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Abstract. CPU clock frequency is not likely to be increased significantly in the coming years,
and data analysis speed can be improved by using more processors or buying new machines, only
if one is willing to change the programming paradigm to a parallel one. Therefore, performance
monitoring procedures and tools are needed to help programmers to optimize existing software
running on current and future hardware. Low level information from hardware performance
counters is vital to spot specific performance problems slowing program execution. HEP
software is often huge and complex, and existing tools are unable to give results with the
required granularity. We will report on the approach we have chosen to solve this problem that
involves decomposing the application into parts and monitoring each one of them separately.
Both counting and sampling methods are used to allow an analysis with the required custom
granularity: from global level, up to the function level. A set of tools (based on perfmon2 - a
software interface to hardware counters) for CMSSW, Gaudi and Geant4 has been developed
and deployed. We will show how this type of analysis has been proven useful in spotting specific
performance problems and effective in helping with code optimization.

1. Introduction
The days when Moore’s Law guaranteed a stable and transparent computing performance gain
each and every year, are over. Processor clock speed cannot be increased anymore and, even if it
could, it would not help since memory is still far behind in terms of speed. Memory will not catch
up with the processor in the near future, and it will continue to be a bottleneck. Programs are
performance-greedy, and as they get larger and more complex, they require improved and faster
hardware to run properly. The hardware improvements that are available today include: multiple
processors, multiple cores and NUMA architectures. Although all these are very promising, they
are definitely non-transparent for programmers, for at least two reasons: firstly programmers
need to write multi-threaded code, secondly, as the limited hardware resources (caches, bus, main
memory) are shared among cores and processors, programmers need to constantly monitor how
their programs use these resources in order to avoid bottlenecks and to speed up performance.
Writing efficient and correct multi-threaded code is non-trivial and will not be covered in this
article. Instead we will focus on monitoring the performance of single-threaded programs, to
find problems and inefficiencies in the code, to optimize it and to get the most out of today’s
hardware. This article and all the research done, concerns only the most recent Intel processor
families: Core, Nehalem and Westmere [1, 2].

The next section will explain the motivations and objectives of our project. In sections 3
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and 4 we illustrate the benefits of modularity in performance monitoring and how we applied it
to physics software frameworks. In sections 5 and 6 we explain the method and the tools used
to monitor an application, and how to get relevant and useful information from raw counter
data. Finally we will show how we deployed the monitoring tool and a simple successful usage
example.

2. Motivation and Goal

High energy physics (HEP) software is huge and complex and it is developed by hundreds
of physicists and programmers often unaware of performance issues. As pointed out in the
introduction, the reason comes from the fact that, for many years, expertise in this field was not
required, because the ever faster hardware would compensate for it. The software produced is
therefore suboptimal in terms of efficiency and speed. Moreover, given the heterogeneous group
of developers of HEP software and its large and complex structure (hundreds of libraries and
thousands of classes), the job of the performance optimization teams is more difficult than ever.
Our goal was then to develop a tool, targeted at HEP software, to help spot the problems and
find the parts of code responsible for them, so that they could be solved eventually.

