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We show that every compact, unitary two-dimensional conformal field theory with an Abelian conserved
current has vanishing twist gap for charged primary fields with respect to the uð1Þ × Virasoro algebra. This
means that either the chiral algebra is enhanced by a charged primary field with zero twist or there is an
infinite family of charged primary fields that accumulate to zero twist.
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I. INTRODUCTION

The study of two-dimensional (2D) conformal field
theories (CFTs) has a long history in theoretical physics.
Although much work has been done in understanding
rational conformal field theories (RCFTs),1 there is very
little general understanding of a generic, irrational 2D CFT.
One feature that can diagnose irrationality of a CFT is
the twist gap of the theory with respect to a certain chiral
algebra. The twist, 2tO, of an operator O with total
conformal dimension Δ and spin j is defined as

2tO ¼ Δ − jjj ¼ 2 minðh; h̄Þ; ð1:1Þ

where h and h̄ are the left- and right-moving conformal
dimensions of the operator. The twist gap of a theory is the
minimum (or infimum) twist of all nonvacuum primary
operators under the chiral algebra. For instance, if a CFT
has a conserved current as a primary operator with respect
to a certain chiral algebra, the twist gap of that CFT

vanishes under that chiral algebra. Given any chiral
algebra, all rational CFTs must have vanishing twist
gap under that chiral algebra for sufficiently large central
charge. To be precise, if the vacuum Verma module of a
chiral algebra grows asymptotically as a c ¼ c� CFT, then
all RCFTs with c > c� must have extra currents (and
therefore vanishing twist gap) under that chiral algebra.2

Moreover, if a CFT has exactly marginal operators, and
RCFTs are dense in the conformal manifold (for instance,
in the case of the moduli space of the c ¼ 1 free boson
which we discuss more below), then the twist gap under
the chiral algebra shared by all theories in the moduli
space must vanish everywhere.
In Sec. 2.2 of [2], a rigorous upper bound was placed on

the twist gap of any c > 1 compact, unitary CFT under the
Virasoro algebra.3 It was shown that

2tVirasorogap ≤
c − 1

12
: ð1:2Þ

In [3], it was argued that this bound can be improved to
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1Here we take the definition of RCFTs as 2D CFTs with a
finite number of conformal blocks under a certain chiral algebra.

2To be more precise, we define c� of a chiral algebra as
follows. We say the number of vacuum descendants at dimension

Δ of the chiral algebra goes as e2π
ffiffiffiffiffi
c�Δ
6

p
at large Δ, up to

subexponential corrections. For c > c�, the Cardy formula [1]
shows the number of primary operators under the chiral algebra

goes as e2π
ffiffiffiffiffiffiffiffiffiffi
ðc−c�ÞΔ

3

p
. Thus, if c > c�, there must be infinitely many

primary operators under this chiral algebra, which means that the
RCFT must have additional currents.

3In [2], the argument was credited to Tom Hartman.
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2tVirasorogap ≤
c − 1

16
ð1:3Þ

from positivity of the spectrum of the theory. We emphasize
that both of these bounds are nonzero, and indeed it is
expected that a generic interacting CFT has a finite,
nonzero twist gap under the Virasoro algebra (although
we pause to note that we do not know of any explicit
example of such a theory). The latter improved twist gap
bound was recently revisited in [4] using a Rademacher
expansion of the torus partition function.
In this paper, we will show that in any compact CFTwith

an Abelian conserved current ðJ; J̄Þ whose holomorphic
Fourier modes Jn generate the uð1Þ chiral algebra (sim-
ilarly for the antiholomorphic part),4 the twist gap under the
uð1Þ × Virasoro algebra vanishes,

2tuð1Þ×Virasorogap ¼ 0: ð1:4Þ

Thus, the situation for the uð1Þ current algebra is in stark
contrast to the Virasoro algebra.
Note that the holomorphic current J (or the antiholo-

morphic component J̄) generates either a compact Uð1Þ or
R symmetry, and we do not make assumptions on this in
the paper. In other words, we show that there is always a
charged primary operator under the uð1Þ current algebra
that is either a conserved (higher-spin) current, or an
infinite family of charged primary operators that accumu-
late to zero twist.
The prototypical example is the c ¼ 1 compact boson

at radius R. When R2 is rational, there is a holomorphic
current extending the uð1Þ × Virasoro algebra, and the
twist gap with respect to the uð1Þ × Virasoro algebra
vanishes. On the other hand, when R2 is irrational, there
is a tower of (nonholomorphic) primary operators that
asymptote to vanishing twist.
As an application, we also show that any c > 3 CFTwith

N ¼ 2 superconformal symmetry has a vanishing twist gap
under the (unextended) N ¼ 2 super-Virasoro algebra.

