKD
GW

/ARD
GW

)(0.1/0.01)v(1)−v(1/3) ∼ 10. Plugging all this into the redshifting formulas

(cite), we obtain

KD : h2Ω(o)
GW

( fp) . 10−16 , at fp . 3 · 1011 Hz. (5.34)

This corresponds yet to a small signal, but its amplitude is in fact comparable2 to the standard

scale-invariant inflationary background h2Ω(Inf)
GW
' 5 · 10−16(H∗/H(max)

∗ )2. However, the signal

lies at extremely high frequencies ∼ 1011 Hz, beyond the range of planned GW detectors.

5.5. Summary

If the Higgs is decoupled from (or sufficiently weakly coupled to) the inflationary sector, a

stochastic background of GW is expected due to the existence of the Standard Model Higgs.

In particular, we expect the Higgs to be in the form of a condensate after inflation, decaying

very rapidly – via non-perturbative effects – into the rest of the SM species. The resulting post-

inflationary out-of-equilibrium dynamics of the SM fields generates, necessarily, a stochastic

background of GW. The SM Higgs and the electroweak gauge bosons act as the dominant

sources of the GW background, because their occupation numbers grow exponentially due to

parametric resonance, unlike the case of fermions, which are Pauli blocked.

We have studied the details of the form of the GW spectrum, determining its frequency,

amplitude and shape. We have characterized the dependence of the GW spectrum on the

unknown parameters of the system, namely the Higgs initial amplitude at the end of inflation

β =
√

λϕ∗/H∗, the equation of state w characterizing the post-inflationary expansion rate of

the Universe, and the resonance parameter q = (g2
Z + 2g2

W)/4λ. The running of the Higgs self-

coupling at high energies is in fact quite uncertain within the experimental input, so λ can vary

within the range 10−2 . λ < 10−5 (see Section 4.2). This translates into some uncertainty in

2In reality, the comparison to the inflationary signal is not fair here, as the KD regime after inflation
would also boost the amplitude of the inflationary background by a factor ∝ εRD ∼ 1012.
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the regime of the resonance parameter, which may vary within the range q ∼ O(10)−O(103).

We have used real-time classical gauge field lattice simulations in an expanding box in (3 + 1)

dimensions. We now choose N = 256 points per dimension, ensuring that the relevant modes

involved in this process were well captured within the dynamical range of the simulations.

Our results have been obtained within an Abelian-Higgs modeling. As explained in Section

4.5.1, this approach is expected to describe sufficiently well the system when q� 1. In fact, the

largest amplitudes for the GW background are obtained when H∗ is of the order of its current

upper bound H(max)
∗ ∼ 1014 GeV, which implies that λ runs to small values λ < 10−2, hence

making the resonance parameter large, q > 10. In light of this, the use of the Abelian approach

is fully justified. In any case, the basic features of the fields dynamics and GW production,

i.e. its dependence on q, β and w, are not expected to change drastically in the full non-Abelian

scenario. Our study can be considered therefore as a good indicator of the GW amplitudes to

expect in general, even if non-Abelian corrections were to be considered.

From our lattice simulations, we have obtained Eq. (5.30), which is a phenomenological

fit of the amplitude of the GW spectra as a function of the different unknown parameters

described above. We also obtain a parametrization of the observed redshifted amplitude

until today in Eq. (5.32). If the Universe was RD after inflation, our calculations show in fact

that this background is tiny, with an amplitude of h2Ω(o)
GW

( fp) . 10−29, and peaked at high

frequencies fp ∼ 300 MHz. The smallness of this background reflects simply the fact that

the initial energy of the Higgs condensate represents only a tiny fraction of the inflationary

energy. This is, in fact, a general feature of the GW produced from the decay of energetically

subdominant fields after inflation. As seen in Section 3.5, the amplitude of the GW spectra

is, in these scenarios, suppressed by a factor (H∗/mp)4 � 1 with respect an equivalent

GW production from preheating [see Eq. (3.59)]. If the Universe was MD after inflation,

although the background will be peaked at slightly smaller frequencies, its amplitude today

can only be even smaller than in the RD case. The amplitude of the background is expected,

however, to be enhanced significantly if the Universe underwent a KD regime after inflation.

In that case, our calculations show that the background today could have an amplitude up to

h2Ω(o)
GW

( fp) . 10−16. This larger background is, however, peaked at very high frequencies, of

the order of fp . 1011 Hz. Given that the background is always peaked at very high frequencies,

and its amplitude today is very small, our prediction will remain, most likely, as a curiosity of

the SM.



Chapter 6.

Non-Abelian corrections to the Higgs
decay after inflation

We study the post-inflationary decay of the Standard Model Higgs into the electroweak

SU(2)×U(1) gauge fields with classical lattice simulations. We consider the same scenario as

in Chapter 4: we assume that the Higgs forms a condensate during inflation, which oscillates

short after inflation ends, transferring most of its energy to the SM gauge bosons via parametric

resonance. However, while in Chapter 4 we neglected the non-Abelian interaction terms

between the Higgs and gauge fields, here we include explicitly the SU(2)×U(1) gauge structure

in the lattice. We start by deriving theoretically the structure of resonance bands in parametric

resonance, when the decay products are a combination of Abelian and non-Abelian gauge

bosons. We then present the results from our lattice simulations, parametrizing this way the

different time scales, energy ratios, and field spectra. We compare our results with the ones

obtained with an equivalent Abelian-Higgs modelling of the system, and quantify the effects

on the late Higgs+gauge dynamics coming from the non-Abelian interactions. We find that

in the SU(2)×U(1) simulations, the Higgs transfers approximately 70% of its energy to gauge

bosons, while in the Abelian approximation, the energy transfer is only 40%.

6.1. Introduction

In this chapter we continue the program initiated in chapters 4 and 5, where we studied the

post-inflationary decay of the Higgs condensate into gauge bosons with lattice simulations.

However, while there we made several approximations to the gauge structure of the SM

electroweak sector, in this chapter we include explicitly the SU(2)×U(1) SM electroweak gauge

group in our analysis, taking fully into account the non-Abelian interaction terms.

In particular, in Chapter 4 we modelled the electroweak gauge bosons in two different ways.

First, we approximated the SM gauge bosons as scalar fields with appropriate interaction terms.

131
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Second, we approximated the SM gauge bosons as Abelian gauge fields (i.e. we simulated

an Abelian-Higgs model), including this way a gauge structure into the simulations. Both

modellings provided similar results for the Higgs decay time and energy fractions. However,

as said, in both cases we completely ignored the non-Abelian gauge interactions in the field

EOM. As described in Section 4.5.1, this approach is justified at initial times, as the contribution

of these terms is subdominant when the gauge energy is still a small fraction of the energy

budget. However, at late times this is no longer true, and the non-Abelian terms may play a

very important role, potentially changing the final results of the lattice simulations. In this

chapter we want to understand and quantify precisely these effects.

We will start by studying parametric resonance when the resonantly excited decay products

are a combination of Abelian and non-Abelian gauge bosons. We will derive an expression for

the effective resonance parameter, which describes the dynamics of the process at initial times. We

will then present the results from our lattice simulations, in which we introduce explicitely the

SU(2)×U(1) gauge structure. We will analyze our results in light of the previous theoretical

derivation, and compare them with respect an Abelian-Higgs modelling of the system. We

will also quantify the effects that the non-Abelian interactions have in the Higgs and gauge

post-inflationary dynamics.

The structure of this chapter is as follows. In Section 6.2 we describe the parametric

resonance process generated by an oscillating scalar field coupled to Abelian and non-Abelian

gauge fields. In Section 6.3 we present the results from our lattice simulations, putting special

emphasis on the effect of the non-Abelian interactions in the system dynamics. In Section 6.4

we summarize our results and conclude.

6.2. Parametric resonance with gauge fields

In this section we explain how a combination of Abelian and non-Abelian gauge fields, reso-

nantly excited due to a coupling to a time-dependent scalar field, can be effectively described

with a single effective Abelian gauge boson at initial times.

Let us first consider the following gauge-invariant action under the U(1) group,

S = −
∫

d4x
√
−g
{

1
4

FµνFµν + |DµΦ|2 + V(|Φ|)
}

, (6.1)

where here, Φ ≡ 1√
2

ϕ ≡ 1√
2
(ϕ0 + iϕ1) is a complex scalar field (which we denote as Higgs

from now on) with potential V(|Φ|), Fµν ≡ ∂µ Aν − ∂ν Aµ is the field strength of the Abelian

gauge field Aµ, and Dµ ≡ ∂µ − i g1
2 Aµ is the gauge covariant derivative with gauge coupling

g1 . Minimization of this action with respect the Higgs and gauge variables give the following
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equations of motion

ϕ̈− DiDi ϕ + 2Hϕ̇ = −a2 ∂V
∂ϕ† , (6.2)

∂0F0j − ∂iFij =
g1

2
a2Im[ϕ†(Dj ϕ)] , (6.3)

∂iF0i =
g1

2
a2Im[ϕ†(D0ϕ)] , (6.4)

where t is conformal time, ˙≡ d/dt, andH ≡ ȧ/a is the conformal Hubble rate. The first two

expressions are dynamical equations of motion, while the third one is the Gauss constraint,

which must be obeyed at all times. For simplicity, we impose the gauge conditions A0 = 0 and

∂i∂j Ai = 0. In this case, the EOM of the Abelian gauge fields, Eq. (6.3), becomes

Äj −∇2Aj =
g1

2
a2Im[ϕ∗Dj ϕ] . (6.5)

Let us describe how parametric resonance takes place in this scenario. At initial times, gauge

bosons have not been created in a significant number, so their backreaction effects onto the

Higgs condensate can be neglected. In this regime, we can take the Higgs as a time-dependent

homogeneous field, which oscillates around the minimum of its potential by following a linear

trajectory in the Higgs complex plane. In particular, we can write the Higgs as

ϕ(t) ≡ (a + ib)|ϕ(t)| , (6.6)

where (a, b) are two real constant numbers that define the Higgs trajectory, and obey a2 + b2 = 1.

Here, |ϕ| is the modulus of the Higgs field, which is a solution to the Higgs EOM (6.2),

|ϕ̈|+ 2H|ϕ̇|+ a2 ∂V
∂|ϕ| = 0 . (6.7)

Let us consider potentials for the complex field of the type

V(|ϕ|) = 1
n

λM4−n|ϕ|n , (6.8)

where n = 2, 4, 6, . . . , M is some mass scale, and λ is a dimensionless coefficient. We saw in

Section 2.2 that the solution of Eq. (6.7), with the potential given by (6.8), corresponds to an

oscillating condensate with decaying amplitude, see Eq. (2.4). On the other hand, the equation

for the Abelian gauge bosons, Eq. (6.5), can be written as

Äj −∇2Aj +
g2

1

4
a2(t)|ϕ|2(t)|Aj = 0 . (6.9)

This equation does not depend on the constants a and b, but simply on the modulus of the

Higgs field |ϕ|. Analogously to the discussion of Section 2.2, it is convenient to define new
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spacetime and Higgs field variables as

~x → ~y ≡ ω∗~x , t→ z ≡ ω∗t , ϕ→ h ≡ a(t)
ϕ

ϕi
, (6.10)

where ω∗ =
√

λM2−n/2ϕn/2−1
i is the frequency of the oscillations [see Eq. (2.6)], and ϕi is the

initial amplitude of the Higgs field. The gauge equation (6.5) can then be written as

d2Aj

dz2 +
(

qh2 −∇2
y

)
Aj = 0 , (6.11)

where the resonance parameter is defined as

q ≡
g2

1
ϕ2

i

4ω2
∗

. (6.12)

As discussed in Section 2.2, the solution of Eq. (6.11) has a structure of resonant bands, such

that for some regions of the (κ, q) parameter space (with κ ≡ k/ω∗), the gauge field modes

have unstable solutions of the type Aj,~k ∼ eµq(κ)z, with Re[µq(κ)] > 0. This is exactly what

we understand by parametric resonance. In the next section, we will work explicitly with the

quartic potential of the SM, V(ϕ) ≡ λ
4 |ϕ|4. In such scenario, the oscillation frequency is simply

ω∗ =
√

λϕi, and the resonance parameter becomes simply q = g2/(4λ).

Let us now consider a system of multiple Abelian gauge fields A(n)
µ (n = 1, 2, . . . N), coupled

to the Higgs field through the covariant derivative term in the action, with gauge couplings

g(n)1 (n = 1, 2, . . . N). The gauge field equations of motion with gauge conditions A(n)
0 = 0 and

∂i∂j A
(n)
i = 0 are

Ä(n)
j −∇

2A(n)
j =

g(n)
1

2
a2Im[ϕ†Dj ϕ] ,

Dj = ∂µ −
i
2

N

∑
n=1

g(n)
1 A(n)

j . (6.13)

In Section 4.5.2, we showed that this system can be identically described, at all times, with a

single effective gauge boson Sj with gauge coupling geff , defined as

A(n)
j =

g(n)
1

geff

Sj , g2
eff =

N

∑
n=1

(g(n)
1 )2 . (6.14)

If we apply this transformation to each of the N equations in (6.13), we get

S̈j −∇2Sj =
geff

2
a2Im[ϕ†Dj ϕ] , (6.15)

Dj = ∂µ −
i
2

geffSj , (6.16)
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for all of them. This EOM is identical to the case of one Abelian gauge field, given in Eq. (6.5).

The effective gauge boson can be written in terms of the individual ones as

Sj ≡
1

geff

N

∑
n=1

g(n)
1

A(n)
j . (6.17)

Note that this transformation is exactly valid at all times, including also the later non-linear

stage of parametric resonance. This is very useful when doing lattice simulations with multiple

Abelian gauge bosons, as we only need to include one boson to capture completely the field

dynamics. Analogously to Eq. (6.12), we can define an effective resonance parameter as

qeff =
g2

eff
ϕ2

i

4ω2
∗

=
N

∑
n=1

q(n) , q(n) =
(g(n)

1
)2ϕ2

i

4ω2
∗

, (6.18)

where q(n) are the resonance parameters of the individual Abelian gauge fields.

6.2.1. Parametric resonance with non-Abelian gauge fields

Let us now describe how parametric resonance works, when the excited fields are a combination

of Abelian and non-Abelian gauge fields. Let us consider the following SU(2)×U(1) gauge-

invariant action,

S = −
∫

d4x
√
−g
{

1
4
(FµνFµν + Ga

µνGµν
a ) + (DµΦ)†(DµΦ) + V(|Φ|)

}
, (6.19)

where Ga
µν ≡ ∂µBa

ν − ∂νBa
µ + f abcBb

µBc
ν is the field strength of the non-Abelian gauge fields

with fabc = 2εabc, (Dµ)ρσ ≡ δρσ

(
∂µ − i(g1 /2)Aµ

)
− ig2 Ba

µ(Ta)ρσ is the covariant derivative

(σ, λ = 1, 2), with Ta ≡ σa/2 (a = 1, 2, 3) the group generators, and the Higgs field Φ is now a

complex doublet,

Φ ≡ 1√
2

ϕ =
1√
2

 ϕ0 + iϕ1

ϕ2 + iϕ3

 , ϕi ∈ Re . (6.20)

The full dynamical equations of motion are

ϕ̈− DiDi ϕ + 2
ȧ
a

ϕ̇ = −a2 ∂V
∂ϕ† , (6.21)

∂0F0j − ∂iFij =
g1

2
a2Im[ϕ†(Dj ϕ)] , (6.22)

D0G0j −DiGij = g2 a2Im[ϕ†Ta(Dj ϕ)] , (6.23)
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with (Dν)abOb ≡ (δab∂ν + εabcBc
ν)Ob. The Gauss constraints for the U(1) and SU(2) sectors are

∂iF0i =
g1

2
a2Im[ϕ†(D0ϕ)] , (6.24)

(Di)ab(G0i)
b = g2 a2Im[ϕ†Ta(D0ϕ)] . (6.25)

Let us impose the gauge conditions A0 = Ba
0 = 0 and ∂i∂jBa

i = ∂i∂j Ai = 0. In this case, the

dynamical equations of motion for the gauge fields, Eqs. (6.22) and (6.23), are written in terms

of components as

Äj −∇2Aj =
g1

2
a2Im[ϕ†Dj ϕ] , (6.26)

B̈a
j −∇2Ba

j − εabcεbdeBc
i Bd

j Be
i + εabc

(
2Bc

i ∂iBb
j + Bb

j ∂iBc
i − Bc

i ∂jBb
i

)
= g2 a2Im[ϕ†TaDj ϕ]. (6.27)

In the SU(2)×U(1) gauge system, the Higgs doublet has four real components, see Eq. (6.20).

As explained before, backreaction effects are negligible at initial times, and the Higgs oscillates

in this regime along a linear trajectory in the (4-dimensional) space of Higgs components, so

we can write the Higgs field in this regime as

ϕ(t) ≡ |ϕ(t)|

 a + ib

c + id

 , (6.28)

where a, b, c, d ∈ [0, 1] are four real constant numbers obeying a2 + b2 + c2 + d2 = 1, that

indicate the axis of the Higgs trajectory, and |ϕ(t)| is a solution to Eq. (6.7). Moreover, the

non-Abelian interaction terms in Eq. (6.27) are non-linear, so we can also ignore them initially.

In this approximation, Eqs. (6.26) and (6.27) are then written as

Äj −∇2Aj + a2(t)
|ϕ2(t)|

4

(
g2

1
Aj + g1 g2

3

∑
b=1

Bb
j xb

)
= 0 ,

B̈a
j −∇2Ba

j + a2(t)
|ϕ2(t)|

4

(
g2

2
Ba

j + g1 g2 xa Aj

)
= 0 , (6.29)

where xa (a = 1, 2, 3) are three numbers that depend on the Higgs trajectory coefficients as

x1 ≡ 2(ac + bd)

x2 ≡ 2(−bc + ad)

x3 ≡ a2 + b2 − c2 − d2

 ⇒ x2
1 + x2

2 + x2
3 = 1 . (6.30)

As in the case of Abelian gauge fields discussed above, we can introduce an effective Abelian

gauge boson Sµ and an effective gauge coupling geff , which mimic the dynamics of the system

at initial times (i.e. when the approximation of neglecting the non-Abelian terms is valid). This
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can be proven by substituting the following definitions into Eq. (6.29),

Aj =
g1

geff

Sj , Ba
j =

g2 xa

geff

Sj , g2
eff
≡ g2

1
+ g2

2
. (6.31)

One can prove that, with this change, the four equations in (6.29) recover

S̈j −∇2Sj +
g2

eff

4
|ϕ2(t)|a2(t)Sj = 0 , (6.32)

which is the equation of a single Abelian gauge boson Sj at initial times, coupled to the Higgs

field with gauge coupling geff. Note also that, in this case, the effective gauge boson can be

written as a function of the individual ones as

Sj ≡
1

geff

(g1 Aj + g2 ∑
b

Bb
j xb) . (6.33)

Let us assume now a power-law potential for the complex field, as written in Eq. (6.8). In this

case, we can define an effective resonance parameter for the SU(2)×U(1) gauge system as

qeff =
g2

eff
ϕ2

i

4ω2
∗

= q1 + q2 , (6.34)

where q1 ≡ g2
1
ϕ2

i /(4ω2
∗) and q2 ≡ g2

2
ϕ2

i /(4ω2
∗) are the independent resonance parameters of

the U(1) and SU(2) sectors respectively. This is analogous to Eq. (6.12) for the case of N Abelian

gauge bosons. This means that, at initial times, the system effectively behaves as a single gauge

boson with resonance parameter qeff. However, note that, unlike in the case of N Abelian gauge

bosons, this approximation is only valid at initial times, when we are in the linear regime and

can ignore the non-Abelian interactions in Eqs. (6.26) and (6.27). This approximation breaks

up when the non-Abelian interaction terms become relevant at late times. To fully capture

the effects of these interactions, we will present results from lattice simulations in the next

section. In particular, we will consider the SM quartic potential V(|ϕ|) = λ
4 |ϕ|4. In this case,

ω∗ =
√

λϕi, and the effective resonance parameter is simply qeff = (g2
1
+ g2

2
)/(4λ).

6.3. Lattice simulations of the Higgs decay into the

SU(2)×U(1) gauge fields after inflation

In this section, we study the post-inflationary decay of the SM Higgs condensate into the

SU(2)×U(1) electroweak gauge bosons. We will consider the same scenario as in Chapter 4, i.e.

a Higgs field that 1) is not the inflaton, and 2) is decoupled from (or weakly coupled to) the

inflationary sector.
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In particular, we present results from a set of lattice simulations of the Higgs decay process.

In Chapter 4, we mimicked the dynamics of the system with an Abelian-Higgs set-up. This

way, we included a gauge structure into the lattice (unlike in the global set-up of Section 4.4),

but ignored the effects coming from the presence of non-Abelian interaction terms. However,

in this chapter we include explicitly the SU(2)×U(1) gauge structure in the lattice. We consider

the action of Eq. (6.19), with the potential

V(|ϕ|) = λ

4
|ϕ|4 , (6.35)

where λ is the Higgs self-coupling. In this context, ϕ represents the Higgs field, and Aµ and Ba
µ

are the hypercharge and the Wa (a = 1, 2, 3) gauge fields respectively. The equations of motion

are obtained from the minimization of this action, and have been written in Eqs. (6.21) and

(6.23). The Higgs energy is subdominant with respect to the inflationary energy, as seen in

Eq. (4.16), so we include the expansion of the Universe as a fixed time-evolving background,

given by Eq. (4.7). We will follow and parametrize the dynamics from the end of inflation,

including the initial linear parametric excitation and the following non-linear stage, until the

system achieves a stationary regime. Our lattice formulation is based in a discretized version

of action (6.19), which is explained in more detail in Appendix A.

