
SLAC-Pm-542 
m-0 

PARAMETRIC INTEGRAL REPRESENTATIONS OF 

RENORMALIZED FEYNMAN AMPLITUDES* 

Thomas Appelquist 

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 

and 

Stanford Linear Accelerator Center, Stanford University, Stanford, California t 

(Submitted to Annals of Physics) 

Supported in part by the U. S. Atomic Energy Commission. 

t Present address 



. . . 
-lll- 

ABSTRACT 

A parametric integral representation for the amplitudes of 

renormalized perturbation theory is developed. The result is a closed, 

well-defined and unique renormalized amplitude to be associated with an 

arbitrary Feynman graph. By unique we mean that the renormalized 

amplitude is explicitly independent of the initial choice of independent 

integration momenta and the routing of external momenta through the 

graph. Our prescription is applicable to conventionally unrenormaliz- 

able as well as renormalizable theories. It is shown that for renorma- 

lizable theories, our representation is formally equivalent to the usual 

recursive subtraction formula for writing renormalized amplitudes and 

hence -can be interpreted in terms of mass and coupling constant renor- 

malization. To investigate the practical advantages of this formalism, 

a calculation of the fourth order vacuum polarization in Quantum Electro- 

dynamics is carried out. 
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I. Introduction 
: ,. . . . ‘.. ._ . ‘., ._ ,;. ‘,‘,.. ._ _. , . . . ‘., ‘. , : 

Parametric integral representations of Feynman amplitudes have 

been used for a variety of purposes g) ever since the beginning of modern 

quantum field theory. They have been especially useful in the investigation 

of analyticity properties in perturbation theory and in carrying out calcula- 

tions in quantum electrodynamics. The purpose of the present work is to 

develop a parametric integral form for renormalized Feynman amplitudes 

which is convenient for discussing some of the formal aspects of renormali- 

zation theory and which will provide a gene& framework for carrying out 

higher order calculations in quantum electrodynamics. 

With any subtraction scheme.for expressing renormalized ampli- 

tudes, there are basically two formal problems. It must be shown that the 

subtractions lead to a unique finite renormalizcd amplitude and that the cut- 

off dependent terms which are subtracted can be related to Lagrangian 

counter terms and hence to renormalization effects. After presenting a 

definition of renormalized amplitudes, we will discuss both of these prob- 

lems and then illustrate the calculational advantages of this formalism by 

looking at the fourth order vacuum polarization contribution in quantum 

electrodynamics. 

In Section II, we will derive a parametric integral form for an 

arbitrary unsubtracted, regularized Feynman amplitude. We will employ 

the notation and several of the results of Nakanishi (2J to express the result 

in a way which is explicitly independent of the routing of external momenta 

through the graph and the choice of independent integration momenta. The 

integrand of the parametric integral will reflect only the structure of the 
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corresponding graph. We will .list the properties of the parametric functions 

‘. ., : in the integrand and give the condition fo.r convergence of the integral in the. .. ‘, .’ 

absence of regularization. 

In Section III, a parametric integM representation for renormalized 

Feynman amplitudes will be established using the result of Section II as a 

starting point. The necessary subtractions will be made by making use of the 

well-known formula (3.1) for the remainder of the Taylor series. This will 

avoid the topological complexities associated with overlapping divergences 

and lead to a unique nonre&rsive expression applicable to arbitrary inter- 

actions. 

Section IV will be devoted to showing that the parametric integral 

form of renormalized amplitudes is a well-defined expression in the absence 

of regularization. The proof involves a careful power counting in the para- 

metric integral and does not rely on Weinberg’s proof (3) of Dyson’s power 

counting theorem which involves an unjustified contour rotation. 

In Section V, we will show that the expression for renormalized 

amplitudes developed here is equivalent to a recursive subtraction formula 

in which the subtraction terms are directly related to Lagrangian counter 

terms @ and hence, in the case of renormalizable theories, to renormali- 

zation effects. 

In Section VI, we will carry through a calculation of the fourth order 

vacuum polarization contribution in quantum electrodynamics using the 

formalism developed in Section III. There are several features of this for- 

malism which together simplify the calculation-considerably. First of all, 

since the momentum integrals have been carried out the only momentum in 

the problem is the external momentum and hence the trace calculations become 
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trivial. By the. use of (3.1), the subtractions will be made at the origin of 

_ ; ,‘. : momentum space.. ..This will. eliminate the infrared, divergent terms. which :. ..‘. ..: .I ’ 

appear in the intermediate stages of the calculation when the subtractions 

are made on the lxass shell. We will be primaril;r interested in the high 

energy behavior of the vacuum polarization. In this energy region, each of 

the graphs of Figure 6 gives contributions proportional to log’(- k2/m2) and 

log(- k2/m2). It is well-known from direct calculation Q) and from renor- 

malization group techniques (6J that the log2 (- k2/m2) contributions cancel 

and that the leading term in fourth order goes as log(- k2/m2). In our 

approach, this cancellation occurs at an early stage of the calculation with- 

out actually carrying out the integrals giving rise to the log2 (- k2/m2) con- 

tributions. 