II. Uð1Þ GLOBAL SYMMETRY

In this section, we discuss properties of 2D CFTs
with compact Uð1Þ global symmetry (the compactness
assumption will be relaxed in the next section).

A. Currents and charges

Consider a 2D compact, unitary, bosonic CFT with a
Uð1Þ global symmetry. Being a bosonic CFT, all local

operators have integral Lorentz spin, h − h̄ ∈ Z. We will
later generalize our arguments for fermionic CFTs. It will
be important that the global structure of the symmetry is
Uð1Þ not R.
Consider a Uð1Þ global symmetry generated by the

current Jμðz; z̄Þ that acts faithfully on the Hilbert space. Let
the holomorphic and antiholomorphic components of the
current be JðzÞ≡ Jz and J̄ðz̄Þ≡ Jz̄, respectively. In any
compact unitary two-dimensional CFT, current conserva-
tion and unitarity imply ∂J̄ ¼ 0 and ∂̄J ¼ 0. However, the
holomorphic current JðzÞ alone may not necessarily gen-
erate a compact Uð1Þ group, but R rather, and similarly for
the antiholomorphic current J̄.
The conserved charge Uη with η ∈ ½0; 1Þ for this Uð1Þ

global symmetry is supported on a curve L in the Euclidean
spacetime,

Uη ¼ ∶ exp
�
η

�I
L
dzJðzÞ −

I
L
dz̄ J̄ðz̄Þ

��
∶; ð2:1Þ

where ∶ stands for normal ordering. Current conservation
∂J̄ ¼ ∂̄J ¼ 0 implies that Uη is invariant under small
deformation of the curve L. Hence, Uη is a topological
line operator. See, for example, [5–7] for discussions on
topological lines in two dimensions. The Uð1Þ condition
implies that η is circle valued i.e., η ∼ ηþ 1. In particular,
Uη¼1 ¼ I is the identity operator on the Hilbert space. The
faithfulness condition implies that Uη is not an identity
operator unless η is an integer.
The operator product expansions (OPEs) of J and J̄ are

JðzÞJð0Þ ∼ k
z2
; J̄ðz̄ÞJ̄ð0Þ ∼ k̄

z̄2
: ð2:2Þ

Having specified a faithful Uð1Þ global symmetry, the
levels k and k̄ are physically meaningful and cannot be
scaled away.5

B. Spectral flow and the twisted Hilbert Space

WhenUη is supported on the whole space at a fixed time,
it is an operator acting on the Hilbert spaceH. On the other
hand, when Uη is supported at a fixed position in space but
extends in time, it is a defect. The insertion of this defect
gives rise to a twisted boundary condition for the quanti-
zation. We will denote the Hilbert space on a circle S1 with
an insertion of a defect Uη as Hη. Via the operator-state
correspondence, a state in Hη is mapped to a nonlocal,
pointlike operator living at the end of the topological line4We use uð1Þ for a rank-one Abelian Lie algebra, and we

reserve Uð1Þ for a compact Abelian Lie group. When the
holomorphic current J has a preferred normalization (e.g., when
its charges are quantized), we will denote the corresponding
chiral algebra by uð1Þk, where k is the level of the current algebra,
and similarly for the antiholomorphic current J̄.

5For example, if we had rescaled both J → 2J and J̄ → 2J̄,
then the new topological line operator Uη with η ¼ 1=2 would
act trivially on the Hilbert space H, violating the faithfulness
condition.
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Uη on the plane (see Fig. 1). In particular,H≡Hη¼0 is the
original Hilbert space of local operators.
What is the relation between the twisted Hilbert space

Hη and the Hilbert space of local operators H? This is
explained by the spectral flow, which is an isomorphism
between Hη and H [7]. More precisely, spectral flow maps
a state jϕi ∈ H with quantum numbers ðL0; L̄0; J0; J̄0Þ
to a state in jϕηi ∈ Hη with quantum numbers
ðLη

0; L̄
η
0; J

η
0; J̄

η
0Þ [8],

Lη
0 ¼ L0 − ηJ0 þ

kη2

2
; Jη0 ¼ J0 − ηk;

L̄η
0 ¼ L̄0 þ ηJ̄0 þ

k̄η2

2
; J̄η0 ¼ J̄0 þ ηk̄: ð2:3Þ

Spectral flow is related to the modular property of the
partition function, as we demonstrate in the following.
Consider the torus partition function with general chemical
potentials for the symmetry generators J0 and J̄0,

