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ABSTRACT

A parametric integral representation for the amplitudes of
renormalized perturbation theory is developed. The result is a closed,
well-defined and unique renormalized amplitude to be associated with an
arbitrary Feynman graph. By unique we‘ mean that the renormalized
amplitude is explicitly independent of the initial choice of independent
integration momenta and the routing of external momenta through the
graph. Our prescription is applicable to conventionally unrenormaliz-
able as well as renormalizable theories. It is shown that for renorma-
lizable theories, our representation is formally equivalent to the usual
recursive subtraction formula for writing renormalized amplitudes and
hence can be interpreted in terms of mass and coupling constant renor-
malization. To investigate the practical advantages of this formalism,
a calculation of the fourth order vacuum polarization in Quantum Electro-

dynamics is carried out.
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I. Introduction

Parametric infegral representations of Feynman amplitudes have
been used for a variety of purposes (1) ever since the begiming of modern
quantum field theory. They have been especially useful in the investigation
of analyticity properties in perturbation theory and in carrying out calcula-
tions in quantum electrodynamics. The purpose of the present work is to
develop a parametric integral form for renormalized Feynman amplitudes
which is convenient for discussing some of the formal aspects of renormali-
zation theory and which will provide a general framework for carrying out
higher order calculations in quantum electrodynamics.

With any subtraction scheme_forl_ expressing renormalized ampli-
tudes, there are basicaliy two formal problems. It must be shown that the
subtractions lead to a unique finite renormalized amplitude and that the cut-
off dependent terms which are subtracted can be related to Lagrangian
counter terms and hence to renormalization effects. After presenting a
definition of renormalized amplitudes, we will discuss both of these prob-
lems and then illustrate the calculational advantages of this formalism by
looking at the fourth order vacuum polarization contribution in quantum
electrodynamics.

In Section II, we will derive a parametric integral form for an
arbitrary unsubtracted, regularized Feynman amplitude. We will employ
the notation and several of the results of Nakanishi 2) to express the result
in a way which is explicitly independent of the routing of external momenta
through the graph and the choice of independent integration momenta. The

integrand of the parametric integral will reflect only the structure of the



corresponding graph. We will list the properties of the parametric functions
in the integrand and give the condition for convergence of the integral in the:
absence of regularization. |

In Section III, a parametric integral representation for renormalized
Feynman amplitudes will be established using the result of Section ITas a
starting point. The necessary subtractions will be made by making use of the
well-known formula (3.1) for the remainder of the Taylor series. This will
avoid the topological complexities associated with overlapping divergences
and lead to a unique nonrecursive expression applicable to arbitrar y. inter-
actions. .

Section IV will be devoted to showing that the parametric integral
form of renormalized amplitudes is a well-defined expression in the absence
of regularization. The proof involves a careful power counting in the para-
metric integral and does not rely on Weinberg's proof (3) of Dyson's power
counting theorem which involves an unjustified contour rotation.

In Section V, we will show that the expression for renormalized
amplitudes developed here is equivalent to a recursive subtx;action formula
in which the subtraction terms are directly related to Lagrangian counter
terms (4) and hence, in the case of renormalizable theories, to renormali-
zation effects.

In Section VI, we will carry through a calculation of the fourth order
vacuum polarization contribution in quantum electrqdynamics using the
formalism developed in Section III. There are several features of this for-
malism which together simplify the calculation considerably. First of all,
since the momentum integrals have been carried out the only momentum in

the problem is the external momentum and hence the trace calculations become



trivial. By the use of (3.1), the subtractions will be made at the origin of
. momentum space.  -This will eliminate the infrared divergent terms which -~
appear in the intermediate stages of the calculation when the subtractions
are made on the mass shell. We will be primarily interested in the high
energy behavior of the vacuum polarization. In this energy region, each of
the graphs of Figure 6 gives contributions proportional to log2 (- k2/ m2) and
log(- kz/mz). It is well-known from direct calculation (5) and from renor-
malization group techniques (6) that the log2 (- k2 /mz) contributions cancel
and that the leading term in fourth order goes as log(- k2 / mz). In our
approach, this cancellation occurs at an early stage of the calculation with-
out actually carrying out the integrals giving rise to the log2 (- k2 /mz) con-
tributions.

The present work is similar in some respects to the approach of
Yennie and Kuo (7) which is formulated in momentum space rather than

parameter space.



IL. Parametric Integral Formulas
Webegm b y. con51dermg an z;rbitrary properFeynman g'féph G |
containing N directed internal lines and n independent basic circuits. The
momentum of each line r will be denoted by P. + . where P is an inte-
gration momentum and q, is a constant momentum which will be related to
the momenta external to the graph. Due to momentum conservation at each

vertex, only n of the P, will be independent integration (loop) momenta. If

there are v vertices, we have
n=N-v+1, 2.1)

the + 1 accounting for over-all momentum conservation.
With each line in the graph will be associated a propagator of the

form

IZr (pr-!-qr) 2.2
2 2 . o
(pr+qr) - mr + i€
where Zr depends upon the type of propagator. Then, apart from constant
factors and vertex y-matrices, the amplitudé will be
G n 4 iZ_ (o +qr)
W()zfndpiﬂ Lr 2 @.3)
: i=1 reG (pr+qr) -m o+ ie

where we have chosen a particular set of the p.as independent integration
momenta. A convenient starting point for changing (2.3) into parametric

form is to express the propagator (2.2) in the form (8)



12 (P.*9.) )

‘ 2 2 .
.(pr+-gr) -m, + i€
2.4)
o0
_/dx Z -—:1-—\7 exp { ix ((p +q )2+ P.+q. )1l —m2+ie)
0 rr ixr ' ﬁr T \Vr r r r r r
2. =0
T
The ultra-violet divergences show up in parametric form as singularities of
the integrand at the lower limit of the parametric integration. To avoid these
divergences, we regularize each propagator by changing the lower limit of
the parametric integration from zero to a small positive constant p. Sub-
stituting this into (2.3) gives a regularized amplitude
n
W(G) = J I d4‘pi X
p i=1
- 2.5)

1 : 2 2.
X ﬂ '/‘dxr Zr(i_i;vﬁr) exp[mr ((pr+ a.) +(pr+qr).2r—1‘nr +1e)] ' o
r

Since the propagators have been regularized, the momentum and
parametric integrations in (2.5) can be interchanged and the momentum inte-
grations can be carried out by diagonalizing the qguadratic form in the exponen-

tial and repeatedly employing the formula
4 ia 2 7T2 .
Id pe P . (2.8)

The details of this procedure are similar to those carried out by Nakanishi (2)
and so we omit them here. The result can be written in a form explicitly

independent of the original choice of loop momenta.



where the sum z is over all possible simple closed circuits in G and
C .

'p/de: I1 {dxr. @8

reG

U and UC are functions of the integration parameters only.

U =E X, X, ..‘..xv 2.9)
1 2 n

where the summation is over all possible sets {Vl. .. Vn} such that

P, Py, s+ P, is a possible set of independent integration momenta and
1 "2 n

Ue = Z xley X (2.10)

2 © T n-l

where the summation is over all possibl‘e sets{ TREE Vn-l} such that none

of the corresponding lines belongs to C and such that p,»P, -..P, is a
2 n-1
possible set of independent integration momenta. The double sign in (2.7)

*
corresponds to the relative direction of lines in circuit C.

The initial assignment of directions to internal lines is arbitrary. However,
it is convenient to use the direction of fermion propagation for the fermion lines.
Then each member of a closed fermion loop or of fermion path through the graph
will have the same direction. With this choice, each Z,, will always be of the form

1
(+ ’ﬁ(—;vﬂr +m ).



As an example, consider the self energy graph of Figure 1.

>

Y

A simple self energy graph.