3. Monolithic vs. Modular Monitoring

Generic performance analysis tools currently available (both open-source and commercial) are
countless, and some have proven useful in some occasions. Other tools have been developed
ad-hoc for specific software frameworks. As CPU vendors became more aware of the need for
application performance analysis, they started to provide hardware-based performance counters
able to monitor different aspects of how applications run on processors. Few tools on the market
exploit these powerful hardware counters, and, even the ones that do exploit them, provide little
insight as to which part of the monitored software is causing problems. Being generic tools,
they obviously treat the application as a black box, thus providing what we call a monolithic
analysis. While for very small programs and kernels, monolithic analysis is often sufficient, when
we face large and complex software it becomes less useful. Examples of “traditional” monolithic
monitoring tools using performance counters are PTU [8] and pfmon [6]. Both are able to count
and sample CPU events of a running application. Their sampling capabilities allow one to see in
which functions those events occur. But they do not tell much more: it is difficult to understand
if a function with a high count is causing the problem or if it is the application that is calling
that function too often, and when this is the case, it is hard to decide if it is a particular part
of the code that is responsible for the calls or if the calls are equally spread all over it. This
issue is not so evident in small and single-developer code, but becomes quickly unwieldy when
software grows both in size and in number of developers (like in major HEP frameworks). The
solution we chose was of the type divide et impera: instead of monitoring the application as a
whole, we divide it into what we call modules, and then monitor each module separately. In
other words, modules are parts that the application source code can be divided into. The choice
of this division depends mainly on the application structure, and it is made so that the code
instrumentation is minimal, if any. Modular monitoring allows a better insight into where the
problem is coming from, narrowing down the set of places where we need to look for causes of
the inefficient behaviour of the monitored application. We still need to provide both counting
and sampling results. Counting results allow us to identify “troubled” modules, the first step
in the optimization procedure. Once the module we would like to work on and improve is
identified, sampling results tell us in which functions, called within that module, the problems
occur. Using modularity we therefore remove the complexity and the multi-developer related
problems, dividing the whole application into smaller bits, where each bit has an affordable
complexity and often a single developer. This is especially important during the optimization
step, when the author of the code can give invaluable advice to the optimization team about his
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code and how to change it or improve it.

4. Modularity in CMSSW, Gaudi and Geant4

As previously said, the modularity of the analysis varies depending on the structure of the
application. The first application to which the tool has been applied is CMSSW, i.e. the current
official CMS (the Compact Muon Solenoid experiment at CERN) simulation and reconstruction
software framework. CMSSW code is organized into modules that are sequencially executed
during the processing of each event. The CMSSW framework provides hooks to execute user
defined actions at the beginning and at the end of each module execution. We exploit these hooks
to avoid code instrumentation and provide the monitoring tool as a service of the framework.
Each physics event goes through a number of software modules depending on its type. We use
the hook provided at the beginning of each module to start counting (or sampling) and the
one at the end to stop the monitoring process. Gaudi, the second application which the tool
has been applied to, is a software architecture and framework for building LHCb (the Large
Hadron Collider beauty experiment) and ATLAS (A Toroidal LHC ApparatuS) data processing
applications. Gaudi provides a hooking mechanism similar to CMSSW, but in this case modules
are called algorithms, and unlike CMSSW modules, algorithms are not executed necessarily
sequencially, as they are often nested within each other.

Geant4 is the third and last software framework that the monitoring tool has been applied
to. Geantd is a toolkit for the simulation of the passage of particles through matter. For
Gaudi and CMSSW we used “code division” modularity, but Geant4 doesn’t provide hooks for
different parts of its code, so we chose a different approach. Instead of grouping results by
code region, we group them by physics conditions during runs. In each Geant4 run there are
a series of events, each event has many tracks (one for every particle produced), each track is
decomposed into the smaller units called steps. Each step is characterised by many variables, but
we considered the three most significant in our analysis: the particle type, the energy range that
the particle has, and the physical volume it is passing through. Binning the monitoring results
into particle/energy/volume combinations provides an interesting insight about how different
simulated physical situations are handled by Geant4. For example it allows one to discover if
a particular particle type is handled inefficiently, or if particular volume (at any level in the
geometry tree) or material is causing performance problems, or if it is a combination of the two
that results in slow program execution. While this does not directly point to a particular part
of code to optimize, it is very useful to test the performance of Geant4 while handling different
physics conditions.

5. The PMU and Perfmon

In what follows, we will understand what hardware-based performance counters are in detail,
and we will show how we use them to extract important information on how the monitored
application performs.

Performance monitoring can be defined as the action of collecting information related to
how an application or system performs [7]. The aim of performance monitoring is to identify
bottlenecks and remove them to improve software performance.