As described in Section 4.3, the dynamics of the Higgs and gauge fields depend on several

unknowns, which we must take into account when we parametrize the system: 1) the initial

value of the Higgs amplitude in our patch, ϕ∗, which is given by the probability distribution of

Eq. (4.4), 2) the value of the Hubble parameter during inflation H∗, 3) the values of the particle

couplings (λ, g1 , g2) at high-energy scales, and 4) the post-inflationary expansion rate. All these

equations can be characterized by the β parameter [Eq. (4.10)], the post-inflationary equation

of state w, and the resonance parameters q1 and q2 [Eq. (6.34)]. We will take in our simulations

g2
1
≈ g2

2
≈ 0.3, which is a good approximation at inflationary scales, so the effective resonance

parameter is qeff ≡ 2q1 ≡ 2q2 = g2
1/(2λ). Consequently, we will parametrize the dynamics in

terms of (qeff , β, w). However, let us remember that the Higgs solution follows a set of rescaling

laws Eqs. (4.88) and (4.89), which allow to extrapole the results from a particular set of (β1, w1)

parameters, to another set (β2, w2). This was proven in the Abelian-Higgs setup but, as we

shall see below, this rescalings also holds in the SU(2)×U(1) lattice simulations. Therefore, in

this section we first parametrize the system as a function of qeff for the particular choice β = 0.1

and w = 1/3, and then generalize our results to other values of β and w using the rescaling

laws.

As said, our results complete and complement the ones presented in Chapter 4, where we

modelled the Higgs-gauge interactions with an Abelian-Higgs set-up. As seen in the previous

section, the dynamics of a SU(2)×U(1) gauge sector undergoing parametric resonance can

be approximated, at intial times, by the dynamics of a U(1) system with effective resonance

parameter qeff. However, the non-Abelian interactions are expected to play an essential role at
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late times, and may affect the final energy distribution between the different species. In Section

6.3.1 we will study the validity of the Abelian approximation, and quantify the change in the

dynamics induced by the non-Abelian interactions.

We have simulated the field dynamics in lattices of N3 = (128)3 points, and have adjusted

the box size to cover the appropriate momentum scales during the initial resonant regime,

as well as during the following non-linear propagation to the UV. The lattice formulation is

explained in more detail in Appendix A. We also explain there how to set initial conditions

for the different fields. There are four Gauss constraints, one for the U(1) group, and three for

the SU(2) group [see Eqs. (6.24) and (6.25)]. In our lattice simulations, we have checked that

these constraints are preserved at all times, except for the accumulated machine error during

the time evolution. Moreover, in Eqs. (4.55) and (4.56), we defined a set of natural field and

spacetime variables. Results will be quoted in terms of such variables.

Let us start by describing in a qualitative way the post-inflationary dynamics of the Higgs

field and its decay products. Let us focus first on the particular case qeff = 50, β = 0.1, and

w = 1/3 (RD post-inflationary equation of state). We show in the left panel of Fig. 6.1 the

volume-average of the Higgs conformal amplitude as a function of time, and in the right panel,

the time-evolution of the different energy contributions of the system. The total energy of the

Higgs+gauge system can be written as

ρ =
λϕ4
∗

4a4 ETot ≡
λϕ4
∗

4a4 (EK + EV + EG + EE,1 + EM,1 + EE,2 + EM,2) , (6.36)

where EK, EG and EV are the Higgs kinetic, gradient, and potential energies,

EK =
2
β2

∣∣∣∣h′ − h
a′

a

∣∣∣∣2 , EG =
2
β2 ∑

i
|Dih|2 , EV = |h|4 , (6.37)

and EE,a and EM,a (a = 1, 2) are the electric and magnetic energies of the Abelian and non-

Abelian sectors respectively,

EE,1 =
2λ

β2 ∑
i
E2

i , EE,2 =
2λ

β2 ∑
i,a
(E a

i )
2 , (6.38)

EB,1 =
2λ

β2 ∑
i
B2

i , EB,2 =
2λ

β2 ∑
i
(Ba

i )
2 . (6.39)

Here, we have defined for convenience the dimensionless Abelian electric and magnetic

fields as Ei ≡ F0i/H4
∗ and Bi ≡ εijkFjk/H4

∗ respectively, as well as the non-Abelian ones as

E a
i ≡ Ga

0i/H4
∗ and Ba

i ≡ εijkGa
jk/H4

∗ respectively. Note that the total energy of the Higgs+gauge

system evolves approximately as radiation at late times, ρ ∝ a−4, so ETot goes to a constant

value at late times.
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Figure 6.1.: Left: We show the volume-average of the Higgs conformal amplitude |h| ≡√
∑3

n=0 h2
n as a function of time, for qeff = 50, β = 0.1, and w = 1/3. Right:

We show the different energy components of the Higgs+gauge energy [Eq. (6.36)]
as a function of time, for the same parameters. In both panels, we indicate the time
scales zbr and zdec with dotted and dashed vertical lines respectively.

There are two relevant time scales in parametric resonance processes: the backreaction time
zbr, which signals when the backreaction effects from the decay products start affecting the

oscillating condensate, and the decay time zdec, which signals when the system achieves a

stationary/equipartition regime. For an explanation and a parametrization of these quantities

in the context of preheating and scalar decay products, see Chapter 2. For times z . zbr, the

Higgs field oscillates around the mininum of its potential, and simultaneously, the gauge

energy grows exponentially due to resonant effects. However, the energy contribution from the

gauge fields remains negligible with respect the Higgs energy at these times, so backreaction

effects are irrelevant. However, at time z ≈ zbr, when gauge energy becomes approximately

∼10% of the total, backreaction effects from the gauge fields start affecting significantly the

Higgs condensate, prompting its decay. For the case qeff = 50, plotted in both panels of Fig. 6.1,

this time is approximately zbr ≈ 50. We have indicated such time with a vertical dotted line

in the Figure. Afterwards, for times z & zbr, the effects from the non-linear terms in the field

EOM become important and can no longer be ignored. The different energy ratios evolve

towards a stationary regime, and the second time scale zdec gives an estimate of when this

regime has been achieved. For the case qeff = 50, this time corrresponds to zdec ≈ 300, and has

been plotted with a dashed line in both panels of Fig. 6.1. Finally, at late times z & zdec, we see

that the volume-average energies are approximately distributed according to the following

equipartition identities,

EK ≈ EG + EV , EE,1 ≈ EM,1 , EE,2 ≈ EM,2 . (6.40)

In other words, there is equipartition between the electric and magnetic energies in both the

Abelian and non-Abelian sectors, as well as between the Higgs kinetic and gradient+potential

energies. Note that in this second case, we have also included the Higgs potential energy on
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Figure 6.2.: We show zbr as a function of qeff, for the lattice simulations of the SU(2)×U(1)
gauge theory, and for the equivalent Abelian-Higgs approximation (see Section
6.3.1). We take β = 0.1 and w = 1/3 in both cases. Each point corresponds to a
lattice simulation. The resonance parameters q ∈ [1, 3], [6, 10] . . . are indicated with
green bands, while q ∈ (3, 6), (10, 15) . . . are indicated with white bands.

the right hand side of the equality: although it is subdominant at late times (see Fig. 6.1), its

inclusion makes the equipartition identity better preserved.

Let us now parametrize the post-infationary dynamics of the Higgs and gauge field as a

function of qeff, β, and w. We start by choosing the particular values β = 0.1 and w = 1/3, and

parametrize how zbr and zdec depend on qeff. We will then generalize these results to arbitrary

values of β and w, with the rescalings of Eqs. (4.88) and (4.89).

Let us start with the backreaction time zbr. This time scale can be defined in terms of the

Higgs conformal amplitude, as the time when the envelope of the Higgs oscillations start

decreasing abruptly (see left panel of Fig. 6.1). Conversely, it can also be defined in terms

of energies, as the moment when the oscillation-average of the Higgs kinetic and potential

energies start decreasing (see right panel of Fig. 6.1). Here we have decided to define zbr in

terms of energy. In particular, at initial times (z� zbr), the oscillation-average of the kinetic

and potential energy ratios are respectively 66% and 33%, see Eqs. (4.20) and (4.21). We have

technically defined zbr when the potential energy becomes 20% of the total.

We plot zbr as a function of qeff in Fig. 6.2. Each point in the Figure corresponds to a single

lattice simulation. We indicate with green bands the resonance parameters within the intervals

qeff ∈ [1, 3], [6, 10] . . . , for which, as explained in Section 4.3, the average Floquet index of the

main resonance bands is larger, and the resonance is stronger. On the other hand, we indicate

with white bands the values qeff ∈ (3, 6), (10, 15), where the resonance is weaker. We also

indicate in the top axis the value of λ through the relation λ ≡ g2
eff/(2qeff) ≡ 0.3/(2qeff), and
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in the right axis the approximated Higgs number of oscillations, computed with the relation

Nosc ≡ z/ZT with ZT ≈ 19.8 [see Eq. (4.14)]. We have also added a second set of simulations

corresponding to an Abelian-Higgs model, which we will discuss in subsection 6.3.1.

We can clearly see that the structure of resonance bands gets imprinted in the behaviour

of zbr: as expected, the stronger the resonance, the faster the gauge energy grows, and conse-

quently, the shorter the backreaction time is. When qeff is within a green band, the backreaction

time attains a minimum with zbr ≈ 40. However, when qeff is within a white band, the value

of zbr seems to vary randomly within the interval zbr ∈ [40, 280]. For example, in the first

white band qeff ∈ (3, 6), we have zbr ≈ 50, while for example in the interval qeff ∈ (21, 28),

backreaction time attains the maximum zbr ≈ 280. Hence, zbr can be parametrized as a function

of qeff (for β = 0.1 and w = 1/3) as

zbr

≈ 40 , qeff ∈ [1, 3], [6, 10] . . .

∈ [40, 280] , qeff ∈ (3, 6), (10, 15) . . .
(6.41)

Note that a similar pattern for zbr as a function of q has also been observed in Fig. 2.3, in

the context of parametric resonance with quartic potential, when the oscillating field is an

inflaton and the decay products are scalars. A similar pattern has also been observed on

Fig. 3.6, where we plotted the amplitude of the GWs generated during parametric resonance

with quartic potential: for resonance paramaters q ∈ [1, 3], [6, 10] . . . , the resonance is stronger,

and hence the GW amplitude is larger than for q ∈ (3, 6), (10, 15) . . . . However, this pattern is

not observed for other potentials, such as quadratic: in this case, field modes redshift through

many physical momenta due to the expansion of the Universe, and due to this, the dependence

of zbr on q is stochastic (as seen in Fig. 2.6).

Let us now focus on the second quantity, zdec. As described above, this quantity indicates

the onset of the equipartition regime, according to the equipartition identities in Eq. (6.40).

However, note that unlike the case of zbr, the definition of zdec is much more ambiguous.

Technically, we have decided to define zdec, in this chapter, as the time when the Higgs

equipartition identity holds at a 2% level, i.e., when the oscillation-average of the Higgs kinetic,

gradient, and potential energies is EK−EG+EV
EK+EG+EV

= 0.02. With this choice, zdec gives an estimate of

when the energies have more or less estabilished to their final numbers (as seen in the right

panel of Fig. 6.1). However, note that choosing a smaller percentage would give larger values

for zdec. Note also that the different energies are still slightly oscillating for z > zdec, so the

situation at these times is still not totally stationary.

We plot zdec as a function of qeff in Fig. 6.3. Again, each point corresponds to a single lattice

simulation. Note that we have decided to subtract the value of zbr from zdec in each simulation:

this way, we parametrize strictly the duration of the non-linear regime. We clearly see that for
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Figure 6.3.: We show zdec as a function of qeff, for β = 0.1 and w = 1/3. Red squares indicate
results for the SU(2)×U(1) simulations, while purple squares indicate results from
Abelian-Higgs simulations. Dashed lines indicates best fits (6.42) [SU(2)×U(1)]
and (6.51) [Abelian-Higgs].

qeff & 20, zdec has a power-law dependence on qeff . We have obtained the following fit

zdec = 330
( qeff

100

)0.53
+ zbr , (qeff > 20, β = 0.1, RD) , (6.42)

which we also show in Fig. 6.3. Note that this power-law form for the decay time, zdec ∝ qα, is

quite generic in parametric resonance scenarios (see Chapter 2).

Until now, all our results have been presented for a RD post-inflationary expansion rate and

β = 0.1. However, in Section 4.6 we presented a set of rescaling laws, Eqs. (4.88) and (4.89), that

allowed to translate the results for the Higgs amplitude from lattice simulations, corresponding

to one set of (β1, w1) values, to another (β2, w2). The validity of this extrapolation was assessed

in Section 4.6, in the lattice simulations of the Abelian-Higgs set-up. Fortunately, this extrap-

olation also works when the gauge sector is formed by a SU(2)×U(1) group. In Fig. 6.4 we

show the Higgs conformal amplitude obtained from lattice simulations for qeff = 24, and for

different choices of β and w. To check the validity of the rescaling laws, we have extrapolated

all simulations to the β = 0.1, w = 1/3 case: all lines match approximately, proving this way

the validity of the rescaling equations in this case. Then, the fitting formula for the backreaction

time, Eq. (6.41), can be generalized as

zbr

≈ 13β
−(1+3w)
3(1+w) , qeff ∈ [1, 3], [6, 10] . . .

∈ [13, 89]β
−(1+3w)
3(1+w) , qeff ∈ (3, 6), (10, 15) . . . .

(6.43)

On the other hand, the formula for the decay time, Eq. (6.42), is generalized as

zdec = 105
( qeff

100

)0.53
β
−(1+3w)
3(1+w) + zbr , (qeff > 20) . (6.44)
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Figure 6.4.: We show the time-evolution of |h|, for different β and w parameters, obtained
for different lattice simulations. All functions have been rescaled to β = 0.1 and
w = 1/3 with Eqs. (4.88) and (4.89), to check their validity.

Let us finally study how the energy is distributed between its different components at

late times, i.e. when the system is well within the stationary regime. We plot in Fig. 6.5 the

different energy ratios Ei/ETot as a function of qeff at late times z > zdec. Definitions for ETot

and the different Ei are provided in Eqs. (6.36)-(6.39). By definition, all ratios Ei/ETot sum one.

In practice, we have plotted the ratios from the last time available in our simulations (always

with z > zdec), but choosing a slightly different time does not change significantly these results.

Note that we have decided to sum EV to EG, so that we can check the equipartition identities

(6.40) as precisely as possible. Note also that, for the electric and magnetic energies of the SU(2)

sector, we have decided to divide the energies by 3 to account for the different colours.

We can clearly observe that the equipartition equalities (6.40) hold independently on the

value of qeff. Let us define the total Higgs and electromagnetic energies as

EHig = EK + EG + EV , (6.45)

EEM = EE,1 + EM,1 + EE,2 + EM,2 . (6.46)

Note that assigning EG exclusively to the Higgs field is somewhat arbitrary, because EG also

contains gauge energy through the interaction term in the covariant derivative. In any case,

we can clearly see in Fig. 6.5 that for all qeff simulated in the lattice, EK/ETot ≈ 15% and

(EG + EV)/ETot ≈ EG/ETot ≈ 15%. Consequently,

EHig

ETot
= 0.3 ,

EEM

ETot
= 0.7 , (6.47)

i.e. the Higgs field eventually transfers 70% of the energy to gauge bosons. We can also

observe that for low resonance parameters qeff . 100, the electromagnetic energy is not equally

distributed between the Abelian sector and the three colors of the non-Abelian sector. For

example, for qeff = 5, we have EE,1/ETot ≈ EM,1/ETot ≈ 0.05, while for each of the three
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Figure 6.5.: We show the energy fractions Ei/ETot as a function of qeff, in the stationary regime
z → ∞. Note that the electromagnetic energies of the SU(2) sector have been
divided by 3, to account for the three different colors.

colors of the SU(2) sector, (EE,2 + EM,2)/(3ETot) ≈ 0.1. However, as qeff grows, the distribution

becomes more democratic, and for qeff & 100 the equipartiton between the U(1) and SU(2)

components of the electromagnetic energy is quite good, with

EE,1 ≈ EM,1 ≈
EE,2

3
≈ EM,2

3
. (6.48)

6.3.1. Comparison with Abelian-Higgs simulations

In this section, we simulate the post-inflationary dynamics of the SM Higgs with an analogue

Abelian-Higgs set-up, neglecting this way the non-Abelian interactions in the field EOM. We

will afterwards compare our results with the ones presented above for the full SU(2)×U(1)

gauge system. Note that similar Abelian-Higgs simulations have been presented in Section 4.5;

however, we have found convenient to repeat these with a larger set of resonance parameters.

Following the discussion in Section 6.2, we couple a single Abelian gauge boson Aµ to a

complex scalar Higgs doublet ϕ ≡ ϕ0 + iϕ1 with gauge coupling geff =
√

g2
1
+ g2

2
, and hence

with resonance parameter qeff ≡ q1 + q2 = g2
1/(4λ) + g2

2/(4λ) ≡ g2
eff/(2λ) [see Eq. (6.18)]. The

EOM of this system are displayed in Eqs. (6.21)-(6.23). The energy of the Higgs+gauge system

can be written in the Abelian-Higgs model as

ρ =
λϕ4
∗

4a4 ETot ≡
λϕ4
∗

4a4 (EK + EV + EG + EE + EM) , (6.49)

where EK, EG and EV are the Higgs kinetic, gradient and potential energies respectively, defined

in Eq. (6.37), and EE ≡ EE,1 and EM ≡ EM,1 are the Abelian electric and magnetic energies

defined in Eqs. (6.38)-(6.39).
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Figure 6.6.: Left: We show the time evolution of the different energy ratios [see Eq. (6.49)] as a
function of time for the Abelian-Higgs simulations, with qeff = 50, β = 0.1, and
a RD post-inflationary equation of state. Right: We show the final energy ratios
Ei/ETot for the Abelian-Higgs simulations [see Eq. (6.49)] as a function of qeff (i.e.
the energy ratios well in the stationary regime z→ ∞)

We show in the left panel of Fig. 6.6 the different energy ratios Ei/ETot as a function of

time, for an Abelian-Higgs simulation with qeff = 50. We can clearly see that, at late times, the

following equipartition equalitites hold,

EK ≈ EG + EV , EE ≈ EM , (6.50)

i.e. we find equipartition between the Higgs kinetic and gradient+potential energies, as well as

between the electric and magnetic energies. These identities are equivalent to the ones found

for the SU(2)×U(1) system in Eq. (6.40). In that case, there was equipartition at late times

between the electric and magnetic energies of both the U(1) and SU(2) sectors. This shows

that the way in which equipartition is attained at late times is independent on the non-Abelian

nature of the gauge fields.

We show now how the time scales zbr and zdec behave as a function of qeff in the Abelian-

Higgs modelling. Let us focus first on the backreaction time zbr. We have plotted the values of

zbr for different values of qeff in Fig. 6.2, again for β = 0.1 and a RD post-inflationary equation

of state. We see that the value of zbr also correlates with the structure of resonance bands of

the Lamé equation in the linear regime, and shows a clear oscillatoary pattern. Like in the

SU(2)×U(1) simulations, the minimum of these oscillations corresponds to zbr ≈ 40 , and

it is attained for values of qeff in the intervals qeff ∈ [1, 3], [6, 10] . . . , where as expected, the

resonance is stronger. The maximum of zbr is attained, on the other hand, for values of qeff in

the intervals qeff ∈ (3, 6), (10, 15) . . . , where the resonance is expected to weaker. However,

in the second case, the agreement between U(1) and SU(2)×U(1) simulations is much worse.

For example, for qeff ≈ 4 the U(1) simulation gives zbr ≈ 260, while the SU(2)×U(1) one gives

zbr ≈ 50. This is expected because when the resonance is stronger, the linear terms in the gauge

EOM dominate over the non-linear ones, and hence the Abelian approximation holds better.
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On the other hand, we plot in Fig. 6.3 the values of zdec as a function of qeff for the Abelian-

Higgs simulations. Here, we have technically defined zdec as the time when the Higgs kinetic

and gradient+potential energies are equiparted at the 2% level, like we did in the SU(2)×U(1)

simulations. We find that zdec also follows a clear power-law dependence with qeff , which we

fit (for β = 0.1 and w = 1/3) as,

zdec = 440
( qeff

100

)0.55
+ zbr , (qeff > 20, β = 0.1, RD) . (6.51)

Using the rescalings of Eqs. (4.88) and (4.89), this fit can be generalized to arbitrary values of β

and w as

zdec = 140
( qeff

100

)0.55
β
−(1+3w)
3(1+w) + zbr , (qeff > 20) . (6.52)

The exponent of the power-law obtained from the Abelian-Higgs simulations is quite similar to

the zdec ∝ q0.53 found for the full SU(2)×U(1) simulations [Eq. (6.44)]. However, the estimated

value of zdec in the Abelian-Higgs simulation is a factor 4/3 greater than in the SU(2)×U(1)

case. In other words, in the presence of non-Abelian interactions, the field dynamics go faster

to an equipartition regime than when such interactions are not present.

Finally, we show in the right panel of Fig. 6.6 how the energy is distributed between its

different energy components at late times, as a function of qeff, in the Abelian-Higgs model. We

can clearly see that, independently of the value of qeff, the energy at late times is distributed as

EK ≈ 30%, EG + EV ≈ EG ≈ 30%, EE ≈ 20% and EM ≈ 20%, so

EHig

ETot
≈ 0.6 ,

EEM

ETot
≈ 0.4 . (6.53)

In other words, in the U(1) simulations, the Higgs field only transfers 40% of its energy to

gauge fields, as defined in Eqs. (6.45) and (6.46) This is in sharp contrast with the results

from SU(2)× U(1) simulations, where the total energy transfer is approximately 70% [see

Eq. (6.47)]. Therefore, we see here that an important effect of the non-Abelian interactions is to

enhance significantly the energy transfer from the mother to the daughter fields (i.e. electric

and magnetic energies).

6.4. Summary

In this chapter, we have studied the decay of the Standard Model Higgs condensate after

inflation into the SU(2)×U(1) electroweak gauge fields. We have considered the same scenario

as in Chapter 4. There, we simulated the dynamics with lattice simulations of global and

Abelian-Higgs set-ups. As described in Section 4.5.2, this approach is justified at initial times,
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where the system is in the linear regime. However, the non-Abelian interactions could have

relevant effects in the field dynamics at late times, which can only be quantified with lattice

simulations of the full SU(2)×U(1) gauge group. In this section, we have studied and quantified

precisely these effects.

First we have described how parametric resonance works, when the parametrically excited

species are a combination of several Abelian and non-Abelian gauge fields. We have found

that a set of N Abelian gauge bosons, coupled to an oscillating complex scalar field, can be

imitated exactly with a effective gauge coupling qeff, which is a direct sum of the resonance

parameters of all independent gauge bosons. This is valid at all times. Analogously, a similar

construction can be done when the gauge sector is formed by several Abelian and non-Abelian

gauge bosons. In the case of a SU(2)×U(1) gauge structure, dynamics can be described as a

single Abelian gauge boson with effective resonance parameter, qeff = q1 + q2 , where q1 and q2

are the independent resonant parameters of the Abelian and non-Abelian sectors [defined in

Eq. (6.34)]. However, in the case of the SU(2)×U(1) gauge group, the effective description is

only valid in the linear regime, at early times.