Figure 1

where circuit A is composed of lines 1, 2, and 3 and circuit B is composed of

lines 3, 4, and 5. Then

U = (xl+ x2).(x4+ x5). + x3(x1-f X2 + x4+ XS)
' - @.11)

Uy = X4+ X5 Ug =x+%

Expression (2.7) still seems to depend upon how the external momenta
are routed through the graph since this determines the values of the various
qr's. To see that this is not the case, we interchange orders of summation

in (2.7) and re-express it in the form



[~ o]
2\n . :
w(@ =T . [1 'z [5v V&
p i > GreG riix, !Zr U2

X exp i(V+ > Xrﬂr'Yr—al? > ersgr'lsxrs -1 Zxr(mf—ie) :
r,seG reG . 2
where

2
2 1
v=Y X . - 7 ‘LC:UC(}_: ixrqr) , . (13a)

reG reC
‘ 1
Y =q -+ 2, U (Y xxgq_]|, (2.13b)
TH wo U CeC(r) C(seC S S
: X
X == 3, £U.. @.13¢)
rs U ceCe,s) ©

C(r) is the set of all simple closed circuits in G containing line r and C(r, s)
is the set of all simple closed circuits containing both line r and line s. The
double sign in (2.13b) and (2.13c) corresponds to the relative direction of lines
'r."and s on circuit C. |

The functions V, Yry’ and er appear in a somewhat different form
in the work of Nakanishi (2) and, as he shows, Ym and V can be written in
terms of the external momenta in a way which is explicitly route-independent,
The reader is referred to the paper of Nakinishi for a proof of this,
and the results are simply reproduced here.

We first consider the case when G is a self energy graph. ThenV

and Yru are given by



. . W2
t vV = K] k (2 14a)
Y, = }g X o=w. )k @.145)

TH cec(0,r) ©C/

where k” is the external momentum and W and WC are defined as follows.
From the self energy graph G, we form a graph G' by connecting the ex-

ternal lines of G and label the new line as 0 with parameter Xg

Graph formed by joining the external
lines of the self energy graph G'.

Figure 2

Then W is just the U function of the graph G' with x, set equal to zero and

WC is the U C function of the graph ¢ The double sign in (2.14b) corresponds
%

to the relative direction of lines 0 an’ v on circuit C. Clearly the forms

(2.14a) and (2.14b) are independent of the routing of ku through the graph.

.

. )
The direction of external lines is defined by the momentum labeling.
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As an example, we return to the self energy graph of Figure 2. For

- this’ graph-, ‘

W = X%y (xg+x,+ XS) + x4x5(x1 + Xy :;3) + x3(x1x5 - x2x4)
Y = % (XoXq + XoXp + XoX) + XX, | kK 2.15
=T |FeXs T Xa¥s T XaXp) TXpXg | Ky (@.19)

_ 1
Y3y =T [x2x4 - xlxs} kN

and similarly for the other Yr's.
We next consider the general case when G has £ external momenta

kl’ k2’ . ,k!2 which we take to be directed inward. Then by momentum con-

servation,

>, k, = 0. 2.16)

i=1

For this graph, V is given by

v=Ll> wiikx)y - C@an
U i>j 1] .

where Wij is the W function for the self encrgy graph formed from G by

setting ki = —kj and all others equal to zero. Similarly, Yr'u is given by

Y, =25Y O @2a8)
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- where Yrﬂ; is the .Yru frunction for the self energy graph formed from G by
éetting'kl’= -'-ki and all others equal to zeto.

Equation (2.12) is the representation of an arbitrary unsubtracted,
regularized amylitude which we shall use as a stziting point for defining a
renormalized amplitude. If each field in the theory is a spin zero field and

if there are no derivative couplings, then each Zr is equal to one and (2.12)

becomes simply

R Y O S ]

reG

This simplified form will be used in the discussions of Sections IV and V.

In developing a parametric form-for renormalized amplitudes, it

will be necessary to know the properties of the parametric functions appearing

in the integrand in (2.12). To this end, we will list several of these proper-

ties here. The first six follow immediately from the definitions and the proof

of the seventh is given by Nakanishi (2).
1) The functions U, UC’ w4 and ch]: are homogeneous polynomials

in the X, with the following order:

U: n-th order w9 . (n +1)-th order
UC : (n-1)-th order Wg : n-th order

2) The functions V, Yr and er are horriogeneous with respect to

the x r with the following order: , /

V : first order Y.: O-th order er': (-1)-th order

2.19)
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3) The functions U, Ues wY and Wgare all non-negative definite

in the region of integration.
ij i : . '
U, Ug W, Wlz 0mx =0, r=1,2,...,N

4) V vanishes only when X, = 0, forall re C', where C'is any closed
circuit in G. The same holds for UC for all C' in G except C' =C. Wij
vanishes only when X, = 0, forall r € C' where C' isanyclosedcircuitin G or
any path through G connecting external lines i and j. The same holds for
WiCj for all C' in G except C' =C,

5) Let H be a collection of lines in G containing m independent
closed circuits. Then U has an m~th order zero at X, = 0, forall re H. The
same holds for U C apart from the circuit C. For Wij and WiCJ;, the order of
the zero in m + 1 if H includes a path through the graph connecting lines i
and j, and m if it does not.

6) Xx;s has a first order pole only when X, = 0, forallt € C, where
C ¢ C{(r, s).

7) Let H be a union of m independent circuits in G. Let R be the
graph formed from G by shrinking each line of H to a 'point. Denote the U

function for G, (H,R) by UG’ (UH,UR). Then

U. = U_U,+U! 4 @.20)

G H™R G

where U'G is at least of order m +1 in X, TE€ H. Similarly for w,

i i
Ws = UgWr v Vg

where Wicj;' is at least of order m + 1 in X, TE€ H. We will only use subscripts

I 4wl @.21)
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on the parametric functions when it is necessary to avoid confusion.

The limit p — 0 in-WéG)~ may not exist due to the existence of nion-. -
integrable poles of the integrand at the lower limit of the parametric inte-
gration. Tlese divergences correspond to the.”Lﬂ tra-violet" divergences
of the momentum space representation of Feynman amplitudes. At the
upper end of the integration, the integrand dies off exponentially due to the
negative imaginary part associated with each mass.

To make this more precise, we first look at the momenturh repre-
sentation (2.5) of the amplitude. We consider a particular sub-integration
corresponding to some proper subgraph Si consisting of Ni lines and ng
independent circuits. Let z, be the power of the momentum in the numerator
factor Zr' The degree of divergence di for the subgraph Si is defined to be
the power of the integration momenta internal to Si in the numerator minus

the power of the integration momenta internal to Si in the denominator:

d, = 4n; + > z, - 2N, 2.22)
TES,
1
According to Dyson's power couiitin‘gvtheofém, the limit p—0in WE)G)‘will
exist providing that di < 0 for all proper subgraphs Si of G.
The same condition holds for the existence of the limit p — 0 in the
parametric form (2.12). According to property 5, U will have an ni—th order

zero at X, =0, forall re Si’ TheVIZ operatorswill }:;r ing Yr and er factors into
. .

the numerator. Yr is zeroth order in any subset of the parameters while
Xré has poles given by property 6. By inspection of (2.12), the order of the

pole introduced by the V!Z operators is
T
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veg Y z.  for er even

TE Si r»sSi

@2.23)

1> z.-1] for > z,, odd
‘ res, T€S,
i i

It follows that the numerator will contain sufficient powers of the parameters

X . rosSi to make the corresponding sub—inteération converge provided that

2N, > 4n. + 2, z @.24)
i i r
TES,
i
This is just the condition di< 0. A rigorous proof of the power counting
theorem can easily be constructed using the parametric form and, in fact,
it will be a special case of the proof of finiteness for renormalized ampli-

tudes to be presented in Section IV.
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IIL, Renormalized Amplitudes
‘Usiﬁg thé éov;zei; countmg .th-eofe‘x.ﬁ .as;lé. ‘gﬁ'id.e‘z, ;ve: wiﬁ :d-e'fin‘e‘tl‘né
renormalized amplitude corresponding to a Feynman graph G by locating
those proper subcraohs S of G for which d =z 0 and performing a sufficient
number of subtractions to make the corresponding sub-integration conver-
gent in the limit p — 0. These subtractions can conveniently be made by

\

using the well- known formula for the remainder of a Taylor series

f(x) - £(0) - —(—Ii)—(-o— f d¢ ﬂ—i—)— (—&)—E—)nﬂf(gx) (3.1)

Combining this method of performing,sub'_tractions with the parametric
integral form of Feynman amplitudes will yield our parametric integral
form for renormalized amplitudes.