The present work is similar in some respects to the approach of 

Yen.nie and Kuo (1) which is formulated in momentum space rather than 

parameter space. 
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11. Parametric Integral Formulas 
. . . . . . . 

:. _. ;. : 
. . ,’ .., .. . . ..) : . ,,: .,. ., :I. 

%$e begin by’&n&d&&g an arbitrary pr;per &&m&n graph G 

containing N directed internal lines and n independent basic circuits. The 

momentum of each line r will be denoted by p, t- qr, where p, is an inte- 

gration momentum and q, is a constant momentum which will be related to 

the momenta external to the graph. Due to momentum conservation at each 

vertex, only n of the p, will be independent integration (loop) momenta. If 

there are v vertices, we have 

n=N-v+l, 

the + 1 accounting for over-all momentum conservation. 

With each line in the graph will be associated a propagator of the 

form 

iZr(Pr+qr) 

(pr + qr)2 - mr2 + k 

(2 4 

(2.2) 

where Zr depends upon the type of propagator. Then, apart from constant 

factors and vertex y-matrices, the amplitude will be 

where we have chosen a particular set of the p, as independent integration 

momenta. A convenient starting point for changing (2.3) into parametric 

(2.3) 

form is to express the propagator (2.2) in the form (8) 
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i Zr (P,+ 9,) 
= 

. .@i+.Cjr)2 - mp2 $ iE .. . :. ..’ 

L ixr ( (Pr + 9J2+ (P, -c qr). e r -mf+ iE )I 

‘. 

(2.4) 

Qr = 0 

The ultra-violet divergences show up in parametric form as singularities of 

the integrand at the lower limit of the parametric integration. To avoid these 

divergences, we regularize each propagator by changing the lower limit of 

the parametric integration from zero to a small positive constant p . Sub- 

stituting this into (2.3) gives a regularized amplitude 

d4pi x 

(2.5) 

i ( 
ixr (pr+ qr)2+@r+qr).J$-m~ -tic 

‘1 i Qr=O 

Since the propagators have been regularized, the momentum and 

parametric integrations in (2.5) can be interchanged and the momentum inte- 

grations can be carried out by diagonalizing the quadratic form in the exponen- 

tial and repeatedly employing the formula 

.2 2 _ 
d4p clap = 3 

ia 
(2.6) 

The details of this procedure are similar to those carried out by Nakanishi (2, 

and so we omit them here. The result can be written in a form explicitly 

indepenclent of the original choice of loop momenta. 
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(217) ,., ‘. . . . 

wtG) =~($” { dxG GG Zr ($JIJ -j 
P 

. . . ..1. . . . . . . “..,.. . . 

x exp i C x,(9,2+ cl&. 
[ - 

-mz+ ie) 
i’ c G 

where the sum r, is over all possible simple closed circuits in G and 
C 

[dxG= n pdxr. 
rc:G p 

U and UC are functions of the integration parameters only. 

u=cx x ..-..x 
“1 “2 V n 

where the summation is over all possible sets (vl. . . vn} such that 

P ,P, >...P, 
vl 2 

is a possible set of independent integration momenta and 
n 

uc=cx x X 
v1 v2”‘Y .vnml . 

(2.9) 

(2 .lO) 

where the summation is over all possible sets{ vl. . . . vnwl} such that none 

of the corresponding lines belongs to C and such that p ,p . . . p, is a 
“1 ‘2 n-l 

possible set of inclependent integration momenta. The double sign in (2.7) 
* 

corresponds to the relative direction of lines in circuit C. 

* 
The initial assignment of directions to internal lines is arbitrary. However, 

it is convenient to use the direction of fermion propagation for the fermion lines. 
Then each member of a closed fermion loop or of fermion path through the graph 
will have the same direction. With this choice, each Zr will always be of the form 

(+ & 
r Ir 

+ m,). 

. 
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As an example, consider the self energy graph of Figure 1. 

A simple self energy graph. 

Figure 1 

where circuit A is composed of lines 1, 2, and 3 and circuit B is composed of 

lines 3, 4, and 5. Then 

u = (x1+x2)(x4+x5) +x3(x1+x2+x4+x5) 
. 