We have then presented the results obtained from a set of lattice simulations of the Higgs

decay process. As said, the main difference is that, unlike in Chapter 4, we have simulated

explicitly the SU(2)×U(1) gauge structure in the lattice. We have parametrized the time scales

and energy ratios, and we have compared with the results from the Abelian-Higgs system.

As discussed, there are two important time scales in parametric resonance processes: the

backreaction time zbr and the decay time zdec. We have compared both times scales in both

scenarios. In the case of zbr, we have seen that, for resonance parameters with larger average

Floquet index (i.e. when the resonance is stronger), the Abelian approximation holds quite well,

while it fails when the resonance is weaker, see Fig. 6.2. In the case of zdec, we have found that

in both U(1) and SU(2)×U(1) simulations, it grows as zdec ∼ q0.5. However, we find that, in the

presence of non-Abelian interactions, the equipartion regime is achieved a factor 4/3 faster

than when such interactions are not present, see Fig. 6.3.

The presence of non-Abelian interaction do not change the equipartition identities at late

times. In both the U(1) and SU(2)×U(1) simulations, we have found that at late times, there is

equipartition betwen the Higgs kinetic and gradient+potential energies, as well as between

electric and magnetic energies. However, the amount of energy that the Higgs transfers to the

electric and magnetic fields is much larger in the presence of non-Abelian interactions. In the

SU(2)×U(1) simulations, we have found that 70% of the total energy is accumulated by the

gauge fields, while in the U(1) simulations, the energy transfer is only 40%.



Chapter 7.

Higgs-curvature coupling and
post-inflationary vacuum instability

We study in this chapter the post-inflationary dynamics of the Standard Model (SM) Higgs

in the presence of a non-minimal coupling ξ|Φ|2R to gravity, both with and without the

electroweak gauge fields coupled to the Higgs. We assume a minimal scenario in which inflation

and reheating are caused by chaotic inflation with quadratic potential, and no additional new

physics is relevant below the Planck scale. By using classical real-time lattice simulations

with a renormalisation group improved effective Higgs potential, and by demanding the

stability of the Higgs vacuum after inflation, we obtain upper bounds for ξ, taking into account

the experimental uncertainty of the top-Yukawa coupling. We compare the bounds in the

absence and presence of the electroweak gauge bosons, and conclude that the addition of

gauge interactions has a rather minimal impact. In the unstable cases, we parametrize the

time when such instability develops. For a top quark mass mt ≈ 173.3GeV, the Higgs vacuum

instability is triggered for ξ & 4− 5, although a slightly lower mass mt ≈ 172.1GeV pushes

up this limit to ξ & 11− 12. This, together with the estimation ξ & 0.06 for stability during

inflation, provides tight constraints to the Higgs-curvature coupling within the SM.

7.1. Introduction

As described in Section 4.2, the Standard Model (SM) potential may become negative at very

high energies [131, 132]. This has prompted an important effort to determine whether the

electroweak vacuum is, in the present, stable or unstable. Current measurements of the top

quark and Higgs masses indicate that we live in a meta-stable Universe: the probability of the

Higgs field to decay into a higher-scale negative-energy vacuum is non-zero, but the estimated

decay time is much larger than the present age of the Universe [127].

149
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However, the situation is quite different in the early Universe. In this case, high energies and

high spacetime curvature can make the vacuum more unstable. In particular, this may happen

during inflation [127, 143, 144, 145, 129, 146, 147, 148, 149, 150], or during the successive period

of (p)reheating [151, 152, 153, 84, 154]. The dynamics of the Higgs field Φ during and after

inflation, as well as the potential instability of the Higgs vacuum, depend very sensitively on

the strength of its non-minimal coupling to the scalar curvature, defined as ξ|Φ|2R, with R the

Ricci scalar. This interaction is necessary to renormalise the theory in curved space [155, 156],

and given that ξ runs with energy, it cannot be set to zero at all energy scales. Gravitation is

very weak in comparison with the other interactions, so current particle-physics experiments

provide only very weak constraints to this coupling, |ξ| . 2.6× 1015 GeV [157]. The coupling ξ

can be considered, therefore, as the last unknown parameter of the SM.

In chapters 4 to 6, we have considered the dynamics of the SM Higgs during and after

inflation, when the Higgs is effectively light during inflation (ξ . 0.1), and behaves as a

spectator field, forming a condensate with a large vacuum expectation value (VEV) [54, 127, 56,

55]. If it exceeds the position of the potential barrier, the Higgs reaches its true negative-energy

vacuum and generates patches of anti-de Sitter space, resulting in a catastrophic outcome for

our Universe [127, 143, 144, 145, 129, 146, 148, 149, 150]. As discussed in Section 4.2, one way

to prevent this from happening is to consider values of the top quark mass 2-3 sigma below its

central value, so that the instability scale is pushed to sufficiently high energies, or it is simply

not present (see Fig. 4.1 of Section 4). Another way of ensuring vacuum stability is to consider

a sufficiently low inflationary scale, so that even if the Higgs is excited during inflation, its

amplitude never reaches the potential barrier. In any case, if the Higgs field remains stable

during inflation, it starts oscillating around the minimum of its potential shortly after inflation

ends, rapidly decaying into the SM gauge bosons and fermions via non-perturbative parametric

effects. We have studied this process extensively in Chapters 4, 5, and 6.

On the other hand, if ξ � 0.1, the height of the potential barrier increases at tree level,

and the Higgs is no longer a light degree of freedom during inflation [127, 129]. In this case,

the Higgs field acquires an effective mass of the order m2
Φ ' ξR ∼ 12ξH2

i & H2
i during

inflation, with Hi the inflationary Hubble rate. This prevents the Higgs from developing large

amplitude fluctuations during inflation. However, the situation is quite the opposite after

inflation ends. The post-inflationary oscillations of the inflaton φ around the minimum of

its potential induce rapid changes in the spacetime curvature R, which becomes negative

during a significant fraction of time in each oscillation. The effective mass of the Higgs field

becomes tachyonic during those moments, m2
Φ ∝ R < 0. If ξ is sufficiently large, the Higgs field

may be significantly excited during the tachyonic periods, potentially triggering the vacuum

instability [151]. This issue was studied previously in [151, 152, 153], using both analytical and

numerical techniques, as well as classical real-time lattice simulations. The results of all of

these works agreed qualitatively, finding ξ . O(1)−O(10) as an upper bound for achieving
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stability after inflation. A similar lattice analysis of the values of the Higgs-inflaton coupling

inducing the instability of the Higgs vacuum was also carried out in [84], while an analysis of

the combined effects of both Higgs-curvature and Higgs-inflaton couplings was done in [154].

In this chapter, we use classical field theory lattice simulations to constrain the range

of allowed ξ values which ensure the stability of the Higgs vacuum after inflation. We do

a systematic parameter analysis of the Higgs post-inflationary dynamics. We use in the

simulations the renormalization group improved Higgs effective potential, Eq. (4.3), and study

the impact of the initial conditions and number of Higgs components in the results. We include

also an analysis of how the time scale at which the Higgs field develops the instability depends

on ξ and the top-quark mass. Furthermore, we consider the more realistic situation where the

Higgs field is coupled to the electroweak gauge bosons. We mimic the SM gauge interactions

with an Abelian-Higgs analogue model, which captures well the gauge boson field effects onto

the Higgs post-inflationary dynamics, as we expect the non-Abelian terms of the Lagrangian

to be subdominant, especially at the earliest times (see Section 4.5.1 for an explanation in the

context of parametric resonance). In this chapter we assess for the first time the implications

for the ξ bounds due to the presence of the SM electroweak interactions. We have assumed

throughout this chapter a chaotic inflation model with quadratic potential.

The structure of the chapter is as follows. In Section 7.2 we present a brief review of the

inflaton and Higgs dynamics after inflation in the presence of a Higgs-curvature non-minimal

coupling. We also present the equations of motion and the initial conditions of the different

fields, as well as some qualitative aspects of our lattice simulations. The following three

sections present the results from our lattice simulations, with increasing degree of complexity.

In Section 7.3 we consider a free scalar field with no potential. This is useful to understand

better the results in Section 7.4, where we introduce the renormalisation group improved Higgs

potential. We determine the values of the coupling ξ that give rise to an unstable Universe, and

parametrize the time scale at which the instability takes place, as a function of ξ and mt. In

Section 7.5 we repeat the same analysis, but including also the gauge bosons in the lattice. In

Section 7.6 we discuss our results and conclude.

7.2. Higgs excitation due to inflaton oscillations

We consider throughout the chapter the inflationary chaotic model V(φ) = 1
2 m2

φφ2, where φ

is the inflaton, and mφ = 1.5× 1013GeV. If φ & O(10)mp, the field is in a slow-roll regime,

causing the inflationary expansion of the Universe. However, when H(t) ≈ mφ with H(t) the

Hubble parameter, the inflaton field starts oscillating around the minimum of its potential,

ending the inflationary stage. Details of the preheating process in this model have been studied

in Section 2.4. There we defined ti as the time when H(ti) = mφ holds exactly, and considered
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Figure 7.1.: The red line shows the oscillations of the inflaton field as a function of time in units
of mp = (8πG)−1/2, and the blue line shows, for comparison, the corresponding
(dimensionless) Ricci scalar m−2

φ R. A solid line indicates positive values, and a
dashed line negative values.

this moment as the onset of the inflaton oscillations. The coupled equations of motion of the

inflaton and scale factor are

φ̈ + 3H(t)φ̇ + m2
φφ = 0 , (7.1)

H2(t) ≡
(

ȧ
a

)2

=
1

6m2
p
(φ̇2 + m2

φφ2) . (7.2)

To obtain the initial conditions for the homogeneous inflaton, we have solved numerically

the coupled inflaton and Friedmann equations, Eq. (7.1) and Eq. (7.2), imposing the slow-roll

conditions φ̇ ' −m2
φφ2/3H2, φ̇� m2

φφ2 well before the end of inflation. From the numerical

solution, we obtain the time ti when H(ti) = mφ holds exactly. At this moment we find

φ(ti) ' 2.32mp and φ̇(ti) ' −0.78mφmp. Using Eqs. (7.1) and (7.2), the Ricci scalar can be

expressed in terms of φ and φ̇, as

R(t) ≡ 6

[(
ȧ
a

)2

+
ä
a

]
=

1
m2

p
(2m2

φφ2 − φ̇2) . (7.3)

The inflaton field after inflation behaves, approximately, as a damped oscillator with decaying

amplitude [25]

φ(t) ' φa(t) sin(mφt) , φa(t) =

√
8
3

mp

mφt
. (7.4)

Each time the inflaton field crosses around zero, φ ≈ 0, we have R(t) < 0 from Eq. (7.3). This

can be clearly seen in Fig. 7.1, where we plot both the inflaton and the Ricci scalar as a function

of time.
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Let us focus now on the post-inflationary dynamics of the Higgs field. We wrote the relevant

piece of the SM action in Eq. (4.1). Due to the coupling to the scalar curvature, the Higgs gets

an effective mass m2
Φ(t) = ξR(t). Therefore, the Higgs becomes effectively tachyonic with

m2
Φ < 0, during the intervals when the Ricci scalar becomes negative. Due to this, there is a

strong periodic excitation of the Higgs field, a phenomenon known as tachyonic resonance [81].

We can estimate both the period of time that the Ricci scalar becomes negative, as well as

the maximum momenta excited by the resonance. The inflaton crosses zero periodically at

mφtn = (n− 1/2)π, n = 1, 2, 3, .... We can determine a typical envelope amplitude between the

n-th and the (n + 1)-th crossings, as φn/mp =
√

8/3/πn, with φn = φ(tn). When the inflaton

crosses around zero, the Ricci scalar becomes negative R ' φ2
n(mφ/mp)2(3m2

φ∆t2 − 1) < 0 for

a time mφ∆t . 2/
√

3 ≈ 1.2, while the inflaton amplitude is |φ| . φn/
√

3 ∼ 0.3mp/n. On the

other hand, the greater the coupling ξ, the larger the range of Higgs tachyonic modes excited

while the curvature is negative. We estimate this as an infrared (IR) band from k = 0 up to a

cutoff Λ, k ∈ [0, Λ], with

Λ ' 2
√

2√
3

an

πn

√
ξ , (7.5)

where an is the scale factor at tn (we take initially a1 = 1). Let us consider the unitary gauge,

so that the SM Higgs doublet can be written as a real degree of freedom, Φ = ϕ/
√

2. Let us

redefine the Higgs amplitude as h ≡ ϕ/a3/2 so that in cosmic time, this re-scaling eliminates

the friction term in the Higgs EOM. If we ignore the presence of the gauge bosons and of the

Higgs self-interacting potential, the equation of motion of its Fourier modes is

ḧk +

[
k2

a2 + ξR(t) + ∆
]

hk = 0 , (7.6)

where ∆ ≡ − 3
4

ȧ2

a2 − 3
2

ä
a , so that ∆� k2/a2 for sub-horizon scales, and we can ignore it. Using

Eqs. (7.3)-(7.4), we can write the previous EOM as

d2hk

dz2 + (Ak − 2q cos(2z))hk = 0 , (7.7)

where z ≡ mφ(t− ti) and

Ak ≡
k2

a2m2
φ

+
φ2

n(z)
2m2

p
ξ , q ≡ 3φ2

n(z)
4m2

p

(
ξ − 1

4

)
. (7.8)

This corresponds to a Mathieu equation, as the one shown in Eq. (2.45) in the context of

parametric resonance with quadratic potential. Its properties have been studied in Section

2.4.1. The main difference with respect to standard parametric resonance is that we are not

constrained now to the case Ak > 2q, and hence we have greater resonance bands which induce

a stronger particle creation effect in the broad resonance regime q � 1. However, note that
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due to the expansion of the Universe, φn(z) decreases, and hence this pushes the Higgs into a

narrow resonance regime, where this effect is much weaker. The dynamics of this theory was

studied in [129] with the properties of tachyonic resonance of [81], and after that numerically

in [152] and in the lattice in [153, 84, 154].

Let us consider now the effect of plugging back the Higgs potential. In particular we

consider the renormalisation group improved Higgs potential, written in Eq. (4.2). In that

expression, λ(ϕ) is the renormalised Higgs self-coupling at the renormalisation scale µ = ϕ,

whose running was computed up in [131, 132] to three loops in Minkowski spacetime1. As

explained in Section 4.2, the running of λ(ϕ) is very sensitive to the particular value of the

top quark mass, and in fact, it may become negative at large energies for top quark masses

mt > mt,c ≈ 171.1GeV.

Let us now incorporate the potential into the Higgs mode equation,

ḧk +

[
k2

a2 + ξR(t) +
λ(ϕ)

a3 〈h
2〉
]

hk = 0 . (7.9)

If λ > 0, the Higgs tachyonic resonance effect weakens, as the Higgs self-interaction λ(ϕ)〈h2〉 >
0 compensates the negativeness of ξR < 0. If λ < 0, the tachyonic effect, on the contrary, is

enhanced. The presence of the Higgs potential represents a correction over the mode excitation

described by Eqs. (7.6), (7.8). We need therefore to introduce the system into a lattice, where

we can solve numerically the EOM of the Higgs including its own potential non-linearities,

and taking into account both cases λ < 0 and λ > 0.

7.2.1. Higgs potential in the lattice

The equation of motion for the Higgs field (in the absence of electroweak gauge interactions)

can be derived from the minimization of action (4.1). It is

Φ̈− 1
a2∇

2Φ + 3
ȧ
a

Φ̇ + 2[ξR + λ(|ϕ|)(Φ†Φ)]Φ = − ∂λ

∂|ϕ| (Φ
†Φ)2 , (7.10)

where the Higgs field Φ ≡ ϕ/
√

2 is a complex doublet with four real components

ϕ =

ϕ1 + iϕ2

ϕ3 + iϕ4

 , ϕn ∈ Re . (7.11)

The form of a(t) in this equation, as well as the Ricci scalar R(t) = R[a, ȧ, ä], is obtained from

the self-consistent solution of the inflaton and Friedmann equations (7.1) and (7.2). As we shall

1Let us note that the effective potential also depends on the spacetime curvature through loop correc-
tions, but as seen in [158], these terms are only relevant for small couplings ξ . 1.
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Figure 7.2.: Running of λ(ϕ) as a function of the Higgs field ϕ for αs = 0.1184, mh = 125.5GeV,
for the different values of the top quark mass mt considered in this chapter, obtained
from the public package provided in Ref. [130]. The corresponding grey dashed
lines indicate the interpolations λin(|ϕ|) used in the lattice simulations.

see, for the values of ξ considered in this chapter, the energy of the Higgs field is always several

orders of magnitude subdominant with respect the energy of the inflaton. Hence, we can just

ignore the contribution of the Higgs field to the Friedmann equation. Note that the inflaton

is taken as a homogeneous field, and we do not introduce it explicitly in the lattice, it simply

dictates the form of a(t) and R(t) as a function of time.

We introduce in the lattice the renormalization group improved effective potential2, Eq. (4.3),

as

V(|ϕ|) = λ(|ϕ|)
4
|ϕ|4 , |ϕ| =

√√√√ 4

∑
n=1

ϕ2
n , (7.12)

where we assume |ϕ| � v. As seen before, the Higgs self-coupling λ(ϕ) runs with the value

of ϕ. We introduce the running in our simulations as a local function of the lattice point

n, i.e. λ(|ϕ(n)|): as the value of |ϕ| changes from lattice point to lattice point, so does too

the value of the Higgs self-interaction. More specifically, we introduce a quartic logarithmic

polynomial λin(|ϕ|) = ∑4
n=0 cn (log |ϕ|)n, interpolating the 3-loop calculation of the running

obtained in [130] for the relevant range of Higgs amplitudes |ϕ| (see Fig. 7.2). As we have

mentioned, the running of the potential depends strongly on the value of the top quark mass,

the current world average being mt = 172.44±0.13(stat)
±0.47(syst) GeV [133]. We take this uncertainty into

account by providing different sets of {cn} constants, corresponding to different interpolations

of the running for each value of mt. Note also that in Section 4.2 we characterized, for each

different running, two scales: ϕ = ϕ+, which indicates the position of the barrier in the

effective potential; and ϕ = ϕ0, which indicates when the Higgs potential becomes negative.

We indicated the values of these scales for different top quark masses in Table 4.1.

2As argued in Ref. [129], the scale choice should also involve the Ricci scalar R, but in the current
time-dependent case it could lead to unphysical effects.
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Our interpolation can only describe appropriately the running of λ for certain values of

|ϕ|, failing at low and large field amplitudes. This is however not a problem, because those

field values are never reached anywhere in the lattice, before the instability of the Higgs field is

developed. On the other hand, when the Higgs has become unstable and decays towards the

negative-energy vacuum, the amplitude of the Higgs field starts increasing very fast, reaching

the region where the interpolation fails. However, our aim in this chapter is to determine

the specific time when the instability is developed, not to characterize the dynamics of the

Higgs field once the instability has commenced. In fact, in order to ensure numerical stability

during the Higgs field transition from positive to negative λ, it is convenient to modify the

high-energy running of the latter, so that it generates a second vacuum at an energy lower

than that dictated by the real running predicted in the Standard Model. This is achieved for

c4 > 0. In particular, we have chosen the constants so that the negative-energy vacuum is

generated at approximately ϕ = ϕv ≈ 1016GeV. If the Higgs amplitude goes to this vacuum

with negative potential energy, we say that the Higgs has become unstable. We have explicitly

checked that our characterization of the times of instability is independent on the particular

choice of constants cn (for a given mt value), as long as they fit the Higgs effective potential

within the range ∼ 109 − 1014 GeV.

In Section 7.3 we study tachyonic resonance in the lattice, taking the Higgs as a free field

without self-interaction. The Higgs will then be excited only due to the rapidly changing

spacetime background. In Section 7.4 we re-introduce back the Higgs potential, but ignore yet

its interaction with the gauge bosons. We determine under those circumstances, what values

of ξ lead the Higgs field to become unstable, so that it rolls rapidly into the true vacuum. In

Section 7.5 we finally incorporate a gauge structure into the simulations, and study their effect

on the post-inflationary Higgs dynamics, re-evaluating again the critical values of ξ.

7.2.2. Initial conditions

We start the lattice simulations at time t = ti, where we impose for all four components of

the Higgs that their initial homogeneous amplitude vanishes, ϕn(ti) = 0, n = 1, 2, 3, 4. We

then add on top a spectrum of fluctuations3, which mimic the spectra of quantum vacuum

3Our initial conditions are set at a time when the slow-roll conditions are not yet totally broken.
Therefore, we can introduce instead quantum vacuum fluctuations in de Sitter,

〈|ϕk|2〉 =
πe−πIm[ν]

4Hia3
i

∣∣∣∣H(1)
ν

(
k

aiHi

)∣∣∣∣2 (7.13)

with ν =
√

9/4− (ξRi/Hi)2. However, for the couplings ξ > 4 we are considering, this spectra is
almost identical to the FLRW case described by Eq. (7.14).
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fluctuations,

〈|ϕk|2〉 =
1

2a3
i ωk

, ωk =

√
k2

a2
i
+ ξRi , (7.14)

where ai = a(ti) ≡ 1, and Ri ≡ R(ti) ≈ 10H2
i from Eq. (7.3).

The spectra of quantum fluctuations (7.14) is set in the lattice in a similar way as in Lat-
ticeeasy [47], imposing in momentum space the following spectra for the Higgs field amplitude

and derivatives

ϕn(k) =
|ϕn|√

2
(eiθn1 + eiθn2) , (k < kc)

ϕ′n(k) =
|ϕn|√

2
iωk,n(eiθn1 − eiθn2) , (k < kc) (7.15)

where ωk,n ≡
√
(k/ai)2 + ξRi, θn1 and θn2 are real phases drawn from a uniform random

distribution in the interval θn1, θn2 ∈ [0, 2π), whereas |ϕn| varies according to the probability

distribution

P(|ϕn|)d|ϕn| =
2|ϕn|
ω2

k,n
e
− |ϕn |2

ω2
k,n d|ϕn| . (7.16)

The ultraviolet cutoff kc is introduced in order to prevent the excitation of UV modes which are

not expected to be excited by the tachyonic resonance, i.e. kc ≈ Λ with Λ given by Eq. (7.5).

