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Abstract

Particle physics is a quest for the fundamental building blocks of the matter.

As more than 99.9 % of the mass of any object in our solar system is carried by

its nucleons, exploring the structure of the nucleon is a vital part of our effort to

understand the structure of matter. A complete understanding of nucleon structure

is expected to achieve through coherent interplay of Deep Inelastic Scattering (DIS)

experiments at all energy scale, together with a proper theoretical approach. Our

most reliable knowledge concerning the internal structure of the nucleon has been

achieved through DIS off high energy beams of electrons, muons and neutrinos. DIS

processes are described in terms of the structure functions which are expressed as a

functions of the momentum fraction x of the nucleon carried by the parton and the

four momentum transfer squared Q2 and these functions are directly related to the

distribution of quarks and gluons inside a nucleon. These DIS structure functions are

the objects of intensive investigation both theoretically and experimentally in order to

understand the underlying theory of strong interaction. With the recent developments

of dedicated experimental facilities significant progresses have been observed in the

field of experimental investigation of structure functions. Simultaneously, in this

regard, tremendous progress is observed in the field of theoretical investigation with

a variety of theoretical approaches.

Quantum Chromodynamics (QCD) and Regge theory are two important ap-

proaches in order to account for the strong interaction processes observed at high

energy particle colliders. However, the predictive power of both approaches is lim-

ited. Specifically, Regge theory has its predictions on the x dependence of the struc-

ture functions within the Regge limit (x → 0, Q2 fixed and of the order of a typical

hadronic scale) and QCD is successful in describing Q2 dependency of the structure

functions in accord with DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolu-

tion equations in the perturbative regime i.e., within the Bjorken limit (Q2 ≫ 1,

x fixed and not too small). However the most important region in DIS, which has

attracted much interest recently is the small-x region, lies between the interface of

Bjorken limit and the Regge limit.

Despite limitations in themselves, the combination of QCD and Regge theory

is expected to provide proper understanding of the structure functions, particularly

in the small-x region. In QCD the structure functions are governed by a set of
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integro-differential equations, known as the DGLAP equations. Due to its compli-

cated mathematical structure, an exact analytic determination of the structure func-

tions is currently out of reach and one needs to apply approximated methods to arrive

on predictions from the theory. Therefore, in current analysis this set of equations

are usually solved numerically by using an initial input distribution of the structure

function at a fixed Q2, in terms of some free parameters, the parameters are so ad-

justed that the parameterization best fit the existing data. In order to perform a fit

one must start with a particular ansatz for the structure functions at some reference

Q2
0. In most of the existing fitting analysis, including those in the experimental papers

it has been performed by assuming a simple power behavior based on Regge theory.

Although many parameterizations are available in literature in order to predict the

initial distribution of structure functions to DGLAP equation, but most of them are

full of different constraints and suffer of several drawbacks. Therefore explorations

of the possibility of obtaining accurate solutions of DGLAP evolution equations with

less number of parameters are always interesting. Under this motivation, this thesis

is devoted to the exploration of a semi-analytic approach of solving DGLAP equation

for non-singlet structure functions using two Regge inspired model with less number

of parameters. Here particular emphasis is given to the non-singlet structure func-

tions because they are considered as the starting ground for theoretical description

of DIS structure functions. Besides being interesting in themselves, another signifi-

cant advantage is that QCD analysis by means of non-singlet structure functions is

comparatively technically simpler. This thesis concerns with the usefulness of the

combination of Regge theory and QCD in order to have reliable understanding of both

the spin independent and spin dependent non-singlet structure functions and deter-

mination of various sum rules associated with them. Here we explicitly specify how

the usefulness of two Q2 dependent Regge ansatz, utilized as the required initial input

to the DGLAP evolution helps in obtaining the small-x behaviour of the non-singlet

structure functions, FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2). Obtained small-x be-

haviour of these non-singlet structure functions are then utilized to calculate the sum

rules, Gottfried sum rule(GSR), Gross-Llewellyn Smith(GLS) sum rule and Bjorken

Sum Rule (BSR), which are associated to FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2) re-

spectively. In addition to the prediction of structure functions and sum rules we have

paid attention to their precision. Precise prediction of structure functions demand
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to incorporate the standard higher order approximation of pQCD and several non-

perturbative effects. In this regard particular emphasis is given to the determination of

structure functions and sum rules with pQCD corrections up to next-next-to-leading

order (NNLO) and to the inclusion of the special non-perturbative effects, shadowing

effect and higher twist effect.

The outline of the thesis is as follows:

In Chapter 1, we have given a brief introduction to our current views of the

basic building blocks of matter, deep inelastic scattering, structure functions, parton

model, Regge theory and Quantum Chromodynamics and higher order corrections,

various sum rules, non-perturbative QCD corrections such as nuclear effect, higher

twist effect etc.

Chapter 2 provides a general overview about the recent lepton deep inelastic scat-

tering measurements which have enriched our phenomenological analysis performed

in this thesis. Specifically the experimental results for non-singlet structure func-

tions and associated sum rules for both polarized and unpolarized cases measured in

electron, muon and neutrino DIS are reviewed. In addition, several parametrization

associated with the determination of non-singlet structure functions are discussed.

In Chapter 3, along with a qualitative analysis of the available methods to solve

DGLAP equation, I have allude the usefulness of two Q2 dependent Regge ansatz

in solving DGLAP equation in order to have the small-x behaviour of both the spin

independent and spin dependent non-singlet structure functions. By means of fitting

analysis, we have investigated the compatibility of the two ansatz with the available

experimental data and then studied the possible role played by them in evolving the

non-singlet structure functions in accord with DGLAP equation.

Chapter 4 encompasses the evolution of the non-singlet structure function

FNS
2 (x,Q2) in charged lepton DIS by means of solving the DGLAP equations in

LO, NLO and NNLO using the Regge ansatz as the initial input. Both the Q2 and x

evolutions of FNS
2 (x,Q2) structure functions, thus obtained are analysed phenomeno-

logically in comparison with the experimental measurements taken from NMC and

the results of NNPDF parametrization.

Chapter 5 concerns with the determination of small-x behaviour of the non-

singlet structure function, xF3(x,Q
2) originated in neutrino scattering. The DGLAP

equation is solved up to NNLO for xF3(x,Q
2) structure function and solutions are
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compared with the experimental data taken from CCFR, NuTeV, CDHSW and CHO-

RUS experiments and also with the recent MSTW parametrization results.

Chapter 6 deals with the understanding of the spin dependent non-singlet struc-

ture function xgNS
1 (x,Q2) within small-x region. The DGLAP equation is solved to

have the Q2 as well as x evolution of xgNS
1 (x,Q2) structure function with QCD cor-

rections up to NNLO and perform a phenomenological analysis of our results in com-

parison with different experimental data taken from COMPASS, HERMES, E143 and

JLab experiments, along with other available theoretical as well as phenomenological

analysis.

Chapter 7 utilises the small-x behaviour of FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2)

structure functions obtained in the previous chapters in prediction of sum rules as-

sociated with them, viz., Gottfried sum rule, Gross-Llewellyn Smith sum rule and

Bjorken sum rule respectively. These sum rules are calculated incorporating higher

order pQCD corrections up to NNLO and analysed phenomenologically by comparing

with their respective experimental results and available theoretical predictions.

In Chapter 8, we present an analysis of the non-singlet structure functions

and related sum rules taking into account the nuclear effects. In this regard, special

attention is given to the nuclear shadowing effect as we are mostly concerning with the

small-x region. The corrections due to nuclear shadowing effect, predicted in several

earlier analysis are incorporated to our results of structure function and sum rules

for free nucleon and calculate the nuclear structure functions as well as sum rules

for nuclei. The calculations are analysed phenomenologically in comparison with

available experimental data and achieved at a very good phenomenological success in

this regard.

In Chapter 9, the higher twist corrections to the non-singlet structure functions

and sum rules associated with them are studied. Here, possible improvement in the

accuracy of our results for the non-singlet structure functions and sum rules due to the

inclusion of relevant higher twist terms is investigated. Based on a simple model we

have extracted the higher twist contributions to the non-singlet structure functions

and sum rules in NNLO perturbative orders and then incorporated them with our

results. Our NNLO results along with higher twist corrections are observed to be

compatible with experimental data..

Finally in Chapter 10, We have presented the overall conclusion drawn from our

work. ��
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Chapter 1

Introduction

In this chapter we have given a brief introduction to our current views of the basic

building blocks of matter, deep inelastic scattering, structure functions, parton model,

Regge theory and Quantum Chromodynamics and higher order corrections, various

sum rules, non-perturbative QCD corrections such as nuclear effect, higher twist effect

etc.

1.1 Our Current Views of Nature’s Building Blocks

Particle physics is a quest for the fundamental building blocks of the matter, and the

fundamental forces that operate to control and shape them. The pursuit for finding

the “real” nature of the Universe is not only a means to satisfy instinctive curiosity

but also a principal tool for the advancement and progress of civilization[1].

The search for the elementary constituents of nature has occupied generations

of human beings since the speculations of the early Greek philosophers and other

philosophers from different parts of the world. As far it is known, in the sixth cen-

tury B.C. Thales proposed that all things reduced to water, and, coming out of the

Greek-Roman eras and for centuries to come, the four basic elements were thought

to be earth, water, fire, and air. Chinese (in Pinyin, Wu Xing) believed that these

were earth, wood, metal, fire and water. Indians (Samkhya-Karika by Isvarakrsna)

visualized the world as made of five elements: space, air, fire, water and earth. In

about 400 B. C. the Greek philosophers Democritus and Leucippus proposed that

matter is composed of indivisible particles called atoms, a word derived from a-(not)
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Chapter 1 Introduction

and tomos (cut or divided)[2]. This idea lingered in the background for centuries un-

til experimental support and through the work of eighteenth- and nineteenth-century

chemists, brought atoms to the fore as the basic building blocks of matter.

The macroscopic quantities of homogeneous material can be divide or cut into

parts such that each part retains the basic character of the original. But how far can

such division be carried? If we cut a piece of gold into smaller and smaller snips, do

we always get pieces of the gold? Is it possible that the divisions can go on forever,

generating smaller and smaller snips of gold, or is there a limit such that no further

divisions can be made or at least no further pieces leaving the parts as gold? If so what

the final divisions consist of? Is there any constituent which is further indivisible?

From the earliest concepts to the resulting periodic table of elements, many small

steps had been taken in our pursuit of the fundamental building blocks of nature

and up to the end of nineteenth century the answer of this question was “atom”.

People believed that atoms are immutable and indivisible objects. By the close of

the nineteenth century, however, the atoms were also under criticize and evolved the

next question, “What are atoms made of?”. Before discussing ”What are atoms made

of?”, we would like to discuss something about elementary particles and how they are

investigated.

The elementary particles are those particles which have no known structure, i.e.,

they are structure less or point like. They cannot be resolved into two or more parts.

In order to investigate the possible structure of an object firstly we need to probe

it by a probing beam which is scattered from the object. Analysing the diffraction

pattern of scattered beam, we can remark on their structure. But whether a particle

is point like or not it depends on the spatial resolution of the apparatus used. In case

of an optical microscope, where the probing beam is light, the resolution is given by

∆r ≃ λ

sinθ
(1.1)

where λ is the de Broglie wavelength of the incident beam of particles, which is given

by λ = h
p
. Here p is the beam momentum and θ is the angular aperture of the light

beam used to view the structure of an object. For the improvement of resolution

we need larger θ and smaller λ. Thus we see that the resolution depends on the

initial momenta of the incident particle and to resolve an object we must have a

probe whose wavelength is comparable or smaller than the size of the object. Again
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from the uncertainty principle we have the relation, ∆p.∆x ≥ ~c ≈ 0.2GeV fm,

which suggests that smaller the distance we want to probe, the beam energy must be

higher. This is the underlying idea that is used to study the structure of particles and

depending on the energy of the probing beam, the concept of elementary particle has

been changing.

To resolve an atom we must have a probe whose wavelength is comparable or

smaller than the size of the atom. The requirement of such type of probe was fulfilled

by the alpha particle (ionized Helium atoms), which was the result of discovery of

radioactivity of the substances in 1886 through the work of French physicist Henri

Becquerel. It was observed that the alpha particles can be deflected in magnetic fields

and therefore one could expect them to serve as natural weapons to study the atomic

structure, in particular its charge distribution. Rutherford utilized this opportunity

to investigate the basic structure of atoms. In 1911, he performed an experiment

where a beam of alpha particles of a few MeV was fired into a thin sheet of gold

foil. He observed that most of the alpha particles passed through the gold completely

undisturbed, but a few of them bounced off at wild angles. Based on these observations

Rutherford concluded that the positive charge, and virtually all of the mass of the

atom was concentrated at the center occupying only a tiny fraction of the volume of

the atom[3]. Furthermore, Rutherford was able to show by explicit calculation that

the angular distribution of the scattered a particles agreed with that expected if they

indeed interacted with a massive scattering center of positive charge Ze and which is in

support his intuitive picture of the atom. The nucleus of the lightest atom (hydrogen)

was given the name proton by Rutherford and thus the proton was inferred and later it

was isolated in the laboratory. However before this, J. J. Thomson demonstrated the

existence of a tiny particle which is much smaller in mass than hydrogen, the lightest

atom. This was the electron, the first elementary particle which was discovered by

Thomson in 1897[4]. In 1932 James Chadwick discovered the other constituent of

nucleus, the neutron[5].

The dimension of the atom is typically ∼ 1Å = 10−10m ≫ 10−15m, the dimension

of proton. So the low energetic α particles could only resolved the atom and observed

that an atom is made of a hard compact nucleus consisting of proton and neutron

surrounded by a cloud of electrons. Due to the poor resolution, the proton and the

neutron were regarded as point like or elementary particles. Up to 1950, the electron,

proton and neutron were considered as the elementary particles.
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By the early 1960s, accelerators reached higher energies, ∆E ≫ 1GeV , which is

required to probe proton. A parallel sequence of events occurred with the proton and

neutron. In the 1960s very high energy electron beams were utilized at the Stanford

Linear Accelerator Center (SLAC)[6] in an experiment that was analogous to the old

alpha particle one in which the atomic structure was revealed. The electron beam

was fired at protons and it was observed that the beam of electrons suffered violent

collisions when it met the nucleons. The observation of these violent collisions sug-

gested that the proton’s charges were concentrated on some discrete scattering centres

within, which in turn indicates the evidence of substructure of the proton. Compari-

son of the data on electron scattering with the analogous probing by neutrino beams

has enabled us to learn about the nature, or quantum numbers, of the constituents of

the proton. As a result of the above experiments, we have learned that the proton and

neutron are therefore not elementary, but are made instead of the pointlike “quarks”.

The quarks are referred as point like because they have no internal structure or, more

probably, that we have not yet resolved any constituent that they may have.

We observe that to Rutherford the nucleus appeared pointlike; more powerful

beams of electrons reveal the inner structure of the nuclei and progressively resolved

the neutrons and protons and finally using higher energy beams or equivalently shorter

wavelength probes the substructure of the proton was uncovered. The use of high-

energy particles showed that as the energies of the probing beam of the particles

were increased, even smaller particles were obtained, which indicates the possibility

of uncovering the substructure of quarks with further higher energetic beams. The

quest, “What are the building blocks of nature?” has progressed from everyday objects

to molecules, molecules to atoms, atoms to electrons and nuclei, nuclei to protons

and neutrons, and protons and neutrons to quarks. Whether this progression to

smaller and smaller components go on forever, or there will be the end with a single

fundamental particle, that will be reflected in future particle physics research.

The birth of modern experimental particle physics in which particles were used to

probe the structure of composite objects began with the famous alpha particle scat-

tering experiment of Rutherford. The experimental effort originated by the end of the

19th century and the beginning of the 20th century with physicists, like Thompson,

Rutherford, Chadwick and so on, discovering the presence of subatomic particles like

electrons, nucleus etc. The use of high-energy particles as probe showed that as the

energies of the colliding particles were increased, even smaller particles were obtained.
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This led to the subsequent discovery of many particles like mesons, baryons, antiparti-

cles, neutrinos etc. From the world of these particles, which are the outcome of many

years of international effort through experiments, theoretical ideas and discussions,

physicists have developed a theory called “The Standard Model” that explains the

current understanding of elementary particle physics. The standard model is a simple,

comprehensive, beautiful as well as the most successful theory in nature. The beauty

of the Standard Model is twofold. On one hand it establishes the identity of all the

elementary constituents of matter and on the other hand describes the fundamental

forces that operate to control and shape matter. In accord with this model all the

known matter particles are composites of quarks and leptons, held together by fun-

damental forces which are represented by the exchange of particles known as gauge

bosons. The standard model is summarised in Table 1.1

J Name Symbol Observed
0 Higgs Scalar H Yes
1
2

Leptons e, µ, τ , νe, νµ, ντ Yes
Quarks u, d, c, s, t, b Yes
Photon γ Yes

1 Vector Mesons W+, W−, Z0 Yes
Gluons g Yes

2 Graviton G No

Table 1.1: Particles in the Standard Model.

1.2 Deep Inelastic Scattering

Deep Inelastic Scattering(DIS)(cf. e.g. [7]) experiments have had an enormous impact

towards the understanding of the fundamental constituents of matter. DIS provides

one of the cleanest possibilities to probe the space-like short distance structure of

nucleon through the interactions

l± +N −→ l± +X, (1.2)

νl(ν̄l) +N −→ l± +X, (1.3)

and

l∓ +N −→ νl(ν̄l) +X. (1.4)
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Figure 1.1: Schematic representation of deep inelastic scattering.

In DIS a charged lepton(l = e, µ), or a neutrino (νl = νe,µ,τ ) is scattered off the

nucleon(N) and produces a lepton and a shower of hadrons(X) in the final state.

In this regard as the high energetic particles(lepton) probe deep within the tar-

get(nucleon), and as the target is disrupted after scattering, it is known as deep

inelastic scattering. Various deep inelastic charged and neutral current interactions

provide complementary sensitivity to reveal the quark flavor and gluonic structure of

the nucleon. Moreover, polarized lepton scattering off polarized targets helps in the

investigation of the spin structure of the nucleons.

1.2.1 Kinematics and Variables in DIS

The DIS processes at Born level can be illustrated as shown in Fig. 1.1. Here a

lepton with momentum l scatters off a nucleon of mass M and momentum P via the

exchange of a virtual vector boson (photon or Z0 or W±) with four momentum q.

The four momenta of the outgoing lepton and the hadronic final states are l′ and

PF respectively. The virtual boson has space like momentum with a virtuality Q2,

defined by

Q2 ≡ −q2, (1.5)

where the four momentum transferred q is

q = l − l′ = PF − P. (1.6)

In addition to Q2 and q2, other two important Lorentz invariant kinematic variables

that describe the interaction are
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s ≡ (P + l)2 (1.7)

and

W 2 = (P + q)2 = P 2
F , (1.8)

where s is the total center of mass energy squared and W represents the invariant

mass of the hadronic final state. Further, in order to describe the scattering process,

the Bjorken scaling variable x, the inelasticity y, and the total total energy transfer ν

of the lepton to the nucleon in the nucleon’s rest frame are usually referred and they

are defined by

ν ≡ P.q

M
, (1.9)

x ≡ −q2

2P.q
=

Q2

2Mν
, (1.10)

y ≡ P.q

P.l
=

2Mν

s−M2
. (1.11)

1.2.2 Deep Inelastic Scattering Differential Cross Sections

Case 1: Charged Lepton DIS

The deep inelastic scattering differential cross section can be written in terms of

products of two tensors, the leptonic tensor Lαβ and the hadronic tensor Wαβ:

d2σ

dE ′dΩ′ ∝ LαβW
αβ. (1.12)

The leptonic tensor describes the lepton-photon interaction. Denoting the spin pro-

jections of the initial and final lepton by s and s′ and then summing over s′ the lepton

tensor can be expressed in terms of two pieces which are symmetric and antisymmetric

with respect to the Lorentz indices α and β:

Lαβ = Ls
αβ + iLA

αβ, (1.13)

where Ls
αβ(k, k

′) = 2(kαk
′
β + kβk

′
α) + gα,βq

2 and LA
αβ = 2mϵαβµνs

µqβ, with the lepton

spin vector defined by 2msµ = ūγµγ5u. For unpolarized lepton scattering the average

7



Chapter 1 Introduction

over the initial lepton polarizations is performed and hence only the symmetric term,

Ls
αβ, remains.

The hadronic tensor, Wαβ provides complete information about the target re-

sponse. The hadronic tensor can split into symmetric and antisymmetric parts:

Wαβ = W s
αβ +WA

αβ. (1.14)

Lorentz and gauge invariance and symmetry properties together with parity conser-

vation of the electromagnetic interaction imply the most general forms of these terms:

W s
αβ = W1(ν,Q

2)

(
qαqβ
q2

− gαβ

)
+

W2(ν,Q
2)

M2

(
Pα − P.q

q2
qα

)(
Pβ −

P.q

q2
qβ

)
(1.15)

and

WA
αβ = iϵαβµνq

α

[
G1(ν,Q

2)Sν +
G2(ν,Q

2)

M2
(SνP.q − P νS.q)

]
. (1.16)

This defines four response functions W1(ν,Q
2), W2(ν,Q

2), G1(ν,Q
2) and G2(ν,Q

2).

The first two can be measured in the unpolarized scattering, while the latter two

require scattering of polarized leptons on polarized nucleons for their determination.

In the description of deep inelastic scattering process the response functions

W1,2(ν,Q
2) and G1,2(ν,Q

2) are often replaced by the dimensionless structure func-

tions F1,2(x,Q
2) and g1,2(x,Q

2), expressed in terms of the Bjorken variable x together

with Q2:

F1(x,Q
2) = MW1(ν,Q

2), (1.17)

F2(x,Q
2) = νW2(ν,Q

2), (1.18)

and

G1(x,Q
2) = MνG1(ν,Q

2), (1.19)

G2(x,Q
2) = ν2νG2(ν,Q

2). (1.20)

In terms of these structure functions, the unpolarized and polarized differential cross

sections can be written as(with spin denoted by ⇑⇓)

8
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d2σ

dxdy
=

2πα2

MEx2y2

[(
1− y − Mxy

2E

)
F2 + xy2F1

]
(1.21)

and

d2σ ↑⇓
dxdy

− d2σ ↑⇑
dxdy

=
4α2

MExy

[(
2− y − Mxy

E

)
G1 −

2Mx

E
G2

]
(1.22)

respectively.

Case 2: Neutrino DIS

Like charged lepton DIS, neutrino-nucleon(ν − N) DIS experiments provide a good

opportunity to study the structure of nucleon. The advantage of ν-DIS measurements

over charged lepton experiments is that ν−N experiments can measure the structure

function xF3, in addition to F1 and F2. In the neutrino nucleon scattering, neutrino

interacts weakly with the nucleon and due to parity violation in their weak interaction

the third structure function xF3 originates and the resultant differential cross section

is given by

d2σν(ν̄)

dxdy
=

G2
FMEν

π(1 +Q2/M2
W )2

[
y2xF1 +

(
1− y − MNxy

2Eν

)
F2 ± (y − y2

2
)xF3

]
, (1.23)

Where GF is the Fermi weak coupling constant and MW is the mass of the W boson

mediating the interaction. Here +(−) sign corresponds to the neutrino(antineutrino)

scattering cross-section.

1.2.3 Bjorken Scaling

If the nucleon has substructure and that are resolvable for Q, ν ≫ M , then these W

terms would be functions of the kinematic variables ν and Q2:

W1 −→ W1(Q
2, ν), where 2MW1(Q

2, ν) =
Q2

2Mν
δ(1− Q2

2Mν
), (1.24)

W2 −→ W2(Q
2, ν), where νW2(Q

2, ν) = δ(1− Q2

2Mν
), (1.25)

W3 −→ W3(Q
2, ν), where νW3(Q

2, ν) = δ(1− Q2

2Mν
). (1.26)
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On the basis of analysis of various sum rules, Bjorken predicted that in the

deep inelastic regime, where Q2 → ∞ and ν → ∞, the structure functions do not

depend individually on (ν,Q2) but only on their ratio x = Q2

2Mν
. The variable x was

first introduced by Bjorken and this feature is known as “Bjorken scaling”[8]. Soon

after this prediction, approximate scaling behavior was observed experimentally in

electron-proton scattering at SLAC[6]. The fact that the structure functions become

independent of Q2 indicates that the objects inside the nucleon from which one is

scattering have no spatially extended structure, that is, one is scattering from point

like constituents, known as “partons”, about which we have discussed in the section

1.3.1. The scaling behavior of the structure functions are expressed as

MW1 −→ F1(x), (1.27)

νW2 −→ F2(x), (1.28)

and

νW3 −→ F3(x). (1.29)

A similar scaling behavior is expected for the spin-dependent structure functions

g1(x,Q
2) = M2νG1(ν,Q

2), (1.30)

and

g2(x,Q
2) = Mν2G2(ν,Q

2), (1.31)

which likewise reduce to functions of x only when the limit Q2 → ∞ is taken.

However, in the later experiments a smallQ2 dependence of the structure functions

was also observed and this phenomena is known as scaling violation. Scaling violation

is an important observable of QCD and discussed in the section 1.4.

1.3 Theoretical Models for the DIS Structure Func-

tions

The first electron-proton scattering experiment was carried out at SLAC[6]. Immedi-

ately after these experiments several models were proposed to explain the behaviour
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of the structure functions. The most prominent among them are Light Cone Expan-

sion[9], Quark Parton Model(QPM)[10], Vector Meson Dominance Model(VMD)[11],

Regge Pole Model[12, 13] and Dual Resonance Models[14]. Here we have provided a

brief introduction to Quark Parton Model and Regge theory.

1.3.1 Quark Parton Model

In the early measurements, nucleon structure function in DIS, a weak dependence of

structure functions on Q2 was revealed, which in turn led to the conclusion that the

virtual photon sees point-like constituents in the nucleon. In order to describe the

composite nature of nucleons, the quark-parton model[10] was developed. In accord

with quark-parton model, the nucleon is composed of free pointlike constituents, the

partons, identified later as quarks and gluons. The basis of parton model is the intro-

duction of parton distribution functions, qi(x) and q̄i(x) for quarks and anti-quarks

respectively, where qi(x)dx(q̄i(x)dx) signifies the probability of finding a quark(anti-

quark) of flavor i in a nucleon, which carries a fraction x to x + dx of the parent

hadron’s four-momentum p. Here x is the fractional four-momentum of the parent

nucleon carried by a parton. On the basis of these ideas we can have a simple inter-

pretation of nucleon structure functions F1 and F2 measured in charged lepton DIS

as

F1(x) =
1

2

∑
i=u,d,...

e2i [qi(x) + q̄i(x)], (1.32)

and

F2(x) =
1

2

∑
i=u,d,...

e2ix[qi(x) + q̄i(x)]. (1.33)

They are thus related by the Callan-Gross relation[15],

F2(x) = 2xF1(x). (1.34)

The Callan-Gross relation connecting F1 and F2 reflects the spin- 1
2
nature of the

quarks.

The interpretation of structure functions measured in neutrino-DIS in accord with

parton model is

11



Chapter 1 Introduction

F
ν(ν̄)
2 (x) =

∑
i=u,d,...

x[q
ν(ν̄)
i (x) + q̄

ν(ν̄)
i (x)] (1.35)

xF
ν(ν̄)
3 (x) =

∑
i=u,d,...

x[q
ν(ν̄)
i (x)− q̄

ν(ν̄)
i (x)] (1.36)

In the the naive parton model the spin-dependent structure functions g1 and g2

are given by

g1(x) =
1

2

∑
i=u,d,...

e2i∆qi(x) (1.37)

and

g2(x) = 0. (1.38)

where

∆qi(x) = q↑i (x)− q↓i (x) + q̄↑i (x)− q̄↓i (x). (1.39)

Here the helicity distributions ∆qi(x) = q↑i (x) − q↓i (x) and ∆q̄i(x) = q̄↑i (x) − q̄↓i (x)

involve the differences of the quark or antiquark distributions with helicities parallel

and antiparallel with respect to the helicity of the target nucleon. The interpretation

of g1(x) structure function can be understood from the fact that a virtual photon with

spin projection +1 can only be absorbed by a quark with spin projection −1
2
, and

vice versa. In parton model, however the trasverse spin structure function g2 vanishes

identically and has been the subject of much theoretical debate [16].

1.3.2 Regge Theory

The study of scattering of hadronic particles, in the days before QCD was established,

was based on Regge theory [12, 13]. The pre-QCD method, Regge theory relied ba-

sically on assumptions on the scattering matrix, such as Lorentz invariance, crossing

symmetry, unitarity, causality, analyticity, asymptotic states etc., which determines

the asymptotic behaviour of cross sections in the high energy limit regardless the

strength of the coupling, i.e., independently of perturbation theory.

In accord with Regge theory the scattering amplitude for a two body scattering

of hadrons ( 2 −→ 2 process) ( Fig. 1.2) is given by the functional form[13]

12
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Figure 1.2: A (2 −→ 2) scattering process.

A(s, t) ≈ sα(t). (1.40)

for asymptotically large s, such as s ≫ t. Here s is the center of mass energy,

t = (p1p3)
2, the momentum transfer and α(t) is a function of the momentum transfer

t. Fig. 1.3 represents a typical diagram for the amplitude in Regge theory of the form

Eq.(1.40).

The interactions in Regge theory that gives rise to an amplitude of the form

Eq.(1.40) is successfully described by the exchange of a quasi-particle called Reggeon.