(2 .ll) 

UA = x4+ x5 UB = x1+3 

Expression (2.7) still seems to depend upon how the external momenta 

are rout,ed through the graph since this determines the values of the various 

Cp. To see that this is not the case, we interchange orders of summation 

iu (2.7) and re-express it in the form 
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C xrIr.Yr- 4 
rE G 

(2 .lcr> 

Q=O 

where 

v= c xq2 
re:G r r 

. 

‘\ 

Y 
w 

X =- l c uJc. rs U CEC(r, s) 

C(r) is the set of all simple closed circuits in G containing line r and C(r, s) 

is the set of all simple closed circuits containing both line r and line s. The 

double sign in (2.13b) and (2.13~) corresponds to the relative direction of lines 
- 

r and s on circuit C. 

The functions V, Y 
w ’ 

and X rs appear in a somewhat different form 

in the work of Nakanishi @ and, as he shows, YrP and V can be written in 

terms of the external momenta in a way which is explicitly route-independent 

The reader is referred to the paper of Nakinishi-for a proof of this, 

and the results are simply reproduced here. 

We first consider the case when G is a self energy graph. Then V 

and Y 
w 

are given by 

(2.13a) 

(2.13b) 

(2.13~) 

. 
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. ;,: ‘.’ . . . ,_. ‘. ,:.9 ._ ,:,:.*.., ” . . : .* ..‘,.:. .- ‘, .:_ :- .: . . . i (294a). ‘. . . ., ~ 

y =+ c 
( 

-cw 
w C&(0, r) c k/l 

f 

where kP is the external momentum and W and WC are defined as follows. 

From the self energy graph G, we form a graph Gt by connecting the ex- 

ternal lines of G and label the new line as 0 with parametkr x0. 

. 
: 

Graph formed by joining the external 
lines of the self energy graph G’. 

Figure 2 

Then W is just the U function of the grnph G’ with x0 set equal to zero and 

WC is the UC function of the graph C. The double sign in (2.14b) corresponds 

to the relative direction of lines 0 al: 1‘ on circuit C.* Clearly the forms 

(2.14a) and (2.14b) are independent of the routing of kP t.hrough the graph. 

(2 .k?t;) 

* - 
The direction of external lines is defined by the momentum labeling. 
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As an example, we return to the self energy graph of Figure 2. For 

. ..,, this’ graph., 

w = “r”z (x3 + x4 -!- x5) -!- x4x5(x1 + x2 d- x3) + x&v5 -: x2x4, 

1 Y1-l = E [ 
(x2x3 + 3x5 + x3x5) + x2x4] kcl (2.15) 

I 
k x2x4 - x1x5 /J 

and similarly for the other Yr 's. 

We next consider the general case when G has Q external momenta 

kl,k2,. . . , p k which we take to be directed inward. Then by momentum con- 

servation, 
.Q 

(2.X) 

For this graph, V is given by 

. . 
where WIJ is the W function for the self energy graph formed from G by 

setting ki = -k. and all others equal to zero. 
J 

Similarly, YrP is given by 

P-l 

Y = c 
y ei 

w i=l ‘l-l 

I 

(2.17) 

(2 SS) 

. 
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. . 

where Y li is the 
v 

Y r~ frunction,for the self energy graph formed from G by 
. . .‘. .; bett&g’kf ‘= -ki and all other& equal ,ta ieko. ‘: -‘> ., , . . ‘. . . .: --A . . . ,.. ” . ” ” :’ 

Equation (2.12) is the representation of an arbitrary unsubtracted, 

. regularized am$itilde whit h we shall use as a stii,i,irlg point for defining a 

renormalized amplitude. If each field in the theory is a spin zero field and 

if there are no derivative couplings, then each Zr is equal to one and (2.12) 

becomes simply 

00 
WtG) = 2 n 

P ()J- i c i6) 
P 

dxG -$ exp iV - i reGxr(mz - 1 (2.19) 

This simplified form will be used in the discussions of Sections IV and V. 

In developing a parametric form for renormalized amplitudes, it 

will be necessary to know the properties of the parametric functions appearing 

in the integrand in (2.12). To this end, we will list several of these proper- 

ties here. The first six follow immediately from the definitions and the proof 

of the seventh is given by Nakanishi (2). 
. . . . 

1) The functions U, UC, W1’ and Wz are homogeneous polynomials 

in the xr with the following aider ; .’ 
: 

U : n-th order wij : (n + 1)-th order 

UC : (n -1)-th order Wz : n-th order 

2) The functions V, Yr and Xrs are homogeneous with respect to 

the xr with the following order: 
i 

V : first order Yr : 0-th order X rs.: (-1)-th orcler 
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. . . . 
3) The functions U, UC, W!’ and Wz are all non-negative definite . 