Hence, the variance of (a component of) the Higgs field initially is

〈ϕ2
i 〉 =

1
4π2a3

i

∫ kc

0
dk

k2

ωk
=

1
8π2

(
kcωkc + ξRi log

[
ξRi

kc + ωkc

])
, (7.17)

where we have taken ai = 1 in the second equality. Typical numbers chosen in our simulations

are ξ ∼ 10 and kc ∼ 10Hi, which gives an initial Higgs amplitude√
〈ϕ2

i 〉 ≈ 0.82Hi ≈ 1.2× 1013GeV . (7.18)

Typically
√
〈ϕ2

i 〉 � ϕ+, and hence, in most of the physical space, the Higgs field is already in

the right side of the barrier when initial conditions are set. This, however, does not mean that

the Higgs field will immediately become unstable, as the mainly positive sign of R may impede

it. We shall discuss this issue in more detail in Sections 7.4 and 7.5. Let us also remark that this

way of fixing the initial conditions is only appropriate if the tachyonic resonance regime of the

system enhances the Higgs amplitude significantly over the value given in Eq. (7.18). If it does

not, we cannot trust the lattice approach. Finally, let us also note that there is a contribution

to the Higgs effective mass from its self-interactions, i.e. the effective Higgs mass should be
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Figure 7.3.: The time-evolution of the Higgs field spectra κ3a2|ϕκ|2 as a function of κ ≡ k/mφ,
for the non-interacting case (Section 7.3) with the Higgs-curvature couplings ξ = 5
(left panel) and 30 (right panel). The different coloured lines show the spectra
at different times, going from early times (red) to late times (purple). The time
interval between lines is mφ∆t = 2, so mφ(t− ti) = 0, 2, 4, . . . 100.

rather m2
eff ≈ ξRi + λ〈ϕi〉2. Taking λ ≈ −0.01, ξ ≈ 10, and Hi = mφ ≈ 6× 10−6mp, we see

that the second term (Higgs self-interaction) is negligible with respect to the first one (Higgs

non-minimal coupling).

7.3. Simulations with a free scalar field

We study first the case of a non-interacting scalar field, i.e. we solve only Eq. (7.10), setting

λ = 0. Although this is obviously not a physical case, it will be helpful to understand our later

results better when we include the Higgs self-interactive potential. Thus we consider now a

4-component Higgs field, coupled to the spacetime curvature through the term ξRΦ†Φ, with

R[φ, φ̇] evolving due to the oscillating inflaton. We have done several lattice simulations of this

system, varying the coupling ξ within the range ξ ∈ [4, 70].

We show in Fig. 7.3 the spectra of the Higgs field for the particular cases ξ = 5 and ξ = 30.

In both panels, the red color corresponds to early times, while dark blue/purple corresponds

to late times. In these spectra, a cutoff has been put in the distribution of initial fluctuations at

the scale kc, as indicated in Eq. (7.15). The value of kc has been estimated from a previous set of

lattice simulations without cutoff, in which we see that for k > kc, the Higgs excitation due to

the tachyonic resonance is negligible. Both spectra grow very fast, saturating eventually at a

time t ≈ tres, defined below. Naturally, the spectra grows several orders of magnitude more

in the ξ ≈ 30 case (right panel in Fig. 7.3) than in the ξ ≈ 5 case (left panel in Fig. 7.3), as the

tachyonic effect is stronger in the first case.

In Fig. 7.4 we show the conformal and physical amplitudes of the Higgs field as a function

of time, averaged over the whole volume of the lattice, for the couplings ξ = 3, 6, 10, 15, 30. We
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Figure 7.4.: Left: The Higgs conformal amplitude a2〈ϕ2〉 obtained from lattice simulations,
for the non-interacting case (Section 7.3) with the Higgs-curvature couplings ξ =
1/6, 3, 6, 10, 15, 30. The dashed, vertical lines indicate the estimated time tres. Right:
The root mean square of the Higgs physical amplitude 〈ϕ2〉 for the same couplings.
We indicate in dashed lines the corresponding fit (7.20) for the late-time dynamics.

remind that this plot is for a four-component Higgs field, while for a single component we

have 〈ϕ2
n〉 ≈ 〈ϕ2〉/4 for each n = 1, 2, 3, 4.

We expect the Higgs excitation to end when q . 1, see Eq. (7.8). Taking q = 0.2 as the

condition signalling the end of the tachyonic resonance regime, we find, using Eq. (7.4), that

the time tres it takes to switch off the resonance, is

mφ(tres − ti) ≈ 1.58
√

4ξ − 1 . (7.19)

In the figure we indicate this time with vertical dashed lines. We see that for t . tres particle

creation is exponential, and the greater the ξ, the stronger the growth of the conformal Higgs

amplitude h = aϕ. However, as we approach t ≈ tres, the Higgs excitation stops. From then

on, the dynamics of the Higgs field is dominated by the expansion of the universe. More

specifically, we have found that the late-time behaviour of the Higgs amplitude is

〈|ϕ(t)|〉 ∼ (mφt)−(0.64±0.03) , mφt→ ∞ , (7.20)

where the particular numerical value of the exponent depends on the value of ξ considered.

We indicate this in the left panel of Fig. 7.4 with dashed lines. As expected, Eq. (7.20) indicates

that 〈ϕ〉 ∝ a−1(t). We have found that a rough estimate for the Higgs amplitude for late times

is

〈|ϕ(t)|〉 ≈ es(ξ)(mφt)−p(ξ)mp ,

s(ξ) ≡ −12.1 + 0.17ξ + 0.00046ξ2 ,

p(ξ) ≡ 0.67− 0.0048 log ξ − 0.0017(log ξ)2 , (7.21)
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where the first factor accounts for the initial excitation of the Higgs modes, and the second

accounts for the later energy dilution.

Before we move on, it is important to note that, as we decrease ξ, the amplitude of the

excited IR modes decreases significantly, being comparable to the amplitude of the (non-excited)

UV modes for very low couplings. This signals that the lattice simulations cannot be trusted

for these low couplings, because there is no significant excitation of the Higgs field over the

initial vacuum fluctuations. Correspondingly, for these low couplings, the contribution of the

UV modes to the Higgs amplitude becomes increasingly important, and hence its value can

depend strongly on where we put the cutoff kc of the initial fluctuations. Therefore, there is

a minimum value ξ for which we can trust the lattice simulations. In this chapter we have

determined this condition as 〈ϕ(tres)〉
〈ϕi〉

a(tres)
ai

> 2, which means basically that the contribution to

the Higgs amplitude from the Higgs excitation, is greater than the one from the Higgs initial

vacuum fluctuations. With this, we find that we cannot trust simulations with ξ . 4.

7.4. Simulations with unstable potential

Let us now move to simulations with the full Higgs potential (7.12), including the four compo-

nents of the Higgs field but yet without including gauge interactions. All the results of this

Section have been obtained with lattice cubes of N3 = 2563 points, and minimum momentum

pmin = 0.18mφ.

To get a qualitative understanding of the dynamics, let us recall the linearised equation

of motion (7.6) for the Higgs field modes hk ≡ ϕka3/2. For high Higgs field values, ϕ > ϕ0,

the self-coupling is negative λ(ϕ) < 0, and therefore the interaction term tends to increase

the Higgs field value, and induce a transition to the negative-energy vacuum. The more the

Higgs field has been amplified by the tachyonic resonance, the faster the instability is. On the

other hand, because the Ricci scalar remains larger time positive than negative during each

inflaton oscillaton, the non-minimal coupling term ξR(t) effectively creates a potential barrier

that resists this increase. The amplitude of the curvature term decays as ξR(t) ∝ a−3(t) ∝ t−2,

so it becomes however gradually less important. If it counteracts the instability until the Higgs

field amplitude has decreased below the barrier scale ϕ < ϕ0, then the Higgs field remains

stable throughout the entire evolution. Because the amplification by the tachyonic resonance

depends exponentially on the non-minimal coupling ξ [see Eq. (7.21)], whereas the effective

barrier due to ξ depends on it only linearly, one expects that for high ξ, the instability takes

place faster, and for low enough ξ it is prevented completely.

Fig. 7.5 shows the volume-averaged amplitude of the Higgs field 〈|ϕ|〉 as a function of

time, for different choices of the Higgs-curvature coupling ξ, obtained directly from lattice

simulations. In this Figure, we have used the running of the potential corresponding to the top
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Figure 7.5.: The volume-average value of the Higgs field |ϕ| =
√

∑n ϕ2
n obtained from lattice

simulations with unstable potential (Section 7.4), for the top quark mass mt =
172.12GeV. Each line represents simulations with a different value of ξ. For the
cases in which the Higgs field develops an instability, the vertical dashed lines
indicate the instability time mφti. The two dashed horizontal lines indicate the
position of the barrier ϕ+ estimated for this potential, and the (modified) high-
amplitude, negative-energy vacuum ϕv.

quark mass mt = 172.12 GeV, see Fig. 4.1. This potential has the barrier at ϕ+ ≈ 7.8× 1011GeV.

We can see that, for initial times mφ(t− ti) . 10, the amplitude grows (in an oscillating way)

due to the Higgs tachyonic resonance regime, as described in Section 4.2.

In Fig. 7.5 we see that for high values of the non-minimal coupling, ξ ≥ 16, the Higgs field

becomes unstable during the tachyonic resonance, triggering a transition to the high-energy

vacuum ϕ = ϕv. For lower values of the non-minimal coupling, the tachyonic resonance ends

before the Higgs has become unstable. After this the behaviour is initially similar to the free

field case discussed in Section 7.3: the system settles in a quasi-stationary state in which the

field amplitude gradually decreases due to the expansion of space. In the intermediate range

of couplings, 12.2 ≤ ξ ≤ 14, the instability eventually takes place, at a time that we denote by

ti. We indicate this with a vertical dashed line in Fig. 7.5.

For ξ ≤ 12, the field amplitude eventually decreases below the potential barrier, ϕ < ϕ+.

By this time, the barrier stabilises the field, and therefore the instability does not take place at

all. This demonstrates that physically the instability is due to the tachyonic resonance. Even

though the amplitude of the initial vacuum fluctuations is higher than the barrier scale, it is

not high enough to lead to an instability before it is damped to safe values by the expansion

of the universe. From the spectra shown in Fig. 7.6 we can see that the infrared modes have

to be amplified by roughly three orders of magnitude by the tachyonic resonance in order

for the instability to take place. In particular, this means that the use of classical field theory

simulations is well justified in this case.
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Figure 7.6.: Higgs field spectra κ3a2|ϕk|2 as a function of κ = k/mφ in the presence of a unstable
potential (Section 7.4), for ξ = 12.2 and mt = 172.12 GeV. The spectra is depicted
at times mφ(t− ti) = 0, 10, 20..., going from early times (red) to late times (dark
blue).

We can explain the triggering of the Higgs instability in terms of the balance between the

terms ξR and −λ(ϕ)〈ϕ2〉 that appear in the EOM of the field modes, Eq. (7.9). We have plotted

in Fig. 7.7 the time-evolution of these two terms for mt = 172.12GeV and different values of

ξ. Although ξR is periodically oscillating between positive and negative values, the resulting

oscillation average is always positive. We observe that initially, the first term dominates over

the second, but as commented, when (if) the absolute value of the second term becomes of the

same order of magnitude that the first one, the Higgs field becomes unstable. This can happen

during the initial regime of tachyonic resonance, or later on due when the resonance is already

switched off, as R ∝ 1/a3 whereas 〈ϕ2〉 ∝ 1/a2.

In conclusion, as expected, we can define a critical coupling, ξc ≈ 12 for mt = 172.12 GeV,

so that for ξ . ξc the Higgs field is always stable, while for ξ & ξc the field becomes unstable

at a certain time mφti, whose numerical value decreases as ξ gets greater. This general picture

also applies for other values of the top mass. If we take the top quark mass a bit higher, ϕ+

is lower, and hence the Higgs field takes a much longer time to settle on the safe side of the

potential barrier. Due to this, the larger the mass mt the lower the value of the critical coupling

ξc.

The order of magnitude fit of the time-dependence of the amplitude obtained for the free

case in Eq. (7.21) also holds quite well in the self-interacting scenario, before the instability

takes place. This indicates that the effect on the Higgs dynamics of λ is not very important

before the transition to the high-energy vacuum takes place. Inverting this fit, we can find an

order-of-magnitude estimate of the time t0 at which we recover λ(ϕ) > 0,

mφt0 ≈ (ϕ0m−1
p e−s(ξ))

− 1
p(ξ) , (7.22)
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Figure 7.7.: We show, for mt = 172.12GeV and different values of ξ (Section 7.3), the time-
evolution of the terms ξR (dashed lines) and −λ(|ϕ|)ϕ2 (continuous lines). For ξR,
we plot an oscillation-average to compare both terms more easily. These are the
terms that appear in the Eq. (7.9) for the field modes. We also plot, with vertical
lines, the corresponding time mφti at which the Higgs becomes unstable.

where ϕo is given in Table 4.1. For ξ ≈ 5, this gives mφt0 ≈ O(102,4,5,6,7) for top quark masses

mt = 172.12, 172.73, 173.34, 173.95, 174.56 GeV respectively.

We show in Fig. 7.8 the instability time as a function of ξ obtained from our lattice simu-

lations. We have observed that the specific value of mφti depends on the particular random

realization of the Higgs field initial conditions in Eq. (7.15), so for each point, we have done

several simulations for different realizations of the initial conditions (this is discussed in more

detail in Section 7.4.1). Points indicate the average value of mφti, while the shadow region

surrounding each of the curves indicate the standard deviation.

The behaviour of the five curves with ξ is quite similar. In all curves we can identify

two critical values, ξ
(1)
c ≡ ξc and ξ

(2)
c , which are identified in the Figure with dotted and

dotted-dashed vertical lines, and indicated in Table 7.1. The meaning of these values is as

follows:

• ξ > ξ
(2)
c : For these values, we observe that the Higgs field always develops an instability,

at a time mφti . O(10), quite independently on the value ξ (at least for the cases we have

simulated). This is seen as a plateau in the right part of the numerical curves shown in

Fig. 7.8. Qualitatively, for this range of values, the Higgs field becomes unstable when

it is still in the tachyonic resonance regime. One can see an example of this in Fig. 7.5

for mt = 172.12 GeV: for the cases ξ = 16, 18, 20, which verify ξ > ξ
(2)
c ≈ 14, the Higgs

becomes unstable in the oscillatory regime, while for ξ = 12, 14, with ξ . ξ
(2)
c , the

instability is developed when the resonance has already finished.

• ξ
(1)
c < ξ < ξ

(2)
c : For these values, the Higgs field also develops an instability, but this

happens only after the tachyonic resonance has ended. For these values, the instability
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Figure 7.8.: The instability time mφti at which the Higgs field develops an instability and
decays to the true negative-energy vacuum, as a function of the Higgs-curvature
coupling ξ (Section 7.4). These results are obtained directly from lattice simulations.
Each of the five lines correspond to the five different interpolating potentials,
corresponding to the top quark masses mt = 172.12GeV (red), mt = 172.73GeV
(green), mt = 173.34GeV (blue), mt = 173.95GeV (purple), and mt = 174.56GeV
(brown). The dashed vertical lines indicate the position of the critical couplings
ξ
(1)
c , while the dotted lines indicate the position of the couplings ξ

(2)
c , see Table

7.1. For each data point we have done several lattice simulations corresponding to
different realizations of the initial Higgs field conditions, see bulk text. The points
indicate the average value mφti, while the envelope of each of the lines indicate
the standard deviation σ ≡ N−1/2

√
∑i(xi − x̄i)2. For data points with ξ ≈ ξc, only

some of the ten simulations do not become unstable, and hence we do not show
the deviation in these cases. For ξ . ξ

(1)
c all simulations are always stable (i.e.

mφti = ∞), and hence data points are not drawn.

time mφti depends very strongly on the value ξ. A change of few units in ξ changes mφti

in several orders of magnitude.

• ξ < ξ
(1)
c : Finally, for these values, we observe that the Higgs field is always stable, coming

back to the safe side of the potential without having become unstable.

We indicate the values of both ξ
(1)
c and ξ

(2)
c for the cases mt = 173.34 GeV, mt = 172.73 GeV,

and mt = 172.12 GeV (blue, green, and red curves) in Table 7.1. Note that, as expected, as

we increase the value of the top quark mass, the position of the barrier in the Higgs potential

moves to smaller field values, and hence the initial distribution of the Higgs field is much

deeper in the negative-energy region. Due to this, ξ
(1),(2)
c are lower, and the Higgs field takes

much longer to enter into the safe side of the potential. Let us note that the identification of

these critical values is not unambiguous, and in particular, for couplings near the critical one

ξ ≈ ξ
(1)
c , we observe that depending on the specific realization of the initial conditions, the

Higgs may or may not become unstable. This source of uncertainty is indicated with a ± sign
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mt(GeV) ξ
(1)
c ξ

(2)
c

172.12 12.2± 0.2 14

172.73 7.7± 0.1 11.8

173.34 4.3± 0.2 10.6

173.95 < 4.0 9.8

174.56 < 4.0 9.3

Table 7.1.: Higgs-curvature critical couplings ξ
(1)
c and ξ

(2)
c , obtained from lattice simulations,

for different values of the top quark mass. The error in ξc signals the uncertainty
with respect initial conditions. The meaning of this parameters is explained in the
bulk text.

in Table 7.1. Finally, let us note that our technical definition of the second critical coupling is

such that for ξ > ξ
(2)
c , we have mφti < 20.

The curved, dashed lines in Figure 7.8 indicate the approximated time at which the Higgs

enters into the safe side of the potential, using Eq. (7.22). The idea is that at the critical coupling

ξ = ξ
(1)
c , the curve for mφti obtained from the numerical simulations (bands in colors in Fig. 7.8)

will meet approximately the corresponding dashed ones. We can see in Fig. 7.8 that this works

relatively well, taking into account that Eq. (7.22) is only a rough estimation.

In Fig. 7.8 it can also be seen that for mt = 173.95 GeV and mt = 174.56 GeV, the instability

curves do not meet their corresponding curved-dashed lines for ξ & 4, which are the cases that

we cannot study in the lattice as discussed at the end of Section 7.3. Hence, for these masses

we can only provide the upper bound ξc . 4.

Let us remark that in all our simulations we made the inflaton to oscillate indefinitely, even

though this is clearly not realistic. The inflaton is expected to be coupled to other species,

which will eventually induce its decay due to parametric resonance effects at a certain time. In

Chapter 2, we denoted this time scale as tbr, where the label br stands for the back-reaction from

the decay products of the inflaton. After this time, the energy density is no longer dominated

by a coherently oscillating scalar field, and therefore Eq. (7.3) is no longer valid. This puts

an end to the tachyonic resonance regime of the Higgs field. Therefore, the estimates for ξc

provided here will not be valid if tbr . tres. For example, if the inflaton is coupled to a single

scalar field χ with coupling g2φ2χ2, we find, using Eq. (2.50), mφtbr & 40 for g2 . 6.9 · 10−3. As

tbr & tres for the values of ξ considered here, our bounds can be applied.
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7.4.1. Dependence of lattice simulations on the Higgs number of

components and initial conditions

We address now how our results depend on the position of the momenta cutoff in the spectra

of initial conditions, as well as on the number of Higgs components we put in our simulations.

Dependence on Higgs initial conditions

We have explained previously how the initial conditions of the Higgs field are set throughout

the lattice. Basically, we impose at initial time t = ti vanishing homogeneous modes ϕn = 0

(n = 1, 2, 3, 4), and then we add quantum fluctuations to each of the components. These

fluctuations are imposed only up to a certain cutoff momentum kc, so that for k > kc the

fluctuations are set to zero. Also, the random nature of the initial conditions is implemented in

the code through a pseudo-random number generator, so that different seeds produce different

realizations for the initial conditions.

It is essential to fix the initial cutoff appropriately, so that the non-excited UV quantum

modes, which cannot be treated in the lattice, are not excited as classical modes. In the results

presented in Fig. 7.8, we have done several simulations with different initializations for each

point. More specifically, for values ξ < 5, we have done ten simulations, five of them with

κc = 10 (κc ≡ kc/mφ), and the other five with κc = 12. We have also varied the seed in

each of the ten simulations. This matches quite well the analytical estimation for the classical

estimation of modes during tachyonic resonance given in Eq. (7.5). For values 5 < ξ < ξ
(2)
c , the

second set of five simulations has been done instead with cutoff κc = 15. Finally, for points

ξ > ξ
(2)
c , we have only done four simulations (two with κc = 10 and two with κc = 15), because

for these points the dependence of our results on the initial conditions is negligible.

The left panel of Fig. 7.9 shows how the instability curves change for different choices of

the initial cutoff κc for the particular case mt = 173.34 GeV. The inclusion of UV modes in

the lattice beyond the physical cut-off, makes larger the Higgs amplitude 〈h2〉, so that the

negative λ〈h2〉/a3 term in Eq. (7.9) is enhanced, and hence reduces the instability time mφti.

For ξ & 10, this effect is negligible, because as we saw in Section 7.3, the amplitude of the

excited IR modes dominates over the UV ones, but it becomes increasingly important as ξ

diminishes. As we decrease the coupling, the UV modes become more relevant, and if they are

not appropriately eliminated, their contribution can make the instability time wrongly smaller.

At very low couplings, this is related to the invalidity of the lattice approach, as explained in

the last paragraph of Section 7.3.

Finally, let us note that, although the vacuum always becomes unstable for values ξ > ξ
(1)
c ,

the opposite condition ξ < ξ
(1)
c does not guarantee stability. To show that, we would need to do
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Figure 7.9.: Left: The instability time mφti for the top quark mass mt = 173.34 GeV. Each curve
corresponds to a different value of the cutoff of the initial fluctuations κc ≡ kc/mφ,
and each point corresponds to a particular lattice simulation. We depict here the
interval 4 < ξ < 20. Right: The instability curves for mt = 173.34 GeV and
mt = 172.12 GeV when we introduce a 4-component or a 1-component Higgs field.
Each point corresponds to a single lattice simulation.

e150 runs to account for the number of different causally disconnected patches of the Universe,

and check that none of them leads to vacuum decay. This is not feasible, so we simply exclude

parameters where vacuum decay happens in a typical run. Note also that the uncertainty in mt

propagates as a much larger change in ξc.