Reggeons, like elementary particles, are characterized by quantum numbers such as

charge, spin, etc. The spin of the Reggeons is a function of the momentum transfer

t, and more specifically their spin is the function α(t) which appears in the equation

for the amplitude Eq.(1.40).

Figure 1.3: An interaction of two particles via the exchange of a Reggeon.

Although Reggeons are not real particles, but there are resonances at (half) integer

spins and correspond to real particles of mass m and spin j, where j = α(m2). By

13
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plotting the square of the masses of various particles versus their spin, as shown in

Fig. 1.4, it is observed that they lie along straight lines. These lines are the Regge

trajectories

α(t) = α(0) + α′t, (1.41)

which correspond to the various quasi-particles in Regge theory. Here the intercept

of the trajectory is α(0) and α′ is the slope.

Figure 1.4: Plot of particle mass squared (in GeV 2) versus spin (in units of ~). It
can be seen that the particles plotted lie along a linear trajectory, data taken from
[17].

By utilising the Regge trajectories, asymptotic s dependence of the differential

cross section can be obtained as

dσ

dt
∝ s2(α(0)+α′t−1), (1.42)

where the singularity in α(t) with the largest real part, known as the leading singular-

ity, determines the asymptotic behaviour of the scattering amplitude. The scattering

amplitude helps in determining the total cross section and in the large s regime, where

s ≫ t, the behaviour of the total cross section is given by

σtot ∝ sσ(0)−1. (1.43)

It is observed that the requirement for the growth of cross section is α(0) > 1,

i.e., the intercept has to be greater than one. However, the exchange which leads

14
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to this growth in cross section can not be from a charged exchange as this would

cause the cross section to vanish asymptotically. Instead the exchange requires to

have the quantum numbers of the vacuum: no charge, no isospin, and a parity of +1.

The experimental results on proton-proton scattering signifies a significant growth of

the total cross section and this behaviour can be well explained by an exchange of a

Reggeon with the trajectory [18]

α(t) = 1.08 + (0.25GeV 2)t. (1.44)

Such an exchange which satisfies this trajectory is known as the Pomeron. More

specifically this is referred to as the “soft” Pomeron to differentiate it from a “hard”

Pomeron. No particle resonances have been observed on the Pomeron trajectory,

however a particle that may lie along this path is proposed to be the glueball [19].

Although these models were seemed to be legitimate as far the early data are con-

cerned, but their predictions show significant deviation from the recent measurements.

With the advent of dedicated experimental facilities, now it is possible to determine

the structure functions as well as different sum rules over a wide range of x and Q2

with far greater precision than before. Recent experimental results are well described

by Quantum Chromodynamics(QCD) and it is believed that QCD is a correct theory

of strong interaction.

1.4 Quantum Chromodynamics

The Quantum Chromodynamics(QCD)(cf. e.g., [7, 20, 21]) is a theory of strong in-

teraction – interactions between hadrons and, in particular, between their inner con-

stituents. The Quark Parton Model(QPM) is based on the idea that DIS scattering

cross sections may be determined from free quarks which are bound within the nucleon

which is an apparent contradiction. Although QPM was very successful at being able

to take parton distribution functions(PDFs) from one scattering process and predict-

ing cross sections for other scattering experiments; it has several difficulties. Firstly

QPM fails to describe accurately the violations of scaling and scale dependence of DIS

cross sections. The fact that partons are strongly bound into colourless states is an ex-

perimental fact, but why they behave as free particles when probed at high momenta

is inexplicable in QPM. The QPM is also unable to account for the total momentum

of the proton via measurements of the momentum sum rule indicating the existence
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of gluon. It is only by including the effects of the gluon and gluon radiation in hard

scattering processes that an accurate description of experimental data can be given.

These developments led to the formulation of Quantum Chromodynamics(QCD).

The successes of QCD in describing the strong interactions are summarized by two

terms: asymptotic freedom and confinement. Asymptotic freedom refers to the weak-

ness of the short distance interaction, while the confinement of quarks follows from its

strength at long distance. It is an extraordinary feature of QCD that it accommodates

both kinds of behaviour. Asymptotic freedom states that, as the distance between

two quarks diminishes so does the effective strength of their interaction; and the par-

ticles become asymptotically free. On the other hand, as the distance between quarks

increases, so does the effective interaction strength. Asymptotic freedom explains the

absence of observed free quarks.

In perturbative QCD(pQCD), calculations are performed by expanding terms in

a perturbation series in the coupling strength αs. This is only valid when αs is small,

i.e., at high Q2 (see Figs.1.5 and 1.6). The calculation of a scattering cross section

in pQCD reduces to summing over the amplitudes of all possible intermediate states.

Each graph is a symbolic representation for a term in the perturbative calculation.

Leading Order(LO) term corresponds to the quark parton model and is considered to

be of order α0
s in the perturbative expansion. LO Feynman diagrams have no gluon

vertices as shown in Fig. 1.5. Next-to-Leading Order (NLO) diagrams add quark-

gluon interactions to this pictures. NLO graphs have one gluon vertex and correspond

to terms of order α1
s in the perturbative expansion. NLO Feynman diagrams for hard

scattering are illustrated in Fig. 1.6. Similarly higher order terms such as NNLO,

NNNLO etc., would correspond to addition of more gluon vertices two, three etc).

The four-momentum is conserved at each vertex. However, including higher order

diagrams, the momentum circulating in the loop is not constrained. The integration

over all momentum space for a loop diagram leads to logarithmic divergences when

momentum goes to infinity. These type of divergences are treated in a systematic way

by the renormalization technique. However the renormalization procedure introduces

an arbitrary parameter µ, which has the dimension of mass.

Any physical observable F must be independent of the choice for µ, therefore we

impose the following condition:

µ2 ∂F

∂µ2
=

(
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

)
= 0. (1.45)
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Figure 1.5: Leading Order splitting functions diagrams.

Hence, any explicit dependence of the physical observable on the renormalization scale

must be cancelled by a proper renormalization scale dependence of αs. The strong

coupling αs is determined by renormalization group equation given by

Q2 ∂αs

∂Q2
= β(αs) = −β0

4π
α2
s(Q

2)− β1

16π2
α3
s(Q

2)− β2

64π3
α2
s(Q

2) +O(α5
s), (1.46)

where the coefficients β0, β1 and β2 depends on the number of active quark flavors nf

and scale Q2 as

β0 = 11− 2

3
nf , (1.47)

β1 = 102− 38

3
nf , (1.48)

and

β2 =
2857

6
− 6673

18
nf +

325

54
n2
f . (1.49)

Expansion of the β-function is carried out to three loops, which corresponds to a

NNLO analysis.
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Figure 1.6: Examples of next-to-leading Order splitting functions diagrams.

The solution to renormalization group Eq.(1.46) provides the scale dependence

of the strong coupling αs, i.e. the “running” of αs. Perturbative QCD predicts the

scale dependence of the strong coupling, but αs at a specific scale is obtained from

experiment. Therefore, αs at a reference scale is a fundamental parameter of the

theory of QCD. Measuring the strong coupling from various experiments at different

characteristic energy scales is an important test of QCD.

Moreover, one can introduce a dimensional parameter, ΛQCD,[22] to provide a

parametrization of the scale dependence of the strong coupling αs. In accordance

with the convention of Ref.[22], ΛQCD is defined by writing the solution of the renor-

malization group equation at LO, NLO and NNLO as[23]:(
α(t)

2π

)
LO

=
2

β0t
, (1.50)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (1.51)

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t− 1) +
β2

β0

]]
,

where, t = Q2

Λ2
QCD

and ΛQCD represents the scale at which perturbative QCD be-

comes strongly coupled, i.e. the scale for which the coupling αs is large and pertur-

bative QCD theory breaks down. The scale is comparable with the masses of the
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Figure 1.7: Schematic representation of the applicability of various QCD evolution
equations across the x−Q2 plane.

light hadrons(≈ 0.5GeV ). In other words, ΛQCD determines the boundary between

quasi-free state of interacting quarks and gluons (weak coupling) and the state where

hadrons are formed (strong coupling).

• QCD Evolution Equations

There exist several QCD evolution equations to obtain the quark and gluon dis-

tribution functions such as the Dokshitzer-Gribov-Lipatov-Alterelli-Parisi(DGLAP)

equation[24], the Balitsky-Kuraev-Fadin-Lipatov(BKFL) equation[25], the Gribov-

Levin-Ryskin(GLR) equation[26] and the Ciafaloni-Catani-Fiorani-Marchesini(CCFM)

equation[27]. In spite of them, some other equations are also proposed like the Modi-

fied DGLAP equation (by Zhu and Ruan)[28], the Modified BKFL or BK[29] equation

(by Balitsky and Kovchegov) and the JIMWLK[30] equation (by Jalilian-Marian,

Iancu, McLerran, Weigert, Leonidov and Kovner) etc., in different kinematical re-

gions. Schematic representation of the applicability of various QCD evolution equa-

tions across the x−Q2 plane is depicted in Fig.1.7. Among these evolution equations,

BFKL or GLR equations are more appealing at small-x, but still the DGLAP evo-

lution equation is used to study various parton distrbution functions as well as the

structure functions because this equation is a simple perturbative tool which is rele-

vant for the presently accessible x−Q2 range of structure functions.

Nucleon structure functions systematically exhibit a Q2-dependence, even at large

Q2. These scaling violations can be described within the framework of the QCD-

improved parton model which incorporates the interaction between quarks and gluons
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in the nucleon in a perturbative way. The scale at which this interaction is resolved is

determined by the momentum transfer. The Q2-dependence of parton distributions,

e.g.

F2(x,Q
2) =

∑
e2ix[qi(x,Q

2) + q̄i(x,Q
2)], (1.52)

xF3(x,Q
2) =

∑
x[qi(x,Q

2)− q̄i(x,Q
2)] (1.53)

and

g1(x,Q
2) =

1

2

∑
e2ix[∆qi(x,Q

2) + ∆q̄i(x,Q
2)] (1.54)

are described by the DGLAP evolution equations. They are different for flavor non-

singlet and singlet distribution functions. Typical examples of non-singlet combina-

tions are the difference of quark and anti-quark distribution functions, or the differ-

ence of up and down quark distributions. The difference of the proton and neutron

structure function, F p
2 −F n

2 , also behaves as a flavor non-singlet, whereas the deuteron

structure function F d
2 is an almost pure flavor singlet combination. For the flavor non-

singlet quark distribution, qNS, and the flavor-singlet quark and gluon distributions,

qS and g, the DGLAP evolution equations read as follows[24]:

dqNS(x,Q2)

d lnQ2
=

α(Q2)

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq(

x

y
), (1.55)

d

d lnQ2

(
qs(x,Q2)

g(x,Q2)

)
=

α(Q2)

2π

∫ 1

x

dy

y

(
Pqq(

x
y
) Pqg(

x
y
)

Pgq(
x
y
) Pgg(

x
y
)

)(
qs(y,Q2)

g(y,Q2)

)
. (1.56)

Here α(Q2) is the running QCD coupling strength. The splitting functions Pij(x/y)

are calculable in perturbative QCD as a power series of αs(Q
2):

Pij(z, αs(Q
2)) = P

(0)
ij (z) +

αs

2π
P

(1)
ij (z) +

(αs

2π

)2
P

(2)
ij (z). (1.57)

Splitting functions are known up to NNLO[31,32]. The splitting functions Pij(
x
y
) give

the probability of parton j with momentum fraction y be resolved as parton i with

momentum fraction x < y. They are calculated perturbatively to a given order in

αs. LO and NLO splitting function diagrams are shown in Figs. 1.5-1.6. Evolution

equations describe the physical picture in which valence quarks are surrounded by a
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cloud of virtual particles which are continuously emitted and absorbed. The quarks

are also emitting and absorbing virtual particles of their own, corresponding to the

branching probability densities. This picture explains why the structure of the hadron

appears to change as it is seen at different distance scales. Thus, at low Q2 there are

fewer partons and their PDFs are skewed to high momentum fractions. At high Q2,

the momentum is shared through the parton branchings, and hence the low x region

is filled with gluons and sea quarks which have a high probability to undergo g → gg,

g → qq̄ branchings. QCD doesn’t predict the PDFs at any scale, rather it predicts

how PDFs evolve with the scale through the evolution equations.

1.5 DIS Sum Rules

The structure functions which parameterize the deeply inelastic scattering cross sec-

tion obey a series of sum rules to which QCD corrections are also available[7,33] and

one may perform QCD tests using these relations. Sum rules are integrals over struc-

ture functions or parton distributions and they are associated with the conservation

law for some quantum number of the nucleon. Parton model sum rules provide infor-

mation about the distribution of quarks inside nucleon and are very useful to reveal

new physics if a sum rule is found to be satisfied or broken. In the following subsec-

tions, we have discussed briefly about some important sum rules along with available

pQCD corrections.

1.5.1 Gottfried Sum Rule

The Gottfried Sum Rule(GSR)[34,35] involves the difference of F2 measured in proton

and neutron targets using a charged lepton. In accord with parton model it is governed

by

SG =

∫ 1

0

F µp
2 − F µn

2

x
dx =

1

3
. (1.58)

There are pQCD corrections to GSR up to 3-loop corrections[35] and it is given by

SG =

∫ 1

0

F µp
2 − F µn

2

x
dx =

1

3

[
1 + 0.0355

αs

π
− 0.811(

αs

π
)2
]
. (1.59)
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1.5.2 Adler Sum Rule

The Adler Sum Rule[36,37] predicts the integrated difference between neutrino-neutron

and neutrino-proton structure functions. It states

SA =

∫ 1

0

F νn
2 − F νp

2

2x
dx = 1. (1.60)

The ASR is exact and receives neither QCD nor mass corrections, but its experi-

mental verification is at a very low level of accuracy[37].

1.5.3 Gross-Llewellyn Smith Sum Rule

The Gross-Llewellyn Smith Sum Rule(GLSSR)[38,39] involves an integration over the

non-singlet neutrino structure function, xF3(x,Q
2), which is obtained by subtracting

the antineutrino differential cross section on an isoscalar target from the corresponding

neutrino cross section. It is the most accurately tested sum rule. The GLSSR predicts

that the number of valence quarks in a nucleon, up to finite Q2 corrections, is three.

In the QPM, the GLS sum rule reads[38]:

SGLS =

∫ 1

0

xF3

x
dx =

1

3
, (1.61)

and pQCD correction to GLS sum rule up to NNLO is given by[39]

SGLS(Q
2) =

∫ 1

0

dx

x
xF3(x,Q

2) = 3

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
. (1.62)

1.5.4 Unpolarized Bjorken Sum Rule

The Unpolarized Bjorken Sum Rule(UBSR)[40] refers to the integrated difference

between neutrino-neutron and neutrino-proton charged current structure functions

F1.

SBj =

∫ 1

0

F νn
1 − F νp

1

d
x = 1. (1.63)

It has three loop pQCD correction, which predicts[41]

SBj =

∫ 1

0

F νn
1 − F νp

1

d
x =

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
. (1.64)
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1.5.5 Polarized Bjorken Sum Rule

Polarised Bjorken Sum Rule(BSR)[42] relates the difference of proton and neutron

structure functions integrated over all possible values of Bjorken variable, x to the

nucleon axial charge gA as

SBSR =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6
. (1.65)

However, away from Q2 → ∞, the polarized BSR is given by a series in powers of the

strong coupling constant αs(Q
2)[43]:

SBSR(Q
2) =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6

[
1− αs

π
− 3.583(

αs

π
)2

−20.215(
αs

π
)3 + .........

]
. (1.66)

Here the BSR consists of pQCD results up to third order of αs(Q
2). BSR is associated

with the conservation of polarised isospin.

1.5.6 Gerasimov-Drell-Hearn Sum Rule

Gerasimov-Drell-Hearn Sum Rule(GDHSR)[44] is given by the first moment of the

polarized structure function gp,n1 (x,Q2 in the form

SGDHSR(Q
2) = 2

M2

Q2

∫ x0

0

dxgp,n1 (x,Q2) =

{ −1
4
µ2
p,n, Q2 → 0

2M2

Q2 Γp,n
1 , Q2 → 0

. (1.67)

at proton and neutron targets, with x0 = Q2/(2Mmπ +m2
π +Q2), µp,n the anomalous

magnetic moment of the proton or nucleon, and Γ1 the first moment of the structure

function g1 at infinite space-like momentum transfer. This sum-rule has a very strong

Q2-evolution for low values of the virtuality. In case of proton targets it changes sign

between Q2 = 0 and Q2 ≈ 1GeV 2.

In addition to these there are several important sum rules such as Burkhardt-

Cottingham sum rule[45], Efremove-Teryaev-Leader sum rule[46], Ellis-Jaffe sum rule[47],

etc., however in this thesis we have concentrated on GSR, GLSSR and BSR, which are

associated with the non-singlet structure functions FNS
2 , xF3 and gNS

1 respectively.

The determination of these sum rules are provided in chapter 7.
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1.6 Non-Perturbative QCD Effects

At low Q2, the strong coupling constant becomes large and the perturbative calcula-

tions fail. In this non-perturbative region the assumption of scattering from massless,

point-like, quarks is no longer valid. Also, the resolving power is not large enough to

probe a single quark scattering. To obtain high interaction rates, lepton DIS experi-

ments use heavy targets. Therefore, nuclear effects must be considered as well. These

non-perturbative effects are discussed in the following subsections.

1.6.1 Target Mass Correction

At low Q2 and high x, one can not neglect the effects of the target mass. The

meaning of x as the fraction of the nucleons momentum carried by the struck quark is

not suitable when Q2 ≈ M2. A “target mass” correction must be applied to account

for these effects. The target mass correction (TMC) to the structure functions have

been first determined in [48]. More recently, new derivations were performed in [49]

which lead to the following relations:

F TM
2 (x,Q2) =

x2

ξ2
F

(0)
2 (x,Q2)

k3
+

6M2
px

3

Q2k4

∫ 1

ξ

F
(0)
2 (u,Q2)

u2
du

+
12M4

px
4

Q4k5

∫ 1

ξ

du

∫ 1

u

F
(0)
2 (v,Q2)

v2
dv, (1.68)

F TM
3 (x,Q2) =

x

ξ

F
(0)
3 (x,Q2)

k2
+

2M2
px

2

Q2k3

∫ 1

ξ

F
(0)
3 (u,Q2)

u
du (1.69)

with ξ and k are defined as

k =

√
1 +

4x2M2
p

Q2
, (1.70)

and

ξ =
2x

1 + k
(1.71)

respectively.
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Figure 1.8: The contribution from target mass corrections(TMC) to FNS
2 struc-

ture function. Figure is taken from[50].

The target mass effects are large at high x and low Q2. Fig. 1.8 shows the size

of the the TMC, as obtained in Ref. [50] for FNS
2 (x,Q2) structure functions along

with QCD prediction as a function of x. As our kinematical region of consideration

is within low-x and low-Q2 region in our thesis we have neglected the effects of TMC.

1.6.2 Higher Twist

The Operator Product Expansion(OPE)[51] is a common theoretical framework in

analyses of deep inelastic scattering(DIS) in QCD. The operators can be ordered

according to their twist yielding the series in 1
Q2 for physical observable. For example,

for the structure function Fi, this reads

Fi(x,Q
2) = FLT

i (x,Q2) +
hi(x)

Q2
. (1.72)

The first term in this expansion (the leading twist, LT) dominates at sufficiently large
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Figure 1.9: Examples of higher twist QCD diagrams.

momentum transfer Q2 and invariant mass W 2 = M2 + Q2(1−x)
x

. The LT structure

functions are constructed in terms of parton distribution functions (PDFs), which

are universal for charged lepton and neutrino scattering and have clear probabilistic

interpretation. An accurate knowledge of these plays a key role in the extraction of

possible contributions of new physics at new collider energies, non-accelerator physics

(cosmic neutrinos) and, as observed more recently, in the interpretation of forthcoming

high precision experiments on neutrino oscillation.

The higher-twist terms include interactions with other quarks, as shown in Fig.

1.9. Since target mass effects also involve powers of 1
Q2 , they are referred to as “Kine-

matic higher-twist” effects. The scattering involving a conglomerate of quarks pro-

cesses are referred to as “Dynamical higher-twist”. These effects are important at low

Q2 and high x. The higher-twist contributions are calculated using phenomenologi-

cal approaches. However, our analysis uses data in the kinematic range where these

effects are negligible. Therefore, only kinematical higher-twist (not the dynamical

higher twist) effects are studied.

1.7 Nuclear Effects

Although the primary aim of the DIS experiments is to explore the structure of

nucleon, DIS data is collected usually for nuclear targets. The use of nuclei instead of

nucleon serve a dual purpose in the studies of in high-energy scattering experiments.

Firstly, nuclear DIS provides unique possibilities to study the space-time development

of strongly interacting systems and it can provide valuable insights into the origin of

nuclear force and properties of hadrons in nuclear medium. Secondly, the nuclear data

often serve as the source of information on hadrons otherwise not directly accessible

(e.g., extraction of the neutron structure function which is usually obtained from
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deuterium and proton data). Moreover, in experiments with nucleon targets the

products of the scattering processes can only be observed by a detector that is far

away from the collision point, whereas a nuclear target can serve as a detector located

at the place where the microscopic interaction takes place. Consequently, with nuclei

one can study coherence effects in QCD which are not accessible in DIS off nucleons.

When considering DIS on a nuclear target one may expect that the resulting

nuclear structure functions were very similar to those measured off a nucleon target.

This is so because the nucleons are very loosely tighted inside a nucleus, and the inter-

action between the external probe, the virtual photon, and the constituent nucleons

could be expected to be incoherent.

However, in 1982, the European Muon Collaboration(EMC)[52] reported that the

ratio

R(x,Q2) =
FA
2 (x,Q2)

FN
2 (x,Q2)

, (1.73)

where FA
2 and FN

2 are the nuclear and nucleon structure functions respectively, is in

general, different from one. The observed difference between the nuclear structure

function and that corresponding to the simple addition of its constituent nucleons is

commonly referred to as the EMC effect[53] and that was the first clear evidence for

the nuclear effect in nuclear structure functions. In fact, the EMC effect states that,

in the parton point of view, quark distributions in bound nucleon are different from

those in free nucleon.

Whether there is enhancement or suppression of the nuclear structure functions

with respect to those of the nucleon depends on the kinematical region of interest[53–

55]. The general Bjorken-x dependence of such modification is as follows(see Fig.

1.10):

1. The ratio R is smaller than unity within the region x < 0.01. This region is

known as shadowing.

2. Within 0.1 ≤ x ≤ 0.25 ∼ 0.3 the ratio R is larger than unity. This region is

called anti-shadowing.

3. Within 0.25 ∼ 0.3 ≤ x ≤ 0.8, R is smaller than unity and this region is known

as the EMC region.

27



Chapter 1 Introduction

Figure 1.10: x dependence of the ratio RA
F2
(x,Q2) for a given fixed Q2.

4. x ≥ 0.8, R is greater than unity and this region is known as Fermi motion

region.

The nuclear effects are large at low and high x, but are observed to be independent

of Q2. However, there are new theoretical treatments that consider a Q2 dependent

nuclear target corrections at low x[57, 227]. Recent results from NuTeV hint that

neutrino experiments might favor smaller nuclear effects than the charged lepton

experiments[58] at high x, but this thesis does not take into account Q2 dependent

nuclear corrections. We can interpret our extracted PDFs from QCD fits as effective

nuclear PDFs, which have the nuclear effects absorbed into them. These nuclear

effects are discussed in detailed in chapter 8. ��
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Chapter 2

Overview of DIS Experiments and
Parameterizations

This chapter provides a general overview about the lepton deep inelastic scattering

measurements which have enriched our phenomenological analysis performed in this

thesis. Specifically the experimental results for non-singlet structure functions and

associated sum rules for both polarized and unpolarized cases measured in electron,

muon and neutrino DIS are reviewed. In addition, several parametrization associated

with the determination of non-singlet structure functions are discussed.

2.1 Introduction

Particle Physics is a subject that can only thrive when there is a coherent interplay

between theory and experiment. New theoretical ideas lead to predictions that can be

tested experimentally, and new experimental findings challenge theorists to develop

better ideas. Phenomenology is research on this boundary between theory and exper-

iment. It is concerned with exploration of interesting physical observables, making

theoretical predictions for them and then confronting experimental data gathered at

the major international experimental laboratories. The primary goal of phenomenol-

ogy is to find experimental evidences for new physics and to develop new theories that

describe the Universe at a more fundamental level than our current theories can.

The work presented in this thesis is basically a phenomenological analysis of the

non-singlet structure functions and the sum rules associated with them, along with

higher order perturbative QCD and non-perturbative effects. This phenomenological

analysis is enriched by several experimental results, along with a large numbers of
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Experiment Beam Target x Q2 Energy Ref.
(GeV 2) (GeV)

NMC µ p, d 0.008 - 0.5 0.8 - 65 90, 120 [63]
200, 280

CCFR νµ(ν̄µ) Fe 0.015 - 0.65 1.2 - 126 30 - 500 [66]
NuTeV νµ(ν̄µ) Fe 0.015 - 0.75 1.2 - 125 30 - 360 [68]
CHORUS νµ(ν̄µ) Pb 0.02 - 0.65 0.3 - 82 30 - 360 [70]
SLAC(E143) e− NH3, ND3 0.03 - 0.5 1 - 10 ≤ 28 [75]
SMC µ+ H/D-butanol 0.004 - 0.5 1 - 60 100, 190 [74]

NH3

HERMES e−,e+ H, D, 3He 0.02 - 0.7 1 - 15 27.5 [73]
COMPASS µ+ NH3,

6LiD 0.003 - 0.6 1 - 70 160 [71]
JLAB e− 3He 0.1 - 0.6 1 - 2.5 6 [72]
(Hall A)
JLAB e− NH3, ND3 0.05-0.6 1 - 5 ≤ 6 [95]
(Hall B)

Table 2.1: Table of datasets used in the phenomenological analysis of this thesis.
The kinematic range of each measurement in x and Q2 and the incident beam
energy are also given.

parameterizations. A brief description of different experiments and parameterizations,

their results for non-singlet structure functions and associated sum rules is given in

this chapter.

2.2 DIS Experiments and Results

Many successful experimental programs of both unpolarized and Polarized deep inelas-

tic lepton scattering experiments have been carried out at SLAC, CERN, Fermilab,

DESY and Jefferson Laboratory(JLab)(See for more details [59–62]) in order to eluci-

date the internal structure of the nucleon. With the advent of dedicated experimental

facilities, recent experiments were able to determine the structure functions as well as

different sum rules over a wide range of x and Q2 with ever increasing precision.

We have summarized different DIS experiments that have probed the nucleon

structure in Table 2.1 along with the x, Q2 ranges and beam energies of the mea-

surements. However, as our works deal with the non-singlet structure functions and

the kinematical region of our consideration is x ≤ 0.05 and 1.3 ≤ Q2 ≤ 20, we

shall restrict our discussion on the following unpolarized DIS experiments: NMC[63–

65], CCFR[66,67], NuTeV[68], CDHSW[69] and CHORUS[70] experiments which are
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Figure 2.1: Schematic diagram of the NMC spectrometer.

associated with the measurements of the non-singlet structure functions FNS
2 and

xF3 and the sum rules Gottfried Sum rule(GSR)[34, 35] and Gross-Llewellyn Smith

Sum Rule(GLSSR)[38,39] and polarized experiments: COMPASS[71], HERMES[73],

SMC[74], E143[75] and JLab experiments[76–78], which are associated with the mea-

surements of non-singlet spin structure function gNS
1 and the Bjorken Sum rule[42,43],

associated with gNS
1 .

2.2.1 NMC

The New Muon Collaboration(NMC) was constructed at CERN to study DIS using

muon beams on proton and deuterium targets. It was an extension and improve-

ment of the European Muon Collaboration(EMC) experiment. Aiming towards better

measurements of nuclear effects in DIS, particularly the EMC effect, the NMC was

designed. It has also designed to have accurate data on the structure functions F p
2

and F d
2 and to measure structure function ratios with high precision.

A schematic diagram of the NMC apparatus is shown in Fig. 2.1[79]. It is consisted

of an upstream beam momentum station(BMS) and hodoscopes, a downstream beam

calibration spectrometer(BCS), a target region and a muon spectrometer. The muon

beam ran at beam energies of 90, 120, 200, and 280 GeV and illuminated two target

cells containing liquid hydrogen and liquid deuterium placed in series along the beam

axis. Since the spectrometer acceptance was very different for both targets they were

regularly alternated. The muon spectrometer was surrounded by several MWPCs

and drift chambers to allow a full reconstruction of the interaction vertex and the

scattered muon trajectory. Muons were identified using drift chambers placed behind

a thick iron absorber.
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Figure 2.2: NMCmeasurements[63] of FNS
2 structure function along with BCDMS

data. (Fig. taken from [80].)

The experiment published measurements of the proton and deuteron differential

cross sections d2/dxdQ2 in the region 0.008 < x < 0.5 and 0.8 < Q2 < 65GeV 2, from

which the structure functions F p
2 and F d

2 were extracted[63]. The NMC data consist

of four data sets for the proton and the deuteron structure functions corresponding to

beam energies of 90 GeV, 120 GeV, 200 GeV, and 280 GeV. They cover the kinematic

range 0.002 ≤ x ≤ 0.60 and 0.5GeV 2 ≤ Q2 ≤ 75GeV 2.