“’ . ‘:’ in the region ,of integration.: :. .._ . . . . .,‘.. ..:. :’ ; ‘:. . . . : ‘_ . . . . . ,, . . ..‘;. ‘. T 

U, UC, w’j, W! z Oinxrr 0, r=l,2 ,..., N 

4) V vanishes only when xr = 0, for all r E Cl, where Ct is any closed 
. . 

circuit in G. The same holds for UC for all C1 in G except Ct = C. W9 

vanishes only when xr = 0, for all r < C t where Ct is any closed circuit in G or 

any path through G connecting external lines i and j. The same holds for 
. . 

Wz for all Cl in G except Ct = C. 

5) Let H be a collection of lines in G containing m independent 

closed circuits. Then U has an m-th order zero at xr = 0, for all r E H. The 
. . .* 

same holds for UC apart from the circuit-c. For W1’ and Wz, the order of 

the zero in m + 1 if H includes a path through the graph connecting lines i 

and j, and m if it does not. 

6, xrs has a first order pole only when xt = 0, for allt E C, where 

C c C(r, s). 

7) Let H be a union of m independent circuits in G. Let R be the 

graph formed from G by shrinking each line of H to a point. Denote the U 

function for G, (H, R) by UG, (U,, UR). Then 

uG = UHUR + u;: (2.20) 

. . 
where Ub is at least of order m + 1 in xr, r E H. Similarly for W’A, 

(2.21) 

“I 

where W1’ G is at least of order m + 1 in x 1” r E H. We will only use subscripts 
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on the parametric functions when it is necessary to avoid confusion. 

. . . . . . . (G), The limit p - 0 i.n.Wp may not exist due.to the’existence .of rion-. : .._. .. . ‘*. . ..:. c 

integrable poles of the integrand at the lower limit of the parametric inte- 

gration. TIlese divcrgcnces correspond to the fluItra-violetl~ divergences 

of the momentum space representation of Feymnan amplitudes. At the 

upper end of the integration, the integrand dies off exponentially due to the 

negative imaginary part associated with each mass. 

To make this more precise, we first look at the momentum repre- 

sentation (2.5) of the amplitude. We consider a particular sub-integration 

corresponding to some proper subgraph Si consisting of Ni lines and ni 

independent circuits. Let zr be the power of the momentum in the numerator 

factor Zr. The degree of divergence di fpr the subgraph Si is defined to be 

the power of the integration momenta internal to Si in the numerator minus 

the power of the integration momenta internal to Si in the denominator: 

di = 4ni+ c zr - 29 
r&. 

1 

(2.22) 

According to Dyson% power co&ting,theo&m, the limit p - 0 in M$G)‘will 

exist providing that di c 0 for all proper subgraphs Si of G. 

The same condition holds for the existence of the limit p - 0 in the 

parametric form (2.12). According to property 5, U will have an ni-th order 

zero at xr = 0, for all r E Si. TheV1 operators will dring Yr and Xrs factors into 
r 

the numerator. Yr is zeroth order in any subset of the parameters while 

Xri has poles given by property 6. By inspection of (2.12), the order of the 

pole introduced by the VI operators is 
r 
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. _ . . . ” .; . .‘. . , 
., 

. 

‘:-4 x $$ “. for. .x...ik even ,.,A. I :-’ ‘*,,Q. .,, ,y .” .-’ ,’ ..f. :,: . 
reSi reSi 

(2.23) 

for c zr odd 
r&. 1 

It follows that the numerator will contain sufficient powers of the parameters 

X r, rGi to make the corresponding sub-integration converge provided that 

2 Ni > 4ni + c zr 
rt-S. 

1 

(2.24) 

This is just the condition di< 0. A rigorous proof of the power counting 

theorem can easily be constructed using the parametric form and, in fact, 

it will be a special case of the proof of finiteness for renormalized ampli- 

tudes to be presented in Section IV. 

. . . . 
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111. Renormalized Amplitudes 

. .: . . : ., . . . i ‘.,..‘. ,, .::.’ . _‘, ..‘. ‘,.,.. :I. : *, : . .a,. : :.: . . . ,‘. ” _.,, . 
Using the power counting theorem as a guide, we will define the 

renormalized amplitude corresponding to a Feynman graph G by locating 

those proper subgraphs Si of G for which di z 0 and performing a sufficient 

number of subtractions to make the corresponding sub-integration conver- 

gent in the limit ,LJ - 0. These subtractions can conveniently be made by 

using the well- known formula for the remainder of a Taylor series 

f(n)(O) n _ 1 f(x) - f(0) - l ’ l - n! x - / 
0 

d5 9 (B$)n+l f (5x1 

Combining this method of performing.subtractions with the parametric 

integral form of Feynman amplitudes will yield our parametric integral 

form for renormalized amplitudes. 