Dependence on Higgs number of components

We now compare our results, in which we have taken the Higgs as a 4-component field (Nc = 4),

with a similar set of lattice simulations with a 1-component field (Nc = 1).

We expect differences between the two scenarios for several reasons. The first one is that, if

we include a 4-component field, the tachyonic mass is exciting 4 scalar fields instead of one. If

we neglect at first the Higgs self-interaction term, this means 〈ϕ2
n〉 ≈ 〈ϕ2〉/4 (n = 1, 2, 3, 4). Due

to this, if we consider only a 1-component Higgs, the magnitude of the negative self-interaction

term is being underestimated, and increases artificially the instability time mφti for a given

coupling ξ, as well as the critical value ξc.

To check this, we show in the right panel of Fig. 7.9 the dependence of the instability curve

on the number of components, for the top quark masses mt = 172.12 GeV and mt = 173.34 GeV.

We compare the cases Nc = 4 (i.e. the case we have presented above), and Nc = 1. As expected,

for the 1-component case the critical coupling ξc increases slightly. For the mt = 173.34 GeV

case, we have ξc ≈ 6 instead of ξc ≈ 4, while for the mt = 172.12 GeV we have ξc ≈ 13

instead of ξc ≈ 12. Apart from that, we see that the particular shape of the instability curve is

significantly changed, meaning that the effect of the interaction between the different Higgs

components is relevant for the dynamics of the system.
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7.5. Simulations with gauge fields

Until now, we have ignored the coupling of the Higgs field to the gauge bosons of the Standard

Model. We now evaluate if the effects of this interaction modify significantly the results

presented in the last section. For this, let us approximate the SU(2)xU(1) gauge structure of the

SM with the following U(1) action,

L = −
∫

d4x
√
−g
(

1
4e2 FµνFµν + |DµΦ|2 + ξR|Φ|2 + V(|Φ|)

)
, (7.23)

with the usual definitions Fµν = ∂µ Aν − ∂ν Aµ and Dµ = ∂µ − iAµ, where Φ is complex doublet

with four real components [see Eq. (7.11)], and V(|Φ|) the Higgs potential energy given in

Eq. (7.12). This action describes correctly the Higgs-gauge fields interactions of the SM, as

long as the non-linear interactions of the gauge fields among themselves (due to the truly non-

Abelian nature of the SM symmetries) can be ignored. This is typically a good approximation

as long as the gauge fields are not largely excited, as described in Section 4.5.1 in the context of

parametric resonance. We also fix the coupling strength as e2 = (g2
Z + 2g2

W)/4, with gZ and gW

the gauge couplings of the Higgs to the W± and Z bosons respectively. As explained in Section

4.5.2, this way the Abelian gauge boson Aµ effectively describes the simultaneous interaction

of the Higgs to the three massive electroweak gauge bosons. We take g2
Z = 0.6 and g2

Y = 0.3,

corresponding to their value at very high energies, according to the SM renormalization group.

The equations of motion, in the temporal gauge A0 = 0, are

Φ̈− 1
a2 DiDiΦ + 3

ȧ
a

Φ̇ + 2[ξR + λ(|ϕ|)(Φ†Φ)]Φ = − ∂λ

∂|ϕ| (Φ
†Φ)2 , (7.24)

Äj −
1
a2 (∂i∂i Aj − ∂i∂j Ai) +

ȧ
a

Ȧj = 2e2Im[Φ†(DjΦ)] , (7.25)

as well as the following Gauss constraint, which is a relation that must be obeyed at all times,

∂i Ȧi = 2e2a2Im[Φ†Φ̇] . (7.26)

Note also that this is not, strictly speaking, the standard Abelian-Higgs model, as we are

introducing two Higgs complex fields [via Eq. (7.11)] instead of just one.

Naturally, what our lattice simulations do is to solve a discrete version of Eqs. (7.25), which

we provide in Appendix A of this thesis. Details of how we derive this equations and the

assumptions we made are provided in more detail there. The results we present in this section

are based on lattice simulations with N3 = 1283 points, with a minimum infrared momenta

kmin = 0.5mφ. This captures quite well the relevant range of momenta excited during the

tachyonic resonance regime, for both the Higgs and the gauge fields.
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Figure 7.10.: Left: We plot, for ξ = 8 and mt = 173.34GeV, the different contributions to the
energy density (7.27) as a function of time (Section 7.5). The Higgs field becomes
unstable around mφti ≈ 500. Right: We plot the spectra of the conformal Higgs
field for different times (Section 7.5). Continuous lines correspond to a Higgs cou-
pled to gauge bosons, while the dashed lines indicate the equivalent when such
coupling is set to zero. Here, we have chosen mt = 173.34GeV and ξ = 8. From
early (red) to late times (purple), we have mφ(t− ti) = 0, 2, 4, 8, 18, 59, 100, 161, 403.

Let us try to quantify the energy transferred from the Higgs into the electroweak gauge

bosons. Action (7.23) can be written as S = Sm + SR, with SR ≡
∫

d4x
√−gξR|Φ|2 containing

the Ricci-Higgs interaction term, and Sm containing the other terms. We define the matter

stress-energy tensor as T(m)
µν = 2√−g

δSm
δgµν . The energy density can then be written as

T(m)
00 =

1
2
|ϕ̇|2 + 1

2a2 ∑
i
|Di ϕ|2 +

1
2e2a2 ∑

i
F2

0i +
1

2e2a4 ∑
i,j<i

F2
ij + V(|ϕ|)

≡ Eϕ
K + Eϕ

G + EE + EM + EV . (7.27)

We show in the left panel of Fig. 7.10 the evolution of the different contributions to the

energy density (7.27) as a function of time, for the case ξ = 8. These energies have been divided

by the inflaton energy ∼ m2
φφ2

i
2a3 . We see that the Higgs and gauge fields energy is several orders

of magnitude lower than the inflaton energy, which justifies neglecting their contribution to

the Friedmann equation. At late times, the Higgs kinetic and gradient energies evolve as

Eϕ
K, Eϕ

G ∼ a−4, and thus eventually become sub-dominant with respect the magnetic energy.

We show in the right panel of Fig. 7.10 the time-evolution of the Higgs spectra in the

presence of a gauge interaction, and compare it when such interaction is not present. We

clearly see that the gauge bosons have a very important backreaction effect on the Higgs field,

propagating its spectra to the UV.

Finally, Fig. 7.11 shows the instability time mφti as a function of ξ obtained from lattice

simulations, when we do include the coupling of the Higgs with the gauge bosons. We have

simulated the cases mt = 172.12, 172.73, 173, 34GeV, and compared with the results obtained
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Figure 7.11.: The instability time mφti as a function of ξ, obtained from the lattice simulations
with both Higgs and gauge bosons (Section 7.5). We have depicted the cases
for the top-quark mass mt = 172.12GeV (red), mt = 172.73GeV (green), and
mt = 173.34GeV (blue). The three grey curves show the results, for these same
three masses, of the lattice simulations with no gauge bosons incorporated (i.e.
the curves of Fig. 7.8). As before, the dashed, and dotted-dashed vertical lines
indicate the estimations ξ

(1)
c and ξ

(2)
c respectively, whose meaning is described in

the bulk text of Section 7.4, and the curved dashed lines show the estimation of
Eq. (7.22) for the three different top-quark masses.

in Section 7.4, when we ignored such coupling. Although the instability curves are slightly

different with respect the case without gauge bosons, the values for the critical coupling ξ
(1)
c

and ξ
(2)
c do not change significantly. We show these values in Table 7.2.

In conclusion, our simulations demonstrate that the addition of gauge fields does not

impact significantly in the post-inflationary dynamics of the system. The interaction of the

Higgs with the electroweak gauge fields only changes marginally the results on the critical

couplings ξ
(1),(2)
c . Besides, as we used an Abelian set-up, this also indicates that the addition of

the truly non-Abelian gauge bosons will not change the above conclusion, as the non-linear

nature of the non-Abelian gauge field interactions cannot stimulate further the gauge bosons.

Quite on the contrary, the non-linear structure of non-Abelian interactions typically prevents

the stimulation of the gauge fields up to the level of excitation that (linear) Abelian interactions

allow for.

7.6. Summary

In this chapter, we have studied the post-inflationary dynamics of the Standard Model Higgs

with lattice simulations, in the case where it possesses a non-minimal coupling ξ to gravity.
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mt(GeV) ξ
(1)
c ξ

(2)
c

172.12 11.3± 0.4 15

172.73 7.4± 0.3 13

173.34 5± 0.5 11

Table 7.2.: Higgs-curvature critical couplings ξ
(1)
c and ξ

(2)
c , obtained from lattice simulations

for different values of the top quark mass, in the presence of a coupling of the Higgs
field to the gauge bosons. The meaning of this parameters is explained in the bulk
text.

This term is necessary for the renormalization of the theory in curved spacetime. We have

assumed a chaotic inflation model with m2
φφ2 potential. We include the running of λ(ϕ) in our

simulations as a function of the value of the Higgs field at the lattice point. We have considered

different runnings, corresponding to different experimental values of the top-quark mass. The

running is such that it generates two vacua to the Higgs potential: one at ϕ ≈ 0, and one at

high-energies. With our lattice simulations, we have been able to obtain the critical coupling

ξc such that for ξ & ξc the Higgs field becomes unstable and decays into the negative-energy

Planck-scale vacuum. Our lattice simulations also take into account the 4 components of the

Higgs field and the cutoff of the spectra of initial fluctuations, which are necessary to correctly

quantify the value of ξc. We have done two sets of lattice simulations; one with only the Higgs

field, including the effective expansion caused by the post-inflationary dynamics of the inflaton;

and another in which we also include the coupling of the Higgs to gauge bosons (modelled

with an Abelian-Higgs-like approach). We have observed that the effect of the gauge bosons is

not relevant for the Higgs post-inflationary dynamics.

The upper bounds in Tables 7.1 and 7.2, together with the estimation ξ & 0.06 from the

stability of the Higgs field during inflation [129], provide tight constraints to the values of this

coupling compatible with observations. However, we have assumed a chaotic inflationary

model with potential m2
φφ2. It is expected that inflationary models with lower inflaton ampli-

tudes during preheating will widen this range of values, as the value of the Ricci scalar |R(t)|
decreases, and hence the excitation of the Higgs field due to the tachyonic resonance is less

strong. If the Standard Model potential does not have a second negative-energy vacuum at

high energies, we cannot find upper bounds for ξc in this way.

In this chapter, we have neglected the terms coming purely from the non-Abelian structure

of the SM Lagrangian, considering instead that the {W±, Z} bosons can be regarded as Abelian

gauge fields. We have argued that considering linear Abelian interactions leads to a larger

excitation of the gauge fields, so that the non-Abelian terms can be safely ignored. We reach

the important conclusion that the inclusion of gauge bosons in the system (even in the Abelian

approach) does not change significantly the upper bound for ξ. The critical values ξ
(1),(2)
c only

change marginally when comparing both the absence and presence of gauge fields.
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Chapter 8.

Summary and outlook

In this thesis we have studied several aspects of the out-of-equilibrium dynamics of the

Universe after inflation, as well as their implications for Higgs cosmology and gravitational

wave production. The thesis is divided in two parts. Part I is focused on preheating: an

explosive production of particles due to non-perturbative effects. Part II is focused on the

dynamics and phenomenology of the Standard Model Higgs after inflation. We now proceed

to summarize our main findings and results.

In Part I of the thesis (Chapters 2 and 3), we have studied different scenarios of preheating

after inflation. We have focused on inflationary potentials with monomial shapes. This gives

rise to parametric resonance, which consists in an exponential growth of field occupation

numbers due to the inflaton post-inflationary oscillations. In these scenarios, dynamics can be

described in terms of the resonance parameter q, which is a dimensionless number that depends

on the different particle couplings, initial conditions, as well as on the form of the inflationary

potential.

In Chapter 2 we have presented a full parametrization of parametric resonance in terms

of q, for chaotic models of inflation with quartic and quadratic potentials, as well as for

energetically subdominant fields with quadratic potentials. The analysis is based on classical

lattice simulations. We have identified and quantified two relevant time scales. The first one is

the backreaction time zbr, which indicates when backreaction effects from the decay products

start affecting the oscillating condensate. The second time scale is the decay time zdec, which

signals the moment when the system achieves a stationary regime. We find that zdec ∝ qα,

with α a real coefficient, that depends on the shape of the potential. The decay time grows

with the coupling between the mother and daughter fields, which is counterintuitive. This

is due to the non-linear physics of the system. We have also quantified how the energy is

distributed between its different contributions at each time scale. Although we have focused

on chaotic inflationary models, other inflationary potentials present monomial shapes after

inflation. Results could be potentially generalized to these scenarios.
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In Chapter 3 we have studied gravitational wave production from preheating, for models

of chaotic inflation with quartic and quadratic potentials. Preheating is a powerful source

of primordial gravitational waves in the early Universe. With lattice simulations, we have

parametrized the frequency and amplitude of the peaks in the GW spectra as a function of q.

For preheating with quartic potential, the GW spectra has several infrared peaks located at

fixed scales, as well as a more ultraviolet peak with a characteristic hunchback shape, whose

frequency grows as ∝ q1/2. The amplitude of these peaks follows a characteristic oscillatory

pattern with q, which is correlated with the structure of resonance bands in the linear regime.

For preheating with quadratic potential, only one peak is observed, whose frequency scales as

∝ q2/3, and its amplitude as ∝ q−2/5. With these results, we have provided predictions for the

GW signal today, coming from preheating in the early Universe. The GW background in all

cases is peaked at high frequencies, fp & 107Hz, but its amplitude can be quite large, of the

order of h2Ω(o)
GW( fp) . 10−11.

In Part II (Chapters 4 to 7) of the thesis, we have studied the nonperturbative dynamics

of the Standard Model (SM) after inflation. We have assumed an scenario where the Higgs

is not the inflaton, and it is is decoupled from (or weakly coupled to) the inflationary sector.

Depending on the circumstances, the Higgs forms a condensate at the end of inflation. When

inflation ends, the Higgs starts oscillating around the minimum of its potential, and decays

to the SM electroweak gauge bosons, through a process of parametric resonance (there is also

an energy transfer from the Higgs to fermions, but it is subdominant). As in the models of

parametric resonance studied in Part I, we can identify in this process a backreaction time and

a decay time. Initially, the occupation number of the gauge bosons grows exponentially, due

to the Higgs oscillations. When backreaction effects from the gauge bosons onto the Higgs

condensate become important, the system evolves in a coupled way towards a stationary

regime, when the energy ratios of the different fields remain constant, and follow specific

equipartition identities.

In Chapter 4 we have studied the post-inflationary decay of the Higgs, capturing the

non-linearities of the system with classical lattice simulations in an expanding box. We have

modelled the Higgs-gauge interactions with two different set-ups: a global model, where the

gauge fields are taken as scalars; and an Abelian-Higgs model, which includes a gauge structure

in the simulations, but ignores the effects of the non-Abelian interaction terms. The dynamics

of the system depend basically on three quantities: the initial amplitude of the Higgs field, the

value of the Higgs self-coupling at inflationary energies, and the post-inflationary equation

of state. We have parametrized the dynamics of the Higgs and its dominant decay products,

from the end of inflation, until a stationary regime is achieved, in terms of these unknowns. We

have found an extremely useful rescaling law between simulations with different parameters,

from which we have been able to obtain a generic equation for the decay time of the Higgs

condensate.
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In Chapter 5 we have studied the gravitational waves produced during the decay of the

SM Higgs. The out-of-equilibrium dynamics converts a fraction of the available energy into

GW. We have characterized the GW spectra as a function of the running couplings, post-

inflationary expansion rate, and initial Higgs amplitude. We have also obtained predictions for

the GW signal today. The amplitude and frequency of the GW background depend on the post-

inflationary expansion rate of the Universe after inflation: for a standard radiation-dominated

stage, the amplitude goes as h2Ω(o)
GW . 10−29, while for a kination-dominated regime, the

amplitude is enhanced to h2Ω(o)
GW . 10−16, although the GW spectra is peaked in this second

case at very high frequencies, fp . 1011Hz. The reason for this low amplitude is that the

Higgs field is energetically subdominant with respect the total energy of the Universe, which is

dominated by the inflationary sector. This suppresses the signal several orders of magnitude

with respect preheating scenarios.

In Chapter 6 we have extended the lattice simulations of Chapter 4, but incorporating in this

case the electroweak SU(2)×U(1) gauge sector into the lattice simulations. We have provided

an analytical derivation of the structure of resonance bands in parametric resonance, when

the decay products are a combination of Abelian and non-Abelian gauge bosons. We have

also parametrized the dynamics of the Higgs and its energetically dominant decay products.

This way, we have quantified the effects that the non-Abelian interaction terms have of the

Higgs and gauge dynamics, in comparison with the simulations of the Abelian-Higgs set-up

of Chapter 4. The estimation of zbr in this case coincides quite well with the results predicted

within the Abelian-Higgs modelling, especially when the resonance is stronger (i.e. when the

Floquet index is larger). However, the late-time dynamics of the system change. In particular,

the energy transfer from the Higgs to the gauge species is found to be 70%, while in the

Abelian-Higgs modelling, the energy transfer is only 40%.

In Chapter 7 of the thesis, we have incorporated a non-minimal Higgs-curvature coupling ∝

ξR|Φ|2 to the study of the SM post-inflationary dynamics. This term is required to renormalize

the theory in a curved spacetime, and it can have important implications for vacuum stability

during and after inflation. We have assumed for the inflationary sector a chaotic inflation

model with quadratic potential. The oscillations of the inflaton during preheating induce

similar oscillations in the Ricci scalar, which excite the Higgs field due to tachyonic effects.

The potential can develop a negative-energy vacuum at very large energies, and the Higgs

could decay into it, with catastrophic consequences for the Universe. Vacuum stability is very

sensible to the numerical value of the coupling constant. By doing classical lattice simulations

of the system, and by requiring compatibility with vacuum stability during preheating, we

have obtained upper bounds for ξ. For a top-quark mass mt ≈ 173.3GeV, we found that the

Higgs vacuum becomes unstable during preheating for ξ & 4− 5, while for a smaller mass

mt ≈ 172.1GeV, this constraint becomes ξ & 11− 12. We have also incorporated into the

analysis the coupling of the Higgs to the electroweak gauge fields. The existence of gauge
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interactions in the lattice simulations does not significantly change the boundaries for ξ, but

does modify the shape of the matter field spectra.

We would like now to present a couple of other directions in which the work carried out

in this thesis could be extended. In particular, we have studied in this thesis several aspects

of the post-inflationary dynamics of the Standard Model (SM). We have focused in scenarios

where the Higgs field 1) is not the inflaton, and 2) is weakly coupled to the inflationary sector.

A natural extension of our work would be to study the post-inflationary dynamics of the

Standard Model, when any of these two conditions is lifted.

One possibility would be to study (p)reheating in Higgs-inflation scenarios, where the Higgs

is the field responsible for the inflation of the Universe [19]. This is possible if the Higgs has a

non-minimal coupling to the Ricci scalar, which must be appropriately fixed to fit the amplitude

of the anisotropies in the Cosmic Microwave Background. (P)reheating in these models has

been studied previously in [64, 65], but using only analytical and numerical methods in the

linear regime. By doing classical lattice simulations, we could capture the full non-linear

dynamics of the system, from the initial resonant stage, until the later stationary regime. Like in

the simulations of Chapters 4 and 6, the Higgs decays into all gauge bosons and fermions of the

SM, but in this case both the Higgs and its decay products are the energetically dominant fields

in the Universe. Hence, in the lattice simulations we would need to solve self-consistently

the field and Friedmann equations, which makes their resolution more complex. Lattice

simulations could be done in both Jordan and Einstein frames, and check that the classical

dynamics of the system are the same. Moreover, we have seen in Chapter 3 that preheating

constitutes a strong source of primordial gravitational waves. Analogously, we could compute

GW production during preheating in Higgs-inflation, and predict the typical frequency and

amplitude for a GW signal today. The GW amplitude will be enhanced with respect the

Higgs-spectator scenario studied in Chapter 5, because now the Higgs would dominate the

energy budget of the Universe. If detected, this GW background could be a direct evidence of

the validity of the Standard Model at high-energies.

On the other hand, even if the Higgs is not the inflaton, the presence of a Higgs-inflaton

coupling could affect significantly the dynamics of the Higgs and its decay products after

inflation. In particular, a coupling of the Higgs to the inflaton of the type g2φ2ϕ2 could prompt

vacuum instability after inflation, in the same fashion as in Chapter 7, as long as the coupling

constant is large enough. The post-inflationary oscillations of the inflaton induce a periodically

negative effective mass to the Higgs field, which gets excited due to tachyonic effects, and

can decay into the negative-energy vacuum of the SM potential. In Chapter 7 we studied this

process with lattice simulations, and by requiring vacuum stability after inflation, we obtained

upper bounds for the Higgs-curvature coupling within the Standard Model. This analysis could

be extended to include the Higgs-inflaton coupling, as in Ref. [84, 154]. On the other hand, we

have also assumed a chaotic inflationary model with quadratic potential. Although this is a
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natural first step, the bounds obtained this way are obviously quite restrictive, because they

only apply for this particular scenario. We could generalize our analysis to other potentials,

such as quadratic shapes of the type V(φ) ∝ m2
φφ2

i , with mφ a free parameter. Also, let us

note that in Chapter 7, the electroweak gauge bosons were introduced in the lattice with an

Abelian-Higgs-like modelling. This was done for simplicity, but we could extend the analysis

to include explicitly the SU(2)×U(1) gauge-invariant structure in the lattice, using the lattice

formulation of Appendix A.

8.1. Resumen y perspectivas

En esta tesis hemos estudiado diversos aspectos de la dinámica fuera del equilibrio del Universo

después de inflación, así como sus implicaciones en Higgs Cosmology y producción de ondas

gravitacionales. Esta tesis se ha dividido en dos partes. En la Parte I hemos estudiado el

precalentamiento: una producción explosiva de partículas debida a efectos no perturbativos.

En la Parte II nos hemos centrado en la dinámica y fenomenología del Higgs del Modelo

Estándar después de inflación. A continuación, haremos un resumen de los resultados de

nuestra investigación.