Hardware performance counters are the resource we use for application performance
monitoring. But what are performance counters? All new micro-architectures include a special
hardware unit called PMU or Performance Monitoring Unit that contains a set of registers called
performance counters. Access to the PMU requires kernel support to read and write its privileged
registers. These counters are able to detect and count certain micro-architectural events from
several hardware sources, like the pipeline, system bus or cpu caches. These include events such
as CPU cycles, cache references, misses, instruction TLB (Translation Lookaside Buffer) misses,
system bus utilization, and other kinds of possible events and states of the processor. Such events
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provide facilities to characterize the interaction between programmed sequences of instructions
and microarchitectural subsystems. In contrast to machine simulations, they are available on
most of today’s hardware and they do not require software to be modified or recompiled. When
properly used, they incur in a very low overhead. There is an enormous amount of event types
that can be counted, so a big effort has to be put on deciding which events we should count and
how we should use them to understand the performance of an application.

In order to tell the PMU which events we want to monitor and when we want to start
or stop monitoring, we use an API called Perfmon2 [6]. This interface was developed and it
is currently maintained by Stephane Eranian of Google Corporation (though he did most of
Perfmon?2 related work when he was working at HP). It is portable across many recent micro-
architectures, it supports system-wide and per-thread monitoring and, besides counting events,
it also supports sampling.

Figure 1 shows the layering of perfmon components. At the bottom we see the CPU Hardware
that contains the PMU. Perfmon2 interacts with the PMU using a patched Linux kernel. In
fact the vanilla kernel does not include support for perfmon. The Perfmon2 library (libpfm)
is divided in two parts: architectural and generic. The architectural part is specific for the
microarchitecture used in the machine (in our case Intel Core Microarchitecture), while the
generic part provides a common interface to the user of the library. On top of Perfmon2 library
there are the user space applications that make use of the library. As said before, pfmon is such
an application, but also the performance analysis tool that we developed for CMSSW is an other
example.

Other libpfm-based Apps User space

Generic Perfmon

Linux Kernel

Architectural Perfmon

CPU Hardware

Figure 1. Layering of perfmon components.

6. Cycle Accounting Analysis

Now that we have described the counters and the API needed to access them, we will explain
what kind of relevant information we are looking for and which events we need to monitor to
get it.

The Cycle Accounting Analysis is a methodology to analyse the performance of an application
and to find its weak points. It is specific for the Intel Core Microarchitecture and was developed
by David Levinthal of Intel Corporation [3]. It is also the recommended methodology of the
Intel Architectures Optimization Reference Manual. Figure 2 illustrates the cycle decomposition
schema of an application execution. According to it, the total execution time, i.e. the total
execution cycles of an application, can be divided into cycles in which the front-end is issuing
pops and cycles in which it is not. The cycles in which the front-end is issuing pops can be further
divided into cycles which are retiring pops (i.e. when the processor completes the execution of
instructions) and cycles which are not. One example of pops issued but not retired is when
branch misprediction occurs, pops which were issued and executed do not get retired since they
belong to a speculative execution which did not prove correct eventually. So basically we have
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three possible types of cycles: cycles retiring pops, i.e. doing useful work, cycles issuing pops
but not retiring them, i.e. doing useless work, and finally cycles which are not issuing pops
at all, i.e. stalled cycles doing no work. As you can see in figure 2, the stalled cycles can be
further decomposed into 5 major components to better understand who is responsible for the
lost cycles: data load related stalls, floating point exceptions, cycles stalled due to long-latency
divisions and/or square root operations executing, instruction fetching related stalls, stalls due
to jumps and branches [4]. The aim of software optimization is therefore:

(i) To bring the stalled cycles close to 0% by improving code and data locality for example.

(ii) To do the same for cycles that are not retiring pops by making the existing branching more
predictable.

(iii) To reduce the number of cycles which are retiring pops by using vector instructions where
possible, and using faster and more efficient algorithms of course.

Doing so will result in fewer total cycles and therefore a faster application.

Total Cycles (Application total execution time)

Issuing pops Not Issuing pops

Retiring Lops Not retiting ops Stalled
(useful work) (useless work) (10 work)

Loadl FP Exceptions f Divs & Sqrts If.etch Branches
Stalls misses

Figure 2. Cycle Accounting Analysis - Cycle Decomposition.

While giving detailed reports of all kinds of statistics needed for cycle accounting, our modular
analysis focuses on the five different components of the stall cycles. That is the part of the
execution cycles that we can (and should) improve more, shrinking it as much as possible. For
each component, we monitor one or more CPU event to quantify how much each one of them
contributes to the total number of stalls. In Table 1 we show which events are monitored in
each category.