We consider an arbitrary Feynman graph G and begin by performing 

the subtractions corresponding to a particular subgraph Si for which di 1 0. 

Working in the momentum representation, we choose a set of integration 

momenta for G so that exactly ni of them are internal to Si? Let the external 

momenta of Si be kl, kZ, . . . , km . They will depend upon the integration 
i 

momenta of G not internal to Si and the external momenta of G. The unsub- 

tracted regularized amplitude is 

Wll”) b;i)@l.. .k$)] 

(3.1) 

(3.2) 

where the functional dependence of W G) 
(‘i) 

P 
upon W 

P 
is denoted by the square 
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(‘j,) 

brackets. We subtract from Wp all terms up to order di in its Taylor 

: ,‘.> . i *. expansion about the.,point ki =’ k2’ = l .e . .L.$:r 0. Using (3-l), this gives ! : ..:’ : : . 
: 

The steps leading from (2.5) to (2.12) can then be carried out keeping track 

of the Ii parameter. This leads to an expression which can be formed from 

(2.12) by inserting the ti parameter into the parametric functions, U, V, Yr 

and Xrs in a simple way and applying the operator 

(3 -4) 

to the integrand. Rather than bore the reader with this bookkeeping or even 

its result, we shall simply present the more general result of the fully re- 

normalized amplitude. 

The renormalized amplitude is defined by starting with (2.12) and 

gqrformhig the above .operations for a large enough class of subgraphs to . . 

insure the convergence of (2.12) in the limit p - 0. Let 9’ denote the set 

of proper subgraphs Si of G which 

(a) are superficially divergent, di I 0 

(b) cannot be formed from another superficially divergent graph 
by simply opening one line. 

w 
Note that for Quantum Electrodynamics, condition (b) is automatically satis- 

fied by superficially divergent graphs, however, this is not so in general. 

With each member Si of 9, we associate a parameter ti. If dGz 0, we 
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let G = So and associate E, with it. Then the renormalized amplitude is 

where ET, f;;, yr, zrs and ?$ are defined in the following way: 

Def: f5 is formed by multiplying each term in U which is of order ni + m in 

X r, reSi by [fin. This is done for each Si E 9. 

Def: $j is defined in the same way and then 

V = 1 c +j (- ki* kj) 
nii>j 1 

. . 
Def: DC and %$ are also defined in the same way as g and then 

and 

xrs = & c *:B 
U CEC(r,s) ,. C 

P-l 

c 
-iQ 

CcC(O,r) 
A WC kiC, 

Def: For each line r, denote the subset of 9’ whose members contain r 

(3.6) 

(3.7a) 

(3.7b) 

by ~7~. Then 

(3.8) 
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We wish to make several observations concerning the definition 

(3.5) of the renormalized amplitude. First ‘of all, we. note that’it ‘is a non- 

recursive expression, applicable to arbitrary interactions which is explicitly 

independent of tile choice of independent integration momenta and the routing 

of external momenta through the graph. It will be shown in the next section 

that (3.5) is an absolutely convergent integral. The members of Pcan be 

either disjoint, nested or overlapping, however, the ordering of the 5 inte- 

grations, both among themselves and relative to the x integrations, is ir- 

relevant. The subtractions in (3.5) have been made at the origin of momentum 

space. There is no fundamental reason for doing this but such a choice. for 

the subtraction point yields a simple form for the renormalized amplitude. 

This choice will, of course, necessitate f.inite renormalizations to insure 

that propagators have poles on the physical mass shell but will also simplify 

calculations somewhat since it eliminates i&a-red divergence problems. 

These things will be discussed in Sections V and VI. Finally, we might 

mention that as far as the parameter 5, corresponding to the entire graph 

. is concerned, the effect of rules for forming v, v, yr, xrs and gr is simply 

to multiply each external momentum by 5,. This is certainly expected. 

When each Z, is equal to one, (3.5) simplifies a great deal just as 

(2.12) simplified to give (2.19). It becomes 

(3.9) 
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The condition d .Z 0 which the members of .Y must satisfy is now . 1 

_: 
‘. .. ‘_. :_ . . . ‘.,. . . . . ., ‘..’ . . . . . . . .‘. 

._ * . 
*.’ ,.. 

d. 
VW =2=2n 

1 2 i - NizO (3.10) 

since zr = 0 for all r E G. Since each li parameter appears only in the 

form EF, the formula 

" 
1 

& @,;j2" t 
2n+1f(x2) 

. 

can be applied for each Si E 9 and using (3.10) we get 

x -$ exp iO-irFGxr(mz -%) 
[ 1 . 

(3 .ll) 

(3.12) 

. 
\ 

6 is defined by multiplying each term in U which is of order ni+.m M 

” 
. 

