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ABSTRACT 

Stretched wires are beginning to play an important role in the alignment of accelerators and 
synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long 
LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of 
perturbations to wire straightness are hard to find. This paper considers possible deviations of 
stretched wire from the simple 2-dimensional catenary form.  

1. INTRODUCTION 

     Stretched wires have been used for alignment since the building of the pyramids. One of the 
early applications to accelerator alignment was Panofsky’s use of stretched wires on 
spectrometer magnets in End Station A at SLAC in the 1960’s [1], [2].  Both optical readout [3] 
and electrical readout [1] have been developed to micron resolution. With this level of position 
resolution for wires 100 meters long, it is reasonable to ask what intrinsic straightness is 
expected of the wire itself ?  At the micron level over 100 meters, it is hard to proof check wire 
straightness by any conventional survey technique. Absolute calibration is possible only using 
alignment techniques based on the accelerator beam itself. Gravitational distortions have been 
considered by F.Becker et.al [4]. This note considers a number of mechanical perturbations to 
wire straightness. The calculations here are not exact or all-inclusive. They are simply estimates 
used to set the order of magnitudes for some of the various physical effects. 

2. CATENARIES 

  It is common knowledge that uniform density cables tensioned in a uniform gravity field hang 
in the form of a catenary with vertical deflection 
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Here is the horizontal component of tension which is uniform from one end of the wire of 
length  to the other.  The weight of the wire per unit length  is also assumed uniform along 
the wire. For highly tensioned wires, substitution of the first 2 terms of the power series 

T
l w

                                                           
* Work supported by Department of Energy contract DE-AC02-76SF00515 

SLAC-PUB-11465

Presented at 8th International Workshop On Accelerator Alignment (IWAA 2004) ,

Oct. 4-7, 2004, Geneva, Switzerland



 
expansion for ( ) ( ) ( ) ...!4/!2/1cosh 42 +++= uuu  gives a simple parabolic approximation for 
highly tensioned wires. 
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For highly tensioned wires, the error in this approximation is small.  Using the power series 
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wire 100 meters long with gram/m and tension 6.1=w 14=T kg gives the deflection at mid-
span ( ) ( )...m 1089.3m 1429.m 50 7 +×+= −y . The 2nd term is completely negligible for wires of 
this weight and tension. Other deviations of real wires from the catenary form are much larger 
than the error in this parabolic approximation. 

2.1. Nonuniform wires 

       Variation of weight along the wire will lead to deviations from the catenary form.  The 
general problem of non-uniform cables is considered by Fallis [5]. For highly tensioned cables 
where the parabolic approximation is accurate, the problem of non-uniform weight is greatly 
simplified.  The force equilibrium on a cable leads to the differential equation: 
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Here the vertical y and the horizontal components of the trajectory are functions of arc 
length . For highly tensioned wires, /  is nearly 1 and 

z
s ds dz ( )sw  can be approximated by ( )zw  

simplifying the equation to  
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This is easily integrated to give the wire’s trajectory in terms of its weight integral : ( )zW
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As a simple numerical example of the effect of variable wire weight, consider a 100 meter wire 
which starts at 90% of  and ends at 110% of .  A wire with this linear taper hangs 
asymmetrically lower on the heavier end compared to the symmetric parabolic form of a uniform 
wire. The deviations reach nearly 2 mm for a 100 meter wire as shown at right in Figure 1 for 

kg and  gram/m (.5 mm diameter steel wire). 
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       For equation (5) to be useful, a wire’s weight integral ( )sW  must be measured. One way to 
do this would be to transfer the wire from one spool to another. If wire spools are placed at 
opposite ends of a beam balance, transferring the wire from one spool to the other weighs the 

integral .  A schematic for such a balance is illustrated on the left of Figure 1 

below. Actuator magnet and coil at one end of the beam would hold it level using feedback from 
an electronic level mounted on the beam. As wire is transferred, actuator coil current would 
record weight transfer. The 100 meter wire used in this example weighs only 160 grams. For a 
20% linear weight variation, each meter weighs only .003 grams more than the last. The balance 
would have to resolve 1 mg to be useful. 
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Figure 1: Left: wire weighing balance. Right: deflection difference ∆ y between wire with linear 
increasing weight and uniform wire weight gram/m. Tension 

kg and length 
( ) ( ) 0/2.9. wlzzw += 6.10 =w

14=T 100=l m. 