In 1992 NMC published the first data on the Gottfried sum rule[64]. The initial

NMC measurement indicated a violation of this assumption of a flavour symmetric

sea. This was verified by the final NMC analysis[65] in which the Gottfried sum was

determined to be 0.2350.026 at Q2 = 4GeV 2, which implies that
∫
dx(d̄− ū) ∼ 0.15,

indicating a significant excess of d̄ over ū.

The experimental results for the non-singlet structure function, FNS
2 extracted

from NMC measurements are taken from Ref. [63] and the results obtained in [63]

are presented in Fig.2.2. Further the GSR results obtained in [65] are shown in Fig.

2.3.
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Figure 2.3: NMC measurements of Gottfried sum rule[65].

Figure 2.4: Schematic diagram of the CCFR Dtector.

2.2.2 CCFR

The Chicago-Columbia-Fermilab-Rochester detector (CCFR) was constructed at the

Fermi National laboratory, Fermilab to study DIS in neutrino induced lepton beams

on an almost isoscalar iron target.

The CCFR detector, shown in Fig. 2.4 uses a wide-band mixed neutrino (νµ)

and antineutrino(ν̄µ) beam with energies up to 600 GeV. The CCFR detector which

was used to observe neutrino interactions consists of an iron based target-calorimeter

instrumented with both scintillators and drift chambers and a toroid muon spectrom-

eter. The neutrino DIS data were collected in two high energy high statistics runs,

E744 and E770 in Fermilab By CCFR collaboration.
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Figure 2.5: CCFR measurements of xF3 structure function[66].

The non-singlet structure function, xF3 extracted from the CCFR data is shown

in Fig. 2.5. They are with very small systematic errors(which is shown by the corre-

sponding error bars in the Fig. 2.5). In Figs. 2.6 and 2.7, the results for GLS sum rule

obtained by CCFR collaboration[67] are shown. In order to perform phenomenologi-

cal analysis in this thesis we have used these results for both xF3 structure function

and GLSSR.

2.2.3 NUTEV

NeUtrino experiment at the fermlab TeVatron(NuTeV) is a neutrino-iron DIS exper-

iment(E815) that collected separate high statistics neutrino and antineutrino data

in 1996-97 at Fermilab. NuTeV’s detector(Similar to CCFR, Fig. 2.4)(see [81] for

details) consists of an iron target calorimeter (upstream) and a toroid muon spec-

trometer (downstream). The target calorimeter is an instrumented iron-scintillator

sandwich interspersed with drift chambers. The measured hadronic shower energy

resolution is σE

E
= 0.89√

E

⊕
0.021. The toroid spectrometer is constructed of steel wash-

ers and five drift chambers. Muon energy resolution is limited by multiple Coulomb

scattering to σp

p
= 0.11.
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Figure 2.6: CCFR measurements of GLS sum rule as a function of x[67].

Figure 2.7: CCFR measurements of GLS sum rule as a function of Q2[67]
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Figure 2.8: xF3 structure function measured by NuTeV[68], CCFR[66] and
CDHSW[69].
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Figure 2.9: Schematic diagram of the CHORUS detector.

The NuTeV experiment took data during the 1996-97 fixed-target run at Fermi-

lab. The main goal of NuTeV was the precise determination of sin2ΘW . NuTeV’s

sign selected quadrupole train (SSQT) beamline was designed to select the sign of

the pions and the kaons. The result was high purity separate νµ and ν̄µ beams. Con-

tinuous calibration beam, running concurrently with the neutrino beam, illuminated

the NuTeV detector with muons, electrons and pions. This allowed understanding of

the muon and the hadron energy scales to precisions of 0.43% and 0.7% respectively.

The NuTeV experiment has obtained a unique high statistics sample of neutrino and

anti-neutrino interactions using its high-energy sign-selected beam. This measure-

ment has significantly improved systematic precision as a consequence of more precise

understanding of hadron and muon energy scales.(See [68,81] for more details)

The xF3(x,Q
2) structure function determined from the linear combination of the

neutrino and anti-neutrino differential cross sections measured in NuTeV [68] is shown

in Fig. 2.8 along with previous measurements from CCFR and CDHSW.

2.2.4 CHORUS

The CERN Hybrid Oscillation Research ApparatUS (CHORUS)[82] is an experiment

for differential measurements of neutrino induced Charged Current DIS and to study

the Z/A dependence of the total Charged Current cross section[83].

CHORUSs detector (shown in Fig. 2.9) consisted of two parts (See [82, 84] for

more details): a lead-scintillator-fiber calorimeter used as an active target and a

magnetizediron muon spectrometer. The experiment utilised proton beam from the
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Figure 2.10: CHORUS measurements of xF3 structure function along with CCFR
and CDHSW data.
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Figure 2.11: Schematic diagram of the Spin Muon Collaboration spectrometer.

Super Proton Synchrotron (SPS) with 450GeV/c momentum interact in the target

producing pion and kaons, which are focused by two pulsed toroidal magnets called

horns. The decay of the mesons results in a wide-band neutrino beam, which was

utilised in CHORUS experiment to take data in 1995-1998 using the lead-scintillator

calorimeter as an active target[70].

The results for xF3 structure function extracted from the CHORUS measure-

ment[70] of differential cross sections within the kinematical range 0.02 ≤ x ≤ 0.65

and in the 0.2 ≤ Q2 ≤ 82GeV 2 are shown in Fig. 2.10 along with the results of

CCFR[66] and CDHSW[69] collaborations. We have utilised these results in our phe-

nomenological analysis performed in this thesis.

2.2.5 CDHSW

The CERN-Dortumund-Heidelberg-Saclay-Warsaw (CDHSW) experiment[85,86] mea-

sured the total neutrino cross section using 100-, 160-, and 200-GeV narrow-band

neutrino beams and performed precision electroweak and structure function measure-

ments with a wideband beam during 1982-1984. CDHSW experimental apparatus[85]

consisted of a big iron toroid, interspersed with scintillator to act as a calorimeter,

magnetised and equipped with drift chambers to measure the energy of the scattered

muon in charged current interactions. This experiment used the CERN neutrino beam

in the “wide band” mode which allowed a considerable increase in neutrino intensity

and thus in statistics.

The xF3 structure function data that is used in our analysis are depicted in

Fig. 2.8 and 2.10 along with CCFR, NuTeV and CHORUS data.
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2.2.6 SMC

The Spin Muon Collaboration(SMC) is a third reincarnation of the EMC detector de-

signed to measure the spin-dependent asymmetries of longitudinally polarized muons

scattering from polarized targets. SMC began operation in 1991.

The SMC experimental setup was similar to that used by the EMC collaboration.

It used the same beam as the EMC experiment; the beam optics were improved to

provide a smaller beam spot at the target location. A beam polarimeter, downstream

of the scattered-muon spectrometer, allowed measurement of the beam polarization

either by muon scattering on polarized electrons in a magnetized foil[87] or by mea-

suring the Michel spectrum of positrons from C decay [87,88].

The polarized target design[89] was based on the same principles as the EMC

target. It consists of two 60cm-long cylindric target cells separated by a 30cm gap.

For most of the data taking solid butanol and deuterated butanol, respectively, were

used as target material; however solid ammonia was used for the last data-taking

period in 1996.

The SMC spectrometer (see Fig. 2.11) is based on a conventional wide-aperture

dipole magnet operated with a bending power of 4.4 Tm at a beam energy of 190 GeV.

A large array of multiwire proportional chambers installed before, inside, and behind

the magnet is utilised to measure the scattered muons and in a 2m-thick iron absorber

the debris of hadrons produced in deep inelastic interactions is stopped. In addition

another spectrometer consisting of multiwire proportional chambers, streamer tubes,

and drift tubes is used in order to identify the scattered muons by observing tracks.

The muon trigger is provided by predefined coincidence patterns between three arrays

of plastic scintillation counters, two of which are installed behind the hadron absorber.

SMC measurements for gNS
1 and BSR are shown in Figs. 2.13 and 2.14 respectively

along with other measurements.

2.2.7 COMPASS

COMPASS[90] is a dedicated polarized deep inelastic muon-scattering experiment

installed at CERN SPS and uses a 160−200GeV longitudinally polarized muon beam

with a polarization of about 80% and an intensity of 2× 108 + /spill. The polarized

deuteron (6LiD) target consists of an upstream and a downstream cell with opposite

polarization. The particles produced in the interaction are detected behind the target

in a two-stage spectrometer with high momentum resolution and high rate capability.
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Figure 2.12: Schematic diagram of the COMPASS spectrometer.

1E-4 1E-3 0.01 0.1

0.00

0.02

0.04

0.06

0.08

0.10

 

 

--

x

xg
N
S

1
(x
,Q

2 )

 SMC (Low x - Low Q2)
 HERMES2006
 COMPASS2009
 SMC
 E143

Figure 2.13: Spin-dependent non-singlet structure function xgNS
1 , measured by

various experimental collaborations.
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Figure 2.14: Experimental results for Bjorken Sum Rule.(Q2’s are taken in the
unit of GeV 2).

COMPASS took data from 2002 to 2004, accumulating an integrated luminosity of

∼ 4.6fb−1.

The results taken from [71] for spin dependent non-singlet structure function gNS
1

and the corresponding Bjorken Sum Rule(BSR) are shown in Figs. 2.13 and 2.14

respectively along with other measurements.

2.2.8 HERMES

The HERMES experiment[91] at DESY was designed to the disentangle the contri-

butions from the different quark flavours to the nucleons spin in semi inclusive deep

inelastic scattering reactions. In such reactions, hadrons are detected in coincidence

with the scattered lepton. The flavour of the quark probed in the scattering process

can be deduced from the charge and the type of the observed hadron in a statistical

analysis. The HERMES experiment employed an innovative technique for the polar-

ized target, which is very different from all other polarized DIS experiments. Gas

targets of pure nuclear-polarized atoms of hydrogen or deuterium were used, which

permit essentially background-free measurements from highly polarized nucleons with
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Figure 2.15: Schematic diagram of the HERMES spectrometer.

little or no dilution of the signal from unpolarized nucleons in the target. This choice

eliminates one of the main systematic sources in polarized DIS, the uncertainty in the

determination of the dilution factor.

The spectrometer (Fig. 2.15) consists of a large magnet followed by a detector

package. The magnet bends charged particles produced in the interactions at the

target, and the detectors are used for particle identification and momentum deter-

mination. The detector package in HERMES relies on a threshold Cerenkov counter

and transition radiation detector for particle identification and tracking chambers with

a rear lead-glass calorimeter for momentum and energy determination. Recently, a

Cerenkov ring imaging detector has been installed at HERMES to tag hadrons and, in

particular, kaons produced in the DIS interactions. The beam operates in a continuous

mode, so it is straightforward to tag final state particles for studies of semi-inclusive

scattering. The strength of the HERMES program lies in its clean identification of

the interaction and complete event reconstruction using pure polarized gas targets.

HERMES measurements of gNS
1 and BSR, which are used in our analysis are

included in Fig.2.13 and 2.14.

2.2.9 JLab Experiments

Thomas Jefferson National Accelerator Facility(TJNAF), commonly called Jafferson

Lab or JLab, is a U.S. National laboratory located in Virginia. The experiments

at Jefferson Lab utilized the highest polarization electron beams (85%) with energy

ranging from 0.8 GeV close to 6 GeV. The technologies of polarizing beam and target
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follow those pioneered and further developed at SLAC. The beam was provided by the

Continuous Electron Beam Accelerator Facility (CEBAF)[92], which used polarized

electron guns based on a “superlattice of a thin gallium arsenide (GaAs) layer on top

of GaAs-phosphide bulk matter illuminated by circularly polarized photons from high

intensity lasers [93]. Subsequently, the polarized electrons passed up to five times the

two linear accelerators based on superconducting radio frequency technology and con-

nected by two recirculation arcs. The spin direction of the electrons was manipulated

using the crossed electric and magnetic fields of Wien filters, which allow for rapid

spin rotation. Their direction was inverted every about 30 ms. Beam polarimetry was

employed at several stages of the acceleration process. CEBAF delivered polarized

beams simultaneously to the three experimental halls (Hall A, B and C) with the op-

tion to independently dial the energy and intensity. Typical beam intensities ranged

from a few nA in Hall B to over 100A in the other two halls[94].

Longitudinal polarized solid state ammonia (NH3) targets for the proton and ND3

for the deuteron were employed at Hall B[95]. Hall A used a polarized 3He target.

The target polarization was measured by both the NMR technique of adiabatic fast

passage and a technique based on electron paramagnetic resonance[96]. Average target

polarizations of about 55% were obtained. Hall A and C were both instrumented

with small acceptance but high resolution spectrometers that could cope with the

highest beam intensities but measured at fixed scattering angles. These spectrometers

are equipped for high resolution tracking, precise time-of-flight measurements and

lepton/hadron separation[97].

JLab measurements of BSR we have used in the phenomenological analysis of our

BSR results are depicted in Fig. 2.14 along with other measurements.

2.3 Parameterizations and Results

Parton distribution functions are determined from fits of perturbative QCD calcula-

tions, based on the DGLAP evolution equations, to various sets of experimental data.

These fits are regularly updated to account for new experimental input and theoret-

ical developments. Modern pdf’s extracted from global analyses of data from DIS

and hadronic processes are provided by several groups. For purposes of comparison

in this thesis we present a brief discussion on the parameterizations MRST[104–106]

and MSTW[107], CTEQ[98], GRV[99,100]and NNPDF[101–103].
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2.3.1 MRST and MSTW2008

Martin-Roberts-Stirling-Thorne(MRST)[104–106] parametrization has the following

functional behaviour

xf(x,Q2
0) = A0x

α(1− x)β(1 + δxγ + ηx), (2.1)

parton A0 α β γ δ η
dv(x,Q

2) 0.040 0.27 3.88 52.73 0.5 30.65
dv(x,Q

2 0.158 0.25 3.33 5.61 0.5 55.49

Table 2.2: Parameters characterizing the MRST2001[104] NLO parton
distribution functions at Q2

0 = 1GeV 2 defined by Eq. (2.1).

and the Parameters characterizing the MRST2001 NLO parton distribution functions

at Q2
0 = 1GeV 2 are listed in Table 2.3. With this parametrization, they have been

predicting the parton distribution functions including several data set from H1, Zeus,

BCDMS, SLAC, FNAL E665, CCFR, Drell-Yan etc., since 2002. MRST2002[104]

and MRST2003[105] were improved in MRST2004[106] by including the new HERA

data at moderate values of x and high Q2. Also in MRST2004, full NNLO splitting

functions were used. Recently published MSTW[107] parametrization represents an

update of MRST. This update has a number of new theoretical features aimed at

the NNLO parametrization; e.g., NNLO corrections to the Drell-Yan data. This

parametrization also includes NuTeV and CHORUS data, the CDFII data, HERA

inclusive jet data as well as direct high-x data on the FL structure function.

2.3.2 CTEQ

The most recent parametrizations from the Coordinated Theoretical-Experimental

Project on QCD (CTEQ) is the CTEQ6 series[98]. CTEQ uses the following functional

form of the distribution functions,

xf(x,Q2
0) = A0x

A1(1− x)A2eA3x(1 + eA4x)A5 , (2.2)

and the Parameters characterizing the CTEQ6M NLO parton distribution functions

at Q2
0 = 1.69GeV 2 are listed in Table 2.3. With this parametrization, they have been

predicting different parton distribution functions. The CTEQ collaboration omits
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parton A0 A0 β γ δ η
dv(x,Q

2
0) 1.4473 0.616 4.9670 -0.8408 0.4031 3.00

uv(x,Q
2
0) 1.7199 0.5526 2.9009 -2.3502 1.6123 1.5917

g(x,Q2
0) 30.4571 0.5100 2.3823 4.3945 2.355 -3.000

(ū+ d̄)(x,Q2
0) 0.0616 -0.2990 7.7170 -0.5283 4.7539 0.6137

s(x,Q2
0) = s̄(x,Q2

0) 0.0123 -0.2990 7.7170 -0.5283 4.7539 0.6137

Table 2.3: Parameters characterizing the CTEQ6M parton distribution functions
at Q2

0 = 1.69GeV 2 defined by Eq. (2.2).

data for Q2 ≤ 4GeV 2. In particular, CTEQ6 omits SLAC data as well as some high-

Q2 H1 data. CTEQ uses 10% systematic errors in quadrature with the statistical

errors for the Drell-Yan data in comparison with 5% systematic errors assumed by

MRST2002. CTEQ uses a starting scale of Q2
0 = 1.69GeV 2.

2.3.3 GRV

The Gluck-Reya-Vogt(GRV) parton distribution functions were developed in a series

of publications throughout the 1990s[99,100]. They are dynamical distributions, which

are generated radiatively from valence-like inputs at a low resolution scale. The latest

of this series makes use of the 1994-95 HERA data for Q2 ≥ 2GeV 2 as well as the

SLAC, BCDMS, NMC and E665 data with Q2 ≥ 4GeV 2 and the simply extracted

ratios F n
2 /F

p
2 from the NMC, BCDMS and E665 experiments. This analysis takes into

account the Drell-Yan data and the uv/dv ratios extracted from the CERN CDHSW

and WA21 neutrino data.

The GRV parton distribution functions are parametrized as

xf(x,Q2
0) = A0x

α(1− x)β(1 + δ
√
x+ ηx), (2.3)

parton A0 α β δ η
dv(x,Q

2
0) 0.761 1.48 3.62 -1.8 9.5

uv(x,Q
2
0) 1.239 0.48 2.72 -1.8 9.5

x∆(x,Q2
0) 0.23 0.48 11.3 -12.0 50.9

x(ū+ d̄)(x,Q2
0) 1.52 0.15 9.1 -3.6 7.8

xg(x,Q2
0) = s̄(x,Q2

0) 17.47 1.6 3.8 - -

Table 2.4: Parameters characterizing the GRV98LO parton distribution
functions at Q2

0 = 1.69GeV 2 defined by Eq.(2.3).
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parton A0 α β δ η
dv(x,Q

2
0) 0.394 1.43 4.09 - 18.2

uv(x,Q
2
0) 0.632 0.43 3.09 - 18.2

x∆(x,Q2
0) 0.20 0.43 12.4 -13.3 60.0

x(ū+ d̄)(x,Q2
0) 1.24 0.20 8.5 -2.3 5.7

xg(x,Q2
0) = s̄(x,Q2

0) 20.80 1.6 4.1 - -

Table 2.5: Parameters characterizing the GRV98NLO parton distribution
functions at Q2

0 = 1.69GeV 2 defined by Eq.(2.3).

and the parameters for GRV98LO and GRV98NLO are listed in tables 2.4 and 2.5

respectively. These distributions are characterized by a relatively low starting scale

for evolution: LO, Q0 = 0.5GeV ; and NLO, Q0 = 0.63GeV .

2.3.4 NNPDF

The consideration of a specific parametrization with large number of parameters is

potentially a source of bias, i.e. systematic error which is very difficult to control.

Furthermore, when a parametrization is fitted to the data, it is very hard to obtain

a determination not only of the best fitting parameters, but also of their errors.

Therefore, explorations of the possibility of obtaining accurate solutions of DGLAP

evolution equations without an initial input or with initial input, consisting of less

number of parameters are always interesting. NNPDF method is one of the most

interesting methods which does not require to assume a functional form and it is

largely bias free[101–103]. NNPDF uses neural networks to parameterise the densities.

The formalism is described in [102] and references therein. Neural networks are just

another functional form, that generalises parameterisations like xf(x) =
∑

n αnPn(x)

based on interpolation polynomials Pn(x). They allow non-linear dependencies of the

function on the fitted parameters αn.

The analysis presented in [102] fits the gluon density together with the six den-

sities for light quarks and anti-quarks u, ū, d, d̄, s, s̄. The neural networks chosen

to parameterise these densities have 37 free parameters each. Hence, the resulting

parameterisation has a total of 7 × 37 = 259 free parameters, which is much larger

than the number of free parameters, O(25), which are fitted in QCD analyses based on

a standard functional form like Eq. (2.3). The use of such a flexible parameterisation

scheme considerably reduces any parameterisation bias. ��
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Chapter 3

On the Solution of DGLAP Evolution
Equation

Along with a qualitative analysis of the available methods to solve DGLAP equa-

tion, in this chapter we have allude the usefulness of two Q2 dependent Regge ansatz

in solving DGLAP equation in order to have the small-x behaviour of both the spin

independent and spin dependent non-singlet structure functions. By means of fitting

analysis, we have investigated the compatibility of the two ansatz with the available

experimental data and then studied the possible role played by them in evolving the

non-singlet structure functions in accord with DGLAP equation.

3.1 Introduction

It is widely believed that QCD is the correct theory of strong interaction. In

QCD, the structure functions are governed by a set of integro-differential equations,

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution equations[24]. The

DGLAP equation is a renormalisation group equation for the quarks and gluon inside

hadron. It is one of the fundamental equations of perturbative quantum chromody-

namics (pQCD), being central to all theoretical predictions for lepton-hadron colliders.

The DGLAP evolutions are given in terms of a perturbative expansion of splitting

functions (Pij) which describe the probability of a parent parton i producing a daugh-

ter parton j with momentum fraction z by the emission of a parton with momentum

fraction 1 − z. For the flavor non-singlet (qNS = qi − q̄j), flavor-singlet(qs = qi + q̄i)

and gluon distributions(g), the DGLAP evolution equations read as follows:
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dqNS(x,Q2)

d lnQ2
=

α(Q2)

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq(

x

y
), (3.1)

d

d lnQ2

(
qs(x,Q2)

g(x,Q2)

)
=

α(Q2)

2π

∫ 1

x

dy

y

(
Pqq(

x
y
) Pqg(

x
y
)

Pgq(
x
y
) Pgg(

x
y
)

)(
qs(y,Q2)

g(y,Q2)

)
. (3.2)

Solutions of DGLAP equations give the Q2 evolution of both the parton distribu-

tion functions as well as various structure functions. Although QCD predicts the Q2

dependence of structure functions in accord with the DGLAP equations but they have

limitations on absolute prediction of structure functions. DGLAP equations cannot

predict the initial values from which the evolution starts, they can only predict the

evolution of structure functions with Q2, once an initial distribution is given. Fur-

ther, due to its complicated mathematical structure, an exact analytic determination

of the structure functions is currently out of reach and one needs to apply approx-

imated methods to arrive on predictions from the DGLAP equation. Accordingly

several approximate numerical as well as semi-analytical methods for the solution of

DGLAP equation have been discussed considerably over the past years [108–113]. In

literature there are essentially two main classes of approaches in order to have solutions

of DGLAP equations: those that solve the equation directly in x-space and those that

solve it for Mellin transformations of structure functions and invert the transformation

back to x-space. The approaches based on Mellin transformation method have been

achieved much interest because under Mellin transformation the integro-differential

DGLAP equation turns into a continuum of independent matrix differential equations,

one for each value of moments(N), which in turn makes the evolution more efficient

numerically. However, in this regard as the Mellin transformation of both the splitting

functions and the initial input is required, which may not be possible for all functions,

especially if higher-order corrections are included in the equations, therefore it is not

possible to have exact solution to DGLAP equation in moment space beyond leading

order. In contrast to Mellin space, the x-space method is more flexible, since the

inputs are only required in x-space; however it is generally considered to less efficient

numerically, because of the need to carry out the convolution in DGLAP equations.

Taking into account the advantage of being greater flexibility, despite the difficulty in

obtaining high accuracy, the x-space methods have been serving as the basis of many

widely used programs HOPPET[114], QCDNUM[108], CANDIA[113] etc., and being
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incorporated by the CTEQ[98], MRST/MSTW(see [107] and references therein) col-

laborations. In addition, several numerical and semi-analytical methods have been

developed[21, 100–103,107, 109–113,115, 138] and achieved significant phenomenolog-

ical success.

3.2 Methods of Solution of DGLAP Evolution Equa-

tion

There exist numerous techniques to solve DGLAP equations. Among them most pop-

ular techniques are the Laguerre polynomial method, Mellin transformation method

and Brute force method.

The Laguerre Polynomial method for numerical solution of the DGLAP evolution

equation is based on the expansion of the structure functions and splitting functions

in the basis of orthogonal Laguerre Polynmials[116,117].

In this method, initially an evolution function ENS(x, t) is defined which describes

the evolution of the structure functions from t = 0 to t as

FNS(x, t) =

∫ 1

x

dω

ω
ENS(

x

ω
, t)FNS(ω, t = 0), (3.3)

which satisfies

∂

∂t
ENS(x, t) =

∫ 1

x

dω

ω
PNS(

x

ω
, t)ENS(ω, t = 0). (3.4)

This integro-differential equation has the similar form as the original DGLAP equa-

tion. The advantage of introducing an evolution function is that it should be the delta

function at t = 0: ENS(x, t = 0) = δ(1− x) because of its definition in Eq.(3.3).

Here the functions are expanded in terms of the polynomials: PNS(e
−′x) =∑

n P
n
NSLn(′x) and ENS(e

−′x, t) =
∑

n E
n
NS(t)Ln(x

′), where P n
NS and En

NS(t) are the

expansion coefficients. The coefficient F n for a function F (x) is given by F n =∫ 1

0
Ln(′x)F (x), and it could be calculated analytically for a simple function. If the

two functions on the right-hand side of Eq.(3.4) are expanded, it becomes an inte-

gration of two Laguerre polynomials. Using the formula
∫ x′

0
dω′Ln(x

′ − ω′)Lm(ω
′) =

Ln+m(x
′)− Ln+m+1(x

′) for this integration, we obtain

d

dt
ENS(t) =

n∑
m=0

(P n−m
NS − P n−m−1

NS )Em(t). (3.5)
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At t = 0 all the expansion coefficients are one, as the evolution function is a delta

function. Therefore, the solution of this equation gives a summation of the form:

Em
NS(t) = eP

0
NSt

m∑
k=0

tk

k!
Bk

m, B
K+1
m =

m−1∑
i=k

(Pm−i
NS − Pm−i−1

NS )Bk
i . (3.6)

This recursion relation is calculated with the relations B0
i = 1, B1

i =
∑i

j=1(P
j
NS −

P j−1
NS ) and Bk

0 = Bk
1 = ......... = Bk

k−1 = 0. After all, the evolution is calculated by

simple summation:

FNS(x, t) =
∑
n=0

NLag

n∑
m=0

[
En−m(t)− En−m−1(t)

]
Ln(− lnx)Fm

NS(t = 0). (3.7)

In this way, the integro-differential equation turns into a simple summation of

Laguerre expansion coefficients, so that this method is regarded as a significant and

very efficient numerical method for the numerical solution of the equation. However

the accuracy of this technique is limited and it is quite accurate up to x-values not

smaller than x ≈ 103. on the other hand for small x the convergence of the expansion

decreases. Therefore his method results no longer practical for the solution of DGLAP

equation within smaller-x region.

The Mellin transformation method is one of the popular evolution methods[118].

The reason behind popularity of the method is its ability to resolve the right hand side

of Eq.(3.1) into a simple product of to moments, namely the moments of distribution

function and the moments of splitting functions. In order to have solution in this

way, the moments of both the splitting function and distribution function are required.

Usually, the moments are well known and assuming a simple model for the distribution

functions at certain small Q2 such that its moments can be calculated easily, the

analytical solution of the equation can be obtained in moments space. Furthermore,

the computation time is fairly short. These are the reasons why this method has been

used as a popular method. For example, it is used for the χ2 analysis of experimental

data for obtaining polarized PDFs[119], whereas the brute-force method is employed

in Ref. [120].

The Mellin transformation and inversion are defined by

F̂NS(s, t) =

∫ 1

0

dxxs−1F (x, t), F (x, t) =
1

2πi

∫ c+i∞

c−i∞
dsx−sF̂ (s, t). (3.8)
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The Mellin inversion is a complex integral which consists of an arbitrary real constant

c, which should be chosen such that absolutely convergency is achieved in the integral∫ 1

0
dxF (x)xc−1. Under this transformation, the integro-differential equations become

very simple. For example, the nonsinglet evolution equation becomes

∂

∂t
F̂NS(s, t) = P̂NS(s)F̂NS(s, t). (3.9)

Its solution is simply given by

F̂NS(s, t) = ePNS(s)tF̂NS(s, t = 0). (3.10)

The moments of the distribution function F̂NS(s, t = 0), which is initially considered

at a certain Q2 = Q2
0, can be evaluated and using the well known moments of the

splitting functions P̂NS(s), the solution of Eq.(7.14) can easily be obtained in the

moment space. However, in order to have the distribution in x space, an inverse Mellin

transformation is required. In this regard, one important point to be noted is that, the

numerical Mellin inversion is relatively CPU time consumig, which happen even if the

analytical expressions of the moments of the initial conditions are well known[121].

Moreover, as discussed in [122], since x variable is associated with the invariant energy

W 2 of the virtual photon-hadron scattering process by W 2 = (1x)/x, x → 0 is the

infinite energy limit and thus can never experimentally be reached. As a consequence

of this all moments are plagued by an a priori infinite uncertainty, which can be

reduced by means of assumptions implying that any use of the evolution equations

for moments is model dependent.

The Brute-force method[122,123] is the simplest method in order to have numeri-

cal solution of integro-differential equation. For more complicated equations consisting

of higher twist terms[124], which could not be easily handled by other methods, such

as Mellin transformation as well as Laguerre-polynomial methods, the Brute-force

method is suitable, although it being seemed to be too simple. Furthermore, a com-

puter code is so simple that the possibility of a program mistake is small, which means

the code could be used for checking other numerical methods.