This information will be fundamental when optimizing the code, because it will tell us what
kind of change we need to apply to the code to make it more efficient. In summary, modularity
tells us the part of code to look at (and thus probably also the developer to contact), and the
result of the stall analysis tells us what kind of problem needs to be fixed in that code.

7. Deployment, Usage and Results within the Gaudi Framework

Our goal was to make the tool as easy to use as possible, and therefore it was necessary to make
all the steps of software profiling and postprocessing automatic. The Gaudi framework, the base
of the LHCD experiment software, provides an easy way to configure all the parameters of a job
through Python scripts. We created a wrapper called GaudiProfiler that can be used instead
of the default executable of Gaudi, gaudirun.py. The wrapper takes care of the on-the-fly
generation of specific options for the profiler, the definition of the groups of events to monitor,
and finally, after collecting all the necessary data, the postprocessing which results in browsable
HTML result tables.
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BASIC STATS

Total Cycles
Instructions Retired
CPI

DTLB MISSES

L1 DTLB Miss Impact
L1 DTLB Miss % of Load Stalls

DIVISION & SQUAREROOT STALLS

Cycles spent during DIV & SQRT Ops

IMPROVEMENT OPPORTUNITY

iMargin
iFactor

BASIC STALL STATS

Stalled Cycles
% of Total Cycles
Total Counted Stalled Cycles

INSTRUCTION USEFUL INFO

Instruction Starvation
# of Instructions per Call

L2 IFETCH MISSES

Total L2 IFETCH misses

IFETCHes served by Local DRAM
IFETCHes served by L3 (Modified)
IFETCHes served by L3 (Clean Snoop)
IFETCHes served by Remote L2
IFETCHes served by Remote DRAM
IFETCHes served by L3 (No Snoop)

FLOATING POINT EXCEPTIONS

% of cycles handling FP exceptions

LOAD OPS STALLS

L2 Hit

L3 Unshared Hit

L2 Other Core Hit

L2 Other Core Hit Modified
L3 Miss -> Local DRAM Hit
L3 Miss -> Remote DRAM Hit
L3 Miss -> Remote Cache Hit

ITLB MISSES

L1 ITLB Miss Impact

BRANCHES, CALLS & RETS

Total Branch Instructions Executed
% of Mispredicted Branches

Direct Near Calls

Indirect Near Calls

Indirect Near Non-Calls

All Near Calls

All Non Calls

All Returns

Conditionals

ITLB Miss Rate INSTRUCTION STATS Branches, Loads, Stores, Packed

Table 1. Types of micro-architectural events monitored

During the testing phase of the tool, we have chosen the LHCb event reconstruction
application Brunel as an example piece of software to monitor and improve. The first step
was to run the overall analysis and collect data for all software modules, algorithms in Gaudi’s
vocabulary. After having considered only the algorithms with high improvement margin and
high improvement factor (iMargin and iFactor in Table 1), we decided to work on the
CreateOfflinePhotons algorithm (see Figure 3). The iMargin is a metric that quantifies
how much an improvement to that particular algorithm would benefit the entire application if
the number of clock cycles per instruction ratio were to reach the theoretical minimum (0.25 for
Core and Nehalem processors). The iFactor is an index from 0 to 3 that roughly indicates how
much the single algorithm can be improved, regardless of the effect on the entire application; this
metric takes into consideration the number of stalled cycles, the level of branch misprediction,
and the fraction of packed instructions over all intructions.

% of Total

Total Instruction Cycles

% of # of
Total Instructions . . . Stalled Counted Starvation . spent
MODULE NAME CPI iMargin iFactor Total Instructions
Cycles i Retired Cycles Stalled % of Total handling
cycles per Call
Cycles Cycles FP

exceptions
CreateOfflinePhotons 61094302.97 52116553.54 1.17 9.63 1.76 26059064.58 42.65 26059064.58 23.08 38.04 1.46
FitSeedForMatch 38168708.13 52208985.23 0.73 5.03 0.74 13214769.30 34.62 13214769.30 17.39 91.45 0.98
MuonIDAlg 36069940.44 36920672.53 0.98 5.38 0.62 11099781.16 30.77 11099781.16 30.94 37.71 4.11
Rich0fflineGPIDLLItO 29695523.49 32871059.67 0.90 4.30 1.05 17769080.63 59.84 17769080.63 6.21 41.61 0.04
Create0fflineTracks 19218898.22 20876436.21 0.92 2.80 0.37 7520695.07 39.13 7520695.07 16.85 48.48 0.55

Figure 3. Partial view of LHCb modules list with data collected by the profiler.