We consider an arbitrary Feynman graph G and begin by performing
the subtractions corresponding to a particular subgraph Si for which di = 0.
Working in the momentum representatlon we choose a set of 1nteorrat10n
momenta for G so that exactly ny of them are internal to Si-' Let the external
momenta of Si be kl’k cen kﬂi. They will depend upon the integration
momenta of G not internal to Si and the external .momenta of G. The unsub-

tracted regularized amplitude is

(S;) '
(G)
W, [Wp (k- - ] (3.2)

(S;)
where the functional dependence of WE)G) upon Wp " is denoted by the square
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(S;)

brackets. We subtract from W P " all terms up to order di in its Taylor

-~ expansion about the-point k; =ky'= - = k,:=0. Usiné-(&l), thiis gives -
i

d.
1 i d.+l
a-£;) A Ch)
@G) i 9 i
LA _{dgi T (agi) W, (gikl,....sikli)

i

The steps leading from (2.5) to (2.12) can then be carried out keeping track
of the §i parameter. This leads to an expression which can be formed from
(2.12) by inserting the §i parameter into the parametric functions, U, V, Y r

and Xr s in a simple way and applying the operator

d; a4

jd a-£) 5 \1
[ (%)
to the integrand. Rather than bore the reader with this bookkeeping or even
its result, we shall simply present the more géneral result of the fully re-
normalized amplitude. |

The renormalized amplitude is defined by starting with (2.12) and
performing the above .operations for a large enough class of subgraphs to
insure the convergenc’e of (2.12) in the limit p 0. Let & denote the set
of proper subgraphs Si of G which

(@) are superficially divergent, di =0

(b) cannot be formed from another superficially divergent graph
by simply opening one line.

Note that for Quantum Electrodynamics, condition (b) is automatically satis-
fied by superficially divergent graphs, however, this is not so in general.

With each member Si of &, we associate a parameter §i. b dGZ 0, we

@.3)

(3.4)
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let G =8, and associate § 0 with it. Then the renormalized amplitude is

o 4
] 1 j d.+1
2\n a-¢) 7 j
(@ (G)-(w)f S j (a) .
wi'= lim wy? =\T-) Jax at. [1]
R po B A1/ % Gs gt ‘s gt \%
1 1 Pt A
xﬂZ(———"’)_—_——,—exp1V+ $0Y -1 02X id x (m--ie)
reG T\¥% )2 [( r;Grrr‘lr,SeG rsr Srs) G T ,

where U, V, ?r’ -irs and & _ are defined in the following way:
Def: U is formed by multiplying each term in U which is of order n, +m in
X, T€ Si by £?m. This is done for each Si € 2.

Def: \_Vij is defined in the same way and then

v =1 X wl -k k) (3.6)
U i>j - ]
Def: —ﬁc and va are also defined in the same way as U and then
X‘rs = —_17 Z + 'U‘C (3.7a)
U CeCqr,s)
and -1
?r = Z 71_— Z + Wé“)k. (3.7b)
B 5=1\T ceco,r) w
Def: For each line r, denote the subset of & whose members contain r
by Sy Then
&r = Eixr 3.9)
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We wish to make several observations concerning the definition
' (3.5) of the renormalized ‘ampiitude. First of all, we note that it is a non-
recursive expression, applicable to arbitrary interactions which is explicitly
independent of the choice of independent integration momenta and the routing
of external momenta through the graph. It will be shown in the next section
that (3.5) is an absolutely convergent integral. The members of Fcan be
either disjoint, nested or overlapping, however, the ordering of the £ inte-
grations, both among themselves and relative to the x integrations, is ir-
relevant. The subtractions in (3.5) have been made at the origin of momentum
space. There is no fundamental reason for doing this but such a choice for
the subtraction point yields a simple form for the renormalized amplitude.
This choice will, of course, necessitate finite renormalizations to insurc
that propagators have poles on the physical mass shell but will also simplify
calculations somewhat since it eliminates infra-red divergence problems.
These things will be discussed in Sections V and VI. Finally, we might
mention that as far as the parameter £ 0 corresponding to the entire graph
is concerned, the effect of rules for forming U, V, ?r’ S(_rs and X, is simply
fo multip".ly each eicternél momenfum by ‘g’o. This'is certainly expected.
When each Zr is equal to one, (3.5) simplifies a great deal just as

(2.12) simplified to give (2.19). It becomes

d
% 1 j d.+
2\n (1-£.) j
wg‘z):(z_) fde fd§1 ] (-_82)
. 0 8,640 X j

(3.9)
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The condition di?‘ 0 which the members of % must satisfy is now
=2n - N;=0 (3.10)

since z, = 0 for all r € G. Since each &i parameter appears only in the

form Eiz, the formula

1 (l_x)2n 9 2n+ 9 1 _ n 3 n+l
-{dx 2n! (532) £(x7) =.O[dyLX)-—n1 (5;) f(y) (3.11)

can be applied for each Si € & and using (3.10) we get

V.
n"g s 1 ‘ A-£.) j v.+l
w9 () g J1 Jas, TS (2)°
i 0 5,690 1sjey vii \8§
X --—Al exp [iV—i Z X (mz -ie)} . (3.12)
U2 reG rer ’

U is defined by multiplying each term in U which is of order n, +.m in

xr; res; by 'g’im. WY is defined in the same way and then V is given by

vV =

Wi kK - (3.13)
i>) :

J

b |-

2
>

The £ operations were constructed to produce subtractions at the

origin of momentum space. To see how this works in the parametric form,
we consider the simple case of a graph G for which each Zr is equal to one

and for which % contains only one member S with v,=0. Then the regularized

S
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renormalized amplitude is

o0g 27 L -
(G)_(w) f 9 1 {.A 2
W = dx df =5 —5 exp|iV —1Zx(m -i€)
Rp i ) G»{ o0& Ué G reg T T
2)"(} ]-°
=(1r— dx -——l—-—— exp[iV =1 -i Z X (m2 -ie)] (3.14)
i o G |0Ze= G reG * T
1 .5 . 2
- —5— expliV (£=0)~i E X (m —ie)]
04 =1 [ G reg * T

The G subscript has been-included on the parametric functions. Clearly

UG(E =1) :_UG (3.152)
and

VG(§ =]) = Vg - (3.15b)
From the definitions of fJG and \A/G and Egs. (2.20) and (2.21), we have

Ug6=0) = UL (3.162)
and ' ' L

VG(£ =0) = Vp (3.16b)

where R is the graph formed from G by shrinking each line of S to 2 point.

Using' (3.15) and (3.16), expression (3.14) becomes
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Rp o J\i 5 SUg res © T
alr
x{(ﬁi—) fde —1—2- eXp[‘lVR—i 3 xr(mf-ie)]} 3.17)
p UR reR

- wl®_ w®) (R)
Wp W, (0) wp

as expected.
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IV. Finiteness of the Renormalized Amplitude

LI

The re.ﬂofmﬁliiéd amplitude is..défmed in Section IiI by usir.lé the
subtraction operator (3.4). In order to prove that it is a well-defined ex-
pression, we will carry out the derivatives appearing in the subtraction
operators and then investigate the remaining integral over the x and £ para-
meters. In order to keep things as simple as possible, we will restrict
ourselves to the case of spin zero propagators and no derivative couplings
for which the renormalized amplitude is given by (3.12).