Zðτ; τ̄; η; η̄Þ ¼ TrH exp

�
2πiτ

�
L0 −

c
24

�
− 2πiτ̄

�
L̄0 −

c
24

�

þ 2πiηJ0 − 2πiη̄J̄0

�
: ð2:4Þ

The torus partition function satisfies the modular
property [9]

Zð−1=τ;−1=τ̄; η=τ; η̄=τ̄Þ

¼ exp

�
ikπ

η2

τ
− ik̄π

η̄2

τ̄

�
Zðτ; τ̄; η; η̄Þ: ð2:5Þ

Let us understand this modular property in the special case
when η̄ ¼ −η. In this case, the partition function Zðτ; τ̄; ηÞ
on the right-hand side is the trace over the Hilbert space H
with Uη inserted at a fixed time,

Zðτ; τ̄; η; η̄ ¼ −ηÞ ¼ TrH

�
Uη exp

�
2πiτ

�
Lη
0 −

c
24

�

− 2πiτ̄
�
L̄η
0 −

c
24

���
: ð2:6Þ

It also admits an S-dual interpretation as the partition
function over the twisted Hilbert space Hη on a torus with
modulus −1=τ,

Zðτ; τ̄; η; η̄ ¼ −ηÞ

¼ TrHη
exp

�
−
2πi
τ

�
Lη
0 −

c
24

�
þ 2πi

τ̄

�
L̄η
0 −

c
24

��
:

ð2:7Þ
The left-hand side of (2.5), on the other hand, can bewritten
as a sum over the original Hilbert space,

Zð−1=τ;−1=τ̄; η=τ;−η=τ̄Þ

¼ TrH exp

�
−
2πi
τ

�
L0 −

c
24

�
þ 2πi

τ̄

�
L̄0 −

c
24

�

þ 2πi

�
η

τ
J0 þ

η

τ̄
J̄0

��
: ð2:8Þ

Using the expressions (2.7) and (2.8), we see that (2.5) is
reproduced by the spectral flow map (2.3).
So far, we have not used the fact that the underlying

symmetry is globally Uð1Þ instead of R. If the global
structure is Uð1Þ, then the charge Uη is trivial when η ∈ Z.
In particular, the twisted Hilbert space Hη¼1 reduces to the
Hilbert spaceH of local operators. In other words, spectral
flow with integer units η ∈ Z maps a local operator to
another. See Fig. 2. This property would not have held if the
global structure of the symmetry is given by R instead
of Uð1Þ.
Let us study the consequences of the Uð1Þ symmetry.

From (2.3), the operator ϕη obtained from the spectral flow
has Lorentz spin,

FIG. 2. Starting with a local operator ϕðxÞ ∈ H, we can
adiabatically turn on a topological line Uη from η ¼ 0 (the trivial
line, shown in dashed line) to a small but finite value of η. This
implements the spectral flow map from a local operator ϕðxÞ to a
nonlocal one ϕηðxÞ living at the end of the line. When η increases
to 1 (corresponding to the 2π rotation of Uð1Þ), the topological
line becomes trivial, and we end up with another local operator
ϕη¼1ðxÞ ∈ H. The whole process implements a spectral flow by
one unit that maps a local operator ϕðxÞ to another ϕη¼1ðxÞ.

FIG. 1. Using the operator-state correspondence, a state jϕηi in
the twisted Hilbert space Hη is mapped to a nonlocal, pointlike
operator attached to a topological line defect Uη.
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Lη
0 − L̄η

0 ¼ ðL0 − L̄0Þ − ηðJ0 þ J̄0Þ þ
η2

2
ðk − k̄Þ: ð2:9Þ

Now, let us assume η ∈ Z, so the operator ϕη is a
local operator. In a bosonic CFT, since the original local
operator ϕ has integral Lorentz spin and Uð1Þ charge i.e.,
L0 − L̄0 ∈ Z and J0 þ J̄0 ∈ Z, the quantization of the
Lorentz spin for ϕη implies that the levels have to obey

ðbosonicÞ∶ k − k̄ ∈ 2Z; ð2:10Þ
which is the ’t Hooft anomaly of theUð1Þ global symmetry.
If the CFT is fermionic, the Lorentz spin can be half integer
and the quantization of the levels is modified to