In the brute-force method, the two variables t and x are divided into small steps,

and then the differentiation and integration are defined by

∂FNS(x, t)

∂t
⇒ F (xi, tj+1)− F (xi, tj)

∆tj
,

∫
dxF (x, t) ⇒

Nx∑
k=1

∆xkF (xk, tj), (3.11)
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where ∆tj and ∆xk are the steps at the positions j and k, and they are given by

∆tj = tj+1 − tj and ∆xk = xk − xk−1. The numbers of t and x steps are denoted Nt

and Nx, respectively. Applying these equations to Eq.(3.1), we write the non-singlet

evolution from tj to tj+1 as

FNS(xi, tj+1) = FNS(xi, tj) + ∆tj

Nx∑
k=1

∆xk

xk

Pqq(xi/xk)FNS(xk, tj). (3.12)

If the initial distribution FNS is considered at t1 = 0, the next one FNS(x, t2) can be

determined by the above equation. Proceeding in this way, step by step, upto Nt1

times, the final distribution at tNt can be obtained. However, accuracy of the results

demands a large number of steps Nt and Nx.

In addition to these three, some other numerical as well as semi analytical methods

to solve DGLAP evolution equations are available in literature, such as Matrix ap-

proach method, Taylor expansion method, Regge theory method etc. and predict the

evolution of various structure functions with considerable phenomenological success.

3.3 A Regge Inspired Approach to Solve the DGLAP

Equation

Due to the unavailability of exact analytical way of solving the DGLAP equations, in

current analysis this set of equations are solved numerically by using an initial input

distribution for the structure function at a fixed Q2, in terms of some free param-

eters, the parameters are so adjusted that the parametrization best fit the existing

data. However, the consideration of a specific parametrization with large number of

parameters is potentially a source of bias, i.e. systematic error which is very difficult

to control. Furthermore, when a parametrization is fitted to the data, it is very hard

to obtain a determination not only of the best fitting parameters, but also of their

errors. Therefore, explorations of the possibility of obtaining accurate solutions of

DGLAP evolution equations without an initial input or with initial input, consisting

of less number of parameters are always interesting. Under this motivation, this thesis

is devoted to the exploration of a semi-analytic approach of solving DGLAP equation

for non-singlet structure functions using two Regge inspired model with less number

of parameters. Here particular emphasis is given to the non-singlet structure func-

tions because they are considered as the starting ground for theoretical description
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of DIS structure functions. Besides being interesting in themselves, another signifi-

cant advantage is that QCD analysis by means of non-singlet structure functions is

comparatively technically simpler.

In order to perform a fit, one must start with a particular ansatz for the structure

functions at some reference Q2
0. In most of the existing fitting analysis, including those

in the experimental papers it has been performed by assuming a simple power behavior

based on Regge theory. Regge theory predicts the x dependence of the structure

functions at fixed Q2 and at small x. In Regge theory the x dependency of the

non-singlet structure functions FNS
i , i = 2, 3 (i.e., FNS

i=2 = FNS
2 and FNS

i=3 = xF3 ) are

described with a power law, FNS
i (x) = BNS

i xλNS
i , for fixed Q2[13,59,127,128]. Besides

being x dependency, the structure functions, in accordance with QCD predictions, are

dependent on Q2 also. The Bjorken Scalling violation or the Q2 dependence of the

structure functions is one of the significant predictions of Quantum Chromodynamics

and recent experiments also reveal the evidence of Q2 dependency of the structure

functions even at small-x. Therefore in order to have Q2 behavior of non-singlet

structure functions we have to modify the Regge predictions by incorporating Q2

dependency either to the exponents (λNS
i ) only or to the coefficients (BNS

i ) or both.

Here, we have preferred to investigate the possibility of first two cases i.e., firstly, the

coefficients (BNS
i ) are Q2 dependent with constant exponents and next, the exponents

(λNS
i ) are Q2 dependent with constant coefficients.

3.3.1 Regge Ansatz with Q2 Dependent Coefficient and Con-
stant Intercept

There are many phenomenological models, developed within the Regge approach for

Deep Inelastic Scattering and structure functions. The simple Regge pole exchange

model predicts that, towards smaller values of x the non-singlet unpolarized structure

functions FNS
2 (x,Q2), xF3(x,Q

2) and xg1(x,Q
2) behave as

1

x
FNS
2 (x) = BNS

2 x−λNS
2 , (3.13)

xF3(x) = BNS
3 x.x−λNS

3 (3.14)

and

xgNS
1 (x) = BNS

g x.x−λNS
3 (3.15)
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respectively, with the exponents λNS
i = αA2(0). According to Regge theory, FNS

2 (x),

xF3(x) and xgNS
1 are governed by the A2 Regge trajectory with the intercept αA2(0).

For αA2(0) ≈ 0.5, the behaviors (3.13) and (3.15) are stable and considerable phe-

nomenological success is observed in this regards. As a consequence, the small x

behavior of the unpolarized non-singlet structure functions can be expressed as

FNS
2 (x) = BNS

2 x0.5, (3.16)

xF3(x) = BNS
3 x0.5 (3.17)

and

xgNS
1 (x) = BNS

g x.x0.5. (3.18)

Now, in accordance with QCD, we should expect all the dependence on Q2 to be

in BNS
(i=2,3,g), so that the Regge predictions, (7.13), (7.13) and (3.18) for x dependence

do not change. Therefore, incorporating the Q2 behavior of the structure functions

in terms of the functions BNS
(i=2,3,g)(Q

2), we have the QCD modified Regge like model

for both x as well as Q2 dependent non-singlet structure functions at small x as

FNS
2 (x,Q2) = BNS

2 (Q2)x0.5, (3.19)

xF3(x,Q
2) = BNS

3 (Q2)x0.5 (3.20)

and

xgNS
1 (x) = BNS

g x.x0.5. (3.21)

The non-singlet structure functions in this form does not contain any fitting

parameter. We just need to evaluate the Q2 dependent function Bi(Q
2) and it can be

obtained by means of solving the respective DGLAP evolution equations using these

ansatz as the initial input, which is discussed briefly in the section 3.5 and in detailed

in the chapters 4, 5, and 6.
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3.3.2 Regge Ansatz with Q2 Dependent Intercept and Con-
stant Coefficient

Instead of being constant, there are several predictions on the Q2 dependency of the

Regge intercept. There were predictions [129,130] that the exponent would be larger

at high values of Q2 and these types of predictions were born out from two different

equations of perturbative QCD: the DGLAP equation and BFKL equation. Although

this Regge model seems to legitimate as far the early data are concerned, which were

mostly taken at moderate Q2 (≈ 10GeV 2) and x values of around x ≥ 0.01 but the

recent measurement of FNS
i for available small-x in the interval 0.0001 < x < 0.01 can

be described with a single Regge type exchange FNS
i = Axα, in which the intercept

has a smooth Q2 dependence and varies like xα with −0.5 ≤ α ≤ 0. In the case

of gNS
1 similar behaviour was predicted with valon model[131] and a variation from

−0.13 to −0.3 was obtained within the interval of Q2 from 2GeV 2 to 10GeV 2. On

the other hand, Ref.[132] predicts a behaviour of the type, gNS
1 ≃

(
Q2

x2

)∆NS/2

, with

∆NS = 0.42 in which the asymptotic scaling of gNS
1 depends on only one variable

Q2

x2 . In addition there are several studies on Q2 dependency of the intercepts of the

non-singlet structure functions[133].

In this section we have investigated the possibility of a simple Regge ansatz of

the type FNS
i = Ax−bt with Q2 dependent intercept in order to describe the small-x

behaviour of the structure functions. The underlying idea behind the assumption

of this type of model is as follows: HERA measurements[134, 135] suggest that the

behavior of F2 structure function at low-x is consistent with a dependence F2(x,Q
2) =

Cx−λ(Q2), where the coefficient A is independent of Q2 and the exponent, defined by

λ(Q2) = a ln

(
Q2

Λ2

)
= at, is observed to rise linearly with lnQ2. Here Λ is the QCD cut

off parameter and t = ln

(
Q2

Λ2

)
. Thus we see that the rise of the un-polarized structure

function (F2(x,Q
2)) is much steeper than that predicted by Regge theory and gets

steeper and steeper as Q2 increases. Since this observation it has been the challenging

issue to resolve whether the Regge intercepts for F2(x,Q
2) structure function as well

as it’s non-singlet, singlet and gluon parts, along with the spin structure functions

are Q2 dependent or not. Further, before the observation at HERA, there are several

predictions on the Q2 dependency of the Regge intercept[129,130]. These predictions

as well as experimental observations at HERA motivated us to consider the possibility

that the Regge behaved non-singlet part, 1
x
FNS
2 of F2(x,Q

2) structure function is also
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satisfy a functional behaviour, FNS
2 (x,Q2) = Ax−b ln(Q

2

Λ2 ) = Ax−bt similar to F2(x,Q
2).

Again as the non-singlet structure functions, 1
x
FNS
2 and F3(x, t) and gNS

1 (x, t) are

Regge behaved[131,136], therefore their x dependency will be similar within smaller-

x region. Further, in QCD the Q2 behaviour of these structure functions are governed

by the same DGLAP equation. Therefore the x and Q2 dependency for all the non-

singlet structure functions are similar and in accord with F2, and hence FNS
2 here

we assume that the Q2 dependency of the Regge behaved structure function FNS
i is

dominated only by the intercept and it satisfies a relation of the type

FNS
i (x, t) = Aix

1−bit, (3.22)

where Ai and bi are arbitrary constants, which are to be determined by fitting ex-

pressions with respective available experimental results. Here for simplicity, FNS
i is

defined to represent all of FNS
2 (x, t), xFNS

3 (x, t) and xgNS
1 (x, t) structure functions.

3.4 Fitting Analysis of Our Models

The Regge like ansatz for FNS
i structure functions in the form of Eqs.(3.19-3.21) does

not consists of any parameters to be fitted. It will be seen in the following section

as well as next three chapters that the unknown Q2 dependent coefficient can be

obtained by means of solving the DGLAP equation with the ansatz as the initial

input. However the Regge like ansatz for FNS
i structure function in the form of Eq.

(3.22) consists of two parameters. This parametrization can be expressed in a different

form in terms of only one parameter b by eliminating the parameter A, as A has no

effect on the structure function in our approach, which is done as follows: The value

of the FNS
i structure function at any point (x0, t0) in the (x, t) coordinate system is

given by

FNS
i (x0, t0) = Aix

(1−bit0)
0 . (3.23)

Dividing (3.22) by (3.23) and rearranging a bit we get

FNS
i (x, t) = FNS

i (x0, t0)x
(1−bit)x

−(1−bit0)
0 . (3.24)

This reduced form of the structure function consists of only one fitting parameter,

the parameter bi and a known input point FNS
i (x0, t0), which can be taken from the

available experimental data. If the input point is more accurate and precise, we can
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Input point Value of b χ2

d.o.f
Kinematical region

FNS
2 0.010348± 0.006208 0.118± 0.028 0.85 x < 0.05 and Q2 ≤ 20

xF3 0.3298± 0.02605 0.0744± 0.0136 1.98 x < 0.05 and Q2 ≤ 20
xgNS

1 0.0133075± 0.0.001938 0.0759± 0.0107 1.41 x < 0.05 and Q2 ≤ 20

Table 3.1: Summary of best fitting results for different structure functions.

expect batter fitting. There are not any specific reason in choosing the input point.

Any one of the data points at a certain value of x = x0 and t = t0 can be considered

as the input point. Off course, the sensitivity of different inputs will be different.

However instead of choosing the input point on the basis of their sensitivity, in our

manuscript we have incorporated a suitable condition in determining the input point.

We have considered that particular point from the most recent measurements as the

input point in which experimental errors are minimum. Under this condition we have

selected the points, given in the Table:3.1, for different structure functions as the

initial input point and then fitted the expressions with all the available experimental

data. We have observed that the above parametrization fit best for the values of bi

which are collected in Table. 1 along with the corresponding χ2

d.o.f.
. In this analysis, we

have considered the QCD cut-off parameter λ to be fixed and the considered values

are 0.323 GeV2, 0.337 GeV2 and 0.300 GeV2 for FNS
2 , xF3 and xgNS

1 respectively.

Best fitted results are depicted in Figures 3.1, 3.2 and 3.3 for FNS
2 , xF3 and xgNS

1

respectively along with the available experimental data. In addition, we have shown

the band due to the uncertainty assoiated with input and the fitting parameter b. The

figures reflect a very good consistency between the ansatz and the experimental data.

As far the Figures are concerned, we see that the Regge ansatz Eq.(3.24) (with

Q2 dependent intercept) for the non-singlet structure functions are compatible with

their respective experimental data within kinematical region of our consideration.

3.5 Solution of DGLAP Equation for FNS
i with the

Regge Ansatz

We now investigate how the two analytic ansatz help in solving the DGLAP evolution

equations in order to have the Q2 behavior of non-singlet structure functions. For

simplicity, as an example, here we would like to discuss only the solution of LO

DGLAP equation for FNS
2 structure function. When the two ansatz are introduced

to the LO DGLAP evolution equation (3.1)
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Figure 3.1: Our best fit results of Eq.(3.24) for FNS
2 (x,Q2) structure functions

to NMC[63] results. For clarity, the points are offset by the amount given in
parenthesis.(Q2’s are taken in the unit of GeV 2).
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Figure 3.2: Our best fit results of Eq.(3.24) for xF3(x,Q
2) structure functions

to CCFR[66] results. For clarity, the points are offset by the amount given in
parenthesis. (Q2’s are taken in the unit of GeV 2).
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Figure 3.3: Our best fit results of Eq.(3.24) for xgNS
1 (x,Q2) structure functions

to the experimental data taken from SMC[74], HERMES[73], COMPASS[71] and
E143[75]. Here the results are plotted against x.

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]
, (3.25)

and rearrange a bit, we obtain

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω(−0.5) − 2

}]
FNS
2 (x, t), (3.26)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω(bt−1) − 2

}]
FNS
2 (x, t), (3.27)

which have the form ordinary differential equations

∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x)FNS

i (x, t), (3.28)
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∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x, t)FNS

i (x, t) (3.29)

respectively. These two equations can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
(3.30)

and

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (3.31)

respectively.

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
2 (x, t) in accord with (4.20) is given by

FNS
2 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (3.32)

Again the value of the structure function at x = x0 and t = t0 in accord with (4.26)

is

FNS
2 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (3.33)

Dividing (4.26) by (4.27) and rearranging a bit we obtain the t evolution of FNS
2 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
2 (x0, t0) as

FNS
2 (x0, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (3.34)

Again in accord with our preassumptions (3.19), (3.20) and (3.21), the t depen-

dence of FNS
2 (x, t) at a particular value of x = x0 is given by

FNS
2 (x0, t) = B(Q2)x0.5

0 . (3.35)

Dividing any of (3.19), (3.20) and (3.21) by (4.29), we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)0.5

, (3.36)
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which describes both t and x dependence of FNS
2 (x, t) structure function in terms of

the t dependent function FNS
2 (x0, t).

Now combining (4.28) and (4.30) we obtain the relation,

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (3.37)

which describes both t and x dependence of FNS
2 (x, t) structure function in LO in

terms of the input point FNS
2 (x0, t0).

Proceeding in a similar way, from Eq. (4.37) we can have both t and x dependence

of FNS
2 (x, t) structure function as

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (3.38)

As far the equations (4.31) and (4.49) are concerned, they are the analytic expres-

sions representing both x and Q2 dependence of FNS
2 (x,Q2) structure function jointly,

which are obtained by means of solving the DGLAP equations in LO incorporating

the Regge ansatz, FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt as the initial

inputs respectively. These expressions are consisting of an input point FNS
2 (x0, t0),

which can be taken from the available experimental data. Moreover, the Eq. (4.31)

does not contain any fitting parameter, however the Eq. (4.49) consists of only one

fitting parameter b. Using a suitable input point, FNS
2 (x0, t0) from experimental data,

we can obtain both x and Q2-evolution of FNS
2 (x,Q2) structure function with the best

fitted value of b. The calculation as well as phenomenological studies of un-polarised

and polarised structure functions, FNS
2 , xF3 and xgNS

1 with pQCD corrections upto

NNLO is discussed in detailed in the chapter 4, chapter 5 and chapter 6 respectively.

��

64



Chapter 4

Small-x Behaviour of FNS
2 (x,Q2)

Structure Function

In this chapter I present the full calculation of non-singlet structure function FNS
2 (x,Q2)

by means of solving DGLAP equation with QCD corrections up to next-next-to-leading

order. Using the two ansatz, discussed in the previous chapter, developed by combin-

ing the features of perturbative Quantum Chromodynamics and Regge theory, as the

initial input we have solved the DGLAP equations. The solutions, along with the

ansatz allow us to obtain some analytic expressions which represent the joint Bjorken

x and Q2 dependence of FNS
2 (x,Q2) structure function. The expressions are studied

phenomenologically in comparison with experimental results taken from New Muon

Collaboration (NMC) and the results of NNPDF parameterizations. A great phe-

nomenological success is achieved in this regards, which signifies the capability of the

expressions in describing the small-x behaviour of the non-singlet structure function

and their usefulness in determining the structure functions with a reasonable precision.

4.1 Introduction

The structure function FNS
2 (x,Q2) is the non-singlet part of F2(x,Q

2) structure

function originated in the unpolarized charged lepton DIS and it is given by the

difference of proton and neutron structure functions as FNS
2 = F p

2 − F n
2 [59]. The

non-singlet structure function FNS
2 (x,Q2) provides a very good mean to investigate

QCD as a theory of strong interaction. Besides being interesting in themselves, the
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non-singlet structure functions are not marred by the presence of the sea quark and

gluon densities about which we have very poor information in particular in the small-x

region and hence theoretical analysis by means of them are comparatively technically

simpler. Therefore they are regarded as a starting ground for a theoretical description

of DIS structure functions.

The Gottfried sum rule[34, 35], associated with FNS
2 (x,Q2) is also an important

observable of QCD. The determination of the Gottfried sum rule requires knowledge

of FNS
2 (x,Q2) structure functions over the entire region of x ∈ (0; 1). However,

the experimentally accessible x range for DIS is limited for the available data and

therefore one should extrapolate results to x = 0 and x = 1. The extrapolation to

x → 0, where FNS
2 structure functions grow strongly, is much more important than

the extrapolation to x → 1, where structure functions vanish. Again, it is known that

maximum contribution (about 90%) to the Gottfried sum rule come from the small

x(≤ 0.1) region. Because of the large contribution to the Gottfried sum rule from

small x, the small x region is particularly important. Therefore this chapter is an

attempt to have the small-x behaviour of FNS
2 (x,Q2) structure function by means of

solving the DGLAP equation using the two Regge ansatz discussed in chapter 3 as

the initial input.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation[24]

which describe theQ2 behavior of unpolarised non-singlet structure function FNS
2 (x,Q2)

in perturbative Quantum Chromodynamics (QCD) formalism is given by

∂FNS
2 (x,Q2)

∂lnQ2
=

∫ 1

x

dω

ω
FNS
2 (

x

ω
,Q2)P (ω). (4.1)

Where, P (ω) is the splitting function associated with FNS
2 (x,Q2) structure function,

which is defined up to NNLO by[31]

P (ω) =
α(Q2)

2π
P (0)(ω) +

(α(Q2)

2π

)2
P (1)(ω) +

(α(Q2)

2π

)3
P (2)(ω). (4.2)

Here, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding leading order(LO), next-to-

leading order (NLO) and next-next-to-leading order(NNLO) corrections to the split-

ting functions. Splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],
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(
α(t)

2π

)
LO

=
2

β0t
, (4.3)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (4.4)

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
, (4.5)

where β0 = 11− 2
3
NF , β1 = 102− 38

3
NF and β2 =

2857
6

− 6673
18

NF + 325
54
N2

F are the one-

loop, two-loop and three-loop corrections to the QCD β-function. Here the running

coupling constant is expressed in terms of the variable t, which is defined by t = ln(Q
2

Λ2 ).

Substituting the respective splitting functions along with the corresponding run-

ning coupling constant in (4.1), the DGLAP evolution equations in LO, NLO and

NNLO become

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]
, (4.6)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (4.7)

and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}FNS

2 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (4.8)

respectively. Here Λ is the QCD cut-off parameter and the integral functions are given

by
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I1(x, t) =

∫ 1

x

dω

1− ω

{
1 + ω2

ω
FNS
2

(
x

ω
, t

)
− 2FNS

2 (x, t)

}
, (4.9)

I2(x, t) =

∫ 1

x

dω

ω
P (1)(ω)FNS

2

(
x

ω
, t

)
(4.10)

and

I3(x, t) =

∫ 1

x

dω

ω
P (2)(ω)FNS

2

(
x

ω
, t

)
. (4.11)

The DGLAP equations up to NNLO ((4.6)-(4.8)) can be solved analytically using

the ansatz FNS
2 (x, t) = A(t)x0.5 and FNS

2 (x, t) = Bx(1−at) as the initial inputs and I

have discussed bellow in detailed.

4.2 Solution of DGLAP Evolution Equations with

the Initial Input FNS
2 (x, t) = A(t)x0.5

On substitution of

FNS
2 (x, t) = FNS

2 (x, t) = A(t)x0.5 (4.12)

and hence

FNS
2 (

x

ω
, t) = FNS

2 (
x

ω
, t) = A(t)x0.5ω−0.5 = FNS

2 (x, t)ω−0.5 (4.13)

in the equations (4.6), (4.7) and (4.8), we obatin

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
FNS
2 (x, t), (4.14)

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5FNS

2 (x, t) (4.15)
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and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5)FNS

2 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω−0.5FNS

2 (x, t)(4.16)

respectively. These equations can be rearranged to have three ordinary differential

equations in terms of FNS
2 (x, t),

∂FNS
2 (x, t)

∂t
=

α(t)

2π
U(x)FNS

2 (x, t), (4.17)

∂FNS
2 (x, t)

∂t
=

[(
α(t)

2π

)
NLO

U(x) +

(
α(t)

2π

)2

NLO

V (x)

]
FNS
2 (x, t), (4.18)

and

∂FNS
2 (x, t)

∂t
=

[(
α(t)

2π

)
NNLO

U(x) +

(
α(t)

2π

)2

NNLO

V (x)

+

(
α(t)

2π

)3

NNLO

W (x)

]
FNS
2 (x, t) (4.19)

which can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
, (4.20)

FNS
2 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[
U(x)

∫ (
α(t)

2π

)
NLO

dt+ V (x)

∫ (
α(t)

2π

)2

NLO

dt

]
, (4.21)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[
U(x)

∫ (
α(t)

2π

)
NNLO

dt+ V (x)

∫ (
α(t)

2π

)2

NNLO

dt

+W (x)

∫ (
α(t)

2π

)3

NNLO

dt

]
.(4.22)
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respectively. Here,

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
, (4.23)

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5, (4.24)

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5, (4.25)

and C1, C2, C3 are the constants originated due to integration .

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
2 (x, t) in LO is given by

FNS
2 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (4.26)

Again the value of the structure function at x = x0 and t = t0 in accord with (4.26)

is

FNS
2 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (4.27)

Dividing (4.26) by (4.27) and rearranging a bit we obtain the t evolution of FNS
2 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
2 (x0, t0) as

FNS
2 (x0, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (4.28)

Again in accord with our preassumption (4.12), the t dependence of FNS
2 (x, t) at

a particular value of x = x0 is given by

FNS
2 (x0, t) = A(t)x0.5

0 . (4.29)

Dividing (4.12) by (4.29), we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)0.5

, (4.30)

which describes both t and x dependence of FNS
2 (x, t) structure function in terms of

the t dependent function FNS
2 (x0, t).

Now combining (4.28) and (4.30) we obtain the relation,
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FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (4.31)

which describes both t and x dependence of FNS
2 (x, t) structure function in LO in

terms of the input point FNS
2 (x0, t0).

Proceeding in the similar way we can obtain the expressions representing both x

and t dependence of FNS
2 (x, t) structure function in terms of an input point FNS

2 (x0, t0)

in NLO and NNLO as

FNS
2 (x, t)

∣∣∣∣∣
NLO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(4.32)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= FNS
2 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(4.33)

respectively.

4.3 Solution of DGLAP Evolution Equations with

the Initial Input FNS
2 (x, t) = Bx(1−bt)

Now considering the ansatz, FNS
2 (x, t) = Bx(1−bt) as the initial input we obtain the

DGLAP equations in LO, NLO and NNLO as

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t), (4.34)
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∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

2 (x, t) (4.35)

and

∂FNS
2 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
2 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

2 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1)FNS

2 (x, t)(4.36)

respectively, which can be easily solved to have

FNS
2 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (4.37)

FNS
2 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[∫ (
α(t)

2π

)
NLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NLO

V (x, t)dt

]
.(4.38)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[∫ (
α(t)

2π

)
NNLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NNLO

V (x, t)dt

+

∫ (
α(t)

2π

)3

NNLO

W (x, t)dt

]
.(4.39)

respectively. Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1) − 2

}
, (4.40)

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1), (4.41)
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W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1) (4.42)

and C1, C2 and C3 are the constants originated due to integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is given

by

FNS
2 (x0, t) = C1 exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (4.43)

Again the value of the structure function at x = x0 and t = t0 in accord with

(4.43) is given by

FNS
2 (x0, t0) = C1 exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (4.44)

Dividing (4.43) by (4.44) and rearranging a bit we obtain the t dependence of FNS
2 (x, t)

in accord with LO DGLAP evolution equation with respect to the point FNS
2 (x0, t0)

as

FNS
2 (x0, t) = FNS

2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (4.45)

Again, as both t and x dependence of FNS
2 (x, t) is assumed to satisfy

FNS
2 (x, t) = B.x(1−bt) (4.46)

relation, and at any fixed x = x0 we have

FNS
2 (x0, t) = B.x

(1−bt)
0 , (4.47)

which represents the t dependence of the structure function at any fixed value of

x = x0. Dividing (4.46) by (4.47) we have the following relation

FNS
2 (x, t) = FNS

2 (x0, t)

(
x

x0

)(1−bt)

, (4.48)

which gives both t and x dependence of FNS
2 (x, t) structure function in terms of the

t dependent function FNS
2 (x0, t) at fixed x = x0.
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Now combining (4.45) and (4.48) we obtain the expression representing both x and

t dependence of FNS
2 (x, t) structure function in terms of an input point FNS

2 (x0, t0)

in LO as

FNS
2 (x, t)

∣∣∣∣∣
LO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (4.49)

Similarly we may have the joint x and t dependence of FNS
2 (x, t) structure function

in NLO and NNLO as

FNS
2 (x, t)

∣∣∣∣∣
NLO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

(4.50)

and

FNS
2 (x, t)

∣∣∣∣∣
NNLO

= FNS
2 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (4.51)

4.4 Results and Discussion

The equations (4.31)-(4.33) and (4.49)-(4.51) are the analytic expressions representing

both x and Q2 dependence of FNS
2 (x,Q2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point FNS
2 (x0, t0), which can

be taken from the available experimental data. If the input point is more accurate and

precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0 can

be considered as the input point. Off course, the sensitivity of different inputs will be
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Figure 4.1: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with (4.31)-

(4.33) in comparison with NMC[63] and NNPDF[101] results. For clarity, the points
are offset by the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2).

different. However instead of choosing the input point on the basis of their sensitivity,

in our manuscript we have incorporated a suitable condition in determining the input

point. We have considered that particular point from the most recent measurements

as the input point in which experimental errors are minimum. Under this condition

we have selected the point FNS
2 (x0, t0) = 0.010348±0.006208 at x0 = 0.025 and Q2 =

2.34686GeV 2 from the experimental results of NMC[63]. Here we have considered

the central value of the input point. Further the expressions (4.49)-(4.51) consists of

the additional parameter b which has the value b = 0.118 ± 0.028 for FNS
2 (x,Q2) as

obtained in Chapter 3.

With the input point FNS
2 (x0, t0) = 0.010348, substituting the respective expres-

sions in LO, NLO and NNLO for running coupling constant, αs(t)
2π

and performing

the corresponding integrations, we have obtained both x as well as Q2 evolution of

FNS
2 (x,Q2) structure function in accord with the equations (4.31), (4.32) and (4.33)

respectively. The Q2 evolution results at fixed value of x are depicted in Fig. 4.1 in

comparison with the experimental data taken from NMC[63] and with the results of

NNPDF collaboration[101]. In Fig. 4.2, the x evolution of FNS
2 (x,Q2) for fixed values

of Q2 are depicted along with NMC and NNPDF results. In all figures, as indicated ,
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Figure 4.2: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.31)-

(4.33) in comparison with NMC[63] results. For clarity, the points are offset by the
amount given in parenthesis.

0 3 6 9 12 15

0.00

0.04

0.08

0.12

0.16

0.20

 

 

(+0.15)
x=0.035

(+0.1)
x=0.025

(+0.05)
x=0.0175

x=0.0125

Q2

F 2
N
S (
x,
Q

2 )

 NMC data
 Our LO results 
 Our NLO results 
 Our NNLO results
 NNPDF results

Figure 4.3: Q2(in the unit of GeV 2) evolution of FNS
2 (x,Q2) structure functions

in accord with (4.49)-(4.51) in comparison with NMC[63] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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Figure 4.4: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.49)-

(4.51) in comparison with NMC[63] and NNPDF[101] results. For clarity, the points
are offset by the amount given in parenthesis.
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Figure 4.5: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with (4.33)

and (4.51) in comparison with NMC[63] and NNPDF[101] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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Figure 4.6: x evolution of FNS
2 (x,Q2) structure functions in accord with (4.33)

and (4.51) in comparison with NMC[63] results. For clarity, the points are offset by
the amount given in parenthesis.
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Figure 4.7: Q2 evolution of FNS
2 (x,Q2) structure functions in accord with NNLO

corrections, (4.33) and (4.51) in comparison with NMC[63] results. For clarity, the
points are offset by the amount given in parenthesis. (Q2’s are taken in the unit of
GeV 2).
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the dotted curves represent the LO results, the dashed curves represent NLO results

and the solid lines are representing NNLO results. Experimental data are given with

vertical upper and lower error bars for total uncertainties of statistical and systematic

errors.