The result of doing the £ -derivatives in (3.12) is an expression of

the form
f°° j- M s Byl e o

dx dé. S_(K) —5——— exp|iV-i X (m_ -ie€)
0 G0 ser 1T TG [ reG * 7 ]

where the summation is over the terms generated by carrying out the deri-
vative operators. S - (k) depends only upon the invariants formed from the
external momenta and R - (x,£) is a produce of xr's and & i's. The integrand
“of (4.1) decreases eﬁcponentialiy at infinity and tﬁe only f)ossiblfe p.oles' occur

at the zeros of U. From its definition, we know that

U=0

~ and that it vanishes only when some subset of the xr's énd §i's is set equal / i
to zero. Let H be a collection of lines in the graph G under consideration'
with NH members and let %' be a subset of & with S' members. Let
n(#', H), (mcr (&', H)) denote the order of the zero of I}, (Ro (X, £)) when

4.1

4.2)
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X, = 0, reH and &i =0, Sie.(/". Then in order to show that (4.1) is well-
. .defined, it is sufficient to show that for any H, any¥? and any term in the-- .

.sum over o,
Ny +§' +m (9", H) >4n(g7",H)(pG+2). (4.3)

We first consider the zeros of U. When ' is empty, n(#', H) is
given simply by Ny This follows from the properties of the parametric
functions listed in Section IL When‘ &' is not empty, the situation becomes
substantially more complicated and the general result is given by the fol-

lowing theorem.

Theorem 1: Let.y" = {Sl, S2, e SS'} . These graphs may overlap in various
ways and we construct from them a sequence of nested sets of lines. We
define S(i) to be the set of lines in G which belong to at least i members of
{8,y Sqi}- Then S(ENCSE-1)C... CSHCS(O) = G, We define R(i)
to be the set of lines formed from S(i) by shrinking all the lines of S(i+1) to

a point and D2 AR )
the lines of H in R(i). Then

to be the number of independent closed loops formed by

01 = ngapen FPare-1) T PEARQ T PENR(O) Tl (4.4)

where

st
- - ) 4.5
lyv IZ nS(i) Jz::l nsi (4.5)
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This theorem will be proved in Appendix A. The desired result
" (4.3) will then follow from the next theorem concerning the zeros of R (X, &)

which will also be provea in Appendix A.

Theorem 2: For any term in the sum over o,

t
m (&', H) > [anR(S,) +ngopeey t o FPEARE) 19,,] (P,+2) - N -§' (4.6)
The general proofs of these theorems are somewhat tedious and it
would probably be helpful to first look at a simple example. We consider

the graph of Figure 3 which arises in the qb4 theory.

Vertex graph in the ¢>4 theory with overlapping vertex subgraphs.

Figure 3

The set & contains four members; the entire graph SO’ the graph Sl con-
| sisting of lines 1,2,3 and 4, the graph S2 consisting of lines 3,4,5 and 6,
and the graph S3 consisting of lines 3 and 4. For each of these, v, = 0 and

the renormalized amplitude is given by
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X exp[i --W,~-(1<1+k2)2 - i(mz—ie)(x1+... +X6)]
Lo \

A

where
0= [’33 E1%g%g (T Xp) + EpXgXy (5 Xs)] * (g X (5 F Xp) (5 Xg)

- 9 -
W= £483%3% [51 Xty + g (% + Xpxg) & szs]
*Eoig T Xy [Elxlxz (%5 + Xg) *+ £5%5%g (5 F Xz)]

Suppose that H consists of lines 5 and 6 and &' consists of one member S1

Then £, =0, R((?) = G/.Sl a'né_

n& H) = nynpo) =L

In addition, NH = 2 and S' =1 and by inspection, one can see that the con-

dition of Theorem 2,

m (& H) > (B +2) - 3,

holds for each tern in the sum over o.

@.7)

(4.8a)

. (4.8b)

4.9)

(4.10)
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Finally, we wish to briefly discuss the limit € — +0 in (3.12). To
. .do-this, we transform it-into the Feynman denominator form. . This is done. .

by inserting the factor

into (3.12), rescaling e 'Axr for all r € G and doing the A integration.

For the case 2nGr - N, < 0, the result is

G
14
j v+l
(G) A-§)" /53
w fdea( Zx)ﬂfi "T'l_<'5g—)
reG 5,e# 0 Sje.9’ j j
@.11)
1 1
X == T N.- 2n
o2 [V— 3 ox —16)] G G
reG

In the limit € — +0, W{{G) will have singularities determined by the zeros

of V- Z X mf. These singularities correspond to the existence of absorp-

. tive pa;tesct;iue ‘to the opemng up of melastlc channels The usual treatment

(2) (8) of these singularities for unrenormalized amplitudes, leading to the

Landau conditions (10), can be carried over directly to the renormalized

amplitude (4.11). For a careful treatment of the € ne 0 limit using the

language of distribution theory, we refer the reader to the paper of Hepp (9).
The proof that the renormalized amplitude is well-defined can

easily be generalized to the case of an arbitrary Feynman amplitude given

by (3.5). Onc - rain carries out the { derivatives and examines each term
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generated by these operations. From the form of the functions U,‘ v, Yi_
. and Xr's" it is clear that the effect of the derivative operators is again to
make the integral '"less divergent" and the proof, although somewhat more

complicated, goes through just as above.
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V. Mass and Coupling Constant Renormalization

>We l;xa§e g‘i\.le-n a pr.esc-ript'i\(;n ‘for assocxatmg a ;aveil-éefineii- rex-lo.x.'-
malized amplitude with an arbitrary Feynman graph. The usual method of
defining renormalized amplitudes is by means of a recursive subtraction
formula of the type used by Salam (1) and more recently by Bogoluibov
and Parasiuk () and Hepp (9). In this section we intend to show the formal
equivalence of our subtraction scheme with a recursive subtraction formula
in which the subtraction terms can be related to Lagrangiaﬁ counter-terms
and hence to field, coupling constant and mass renormalizatiohs. These
renormalization effects a;'e usually dealt with via the Green's functions of
the theory, however, the Lagrangian counter-term approach seems to be
simpler for our purposes. We will restrict ourselves to the ¢4 theory in
this discussion however it applies to any renormalizable theory. We have
not, as yet, been able to completely prove that our prescription is equivalent
to a recursive subtraction formula for an afbitrary unrenormalizable theory
although we feel that this is the case.

We first consider brieﬂ‘y some of the features of the qb‘t1 theory.
Th;e Lagra'ngian.t density for this theory written in terms 6f unx.'enormalized'

. quantities is

26 = 5 8,099 - M) - 37 19" 6.

We introduce a new mass, coupling constant and field as follows:

(5.2a)

8
=3 \]
]
Em

+
o
8

6y = ZE ¢ | (5.2b)
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Zy
Ao = —3r | . @a20)

Then letting

5 = 1+B Z, =1-1L, (5.3)

Z (x) can be written as
26 =} (2,086 - w67 - 126" - 3 2o’ + 1 B@eoFe-n’ ") + L ast G4

We next carry through the canonical formalism and construct the interaction

Hamiltonian in the interaction representation. The result is

1.4 1..4.1,. 2 .2 1 B2 .2
H) = grAgy- LgrAép +g om Zy] - B(a ¢Ia“¢1 m ¢2) 5 b, (5:5)
or letting
= -6m?Z, -Bm”, (5.6)
e = Lot L, ] b, 1 B .2
®) = grAep- Lgp Aép- 7 A9 - 7B, P ¢t 5 1B 1 (®.7)

In perturbation theory, this interaction Hamiltonian gives rise to
the usual four-line vertex coming from the first term as well as several new
types of vertices. It is well known (12) that there are only two types of |
divergences in the graphs arising from the first term in (5.7). These di~

vergences correspond to vertex subgraphs (four external I ) for which
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v =0 and self-energy graphs (two external lines) for which v=1.- The vertex
. subgraphs can overlap. as in.the graph of Figufe 3. The second term in J(x) . -
gives rise to four-line vertices which serve as counter-terms for the vertex
subgraphs while the next two terms which produce two-line vertices are the
counter-terms necessary to remove the divergences corresponding to self-
energy subgraphs. The last term in s#(x) serves to cancel the non-covariant
contributions coming from thé next to last term due to the fact that the deri-
vative operator does not commute with the time-ordering operator.