The following step was to find a hotspot function using the detailed symbol view of
CreateOfflinePhotons (see Figure 4). The sampling result tables are generated for each module
of the framework. For each monitored event, they provide the number of samples collected for
each symbol (function or method) in the module, their percentage of the total number of samples
for that module, the symbol name, and the library where the symbol belongs. After a quick
investigation on which of the methods, among those taking a considerable time of execution
time, would be easier to improve, we made some small changes in the body of solveQuarticEq,
which resulted in an improvement of 2% of the overall algorithm speed. Given that the algorithm
considered was one of the main ones (high improvement margin), the improvement was also
measureable in the overall application execution.
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INST RETIRED:ANY_P -- Total Samples: 51437

Samples Percentage Symbol Name Library Name

6911 13.435854% sclveQuarticEg libRichRecPhotonTools.so
2042 3.969905% reconstructPhoton libRichRecBase.so

1977 3.843537% photonPossible libRichRecPhotonTools.so

Figure 4. Functions contributing to the instruction count of the CreateOfflinePhotons
algorithm.

8. Conclusions

In this paper we discussed the usefulness of modular software monitoring for high energy physics
software. We showed how it helps answering the two most important questions for developers
and performance optimizers of huge and heterogenously developed software frameworks: where
is the bottleneck? what kind of problem is it? By doing so, we pointed out that modularity also
helps narrowing down the number of developers to contact as responsible for the part of source
code that is slowing the execution.

We developed a set of tools based on Perfmon2, which exploit the hardware performance
counters, to allow the developer (or the end user) to modularly monitor the performance of
his application within three frameworks: CMSSW, Gaudi and Geant4. Besides modularity,
as an additional advantage to existing free and commercial tools, the results are given in the
form of easy-to-understand derived statistics, instead of raw counter data, to allow a more
effective understanding of the ongoing processes and bottlenecks inside the CPU during program
execution.

We showed how in the Gaudi framework, the improvements made to a single function selected
using the tool we developed, reduced noticeably the clock cycle count and therefore also the total
program execution time. We believe that systematic usage of the tool, and consequent code
improvement, will result in significant CPU time savings, making HEP production software
more efficient and lowering the cost of physics data processing.

9. Bibliography

[1] Intel 64 and IA-82 Architectures Software Developer’s Manual Volume 1: Basic Architecture
http://www.intel.com/Assets/PDF/manual/253665 . pdf

[2] Intel 64 and [A-32 Architectures Optimization Reference Manual
http://www.intel.com/Assets/PDF/manual/248966.pdf

[3] David Levinthal, Cycle Accounting Analysis on Intel Core 2 Processors
http://assets.devx.com/goparallel/18027.pdf

[4] David Levinthal, Introduction to Performance Analysis on Intel Core 2 Duo Processors
http://assets.devx.com/goparallel/17775.pdf

[6] David Levinthal, Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 Processors
http://software.intel.com/sites/products/collateral/hpc/
vtune/performance_analysis_guide.pdf

[6] Stephane Eranian, Perfmon2: a standard performance monitoring interface for Linuz
http://perfmon2.sourceforge.net/perfmon2-20080124.pdf

[7] Stephane Eranian, Perfmon2: a standard performance monitoring interface for Linux
http://cscads.rice.edu/workshops/july2007/perf-slides-07/Eranian-Perfmon.pdf

[8] A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, D. Ryabtsev, Parallelization Made Easier
with Intel Performance-Tuning Utility
ftp://download.intel.com/technology/itj/2007/v11i4/
2-parallelization/2-Parallelization Made Easier.pdf