ðfermionicÞ∶ k − k̄ ∈ Z: ð2:11Þ

C. Example: Compact boson

Let us illustrate the above general discussions in the
example of c ¼ 1 compact boson at radius R. Let Xðz; z̄Þ ¼
XLðzÞ þ XRðz̄Þ be the compact boson field with the
identification Xðz; z̄Þ ∼ Xðz; z̄Þ þ 2πR. We normalize the
OPE to be6

Xðz; z̄ÞXð0; 0Þ ∼ −
1

2
log jzj2: ð2:12Þ

Hence, ∂XðzÞ∂Xð0Þ ∼ − 1
2z2 and ∂̄Xðz̄Þ∂̄Xð0Þ ∼ − 1

2z̄2. The
uð1Þk × Virasoro primaries are the exponential operators,

On;wðz; z̄Þ ¼ exp
�
i
�
n
R
þwR

�
XLðzÞþ i

�
n
R
−wR

�
XRðz̄Þ

�
;

ð2:13Þ

with integer momentum n and winding numbers w. The
conformal weights are

h ¼ 1

4

�
n
R
þ wR

�
2

; h̄ ¼ 1

4

�
n
R
− wR

�
2

: ð2:14Þ

We have the OPE,

i∂XðzÞOn;wð0Þ ∼
ðnR þ wRÞ

2z
On;wð0Þ;

i∂̄Xðz̄ÞOn;wð0Þ ∼
ðnR − wRÞ

2z̄
On;wð0Þ: ð2:15Þ

For generic R, the charges of i∂XðzÞ and i∂̄Xðz̄Þ are
irrational. This implies that they generate two R groups
instead of Uð1Þ.

At any radius R, there are two Uð1Þ global symmetries,
the momentum Uð1Þn and the winding Uð1Þw, that are not
holomorphic nor antiholomorphic. The currents of the
momentum and winding Uð1Þ’s are combinations of
∂XðzÞ and ∂̄Xðz̄Þ,
Uð1Þn∶ JðzÞ ¼ iR∂XðzÞ; J̄ðz̄Þ ¼ iR∂̄Xðz̄Þ; ð2:16Þ

Uð1Þw∶ JðzÞ ¼ i
R
∂XðzÞ; J̄ðz̄Þ ¼ −

i
R
∂̄Xðz̄Þ; ð2:17Þ

under whichOn;w has integer charges n and w, respectively.
The levels k and k̄ of the two Uð1Þ’s are

Uð1Þn∶ k ¼ k̄ ¼ R2

2
; ð2:18Þ

Uð1Þw∶ k ¼ k̄ ¼ 1

2R2
: ð2:19Þ

In particular, they both obey k ¼ k̄, which means that they
are nonanomalous (but there is a mixed anomaly between
them). Note that k and k̄ are not separated quantized in
general. When R2 is rational, there is an integral linear
combination of Uð1Þn and Uð1Þw that is holomorphic and
another integral combination that is antiholomorphic. By
contrast, at an irrational radius, there is no holomorphic nor
antiholomorphic Uð1Þ global symmetry, but only R.
The spectral flow (2.3) forUð1Þn by one unit η ¼ 1maps

the exponential operator On;w to On;w−1, while the spectral
flow for Uð1Þw maps On;w to On−1;w.

III. VANISHING TWIST GAP

A. Compactness of global symmetry

We will show, under some assumption which we will
spell out later, that a current ðJ; J̄Þ acting on a CFT with a
discrete spectrum generates a compact Uð1Þ ×Uð1Þ sym-
metry as opposed to Uð1Þ ×R or R × R.7 For definiteness,
let us first assume that there are no other conserved

6Our convention for the compact boson radius is such that
R ¼ 1 corresponds to the self-dual point with enhanced suð2Þ
current algebra.

7It is also possible that the rank of the symmetry is one. This
happens, for example, when k̄ ¼ 0 and J̄ vanishes identically.
In this case, a straightforward generalization of the following
argument shows that the symmetry group is Uð1Þ rather than R,
and our argument for the vanishing twist gap in Sec. III B will
follow. There is also a logical possibility that k and k̄ are both
nonzero, but the left- and right-moving charges are correlated
(i.e., J0 ¼ CJ̄0 for some nonzero constant C) in such a way that
the rank of the global symmetry is still one (e.g., the c ¼ 1 free
boson with only momentum modes and no winding modes).
However, this does not happen for a compact CFT. If the rank
were one, a straightforward generalization of the following
argument shows that the left-moving charges are all rational
numbers with a common denominator, which means the left-
moving Uð1Þ symmetry is compact. Then the spectral flow
operators (3.1) of this Uð1Þ (which also follow from modular
covariance) would violate J0 ¼ CJ̄0 and hence a contradiction.
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currents, though our argument can be easily generalized to
cases with additional currents.
Let us first look at the spectrum of the left-moving