The effect of these counter-terms in J.,’i(x) is that all graphs arising
from them can be forgotten provided that for any graph G arising from the
first term in :ffI(x), the corresponding unsubtracted amplitude W(G) is re~
placed by a renormalized amplitude WéG) which we are about to define. Let
{Sl .. Sm} be any set of mutually disjoint vertex and self-energy subgraphs
of a given graph G. We denote the functional dependence of W(G) upon

) (5,.)
Wsl...w ™ by

(G/8...8_ )| (5) (S )]
wl@ = w g m[wsl...w m (.8)

Everything is assumed to be regularized in some consistent manner in this

discussion. We then define a quantity W(G) recursively by

(G/S;,...8 ) _(5y) (S,.)
FO_w@®@, 2w 7 m[-thl...—tv—v m] (5.9)
{Sl"'sm}

where the summation is over all non-empty sets of mutually disjoint vertex
_(8)
and self-energy subgraphs. The regularized amplitudes W ! depend upon
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the invariants formed from the external momenta. The effect of the operator
t is to project out terms.up fo order V-'i:in the Taylor expansion of these ampli= ~* "~
tudes about the origin in their invariants. For a vertex subgraph,  which

depends upon six invariants,

6) () sy

tA =A  (@llinvs, =0) = -iAL (5.10a)

and for a self-energy subgraph

tf(si)(kz) =5 (Si)(O) + T (Si)(O)kz = A(Si)+ B(Si)k . (5.10b)
Then Wg}) is given by
W%G) = a-y W@ .11a)
if G is a self-energy or vertex graph and
w( - W.(G)  (5.11b)

otherwise. The constants in (5.10a) and (5.10b) are related to those in the

interaction Hamiltonian (5.7) by

A = EGZ A@ B = ZG: (@ (5.12)

where the summation is over all proper self-energy graphs and

L=, 1O (5.13)
G
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where the summation is over all proper vertex graphs.

- -~This connection between subtractions for. Feynman graphs and
Lagrangian counter-terms is well-known (13) and we do not intend to discuss
it further. It is cur purpose to show that W&G) as dcfined by (3.12) is equi-
valent to the definition given by (5.9) and (5.11) in this chapter. Before pro-
ceeding to this, we should point out that since we have made all subtractions
at the origin of momentum space, it is necessary to perform additional
finite subtractions for self—ehergy parts to insure that the renormalized
propagator will have a pole on the physical mass shell. These finite mass
renormalizations are discussed in detail by Yennie and Kuo (7) and a method
of performing the subtractions directly on the mass shell is given by the
present author in reference (14) This question shall not concern us further.

The proof that (3.12) is equivalent to the definition of W(G) given in

R
this chapter is straightforward. The operator

(I‘Ei)i a Vi
fd&i o (8‘51) , (5.14)

appearing in (3.12) is, through relation (3.1), équivalent to the opérator 1-1)

used in this chapter. Thus

V. V. .
1 a-£.) i Vi+1 i ,n
{ @ —— (o) e = - g;o e = g-pie) 619

where thelinl —ti is really an operator which sets §i =1. We first consider

the subset S/(’) of & whose members do not properly contain members of &
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themselves. We can use the representation (5.15) for the £ operations
-*corresponding to the members of ' dnd if it éan be shown that tt, vanishes =
in (3.12) whenever S; € 96 and Sj € &, overlap, then (3.12) takes the following

form.

oo 1 Vj
G a-£.) i
(G _ H 3
VR ( ) .O/dXG .[dg T ('5'&_)

S, eS/’—g’O S -Gy ¥

(5.16)

x{1+{ z (—tl')...(-tm)}—}— eXp[IV-l Y x L -1e)]

Sl. .. Sm}e ,?0 reG

where the summation is over all sets of mutually disjoint members of .9’0.
When a term in this summation does not contain ti where Si € ,% , then éi

is to be set equal to 1.

We next consider those members of & which properly contain only
the subgraphs in .?6 We again use (5.15) for the ¢ operations corresponding
to these graphs and we will show that a product of t operators corresponding
to two overlappmD members of thls set g1ves zero when in (5. 16) due to §
operations correspondmg to the union of these two graphs. Th1s procedure
can be continued working from the inside out and the result is that W(G)

R
becomes

o\"G
o)
Wp

fde{1+ Zs eg)(_ti)“'(_tm)}

81~ S}

(5.17)

reG

X -I%ré exp[1V—1 > x Lm —16):\
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The summation is over all non-empty sets {Sl . Sm} of non-overlapping
" fembers of ‘P. Noté that membérs of {Sl Sm} .ma}'r' be nested.”
In order to show that (5.17) is equivalent to the definition of W{%G)

given by (5.9) and (5.11), we re-arrange the sumroation in (5.17) by defining

an operator QG recursively by

Q ={1+ (—tQ )-..('t Q ) ’
G { {SIZ:S } i Si m Sm }
- m

the sum being over all non-empty sets of mutually disjoint members of &

which are properly contained in G. Then

"G F
@~G) 1 R 2.]
W = e dx  1-t.)Q expiiVv-i Z X (m. -i€)
R i '{ G 0 GﬁZ [ reg T F

where tO =0 for Yo=Vg < 0. The reader can easily convince himself by
inspection that (5.19) is identical to (5.17). The equivalence of (5.19) with
the definition of Wg}) via (5.9) and (5.11) should be clear since these two
exprgs.sions; have the §ame.f0rm. Regularijzation is not necessary in (5.19)
since fhe subtraction operations ax;e performéci directly on the integrand. |
| It remains to prove that the overlaps do indeed vanish as we have
stated above. We have shown in reference (14) that if two members Sa
and Sb of & overlap, then they must both be vertex subgraphs and Sa U Sb
must be either a self-energy or vertex subgraph. If SaU Sb € &, we let
S o = SaU Sb i SaU Sb is a vertex }subgraph which is not an element of 2,

we let Sc be the self-energy subgraph formed from SaU Sb by adjoining one

line. Thus the vertex subgraph of Figure 4 composed of lines 1 to 6 is not a

(5.18)

(5.19)
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member of & but the self-energy graph formed by adjoining line 7 is a member

Of P e el e e

A graph with a superfic‘ially divergent
subgraph which is not a member of #.

Figure 4

In either of the above cases, Sc € & and hence there will be a £ opera-
tion corresponding to this graph. The operation tatb simply sets & a and £b
equal to zero. Since U does not have a zero when éa = §b =0, the tatb operation

can be commuted with the { derivatives and what we must show is that

o "y +
cl‘

2|  ————— exp|i¥( =, =0)- X x_(m —i€)]=0 (5.20)
(agc) U2(§a=§b=0) [ a *b reg T T

Consider any term in Uor WY which contain a factor 50. This term must be

at least of order ng +1in X, T€ Sc and hence at least of order n

+1in
c 5295
X, T€ SaU Sb Suppose that it is of order nsa+ m,, (nsb+ mb) inx,re Sa’ (Sb).
Then since any term is at least of order nSansb inx, re Saﬂ Sb,

n < n,+m +n (5.21)
SaUSb Sa a

S b SNS,”
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But clearly

.

n = ng + - n . : . (56.22)
9% 5 S5

for two overlapping vertex graphs and hence

m, + my > 0 (5.23)

This means that any term in U or W which contains a factor §c must also
contain either a factor £ g OF §b. Thus all dependence on £ c vanishes when

¢ a and Eb are set equal to zero. This gives the result (5.20).
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VI. Fourth Order Vacuum Polarization

The starting point for any calculation in quantum electrodynamics
‘is expression (3.5) with vertex y-matrices, \,owtant factors and traces over
closed fermion loops inserted. To illustrate the technique, we first look at

the second order vacuum polarization. ‘

Second order vacuum polarization graph.