X r, rE Siby tl?. %’ .I is defined in the same’way and then 9 is given by 

;=1_ c 
6 i>j 

%+j (- ki. kj) . (3.13) 

The 5 operations were constructed to produce subtractions at the 
- 

origin of momentum space. To see how this works in the parametric form, 

we consider the simple case of a graph G for which each Zr is equal to one 

and for which ,Y contains only one member S with vs = 0. Then the regularized 
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(3.14) 

1 

6;(t =1) 
exp = 0) - i C xr(mz - ie 

rE:G 

The G subscript has been.included on the parametric functions. Clearly 

and 

i@ =l) = _ uG (3.15a) 

GG([ =I) = VG * (3.15b) 

From the definitions of 8, and CC, and Eqs. (2.20) and (2.21)) we have 

. 

and . . 

6,(t =O) = USUR 

+,(t =o) = VR 

. 

(3.16a) 
I. . 

(3.16b) 

where R is the graph formed from G by shrinking each line of S to a point. 

Using’ (3.15) and (3.16), expression (3.14) becomes 



I 
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,’ .‘. ‘, . . ,:.. .:l.’ ;. . . : : ,.. ‘. 

1 
dxR -?i 

uR 

C xr(mz 
rcR 

(3.17) 

as expected. 
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IV. Finiteness of the, Renormalized Amplitude ’ 

‘..; ? . . . ,: . . . . . :. . ,. .,.: . . % . ‘. . . :.. . . I .’ 
The renormalized amplitude is defined in Section III by using the 

subtraction operator (3.4). In order to prove that it is a well-defined ex- 

pression, we will carry out the derivatives appearing in the subtraction 

operators and then investigate the remaining integral over the x and 5 para- 

meters. In order to keep things as simple as possible, we will restrict 

ourselves to the case of spin zero propagators and no derivative couplings 

for which the renormalized amplitude is given by (3.12). 

The result of doing the 5, -derivatives in (3.12) is an expression of 

the form 

[dxG k s;P d$ c S,(k) ;i”;)- expp-i zGXr(m: -iC)] 

i (T 
(4*1) 

where the summation is over the terms generated by carrying out the deri- 

vative operators. S, (k) depends only upon the invariants formed from the 

external momenta and RO (x, 5 ) is a produce of xrts and 5,‘s. The integrand 
. . 

‘*of’(4.1) decreases exponentially at infinity and the only possible poles’ occur 

at the zeros of 5. From its definition, we know that 

ii? 0 (4.2) 

and that it vanishes only when some subset of the xrVs and [,‘s is set equal 

to zero. Let H be a collection of lines in the graph G under consideration 

with NH members and let 9 be a subset of 9’ with S’ members. Let 

n(g’, H), (mu (9, H)) denote the order of the zero of 6, (Ra (x, 5 )) when 
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X r = 0, rcH and ti = 0, Si~.V’. Then in order to show that (4.1). is well- 

: ,..,a : : . .defined, it is sufficient to show that for any .H, any97 and anp term in the:. . . c - .I,~ ,‘. 

.sum over U, 

~~ + sf + m,(P,H) > n(P’,H)(Pg+2). (4.3) 

We first consider the zeros of 5. When 9” is empty, n(P, H) is 

given simply by nH. This follows from the properties of the parametric 

functions listed in Section II. When 9’ is not empty, the situation becomes 

substantially more complicated and the general result is given by the fol- 

lowing theorem. 

Theorem 1: Let9 = jSl,S2 ,... Ss,). These graphs may overlap in various 

ways and we construct from them a sequence of nested sets of lines. We 

define S(i) to be the set of lines in G which belong to at least i members of 

Pl J,,... SS’}. Then S(S’) C S(S’- 1) C . . . CS(l)C S(0) z G. We define R(i) 

to be the set of lines formed from S(i) by shrinking all the lines of S(i+l) to 

a point and n to be the number of independent ,closed loops formed by HnR(i) .’ 
the lines of H in R(i). Then 

n(g’,H) = “HnR(S’) + nHnF+Y-l) + - ’ - nHnR(-i) + nHnR(0) +!? 9’ (4.4) 

where 

S’ S’ 

c c ‘9’ = i=l nS(i) - j =l nSi ’ (4.5) 
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This theorem will be proved in Appendix A. The desired result 

(4.3) will then follow from the next theorem concerning the zeros of R,(x, 5) 

which will also be proved in Appendix A. 

Theorem 2: 

yJ9’,W > 

For any term in the sum. over u , 

C nHfIR(S’) + nH(jR(S’-l) + ’ l - + nHnR(0)+ $1 3 
&+2) - NH-S’ (4.6) 

The general proofs of these theorems are somewhat tedious and it 

would probably be helpful to first look at a simple example. We consider 

the graph of Figure 3 which arises in the $ theory. 