Again the results from equations (4.49), (4.50) and (4.51) for Q2 and x evolution

of FNS
2 (x,Q2) structure function with FNS

2 (x0, t0) = 0.010348 and b = 0.118 are

depicted in Fig. 4.3 and Fig. 4.4 respectively. The experimental results from NMC

and the results of NNPDF collaboration are also plotted along with our results. Here,

our LO, NLO and NNLO results are represented by the dotted, dashed and solid

curves respectively. The solid circles are used to represent the NMC data point and

they are along with vertical upper and lower error bars for total uncertainties of

statistical and systematic errors.

As far the figures, 4.1-4.4 are concerned, we observe a very good consistency

between theoretical and experimental as well as parametrization results within the

kinematical region x < 0.05 and Q2 ≤ 20GeV 2 of our consideration, especially, if

the NNLO results are concerned. The most consistent results, the NNLO results for

both the inputs along with NMC and NNPDF results are plotted in Figs. 4.5 and

4.6 . It reflects the comparative picture of the results obtained by means of the two

ansatz. However within our kinematical region of consideration we do not observe

any significant differences among them. This implies that the analytic expressions,

we have obtained by means of solving the DGLAP equations with both the ansatz

as the initial input, are applicable in describing the small x behaviour of FNS
2 (x,Q2)

structure function with a considerable precision.

In addition, we have shown in the Fig. 4.7, the band due to the uncertainty

associated with input and the fitting parameter b. Here the uncertainty due to the

fitting parameter is considerably less than that of due to input point.

4.5 Summary

We have employed the usefulness of two ansatz as the initial input in order to solve

DGLAP equation up to NNLO and obtain Q2 evolution of the unpolarized non-singlet

structure function FNS
2 (x,Q2). The structure function, evolved as the solutions of the

DGLAP equations are studied phenomenologically in comparison with the results

taken from NMC and NNPDF collaborations. We observe a very good agreement be-

tween our theoretical results and other experimental results as well as parametrization,
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within the kinematical range x < 0.05 and Q2 = 20GeV 2 of our consideration. The

phenomenological success achieved in this study suggests that the two simple QCD

featured Regge behaved ansatz FNS
2 (x,Q2) = A(Q2)x0.5 and FNS

2 (x,Q2) = Bx1−bt are

capable of evolving FNS
2 (x,Q2) structure functions with Q2 in accord with DGLAP

equations at small-x. However we could not distinguish the efficiencies among the

two models in comparison with experimental data within the kinematical range of

our consideration. We hope future experimental measurements at very very small

values of Bjorken x will clarify their differences and help us in batter understanding

of the structure of nucleon. ��
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Small-x Behaviour of xF3(x,Q
2)

Structure Function

This chapter is devoted to the determination of Q2 and x evolutions of xF3(x,Q
2)

structure function in accord with the leading order(LO), next-to-leading order(NLO)

and next-next-to-leading order(NNLO) DGLAP evolution equations within the small-x

region. The DGLAP equation is solved up to NNLO for xF3(x,Q
2) structure function

using two Regge ansatz as initial input and solutions for both the inputs are compared

with the experimental data from CCFR, NuTeV, CDHSW and CHORUS experiments

as well as with the recent MSTW parametrization results. A great phenomenological

success is achieved in this regards, which signifies the capability of the expressions

in describing the small-x behaviour of this non-singlet structure function and their

usefulness in determining the structure functions with a reasonable precision.

5.1 Introduction

One of the significant contributions that neutrino-nucleon interaction has towards the

understanding of hadron structure is its ability to produce the parity violating term,

xF3(x,Q
2) which receives contributions from the non-singlet part of the co-efficient

function and reflects only the valence quark distribution[61]. It is not marred by the

presence of the sea quark and gluon densities about which we have very poor infor-

mation in particular in the small-x region. Therefore, the neutrino-nucleon scattering
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as well as xF3(x,Q
2) structure function are becoming more important theoretically

as well as experimentally for the study of different nuclear effects such as shadow-

ing, anti-shadowing, EMC in parton distribution in nuclei etc. Also the study of

neutrino interaction provides the understanding of neutrino propagation in matter,

whose importance is seen in astrophysics, cosmology and even geology application.

Further, the Gross-Llewellyn Smith(GLS) sum rule[33,38,39] associated with the

non-singlet xF3(x,Q
2) structure function measured in neutrino-nucleon (ν−N) scat-

tering is one of the best observables to investigate Quantum Chromodynamics(QCD)

as a theory of strong interaction. As xF3(x,Q
2) structure function is not marred by

the presence of the sea quark and gluon densities about which we have very poor

information in particular in the small-x region and higher order QCD calculations are

observed to be largely independent of renormalization scheme, the prediction of GLS

sum rule is considered as the robust prediction in pQCD. The determination of the

GLS sum rule requires knowledge of xF3(x,Q
2) structure functions over the entire

region of x ∈ (0; 1). The experimentally accessible x range for the neutrino DIS is

however limited for the available data and therefore one should extrapolate results to

x = 0 and x = 1. The extrapolation to x → 0, where F3 structure functions grow

strongly, is much more important than the extrapolation to x → 1, where structure

functions vanish. Again, it is known that maximum contribution (about 90%) to the

GLS sum rule come from the small x(≤ 0.1) region. Because of the large contribu-

tion to the GLS sum rule from small x, the small x region is particularly important.

Therefore this chapter is an attempt to have the small-x behaviour of xF3(x,Q
2)

structure function by means of solving the DGLAP equation using the two Regge

ansatz discussed in chapter 3 as the initial input.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [24,

137] which describe the Q2 behavior of unpolarised non-singlet structure function

xF3(x,Q
2) in perturbative Quantum Chromodynamics (QCD) formalism is given by

∂xF3(x,Q
2)

∂lnQ2
=

∫ 1

x

dω

ω

x

ω
F3(

x

ω
,Q2)P (ω), (5.1)

where, P (ω) is the splitting function associated with xF3(x,Q
2) structure function,

which is defined up to NNLO by[31]

P (ω) =
α(Q2)

2π
P (0)(ω) +

(α(Q2)

2π

)2
P (1)(ω) +

(α(Q2)

2π

)3
P (2)(ω). (5.2)
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Here, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding leading order(LO), next-to-

leading order (NLO) and next-next-to-leading order(NNLO) corrections to the split-

ting functions. These splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],

(
α(t)

2π

)
LO

=
2

β0t
, (5.3)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
(5.4)

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
, (5.5)

where β0 = 11− 2
3
NF , β1 = 102− 38

3
NF and β2 =

2857
6

− 6673
18

NF + 325
54
N2

F are the one-

loop, two-loop and three-loop corrections to the QCD β-function. Here the running

coupling constant is expressed in terms of the variable t, which is defined by t = ln(Q
2

Λ2 ).

For simplicity, defining xF3(x,Q
2) = FNS

3 (x,Q2) and then substituting the re-

spective splitting functions along with the corresponding running coupling constant

in (5.1), the DGLAP evolution equations in LO, NLO and NNLO become

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t) + I1(x, t)

]
, (5.6)

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (5.7)

and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}FNS

3 (x, t)

+I1(x, t)

]
+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (5.8)
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respectively. Here Λ is the QCD cut-off parameter and the integral functions are given

by

I1(x, t) =

∫ 1

x

dω

1− ω

{
1 + ω2

ω
FNS
3

(
x

ω
, t

)
− 2FNS

3 (x, t)

}
, (5.9)

I2(x, t) =

∫ 1

x

dω

ω
P (1)(ω)FNS

3

(
x

ω
, t

)
(5.10)

and

I3(x, t) =

∫ 1

x

dω

ω
P (2)(ω)FNS

3

(
x

ω
, t

)
. (5.11)

The DGLAP equations up to NNLO ((5.6)-(5.8)) can be solved analytically using

the ansatz xF3(x, t) = A(t)x0.5 and xF3(x, t) = Bx(1−at) as the initial inputs and I

have discussed bellow in detailed.

5.2 Solution of DGLAP Evolution Equations with

the Initial Input xF3(x, t) = A(t)x0.5

On substitution of

xF3(x, t) = FNS
3 (x, t) = A(t)x0.5 (5.12)

and hence

xF3(
x

ω
, t) = FNS

3 (
x

ω
, t) = A(t)x0.5ω−0.5 = FNS

3 (x, t)ω−0.5 (5.13)

in the equations (5.6), (5.7) and (5.8) we obtain

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
FNS
3 (x, t), (5.14)

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5FNS

3 (x, t) (5.15)
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and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω−0.5)FNS

3 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω−0.5FNS

3 (x, t)(5.16)

respectively. These equations can be rearranged to have three ordinary differential

equations in terms of FNS
3 (x, t),

∂FNS
3 (x, t)

∂t
=

α(t)

2π
U(x)FNS

3 (x, t), (5.17)

∂FNS
3 (x, t)

∂t
=

[(
α(t)

2π

)
NLO

U(x) +

(
α(t)

2π

)2

NLO

V (x)

]
FNS
3 (x, t), (5.18)

and

∂FNS
3 (x, t)

∂t
=

[(
α(t)

2π

)
NNLO

U(x) +

(
α(t)

2π

)2

NNLO

V (x)

+

(
α(t)

2π

)3

NNLO

W (x)

]
FNS
3 (x, t), (5.19)

which can be easily solved to have

FNS
3 (x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
, (5.20)

FNS
3 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[
U(x)

∫ (
α(t)

2π

)
NLO

dt+ V (x)

∫ (
α(t)

2π

)2

NLO

dt

]
(5.21)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[
U(x)

∫ (
α(t)

2π

)
NNLO

dt+ V (x)

∫ (
α(t)

2π

)2

NNLO

dt

+W (x)

∫ (
α(t)

2π

)3

NNLO

dt

]
(5.22)
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respectively. Here,

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
, (5.23)

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5, (5.24)

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5, (5.25)

and C1, C2, C3 are the constants originated due to integration .

Now at a fixed value of x = x0, the t dependence of the structure function

FNS
3 (x, t) in LO is given by

FNS
3 (x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (5.26)

Again the value of the structure function at x = x0 and t = t0 in accord with

(5.26) is

FNS
3 (x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (5.27)

Dividing (5.26) by (5.27) and rearranging a bit we obtain the t evolution of FNS
3 (x, t)

in accord with the LO DGLAP equation with respect to the point FNS
3 (x0, t0) as

FNS
3 (x0, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (5.28)

Again in accord with our preassumption (5.12), the t dependence of FNS
3 (x, t) at

a particular value of x = x0 is given by

FNS
3 (x0, t) = A(t)x0.5

0 . (5.29)

Dividing (5.12) by (5.29), we have the following relation

FNS
3 (x, t) = FNS

3 (x0, t)

(
x

x0

)0.5

, (5.30)

which describes both t and x dependence of FNS
3 (x, t) structure function in terms of

the t dependent function FNS
3 (x0, t).

Now combining (5.28) and (5.30) we obtain the relation,
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FNS
3 (x, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

](
x

x0

)0.5

, (5.31)

which describes both t and x dependence of FNS
3 (x, t) structure function in LO in

terms of the input point FNS
3 (x0, t0).

Proceeding in the similar way we can obtain the expressions representing both x

and t dependence of FNS
3 (x, t) structure function in terms of an input point FNS

3 (x0, t0)

in NLO and NNLO as

FNS
3 (x, t)

∣∣∣∣∣
NLO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(5.32)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= FNS
3 (x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(5.33)

respectively.

5.3 Solution of DGLAP Evolution Equations with

the Initial Input xF3(x, t) = Bx(1−bt)

Now considering the ansatz, xF3(x, t) = Bx(1−bt) as the initial input we obtain the

DGLAP equations in LO, NLO and NNLO as

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t), (5.34)
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∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

3 (x, t), (5.35)

and

∂FNS
3 (x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1)

−2

}]
FNS
3 (x, t) +

(
α(t)

2π

)2

NNLO

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1)FNS

3 (x, t)

+

(
α(t)

2π

)3

NNLO

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1)FNS

3 (x, t)(5.36)

respectively, which can be easily solved to have

FNS
3 (x, t)

∣∣∣∣∣
LO

= C1 exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
, (5.37)

FNS
3 (x, t)

∣∣∣∣∣
NLO

= C2 exp

[∫ (
α(t)

2π

)
NLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NLO

V (x, t)dt

]
.(5.38)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= C3 exp

[∫ (
α(t)

2π

)
NNLO

U(x, t)dt+

∫ (
α(t)

2π

)2

NNLO

V (x, t)dt

+

∫ (
α(t)

2π

)3

NNLO

W (x, t)dt

]
.(5.39)

respectively. Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω(bt−1) − 2

}
, (5.40)

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω(bt−1), (5.41)
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W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω(bt−1) (5.42)

and C1, C2 and C3 are the constants originated due to integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is

given by

FNS
3 (x0, t) = C1 exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (5.43)

Again the value of the structure function at x = x0 and t = t0 in accord with

(5.43) is given by

FNS
3 (x0, t0) = C1 exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (5.44)

Dividing (5.43) by (5.44) and rearranging a bit we obtain the t dependence of FNS
3 (x, t)

in accord with LO DGLAP evolution equation with respect to the point FNS
3 (x0, t0)

as

FNS
3 (x0, t) = FNS

3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (5.45)

Again, as both t and x dependence of FNS
3 (x, t) is assumed to satisfy

FNS
3 (x, t) = B.x(1−bt) (5.46)

relation, and at any fixed x = x0 we have

FNS
3 (x0, t) = B.x

(1−bt)
0 , (5.47)

which represents the t dependence of the structure function at any fixed value of

x = x0. Dividing (5.46) by (5.47) we have the following relation

FNS
3 (x, t) = FNS

3 (x0, t)

(
x

x0

)(1−bt)

, (5.48)

which gives both t and x dependence of FNS
3 (x, t) structure function in terms of the

t dependent function FNS
3 (x0, t) at fixed x = x0.
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Now combining (5.45) and (5.48) we obtain the expression representing both x and

t dependence of FNS
3 (x, t) structure function in terms of an input point FNS

3 (x0, t0)

in LO as

FNS
3 (x, t)

∣∣∣∣∣
LO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (5.49)

Similarly we may have the joint x and t dependence of FNS
3 (x, t) structure function

in NLO and NNLO as

FNS
3 (x, t)

∣∣∣∣∣
NLO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

(5.50)

and

FNS
3 (x, t)

∣∣∣∣∣
NNLO

= FNS
3 (x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (5.51)

5.4 Results and Discussion

The equations (5.31)-(5.33) and (5.49)-(5.51) are the analytic expressions represent-

ing both x and Q2 dependence of xF3(x,Q
2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, xF3(x,Q
2) = A(Q2)x0.5 and xF3(x,Q

2) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point xF3(x0, t0), which can

be taken from the available experimental data. If the input point is more accurate and

precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0

can be considered as the input point. Off course, the sensitivity of different inputs
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Figure 5.1: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33). For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).
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Figure 5.2: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33). For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).
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Figure 5.3: x evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33) in comparison with CCFR[66] data. For clarity, the points are offset by the
amount given in parenthesis.
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Figure 5.4: x evolution of xF3(x,Q
2) structure functions in accord with (5.31)-

(5.33) in comparison with NuTeV[68] results. For clarity, the points are offset by
the amount given in parenthesis.
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Figure 5.5: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with CCFR[66] and MSTW[107] results. For clarity, the points
are offset by the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2)

will be different. However instead of choosing the input point on the basis of their

sensitivity, in our manuscript we have incorporated a suitable condition in determin-

ing the input point. We have considered that particular point from the most recent

measurements as the input point in which experimental errors are minimum. Under

this condition we have selected the point xF3(x0, t0) = 0.3298 at x0 = 0.025 and

Q2 = 3.2GeV 2 from the experimental results of CCFR[66]. Here we have considered

the central value of the input point. Further the expressions (5.49)-(5.51) consists of

the additional parameter a which has the value b = 0.0744± 0.0136 for xF3(x,Q
2) as

obtained in Chapter 3.

With the input point xF3(x0, t0), substituting the respective expressions in LO,

NLO and NNLO for running coupling constant, αs(t)
2π

and performing the correspond-

ing integrations, we have obtained both x as well as Q2 evolution of xF3(x,Q
2) struc-

ture function in accord with the equations (5.31), (5.32) and (5.33) respectively. The

Q2 evolution results at fixed value of x are depicted in Fig. 5.1 and Fig. 5.2 in com-

parison with the experimental data taken from CCFR[66], NuTeV[68], CDHSW[69],

CHORUS[70] collaborations and with the parametrization results of MRST98[138],

93



Chapter 5 Small-x Behaviour of xF3(x,Q
2) Structure Functions

0 2 4 6 8 10
0.0

0.3

0.6

0.9

1.2

 

 

(+0.2)

x=0.015

x=0.045

Q2

xF
3(
x,
Q

2 )

 Our LO results
 Our NLO results
 Our NNLO results

 NUTEV data
 CHORUS data
 CDHSW data
 MSTW results

Figure 5.6: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with NuTeV[68], CHORUS[70], CDHSW[69] and MSTW[107]
results. For clarity, the points are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2)
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Figure 5.7: x evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with CCFR[66] and MSTW[107] results. For clarity, the points
are offset by the amount given in parenthesis.
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Figure 5.8: x evolution of xF3(x,Q
2) structure functions in accord with (5.49)-

(5.51) in comparison with NuTeV[68], CHORUS[70] and CDHSW[69] results. For
clarity, the points are offset by the amount given in parenthesis.

CTEQ4[139], MSTW[107] and KPS[140] results. In Fig. 5.3 and Fig. 5.4, the x evolu-

tion of xF3(x,Q
2) for fixed values of Q2 are depicted along with CCFR[66], NuTeV[68]

results. In all figures, as indicated , the dotted curves represent the LO results, the

dashed curves represent NLO results and the solid lines are representing NNLO re-

sults. Experimental data are given with vertical upper and lower error bars for total

uncertainties of statistical and systematic errors.

Again the results from equations (5.49),(5.50) and (5.51)for Q2 and x evolution of

xF3(x,Q
2) structure function with xF3(x0, t0) = 0.3298 and b = 0.0744 are depicted

in Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 respectively. The experimental results from

CCFR, NuTeV, CDHSW, CHORUS collaborations and those of MRST98, CTEQ4,

MSTW and KPS results are also plotted along with our results. Here, our LO, NLO

and NNLO results are represented by the dotted, dashed and solid curves respectively.

As far the figures (Fig. 5.1 - Fig. 5.4) and (Fig. 5.5 - Fig. 5.8) are concerned, we

observe a very good consistency between our theoretical and experimental as well as

parametrization results within the kinematical region x < 0.05 and Q2 = 20GeV 2 of

our consideration, especially, if the NNLO results are concerned. The most consis-

tent results, the NNLO results for both the inputs along with other experimental and
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Figure 5.9: Q2 evolution of xF3(x,Q
2) structure functions in accord with (5.33)

and (5.51) in comparison with CCFR[66] data. For clarity, the points are offset by
the amount given in parenthesis. (Q2’s are taken in the unit of GeV 2)
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Figure 5.10: Q2 evolution of xF3(x,Q
2) structure functions in accord with

(5.33) and (5.51) in comparison with NuTeV[68], CHORUS[70], CDHSW[69] and
MSTW[107] results. For clarity, the points are offset by the amount given in paren-
thesis. (Q2’s are taken in the unit of GeV 2)
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2) structure functions predicted by(5.51)

along with the uncertainty band associated with the fitting parameter b and the
chosen input point.Our results are compared with CCFR[66] data. For clarity, the
points are offset by the amount given in parenthesis.(Q2’s are taken in the unit of
GeV 2).

parametrization results are plotted in the figures Fig. 5.9 and Fig. 5.10. They reflect

the comparative picture of the results obtained by means of the two ansatz. However

within our kinematical region of consideration we do not observe any significant dif-

ferences among them. Further in Fig. 5.11 our NNLO results predicted by Eq.(5.51)

are plotted along with the uncertainty band associated with the fitting parameter and

the chosen input point. The uncertainties are observed to be small in both the cases

and the uncertainty due to the fitting parameter is considerably less than that of due

to input point. Along with the estimated uncertainties, we observe that the Eq.(5.51)

has the capability of describing the experimental results with considerable precession.

5.5 Summary

In this chapter the non-singlet structure function xF3(x,Q
2) has been calculated at

small-x. We have employed a unified approach incorporating QCD and Regge the-

ory in this regard. Our results for xF3(x,Q
2) structure function have been found for

two different input to the DGLAP equation. Both the inputs are Regge behaved.

One of them consists of constant intercept (= 0.5) with Q2 dependent residue and
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the other has Q2 dependent intercept with constant residue. The structure function,

evolved as the solutions of the DGLAP equations are studied phenomenologically

in comparison with the results taken from CCFR, NuTeV, CHORUS and CDHSW

experimental measurements. In addition, our results are compared with those ob-

tained by MRST98, CTEQ4, MSTW and KPS collaborations. We observe a very

good agreement between our theoretical results and other experimental results as

well as parametrization, within the kinematical range x < 0.05 and Q2 = 20GeV 2

of our consideration. The phenomenological success achieved in this study suggests

that the two simple QCD featured Regge behaved ansatz xF3(x,Q
2) = A(Q2)x0.5 and

xF3(x,Q
2) = Bx1−bt are capable of evolving xF3(x,Q

2) structure functions with Q2

in accord with DGLAP equations at small-x. However we could not distinguish the

efficiencies among the two models in comparison with experimental data within the

kinematical range of our consideration. We hope future experimental measurements

at very very small values of Bjorken x will clarify their differences and help us in

batter understanding of the structure of nucleon. ��

98



Chapter 6

Small-x Behaviour of xgNS
1 (x,Q2)

Structure Function

This chapter encompasses the calculation of spin-dependent non-singlet structure func-

tion xgNS
1 (x,Q2) by means of solving DGLAP equation with QCD corrections up to

next-next-to-leading order. Using the two ansatz, discussed in the chapter 3, devel-

oped by combining the features of perturbative Quantum Chromodynamics and Regge

theory, as the initial input we have solved the DGLAP equations. The solutions, along

with the ansatz allow us to obtain some analytic expressions which represent the joint

Bjorken x and Q2 dependence of xgNS
1 (x,Q2) structure function. The expressions are

studied phenomenologically in comparison with experimental data taken from SMC,

E143, HERMES, COMPASS and JLab experiments. In addition, our results are com-

pared with some other strong analysis. We have achieved at a great phenomenological

success, which signifies the capability of the expressions in describing the small-x be-

haviour of this non-singlet structure function and their usefulness in determining the

structure functions with a reasonable precision.

6.1 Introduction

Proper understanding of the spin structure of nucleon and associated sum rules is

expected to offer an important opportunity to investigate Quantum Chromodynam-

ics(QCD) as a theory of strong interaction and hence these observables have been the

active frontiers in recent years [62,141–146]. Many successful experimental programs
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of polarized deep-inelastic lepton-nucleon scattering in combination with remarkable

theoretical efforts have been devoted in order to elucidate the internal spin structure of

the nucleon. Polarized deep inelastic lepton scattering experiment have been carried

out at SLAC, CERN, DESY and Jefferson Laboratory(JLab)[62]. With the advent of

dedicated experimental facilities, recent experiments were able to determine the spin

structure functions as well as different sum rules over a wide range of x and Q2 with

ever increasing precision. Simultaneously, tremendous progress is observed in the field

of theoretical investigation in determining and understanding the shape of quarks and

gluon spin distribution functions with perturbative QCD, non-perturbative QCD, chi-

ral perturbation theory[147], lattice QCD[148], anti-de Sitter/conformal field theory

(AdS/CFT)[149], etc., along with different reliable theoretical models. In addition, re-

cently available several dedicated phenomenological works[131,150–158] in extracting

polarized parton distribution function(PPDF) as well as spin structure functions from

different experiments within NLO QCD analysis have also significant contributions

towards the understanding of spin structure of the nucleon.

In Quantum Chromodynamics, the spin structure function g1(x,Q
2) is described

as Mellin convolutions between parton distribution functions (∆qi,∆g) and the Wilson

coefficients Ci [159]

g1(x,Q
2) =

1

2nf

n∑
i=1

e2i [CNS ⊗∆qNS + CS ⊗∆qS + 2nfCg ⊗∆g], (6.1)

which consists of three parts, non-singlet gNS
1 (x,Q2) = 1

2nf

∑n
i=1 e

2
i [CNS ⊗∆qNS], sin-

glet gS1 (x,Q
2) = 1

2nf

∑n
i=1 e

2
i [CS ⊗∆qS] and gluon ∆G(x,Q2) = 1

2nf

∑n
i=1 e

2
i [2nfCg ⊗

∆g]. The Q2 distribution of these spin dependent non-singlet, singlet and gluon distri-

bution functions are governed by a set of integro-differential equations, the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations which are given by [24]

Q2∂xg
NS
1 (x,Q2)

∂lnQ2
=

α(Q2)

2π
PNS
qq (x,Q2)⊗ xgNS

1 (x,Q2), (6.2)

Q2

∂

(
gS1 (x,Q

2)

∆G(x,Q2)

)
∂lnQ2

=

(
P S
qq(x,Q

2)

P S
gq(x,Q

2)

2nfP
S
qg(x,Q

2)

P S
gg(x,Q

2)

)
⊗
(

gS1 (x,Q
2)

∆G(x,Q2)

)
. (6.3)

Here Pi are the polarized splitting functions [24, 32]. These equations are valid to all

orders in the strong coupling constant α(Q2)
2π

.
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In this chapter we have concentrated on the non-singlet part of the polarized

nucleon structure function. Here we have investigated the small-x behaviour of xgNS
1

structure function. The investigation is based on the solution of the DGLAP evolu-

tion equation in LO, NLO and NNLO using the two ansatz xgNS
1 (x,Q2) = A(Q2)x0.5

and xgNS
1 (x,Q2) = Ax(1−at) as the initial inputs. We have performed a phenomeno-

logical analysis of these solutions in comparison with different experimental measure-

ments[71,73–75] as well as the predictions due to different models [131,160–162] and

achieved at a very good phenomenological success. The phenomenological success

achieved in this regard reflects, on one hand the acceptability of the Regge ansatz in

describing the small x behavior of the non-singlet part of spin structure function and

on the other hand, the usefulness of the Regge ansatz in evolving the spin structure

function, gNS
1 (x,Q2) in accord with DGLAP equation with a considerable precision

within smaller x region.

For simplicity, defining xgNS
1 (x,Q2) = gNS(x,Q2), the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) evolution equation which describe the Q2 behavior of po-

larised non-singlet structure function xgNS
1 (x,Q2) in perturbative Quantum Chromo-

dynamics (QCD) formalism is given by

∂gNS(x, t)

∂t
=

α(t)

2π

∫ 1

x

dω

ω
gNS

(
x

ω
, t

)
PNS
qq (ω), (6.4)

in terms of the variable t = ln(Q
2

Λ2 ). Here the splitting function, PNS
qq (ω) is defined up

to next-next-to-leading order by

PNS
qq (ω) =

α(t)

2π
P (0)(ω) +

(
α(t)

2π

)2

P 1(ω) +
(α(Q2)

2π

)3
P 2
i (ω), (6.5)

where, P (0)(ω), P (1)(ω) and P (2)(ω) are the corresponding LO, NLO and NNLO cor-

rections to the splitting functions[24,32]. Splitting functions are given in Appendices.

Again, in LO, NLO and NNLO, the running coupling constant α(Q2)
2π

has the

forms[23],

(
α(t)

2π

)
LO

=
2

β0t
, (6.6)

(
α(t)

2π

)
NLO

=
2

β0t

[
1− β1 ln t

β2
0t

]
, (6.7)

101



Chapter 6 Small-x Behaviour of xgNS
1 (x,Q2) Structure Function

and

(
α(t)

2π

)
NNLO

=
2

β0t

[
1− β1 ln t

β2
0t

+
1

β2
0t

2

[(
β1

β0

)2

(ln2 t− ln t+ 1) +
β2

β0

]]
(6.8)

respectively, where β0 = 11 − 2
3
NF , β1 = 102 − 38

3
NF and β2 = 2857

6
− 6673

18
NF +

325
54
N2

F are the one-loop, two-loop and three-loop corrections to the QCD β-function.

Here the running coupling constant is expressed in terms of the variable t, which is

defined by t = ln(Q
2

Λ2 ). Substituting the respective splitting functions along with the

corresponding running coupling constant in (6.4) the DGLAP evolution equations in

LO, NLO and NNLO become

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]
, (6.9)

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
NLO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NLO

I2(x, t), (6.10)

and

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
NNLO

[
2

3
{3 + 4ln(1− x)}gNS(x, t) + I1(x, t)

]

+

(
α(t)

2π

)2

NNLO

I2(x, t) +

(
α(t)

2π

)3

NNLO

I3(x, t) (6.11)

respectively. Here the integral functions are given by

I1(x, t) =

∫ 1

x

dω

1− ω

{
(1 + ω2)

ω
gNS

(
x

ω
, t

)
− 2gNS(x, t)

}
, (6.12)

I2(x, t) =

∫ 1

x

dω

ω
P (2)(ω)gNS

(
x

ω
, t

)
(6.13)

and

I3(x, t) =

∫ 1

x

dω

ω
P (3)(ω)gNS

(
x

ω
, t

)
. (6.14)
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We now solve the DGLAP equations up to NNLO ((6.9)-(6.11)) analytically using

the ansatz xgNS
1 (x, t) = A(t)x0.5 and xgNS

1 (x, t) = Bx(1−at) as the initial inputs. Here

in both the case we have discussed in detailed the LO solution and then the same

formalism is extended to have corresponding NLO and NNLO solutions.