charge J0. Assuming faithfulness, there must be at least one
operator with a nonzero charge. Let us normalize JðzÞ so
that the lightest charged state carries J0 ¼ 1. We claim that
all other charges can be written as either as J0 ¼ q with
q ∈ Q or J0 ¼ q1 þ xq2, where q1; q2 ∈ Q and x is some
irrational number. To show this, suppose to the contrary
that there were a state with J0 ¼ y for some irrational y that
cannot be written as y ¼ q1 þ xq2. We would then need at
least three rational numbers q1, q2, and q3 to parametrize J0
eigenvalues as J0 ¼ q1 þ xq2 þ yq3. The operator product
expansion would then preserve q1, q2, and q3 separately.
Thus, we would conclude that the rank of global symmetry
preserving the spectrum and the operator product expan-
sion is at least three. By the Noether theorem, there must
then be at least three conserved currents, contradicting our
assumption that there are no other conserved currents.
We can repeat the argument for the right-mover and

conclude that the J̄ spectrum must be either J̄0 ¼ p with
p ∈ Q or J̄0 ¼ p1 þ xp2 with p1; p2 ∈ Q. We must have
the same irrational number x for both J and J̄; otherwise,
there must be at least three conserved currents. Moreover,
the spectra of J0 and J̄0 must be correlated; we must be able
to take their two linearly independent combinations such
that their eigenvalues are both in Q. If it is not possible
to take such linear combinations, the rank of the global
symmetry must be greater than two, contradicting our
assumption.
We have been able to show that if a current ðJ; J̄Þ acts

faithfully on a CFT and if there are no other conserved
currents, then there must be two linearly independent
combinations of J0 and J̄0 such that their eigenvalues
are all rational. In order for these two combinations to
generate a compact Uð1Þ × Uð1Þ symmetry, these rational
charges must have their denominators bounded. If the CFT
has a discrete spectrum, then for any Δ > 0, there are a
finite number of states with conformal dimensions below Δ
and therefore the denominators are bounded. The question
is what happens when we take the limit Δ → ∞.
In Sec. 6 of [10], Daniel Harlow and one of the authors

showed that if a CFT spectrum is finitely generated, then
any noncompact global symmetry of that CFT is a sub-
group of a larger compact global symmetry.8 “Finitely
generated” means that there is a finite subset of the primary
fields whose operator product expansion generates all other
primary fields (see [10] for a precise formulation). In our
case, the proof is straightforward. Since rational charges
of a finite subset of primary fields have bounded

denominators, so are all other charges generated by the
operator product expansion. This shows that the global
symmetry generated by ðJ; J̄Þ is Uð1Þ × Uð1Þ or is Uð1Þ
when either J ¼ 0 or J̄ ¼ 0.
We hope that the assumption that the CFT spectrum is

finitely generated can be relaxed, at least in two
dimensions.

B. Twist gap and the Uð1Þ global symmetry

Consider a 2D compact, unitary CFTwith a Uð1Þ global
symmetry generated by the current ðJ; J̄Þ. Unitarity and
current conservation imply that both components of the
current are conserved, so they separately generate two
Abelian symmetries. In the previous section, we have
argued that the full global symmetry associated to ðJ; J̄Þ
is either Uð1Þ ×Uð1Þ or Uð1Þ. Note that, in the rank two
case, each Uð1Þ factor is not necessarily holomorphic or
antiholomorphic. As reviewed in Sect. II C, this is the case
for the c ¼ 1 free boson at a generic radius, where the left-
and right-moving charges with respect to J and J̄ are
irrational, while the momentum and winding charges are
quantized.
As a warmup, let us show that the twist gap is zero for the

special case when the symmetry group is Uð1Þ and is
generated by a holomorphic current or an antiholomorphic
current. Let us assume the Uð1Þ current is holomorphic,
while the antiholomorphic case works identically. To avoid
confusion, we denote the Abelian current algebra generated
by the modes Jn of a holomorphic current J with level k
by uð1Þk. If the holomorphic global symmetry is globally
Uð1Þ, then k̄ ¼ 0 and the level has to be quantized as
k ∈ 2Z from (2.10). In this case, the spectral flow by �1
unit (2.3) maps the identity operator to a pair of local
operators with quantum number

L0 ¼
k
2
; J0 ¼∓ k;

L̄0 ¼ 0; J̄0 ¼ 0: ð3:1Þ

Therefore, the current algebra is enhanced by these higher
spin currents. These (higher-spin) spectral flow currents
are necessarily uð1Þk primaries.9 Consequently, any com-
pact CFT with holomorphic Uð1Þ symmetry has a tower
(and the complex conjugate) of uð1Þk primaries of zero
twist from the spectral flow currents.
It remains to show that the twist gap is zero when the

holomorphic current generates an R symmetry instead of
Uð1Þ.