Vertex graph in the G4 theory with overlapping vertex subgraphs. 

Figure 3 

The set Pcontains four members; the entire graph So, the graph 5 con- 

sisting of lines 1,2,3 and 4, the graph S2 consisting of lines 3,4,5 and 6, 

and the graph S3 consisting of lines 3 and 4. For each of these, vi = 0 and 

the renormalized amplitude is given by 
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. : . . . . . . . ‘. ,.:: . . ‘. .: . : 
r23 * 

0-f 

j .: , .,i’ ,....’ ;. . . :. :‘: . 

7 
1 o dxl...dx6[dio...d53 

.‘. . . 

(4.7) 

x exp $ (k + k2)’ 
u l 

- i(m2 -iC)(xl+. . . + x6) 
,I 

where 

fi=t 5xX( 
[ 

3 1 3 4 3 -I- X2) -I- t2X3X4(X5 + X6) 1 + (X3 + x4)(3 + x2)(x5+ x6) 

IG = to~,X3X4 EFXlX2 + 5,52@lx6 + x2x5) ’ E,2 x5x6 
[ 1 

+ to@3 + X4) 
[ 
5lXlX2(x5 -I- x6) + t2x5x6(xl + x2) 1 

(4.8a) 

(4.8b) 

Suppose that H consists of lines 5 and 6 and 9” consists of one member Sl. 

Then 19, = 0, R(0) = G/Sl and, 
. .: 

n(p’, W = %nR(O) = la 

In addition, NH = 2 and S1 = 1 and by inspection, one can see that the con- 

dition of Theorem 2, 

m,(P’,H) > (%+2) - 3, 

(4.9) 

(4.10) 

holds for each tern in the sum over u. 
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Finally, we wish to briefly discuss the limit E - +0 in (3.12). To 

, .* -de ,this, we transform it into the Feynman ,denominator form. This is .d.one. . . .: . 

by inserting the factor 

into (3.12)) resealing xr - hxr for all r E G and doing the A integration. 

For the case 2nG - NG < 0, the result is 

1 

X,(mf -is) 1 
NG- 2nG 

(4 .ll) 

W In the limit E - +0, WR will have singularities determined by the zeros 

2 of?- Cxm. These singularities correspond to the existence of absorp- 
reG r r. . . -. 

tive parts due ‘to the 0iening.u~ of inelastic. channels. The usual treatment ’ 

(2J (2) of these singularities for unrenormalized amplitudes, leading to the 

Landau conditions (lo), can be carried over directly to the renormalized 

amplitude (4.11). For a careful treatment of the E - 0 limit using the 

language of distribution theory, we refer the reader to the paper of Hepp (9J. 

The proof that the renormalized amplitude is well-defined can 

easily be generalized to the case of an arbitrary Feynman amplitude given 

by (3.5). One ‘- rain carries out the 5 derivatives and examines each term 
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generated by these operations. From the form of the .functions U, V; Yi * 

‘. . *. ,: and X,,; it is clear that,the effedt of the derivative operators, is again’to ..” :. .. . . . 

make the integral “less divergent I1 and the proof, although somewhat more 

complicated , goes through just as above. 

. . . . . .*’ . . 
. . . .: 

I. . 
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V. Mass and Coupling Constant Renormalization 

. . ,..‘. ,. 
:* 

..‘ ..’ .’ . . . .. .: . -* . ._ ., . . . t 
.: . . 

. . . ..- . . 

We have given a prescription for associating a well-defined renor- 
%. . ‘: . * . . 

malized amplitude with an arbitrary Feynman graph. The usual method of 

defining renormalized amplitudes is by means of a recursive subtraction 

formula of the type used by Salam @) and more recently by Bogoluibov 

and Parasiuk g) and Hepp (9). IIn this section we intend to show the formal 

equivalence of our subtraction scheme with a recursive subtraction formula 

in which the subtraction terms can be related to Lagrangian counter-terms 

and hence to field, coupling constant and mass renormalizations. These 

renormalization effects are usually dealt with via the Green’s functions of 

the theory, however, the Lagrangian counter-term approach seems to be 

simpler for our purposes. We will restrict ourselves to the C#J~ theory in 

this discussion however it applies to any renormalizable theory. We have 

not, as yet, been able to completely prove that our prescription is equivalent 

to a recursive subtraction formula for an arbitrary unrenormalizable theory 

although we feel that this is the case. 

We first consider briefly some of the features of the $4 theory. ., 
. . 

The Lagrangian density for this theory written in terms of unrenormalized’ 

quantities is 

We introduce a new mass, coupling constant and field as follows: 

2 
mO 

= m2+6m2 

I$, = z$ 

(5.2a) 

(5.2b) 
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z1 
. . . ., ‘. ,., . . . .’ A.0 = 2 h (5.2~) 

z2 . . .*, : ., . . . . . y . ..:: .: ,. 