2.2 Elastic catenary 

The word catenary is from the Latin for chain. Derivation of the catenary assumes that the 
‘cable’, ‘wire’ or chain can not transmit bending or torsional moments. It is a structure made up 
of inextensible links joined with complete angular flexibility. The catenary formula depends only 
on tension and weight/length. Neither elastic modulus nor wire diameter appears in the 
equations. No elastic energy is stored. For real wires, stretch and bending stiffness modify the 
catenary form, even for thin wires. The case of the stretchable elastic catenary is covered by 
Irvine [6]. The main effect of stretching is a reduction of the weight/length . This reduces the 
wire sag.  Stress across the wire section area is

w
0A 0/ AT=σ . Wire strain Ell // σε =∆≡  for 

wire elastic modulus E. When tensioned, wire stretches by l*ε . This reduces the weight/length 
to )1/(0 ε+= ww . The parabolic approximation for the mid span sag of a stretchable wire then 
becomes: 
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The effect is easy to visualize in a thought experiment where an inextensible wire is tensioned by 
a weight over a pulley at one end. When the wire is allowed to stretch, the weight pulls l*ε   of 
the wire over the pulley, reducing the weight of the wire remaining between the supports. For a 
100 meter .5mm diameter steel wire with kg (207GPa), tensioning to 14 kg 
(1/3 of yield) stretches the wire by 

3101.2 ×=E 2/mm
003.=ε  or .3 meters. This strain reduces the deflection by 

about 0.5 mm from 142.9 mm to142.4 mm, a small but possibly measurable effect. 

3. ELASTIC RODS 

Larger deviations from a pure catenary are observed if the bending stiffness of the wire is 
considered. Wires that have bending and torsional stiffness are considered ‘rods’. The mechanics 
of long slender rod-like structures is a currently active branch of applied mathematics. 
Applications range from the tangling of undersea cables to the guiding of catheters through 
arteries to the equilibrium forms of the DNA helix. Because their transverse dimensions are so 
small compared to their length, rods and wires can experience large displacements without large 
stress or strain. This leads to spatially nonlinear differential equations and the mathematics of 
differential geometry. 

3.1. Influence of bending stiffness on the form of a suspended wire 

A.E.H.Love’s Treatise on the Mathematical Theory of Elasicity, Section 273A [7] covers 
the effects of bending stiffness on a highly tensioned wire. Axial stretching of the wire is ignored 
as well as internal shear stress. Only bending stresses are added to the forces of gravity and 
tension acting on the simple chain model. The problem is assumed symmetric with uniform wire 
weight  gram/m and end points at equal elevation. The coordinate system chosen has its origin 
centered at mid-span. The wire is assumed to leave the end supports horizontal. Bending 
stiffness 

w

EI  adds a 2nd term to the equilibrium of the vertical forces. For wire of diameter , the 
wire section inertia

d
( ) 464/ dI π= . The slope ( )sθ  at position  along the wire is related to the 

bending stiffness
s

EI , tension T , and specific weight  by: w
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This 2nd order ODE can be solved in small angle approximation to give: 
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Without trying to get an explicit relation between vertical and horizontal , both slope 
components, 

y z
θsin  and θcos  can be simultaneously integrated to get the wire 

trajectory :  ( ) ( )sysz ,
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Eq. (9) can be numerically integrated with any ODE code such as Matlab ode45 but for the thin 
steel wire used in this note, evaluation of ( )sλβ sinh  is numerically near enough to ∞∗0  to 
cause trouble. This can be avoided by the approximation for  
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Figure 2: Wire with bending stiffness compared to equivalent catenary. y∆  is the difference 
between pure catenary and actual wire with bending stiffness. 

Comparison of a wire with bending stiffness to the equivalent catenary is plotted in Figure 2. 
Only the last 10 m near the end support is plotted to better show how the difference begins. The 
effect of bending stiffness extends 2 meters out from the end supports. Beyond 2 meters, wire 
with bending stiffness is effectively indistinguishable from a catenary. This implies that the end 
supports should be placed about 2 meters beyond the last sensor. The wire’s bending radius is 
sharpest at the endpoints. Equation (8) for θ  can be differentiated to compute the bend radius: 
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Here, the approximation for end point radius ( )2/lr  is accurate when 
( ) 1/2tanhand12/ ≅>> ll λλ . A 100 meter .5 mm dia wire stretched to 14 kg has an end point 

bend radius of mm. 369=r



3.2. Spooling Helix 

Deviations from a pure catenary so far considered lie only in the vertical plane and do not 
disturb the wire’s horizontal straightness. If the wire is capable of transmitting torque as well as 
bending moments, 3D distortions are possible. The only practical storage for 100 meters of wire 
is on spools. Coiling wire on spools can leave the wire permanently bent if the spool radius is 
small enough. A wire’s maximum elastic bending stress σ  and its elastic modulus E are in the 
same ratio as the wire diameter and the diameter  of the spool it is wound on: d D
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For 0.5 mm steel wire (E=207GPa) with yield stress 690=σ MPa, winding on a 150 mm 
diameter spool stresses the wire to yield. Once off the spool and under tension, most of this 
curvature will be gone. The problem can be thought of as the tensioning of a helical spring as 
shown in Figure 3. 

 

 

Figure 3: Uncoiling of a single-turn coil spring with increasing axial tension. Moments are 
applied through each end crank to maintain 1 twist revolution. 