8Here, we are discussing compactness applicable to general
CFT not necessarily with a weakly coupled gravity dual. For
compactness of gauge symmetry in gravitational theory, see also
the earlier papers [11,12].

9We prove this statement below. Suppose the spectral flow
current associated to η ¼ 1 is an uð1Þk descendant of a primaryO
with J0 ¼ −k and L0 < k=2. Then we can apply another spectral
flow with η ¼ −1 onO to obtain a local operator with J0 ¼ 0 and
L0 < 0, which would violate unitarity.
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From Sec. III A, we conclude that the global form of the
symmetry is Uð1Þ ×Uð1Þ. By assumption, one of the Uð1Þ
symmetries is generated by the (nonholomorphic) current
ðJ; J̄Þ. Let us assume the other Uð1Þ is generated by the
current ðαJ; βJ̄Þ for some real numbers α, β (with α ≠ β).
Importantly, we assume α, β are irrational numbers.
Otherwise an integer linear combination of the two com-
pact Uð1Þ’s would generate a holomorphic Uð1Þ symmetry
and our previous argument would be sufficient to show
vanishing twist gap. The levels of the second Uð1Þ are
(α2k; β2k̄). For each Uð1Þ factor, we can perform indepen-
dent spectral flows as explained in Sec. II B.10

With respect to the first Uð1Þ symmetry, spectral flow by
η ∈ Z units takes a state in the Hilbert space H to another
with the following changes in quantum numbers given
by (2.3). Meanwhile, spectral flow with respect to the
second Uð1Þ by η0 ∈ Z units induces

L0 → L0 − η0αJ0 þ
η02α2k
2

αJ0 → αJ0 − η0α2k

L̄0 → L̄0 þ η0βJ̄0 þ
η02β2k̄
2

βJ̄0 → βJ̄0 þ η0β2k̄; ð3:2Þ

which follows from (2.3) with the replacement J0 → αJ0,
k → α2k, J̄0 → βJ̄0, k̄ → β2k̄.
Let us now take the vacuum state and spectral flow first

by η ∈ Z units with respect to the first Uð1Þ and η0 ∈ Z
units with respect to the second Uð1Þ (or vice versa). The
resulting state will have quantum numbers,

Lη;η0
0 ¼ k

2
ðηþ η0αÞ2

L̄η;η0
0 ¼ k̄

2
ðηþ η0βÞ2

Jη;η
0

0 ¼ −kðηþ η0αÞ
J̄0η;η

0 ¼ k̄ðηþ η0βÞ: ð3:3Þ

By choosing the integers η; η0, we can have ηþ η0α
arbitrarily close to zero.11 Hence, we have shown that
the twist gap of this theory must indeed vanish.

Note that (3.2) implies the following conditions on the
current levels from spin quantization (invariance of the
theory under modular T transformations):

αk − βk̄ ∈ Z

α2k − β2k̄ ∈ 2Z: ð3:4Þ

These theories all come with an exactly marginal operator,
JJ̄. The quantization conditions (2.10) and (3.4) imply that
under deformation by this operator, the parameters α, β, k, k̄
must change in a controlled way. In particular, if

α→ αþ δα; β→ βþ δβ; k→ kþ δk; k̄→ k̄þ δk̄

ð3:5Þ

under a small deformation, then

δk ¼ δk̄; δα ¼ β − α

2k
δk; δβ ¼ α − β

2k̄
δk; ð3:6Þ

where the first condition comes from (2.10). It can be
checked that the free boson under a small deformation in R
obeys (3.6).
We pause here to note that we have two rather quali-

tatively different arguments to show the twist gap vanishes
for all 2D CFTs with an Abelian current. The first is the
holomorphic current J is associated with a compact global
symmetry Uð1Þ. In this case, the spectral flow operation on
the vacuum state maps to a new charged state with twist 0
that is not a vacuum descendent. The second is if the global
Uð1Þ ×Uð1Þ is generated by currents ðJ; J̄Þ and ðαJ; βJ̄Þ
for irrational α, β. In this case, we cannot show there must
be a nontrivial primary of zero twist in the CFT, but we can
show there is an infinite tower of states that accumulate to
zero twist.
The latter situation that we described in the above