Figure 5

The unsubtracted amplitude is

] 2) o} 4 , i i . g .
,H[.wo(k) 3. Id p Tr {'Yu.pH}{— m Ty P - m} ©.1)

47 i

where a is the fine structure constant. According to (3.5), the corresponding

renormalized amplitude is

2 3
RPN Y T —

X] \ _X2 1
— = EV¥ \ 1+
x Tr{yu(xl+x2 £k Yy X, +X §K+m *2 xTx, x1+x2 'y”‘y 'YV'YO‘ (6.2)

X .
R L R N 2
X exp \} ——_x1+x2 £k 1 +x2)m ]
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where m2 includes a small negative imaginary part. Since H#V (k) is gauge
-invariant, it must be .of the form

M, 6 = (gw}k2 SARLICE | 6.3)

Thus doing the trace in (6.2) and extracting the coefficient of -k kv gives

© 1
. ‘ 2 3 XX
m®gy = -2¢ [ g ax, [ar L5 (,?_) 2 12
s ./0- 2 .4. 2! o9& (x1+x2)4
(6.4)

) X
xexp[ixlzik-lm x1+x]
X7 %9

Inserting the identity
[~ ]
_ [yl
1 = '0/7‘ 6< = Zxr) (6.5)

scaling X, A X, and doing the { integral gives

: 1 < , o .
@, _ _2c Ag . 2 .2 .2%-
k) = - — == {exp|lirx(l-x)K -iam™ | -exp|-irAm . (6.6)

m .4- {7\ [ ] [ ]
. Using the identity
da (_iaa _ibA b, "
.{ 5y (ela -e ) = log (3) 6.7
we have
) 1 2 v
1) = -2—1% {dxx(l-x) log (1—x(l—x) -::5) | (6.8)
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which for —1{2/1112 >> 1 becomes
o -K 5 « B C o
37 198 (’“'2) 3T } (6.9)
\ m

A<
The fourth order vacuum polarization Ilwfi) consists of contributions

from the three diagrams of Figure 6.

(a) (b)

Fourth order vacuum polarization graphs.

Figure 6

The contributions from graphs 6b and 6c are identical and hence
D - @ 12 @ - g® ) B
y k) = (gyvk —kukv)ﬂ k) = H“V k) +2 l‘&w (k) 6.10)

where Hﬁfi)(k) and Hu(lz) (k) are the amplitudes corresponding to graphs 6a and
6b, respectively. For the graph of Figure 6a, the set & in (3.5) consists of

the entire graph and the two overlapping vertex graphs composed of lines

1,4,5and 2,3,5. We associate the parameter 50 with the entire graph, the

parameter 51 with the 1,4, 5 vertex and the parameter §2 with the 2,3,5

vertex. Then defining parametric functions —ﬁa’ Wa, Y, and Yrsa according
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to the rules of Section III and introducing the notation

1

;a-g.)n 5 n+ -
f d; — (——5—;) - Ri(n+) (6.11)

0

we have

2 £
@ gy = [ @)1 0
no (k)-1(4,n_> {dxl,...,dsto R'R,

B R A

To form HJZ) (k), we first apply the rules of Section III which effect
subtractions at the origin of momentum space. The result will be a contri-
bution similar to (6.12). In order to insure that the second order electron
propagator composed of lines 1,2,3 and 5 has a simple pole at K=m, we must
subtract from this contribution a term in which the second _order renormalized
o .electron self energy Z (2)(1;) is replaced by = (2)(14 =n.1).'. ' Assqciatihg the para~
meter &0 with the entire graph and the parameter El with the éelf energy sub;

graph composed of lines 2 and 5, we have
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2 [ o]
®) 4 = i(-2 3@
0 < {8 [ oo n DR

2
2
W 4 4 : 4
1 A~ -~ ~r . 2
x expli —-—-—k +Z—xﬂ rb -7 Z_ xr S!Zr-!ZSXer ~-im Zxr-ex5
Ub =1 r,s=1 r=l
0 =
\ T
@) R)
=¥y ®
where R is the graph formed from that of Figure 6b by shrinking lines 2 and
5 to a point.
To calculate H(4)(k), we carry out the Er derivatives in (6.12) and
(6.13), do the traces and keep only the coefficient of 'kpkv in each. Defining
these coefficients to be H(a) (k) and ﬂ(b) (k) respectively,
1®e = 1® g + 21 . 6.14)

The '\771 operators in (6. 12) and (6 13) generate terms which have either zero,
one or two factors of er. The last of these clearly do not give rise to k k,
terms. The trace calculations are very simple since there is only one
momentum kl-l involved. The symmetry of the graph of Figure 6a can be used
to write H(a) (k) in a simple form in which the overlapping divergence has been

removed. The results are
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(a)k (oz)zjo | 1 '8' :
I =2 dx,...dx, 51 e 2 4
X, + X 2 w
x I—g -——(AIA 4)- 1 4A1A4 1og(1-£.2. - a ) (6.15)
a Ua m Ua(x1+...+x4)

N ‘A _l
2 (% +..+x,)U
1 A2 m 1 4’ g
+ §A(A+A)-AA] 1 —
(x1+~ 4.-x4)[ 2V 4 174 ( k2 - )

where

ﬁa = (X ) (%, Xg + Xg) £ X (X, F Xg)
(6.169.)
Wa = X%, (x +}\ + X )+’g’x2x3(x +x +§x5)+§x5(x1x +X, 4)
1
A = — +x, + +
17 g [x4(xz X3 T X5) g"3"5]
n 1
A = - — + X, +X)+EX T " . . (6.16b) .
17 7% ["1("2 R 5]- g (6.16b)

_ 1
%2 T [X1X3 R X4X5]

and where Ua’ Wa’ A, and A, are formed by setting £ =1 in ﬁa’ W . Al

1 a

and A 4 respectively and

4
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x2x_ (5, + x_)2 (x 2 W
4 %52 " ¥ A “4%5 5 k b
X =5 - B4 7 log 1——-2—
U U m” O (x - +X,)
b b b 4
1 2 .
9 = 2 x4x5(x2+x5) 2 4 2+3x5 ©.17)
+ [ d¢, =+ B,lEK -mx
b b
Ab 2 2 -1 @) (R)
U
b
where
Up = o+ 23+ X)(Kg+ x5) + & XpXg
Wb = x4(x1+ x3)(x2+x5) + & XX X (6.18)
a1
B4 = -I;— [(x1+ x3)(x2+x5) + £ x2x5] .
b

We now restrict our attention to the asymptotic ‘region RSN .m2>
and keep only those terms in H(a) (k) and H(b) (k) which behave like log (- kz/ mz)

or log2 (- kz/ m2) in this region. H(a)(k) becomes

1® g = n® g + 1 +1f e 6.19)

where H(a) (k) comes from those terms multiplying the log in (6.15) which do

not require the internal subtx action (those containing a factor of £ oré )
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For these terms, the log can be expanded and

. _ 1 ' )
1P = 2(%) log ( ) -/ e W {xs(AlAz - ALY
a

(6.20)
1 [ 2
M R U [xs(xz X3+ Xg) (KXg+ XpXy) + xzxaxs] }
a
H-;a) (k) comes from that term multiplying the log which does require the in-
ternal subtraction. For this term, the log cannot be expanded since this
would introduce a logarithmic divergence in xl,x yand £ .
: 1
1@ = o(%) f cexy [ 2L
k) 2 dx1 dx 6(1 - X A of 5
: a
. 6.21)
9 kz. Wa
X g+ Xy XXy (Ko ¥ Xg ¥ Xg5) log{l-—5
m Ua(x1 oot X))

Since the log servés as a cutoff for a logarithmically divergent integral, we
expect H(a)(k) to give a log (- k /m ) contr1but10n The remammg terms in
(6. 15) are convergent thhout the mternal subtraction, however, there is
one non-vanishing subfraction term (£ =0 term). It is only for this term,

1) (), that the limit -k%/m® — = is not finite.