6.2 Solution of DGLAP Evolution Equations with

the Initial Input xgNS
1 (x, t) = A(t)x0.5

If we consider that the non-singlet part of the spin structure function satisfies the

following Regge ansatz:

gNS
1 (x, t) = gNS(x, t) = A(t)x0.5, (6.15)

then the t dependence of xgNS
1 (x, t) structure function at a particular value of x = x0

is given by

gNS(x0, t) = A(t)x0.5
0 . (6.16)

Dividing (6.15) by (6.16) we have the following relation

gNS(x, t) = gNS(x0, t)

(
x

x0

)0.5

, (6.17)

which gives both t and x dependence of gNS(x, t) structure function in terms of the t

dependent function gNS(x0, t) at fixed x = x0. The t dependent function, gNS(x0, t)

can be obtained from the DGLAP equation.

Substituting gNS(x, t) = A(t)x0.5 and gNS( x
ω
, t) = ω−0.5gNS(x, t) in equation,

(6.9), we obtain

∂gNS(x, t)

∂t
=

(
α(t)

2π

)
LO

[
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω{
1 + ω2

ω
ω−0.5 − 2

}]
gNS(x, t), (6.18)

which can be rearranged to have an ordinary differential equation and can be solved

easily to have

gNS(x, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x)

∫ (
α(t)

2π

)
LO

dt

]
. (6.19)
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Here

U(x) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−0.5 − 2

}
(6.20)

and C is the constant of integration.

Now at a fixed value of x = x0, the t dependence of the structure function gNS
1 (x, t)

in LO is given by

gNS(x0, t)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]
. (6.21)

Again the value of the structure function at x = x0 and t = t0 in accord with

(6.21) is

gNS(x0, t0)

∣∣∣∣∣
LO

= C1 exp

[
U(x0)

∫ (
α(t)

2π

)
LO

dt

]∣∣∣∣∣
t=t0

. (6.22)

Dividing (6.21) by (6.22) and rearranging a bit we obtain the t evolution of gNS(x, t)

in accord with the LO DGLAP equation with respect to the point gNS(x0, t0) as

gNS(x0, t)

∣∣∣∣∣
LO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
LO

dt

]
. (6.23)

Now substituting gNS(x0, t)

∣∣∣∣
LO

from (6.23) in (6.17), we have a relation repre-

senting both x and t dependence of structure function in LO, in terms of the input

point gNS(x0, t0) given by

gNS(x, t)

∣∣∣∣
LO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)0.5

. (6.24)

Proceeding in the similar way we can obtain the relation for gNS(x, t) structure func-

tion in NLO and NNLO as

gNS(x, t)

∣∣∣∣∣
NLO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NLO

dt

+V (x0)

∫ t

t0

(
α(t)

2π

)2

NLO

dt

](
x

x0

)0.5

(6.25)

and
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gNS(x, t)

∣∣∣∣∣
NNLO

= gNS(x0, t0) exp

[
U(x0)

∫ t

t0

(
α(t)

2π

)
NNLO

dt+ V (x0)

∫ t

t0

(
α(t)

2π

)2

NNLO

dt

+W (x0)

∫ t

t0

(
α(t)

2π

)3

NNLO

dt

](
x

x0

)0.5

(6.26)

respectively, where

V (x) =

∫ 1

x

dω

ω
P (1)(ω)ω−0.5 (6.27)

and

W (x) =

∫ 1

x

dω

ω
P (2)(ω)ω−0.5. (6.28)

6.3 Solution of DGLAP Evolution Equations with

the Initial Input xgNS
1 (x, t) = Bx(1−bt)

Now we considered that the non-singlet part of the spin structure function satisfies

the following Regge ansatz:

gNS
1 (x, t) = Ax(−bt) (6.29)

and hence we have

xgNS
1 (x, t) = gNS(x, t) = A.x(1−bt). (6.30)

The t dependence of xgNS
1 (x, t) structure function at a particular value of x = x0

is givent by

gNS(x0, t) = A.x
(1−bt)
0 . (6.31)

Dividing (6.30) by (6.31) we have the following relation

gNS(x, t) = gNS(x0, t)

(
x

x0

)(1−bt)

, (6.32)

which gives both t and x dependence of gNS(x, t) structure function in terms of the t

dependent function gNS(x0, t) at fixed x = x0. The t dependent function, gNS(x0, t)

can be obtained from the DGLAP equation.
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Substituting gNS(x, t) = Ax1−bt and gNS( x
ω
, t) = ω−(1−bt)gNS(x, t) in equation

(6.9) and rearranging a bit we can convert the LO DGLAP equation into an ordinary

differential equation which can be easily solved to have

gNS(x, t)

∣∣∣∣
LO

= C exp

[∫ (
α(t)

2π

)
LO

U(x, t)dt

]
. (6.33)

Here

U(x, t) =
2

3
{3 + 4ln(1− x)}+ 4

3

∫ 1

x

dω

1− ω

{
1 + ω2

ω
ω−(1−bt) − 2

}
, (6.34)

and C is the constant of integration.

At a fixed value of x = x0, the t dependence of the structure function in LO is

given by

gNS(x0, t) = C exp

[∫ (
α(t)

2π

)
LO

U(x0, t)dt

]
. (6.35)

Again the value of the structure function at x = x0 and t = t0 in accord with

(6.35) is given by

gNS(x0, t0) = C exp

[∫
α(t)

2π
U(x0, t)dt

]∣∣∣∣∣
t=t0

. (6.36)

Dividing (6.35) by (6.36) and rearranging a bit we obtain the t dependence of gNS(x0, t)

in accord with LO DGLAP evolution equation with respect to the point gNS(x0, t0)

as

gNS(x0, t) = gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

]
. (6.37)

Now substituting gNS(x0, t)

∣∣∣∣
LO

from (6.37) in (6.32), we have a relation repre-

senting both x and t dependence of structure function in LO, in terms of the input

point gNS(x0, t0) given by

gNS(x, t)

∣∣∣∣
LO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
LO

U(x0, t)dt

](
x

x0

)(1−bt)

. (6.38)

Proceeding in the similar way we can obtain the relation for gNS(x, t) structure func-

tion in NLO and NNLO as
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gNS(x, t)

∣∣∣∣
NLO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

V (x0, t)dt

](
x

x0

)(1−bt)

, (6.39)

and

gNS(x, t)

∣∣∣∣
NNLO

= gNS(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

, (6.40)

respectively, where

V (x, t) =

∫ 1

x

dω

ω
P (1)(ω)ω−(1−bt) (6.41)

and

W (x, t) =

∫ 1

x

dω

ω
P (2)(ω)ω−(1−bt). (6.42)

6.4 Results and Discussion

The equations (6.24)-(6.26) and (6.38)-(6.40) are the analytic expressions representing

both x and Q2 dependence of xgNS
1 (x,Q2) structure function jointly, obtained by

means of solving the DGLAP equations in LO, NLO and NNLO incorporating the

Regge ansatz, xgNS
1 (x, t) = A(t)x0.5 and xgNS

1 (x, t) = Bx1−bt as the initial inputs

respectively. These expressions are consisting of an input point xgNS
1 (x0, t0), which

can be taken from the available experimental data. If the input point is more accurate

and precise, we can expect batter results. There are not any specific reason in choosing

the input point. Any one of the data points at a certain value of x = x0 and t = t0 can

be considered as the input point. Off course, the sensitivity of different inputs will be
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Figure 6.1: xgNS
1 structure function in accord with (6.24)-(6.26), compared with

the data taken from SMC[74], HERMES[73], COMPASS[71] and E143[75] experi-
ments and the results of TSA[131], AAC[160], BB[161] and GRSV[162] collabora-
tions.

different. However instead of choosing the input point on the basis of their sensitivity,

in our manuscript we have incorporated a suitable condition in determining the input

point. We have considered that particular point from the most recent measurements

as the input point in which experimental errors are minimum. Under this condition

we have selected the point gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075 at x0 =

0.0143955 and Q2 = 5GeV 2 from COMPASS[71] experimental data. Here we have

considered the central value of the input point. Further the expressions (6.38)-(6.40)

consists of the additional parameter b which has the value b = 0.0759 ± 0.0107 for

xgNS
1 as obtained in Chapter 3.

With the input point gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075, substitut-

ing the respective expressions in LO, NLO and NNLO for running coupling constant,
αs(t)
2π

and performing the corresponding integrations, we have obtained the x evolu-

tion of xgNS
1 (x,Q2) structure function in accord with the equations (6.24), (6.25) and

(6.26) respectively. The x evolution results for two fixed value of Q2 = 5.0GeV 2 are

depicted in Fig. 6.1. However, as there are not any available experimental results for
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Figure 6.2: xgNS
1 structure function in accord with (6.38)-(6.40), compared with

the data taken from SMC[74], HERMES[73], COMPASS[71] and E143[75] experi-
ments and the results of TSA[131], AAC[160], BB[161] and GRSV[162] collabora-
tions.

differentQ2, we could not have comparative analysis of ourQ2 evolution results. Our x

evolution results are plotted along with the experimental results taken from SMC[74],

HERMES[73], COMPASS[71] and E143[75] experiments. In addition to these, we

have also included the predictions made by Taghavi-Shahri and Arash(TSA)[131],

Asymmetry Analysis Collaboration(AAC)[160], Blumlein and Bottcher(BB)[161] and

Gluck, Reya, Startmann and Vogelsang(GRSV)[162] based on various models, in our

comparative analysis. We see that gNS(x,Q2) structure functions evolved with respect

to the input point are consistent with those of experimental measurements as well as

other models. This implies that the expressions, we have obtained by means of solving

the DGLAP equations analytically, are applicable in describing small x behaviour of

xgNS
1 (x,Q2) structure function with a considerable precision.

Again the results from equations (6.38),(6.39) and (6.40) for x evolution of

xgNS
1 (x,Q2) structure function with xgNS

1 (x0, Q
2
0) = 0.0133075 and b = 0.0759 are

depicted in Fig. 6.2. In this case also as we do not have experimental data point for

various Q2, we could not perform the comparative analysis of our Q2 evolution results.
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 Our results with intercept = 0.5

Figure 6.3: xgNS
1 structure function in accord with (6.26) and (6.40) and in

comparison with the data taken from SMC[74], HERMES[73], COMPASS[71] and
E143[75] experiments.

However, the x evolution results are compared with SMC, E143, HERMES and COM-

PASS experimental results and with several predictions made in Ref [131, 160–162]

based on various model.

Also we have estimated the uncertainty associated with the fitting parameter

b and the chosen input point and the respective uncertainty bands are shown in

Fig. 6.4 separately. Here the uncertainty due to the fitting parameter is considerably

less than that of due to input point. However both the uncertainties are observed to

be decreasing as x decreases.

As far the figures, 6.2 - 6.4 are concerned, we observe a very good consistency

among our theoretical results and other experimental as well as parametrization re-

sults within the kinematical region x < 0.05 of our consideration. Our x evolution

results for both the inputs along with other experimental results are plotted in Fig. 6.3.

It reflects the comparative picture of the results obtained by means of the two ansatz.

However within our kinematical region of consideration we do not observe any sig-

nificant differences among them. This implies that the analytic expressions, we have

obtained by means of solving the DGLAP equations with both the ansatz as the ini-

tial input, are applicable in describing the small x behaviour of xgNS
1 (x,Q2) structure
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Figure 6.4: xgNS
1 structure function in accord with (6.40)and in comparison with

different experimental data and theoretical as well as phenomenological analysis,
along with the uncertainty band associated with the fitting parameter(b) and the
chosen input point.

function with a considerable precision.

6.5 Summary

In this paper we have obtained some expressions for the non-singlet part of spin

structure function, xgNS
1 (x,Q2) at small-x by means of analytical solution of DGLAP

equation in LO, NLO and NNLO using a Regge like ansatz with Q2 dependent in-

tercept as the initial input. Both the Regge inspired ansatz in accord with DGLAP

equations provides a very good description of the small-x behaviour of gNS
1 (x,Q2),

which are consistent with other experimental results. The consistency of the results

for xgNS
1 (x,Q2) due to the Regge like models gNS(x, t) = Ax0.5 and gNS(x, t) = Ax1−bt

with different experimental results taken from SMC[74], HERMES[73], COMPASS[71]

and E143[75] and other strong analysis [131,160–162] signifies that the model is appli-

cable in describing the small-x behaviour of xgNS
1 (x,Q2) structure function although

it being simple. Moreover, in this method we do not require the knowledge of initial

distributions of structure functions at all values of x from 0 to 1. Here, we just require

one input point at any fixed x and Q2 and with respect to that point both the x and
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Q2 evolution of structure functions can be obtained. ��
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Chapter 7

Sum Rules Associated with
Non-singlet Structure Functions

In this chapter, we have determined the three sum rules viz., the Gottfired Sum

rule(GSR), the Gross-Llewellyn Smith sum rule(GLSSR) and the Bjorken sum rule(BSR),

which are associated with the non-singlet structure functions FNS
2 , xF3 and xgNS

1 re-

spectively with QCD corrections up to NNLO. The determination of sum rules requires

the knowledge of structure functions only at small-x and these requirements are ob-

tained from the previous chapters, where we have successfully evolved the non-singlet

structure functions in accord with DGLAP equation through an approach unifying

Regge theory and pQCD. We have also perform a phenomenological analysis of our

results for various sum rules in comparison with their respective experimental and

parametrization results.

7.1 Introduction

Deep inelastic structure functions obey a series of Sum rules, which are integrals

over structure functions or parton distributions, expressing usually the conservation

law for some quantum number of the nucleon. These sum rules provide information

about the distribution of quarks inside nucleon and are very useful to reveal new

physics if a sum rule is observed to be satisfied or broken. Perturbative Quantum

Chromodynamics has predictions of a wide variety sum rules and they are expected

to provide us with a stringent test of QCD. Because, the sum rules are expressed as

the integrals of the form
∫ 1

0
dxF (x,Q2) = A, and in this representation, one gets rid

of the unknown x-dependence which is due to non-perturbative effects. Further, sum
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rules can be computed up to much higher orders in perturbative QCD than other

quantities. Therefore the sum rules have been the subject of great experimental,

theoretical as well as phenomenological investigation.

In order to investigate the validity of QCD as a theory of strong interaction by

means of sum rules, many successful experimental programs of both polarized and

unpolarized deep-inelastic lepton nucleon scattering have been performed. With the

advent of dedicated experimental facilities the recent measurements of the structure

functions of both polarized and un-polarized DIS[7] in the wide interval of the x = Q2

2pq

variable open the possibility of a more precise determination of the number of the DIS

sum rules. In view of this experimental progress the detailed studies of the theoretical

predictions for the DIS sum rules started to attract special attention.

Brief overview of the basic parton model sum rules have already been given in

section 1.5 and commented on the status of their available QCD corrections. QCD

corrections to sum rules mainly fall into two classes; those that are strongly suppressed

at high energy (higher twist corrections) and those that vanish only logarithmically

with the momentum transfer. The latter are fully calculable in terms of the coupling

constant αs of QCD.

The determination of these sum rules requires knowledge of the corresponding

structure functions over the entire region of x ∈ (0; 1). The experimentally accessible

x range for the lepton DIS is however limited for the available data and therefore

one should extrapolate results to x = 0 and x = 1. The extrapolation to x → 0,

where structure functions 1
x
FNS
2 , F3 and gNS

1 grow strongly, is much more important

than the extrapolation to x → 1, where structure functions vanish. Again, it is known

that maximum contribution (about 90%) to the GSR, GLSSR and BSR come from the

small x(≤ 0.1) region. Because of the large contribution to these sum rules from small

x, the small x region is particularly important. In the following sections we will observe

that the determination of sum rules requires the knowledge of structure functions only

at small-x and the requirements are obtained from the previous chapters, where we

have successfully evolved the non-singlet structure functions in accord with DGLAP

equation through a unified approach unifying Regge theory and pQCD.

This chapter is divided into six sections. In the next section 7.2, we have presented

a generalized formalism which is adopted in the determination of various sum rules.

Then the same formalism is extended to incorporate the sum rules, GSR, GLSSR and

BSR in the section 7.3, 7.4 and 7.5 respectively. In the respective sections we have

114



Chapter 7 Sum Rules Associated with Non-singlet Structure Functions

Figure 7.1: General interpretation of sum rule. The curve represents the variation
of the structure function FNS

i with x and the area under the curve represents the
sum rule.

also provided a detailed analysis of our results for the sum rules in comparison with

other available experimental and parametrization results. In the last section 7.6, the

works performed and results obtained in this chapter are summarised.

7.2 The General Strategy Adopted in Determining

Sum Rules

Away from Q2 → ∞, the Sum Rules, GSR, GLSSR and BSR are expressed in terms

of a sum of two series in powers of the strong coupling constant αs(Q
2) (leading twist

pQCD correction)and in powers of 1
Q2 (nonperturbative higher twist corrections):

Si(Q
2) =

∫ 1

0

dx

x
FNS
i (x,Q2) = SpQCD

i +
∞∑
i=2

µp−n
2i (Q2)

Q2i−2
, (7.1)

where Si denotes the sum rules associated with FNS
i = FNS

2 , xF3, xg
NS
1 . Here the

leading twist term (bracket term) consists of pQCD results and the second term on

the r.h.s. is known as higher twist term. The higher order pQCD corrections and

higher twist power corrections are significant at low-Q2 region(see Ref. [163,164] and

references therein). In this chapter we have paid attention to only the first part i.e.,

the pQCD corrected term, SpQCD
i .

In general the integral associated with the sum rules represents the area under

the curve FNS
i (x,Q2) from x = 0 to x = 1 (Shown in Fig. 7.1), which can be resolved
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as

Si(Q
2) =

∫ xmin

0

FNS
i (x,Q2)

x
dx+

∫ 1

xmin

FNS
i (x,Q2)

x
dx (7.2)

and it gives

Si(xmin, Q
2) =

∫ 1

xmin

FNS
i (x,Q2)

x
dx = Si(Q

2)−
∫ xmin

0

FNS
i (x,Q2)

x
dx. (7.3)

The integral on the left hand side of (7.3) represents the area under the curve
FNS
i (x,Q2)

x

from x = xmin to x = 1. For x = xmin → 0, this integral will tend to cover the whole

area under the curve from x = xmin = 0 to x = 1, that is, it will represent the whole

integral associated with the sum rule. Again the second part on the right side of

(7.3) represents the part of total area
∫ 1

0

FNS
i (x,Q2)

x
dx, laying under the curve

FNS
i (x,Q2)

x

within smaller x region i.e., from x = 0 to any smaller value x = xmin. Thus we

see that in order to investigate the sum rules, we just require the knowledge of cor-

responding structure function FNS
i (x,Q2) within smaller x region. This requirement

can be fulfilled by using the solutions of DGLAP equations obtained in our previous

chapters.

Based on this general formalism, in the following sections we have investigated the

GSR, GLSSR and BSR with pQCD corrections up to NNLO utilising the well behaved

solutions of the DGLAP evolution equations for FNS
2 , xF3 and xgNS

1 obtained in the

previous chapters 4, 5 and 6 respectively.

7.3 Determination of Gottfried Sum Rule

The Gottfried Sum Rule(GSR)[34] is associated with the non-singlet structure func-

tion F ep
2 − F en

2 , the difference of F2 measured on proton and on neutron in charged

lepton scattering. In accord with parton model this sum rule expresses the fact that

there is one more u valence quark than d valence quark in the proton and is only valid

under the assumption that the seas of u and d quarks in the proton are equal(ū = d̄).

It is written as
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SGSR(Q
2) =

∫ 1

0

dx

x

[
F ep
2 (x,Q2)− F en

2 (x,Q2)

]
=

∫ 1

0

dx

[
1

3
(uv(x,Q

2)− dv(x,Q
2)) +

2

3
(ū(x,Q2)− d̄(x,Q2))

]
=

1

3
+

2

3

∫ 1

0

[
ū(x,Q2)− d̄(x,Q2)

]
dx. (7.4)

In fact if the sea were flavour symmetric, namely ū = d̄, we expect

SGSR =
1

3
. (7.5)

However, the most detailed analysis of muon-nucleon DIS data of NMC Collaboration

gives the following result[65]

SGSR(Q
2 = 4GeV 2) = 0.235± 0.026, (7.6)

which in turn indicates the violation of theoretical expression of Eq. 7.5 and neces-

sitates more detailed investigations of different effects, related to the Gottfried sum

rule.

In QCD, the leading twist pQCD correction up to NNLO for GSR is expressed

as a series in powers of the strong coupling constant αs(Q
2)[35] :

SGSR(Q
2) =

∫ 1

0

dx

x
FNS
2 (x,Q2) =

1

3

[
1 + 0.0355

αs

π
− 0.811

(
αs

π

)2]
. (7.7)

Here the GSR consists of pQCD results up to second order of αs(Q
2).

In accord with Eq. 7.3, the GSR integral can be represented as

SGSR(xmin, Q
2) =

∫ 1

xmin

FNS
2 (x,Q2)

x
dx = SGSR(Q

2)−
∫ xmin

0

xgNS
1 (x,Q2)

x
dx. (7.8)

From Eq. 7.8, it is clear that in order to calculate the integral on the l.h.s., which

represents the GSR for xmin → 0 limite, we need to know FNS
2 (x,Q2) structure

function within smaller x region. This requirement can be fulfilled by using the

solutions of DGLAP equations for FNS
2 , obtained in the chapter 4, which provide well

description of the small-x behaviour of FNS
2 (x,Q2) structure function. Therefore,

substituting (4.49), (4.50) and (4.51) in (7.8) (although the expressions (4.31)-(4.33))
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and using the corresponding expressions for SGSR in LO, NLO and NNLO, we obtain

the GSR integral with LO, NLO and NNLO pQCD corrections as

SGSR(xmin, Q
2)

∣∣∣∣
LO

= SGSR(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.9)

SGSR(xmin, Q
2)

∣∣∣∣
NLO

= SGSR(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.10)

and

SGSR(xmin, Q
2)

∣∣∣∣
NNLO

= SGSR(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
2 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.11)

respectively. Considering a known input point FNS
2 (x0, t0) from experimental data,

we will be able to calculate the GSR integral up to NNLO corrections using the

expressions, (7.9), (7.10) and (7.11) respectively.

In our calculation of GSR, we have used the NMC[63] experimental data point,

FNS
2 (x0, t0) = 0.010348± 0.006208 at x0 = 0.025 and Q2 = 2.34686GeV 2 as the input

point. With this input point we have calculated the Gottfired Sum rule and the results

in accord with equations (7.9), (7.10) and (7.11) are depicted in Fig. 7.2 and Fig. 7.3

as a function of Q2 in comparison with the results predicted by QCD in accord with

Eq.(7.7).
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Figure 7.2: LO, NLO and NNLO results for GSR along with parton model and
pQCD predictions. (Q2’s are taken in the unit of GeV 2).
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Figure 7.3: Our NNLO results for GSR in comparison with parton model and
NNLO pQCD predictions as well as the results of NNPDF collaboration. (Q2’s are
taken in the unit of GeV 2).
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Figure 7.4: GSR as a function of xmin in comparison with NMC, NNPDF and
KMRS results. The uncertainty band shown here is the uncertainty associated with
the iput point.

In Fig. 7.3, the NNLO results are compared with the NNPDF[101] results. In

Fig. 7.4 our results for GSR are depicted as a function of low x limit of integration

xmin in comparison with those obtained by NMC, NNPDF and KMRS. Here we have

also shown the estimated uncertainty band associated with the chosen input point.

Although our result for GSR, as far the figures 7.2, 7.3 and 7.4 are concerned, do

not agree well with those of NMC, NNPDF as well as KMRS, however a very good

agreement with pQCD predictions is observed.

7.4 Determination of Gross-Llewellyn Smith Sum

Rule

The Gross-Llewellyn Smith(GLS) sum rule[38, 39] associated with the non-singlet

xF3(x,Q
2) structure function measured in neutrino-nucleon (ν −N) scattering is one

of the best observables to investigate Quantum Chromodynamics(QCD) as a theory

of strong interaction. Perturbative Quantum Chromodynamics (pQCD) predicts the

value of the GLS integral up to next-next-to-leading order(NNLO) as a function of
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strong coupling constant(αs), the four momentum transfer(Q2) and the number of

accessible quark flavour (nf ). Up to NNLO pQCD corrections, the GLS integral can

be written as[39]

SGLS(Q
2) =

∫ 1

0

dx

x
xF3(x,Q

2) = 3

[
1− αs

π
− a(nf )

(
αs

π

)2

− b(nf )

(
αs

π

)3]
, (7.12)

where the flavour dependent functions are given by a(nf ) = 55
12

− nf

3
and b(nf ) =

41.441− 8.02nf + 0.177n2
f .

As xF3(x,Q
2) structure function is not marred by the presence of the sea quark

and gluon densities about which we have very poor information in particular in the

small-x region and higher order QCD calculations are observed to be largely inde-

pendent of renormalization scheme [165], this prediction is considered as the robust

prediction in pQCD. In order to verify the GLS sum rule, experiments have been

performed by CCFR collaboration[166] and obtained a precision of roughly 3% in

accordance with the analysis in Ref. [167], using a leading-order(LO) QCD-based fit

to extrapolate all data to Q2 = 3.2GeV 2. However, some small but important correc-

tions due to quark mass thresholds, target mass or higher twist effects, which were

not included in previous analysis were reported in Ref. [165, 168–172]. In addition

to these, some small but significant corrections arising from strange quark distribu-

tions and from charge symmetry violating parton distributions were also investigated

recently in Ref. [173]. However, in this chapter we have focused only on the pQCD

corrections up to NNLO.

In order to determine GLS sum rule we have adopted the similar formalism used

in determining GSR. Here firstly we have resolved the GLS integral as

SGLS(Q
2) =

∫ xmin

0

xF3(x,Q
2)

x
dx+

∫ 1

xmin

xF3(x,Q
2)

x
dx, (7.13)

which gives

SGLS(xmin, Q
2) =

∫ 1

xmin

xF3(x,Q
2)

x
dx = SGLS(Q

2)−
∫ xmin

0

xF3(x,Q
2)

x
dx. (7.14)

The integral on the left hand side of (7.14) similarly represents the area under the

curve xF3(x,Q2)
x

from x = xmin to x = 1. For x = xmin → 0, this integral will tend

to cover the whole area under the curve from x = xmin = 0 to x = 1, that is, it will

represent the GLS integral. Again the second part on the right side of (7.14) represents
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the part of total area lying under the curve, xF3(x,Q2)
x

within smaller x region i.e., from

x = 0 to any smaller value x = xmin. Thus we see that in order to investigate the

GLS integral, we just require the knowledge of xF3(x,Q
2) structure function within

smaller x region, not the entire region.

We have already obtained the small-x behaviour of xF3(x,Q
2) structure function

by means of solving DGLAP evolution equation in chapter 5 and they are observed

to be consistent with other experimental as well as parametrization results. Which

implies that the analytical expressions, we have obtained in chapter 5 for xF3(x,Q
2)

are applicable in describing small x behaviour of xF3(x,Q
2) structure function with a

considerable precision and therefore those expressions can be successfully incorporated

in
∫ xmin

0
xF3(x,Q2)

x
dx for xF3(x,Q

2) term and hence we can obtain the GLS integral

(7.14) with LO, NLO and NNLO corrections as

SGLS(xmin, Q
2)

∣∣∣∣
LO

= SGLS(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.15)

SGLS(xmin, Q
2)

∣∣∣∣
NLO

= SGLS(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.16)

and

SGLS(xmin, Q
2)

∣∣∣∣
NNLO

= SGLS(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.17)
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Figure 7.5: Results for the Gross - Llewellyn Smith sum rule at LO, NLO and
NNLO, as a function of Q2. The data are from the CCFR experiment [67]. The
LO, NLO and NNLO curves are offset by the amount given in parenthesis. (Q2’s
are taken in the unit of GeV 2).

respectively. Considering the input point, xF3(x0 = 0.025, t0 = 3.2GeV 2) = 0.3298

from CCFR data we have calculated the GLS sum rule with QCD corrections up to

NNLO using the expressions (7.15), (7.16) and (7.17) respectively and the results are

depicted in Fig. 7.5, Fig. 7.6 and Fig. 7.7.

The Q2 dependence of GLS integral as obtained from Eqs.(7.15), (7.16) and (7.17)

are depicted in Fig. 7.6 in comparison with the experimental data taken from CCFR

collaborations and the corresponding perturbative QCD predictions Eq.(7.12) in LO,

NLO and NNLO. Here the inner error bar shows statistical errors and the outer one,

a combination of statistical and systematic errors associated with CCFR data. Our

results for LO, NLO and NNLO are represented by solid curves with the corresponding

dashed curves representing theoretical QCD predictions Eq.(7.12) using higher-order

QCD corrections (LO, NLO and NNLO) from [39]. Fig. 7.6 reflects the comparative

picture of our NNLO results with those of CCFR data and theoretical predictions of

QCD at NNLO and results obtained by Kataev and Sidorov(KS) in Ref. [167]. In Fig.