paragraph is the generic situation for 2D CFTs with an
Abelian current. If the global Uð1Þ ×Uð1Þ symmetry is
generated by currents ðJ; J̄Þ and ðαJ; βJ̄Þ for at least one of
α, β rational, then we can simply deform by the JJ̄ operator
which would change α, β as in (3.6) and generically make
them both irrational. (E.g., α; β are generically irrational in
the c ¼ 1 compact boson.) This means that a generic 2D
CFT with an Abelian current has an accumulation point at
zero twist. Since these operators have arbitrarily small but
nonzero twist, they cannot be the vacuum descendants of
any chiral algebra.
We end this section by remarking that compactness of

the Uð1Þ symmetry is essential in our argument for a
vanishing twist gap. The crossing equation (2.5) alone is
not enough to prove a vanishing twist gap. As a counter-
example, we can take the uð1Þk × Virasoro vacuum char-
acter and perform a regularized sum over modular images
in the same fashion as [13,14]. This will give a finite,

10For the c ¼ 1 free boson at radius R, if we take the
momentum Uð1Þn to be the first nonholomorphic Uð1Þ, then
k ¼ k̄ ¼ R2

2
; α ¼ 1

R2 ; β ¼ − 1
R2 (see Sec. II C).

11Here we have used Dirichlet’s approximation theorem,
which states that for any irrational number α, the inequality
jαþ η=η0j < 1

ðη0Þ2 is satisfied for infinitely many integers η; η0.
We thank Petr Kravchuk and Juan Maldacena for discussions on
this point.
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modular-invariant spectrum with a unique PSLð2;CÞ-
invariant vacuum, and a continuous energy spectrum at
each spin, with continuous charges. From the modular
kernels of the uð1Þk × Virasoro characters (see Appendix C
of [9]), the spectrum will only have support when the twist
is at least c−2

12
.12 This means the lightest charged states have

a finite twist gap. Since the charge is continuous, this theory
(if it exists) does not have compact Uð1Þ symmetries and is
not finitely generated, and therefore does not contradict our
result.

C. Applications to N = 2 theories

We now apply the results of Secs. III A and III B to the
case of N ¼ ð2; 2Þ superconformal field theories with
c > 3. Recall that the unextended N ¼ 2 super-Virasoro
algebra contains as generators, the supercurrents G�ðzÞ,
R-current JRðzÞ in addition to the stress tensor TðzÞ. We
would like to show that any compact c > 3 N ¼ ð2; 2Þ
superconformal field theory (SCFT) has a vanishing twist
gap with respect to the unextended N ¼ 2 super-Virasoro
algebra. When c < 3, there are N ¼ 2 minimal models
whose twist gaps are nonzero.
There are two cases to consider: the holomorphic

R-symmetry is globally Uð1Þ or R. We start with the case
where the holomorphic R-symmetry is Uð1Þ. Let the
holomorphic level of the current JRðzÞ be k, normalized
such that the Uð1Þ R-symmetry acts faithfully with all the
states having integer charges. In particular, the level k is the
’t Hooft anomaly (2.11) of the Uð1Þ R-symmetry and has
to be an integer, k ∈ Z. This is different from the usual
convention where the supercurrents have unit charges,

qusualðG�Þ ¼ �1; ð3:7Þ

while the charged operators might have fractional charges.
Instead, we normalize the charges so that the supercurrents
have

qðG�Þ ¼ �
ffiffiffiffiffi
3k
c

r
∈ Z: ð3:8Þ

Accordingly, the BPS condition in the NS sector is now

h ¼
ffiffiffiffiffiffiffiffi
c
12k

r
q ð3:9Þ

rather than the more familiar h ¼ 1
2
qusual.