) X
Il(a)(k) ( )’/‘dx1 dx 0 -x;~+ .. = Xg) 7 %

2
(x1+ x4) (x2 + x3 + xs) (x1 +x4)

(6.22)

( w2 O FXY ) F XY )'1
k2 xlx4 :
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This integral diverges logarithmically when —kz/mz—— © and hence it will
--give a log(- 12 /mz) .contribution..

Similarly,

21 = 1P +1 P ) +n1 P 0 . (6.23)

where Ill(b) (k) comes from the term multiplying the log in (6.17) for which the

subtraction term (£ =0 term) vanishes. The log can be expanded and

X (x +X.)
Hl(b)(k):—6< )log( )fdxl . dx 6 (1% )xz 475 ¥ . 6.29)

5
Y
Hz(b) comes from those terms multiplying the log in (6.17) which require the

internal subtraction. Expanding the log would produce a logarithmic divergence

for these terms in X5 %g, Xy and £ and so we expect a log2 (- kz/mz) contri-

bution.

1
®) 1\ = o )
Hz k) = —2(?) _[ dx 6( - Xp=eeo .()‘ 3E 5

2 W .

2 K b
X X, X (X, +X.) (3%, + 3x -x)loc(l—-——- — )
4752 75 1 3 "4 m2 Ub(X1+ +x,)

H:gb) comes from the term in (6.17) with k2 in the numerator which requires

the dinternal subtraction.

6.25) .
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0

®) o 2 | 1 0
”3 (k).._z(-;r-) .[dXI...dx'sa(l_x]_--._xs).{dg -é—{ .

3 o~
L Ta X5t t Xt g (W 2 " o))
~6 -y e TRy
L 0, k }

When --kz/m2 — o, this integral diverges logarithmically in X, X, Xy and

¢ . Hence we expect it to give a log (- kz-/mz) contribution. The finite mass

counterterm s @ )(m) H(R)(k) in (6.17) remains finite at -k /m — o,

There are six contributions to the asymptotic form of II(4)(k) Four

of them, Hl(a), H:(;a), Hl(b) andl'léb), give rise to log (—k /m ) contributions

(6.26)

while I'Iéa) and Héb ) both give rise to logz.(— k2 /mz) and log (- kz/mz) contributions.

It will be shown in Appéndix B that the log2 - k2/m2) terms cancel and that
H;a) +H§b) gives only a log (- k2/ m2) contribution. The integrals giving rise
to log (- kz/mz) contributions are straightforward. The calculations are pre-

sented briefly in Appendix B. The results are

n® = 5/8 (@/m) log (-1 /m’)

n® = -1/3 @/m)’10g (-1 /md)
l'll(b) = ~-1/8 (oz/n)zlog (-kz/mz)
Hgb) = -1/12 (oz/7r)2 log(-kz/mz)

Héa) + ng") 1/6 (¢:/)° log (- k2/m®) :

The integrations have also been checked numerically (15). Adding these con-

tributions together we have the complete renormalized fourth order vacuum

(6.272)

(6.27h)

(6.27¢)

(6.27d)

(6.27e)
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polarization contribution in the asymptotic region —k2 >> mz.

1w = 1/4 (@/n)? log (-1K2/m0) ©.28)
This result fcr H(4)(k) is identical to that appearing elsewhere in the

literature (5)(6)-



-48 -

VII. Discussion

| The .fc‘n"ma:l.iz‘s_r.n Adevélhop4e('i. héfe has been show;l to be 1.1s.effu.1 froﬁ
both a formal and practical point of view. It gives a concise way of ex-
pressing renor}malized amplitudes for afbitrary graphs and the proof of
convergence of these integrals is a gréat deal simpler than the corresponding
proof when the renormalized amplitude is given by a recursive sub_\traction
formula. We do not claim great mathematical rigor but the present dis-
cussion could be transcribed into a mathematically more precise language
without too much difficulty.

From a practical point of view, we feel that this formalism could
be very useful especially when combined with numerical integration techni-
ques. For example, the fourth order v;s.cuum polarization is a sum of two
parametric integrals, (6.15) and (6.17). These integrals can be done numeri-
cally quite easily to give the result (6.28). Several such calculations are
being looked into at the present time. A fﬁrther point of interest is the
question of the gauge invariance of the vacuum polarization; A proof of
_ this for the renormalized fourth order amplitude using the parametric

formalism is being looked into.
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Appendix A
' Two Theorems Concerning the Convergence of the Renormalized Amplitudes

In this appendix we will prove the two theorems which were stated
in Section IV.
Probf of Theorem 1: We first consider the nested sequence of sets
S(S') € S(S') U [HNS(S'-1)] € S(S'-1)C.++-C SA)C SA)UHCG. For any
nested sequence of setsK,, K2 . .Km, it is certainly always possible to
choose independent integration momenta such that nK of the momenta in-
ternal to K are independent and hence there is always at least one term in

U which is of order Ny in X, T € Ki for i=1,2,...,m. For the above
i

sequence it then follows that this term in U will be of order

MHAR@) © "SG+)UHNS®H] ™ PS(+1) A

in X, T € HNR(i). It will thus be of order

parE) T PEARE™-D) T PHARQ) T PHNR()

in X, TE€ H. Suppose that this term is of order ns»+ m, in x'r',-‘r € S'i for
i
i=1,2,...,8". It will then be of order m1+ my+... mg, in 51, Ez, ces "ES' .

Certainly one restriction on the above numbers is

S'
Z g +m) = E n (A.2)
i-1 5 1

5¢) -
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Then defining
X1

L, =2 mgy- 2ung . (A-3)
T B s

it follows that the term in U under consideration is of order

nHﬂR(S') + anR(S‘-l) +..00F anR(l) = nHﬂR(O) + py, (A.4)

in §1, Ez, N 'ES' and X, T€ H. A similar analysis shows that any term in

U is at least of this order and hence we have the result (4.4) of Theorem 1.

Proof of Theorem 2: We first prove the useful fact that for any non-empty
set K of lines in G, the expression Ro(x, ¢ ) appearing in (4.1) is at least of

order
nK(po_+2) - NK+1 (A.5)

in X r € K. In this expression, NKis the number of lines inK, and nKis

the number of independent loops formed by these lines. If v,,< 0, the proof

K
is trivial since each time a derivative operator in (4.1) acts in such a way
as to i.ncreaée the power U in the denominator, it also introduces a ‘term
into the numerator which is at least of order ng in X, TE€ K. It follows
that Rcr (%, &) is at least of order i Vet 1= nK(pa +2) - NK+ 1
in X r € K. Next suppose that sz 0. For any set K we can associate

a member of & as follows. We first throw out as many lines of K as pos-
sible without deécreasing the number of independent loops. We assume the
resulting set is connected since if it is not we can apply the following con-

siderations to each connected part individually. To this set we add 2ll lines
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connecting any two of its vertices. Suppose that there are £ such lines.