7.7 our results of GLSSR are plotted as a function of xmin in comparison with CCFR

measurements. Here the uncertainties due to the chosen input is also estimated and
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Figure 7.6: Our NNLO results for the Gross-Llewellyn Smith sum rule, for various
values of Q2, along with QCD predictions Eq.(7.12) in NNLO, in comparison with
CCFR experiment [67]. The results with up triangle symbols along with uncertainty
bars are the KS[167] results. (Q2’s are taken in the unit of GeV 2).
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Figure 7.7: Results for the Gross-Llewellyn Smith sum rule, for various values of
x. The data are taken from the CCFR experiment [67].
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they are shown by the green band. From these figures one can see that our LO, NLO

and NNLO results are within the statistical uncertainties of measurements by CCFR

collaboration and also consistent with QCD predictions as well as KS results.

7.5 Determination of Bjorken Sum Rule

The Bjorken sum rule is associated with the spin dependent non-singlet structure

function xgNS
1 (x,Q2). BSR relates the difference of proton and neutron structure

functions integrated over all possible values of Bjorken variable, x to the nucleon

axial charge gA. At infinite four-momentum transfer squared, Q2, the sum rule reads

SBSR =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6
. (7.18)

In accord with QCD prediction, the leading twist pQCD correction up to NNLO

for BSR is expressed as follows :

SBSR(Q
2) =

∫ 1

0

dx

x
xgNS

1 (x,Q2) =
gA
6

[
1− αs

π
− 3.583

(
αs

π

)2

− 20.215

(
αs

π

)3]
,(7.19)

which can be resolved to have

SBSR(xmin, Q
2) =

∫ 1

xmin

xgNS
1 (x,Q2)

x
dx = Sp−n

1 (Q2 −
∫ xmin

0

xgNS
1 (x,Q2)

x
dx. (7.20)

Using the solutions of DGLAP equations, obtained in chapter 6, which provide well

description of the small-x behaviour of xgNS
1 (x,Q2) structure function we can deter-

mine the integral on l.h.s. of Eq. 7.20, which will tend to represent the BSR for the

limit x = xmin → 0. Therefore, substituting (6.38),(6.39) and (6.40) in (7.20) and

using the corresponding expressions for SBSR in LO, NLO and NNLO, we obtain the

Bjorken integral with LO, NLO and NNLO QCD corrections as

SBSR(xmin, Q
2)

∣∣∣∣
LO

= SBSR(Q
2)

∣∣∣∣
LO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
LO

P (x0, t)dt

}]
, (7.21)
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SBSR(xmin, Q
2)

∣∣∣∣
NLO

= SBSR(Q
2)

∣∣∣∣
NLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
(7.22)

and

SBSR(xmin, Q
2)

∣∣∣∣
NNLO

= SBSR(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)(

x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}]
+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
(7.23)

respectively. Considering a known input point gNS(x0, t0) from experimental data,

we will be able to calculate the BSR integral up to NNLO corrections using the

expressions, (7.21), (7.22) and (7.23) respectively. In our calculations we have used

gNS(x0 = 0.0143955, Q2
0 = 5GeV 2) = 0.0133075 as the input point, which is taken

from the COMPASS[71] experimental data. With this input point we have calculated

the Bjorken integral and the results in accord with equations (7.21), (7.22) and (7.23)

are depicted in Fig. 7.8 and Fig. 7.9.

In Fig. 7.8, we have plotted our results for BSR integral in LO, NLO and NNLO

as a function of low x limit of integration xmin, in comparison with COMPASS and

HERMES measurements along with the results due to valon model(TSA)[131]. The

uncertainties due to the parameter, b and the input point are estimated only for

the NNLO results and as seen from the Fig. 7.8, they decrease with decrease in

xmin. From Fig. 7.8 we observe an overall batter description of both COMPASS and

HERMES data by our results with respect to the predictions due to valon model.

Again our approach expects batter results for xmin → 0, but there are no COMPASS

measurement beyond x ≈ 0.004 and HERMES measurement beyond x ≈ 0.02 for our

comparative analysis. Saturation of the COMPASS data for BSR is observed within

x > 0.004, however available HERMES results have not saturated at x ≈ 0.01− 0.02.
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Figure 7.8: The results of Bjorken integral as a function of the low x limit of
integration, xmin, in LO, NLO and NNLO in comparison with COMPASS [71]
and HERMES[73] experimental data along with the predictions based on Valon
model[131].
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Figure 7.9: The results of Bjorken integral as a function of momentum transfer
squared Q2 in LO, NLO and NNLO against COMPASS [71] and HERMES[73]
E143[75] and JLab [76–78] experimental data along with the theoretical as well as
phenomenological analysis, Ref. [176–179]. (Q2’s are taken in the unit of GeV 2).
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Figure 7.10: Our results of Bjorken integral in comparison with the QCD predic-
tions up to NNLO[39]. (Q2’s are taken in the unit of GeV 2).

Thus we may expect to occur saturation within the smaller x region and within this

region both HERMES and COMPASS results might agree with each other and reach

an overall compatibility with our measurements.

The Q2 dependency of Bjorken Sum Rule, as predicted by our expressions 7.21,

7.22 and 7.23 is depicted in Fig. 7.9. Here our results are compared with differ-

ent experimental data taken from COMPASS [71], HERMES[73], E143[75] and JLab

experiments [76–78] and with the theoretical as well as phenomenological analysis,

Ref. [176–179]. The results depicted in this figure are calculated using the value of

Λ = 0.300GeV . Here we have also estimated the uncertainty associated with the

NNLO results due to the fitting parameter, b and the input point, and they are

observed to be very small in this regard. It is also observed that the uncertainty

decreases with decrease in Q2.

In Fig. 7.10, we have compared our results with theoretical pQCD predictions

(7.19) for Bjorken integral up to NNLO. Here our results are calculated with Λ =

0.300GeV . Within the estimated uncertainty our results show a very good consistency

with those of pQCD predictions.
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7.6 Summary

In the above sections we have presented some analytical expressions for the determi-

nation of the Gottfired sum rule, the Gross-Llewellyn Smith sum rule and the Bjorken

sum rule. The expressions for sum rules are consisting of the solutions of the DGLAP

evolution equations for FNS
2 , xF3(x,Q

2) and xgNS
1 (x,Q2) respectively, which are ob-

tained in previous chapters, along with the input points FNS
i (x0, t0). Considering

suitable input point as mentioned above, we have calculated the sum rule with pQCD

corrections up to NNLO. We would like to emphasize that our results for various

sum rules are in a overall good agreement with the corresponding experimental re-

sults as well as several strong theoretical, phenomenological predictions and also with

the QCD predictions up to NNLO. These agreement, suggests that the Regge ansatz

along with available data and QCD formalism allows to have a clean test of QCD

predictions for various sum rule. ��
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Chapter 8

Nuclear Effects in Non-Singlet
Structure Functions and Sum Rules

In this chapter we present an analysis of the non-singlet structure functions and

related sum rules taking into account the nuclear effects. In this regard, special at-

tention is given to the nuclear shadowing effect as we are mostly concerning with the

small-x region. The corrections due to nuclear shadowing effect, predicted in several

earlier analysis are incorporated to our results of structure function and sum rules

for free nucleon and calculate the nuclear structure functions as well as sum rules for

nuclei. The calculations are analysed phenomenologically in comparison with avail-

able experimental data and achieved at a very good phenomenological success in this

regard.

8.1 Introduction

Higher order pQCD corrections have a significant contribution towards the precise

predictions of the structure functions as well as the sum rules. In the Chapters 4, 5, 6

and 7 we have discussed in detailed about the evolution of non-singlet structure func-

tions and associated sum rules in accord with pQCD, along with their QCD corrections

up to NNLO. In addition to pQCD corrections there are several non-perturbative ef-

fects such as higher twist effects, nuclear corrections, target mass corrections etc., to

be included into the joint QCD analysis of structure functions and sum rules. In this

chapter we present an analysis of the non-singlet structure functions and related sum

rules taking into account the nuclear effects. Particular emphasise is given to the
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shadowing effect as we are mostly dealing with the small-x region.

We have already given a brief introduction about the nuclear effects in section 1.7.

The fact that the structure functions of bound and free nucleons are not equal was

discovered in a deep inelastic muon experiment carried out by the European Muon

Collaboration at CERN in 1982[52]. Since then the nuclear effect has been actively

investigated with ever more sophisticated and ingenious deep inelastic scattering ex-

periment with charged lepton and neutrinos.

Available experimental information on nuclear structure functions are mainly

from charged-lepton scattering DIS experiments performed at CERN [180–186], SLAC

[187, 188], DESY [189], FNAL[190, 191] and recently at JLab [192, 193]. In addition,

data from the DrellYan reaction of protons off nuclear targets are also available [194].

The experiments usually measures the ratio R2 of the structure function F2 of a

complex nucleus to deuterium. The studies on the behaviour of the ratio R2 as a

function of x for a given fixed Q2 reflects four distinct region of characteristic nuclear

effects: shadowing region(x < 0.1), anti-shadowing region(0.1 < x < 0.3), EMC

region (0.3 < x < 0.8) and fermi motion region(x > 0.8). In addition there are

several theoretical treatments that predicts a Q2 dependent nuclear effect only in the

shadowing region, while for 0.1 < x < 0.8 R2 is almost Q2 independent. However, the

data available on the Q2 dependence of nuclear effects are still scarce. In this thesis

we have not take into account the Q2 dependent nuclear corrections and considered

only the x-dependency of nuclear effects for structure functions.

A quantitative understanding of the nuclear effects in deep inelastic nuclear scat-

tering is important for a number of reasons. A proper interpretation of experimental

data can provide valuable insights into the origin of nuclear force and helps us in

understanding the possible modification of the properties of hadrons in a nuclear

medium. Further, nuclear data provides the opportunity to have reliable information

on the hadrons, otherwise not accessible directly. As for example, the extraction of

the neutron structure function usually requires the deuterium and proton data, which

in turn requires a proper understanding of nuclear effects[195]. Similarly, the use of

charged-lepton and neutrino nuclear DIS data in global analysis of QCD observables

aiming towards better determination of the proton and neutron pdfs and the higher

twist terms [196–198] are the other examples in this regard.

The understanding of nuclear effects is particularly relevant for neutrino physics.

For precision measurements in neutrino physics the use of heavy nuclear targets is
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required in order to collect a significant number of interactions. The presence of

an axial-vector component in the weak current and the quark flavour selection dis-

tinguishes neutrinos from charged leptons and imply a more complex description of

nuclear effects in neutrino scattering. The role of nuclear corrections to neutrino

structure functions has been recently emphasized[199] after the NuTeV collaboration

reported a deviation from the Standard Model prediction for the value of the weak

mixing angle (sin2ΘW ) measured in neutrino DIS [200]. It must be mention that

nuclear effects are important not only in the determination of electroweak param-

eters, but also for the understanding of neutrino masses and mixing. The recent

high-intensity NuMI[201] and JPARC [202] neutrino facilities offer the possibility to

perform a detailed study of nuclear effects in neutrino interactions on a relatively

short time scale. The construction of a future neutrino factories[203] are expecting to

reach the ultimate precision of the neutrino probe.

8.2 Shadowing Effect in Nuclear Deep Inelastic Scat-

tering

As this thesis is concerned with the small-x behaviour of the non-singlet structure

functions and sum rules, we would like to concentrate only on the shadowing effect.

Shadowing effect is the most pronounced nuclear effect in lepton nuclear DIS. Sev-

eral theoretical models to this shadowing have been proposed. In literature there are

essentially two main classes of approaches in order to have information about shad-

owing effect: one concerns with the origin of the shadowing effect and the other one

addresses the evolution of shadowing effect by means of parameterizations.

Some models associated with the origin of shadowing effect provides a qualitative

understanding using the fact that that in the rest frame of the nucleus the incoming

photon splits into a qq̄ pair long before reaching the nucleus, and this qq̄ pair interacts

with it with typical hadronic cross sections, which results in absorption [204–210]; in

this way nuclear shadowing is a consequence of multiple scattering which in turn is

related to diffraction [207, 211, 212]. On the other hand, in a frame in which the

nucleus is moving fast, gluon recombination due to the overlap of the gluon clouds

from different nucleons reduces gluon density in nucleus with mass number A by A

times that in a free nucleon[213,214]. These studies have received a great theoretical

impulse with the development of semiclassical ideas in QCD and the appearance of
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non-linear equations for evolution in x in this framework(see [215–217] and references

therein.).

Other models do not address the origin of the nuclear shadowing but contains

a parametrization at Q2
0, which is obtained from a fit to experimental data. Dis-

tribution of partons inside nucleus are parameterized at some scale Q2
0 and then

evolved using the DGLAP[24] evolution equations. Nuclear effects are usually stud-

ied through a global χ2 analysis method by using all the available charged-lepton DIS

data, and then by adding Drell-Yan data to the data set[218]. In order to determine

nuclear effects, various global analysis have been reported[219–224]. The analysis

performed by Eskola et al.[225] and Hirai et al.[218, 224] are based on the leading-

order(LO) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi(DGLAP) evolution, while the

next-to-leading-order (NLO) evolution was performed by de Florian and Sassot[219].

In 1999, Eskola, Kolhinen, Ruuskanen and Salgado(EKRS)proposed a set of nu-

clear parton distributions by using the FA
2 /FD

2 data in deep inelastic lA collisions

and the nuclear Drell-Yan dilepton cross sections measured in pA collisions and

their results were observed to agree very well with the relevant EMC data and

the E772 data at Fermilab[226] within the kinematical ranges 106 ≤ x ≤ 1 and

2.25GeV 2 ≤ Q2 ≤ 104GeV 2. A reasonable explanation of the measured data of F2

was provided by Hirai, Komano and Miyama(HKM)[224] based on two (quadratic

and cubic) types of nuclear parton distributions whose parameters were determined

by a χ2 global fit to the available experimental data, except those from the proton-

nucleus Drell-Yan process. The covered kinematical ranges were 109 ≤ x ≤ 1 and

1GeV 2 ≤ Q2 ≤ 105GeV 2 for deuteron and heavy nuclear targets. Further, in 2004,

Hirai, Komano and Nagai(HKN)[218] re-analyzed the measured ratios of nuclear struc-

ture functions FA
2 /FA′

2 and the ratios of Drell-Yan cross sections between different

nuclei for obtaining another parton distribution function in nuclei.

In Ref. [219–222] the nuclear parton distribution have been determined, whereas

Ref. [223] concentrated on the determination of nuclear structure functions using

conventional nuclear models. The results from different models usually depend on

additional semi-phenomenological assumptions and often contradict each other. Some

recent parametrization are provided bellow as examples

• FS04[219](Q2
0 = 0.4GeV 2): f

N/A
i (x) =

∫
dy
y
Wi(y,A, Z)f

N
i (x/y)
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Wi(y, A, Z) =

{ A[avδ(1− εv − y) + (1− av)δ(1− ε′v − y)]

+nv(y/A)
αv(1− y/A)βv + ns(y/A)

αs(1− y/A)βs (i = V )

Aδ(1− y) + ai
Ni
( y
A
)αi (1−

y
A
)βi (i = s, g)

• HKN07[220](Q2
0 = 1GeV 2): fA

i (x) = Wi(y,A, Z)
1
A
[Zfp

a (x) + (A− Z)fn
a (x)]

Wi(y, A, Z) = 1 + (1− 1
Aα )

ai+bix+cix
2+dix

3

(1−x)β

• SYKMOO08[221](Q2
0 = 1.69GeV 2): fA

i (x) = Wi(y, A, Z)
1
A
[Zf

p/A
a (x) + (A −

Z)f
n/A
a (x)]

xf
N/A
i (x) =

{
A0x

A1(1− x)A2eA3x(1 + eA4x)A5 (i = uv, dv, g, ū+ d̄, s̄)

A0x
A1(1− x)A2 + (1 + A3x)(1− x)A4 (i = d̄/ū)

• EPS09[222] (Q2
0 = 1.69GeV 2): fA

i (x) = RA
i (x)

1
A
[Zfp

a (x) + (A− Z) ∗ fn
a (x)],

RA
i (x) =

{ a0 + (a1 + a2x)[e
−x − e−xa ] (x ≤ xa : shadowing)

b0 + b1x+ b2x
2 + b3x

3 (xa ≤ x ≤ xe : antishadowing)

c0 + (c1 − c2x)(1− x)−β (xe ≤ x ≤ 1 : EMC and Fermi Motion)

Here fA
i is the nuclear parton distribution function for the parton type i and f p

i

and fn
i are the corresponding proton and neutron contribution. The parameters in

these equations are determined by global χ2 analyses of world experimental data on

nuclear structure functions. Experimental data are generally obtained in different Q2

points from Q2
0. The standard DGLAP evolution equations are used for evolving the

distributions to the experimental points. There are three conditions to be satisfied

for the NPDFs, so that three parameters should be fixed by the following relations

[218,224]:

• Baryon number: A
∫
dx[1

3
uA
v (x) +

1
3
dAv (x)] = A

• Charge: A
∫
dx[2

3
uA
v (x)− 1

3
dAv (x)] = Z

• Momentum:A
∑

i=q,q̄,g

∫
dxxfA

i (x) = A

Like the charged-lepton DIS, the deep inelastic neutrino scattering is also a signif-

icant process for investigating the structures of hadrons and nuclei. In neutrino-DIS

process, the structure functions F2(x,Q
2) and the parity-violating structure function

xF3(x,Q
2) can simultaneously be measured. Big European Bubble Chamber Collab-

oration (BEBC) published the antineutrino-neon/deuterium DIS data in 1984, within

the kinematic region of 0 < x < 0.7 and 0.25 < Q2 < 26GeV 2[229]. BEBC results

for differential cross section ratio in the high Q2 and 0.3 < x < 0.6 region[229] is
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compatible with the muon and electron scattering data from EMC and SLAC. In

the same year, CERN-Dortmund-Heidelberg-Saclay Collaboration (CDHS) measured

events originating in a tank of liquid hydrogen and in the iron of detector in the 400

GeV neutrino wide-band beam of the CERN Super Proton Synchrotron(SPS)[230].

In their measurements on total cross sections, differential cross sections and structure

functions for hydrogen and iron, no significant difference between the structure func-

tions for proton and iron was observed. E545 Collaboration at Fermilab [231], once

more measured the cross sections in the deep inelastic neutrino scattering on neon or

deuterium. However they were not able to give a definite conclusion due to substan-

tial statistical uncertainties. In fact, many neutrino DIS experiments were carried out

with their own primary physical goals, for instance the structure of proton, the mixing

angles of electro-weak interaction etc., but none of them can individually confirm the

EMC effect.

Although there is no individual neutrino experiment on EMC effect, the differ-

ential cross sections and structure functions have been measured in neutrino-nucleus

experiments in CCFR[66, 232] and NuTeV[68] at Fermilab, and in CDHSW[69] and

CHORUS[70] at CERN. These experimental data would help us to understand the

nuclear effects in the neutrino-nucleus interaction further.

Along with the experimental efforts, several groups have been performed theo-

retical as well as phenomenological analysis of the nuclear effects in neutrino-nucleus

DIS. Among them most prominent are the Kulagin and Petti(KP)[223,227], Qiu and

Vitev(QV)[233] and Hirai, Komano and Nagai(HKN) groups, which have predicted

the nuclear corrections in the low x region. Kulagin and Petti’s approach is quite

different from the above ones in the sense that they try to calculate the nuclear

corrections in conventional nuclear models as far as they can, and then they try to

attribute remaining factors to off-shell effects of bound nucleons for explaining the

data.

8.3 Nuclear Shadowing Effect in the Non-singlet

Structure Functions

In our previous chapters 4,5, and 6, we have calculated the non-singlet structure

functions by means of solving DGLAP equations using two Regge ansatz as the initial

input. Our calculations predicts the structure functions for a nucleon(single or free)
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as

Fi(x, t) = Fi(x0, t0) exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.1)

However in predicting the free nucleon structure functions, we need to consider the

input point Fi(x0, t0), a free nucleon structure function at x = x0 and t = t0. In our

previous analysis, the points were taken from the available experimental data. It is

known that the experimental data for nucleon structure functions are extracted from

nuclear targets and hence they are with several nuclear effects. Thus the experimental

input points, we considered in our previous analysis are nothing but nuclear struc-

ture function FA
i (x0, t0), which in turn leads to inaccuracy in predicting free nucleon

structure function. Therefore accurate prediction of free nucleon structure function

requires a nuclear effect free input point.

The experimental results are the structure functions for bound nucleon FA
i which

is related to the free nucleon structure function as

R(x, t) =
FA(x, t)

FN(x, t)
. (8.2)

Here FA(x, t) represents the nucleon structure function per nucleon and FN(x, t), the

free nucleon structure function. At x = x0 and t = t0, if we consider the value of the

nuclear correction factor to be R(x, t) = R0, the input point in (8.1) can be replaced

with FN
i (x0, t0) =

FA
i (x0,t0)

R0
and provides

FN
i (x, t) =

FA
i (x0, t0)

R0

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.3)
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Structure functions/ Referred analysis References
FNS
2 S. A. Kulagin and R. Petti [227]

xF3 S. A Kulagin and R. Petti [227]
xgNS

1 V. Guzey and M. Strikman [228]

Table 8.1: Summary of referred analysis in our study of nuclear effects in various
structure functions and sum rules.

Above expression is capable of predicting the free nucleon structure function

through the experimental data FA
i (x0, t0) along with the correction factor R0.

Moreover, due to the unavailability of free nucleon structure function data, direct

phenomenological analysis of (8.3) is not possible. In order to perform phenomeno-

logical analysis of our results with the experimental data either we need to remove

nuclear effects from the data points or include the corresponding effects to our results

of free nucleon. Here we have considered the later one, i.e., we have incorporated the

nuclear correction factor R(x) with our calculations as

FA
i (x, t) = R(x)FN

i (x, t) = R(x)
FA
i (x0, t0)

R0

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

, (8.4)

in order to describe properly the experimental results.

The results for the nuclear correction factor R(x) predicted in different analysis

for different structure functions, which are utilized in our analysis are summarised in

Table8.1. Incorporating these nuclear effects we have calculated the nuclear structure

functions. Here we have also considered the fact that the nuclear effects in the non-

singlet parts FNS
2 and gNS

1 are equivalent to the corresponding structure functions F2

and g1[55].

8.3.1 Shadowing Effect in FNS
2 (x,Q2)

In accord with (8.4), our expressions obtained in chapter 4 for FNS
2 nucleon structure

functions predicts the corresponding nuclear structure functions as
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Figure 8.1: Our NNLO results for FNS
2 structure function with and without

nuclear effect, in comparison with the NMC measurement.

F
NS(A)
2 (x, t) = R2(x)F

NS(N)
i (x, t) = R2(x)

F
NS(A)
2 (x0, t0)

R0

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.5)

In this regard we have used the results for nuclear correction factor, R2 from Ref.[218,

227, 233]. Incorporating the corrections to our calculations of FNS
2 structure func-

tion, we have obtained the nuclear structure function F
NS(A)
2 and depicted it in Fig.

8.1. Here we have shown only the modification of our NNLO results in comparison

with NMC experimental data. We observe that our results for free nucleon structure

functions, along with nuclear effect predicted by KP provides a well description of

available experimental data for nuclear structure functions.
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Figure 8.2: Our NNLO results for xF3 structure function with and without nuclear
effect, in comparison with the CCFR data.

8.3.2 Shadowing Effect in xFNS
3 (x,Q2)

Our result (5.51) for xF3 nucleon structure functions along with necessary corrections

due to nuclear effect predicts the nuclear structure functions as

xF
(A)
3 (x, t) = R3(x)xF

(N)
3 (x, t) = R3(x)

xF
(A)
3 (x0, t0)

R0

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.6)

In this case we have used the results for nuclear correction factor, R3 from KP[227].

Incorporating the corresponding corrections to our calculations of xF3 structure func-

tion, we have obtained the nuclear structure function xF
(A)
3 and depicted them in Fig.

8.2. Here we have shown only the modification of our NNLO results in comparison
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Figure 8.3: Our NNLO results for xgNS
1 structure function with and without

nuclear effect, in comparison with SMC, HERMES, COMPASS and E143 data.

with CCFR, NuTeV, CHORUS and CDHSW experimental data. We observe that

our results for free nucleon structure functions, along with nuclear effect predicted by

KP provides a well description of available experimental data for nuclear structure

functions.

8.3.3 Shadowing Effect in xgNS
1 (x,Q2)

Similarly using the results for Rg obtained in [228] we can obtain the spin dependent

nonsinglet nuclear structure functions as

xg
NS(A)
1 (x, t) = Rg(x)xg

NS(N)
1 (x, t) = Rg(x)

xg
NS(A)
1 (x0, t0)

Rg

×

exp

[∫ t

t0

(
α(t)

2π

)
NNLO

U(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)2

NNLO

V (x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

W (x0, t)dt

](
x

x0

)(1−bt)

. (8.7)
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The results for (8.7) are depicted in Fig. 8.3. In this regard our results including

nuclear effects are observed to be compatible with the experimetal data.

8.4 Shadowing Effect in the Sum Rules

Analogous to the structure functions, experimental determination of the DIS sum

rules consists of considerable nuclear effects. As DIS sum rules are associated with

the underlying symmetry as well as conservation laws of interactions, they provide

strong normalization constraints on the structure functions. Therefore the sum rules

are expected to provide an important bridge between different nuclear effects.

In this section we briefly discuss the nuclear effects in DIS sum rules, specifically

in the GSR, GLSSR and BSR based on several earlier analysis. We then incorporate

possible nuclear corrections to our results of sum rules, obtained in the previous

chapter and perform phenomenological analysis in comparison with the experimental

measurements.

8.4.1 Shadowing Correction to Gottfried Sum Rule

In the NMC experiment, due to the unavailability of fixed target for neutron, deuteron

is usually used for measuring neutron structure function and combining the relations

F p
2 − F n

2 = 2F d
2

1− F n
2 /F

p
2

1 + F n
2 /F

p
2

, (8.8)

F n
2

F p
2

= 2
F d
2

F p
2

− 1 (8.9)

and

F d
2 = F p

2 + F n
2 (8.10)

together with world averaged deuteron structure functions, the difference F p
2 − F n

2 is

calculated and these calculations are used in determining the GSR. The results can be

compared with the GSR only if there is no nuclear modification in the deuteron. How-

ever it is well known that nuclear structure functions are modified and the major con-

tribution to the modification comes from the small-x region i.e., shadowing region. Nu-

clear corrections in the deuteron to the GSR, in particular the shadowing effect, were
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calculated in various models[234–240]. So far, VMD, Pomeron and meson-exchange

mechanisms have been studied. In Ref. [240], using VMD model, including ρ, ω and ϕ

as the vector mesons, estimated the shadowing correction δSGSR = −0.039to−0.017 to

the GSR SGSR = SNMC
GSR + δSGSR. There are other studies in the Pomeron and meson

exchange models. Historically, the first estimate of shadowing contribution to SGSR

is discussed by the Pomeron exchange model[234, 235]. A possible way of describing

the high-energy scattering in the diffractive region is in terms of Pomeron exchange.

The virtual photon transforms into a qq̄ pair which then interacts with the deuteron.

In the diffractive case, the target is remain intact and only vacuum quantum number,

namely the Pomeron, could be exchanged between the qq̄ pair and the nucleons. In the

earlier works, the shadowing correction in this model was rather large δSGSR ≈ −0.08

[235, 238]. However, the Pomeron contribution is reduced if more realistic deuteron

wave functions are used according to Ref. [239]. Next, meson-exchange corrections

were investigated in Refs. [236,239]. The studied mesons are π, ω and σ in Ref. [236],

and ρ is also included in Ref.[239]. If the corrections due to the π, ω and σ mesons

were taken into account, the NMC result became SGSR = 0.29±0.03 [236]. Therefore,

meson-exchange contributions reduce the discrepancy between the NMC data and the

Gottfried sum rule.

As far Figs.7.2, 7.3 and 7.4 are concerned, it is observed that our results do

not agree well with the available experimental data of NMC. Again as the nuclear

effects predicted by the available analysis(discussed above), are observed to be large

and inclusion of these effects to our results will deviate from the experimental data

farther, hence we have not included the nuclear corrections to our results of GSR.

8.4.2 Shadowing Correction to GLS Sum Rule

Experimental measurements of GLS sum rule was performed by CCFR and the results

were extracted from Fe target. In order to compare our results for GLS sum rule

obtained in chapter7, we refer the nuclear corrections estimated in [223, 241]. The

detailed investigation on the nuclear corrections to GLS sum rule was performed in

Ref. [223]. They explicitly separated the nuclear corrections to the GLS integral as

SA
GLS = SN

GLS + δSGLS, where SN
GLS refers to the GLS integral for nucleon. In accord

with their predictions, the nuclear corrections to the GLS sum rule cancel out as x → 0

in the leading order, which is due to the baryon charge conservation. They have also

calculated the GLS integral SGLS for different nuclear targets. In Ref. [223, 241],
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they obtained the corrections for iron and deuteron nuclei as
δSFe

GLS

3
= −4.0×10−3

Q2 and
δSD

GLS

3
= −6.3×10−4

Q2 respectively. In Ref. [223] they have nicely presented their result

in Fig. 10. From Fig. 10 we observe that the nuclear correction δGLS decreases

progressively by increasing Q2.