When the holomorphic R-symmetry is globallyUð1Þ, we
can apply an integer unit of spectral flow on the identity
operator to obtain

h ¼ k
2
; h̄ ¼ 0; q ¼ k; q̄ ¼ 0; ð3:10Þ

similarly if we start with any other chiral operator in the
N ¼ 2 vacuum multiplet. To prove that the twist gap with
respect to theN ¼ 2 Virasoro algebra is zero, it remains to
show that this type of spectral flowed operator is not an
N ¼ 2 descendant of the identity when c > 3.
We will prove this statement by contradiction. Suppose

that every spectral flow image of general chiral generators
of theN ¼ 2 algebra is anN ¼ 2 vacuum descendant. The
identity character χNS0 must be invariant under spectral flow,
which requires

χNS0 ðτ; zÞ ¼ χNS0 ðτ; zþ τÞykqk
2: ð3:11Þ

For theories with c > 3, the NS sector vacuum character is
given by [17–20]

χNS0 ðτ; zÞ ¼ q−
c−3
24

1 − q	
1þ y

ffiffiffi
3k
c

p
q1=2


	
1þ y−

ffiffiffi
3k
c

p
q1=2




×
θ3
	
τ;

ffiffiffiffi
3k
c

q
z



ηðτÞ3 : ð3:12Þ

Recall
ffiffiffiffiffiffiffiffiffiffi
3k=c

p
is the (normalized) Uð1ÞR charge of the

supercurrent Gþ which is required to be a positive integer.
Then (3.11) simply requires

q−
k
2y−k ¼

	
1þ y

ffiffiffi
3k
c

p
q

1
2
þ

ffiffiffi
3k
c

p 
	
1þ y−

ffiffiffi
3k
c

p
q

1
2
−

ffiffiffi
3k
c

p 

	
1þ y

ffiffiffi
3k
c

p
q1=2


	
1þ y−

ffiffiffi
3k
c

p
q

1
2




×
θ3
	
τ;

ffiffiffiffi
3k
c

q
ðzþ τÞ




θ3
	
τ;

ffiffiffiffi
3k
c

q
z

 : ð3:13Þ

Let us expand both sides around small q. Recall that
θ3ðτ; zÞ ¼

P
n∈Z qn

2=2yn; thus, θ3ðτ; αðzþ τÞÞ is domi-
nated by the summand with n ¼ −α and gives (with

α ¼
ffiffiffiffi
3k
c

q
here)

q−
k
2y−k ¼ q−

3k
2cy−

3k
c ; ð3:14Þ

which is not possible for c > 3.

12Here we assumed c > 2. In general, the vacuum uð1Þk ×
Virasoro character is the product the of uð1Þk vacuum character

χuð1Þk0 ¼ q
1
24

ηðqÞ, and the Virasoro vacuum character χVir0 at central
charge c − 1 [15,16]. For c > 2, under S-transformation, the
modular kernel has support for h ≥ c−2

24
as shown in [9]. However,

for c ≤ 2, the modular S-transformation also has support at the
vacuum h ¼ 0 (since the S-transformation of χVir0 does). Con-
sequently, such c < 2 CFTs with uð1Þ symmetry necessarily
have twist zero states (higher-spin currents).
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This implies that if the holomorphic R-symmetry is
Uð1Þ, all N ¼ 2 SCFTs with c > 3 have vanishing twist
gaps with respect to the unextended N ¼ 2 algebra.13

When c ¼ 3ĉ is a multiple of 3 (i.e., ĉ ∈ Z) and when
k ¼ c=3, the (unextended) N ¼ 2 Virasoro algebra is
extended by the spectral flow current (3.10) which has
h ¼ ĉ=2. The spectral flow current and its superpartner,
together with the N ¼ 2 Virasoro algebra, generate the
extended N ¼ 2 Virasoro algebra [21]. This is the algebra
of, for instance, sigma models with target space Calabi-Yau
manifold.
As a corollary, for any N ¼ ð2; 2Þ SCFT whose hol-

omorphic R-symmetry is Uð1Þ (as opposed to R), the
quantization of the R-charge of the supercurrent (3.8) and
that of the level k ∈ Z (2.11) imply that the central charge
must be rational. In other words, inN ¼ ð2; 2Þ SCFTs with
irrational central charges,14 the holomorphic R-symmetry
must globally be R (as opposed to Uð1Þ).
We are now left with the case when the holomorphic

R-symmetry is R. The argument in Sec. III A still implies

that the global form of the R-symmetry group is
Uð1Þ ×Uð1Þ, but each factor of Uð1Þ is not generated
by a holomorphic or an antiholomorphic current. As in
Sec. III B, we apply integer units of spectral flows for both
(nonholomorphic) Uð1Þ’s on the identity to generate a
sequence of states with arbitrarily low twists. Since these
states have arbitrarily small but nonzero twists, they cannot
be N ¼ 2 descendants of the identity. Therefore, the twist
gap with respect to the (unextended) N ¼ 2 Virasoro
algebra vanishes even without assuming the holomorphic
R-symmetry is globally Uð1Þ.
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