En la Parte I de la tesis (Capítulos 2 y 3), hemos estudiado distintos escenarios de preca-

lentamiento después de inflación. Nos hemos centrado en potenciales inflacionarios de tipo

monomial. Estos potentiales dan lugar a un proceso de resonancia paramétrica, consistente

en un crecimiento exponencial de los números de ocupación de los distintos campos debido a

las oscilaciones post-inflacionarias del inflatón. En estos casos, la dinámica puede describirse

exclusivamente en términos del parámetro de resonancia q, que es un número adimensional que

depende de las diferentes constantes de acoplamiento y condiciones iniciales, así como de la

forma del potencial.

En el Capítulo 2 hemos realizado una parametrización completa del proceso de resonan-

cia paramétrica después de inflación en función de q, en modelos caóticos de inflación con

potenciales cuadrático y cuártico, así como para campos energéticamente subdominantes con

potencial cuadrático. El análisis se ha basado en simulaciones lattice del proceso. Hemos

identificado y cuantificado dos escalas temporales. La primera es el tiempo de backreaction zbr,

que indica cuándo los efectos de backreaction provenientes de los productos de desintegración

comienzan a afectar al condensado oscilante. La segunda es el tiempo de desintegración zdec, que

señala el momento en que el sistema alcanza un régimen estacionario. Hemos encontrado que

zdec ∝ qα, con α un coeficiente numérico fijado por la forma del potencial. El tiempo de desinte-

gración crece con la constante de acoplamiento entre los campos, lo que es contraintuitivo, y

está relacionado con las no-linealidades del sistema. También hemos cuantificado cómo se dis-

tribuye la energía entre sus distintas componentes en cada escala temporal. Aunque nos hemos
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centrado en modelos caóticos de inflación, otros potenciales inflacionarios presentan formas

monomiales después de inflación. Nuestros resultados podrían en principio generalizarse a

estos casos.

En el Capítulo 3 hemos estudiado la producción de ondas gravitacionales (OG) en escenarios

de precalentamiento, también para modelos caóticos de inflación con potencial cuártico y

cuadrático. El precalentamiento es una poderosa fuente de ondas gravitacionales primordiales

en el Universo temprano. Con simulaciones lattice, hemos parametrizado la frecuencia y la

amplitud de los picos en los espectros de OG en función de q. Para un potencial cuártico,

hemos encontrado varios picos infrarrojos ubicados a escalas fijas independientes de q, y un

pico más ultravioleta, cuya posición crece como ∝ q1/2. La amplitud de estos picos describe

un patrón oscilatorio característico como función de q, que se correlaciona con la estructura

de bandas de resonancia en el régimen lineal. Para un potencial cuadrático, solo se observa

un pico, cuya frecuencia crece como ∝ q2/3, y su amplitud decrece como ∝ q−2/5. Con estos

resultados, hemos obtenido predicciones para la señal de ondas gravitacionales provenientes

del precalentamiento en el Universo temprano. El fondo de ondas gravitacionales alcanza su

máximo en todos los casos a frecuencias muy elevadas, fp & 107Hz, pero su amplitud puede

ser bastante grande, del orden de h2Ω(o)
GW( fp) . 10−11.

En la Parte II de la tesis (Capítulos 4 a 7), hemos estudiado la dinámica no perturbativa

del Modelo Estándar (ME) después de inflación. Hemos asumido un escenario en el que el

Higgs no es el inflatón, ni tampoco está acoplado al sector inflacionario. En este caso, el Higgs

puede acabar formando un condensado al final de inflación. Cuando inflación termina, el

Higgs empieza a oscilar alrededor del mínimo de su potencial, y se desintegra en los bosones

gauge electrodébiles a través de un proceso de resonancia paramétrica (también hay una

transferencia de energía del Higgs a fermiones, pero es subdominante). Como en los modelos

de precalentamiento estudiados en la Parte I, también podemos identificar en este proceso un

tiempo de backreaction y un tiempo de desintegración. Inicialmente, debido a las oscilaciones del

Higgs, los números de ocupación de los bosones gauge crecen exponencialmente. No obstante,

cuando los efectos de backreaction provenientes de los bosones gauge se vuelven importantes,

el sistema evoluciona hacia un régimen estacionario, en el que los ratios de energía de los

distintos campos permanecen constantes y siguen un régimen de equipartición.

En el Capítulo 4 hemos estudiado la desintegración postinflacionaria del Higgs con simula-

ciones lattice. Hemos modelado las interacciones Higgs-gauge de dos maneras diferentes: con

un modelo global, donde los campos gauge se aproximan con campos escalares; y un modelo

Abelian-Higgs, que incluye una estructura gauge en las simulaciones, pero ignora los efectos

generados por lo términos de interacción no Abelianos. La dinámica del sistema depende bási-

camente de tres cantidades: la amplitud inicial del campo de Higgs, el valor de las constantes

de acoplamiento a grandes energías, y el ritmo de expansión post-inflacionario del Universo.

Hemos parametrizado la dinámica del Higgs y los bosones gauge, desde el final de inflación,



Summary and outlook 179

hasta que el sistema alcanza un régimen estacionario. En particular, hemos encontrado una

ecuación de reescaleo extremedamente útil entre simulaciones con distintos parámetros, a

partir de la cuál hemos obtenido una ecuación general para el tiempo de desintegración del

Higgs.

En el Capítulo 5 hemos estudiado las ondas gravitacionales producidas durante la desinte-

gración del Higgs después de inflación. La dinámica fuera del equilibrio convierte una fracción

de la energía disponible en ondas gravitacionales. Hemos parametrizado los espectros de OG

en función de las constantes de acoplamiento, el ritmo de expansión postinflacionario, y la

amplitud inicial de Higgs. También hemos obtenido predicciones para la señal de OG que se

mediría hoy. La amplitud y frecuencia del fondo dependen significativamente del ritmo de

expansión después de inflación: en el caso de un universo dominado por radiación, la amplitud

es del orden h2Ω(o)
GW . 10−29, mientras que en un universo dominado por grados de libertad

cinéticos, la amplitud es aproximadamente h2Ω(o)
GW . 10−16. No obstante, en este segundo

caso, la amplitud alcanza su máximo a frecuencias muy altas, del orden de fp . 1011Hz. En

este escenario, la amplitud es tan pequeña porque el campo de Higgs es energéticamente

subdominante con respecto a la energía total (dominado por el sector inflacionario), lo que

suprime la señal en varios órdenes de magnitud.

En el Capítulo 6 hemos extendido las simulaciones del Capítulo 4, incorporando comple-

tamente en este caso el sector electrodébil SU(2)× U(1) en la lattice. Hemos obtenido una

derivación analítica del parametro de resonancia efectivo, en el caso en el que los campos exci-

tados por la resonancia parmétrica son una combinación de bosones gauge abelianos y no

abelianos. También hemos parametrizado la dinámica del Higgs y los bosones gauge. De esta

manera, hemos cuantificado el impacto que los términos de interacción no Abelianos tienen

en la dinámica de los campos, en comparación con las simulaciones puramente abelianas

del Capítulo 4. La estimación de zbr en éste caso coincide bastante bien con los resultados

predichos por el modelo Abelian-Higgs, especialmente cuando la resonancia es más fuerte

(es decir, cuando el índice de Floquet es más grande). Sin embargo, la dinámica del sistema a

tiempos tardíos es distinta. En particular, la transferencia de energía del Higgs a los bosones

gauge es del 70%, mientras que en el modelo Abelian-Higgs es solo del 40%.

En el Capítulo 7 de la tesis, hemos seguido estudiando la dinámica post-inflacionaria del

Modelo Estándar, pero incluyendo en el análisis un acoplamiento ∝ ξR|Φ|2 entre el Higgs y la

curvatura espaciotemporal. Este término es necesario para renormalizar la teoría en un espacio-

tiempo curvo, y podría tener importantes implicaciones en la estabilidad del vacío durante

y después de inflación. En particular, hemos asumido para el sector inflacionario un modelo

caótico con potencial cuadrático. Las oscilaciones del inflatón durante el precalentamiento

inducen oscilaciones similares en el escalar de Ricci, que excitan el campo de Higgs debido a

efectos taquiónicos. Sabemos que el potencial del Higgs podría desarrollar un vacío de energía

negativa a amplitudes muy grandes. Por lo tanto, si el Higgs se excita lo suficiente, podría



Summary and outlook 180

caer en este vacío, con consecuencias catastróficas para el Universo. La estabilidad del vacío

es muy sensible al valor numérico de la constante de acoplamiento. Con simulaciones lattice

del sistema, y exigiendo que el vacío permanezca estable durante el precalentamiento, hemos

encontrado límites superiores para el valor de ξ. Si la masa del top quark es mt ≈ 173.3GeV,

encontramos que el vacío de Higgs se vuelve inestable durante el precalentamiento para

ξ & 4− 5, mientras que para una masa menor mt ≈ 172.1GeV, encontramos que el límite

es ξ & 11− 12. También hemos incorporado al análisis el acoplamiento del Higgs con los

campos gauge electrodébiles, imitando la interacción entre el Higgs y los campos gauge con un

modelo Abelian-Higgs. Estas interacciones no cambian significativamente los límites para ξ,

pero modifican la forma de los espectros de materia.

A continuación, me gustaría presentar otras direcciones en las que se podría extender el

trabajo realizado en esta tesis. Como hemos visto, hemos estudiado varios aspectos de la

dinámica post-inflacionaria del Modelo Estándar (ME). Nos hemos enfocado en escenarios

donde el campo de Higgs 1) no es el inflatón, y 2) está desacoplado del (o está débilmente

acoplado al) sector inflacionario. Una extensión natural de nuestro trabajo sería estudiar

la dinámica post-inflacionaria del ME, en el caso de que se cambie cualquiera de estas dos

condiciones.

Una posibilidad sería estudiar el (p)recalentamiento en un modelo de Higgs-inflation, donde

el Higgs es el campo responsable de la inflación del universo [19]. Ésto es posible si el Higgs

posee un acoplo no mínimo a la curvatura, fijado de tal manera que explique la amplitud de las

anisotropías del Fondo Cósmico de Microondas. El (p)recalentamiento en estos modelos se ha

estudiado previamente en [64, 65], pero utilizando sólo métodos analíticos y numéricos en el

régimen lineal. Al hacer simulaciones lattice, podríamos capturar completamente la dinámica

no lineal del sistema, desde la etapa resonante inicial hasta el régimen estacionario final.

Como en las simulaciones de los capítulos 4 y 6, el Higgs se desintegra en todos los bosones

gauge y fermiones del ME. Sin embargo, en este caso tanto el Higgs como sus productos

de desintegración dominan la energía del Universo. Por lo tanto, las simulaciones lattice

serían más complejas, porque tendríamos que resolver auto-consistentemente las ecuaciones

de campo y las de Friedmann. Las simulaciones lattice podrían realizarse tanto en el frame

de Jordan como en el de Einstein, y verificar así que la dinámica clásica del sistema es la

misma. Además, hemos visto en el Capítulo 3 que el precalentamiento constituye una fuente

importante de ondas gravitacionales primordiales. De la misma manera, podríamos calcular la

producción de OG durante el precalentamiento en Higgs-inflation, y predecir la frecuencia y

amplitud típicas para una señal de OG en la actualidad. La amplitud de OG sería mayor que en

el escenario estudiado en el Capítulo 5, porque ahora el Higgs-inflatón dominaría el contenido

de energía del Universo. Si este fondo de ondas gravitacionales se detectara, constituiría una

evidencia directa de la validez del Modelo Estándar a altas energías.
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Por otro lado, incluso si el Higgs no es el inflatón, la presencia de un acoplamiento Higgs-

inflaton puede afectar significativamente la dinámica del Higgs y sus productos de desin-

tegración después de inflación. En particular, si el acoplamiento Higgs-inflaton es lo sufi-

cientemente grande, puede inducir la inestabilidad del vacío, de la misma manera que en

el Capítulo 7. Las oscilaciones post-inflacionarias del inflatón inducen periódicamente una

masa efectiva negativa al campo de Higgs, que se excita debido a efectos taquiónicos, y por

lo tanto, podría acabar cayendo en el vacío de energía negativa del potencial del Modelo

Estándar. En el Capítulo 7 hemos estudiado este proceso con simulaciones lattice, y requiriendo

la estabilidad de vacío después de inflación, hemos acotado los valor numéricos que el acoplo

Higgs-curvatura puede tener dentro del Modelo Estándar. Este análisis podría extenderse

para incluir un acoplamiento Higgs-inflaton, como en Ref. [84, 154]. Por otro lado, también

hemos asumido un modelo caótico de inflación con potencial cuadrático. Aunque este es un

primer paso natural, los límites obtenidos de esta manera son obviamente bastante restrictivos,

ya que solo se aplican a este escenario en particular. Podríamos generalizar nuestro análisis

a otros potenciales, como formas cuadráticas del tipo V(φ) ∝ m2
φφ2

i , con mφ un parámetro

libre. Además, en el Capítulo 7, los bosones electrodébiles se introdujeron en la lattice con un

modelo Abelian-Higgs. Esto se ha hecho por simplicidad, pero podríamos extender el análisis

para incluir explícitamente la estructura gauge SU(2)×U(1) en la lattice, usando el formalismo

descrito en el Apéndice A.
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Appendix A.

Lattice formulation of scalar and gauge
theories in expanding backgrounds

In this Appendix, we provide a lattice formulation to simulate the dynamics of scalar and

gauge fields in an expanding Universe. We will start by presenting the field and metric

equations of motion in a continuum spacetime. We will then derive equivalent equations in

the discrete. The lattice formulation is based on a discretized version of the theory action,

which recovers the continuum action up to second order terms in time step and lattice spacing.

From the minimization of this action we obtain the discrete equations, which can be solved

self-consistently with an appropriate iterative scheme. A discretization of the Friedmann

equations is also presented.

A.1. Theory in the continuum

A.1.1. Field equations

Let us start by showing the field equations of motion in a continuum spacetime. We will

assume that spacetime can be described by a homogeneous and isotropic FLRW metric. In this

Appendix, we write it for convenience as follows,

ds2 ≡ gµνdxµdxν = −a2αdt2 + a2d~x2 ,

cosmic time, if α = 0 ,

conformal time, if α = 1 ,
(A.1)

where α is a free parameter that fixes the definition of time t. Depending on the choice of α, t
may represent either cosmic or conformal time, as well as any other convenient time defined

adhoc.
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Let us consider a matter action containing a real scalar field χ, a complex scalar field ϕ

(which we call the Higgs field for convenience), an Abelian gauge boson Aµ, and three non-

Abelian gauge bosons Ba
µ (a = 1, 2, 3). We take the gauge structure as invariant under local

transformations of the SU(2)×U(1) group. In curved spacetime, the matter action takes the

form

S =
∫

d4x
√
−gLm , (A.2)

where g is the determinant of the metric gµν, and Lm is the matter Lagrangian. For metric (A.1),

we have g = −a6+2α, so we will consider

S = −
∫

d4xa3+α

{
1
4

FµνFµν +
1
4

Ga
µνGµν +

1
2
(Dµ ϕ)†(Dµ ϕ) +

1
2

∂µχ∂µχ + V(|ϕ|, χ)

}
, (A.3)

where Fµν and Ga
µν are the U(1) and SU(2) field strengths respectively, and we have introduced

an arbitrary potential V = V(χ, |ϕ|), containing all interactions and self-interactions between

the real and complex scalar fields. The Higgs covariant derivative is defined as

(Dµ)ij ≡ δij
(
∂µ − i(g1 /2)Aµ

)
− i(g2 /2)Ba

µ(σa)ij , (A.4)

where g1 and g2 are the Abelian and non-Abelian gauge couplings respectively, and σa (a =

1, 2, 3) are the Pauli matrices with [σa, σb] = i fabcσc and fabc = 2εabc. The covariant derivative

contains the interaction between the Higgs and gauge fields. The quantities ϕ, Fµν, and Ga
µν are

written in terms of components as

ϕ =

 ϕ0 + iϕ1

ϕ2 + iϕ3

 , ϕn ∈ Re , (n = 0, 1, 2, 3) , (A.5)

Fµν ≡ ∂µ Aν − ∂ν Aµ , (A.6)

Gµν ≡ Ga
µνTa , Ga

µν ≡ ∂µBa
ν − ∂νBa

µ +
g2

2
f abcBb

µBc
ν . (A.7)

Finally, the gauge-invariant electric and magnetic fields for the U(1) and SU(2) sectors are

defined respectively, in terms of the field strengths, as

Ei
0 ≡ F0i , Mi

0 ≡
1
2

εijkFjk , (A.8)

Ei
a ≡ G0i

a , Mi
a ≡

1
2

εijkGjk
a . (A.9)

Minimization of action (A.3) with respect the field variables give the matter equations of

motion. In the case of a Minkowski spacetime (a = 1), these are

∂µ∂µχ =
∂V
∂χ

, (A.10)
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DµDµ ϕ =
∂V
∂ϕ† , (A.11)

∂µFµν = − g1

2
Im[ϕ†(Dν ϕ)] , (A.12)

(Dµ)abGµν
b = − g2

2
Im[ϕ†σa(Dν ϕ)] , (A.13)

where we define (Dν)abOb ≡ (δab∂ν + fabcBc
ν)Ob. In order to obtain the EOM in a FLRW

spacetime, we can either minimize directly action (A.3) for an arbitrary scale factor, or simply

promote the partial derivatives to covariant ones in Eqs. (A.10)-(A.13), i.e. ∂µ → ∇µ. We follow

the second approach. For this, we use the following identities for the divergences of a vector

Vσ and an antisymmetric (2,0)-tensor Aσλ,

∇σVσ ≡ 1√−g
∂(Vσ√−g)

∂xσ
=

1
a3+α

∂(Vσa3+α(t))
∂xσ

= ∂σVσ + (3 + α)
ȧ
a

V0 , (A.14)

∇σ Aσλ ≡ 1√−g
∂(Aσλ√−g)

∂xσ
=

1
a3+α

∂(Aσλa3+α(t))
∂xσ

= ∂σ Aσλ + (3 + α)
ȧ
a

A0λ, (A.15)

with ˙≡ d/dt. From this, the dynamical field equations of motion in a FLRW metric become

χ̈− 1
a2(1−α)

∂i∂iχ + (3− α)
ȧ
a

χ̇ = −a2α ∂V
∂χ

, (A.16)

ϕ̈− 1
a2(1−α)

DiDi ϕ + (3− α)
ȧ
a

ϕ̇ = −a2α ∂V
∂ϕ† , (A.17)

∂0F0j −
1

a2(1−α)
∂iFij + (1− α)

ȧ
a

F0j =
g1

2
a2αIm[ϕ†(Dj ϕ)] , (A.18)

(D0)ab(G0j)
b − 1

a2(1−α)
(Di)ab(Gij)

b + (1− α)
ȧ
a
(G0j)

b =
g2

2
a2αIm[ϕ†σa(Dj ϕ)] , (A.19)

where we have fixed the gauge condition A0 = Ba
0 = 0 for simplicity. In particular, gauge

equations (A.18) and (A.19) have obtained from Eqs. (A.12) and (A.13) respectively, with the

index choice ν = j. The choice ν = 0 yields, instead, the Gauss constraints,

∂iF0i =
g1

2
a2Im[ϕ†(D0ϕ)] , (A.20)

(Di)ab(G0i)
b =

g2

2
a2Im[ϕ†σa(D0ϕ)] . (A.21)

These are not dynamical equations, but simply constraints of the system that are obeyed at all

times.
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A.1.2. Friedmann equations

The stress-energy tensor sourcing the expansion of the Universe, requires a perfect-fluid form

in order to be compatible with the FLRW metric. It can be written as

Tµν ≡ (ρ + p)uµuν + pgµν , (A.22)

where ρ is the energy density, p is the pressure, and uµ is the 4-velocity, with normalization

condition uµuν = −1. For a particle at rest, uµ = (aα, 0, 0, 0), and hence uµ = −(a−α, 0, 0, 0). In

this case, we have

ρ = a2αT00 =
1

a2α
T00 , (A.23)

p =
a2

3 ∑
j

T jj =
1

3a2 ∑
j

Tjj . (A.24)

The expression for the stress-energy tensor Tµν in terms of the Lagrangian was written in

Eq. (1.12). In our case, it is given by

Tµν ≡ 2√−g
δ(
√−gLm)

δgµν
= gµνLm + 2

δL
δgµν

= −gµν

[
1
4
(Ga

αβGαβ
a + FαβFαβ) +

1
2
(Dα ϕ)†(Dα ϕ) +

1
2
(∂αχ)(∂αχ) + V(|ϕ|, χ)

]
+gαµgβν[(Dα ϕ)†(Dβ ϕ) + (Dαχ)†(Dβχ)] + gαβ(Gµa

α Gν
aβ + Fµ

α Fν
β ) , (A.25)

where in the first equality we have used δ
√−g = 1

2 gµν√−gδgµν, and in the second we have

used δgαβ = −gαµgβνδgµν. From Eqs. (A.23) and (A.24), we obtain for the energy density and

pressure,

ρ = Eχ
K + Eϕ

K + Eχ
G + Eϕ

G + EU(1)
E + EU(1)

M + ESU(2)
E + ESU(2)

M + EV , (A.26)

p = Eχ
K + Eϕ

K −
1
3
(Eχ

G + Eϕ
G) +

1
3
(EU(1)

E + ESU(2)
E ) +

1
3
(EU(1)

M + ESU(2)
M )− EV , (A.27)

where Eχ
K and Eχ

G are the kinetic and gradient energies of the scalar field,

Eχ
K =

1
2a2α

χ̇2 , Eχ
G =

1
2a2 ∑

i
|∂iχ|2 , (A.28)

Eϕ
K and Eϕ

G are the kinetic and gradient energies of the Higgs field,

Eϕ
K =

1
2a2α
|D0ϕ|2 , Eϕ

G =
1

2a2 ∑
i
|Di ϕ|2 , (A.29)
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EU(1)
E and EU(1)

M are the electric and magnetic energies of the U(1) sector,

EU(1)
E =

1
2a2+2α ∑

i
F2

0i , EU(1)
M =

1
2a4 ∑

i,j<i
F2

ij , (A.30)

ESU(2)
E and ESU(2)

M are the electric and magnetic energies of the SU(2) sector,

ESU(2)
E =

1
2a2+2α ∑

a,i
(Ga

0i)
2 , ESU(2)

M =
1

2a4 ∑
a,i,j<i

(Ga
ij)

2 , (A.31)

and EV is the potential energy, EV = V(|ϕ|, χ).