A helix is an intermediate geometry between the limits of a closed circle and a straight line. 
Circles, helixes and straight lines are the only 3D geometries with constant curvature and torsion. 
Pulling out the wire lengthens the helix pitch and reduces the helix radius as illustrated in Figure 
3 for a single turn helical ‘spring’.  How does the helix radius decrease as the wire is tensioned? 
What residual helix is left in the wire when tension approaches the yield strength of the wire? 
A.E. H. Love treats the theory of spiral springs in Section 271 of his Treatise [6]. There, a wire is 
considered to have torsional and bending stiffness but can not stretch. Love relates the axial 
tension and end moments to the radius and pitch of the spring in his eq.(40). If the end moments 
are set to hold the initial twist/turn π2=  as tension is increased, these equations are solvable for 
the helix radius r . For steel wire of 0.5 mm diameter starting from a coil of 150 mm diameter, 



 
the helix radius decreases with increasing tension as plotted in Figure 4. As tension is increased, 
the helix radius becomes inversely proportional to tension. At a tension of 14 kg (about half the 
breaking strength for steel wire), a helix radius of 64 microns still remains.  The amount of helix 
remaining in the wire at tension depends on the initial curvature at zero tension. The sharper the 
initial zero-tension curvature, the larger the final remaining helix at tension: short kinks in the 
wire are almost impossible to remove by tension without exceeding elastic limits. Large gentle 
initial curvatures disappear nearly completely with tension.  
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Figure 4: Wire coil helix radius r starting from 150 mm diameter vs axial tension for .5mm 
diameter steel wire. 

3.3. Twisted Catenary 

Twisting the end of a perfectly straight wire stretched in the absence of gravity does not 
deflect the wire so long as the tension is sufficient to prevent instability and the wire tangling 
into loops called hockles. But if the wire already hangs under gravity as a catenary, twisting can 
cause the wire to deflect to the side as illustrated in Figure 5. 



 

 

Figure5: Hanging catenary with twisting moment applied at each end.  

Several recent papers [8], [9] have considered the effect of gravity on twisted rods. For the case 
of long small diameter wires at high tension, numerical estimates of this effect are difficult to 
obtain. In general though, the solutions indicate that as the wire length/diameter and tension 
increase, the deviations from catenary shape tend to confine themselves near the ends of the wire 
leaving the bulk of the span hanging in an undistorted planer catenary. In effect, the wire launch 
points move slightly to the left and right of the untwisted catenary. The zone at each end affected 
by the twist is extremely short for thin wire. According to reference [8], the fraction of the span 
distorted by the twist is 43 102/ −×== wLEIε  for 0.5mm steel wire 100 meter long. Moving 
the first and last measurement stations off from the end points by several meters should 
completely avoid distortion caused by twist. 

4. WIRE SIZE AND MATERIAL 

When comparing wires, all tensioned to the same percentage of their breaking strength, 
mid-span deflection is a material property independent of wire diameter (Wire diameter only sets 
the magnitude of forces which must be resisted at the end mounts.). The ratio of material yield 
strength to material density then determines both deflection and transverse vibration wave 
velocity independent of wire diameter. In the case of ductile metals like stainless or beryllium 
copper, tensile strength increases as the wire is drawn down to smaller diameters due to work 
hardening. The tabulated strengths are for fine wire. 

Material Density 

ρ  gram/cc 

Tensile Strength 

GPa 

Deflection at break 

2/ Ll∆ , 1m−  

Wave Velocity 

m/sec 

Stainless steel 8.4 2.1 6100.5 −×  495 

Be Cu 8.6 1.3 6108.7 −×  395 

Carbon fibre 1.8 3.8 6

1058.0
−

×  
1453 

 



 
Carbon fibre has by far the lowest gravitational deflection. A 100 meter long fibre sags only 

at breaking tension. Most carbon threads are composed of 
~1000 small filaments, 7 microns in diameter. Because of this construction, a carbon fibre has 
the potential for avoiding many of the elastic distortions considered in this paper.  Substituting a 
great number of small filaments for a larger solid wire greatly reduces the bending stiffness 

( )( ) mm 8.5m100m 1058.0 216 =× −−

EI  
over that of an equivalent solid wire. Residual distortions disappear much more easily during 
tensioning. Unfortunately the brittle nature of carbon filaments makes them prone to breakage 
leaving the filament bundle or ‘tow’ with a fuzzy surface and reduced strength. By twisting 
filaments into threads and twisting thread into cord, tensile stress can be more evenly distributed 
reducing the fuzz of broken filaments and increasing tensile strength. Such cord is now available 
(www.fibraplex.com).  Carbon fibres have much higher electrical resistance than metals and this 
limits position detection technologies to capacitive or optical. To use carbon fibres with 
electrical pulse or rf techniques, carbon fibres need either a conductive sheath or core. 
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