The GLS sum rule for nuclei can be expressed as

SA
GLS(xmin, Q

2)

∣∣∣∣
NNLO

= SN
GLS(Q

2) + δSGLS, (8.11)

where the first term on the right hand side of above equation represents the GLS sum

rule for free nucleon and the second term for the nuclear correction. Using the NNLO

pQCD corrected expression 7.17, obtained in chapter 7 as SN
GLS(Q

2) we get

SA
GLS(xmin, Q

2)

∣∣∣∣
NNLO

= SGLS(Q
2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
FNS
3 (x0, t0)

(
x

x0

)(1−bt)

exp

{∫ t

t0

(
α(t)

2π

)
NNLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NNLO

Q(x0, t)dt

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]
+ δSGLS. (8.12)

Now incorporating the KP[223,241] prediction
δSFe

GLS

3
= −4.0×10−3

Q2 , for the nuclear

correction term, we have calculated SA
GLS and depicted the results in Fig. 8.4, in

comparison with CCFR measurements of xF3 structure function with Fe as the target.

In addition, we have plotted our NNLO results and the results of KS[179] prediction.

From the figure we see that the our NNLO expression for GLSSR along with necessary

nuclear correction has the capability of describing the experimental data of GLSSR

for nuclei.

8.4.3 Shadowing Correction to Bjorken Sum Rule

Aiming at measuring the polarized structure functions of protons and neutrons and

in order to test the Bjorken sum rule several experiment have been performed. The

measurement of gn1 (x) involves necessarily nuclear targets and several experiments

have been performed using 2H and 3He targets. However 3He target has advantage
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Figure 8.4: Our NNLO results for Gross-Llewelln Smith sum rule with and without
nuclear effect, in comparison with those of CCFR measurements. (Q2’s are taken
in the unit of GeV 2).
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over 2H target. On the other hand the use of heavy nucleus as target yields nuclear

effects. Nuclear effects for the Bjorken sum rule were first discussed in Ref. [242] and

Ref. [243]. In particular it was pointed out in Ref. [243] that convolution models and

three nucleon description of A = 3 system lead to results for g1A=3 inconsistent with

the Bjorken sum rule. This observation was left unnoticed in Ref. [244, 245] and in

all analyses of the experimental data. In Ref.[55], the ratio of the Bjorken sum rule

for A = 3 to A = 1 within impulse approximation was found to be

R =

∫ 1

0
dx

[
gHe
1 (x,Q2)− gH1 (x,Q2)

]
∫ 1

0
dx

[
gn1 (x,Q

2)− gp1(x,Q
2)

] =
G

3H
A

GA(n)
, (8.13)

where GA is the axial coupling constant for β decay of the nucleus A. Combining the

most recent experimental data on
G

3H
A

GA(n)
for tritium β-decay [246] it was found to be

G
3H
A

GA(n)
= 0.9634 ± 0.003. However, for the case of 7Li the ratio was obtained to be

0.73. Further in Ref. [55], this value was estimated to be
G

3H
A

GA(n)
= 0.922± 0.006.

Using the values of
G

3H
A

GA(n)
obtained in Ref. [55, 246], we can calculate the BSR

integral SA
BSR =

∫ 1

0
dx

[
gHe
1 (x,Q2) − gH1 (x,Q2)

]
using our NNLO results for SBSR =∫ 1

0
dx

[
gn1 (x,Q

2)− gp1(x,Q
2)

]
, obtained in chapter 7 as

SA
BSR =

G
3H
A

GA(n)

[
SBSR(Q

2)

∣∣∣∣
NNLO

−
∫ xmin

0

dx

x

[
gNS(x0, t0)

(
x

x0

)(1−bt)

×

exp

{∫ t

t0

(
α(t)

2π

)
NLO

P (x0, t)dt+

∫ t

t0

(
α(t)

2π

)2

NLO

Q(x0, t)dt

}

+

∫ t

t0

(
α(t)

2π

)3

NNLO

R(x0, t)dt

}]]
. (8.14)

In Fig. 8.5, we have shown the results for BSR in accord with Eq.(8.14) along

with other experimental. Nuclear correction incorporated results are observed to be

consistent with other measurements.

8.5 Summary

In this chapter we present an analysis of the non-singlet structure functions and

related sum rules taking into account the nuclear effects. In this regard, special
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attention is given to the nuclear shadowing effect as we are mostly concerning with

the small-x region. Incorporating the results of corrections due to shadowing nuclear

effect obtained in several earlier analysis for different structure functions as well as

sum rules to our results of the structure functions and sum rules for free nucleon, we

obtain structure functions and sum rules for nuclei. Nuclear correction incorporated

results are studied phenomenologically and it is observed that along with the nuclear

correction, our NNLO results of the non-singlet structure functions and sum rules

have the capability of providing well description of their respective experimental data

collected using nuclear target. capable of describing well the obtained in previous

chapters analysis in comparison with the available data and parametrization. ��
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Chapter 9

Higher Twist Effects in Non-Singlet
Structure Functions and Sum Rules

In this chapter the higher twist corrections to the non-singlet structure functions and

sum rules associated with them are studied. Here, possible improvement in the accu-

racy of our results for the non-singlet structure functions and sum rules due to the

inclusion of relevant higher twist terms is investigated. Based on a simple model we

have extracted the higher twist contributions to the non-singlet structure functions and

sum rules in NNLO perturbative orders and then incorporated them with our results.

Our NNLO results along with higher twist corrections are observed to be compatible

with experimental data.

9.1 Introduction

The behaviour of the deep inelastic structure functions can be analyzed with the per-

turbative QCD. A method used for this analysis is the operator product expansion

method(OPE)[51]. The OPE is successful in describing the contributions from differ-

ent quark-gluon operators to hadronic tensor and helps in ordering them according to

their twist. In accord with OPE, the DIS structure functions and sum rules consist

of two parts, the leading twist(LT) and the higher twist(HT) contributions:

Fi(x,Q
2) = FLT

i (x,Q2) +
Hi(x,Q

2)

Q2
, (9.1)

where i labels the type of the structure function (Fi = F2, F3, g1). The leading twist
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term is associated with the single particle properties of quarks and gluons inside the

nucleon and is responsible for the scaling of DIS structure function via perturbative

QCD αs(Q
2) corrections. The higher twist terms reflect instead the strength of multi-

parton interactions (qq and qg). Since such interactions spoil factorization one has to

consider their impact on the parton distribution functions extracted in the analysis

of low-Q2 data. Because of the non-perturbative origin it is difficult to quantify the

magnitude and shape of the higher twist terms from first principles and current models

can only provide a qualitative description for such contributions, which must then be

determined phenomenologically from data.

The higher twist terms are governed by the terms contributing at different orders

of 1/Q2:

Hi(x,Q
2)

Q2
=

h1(x)

Q2
+

h2(x)

Q4
+ ............, (9.2)

the leading term in this expansion is known as twist-two, the sub-leading ones twist-

three, etcetera. The higher twist terms are suppressed by terms of order 1/Q2, 1/Q4...,

respectively.

The currently available experimental data on deep inelastic structure functions

covers a large kinematical regime with high precision measurements. This provides

an interesting challenge for theoretical physics when it comes to describing this data

in the low-Q2 domain. pQCD predictions, even with higher order corrections up to

NNLO and NNNLO observed to be not sufficient for a precise description of deep

inelastic structure function data, which in turn reveals that the discrepancy among

data and pQCD predictions are not primarily the sub-leading terms in powers of αs,

but corrections which are proportional to the reciprocal value of the photon virtuality

Q2, viz. higher-twist terms.

The extraction of higher twist terms from the data is a longstanding problem,

as recognized from the very first developments of a pQCD phenomenology [247,248].

Existing information about higher twist terms in lepton-nucleon structure functions is

scarce and somewhat controversial. Early analysis [249,250] suggested a significant HT

contribution to the longitudinal structure function FL. The subsequent studies with

both charged leptons [251–253] and neutrinos [140] raised the question of a possible

dependence on order of QCD calculation used for the leading twist. The common

wisdom is generally that HTs only affect the region of Q2 ∼ 1 − 3GeV 2 and can be

neglected in the extraction of the leading twist.
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The higher twist terms are presently poorly known and currently is a subject of

both theoretical and phenomenological studies. A better understanding of HT terms,

in particular their role in describing low Q2 and high x DIS data is important and

provides valuable information on quark gluon correlations inside the nucleon. The

importance of highertwist (HT) contribution to structure functions was pointed from

the very beginning of QCD comparison with experimental data[247] on structure func-

tions. Despite a fast progress in theoretical QCD calculations of power corrections to

non-singlet structure functions and sum rules [254, 255] ( for reviews and references

see [256]), the shape of HT (order 1/Q2) contributions is measured only for F2 SF

[257] and is still only estimated for xF3[258]. Several reports are available on the

determination of the higher twist contributions in the deeply-inelastic structure func-

tions F ep,ed
2 (x,Q2, (see [259] for details). Higher twist contributions were also studied

in deep-inelastic neutrino scattering in Ref. [260–263]. Also in the case of polarized

deeply inelastic scattering higher twist corrections are present in general. Since the

polarized structure functions are measured through an asymmetry, the effect of higher

twist contributions in the denominator function has to be known in detail. In [264] no

significant higher twist contributions were found. Other authors claim contributions

in the low x region[265], which is also the region of very low values of Q2.

The non-singlet structure functions as well as associated sum rules obtained in the

previous chapters in this thesis by means of incorporating the ansatz Fi = Ax1−bt as

the initial input to DGLAP equation are the results of pQCD effect with higher order

corrections up to NNLO. Although our results are capable of describing the avail-

able experimental data with considerable phenomenological success, in the following

sections we report on better description of the data by our results along with higher

twist corrections. We have incorporated relevant higher twist terms, proposed in dif-

ferent theoretical as well as phenomenological analysis to our results and analysed

their effect on possible improvement in accuracy of our results in describing available

experimental data.

The usual approach in analyses whose main aim is the extraction of leading twist

PDFs is either to parametrize the higher twist contributions by a phenomenological

form and fit the parameters to the experimental data[197, 266], or to extract the Q2

dependence by fitting it in individual bins in x [267–271]. Such an approach effectively

includes contributions from multiparton correlations (the true higher twist contribu-

tions) along with other power corrections that are not yet part of the theoretical
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treatment of DIS at low Q2. These include O(1/Q2) contributions such as jet mass

corrections [272] and soft gluon resummation [273], as well as contributions which are

of higher order in αs but whose logarithmic Q2 behavior mimics terms ∝ 1
Q2 at low

virtuality[271,274].

9.2 Higher Twist in Non-Singlet Structure Func-

tions

In order to estimate the higher twist contribution to the non-singlet structure func-

tions, we have performed an analysis based on a simple model. Here the first higher

twist term is extracted and to do so we have parameterised the non-singlet structure

functions as

F data
i (xi, Q

2) = FLT
i (xi, Q

2) +
h1(xi)

Q2
. (9.3)

Here leading twist(LT) term corresponds to the pQCD contribution to structure func-

tions and the constants h1(xi) (one per x - bin) parameterize the x dependence of

higher twist contributions. For the leading twist term, we have utilised the results

for the non-singlet structure functions obtained in our previous chapters. Incorporat-

ing our results for non-singlet structure functions in NNLO as the LT terms we have

extracted the difference, F data
i (xi, Q

2)− FLT
i (xi, Q

2) from their corresponding exper-

imental data and then fitted with h1(xi)/Q
2. From the best fitting values, we have

determined the higher twist contribution terms hi per x-bin. In this analysis we have

performed our fitting analysis within the kinematical region 0.0125 ≤ x ≤ 0.5 and

1 ≤ Q2 ≤ 20GeV 2. In this analysis we have extracted the higher twist contribution

to the FNS
2 and xF3 structure functions only. Due to unavailability of gNS

1 data at

different Q2 we could not include the gNS
1 structure function. The higher twist effects

in FNS
2 and xF3 are presented in the subsection 9.2.1 and 9.2.2 respectively bellow.

9.2.1 Higher Twist Effect in FNS
2 Structure Function

As discussed above, the simple parametrization

F data
2 (xi, Q

2) = (FNS
2 )LT (xi, Q

2) +
h1(xi)

Q2
, (9.4)
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Figure 9.1: Higher twist corrections to FNS
2 structure function at NNLO. (Q2’s

are taken in the unit of GeV 2).

for the FNS
2 structure function incorporating higher twist contributions in terms of the

parameter h1(xi) is fitted to the NMC data for the x-bins xi = 0.0125, 0.0175, 0.025, 0.035.

Here we have used the NNLO results (4.51) for the term (FNS
2 )LT (xi, Q

2). Best fitted

values of h1 at different values of x for the FNS
2 structure functions are presented in

Table 9.1 and Fig. 9.1 along with the χ2

d.o.f.
value.

xi hNNLO
1

0.0125 −0.00397± 0.0025
0.0175 −0.00283± 0.0029
0.025 −0.0045± 0.0026
0.035 −0.0022± 0.0052
χ2

d.o.f.
0.85

Table 9.1: Higher Twist corrections to FNS
2 structure functions at NNLO.

In Fig. 9.1 we have presented the best fitting results of (9.4) for FNS
2 in comparison

with NMC experimental data. Here both the NNLO results, with HT and without

HT are shown. Significant higher twist contribution to FNS
2 structure function is

observed in the low-x, low-Q2 region. We observe that our expressions along with the
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HT corrections provide better description of NMC data than without HT within our

kinematical region of consideration.

9.2.2 Higher Twist Effect in xFNS
3 Structure Function

In a similar way, the parametrization

xF data
3 (xi, Q

2) = xFLT
2 (xi, Q

2) +
h1(xi)

Q2
, (9.5)

is used for the xFNS
3 structure function with higher twist contributions in terms of

the parameter h1(xi). Incorporating the NNLO result (5.51) as the LT term, we have

fitted the parametrization with 9.5 with the CCFR, NuTeV, CHORUS and CDHSW

data for the x-bins xi = 0.0125, 0.015, 0.0175, 0.025, 0.035, 0.045. Best fitted values of

h1 at different values of x for the xFNS
3 structure functions are presented in Table 9.2

and Fig. 9.2 along with the χ2

d.o.f.
value.

xi hNNLO
1

0.0125 0.064± 0.0258
0.015 0.00504± 0.00804
0.0175 0.0189± 0.034
0.025 0.00797± 0.0368
0.035 −0.0118± 0.0295
0.045 −0.0429± 0.0306
χ2

d.o.f.
1.03

Table 9.2: Higher Twist corrections to xF3 structure functions at NNLO.

In Fig. 9.2 we have presented the best fitting results of (9.5) for xFNS
3 in com-

parison with CCFR experimental data. Here both the NNLO results, with HT and

without HT are shown. Significant higher twist contribution to xFNS
3 structure func-

tion is observed in the low-x, low-Q2 region. We observe that our expressions along

with the HT corrections provide better description of CCFR data than without HT

within our kinematical region of consideration.

9.3 Higher Twist Effect in Sum Rules

In the previous section, the higher twist effects in non-singlet structure functions are

estimated by means of a simple model. We now extend the similar formalism in

154



Chapter 9 Higher Twist Effects in Non-Singlet Structure Functions and Sum Rules

1 10
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

 

 

 CCFR data
 Our NNLO results
 Our NNLO results + HT

(+0.5)

(+1.0)

(+1.5) x=0.035

x=0.025

x=0.0175

x=0.0125

Q2

xF
3(
x,
Q

2 )

Figure 9.2: Higher twist corrections to xFNS
3 structure function at NNLO. (Q2’s

are taken in the unit of GeV 2).

order to extract the higher twist contribution to the sum rules associated with the

non-singlet structure functions. Here we have parameterized the sum rules as

Si(Q
2) = Si(Q

2)

∣∣∣∣
LT

+
µ4

Q2
, (9.6)

where leading twist(LT) term corresponds to the pQCD contribution to the respective

sum rules and µ4 signifies the contribution from first higher twist term. Our results

for the sum rules, obtained in chapter 7 can be utilised as the LT term and then by

means of fitting the model (9.6) with the low Q2 (0.5 ≤ Q2 ≤ 5GeV 2) experimental

data taken from their respective experiments we can estimate the respective higher

twist terms. In the following subsections we have presented the results of higher twist

effects for Gross-Llewellyn Smith sum rule(GLSSR) and Bjorken sum rule(BSR). Due

to unavailability sufficient experimental data, we could not include the Gottfried sum

rule in this chapter.
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Figure 9.3: Hgher Twist corrections to GLS sum rule at NNLO. (Q2’s are taken
in the unit of GeV 2).

9.3.1 Higher Twist Effect in Gross-Llewellyn Smith Sum Rule

The Gross-Llewellyn Smith sum rule(GLSSR), with the higher twist term, µ4

Q2 is given

by

Sdata
GLS(Q

2) = SpQCD
GLS (Q2)

∣∣∣∣
LT

+
µ4

Q2
. (9.7)

Incorporating the results in accord with our NNLO prediction, (7.17) in (9.7), we have

fitted the the expression with the available CCFR experimental data for GLSSR. The

corresponding value of µ4 for which best fitting is obtained in NNLO are summarised

in Table 9.3 and depicted in Fig.9.3, along with the respective χ2

d.o.f
values.

NNLO
µ4 0.1840± 0.0842
χ2

d.o.f.
0.56

Table 9.3: Higher Twist corrections to GLS sum rule at NNLO.

In Fig. 9.3 we have presented the best fitting results of (9.7) for GLSSR in NNLO

in comparison with CCFR experimental data. Our pQCD corrected results up to
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Figure 9.4: Hgher Twist corrections to BSR at NNLO. (Q2’s are taken in the unit
of GeV 2).

NNLO are also included in this figure along with HT corrected results. We observe

that our expressions along with the HT corrections provide better description of CCFR

measurement of GLS sum rule.

9.3.2 Higher Twist Effect in Bjorken Sum Rule

The Bjorkan sum rule(BSR), with the higher twist term, µ4

Q2 is given by

Sdata
BSR(Q

2) = SpQCD
BSR (Q2)

∣∣∣∣
LT

+
µ4

Q2
. (9.8)

Incorporating our Q2 dependent expressions (7.23) for BSR in NNLO as the LT term,

we have fitted above parametrisation to the low Q2 (0.5 ≤ Q2 ≤ 5GeV 2) experimental

data taken from COMPASS [71], HERMES[73], E143[75] and JLab experiments [76–

78]. The corresponding value of µ4 for which best fitting is obtained in NNLO is

summarised in Table 9.4, along with the χ2

d.o.f.
value. In Fig. 9.4, we have presented

the best fitting results in comparison with other experimental data.. Here both the

results, with HT and without HT are shown. We observe that our expressions along

with the HT corrections provide well description of BSR data.
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NNLO
µ4 −0.007± 0.0024
χ2

d.o.f.
1.3

Table 9.4: Higher Twist corrections to BSR at NNLO.

9.4 Summary

In this chapter we have extracted the higher twist contribution to FNS
2 and xF3

structure functions and to the GLSSR and BSR using a simple model. We then

incorporated the higher twist contributions to our NNLO results for all of FNS
2 , xF3,

GLSSR and BSR. We observe that our NNLO expressions for these structure functions

and sum rules along with the higher twist corrections provide well description of their

respective experimental data. ��
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Conclusion

This thesis concerns with the determination of both the spin independent and spin de-

pendent non-singlet structure functions and sum rules associated with them. We have

employed a unified approach incorporating Regge theory and the theoretical frame-

work of perturbative Quantum Chromodynamics. Incorporating two Regge ansatz,

one with constant intercept and Q2 dependent coefficient and the other one with

Q2 dependent intercept and constant coefficient as the initial input, we have solved

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation for the

non-singlet structure functions FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2). Here we

explicitly specify how the usefulness of two Q2 dependent Regge ansatz, utilized as

the required initial input to the DGLAP evolution helps in obtaining the small-x be-

haviour of the non-singlet structure functions. Obtained small-x behaviour of these

non-singlet structure functions are then utilized to calculate the sum rules – Got-

tfried sum rule(GSR), Gross-Llewellyn Smith sum rule(GLSSR) and Bjorken sum

rule (BSR), which are associated with FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2) re-

spectively. In addition to the prediction of structure functions and sum rules we have

paid attention to their precision. Precise prediction of structure functions demand

to incorporate the standard higher order approximation of pQCD and several non-

perturbative effects. In this regard particular emphasis is given to the determination of

structure functions and sum rules with pQCD corrections up to next-next-to-leading

order (NNLO) and to the inclusion of the special non-perturbative effects, the nuclear

effect and higher twist effect.

The non-singlet structure functions evolved in accord with the DGLAP evolution

equations are studied phenomenologically and the analysis is presented in the chap-

ters 4, 5 and 6 for FNS
2 (x,Q2), xF3(x,Q

2) and xgNS
1 (x,Q2) respectively in comparison

with several experimental as well as parametrization results. We observe a very good
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consistency between our calculation and other experimental as well as parametrization

results within the kinematical region x < 0.05 and Q2 = 20GeV 2 of our considera-

tion, especially, if the NNLO results are concerned. The phenomenological success

achieved in this study suggests that the two simple QCD featured Regge behaved

ansatz are capable of evolving non-singlet structure functions in accord with DGLAP

equations at small-x. However from the comparative picture between the most con-

sistent results, the NNLO results for both the inputs along with other experimental

and parametrization results we do not observe any significant differences among them

within our region of consideration. We hope future experimental measurements at

extremely small values of Bjorken x will clarify their differences and help us in better

understanding of the structure of nucleon.

As the small-x behaviour of the non-singlet structure functions FNS
2 (x,Q2),

xF3(x,Q
2) and xgNS

1 (x,Q2) are well explicable through our analytic expressions ob-

tained by means of solving DGLAP evolution equations, we have employed them in

the determination of the corresponding sum rules GSR, GLSSR and BSR through a

simple but efficient technique, discussed in chapter 7. As we do not observe any signif-

icant differences among the results of the two ansatz, therefore in the determination

of sum rules we have utilised the results of the ansatz with Q2 dependent intercept

only. The phenomenological analysis of our results in comparison with other experi-

mental, theoretical as well as phenomenological results suggest that our calculations

are compatible with other strong measurements.

We also consider the contribution of nuclear shadowing effect to the non-singlet

structure functions and sum rules. Incorporating the corrections due to shadowing

nuclear effect, proposed in different theoretical as well as phenomenological analysis

to our results of the structure functions and sum rules for free nucleon, we obtain

nuclear structure functions and sum rules and perform phenomenological analysis in

comparison with available data and parametrization. The nuclear structure functions

thus obtained are observed to be consistent with other experimental measurements.

Further we have extracted the higher twist effects in the non-singlet structure

functions and sum rules based on a simple model, which is discussed in chapter 9.

The phenomenological analysis of our results for structure functions and sum rules,

along with considerable higher twist correction provide a very good description of

their respective experimental data and parameterizations.
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From the phenomenological analysis discussed above we have the following obser-

vations:

i. The Regge inspired ansatz in accord with DGLAP equations provides a very

good description of the small-x behaviour of non-singlet structure functions, which are

consistent with other results taken from different experiments and parameterizations.

ii. Inclusion of nuclear effect and higher twist corrections lead to a better descrip-

tion of the experimental results for various non-singlet structure functions.

iii. Our results for the sum rules associated with the non-singlet structure func-

tions are observed to be compatible with their respective available data as well as

parameterizations.

iv. Our expressions for GLS sum rule and Bjorken sum rule, along with con-

siderable higher twist correction provide a very good description of the experimental

measurements which indicates that the experimental data strongly confirm the QCD

predictions for different sum rules.

v. Our results for Q2 behaviour of different sum rules are also consistent with the

QCD predictions up to NNLO. This consistency between our results and theoretical

QCD predictions suggests that available data, the Regge ansatz and the theoretical

framework of pQCD, through this simple method allow us to have a clean test of

pQCD predictions on the respective sum rules.

vi. The consistency of the results for the non-singlet structure functions and sum

rules due to the Regge like model, xgNS
1 (x, t) = Ax1−bt with different experimental

results and other strong analysis signifies that the model is applicable in describing the

small-x behaviour of structure function although it being simple. Moreover, in this

method we do not require the knowledge of initial distributions of structure functions

at all values of x from 0 to 1. Here, we just require one input point at any fixed x and

Q2 and with respect to that point both the x and Q2 evolution of structure functions

can be obtained.

Our concluding impression based on all these observations is that the simple but

efficient Q2 dependent Regge ansatz for non-singlet structure functions is capable

of evolving successfully the structure functions in accord with DGLAP equation at

small-x and the Regge ansatz and the theoretical framework of pQCD, along with

available experimental data lead towards a clean test of pQCD predictions of Sum

Rules. ��
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Appendices

A. Unpolarised Non-singlet Splitting Function in Leading
Order(LO)

The explicit form of the unpolarised non-singlet splitting function in
LO is

P (0)(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
, (10.1)

where the + sign is defined by

∫ 1

0

dx
f(x)

(1− x)+
=

∫ 1

0

dx

1− x
[f(x)− f(1)] + f(1) ln(1− x) (10.2)

B. Unpolarised Non-singlet Splitting Function in Next-to-
Leading Order(NLO)

The unpolarised non-singlet splitting function in NLO is given by

P (1)(x) = C2
F

[
PF (x)− PA(x) + δ(1− x){3

8
− 1

2
π2 + ζ(3)− 8S̃(∞)}

]
+
1

2
CFCA

[
PG(x) + PA(x) + δ(1− x)

{
17

12
+

11

9
π2 − ζ(3) + 8S̃(∞)

}]
+CFTRNF

[
PNF

(x)− δ(1− x)

{
1

6
+

2

9
π2

}]
(10.3)

where,

PF (x) = −2
1 + x2

1− x
lnx ln(1− x)−

(
3

1− x
+ 2x

)
lnx− 1

2
(1 + x) ln2 x

−5(1− x),(10.4)

PG(x) =
1 + x2

(1− x)+

[
ln2 x+

11

3
lnx+

67

9
− 1

3
π2

]
+ 2(1 + x) ln x

+
40

3
(1− x),(10.5)



PNF
(x) =

2

3

[
1 + x2

(1− x)+
(− lnx− 5

3
)− 2(1− x)

]
, (10.6)

PA(x) = 2
1 + x2

1 + x

∫ 1/(1+x)

x/(1+x)

dz

z
ln

1− z

z
+ 2(1 + x) ln x+ 4(1− x).(10.7)

C. Unpolarised Non-singlet Splitting Function in Next-to-
Next-to-Leading Order(NNLO)

Unpolarised non-singlet splitting function in NNLO has the form,

P (2)(x) = NF

[
− 183.187D0 − 173.927δ(1− x)− 5120

81
L1 − 197.0

+381.1x+ 72.94x2 + 44.79x3 − 1.497xL3
0 − 56.66L0L1

−152.6L0 −
2608

81
L2
0 −

64

27
L3
0

]
+N2

F

64

81

[
−D0 −

(
51

16
+ 3ζ3 − 5ζ2

)
δ(1− x) +

x

1− x
L0

(
3

2
+ 5

)
+1 + (1− x)

(
6 +

11

2
L0 +

3

4
L2
0

)]
.(10.8)

D. Polarised Non-singlet Splitting Function in Leading Or-
der(LO)

In leading order the polarised non-singlet splitting function is given
by

∆P (0)
ns (x) = 2CF

(
∆pqq(x) +

3

2
δ(1− x)

)
(10.9)

Here

∆pqq(x) =
2

1− x
− 1− x. (10.10)

E. Polarised Non-singlet Splitting Function in Next-to-Leading
Order(NLO)



∆P
+(1)
NS (x) = 4C2

F

[
2∆pqq(−x)(ζ3 + 2H−1,0 −H0,0) + 2∆pqq(H1,0

+H2 − 3/4H0)− 9(1− x)− (1 + x)H0,0 − 1/2(7 + 11x)H0

+δ(1− x)(3/8 + 6ζ3 − 3ζ2)

]
+4CACF

[
−∆pqq(−x)(ζ2 + 2H−1,0 −H0,0) + ∆pqq(x)(H0,0

+11/3H0 − ζ3 + 67/18) + 26/3(1− x) + 2(1 + x)H0

+δ(1− x)(17/24− 3ζ3 + 11/3ζ2)

]
+ 4/3CFNF[

−∆pqq(x)(5/3 +H0)− 2(1− x)− δ(1− x)(1/4 + 2ζ2)

]
,(10.11)

with

∆pqq(x) =
2

1− x
− 1− x. (10.12)

F. Polarised Non-singlet Splitting Function in Next-to-Next-
to-Leading Order(NNLO)

P
+(2)
NS (x) ∼= 1174898D0 + 1295.470δ(1− x) + 714.1L1 + 1860.2

−3505x+ 297.0x2 − 433.2x3 + L0L1(684 + 251.2L0)

+1465.2L0 + 399.2L2
0 + 320/9L3

0 + 116/81L4
0

+NF

[
− 183.187D0 − 173.927δ(1− x)− 5120

81
L1 − 197.0

+381.1x+ 72.94x2 + 44.79x3 − 1.497xL3
0 − 56.66L0L1

−152.6L0 −
2608

81
L2
0 −

64

27
L3
0

]
+N 2

F

64

81

[
−D0 −

(
51

16
+

3ζ3 − 5ζ2

)
δ(1− x) +

x

1− x
L0

(
3

2

+5

)
+ 1 + (1− x)

(
6 +

11

2
L0 +

3

4
L2
0

)]
(10.13)

Here the following abbreviations are used,

D0 =
1

(1− x)+
, L1 = ln(1− x), L0 = ln x. (10.14)
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