The Friedmann equations were written in Eq. (1.4)-(1.5) in cosmic time (α = 0). For arbitrary

parameter α, they are

ȧ2 = a2α+2 〈ρ〉
3m2

p
, (A.32)

ä =
a2α+1

6m2
p
[(2α− 1)〈ρ〉 − 3〈p〉] , (A.33)

where 〈. . . 〉 is a volume-average. If the energy budget of the Universe is dominated by the

different fields of action (A.3), then the expansion of the Universe is sourced by its stress-energy

tensor. Substituting Eqs. (A.26)-(A.27) into the second Friedmann equation (A.33), we find

ä =
a2α+1

3m2
p

[
(α− 2)〈Eχ

K + Eϕ
K〉+ (α− 1)〈Eχ

G + Eϕ
G〉+ α〈EU(1)

E + ESU(2)
E 〉

−(α− 1)〈EU(1)
M + ESU(2)

M 〉+ (α + 1)〈EV〉
]

. (A.34)

This expression will be extremely useful when we discrete the theory in the next section.

On the other hand, there are situations where the expansion is sourced by a fluid with

fixed equation of state p/ρ = w, which is not modelled explicitly, and which is energetically

dominant with respect the fields of action (A.3). In this case, we can get, by combining the two

Friedmann equations (A.32) and (A.33),

2ä + (1 + 3ω− 2α)
ȧ2

a
= 0 . (A.35)

The solution for this differential equation is

a(t) = ai

(
1 +

Hi

p
t
)p

, p ≡ 2
3(1 + ω)− 2α

, (A.36)

where we have set the initial conditions a(ti) ≡ ai and H(ti) ≡ Hi at time t = ti, with

H(t) ≡ ȧ/a(t) the Hubble parameter. In cosmic time (α = 0), Eq. (A.36) recovers a ∼ t1/2 for
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radiation domination (w = 1/3), and a ∼ t2/3 for matter domination (w = 0), as stated in

Eq. (1.7).

A.2. Lattice formulation

A.2.1. The Lattice: definitions and conventions

Let us now provide the details of our lattice formulation. We shall present the discrete field

differential equations below, as well as an iterative scheme to solve them self-consistently. For

this, it is convenient to define new gauge fields as

Aµ ≡
g1

2
Aµ , Ba

µ ≡
g2

2
Ba

µ . (A.37)

Let us also define new field strengths as

Fµν ≡
g1

2
Fµν = ∂µAν − ∂νAµ , (A.38)

Ga
µν ≡

g2

2
Ga

µν = ∂µBa
ν − ∂νBa

µ + f abcBb
µBc

ν . (A.39)

Continuous action (A.3) can be then written as

S = −
∫

dx4a3+α

{
1
g2

1

FµνFµν +
1
g2

2

Ga
µνG

µν
a +

1
2
(Dµ ϕ)†(Dµ ϕ) +

1
2

∂µχ∂µχ + V(|ϕ|, χ)

}
.

(A.40)

We now proceed to discretize this action in a lattice in 3+1 dimensions. Let us define a lattice

cube of N3 = N × N × N points and lattice spacing dx, so that the length of the cube is

L ≡ dxN. Let us also define the time-step of the iterative scheme as dt. In such lattice, the

minimum and maximum momenta covered are

pmin =
2π

L
, pmax =

√
3N
2

pmin . (A.41)

It is convenient to define a 4-component vector as dxµ ≡ (dt, ~dx). A position ~x in the lattice

can be then specified as

~x ≡ nµdxµ = n0dtn̂0 + ∑
i

nidxn̂i , (A.42)

with dt ≡ dx0 the time step, dx ≡ dxi (i = 1, 2, 3) the lattice spacing, n̂µ a set of orthonormal

vectors, and (n0, ni) the coordinates specifying the lattice point.
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Let us consider from now on that fields live in the nodes of the lattice, so that f ≡ f (~x),
where f = χ, ϕ, Aµ, Ba

µ is an arbitrary field variable, and ~x is given by vector (A.42). Let us also

introduce the notation fµ ≡ f (~x + dxµn̂µ) and f−µ ≡ f (~x − dxµn̂µ). For the U(1) and SU(2)

gauge fields, we also define the following link variables (not sum on µ implied),

Vµ ≡ Vµ(~x) = e−idxµAµ(~x) , (A.43)

Uµ ≡ Uµ(~x) = e−idxµBa
µ(~x)σa , (A.44)

as well as introduce the notation Vµ,ν ≡ Vµ(~x + dxνn̂µ) and Uµ,ν ≡ Uµ(~x + dxνn̂µ), as well as

Vµ,−ν ≡ Vµ(~x− dxνn̂µ) and Uµ,−ν ≡ Uµ(~x− dxνn̂µ). Note that in the temporal gauge Ba
0 = 0,

we have U0 = I , with I the identify matrix.

Let us define the following ordinary discrete derivatives,

∆+
µ f ≡ 1

dxµ
( fµ − f ) , ∆−µ ϕ ≡ 1

dxµ
( f − f−µ) , (A.45)

which recover the continuous ones in the continuum limit up to second-order terms in dxµ. Let

us also define the following discrete covariant derivatives for the Higgs field,

D+
µ ϕ ≡ 1

dxµ
(UµVµ ϕµ − ϕ) , D−µ f ≡ 1

dxµ
(ϕ−V∗−µU†

−µ ϕ−µ) , (A.46)

which also recover the continuum ones up to second order terms. The SU(2) plaquettes are

defined as the following product of four links,

Pµν ≡ UµUν,+µU†
µ,+νU†

ν . (A.47)

We can check that, in the continuum limit,

Pµν = e−idxµdxνGa
µνσa+... (A.48)

where we have ignored higher-order terms in dxµ. Expression (A.48) can be proven using

repeatedly the Baker-Campbell-Hausdorff formula,

exp(X)exp(Y) =
(

X + Y +
1
2
[X, Y]

)
, (A.49)

which is valid for two central commutators X and Y, obeying [X, [X, Y]] = [Y, [X, Y]] = 0.

Any matrix M of SU(2) can be written as [σ̄a ≡ (1, i~σ)]

M =
3

∑
a=0

m(a)σ̄a =

 m(0) + im(3) m(2) + im(1)

−m(2) + im(1) m(0) − im(3)

 , (A.50)
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where m(a)
µ ∈ Re and ∑3

a=0(m
(a)
µ )2 = 1. Let us define u(a)

µ and p(a)
µν as the components of Uµ and

Pµν respectively. From Eq. (A.48), we can check that

Ga
µν = −

p(a)
µν

dxµdxν
. (A.51)

With this, we can write expressions for the non-Abelian electric and magnetic fields, Eqs. (A.8)

and (A.9), in terms of the plaquette matrix elements as,

E a
i ≡ Ga

0i = −
p(a)

0i
dtdx

, (A.52)

Ma
i ≡

1
2

εijkGa
jk ≈

−εijk

2dx2 p(a)
jk .

We can also prove that in the continuum limit,

∑
a
(Ga

µν)
2 =

1
dx2

µdx2
ν

Tr[I2×2 − Pµν] . (A.53)

Finally, let us consider the scale factor. We proceed to discretize it such that it is only defined

in semi-integer time steps. It is convenient then to define a+0/2 ≡ a(t + dt/2) and a−0/2 ≡
a(t− dt/2), as well as

a ≡ a+0/2 + a−0/2

2
. (A.54)

A.2.2. Field equations

Having defined all necessary variables and functions in the previous section, we present now

the discrete action in which our lattice formulation is based. It is written as

S = − ∑̂
n

dtdx3(LI + LII + LIII + LIV + LV + LVI + LVII + LVIII + LIX) , (A.55)

where the different pieces of the action are defined as

LI =
−2a1−α

+0/2

g2
1

∑
i
(∆+

0 Ai − ∆+
i A0)

2 , (A.56)

LII =
a−1+α

g2
1

∑
i,j
(∆+

i Aj − ∆+
j Ai)

2 , (A.57)

LIII =
−2a1−α

+0/2

g2
2
dx2dt2 ∑

i
Tr(P0i) , (A.58)

LIV =
a−1+α

g2
2
dx4 ∑

i,j
Tr(Pij) , (A.59)
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LV = −1
2

a3−α
+0/2|D

+
0 ϕ|2 , (A.60)

LVI =
1
2

a1+α ∑
i
|D+

i ϕ|2 , (A.61)

LVII = −1
2

a3−α
+0/2(∆

+
0 χ)2 , (A.62)

LVIII =
1
2

a1+α ∑
i
(∆+

i ϕ)2 , (A.63)

LIX = a3+αV(χ, |ϕ|) . (A.64)

The discrete action presented here recovers in the continuum limit the action (A.40), up

to second order terms in time step and lattice spacing. Here, the expressions (A.56)-(A.63)

correspond respectively to the kinetic and gradient terms of the Abelian gauge fields, non-

Abelian gauge fields, complex fields, and scalar fields, while Eq. (A.64) is the potential energy.

The discrete field equations of motion are obtained from the minimization of this lattice

action. We will show, as an example, the derivation of the discrete EOM of a single scalar field

χ. Let us define δχ f ≡ ∂ ∑n̂ f
∂χ δχ. We have, for the different Lagrangian pieces involving χ,

δχLVII =
−1

2dt2 δχ

[
a3−α
+0/2(χ+0 − χ)2

]
=
−1
dt2

[
a3−α
−0/2(χ− χ−0)− a+0/2(χ+0 − χ)

]
δχ = ∆−0 [a

3−α
+0/2(∆

+
0 χ)]δχ ,

δχ[a1+α(∆+
i χ)2] =

1
2dx2 δχ[a1+α(χ+i − χ)2] =

1
dx2 a1+α [(χ− χ−i)− (χ+i − χ)] =

−a1+α(∆−i ∆+
i χ)δχ ,

δχLIX = a3+α ∂V
∂χ

δχ . (A.65)

Hence, the scalar discrete EOM is obtained from the condition δχL = 0. It is

∆−0 [a
3−α
+0/2∆+

0 χ]− a1+α ∑
i

∆−i ∆+
i χ + a3+α ∂V

∂χ
= 0 . (A.66)

Note that the kinetic and gradient term of this equation behave, in the continuum limit, as

∆−0 [a
3−α
+0/2∆+

0 χ] = a3−α

(
χ′′ + (3− α)

a′

a
χ′
)
+O(dt2) ,

a1+α ∑
i

∆−i ∆+
i χ = a1+α∇2χ +O(dx2) . (A.67)

From this, we can easily check that the discrete equation (A.66) recovers the continuum one

(A.16) up to second order terms in dxµ, as expected.



Lattice formulation of scalar and gauge theories in expanding backgrounds 192

The other dynamical equations of motion are obtained in a similar way, from the conditions

δϕL = 0, δAiL = 0, and δBa
i
L = 0. The full system of equations is then

∆−0 [a
3−α
+0/2∆+

0 χ]− a1+α ∑
i

∆−i ∆+
i χ = −a3+α ∂V

∂χ
, (A.68)

∆−0
[

a3−α
+0/2∆+

0 ϕ
]
− a1+α ∑

i
D−i D+

i ϕ = −a3+α ϕ

|ϕ|
∂V

∂|ϕ| , (A.69)

∆−0 [a
1−α
+0/2∆+

0 Ai]− a−1+α

(
∑

j
∆−j ∆+

j Ai −∑
j

∆−j ∆+
i Aj

)
=
−g2

1
a1+α

4dx
Im[ϕ†

+iV
∗
i U†

i ϕ] , (A.70)

Tr[(iTa)(a1−α
+0/2P0i − a1−α

−0/2P0i,−0)] =
g2

2

2
dt2a1+αRe[ϕ†

+iV
∗
i U†

i (iTa)ϕ] (A.71)

− dt2

dx2 a−1+α ∑
j 6=i

Re{Tr[(iTa)(Pij −U†
j,−jPij,−jUj,−j)]} ,

where we have fixed the temporal gauge A0 = Ba
0 = 0. This constitutes a set of 17 different

equations of motion: 1 for the scalar field χ, 4 for the components of the Higgs field ϕ, 3 for the

Abelian gauge field components Ai, and 9 for the non-Abelian gauge components, which are

represented in the lattice by the components u(a)
i of the link Ui.

The system of Eqs. (A.68)-(A.71) can be solved iteratively with a Hamiltonian scheme. For

this, let us define the following conjugate momenta for each of the fields,

πχ,+0/2 ≡ ∆+
0 χ , (A.72)

πϕ,+0/2 ≡ ∆+
0 ϕ , (A.73)

πAi ,+0/2 ≡ ∆+
0 Ai , (A.74)

π
u(a)

i ,+0/2
≡ p(a)

0i , (A.75)

where we have defined the momenta living naturally at semiinteger time steps, like the scale

factor. We can then rewrite Eqs. (A.68)-(A.71) as

πχ,+0/2 =
dt

a3−α
+0/2

(
a1+α∆−i ∆+

i χ− a3+α ∂V
∂χ

)
+

(
a−0/2

a+0/2

)3−α

πχ,−0/2 , (A.76)

πϕ,+0/2 =
dt

a3−α
+0/2

(
a1+αD−i D+

i ϕ− dta3+α ∂V
∂|ϕ|

ϕ

|ϕ|

)
+

(
a−0/2

a+0/2

)3−α

πϕ,−0/2 , (A.77)

πAi ,+0/2 = dt
a−1+α

a1−α
+0/2

(
∑

j
∆−j ∆+

j Ai −∑
j

∆−j ∆+
i Aj

)

− dt
dx

g2
1
a1+α

4a1−α
+0/2

Im[ϕ†
+iV

∗
i U†

i ϕ] +

(
a−0/2

a+0/2

)1−α

πAi ,−0/2 , (A.78)
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π
u(a)

i ,+0/2
=

dt2

2dx2
a−1+α

a1−α
−0/2

∑
j 6=i

Re{Tr[(iσa)(Pij −U†
j,−jPij,−jUj,−j)]} (A.79)

−dt2 g2
2

4
a1+α

a1−α
+0/2

Re[ϕ†
+iV

∗
i U†

i (iσa)ϕ] +

(
a−0/2

a+0/2

)1−α

π
u(a)

i ,−0/2
.

These expressions give the momenta at the time t + dt/2 as a function of the momenta at

the previous time t− dt/2, as well as the fields at time t. On the other hand, by inverting

Eqs. (A.72)-(A.75), we find

χ+0 = πχ,+0/2dt + χ , (A.80)

ϕ+0 = πϕ,+0/2dt + ϕ , (A.81)

Ai,+0 = πAi ,+0/2dt + Ai , (A.82)

u(1)
i,+0 = π

u(1)
i ,+0/2

u(0)
i + π

u(0)
i ,+0/2

u(1)
i + π

u(3)
i ,+0/2

u(2)
i − π

u(2)
i ,+0/2

u(3)
i , (A.83)

u(2)
i,+0 = π

u(2)
i ,+0/2

u(0)
i + π

u(0)
i ,+0/2

u(2)
i + π

u(1)
i ,+0/2

u(3)
i − π

u(3)
i ,+0/2

u(1)
i , (A.84)

u(3)
i,+0 = π

u(3)
i ,+0/2

u(0)
i + π

u(2)
i ,+0/2

u(1)
i + π

u(0)
i ,+0/2

u(3)
i − π

u(1)
i ,+0/2

u(2)
i . (A.85)

[Note that Eqs. (A.83)-(A.85) come from Eq. (A.75), each equation evaluated for each of the

three colors a = 1, 2, 3]. These expressions give the values for the different fields at the time step

t + dt, as a function of the fields at the previous time t, and the momenta at the time t + dt/2.

Let us assume that we know the time-evolution of the scale factor at all times. For example,

this could be when the expansion is caused by a fluid with equation of state w. In this case,

the scale factor is given by Eq. (A.36). In this scenario, the first-order field and momentum

equations can be solved iteratively. For example, if initial conditions for {χ, ϕn, Ai, u(a)
i } are set

at time t = 0, and for {πχ, πϕ, πAi , π
u(a)

i
} are set at time t = dt/2, we must simply solve first

Eqs. (A.80)-(A.85) to obtain the fields at time t = dt, and then Eqs. (A.76)-(A.79) to obtain the

momenta at time t = 3dt/2. These steps can be then repeated for the whole temporal evolution

of the system.

A.2.3. Friedmann equations

Let us consider now the case when the evolution of the scale factor is not previously known, but

it is sourced by the different fields. This situation is more complicated, because we must solve

the scale factor equations self-consistently with the discrete field equations. In our approach,

we do not derive the scale factor equations from a discrete action, but simply discretize directly

the continuum Friedmann equations (A.32)-(A.33). For this, let us define the operator

b ≡ ∆−0 (a+0/2) , (A.86)
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such that, in the continuum limit,

a′ → b , a′′ → ∆+
0 b . (A.87)

A discretized version of the second Friedmann equation (A.33) can be written as

b+0 = b +
dt

6m2
p

[
(α− 2)a+0/2〈π2

χ,+0/2 + π2
ϕ,+0/2〉 (A.88)

+
α

2
a2α−1
+0/2〈G[χ] + G[χ+0] + G[ϕ] + G[ϕ+0]〉+ (α + 1)a2α+1

+0/2〈V + V+0〉

+(α− 1)a−1
+0/2 ∑

i,a
〈E (a)2

i,+0/2〉 −
(α− 1)

2
a2α−3
+0/2 ∑

i,a

(
〈M(a)2

i 〉+ 〈M(a)2
i,+0〉

)]
,

where we have defined the discrete gradient energy as G[ f ] ≡ ∑i(∆
+
i f )2. On the other hand,

we find, from the definition of b,

a+0/2 = a−0/2 + bdt . (A.89)

This way, we have obtained a Hamiltonian evolution scheme for the scale factor, where b
(defined at integer times) is the conjugate momenta of a (defined at semi-integer times). We

can solve these equations iteratively, in a similar fashion as the field equations.

A.2.4. Gauss constraints and initial conditions

We now explain how to set the initial conditions for the Higgs and gauge fields, so that the

Gauss constraints (A.20)-(A.21) are obeyed initially. We will do it first in the continuum. Let

us set the initial conditions at the time t = ti, and denote the initial amplitude and velocity

of the Higgs field as ϕi and ϕ̇i respectively. For the Higgs components, we impose the initial

homogeneous modes as,

ϕn(ti) ≡
1
2

ϕi , ϕ̇n(ti) ≡
1
2

ϕ̇i , (A.90)

for each of the four Higgs components n = 0, 1, 2, 3. This way, the initial amplitude and velocity

of the Higgs field is distributed equally between all its components. On top of these, we put

the following spectra of initial fluctuations,

ϕn(~k) =
|an(~k)|√

2

(
eθn0 + eθn1

)
, (A.91)

ϕ̇n(~k) =
|an(~k)|√

2
iωk,n

(
eθn0 − eθn1

)
− Hϕn(~k) . (A.92)
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These spectra represent a sum of left-moving and right-moving waves. Here, ωk =
√

k2 + a2m2
eff,n

is the frequency of the field modes with m2
eff,n = (∂2V/∂ϕ2

n), θn0 and θn1 are random phases,

and an(~k) follow the Rayleigh distribution,

P(|an(~k)|) =
2|an|
〈|an|2〉

e
− |an |2
〈|an |2〉 , 〈|an|2〉 =

1
2a2ωk

. (A.93)

The Gauss constraints (A.20) and (A.21) can be written in terms of components, in the

temporal gauge A0 = Ba
0 = 0, as

∂i Ȧi = j0(x) , j0(x) ≡ g1

2
a2(t)Im[ϕ† ϕ̇] , (A.94)

∂i Ḃa
i − εabcBc

i Ḃb
i = ja

0(x) , ja
0(x) ≡ g2

2
a2(t)Im[ϕ†σa ϕ̇] . (A.95)

There are four different constraints: one for the U(1) sector [Eq. (A.94)], and one for each of

the three components of the SU(2) sector [Eq. (A.95)]. At initial time t = ti, we impose exactly

Ai(~x, ti) = Ba
i (~x, ti) = 0 at all volume space. This is equivalent to imposing the magnetic fields

to zero at all points. We also set the homogeneous components of the time-derivatives of the

gauge fields (electric fields) to zero, Ȧi = 0 and Ḃa
i = 0, but we shall put fluctuations on top of

them, so that the Gauss constraints are preserved initially. The Gauss laws (A.94) and (A.95)

are written in momentum space as

ki Ȧi(~k) = j0(~k) , ki Ḃi
a(~k) = ja(~k) . (A.96)

Hence, we impose in momentum space

Ȧi(~k) = i
ki

k2 j0(~k), Ḃa
i (~k) = i

ki

k2 ja(~k), (A.97)

where the fluctuations of j0(~k) and ja(~k) are given by the ones of the Higgs field, through

Eqs. (A.94) and (A.95). For consistency with (A.96), these fluctuations must also obey j(~0) =
ja(~0) = 0 for the zero mode~k = 0. If this condition is not fullfilled, then Eq. (A.97) cannot be

derived from Eq. (A.96). These conditions can be written as [ϕn ≡ ϕn(~k)]

j0(~k =~0) =
∫

d3~kRe[ϕ0 ϕ̇1 − ϕ̇0ϕ1 + ϕ2 ϕ̇3 − ϕ̇2ϕ3] = 0 ,

j1(~k =~0) =
∫

d3~kRe[ϕ3 ϕ̇0 − ϕ̇3ϕ0 + ϕ1 ϕ̇2 − ϕ̇1ϕ2] = 0 ,

j2(~k =~0) =
∫

d3~kRe[ϕ0 ϕ̇2 − ϕ̇0ϕ2 + ϕ1 ϕ̇3 − ϕ̇1ϕ3] = 0 ,

j3(~k =~0) =
∫

d3~kRe[ϕ1 ϕ̇0 − ϕ̇1ϕ0 + ϕ2 ϕ̇3 − ϕ̇2ϕ3] = 0 . (A.98)
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This is a system of four equations with four unknowns. Its solution is

ϕ̇n(~k)ϕ0(~k) = ϕ̇0(~k)ϕn(~k) , (n = 1, 2, 3) (A.99)

Using Eqs. (A.91) and (A.92), we can write solution (A.99) as

e
i
2 (θ00+θ01+θn0+θn1)ak,0ak,n ×

[
(ωk,0 −ωk,n) sin

(
1
2
(θ00 − θ01 + θn0 − θn1)

)
+ (A.100)

(ωk,0 + ωk,n) sin
(

1
2
(θ00 − θ01 − θn0 + θn1)

)]
= 0 ,

for each n = 1, 2, 3. The initialization of the homogeneous mode of the Higgs field, given in

Eq. (A.90), guarantees that m2
eff,n = m2

eff,0 for n = 1, 2, 3, and hence ω0 = ωn. This way, the first

term in Eq. (A.100) goes away. Then, Eq. (A.100) is simply reduced to

θn1 = θn0 + θ01 − θ00 , (n = 1, 2, 3) . (A.101)

If the initialization preserves this relation between the random phases, the Gauss constraints

are initially preserved. This condition can be imposed by letting only five of the phases be

generated randomly, and fixing the other three phases via Eq. (A.101).