“Then for the resulting graph S(K),

ngEy = gt (A.6)
Ny = Mg *! (A.7)

Thus VS(K) = vK+JZ = 0 and hence S(K) must be a member of &. The §
operation corresponding to S(K) will insure that Rcr (%, &) is at least of order

nS(K)po + VS(K) +1in X, TE€ S(K). Thus it is at least of order nS(K)po +

VS(K)H'Q inx, r ¢ K. But vS(K)—z = Vg T 2nK—NK and nS(K) = Dy, and
therefore Ro(x, ¢) is at least of order nK(pG+2) - NK+1 inx, r € K.

1t follows that Ra(x, &) will .be at least of order n[HﬂS(i)] U S(i+1)(pcr+2)
- N[HﬂS(i)] US(i+1) + 610 inx, re [HNS(i)]U S(i+1). The above condition has
been relaxed for all i except i=0 to account for the fact that each might be
empty. We assume, however, that HUS() is not empty. Similarly, RO_(X,E)
must be at least of order nS(i)(po+2) - NS(i)+l inx, re S(i). Suppose that
it is of order ns(i)(p0+ 2) - NS(i) +1 4+ L(i) in X, T € S(@i). Subtracting cor-
responding terms and using the definition of R(i), we see that Ro(x,. £) must

be at least of order

S'
[nH()R(S') B 0): 10 [ +anR(0)] (P;+2) - Nyg-5' - 12=:1 L@ +1

in X T € H. Let Rc(x,g) be of order nsi(p0+ 2) - Nsi+ 1+Liin X T € Si'
Then clearly
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St ) . St

o ?‘3 [nS.(P&" 2) +Ng +1+4 'L-i‘] = E_ [“s@)‘%’* 2y + Ngpyt 1+ L(J')] . (A.8)
= i . i j=1

From this and the definition (A.3) of ﬂy, , it follows that Ra(x, ) is at least

of order

Sl
[anR(S') MRS :79):1() ”gp'] (Py+2) - Ny - - 12;1 Li+1

in X, T€ H. Finally we note that Ro(x, £) must be of order Li in £ i for

i=1,...,S'. This gives (4.6) and hence Theorem 2 is proven.
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Appendix B
In th1s a'pp'endi.J'c'We will ’callculété-' H{b ) -and'ﬂga) and s-ho.vi;' that :the.
2, .2, 2 (@) (b) ' . :
log” (-k"/m") terms in Hz and 11,/ cancel. The other integrals are done

2
in exactly the same way.

We first calculate IIl(b ) (k). The integral in (6.24) can be made more

symmetric and we have

1 4
2

. _ 3 (. [k ,

I7(k) = —-2-(;) lOg(__I;g) .{‘dxl...dxsé(l—xl_..._xs)

®B.1)
2
Xy Xg (Xt X5) (X Xy)
X
5
[y + X3+ %) (%y + Xg) *+ %5 5]
A convenient substitution of variables is
X = uy Xg = VZ
Xy = l-uwy A Xy = (l1-v)z , (B.2)
dxldx4 = ydydu dx2de = zdzdv.
Then
®) 3/, [-K° /
h k) = - —2-(-7F> log(—-—i) fdx3dydzdv 6(1-x3—y—z)
m 0
(B.3)
2
% vl-v)y
[y+xg+ zv@-)] "
The change of variables
y = WX
Xg = ( S W)X (B.4)

x dx dw

dy dx3
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~ leads to

1P - %( ) log( )fdxdv RT B

0 [x+ 0 -%)v 1= V)]°

This integral is eiementary and yields
H{b)(k) = - -é— (a/7 )2 log (—kz/mz) .

\
" In the integral in the expression (6.22) for H:(,’a) a variable change

of the type (B.2) is also useful. It leads to

1 .
2
n:(Sa)(k) = _2(#'.‘) {dyvdzdxsdué(l-y-z— Xs)

-1
u (l—u)zz o . a2
TR+ ) yul-u) - (v Z)’l;g-

We next let
y = WX
z = (1-w)x
dydz = xdxdw -

and arrive at

| 2

- .
n:(;a)(k) = ( ) log( )fdxdudw uzv}g — W) (wu(l-u) - _Ii:iz._)
4012 1 k2 1 az ..kz

-2 = fduu(l—u) log}l- ——m2 u{l -u)|— - '§<§F) fn(—-——z

-1

0 m

2
as(L5) = <

m

(®B.5)

(B.6)

(B.7)

(B.8)

(B.10)
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Finally, we will show that Iléa) + H;b ) behaves as log (- kz/mz) and
‘ 'not‘logz' (= kz/ m‘z) in the asymptotic Tegion. ‘We first poirt out that since we
are only interested in terms which increase as (- kz/mz) — o, the terms
containing £ in V{/a in (6.21) and in Wb in (6.25) can be dropped. We show
this for (6.25) by rewriting the log appearing there in the form

(B.11)

2 X, (% + X)X, + X) £ x,x, X
log 1__15_2_ 4Ax1 372775\, 1o [1+ 2%4%5
m Ub(X1+...+x4)

2
%0+ %) (55 + xg) =g Uyl 204 %)

The limit (- kz/ m2) — = can be taken in the second term and the integral
(6.25) will still be convergent. Thus only the first term in (B.11) which is
formed by dropping terms containing & “in Wb contributes in the asymptotic
region. A similar result holds for (6.21).

We further simplify (6.25) by making a change of variables. We let

X —ux, X3~ (l-u)xl, dx1 dx3 - % dxldy (B.12)
with the limits on the u integration béing zero and one., The result is
1
®) gy = (0‘ ] f 5 '
_ Ilz k) = -2 - / (i)cldxzdx4d5<5 (l—xl—xz—x4—x5)

(B.13)

] 2 '
5 XXg¥X5(Kg t X5) (3% =%y) K2 XEg gt Xg)
x_{ds 3 logil-— — | .

A5 A .
U m U(x1+x2 +X,)
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where

= (x1+.x4.)(x2+.x5)+.§x2x5, T (B4 -

In (6.21) the change of variables

xz"—— uX,, X, (-wxy, dx,dxg — x,dx,dy (B.15)

leads fo

H(a)(k) -2( ) /dxldxzdx dx56(1—x1—x2-x4—x5)

\ (B.16)
XX, X, (X, + X)) (X + X)) 2 Xx,(X,+X.)
deﬁggl'ixzxzass 1 410g1_5_i‘142 5
: \ m Ux; +Xy +%,)
From (B.13) and (B.16), we have
1
(@) ®) g, = of2
112 (k)+H2 k) = 2(7{) _4. dx dx5 6(l- X ~Xg =X, - XS)
1 | '
5 X%t %5 [X1+ Xy) (X = X5) ’2X5(X1"X4)]
f '5' ~5 C(B.17)
0 U .
2 (%, + X.)
< log1- K 147277
m U(x +x2+

The second term in the square brackets clearly gives no contribution since

and x, appear symmetrically everywhere else. The remainder can be
* 4

written in the form
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1
. 2
a) . .
2(%-) {dxldxzdx4dx56(1—h1—x2-x4—x5)

@18

x1x4(x2 * XS) m2
1 2 A 2
5 XXy @Koty (xtxy) UK 4 K
X d¢ ER ~5 log X, (X, ¥ X )
0 i XXt X))
-~ T
U(x1+x5+x4) k :
The subtraction is no longer necessary to make this integral convergent in
Xy and X and we can examine the £ =1 and the £ = 0 terms separately. The
first is seen to be convergent when (- kz/ m2) — o while the second becomes
logarithmically divergent in x; and x 4 when (- k2/m2) — ©, Thus for
—k2 >> mz,
5 1
() ® oy ~ a2 /‘ ~
II2 (k)+II2 k) = -2 p- 0d>c1dx2dx4dx56(l—-x1—x2—x4—x5)
(B.19)
T4 _m
» %%y R I T s e e A
Z 398 XX 2
(x1+x4) (x2 +x5) 174 _m
(x1+x4)(x1+x4+x5) k2

This integral can be evaluated by the type of variable substitution used

above and the result is (6.27e).
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