Let us move to the discrete. The discrete gauge dynamical equations written above were

obtained by minimizing the discrete action (A.55) with respect the spatial gauge components,

Ai and Ba
i . On the other hand, by minimizing the action with respect the temporal components,

δA0L = 0 and δBa
0
L = 0, we obtain the discrete Gauss constraints,

∑
i

∆−i ∆+
0 Ai =

g2
1
a2
+0/2

4dt
Im[ϕ†∆+

0 ϕ] , (A.102)

∑
i

Tr[(iσa)(P0i −U†
i,−iP0i,−iUi,−i)] = g2

2
dx2a2

+0/2Re[ϕ†σa∆+
0 ϕ] . (A.103)

The initial conditions for the different fields must be imposed, so that these constraints are

preserved at machine precision. If this is the case, the temporal resolution of Eqs. (A.76)-(A.79)

is guaranteed to obey constraints (A.102)-(A.103) at all times, except a small accumulated error

due to machine precision. In the lattice, this can be achieved by a analogous procedure to

the one in the continuum. In particular, we let |an(~k)| vary from point to point in momentum

space, according to probability distribution (A.93). On the other hand, we let five of the eight

phases θn0(~k) and θn1(~k) (n = 0, 1, 2, 3) vary randomly within the interval [0, 2π), and fix the

other three phases via condition (A.101).



Appendix B.

Adiabatic regularization for fermionic
species

When a quantum field is coupled to a classical, non-adiabatic time-dependent background field,

it gets excited, and undergoes a non-perturbative regime of particle creation. The background

may be a classical homogeneous scalar field, such as in preheating, or spacetime itself, such as

in inflation. In this thesis, we have mainly considered scenarios in which the created particles

are bosonic species (either scalar and gauge fields), and the background fields are scalars, such

as the inflaton (Part I) or the Higgs field (Part II).

In this Appendix, we consider instead the case of fermions. In particular, we will consider

a situation in which a fermionic species is coupled to a homogeneous, time-dependent scalar

field via a Yukawa coupling. This kind of system appears for example in fermionic preheating,

where the inflaton acts as a background scalar field oscillating around the minimum of its

potential, and decays nonperturbatively into fermions due to its Yukawa interactions [29, 30,

159, 138, 31, 32, 33]. Another example is the decay of the Standard Model (SM) Higgs after

inflation, in which the Higgs condensate oscillates around the minimum of its potential, and

transfers part of its energy into all the massive fermions of the SM, coupled to the Higgs with

the usual SM Yukawa couplings [122, 55] (another part of the energy is transferred to gauge

bosons, as analyzed in Chapters 4 and 6).

In this Appendix we present a formalism to study non-perturbative excitation of fermionic

fields due to a time-dependent background field. Fermions are much more complicated than

bosons in this context. There are two important differences. First, bosonic production can be

studied with classical, real-time lattice simulations, as the ones we have presented throughout

this thesis. In regimes of strong particle creation (i.e. when the mean particle number is

much greater than nk � 1), the quantum nature of the fields can be typically ignored, and

we can simply solve the (3+1)-dimensional classical equations of motion in the lattice. In this

approach, expectation values are simply volume averages over the lattice. On the contrary,

197
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the fermion particle number is constrained to be nk < 1 due to Pauli blocking, and hence, the

lattice approach is not valid. Second, due to the the non-adiabatic time dependence of the

background field, new ultraviolet (UV) divergent terms appear in the vacuum expectation

values of the fermionic quadratic products (such as the stress-energy tensor), which must

appropriately be removed to obtain a physical, finite quantity. UV divergences also appear in

the case of bosonic species, but in this case, there is usually a clear hierarchy between infrared

and ultraviolet modes, see for example the left panels of Fig. 3.4. Hence, for boson fields, a

cutoff is simply introduced to get rid of the divergent modes (in the lattice approach, the cutoff

coincides with the maximum momentum captured by the lattice). On the contrary, in the

case of fermions the hierarchy is not so clear, due again to Pauli blocking, so a more refined

regularization/renormalized scheme is necessary in this case.

The results presented here are a summary of our work in Ref. [4]. There we derived a

generalization of the adiabatic regularization method (originally developed in [160, 161] for

scalar fields) for the case of fermionic species coupled, via Yukawa interactions, to a time-

dependent background scalar field. This method is based on an adiabatic expansion of the

field modes, which allows to identify the covariant UV-divergent terms of the corresponding

UV-divergent bilinear, and subtract them directly to obtain a finite quantity. The renormalized

expectation value is hence expressed as a finite integral in momentum space, depending

exclusively on the mode functions defining the quantum state. We will not focus here on a

particular scenario, but simply consider arbitrary time-dependent background fields. The

application of this formalism to particular situations (like fermionic preheating) will be done

somewhere else.

In this Appendix, for coherence with notation of Ref. [4], we temporally switch the signature

of the FLRW metric from (−,+,+,+) to (+,−,−,−).

B.1. Adiabatic regularization with Yukawa interaction

Let us consider here a theory defined by the action functional S = S[gµν, Φ, ψ,∇ψ], where

ψ represents a Dirac field, Φ is a scalar field, and gµν stands for the spacetime metric. We

decompose the action as S = Sg + Sm, where Sm is the matter sector containing all terms

dependent on the Dirac field,

Sm =
∫

d4x
√
−g

{
i
2
[ψ̄γµ∇µψ− (∇µψ̄)γµψ)]−mψ̄ψ− gYΦψ̄ψ

}
, (B.1)

and Sg is the gravity-scalar sector, presented later in Eq. (B.30). Here, γµ(x) are the spacetime-

dependent Dirac matrices satisfying the anticommutation relations {γµ, γν} = 2gµν, ∇µ ≡
∂µ − Γµ is the covariant derivative associated to the spin connection Γµ; m is the mass of the
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Dirac field; and gY is the dimensionless coupling constant of the Yukawa interaction. In (B.1),

both the metric gµν(x) and the scalar field Φ(x) are regarded as classical external fields. The

Dirac spinor ψ(x) will be our quantized field, living in a curved spacetime and possessing a

Yukawa coupling to the classical field Φ. The Dirac equation is obtained from the minimization

of action (B.1), with respect ψ. It is

(iγµ∇µ −m− gYΦ)ψ = 0 . (B.2)

On the other hand, the fermionic stress-energy tensor is [156]

Tm
µν =

2√−g
δSm

δgµν
=

i
2

[
ψ̄γ

(µ
∇ν)ψ− (∇(µψ̄)γ

ν)
ψ
]

. (B.3)

In this Appendix, we take the FLRW metric as ds2 = dt2− a2(t)d~x2, and use the Dirac-Pauli

representation for the Dirac gamma matrices,

γ0 =

 I 0

0 −I

 , ~γ =

 0 ~σ

−~σ 0

 , (B.4)

with ~σ the usual Pauli matrices. The time-dependent gamma matrices are related with the

Minkowskian ones by γ0(t) = γ0 and γi(t) = γi/a(t), and the components of the spin-

connections are Γ0 = 0 and Γi = (ȧ/2)γ0γi. For the case of a homogeneous time-dependent

scalar field Φ = Φ(t), Eq. (B.2) takes the form(
∂0 +

3
2

ȧ
a
+

1
a

γ0~γ~∇+ i(m + s(t))γ0
)

ψ = 0 , (B.5)

where we have defined s(t) ≡ gYΦ(t) for convenience. The solution for this equation can

be written as the following Fourier expansion of the Dirac field operator (see for instance

[162, 163])

ψ(x) =
1√

(2π)3a3(t)

∫
d3~k ∑

λ=−1,+1

[
B~kλ

ei~k~xu~kλ
(x) + D†

~kλ
e−i~k~xv~kλ

(x)
]

, (B.6)

where here, B~k,λ and D~k,λ are the creation and annihilation operators that follow the standard

anticommutaiton relations {B~k,λ, B†
~k′,λ′
} = δ3(~k− ~k′)δλλ′ , {B~k,λ, B~k′,λ′} = 0 (and similarly for

D~k,λ), and the field modes u~k,λ and v~k,λ can be written as

u~k,λ(t) =

 hI
k(t)ξλ(~k)

hI I
k (t)~σ~kk ξλ(~k)

 , v~k,λ(t) =

 hI I∗
k (t)ξ−λ(~k)

hI∗
k (t)~σ~kk ξ−λ(~k)

 , (B.7)
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with ξλ two constant orthonormal two-spinors (ξ†
λξλ′ = δλ,λ′), eigenvectors of the helicity

operator ~σ~k
2k ξλ = λ

2 ξλ, and hI
k and hI I

k two time-dependent functions. The functions hI
k and hI I

k

satisfy the following equations,

hI I
k =

ia
k

(
∂hI

k
∂t

+ i(m + s(t))hI
k

)
, (B.8)

hI
k =

ia
k

(
∂hI I

k
∂t
− i(m + s(t))hI I

k

)
, (B.9)

1 = |hI
k|2 + |hI I

k |2 . (B.10)

The first two expressions are the fermionic first-order coupled equations of motion, which can

be obtained by substituting Eq. (B.6) into (B.5). The third one is the normalization condition,

which is preserved by the cosmological evolution at all times.

We now present the adiabatic expansion of a Dirac field living in a FLRW spacetime, and

having a Yukawa interaction term with a classical background field. The particular form of

the adiabatic expansion depends on the spin of the quantized field. For scalar fields, a WKB

expansion provides an adequate solution (see, for instance, [155, 156, 164, 165]). For fermions

fields, however, we showed in Refs. [163, 166] that the adiabatic expansion takes a different

form. The adiabatic expansion is based on the following ansatz for the fermion field modes hI
k

and hI I
k ,

hI
k(t) =

√
ω(t) + m

2ω(t)
e−i

∫ t Ω(t′)dt′F(t) , hI I
k (t) =

√
ω(t)−m

2ω(t)
e−i

∫ t Ω(t′)dt′G(t) , (B.11)

where Ω(t), F(t) and G(t) are time-dependent functions, which are expanded adiabatically as

Ω = ω + ω(1) + ω(2) + ω(3) + ω(4) + . . . ,

F = 1 + F(1) + F(2) + F(3) + F(4) + . . . ,

G = 1 + G(1) + G(2) + G(3) + G(4) + . . . . (B.12)

Here, ω(t) =
√
(k/a)2 + m2 is the frequency of the field mode, and F(n), G(n) and ω(n) are

terms of nth adiabatic order (we explain what we mean by that below). The zeroth-order

term of the field mode expansion recovers, in the adiabatic limit, the usual solution for a free

fermion field in Minkowski spacetime. By substituting (B.11) into the equations of motion and

normalization conditions Eqs. (B.8)-(B.10), we obtain the following system of three equations,

(ω−m)G = ΩF + iḞ +
iF
2

dω

dt

(
1

ω + m
− 1

ω

)
− (m + s)F ,

(ω + m)F = ΩG + iĠ +
iG
2

dω

dt

(
1

ω−m
− 1

ω

)
+ (m + s)G ,

(ω + m)FF∗ + (ω−m)GG∗ = 2ω . (B.13)
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To obtain the expressions for Ω(n), F(n), and G(n), we introduce the adiabatic expansions (B.12)

into (B.13), and solve order by order. As usual in the adiabatic regularization method [155], we

consider ȧ of adiabatic order 1, ä of adiabatic order 2, and so on. On the other hand, we consider

the interaction term s(t) of adiabatic order 1, so that the zeroth order term in (B.11) recovers the

free field solution in the adiabatic limit. Similarly, time-derivatives of the interaction increase

the adiabatic order, so that ṡ is of order 2, s̈ of order 3, and so on. With this, a generic expression

f (n) of adiabatic order n (e.g. f = F, G, Ω) can be written as a sum of all possible products of

nth adiabatic order formed by s, a, and their time-derivatives. For example, generic functions

of adiabatic orders 1 and 2 are written respectively as

f (1) = α1s + α2 ȧ ,

f (2) = β1s2 + β2ṡ + β3 ä + β4 ȧ2 + β5 ȧs , (B.14)

with αn ≡ αn(m, k, a) and βn ≡ βn(m, k, a). The assignment of s as adiabatic order 1 is consistent

with the scaling dimension of the scalar field, as it possesses the same dimensions as ȧ. By

keeping only terms of first adiabatic order in (B.13), we get

(ω−m)G(1) = (ω−m)F(1) + ω(1) − s +
i
2

dω

dt

(
1

ω + m
− 1

ω

)
,

(ω + m)F(1) = (ω + m)G(1) + ω(1) + s +
i
2

dω

dt

(
1

ω−m
− 1

ω

)
,

(ω + m)(F(1) + F(1)∗) + (ω−m)(G(1) + G(1)∗) = 0 . (B.15)

It is convenient to treat independently the real and imaginary parts of F(1) and G(1) as F(1) =

f (1)x + i f (1)y and G(1) = g(1)x + ig(1)y (w(n) is always real). By solving (B.15), we find for the real

part,

f (1)x =
s

2ω
− ms

2ω2 , g(1)x = − s
2ω
− ms

2ω2 , ω(1) =
ms
ω

, (B.16)

and, for the imaginary part,

f (1)y = − mȧ
4ω2a

, g(1)y =
mȧ

4ω2a
. (B.17)

The solution for the imaginary part has an ambiguity, which we have solved by imposing

the additional condition F(1)(m, s) = G(1)(−m,−s). This way, the adiabatic expansion also

preserves the symmetries of the equations (B.9) with respect to the change (m, s)→ (−m,−s).
We have checked that physical expectation values are independent of this ambiguity.
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Similarly, by keeping only the second-order terms in Eq. (B.13), we get

(ω−m)G(2) = (ω−m)F(2) + (ω(1) − s)F(1) + ω(2) + iḞ(1) + i
F(1)

2
dω

dt

(
1

ω + m
− 1

ω

)
,

(ω + m)F(2) = (ω + m)G(2) + (ω(1) + s)G(1) + ω(2) + iĠ(1) + i
G(1)

2
dω

dt

(
1

ω−m
− 1

ω

)
,

(ω + m)(F(2) + F(1)F(1)∗ + F(2)∗) + (ω−m)(G(2) + G(1)G(1)∗ + G(2)∗) = 0 , (B.18)

where the first-order terms have already been obtained above. The solutions for the real and

imaginary part of these equations are

f (2)x =
m2 ä

8aω4 −
mä

8aω3 −
5m4 ȧ2

16a2ω6 +
5m3 ȧ2

16a2ω5 +
3m2 ȧ2

32a2ω4 −
mȧ2

8a2ω3 +
5m2s2

8ω4 −
ms2

2ω3 −
s2

8ω2 ,

ω(2) =
−m2s2

2ω3 +
s2

2ω
+

5m4 ȧ2

8a2ω5 −
3m2 ȧ2

8a2ω3 −
m2 ä

4aω3 , (B.19)

f (2)y =
5m2sȧ
8aω4 −

sȧ
4aω2 −

ṡ
4ω2 .

Again, there is an ambiguity in the solution of the imaginary part, which we have solved by

imposing F(2)(m, s) = G(2)(−m,−s). The same procedure can be repeated for all orders. The

real part of the expansion is totally determined by the system of equations (B.13), while every

imaginary part contains an ambiguity that can be solved by fixing the condition F(n)(m, s) =
G(n)(−m,−s). The third and fourth order terms of the expansion are explicitly written in [4].

Let us define a vacuum state |0〉 as B~k,λ|0〉 ≡ D~k,λ|0〉 ≡ 0, and denote any expectation value

on this vacuum as e.g. 〈Tµν〉 ≡ 〈0|Tµν|0〉. In the quantum theory, the temporal and spatial

components of the expectation value of the fermionic stress-energy tensor, Eq. (B.3), take the

form, in the FLRW metric, (see for example [166])

〈T00〉 =
1

2π2a3

∫ ∞

0
dkk2ρk(t) , ρk(t) ≡ 2i

(
hI

k
∂hI∗

k
∂t

+ hI I
k

∂hI I∗
k

∂t

)
, (B.20)

and

〈Tii〉 =
1

2π2a

∫ ∞

0
dkk2 pk(t) , pk(t) ≡ −

2k
3a

(hI
khI I∗

k + hI∗
k hI I

k ) . (B.21)

The above formal expressions contain quartic, quadratic, and logarithmic UV divergences,

which turn out to be independent of the particular quantum state. To characterize them, one

plugs in (B.20)-(B.21) the adiabatic expansions of hI
k and hI I

k , which are given in equation (B.11).

We shall see that, in the presence of a Yukawa interaction, all adiabatic orders up to the fourth

one generate UV divergences. In general, adiabatic regularization proceeds by subtracting

those adiabatic terms from the integrand of the expectation values, producing a formal finite

quantity.
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We now proceed to calculate the renormalized expressions for the energy density and

pressure. We start by performing the adiabatic expansion of the energy density in momentum

space (B.21),

ρk = ρ
(0)
k + ρ

(1)
k + ρ

(2)
k + ρ

(3)
k + ρ

(4)
k + . . . , (B.22)

where ρ
(n)
k is of nth adiabatic order. The adiabatic terms producing UV divergences (after

integration in momenta) are

ρ
(0)
k = −2ω , (B.23)

ρ
(1)
k = −2ms

ω
, (B.24)

ρ
(2)
k = − ȧ2m4

4a2ω5 +
ȧ2m2

4a2ω3 +
m2s2

ω3 −
s2

ω
, (B.25)

ρ
(3)
k =

5ȧ2m5s
4a2ω7 −

7ȧ2m3s
4a2ω5 +

ȧ2ms
2a2ω3 −

ȧm3ṡ
2aω5 +

ȧmṡ
2aω3 −

m3s3

ω5 +
ms3

ω3 , (B.26)

and,

ρ
(4)
k =

105ȧ4m8

64a4ω11 −
91ȧ4m6

32a4ω9 +
81ȧ4m4

64a4ω7 −
ȧ4m2

16a4ω5 −
7ȧ2m6 ä
8a3ω9 +

5ȧ2m4 ä
4a3ω7 −

3ȧ2m2 ä
8a3ω5 (B.27)

−35ȧ2m6s2

8a2ω9 +
15ȧ2m4s2

2a2ω7 − m4 ä2

16a2ω7 −
27ȧ2m2s2

8a2ω5 +
m2 ä2

16a2ω5 +
ȧ2s2

4a2ω3 +
ȧm4a(3)

8a2ω7

− ȧm2a(3)

8a2ω5 +
5ȧm4sṡ
2aω7 −

3ȧm2sṡ
aω5 +

ȧsṡ
2aω3 +

5m4s4

4ω7 −
3m2s4

2ω5 −
m2ṡ2

4ω5 +
s4

4ω3 +
ṡ2

4ω3 ,

where we have used the notation a(3) ≡ d3a/dt3, a(4) ≡ d4a/dt4, etc. Note here that in the UV

limit, ρ
(0)
k ∼ k, (ρ(1)k + ρ

(2)
k ) ∼ k−1, and (ρ

(3)
k + ρ

(4)
k ) ∼ k−3. This indicates that subtracting the

zeroth-order term cancels the natural quartic divergence of the stress-energy tensor, subtracting

up to second order cancels also the quadratic divergence, and subtracting up to fourth order

cancels the logarithmic divergence. Therefore, defining the adiabatic subtraction terms as

〈T00〉Ad ≡
1

2π2a3

∫ ∞

0
dkk2(ρ

(0)
k + ρ

(1)
k + ρ

(2)
k + ρ

(3)
k + ρ

(4)
k ) ≡ 1

2π2a3

∫ ∞

0
dkk2ρ

(0−4)
k , (B.28)

the renormalized 00-component of the stress-energy tensor is

〈T00〉ren ≡ 〈T00〉 − 〈T00〉Ad =
1

2π2a3

∫ ∞

0
dkk2(ρk − ρ

(0−4)
k ) . (B.29)

This integral is, by construction, finite. A similar construction can be applied for the ii compo-

nents of the stress-energy tensor, which we show in Ref. [166]. Similarly, we can also obtain

a renormalized expression for the two-point function 〈ψ̄ψ〉ren, which in this case requires

subtraction up to third order. Note also that the ultraviolet divergent terms of the adiabatic

subtractions can be univocally related to particular counterterms in a Lagrangian density

including the background gravity-scalar sector [166].
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Finally, the complete theory, including the gravity-scalar sector in the action, is

S = Sg + Sm =
1

16πG

∫
d4x
√
−gR +

∫
d4x
√
−g
{

1
2

gµν∇µΦ∇νΦ−V(Φ)

}
+ Sm , (B.30)

where Sm is the action for the matter sector given in (B.1). The semiclassical equations are

obtained by minimizing action (B.30) with respect Φ, gµν and ψ, and replacing Tµν
m and ψ̄ψ by

the corresponding (renormalized) vacuum expectation values 〈Tµν
m 〉ren and 〈ψ̄ψ〉ren. These are

Gµν + 8πG(∇µΦ∇νΦ− 1
2

gµν∇ρΦ∇ρΦ + gµνV(Φ)) = −8πG〈Tµν
m 〉ren , (B.31)

�Φ +
∂V
∂Φ

= −gY〈ψ̄ψ〉ren . (B.32)

When the spacetime is an expanding universe and Φ is an homogeneous scalar field Φ = Φ(t)
(e.g. an inflaton), Eqs. (B.31), (B.32), and the Dirac equation (B.2), describe the backreaction on

the metric-inflaton system due to matter particle production and vacuum polarization, codified

in the renormalized vacuum expectation values 〈Tµν
m 〉ren and 〈ψ̄ψ〉ren.
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