Then letting 

z2 = 1-1-B z1 =1-L, (5.3) 

9(x) can be written as 

g(x) = 4 (iilp$GP$ - rn’$‘) - ~A$J~- g Z26m2$2 + $ B$$aP@ -m’$‘)‘+ L 4! -J- A ($4 (5.4) 

We next carry through the canonical formalism and construct the interaction 

Hamiltonian in the interaction representation. The result is 

or letting 

A=-6m2Z2 -Bm’, (5.6) . : . . ‘. . 

(5.7) 

In perturbation theory, this interaction-Hamiltonian gives rise to 

the usual four-line vertex coming from the first term as well as several new 
. . 

types of vertices. It is well known e) that there are only two types of 

divergences in the graphs arising from the first term in (5.7). These di- 

vergences correspond to vertex subgraphs (foqur external ‘; :;) for which 
. 
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‘.. 

Y = 0 and self-energy graphs (two external lines) for which Y = 1: The vertex 

., .. subgraphs can overlap..as in.the ,graph of Figure 3.. The second term in X(x). 

gives rise to four-line vertices which serve as counter-terms for the vertex 

subgraphs while the next two terms which produce two-line vertices are the 

counter-terms necessary to remove the divergences corresponding to self- 

energy subgraphs. The last term in Z’(x) serves to cancel the non-covariant 

contributions coming from the next to last term due to the fact that the deri- 

vative operator does not commute with the time-ordering operator. 

The effect of these counter-terms in XL(x) is that all graphs arising 

from them can be forgotten provided that for any graph G arising from the 

first term in Ye,(x), the corresponding unsubtracted amplitude W (G) is re- 

placed by a renormalized amplitude WF)which we are about to define. Let 

is1 . . . Smt be any set of mutually disjoint vertex and self-energy subgraphs 

of a given graph G. We denote the functional dependence of W P-3 upon 

wc?l) w(Sm) . . . by 

W(G) = W(G’yo ’ ’ ‘m) . . w(Sm) 1 
. . 

. 

Everything is assumed to be regularized in some consistent manner in this 

discussion. -G) We then define a quantity W recursively by 

where the summation is over all non-empty sets of mutually disjoint vertex 

and self-energv subgraohs. The regularized amplitudes m 
(‘i) 

depend uoon 

(5.8) 

(5.9) 
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the invariants formed from the external momenta. The effect of the operator 

: _’ : t is to project out terms.up to order tii:in the Taylor expansion.af these ampli-; .’ : ‘. ‘. .‘, 

tudes about the origin in their invariants. For a veftex subgraph; which 

depends upon six invari~nls, 

tx 
(‘i) =x (‘i) 

(all invs. = 0) = -ihL 
(‘i) 

and for a self-energy subgraph 

tz 
(‘i) 

(k2) = E 
(‘i) 

(0) + z ’ 
(‘i) 

(0)k2 = A 
(‘i) 

+B 
(‘i) 

k2. 

Then Wr) is given by 

w(G) zz p@(G) 
R 

(5.10a) 

(5.1Ob) 

(5.11a) 

if G is a self-energy or vertex graph and 

W(G) = +G) 
R 

, (5Jlb) 
‘, . . . . 

otherwise. The constants in (5.1Oa) and (5.10b) are related to those in the 

interaction Hamilt0nia.n (5.7) by 

A zz c AtG) B= c B(G) 
G G 

where the summation is over all proper self-energy graphs and 

(5.12) 

L = c L(G) 
G 

(5.13) 
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where the summation is over all proper vertex graphs. 

. ,. _’ “*This conrAtion between.subtractidns for. Feynman graphs and . ‘,. .’ 

Lagrangian counter-terms is well-known (l_3) and we’do not intend to discuss 

it further. It is s::r purpose to show that WE) as dcfincd by (3.12) is squi- 

valent to the definition giveti by (5.9) and (5.11) in this chapter. Before pro- 

ceeding to this, we should point out that since we have made all subtractions 

at the origin of momentum space, it is necessary to perform additional 

finite subtractions for self-energy parts to insure that the renormalized 

propagator will have a pole on the physical mass shell. These finite mass 

renormalizations are discussed in detail by Yennie and Kuo (7, and a method 

of performing the subtractions directly on the mass shell is given by the 

present author in reference (14) This question shall not concern us further. 

63 The proof that (3.12) is equivalent to the definition of WR given in 

this chapter is straightforward. The operator 

1 

I- dt. 
0 l 

(5.14) 

. : .. . . 
.c~.*.. 

. 

appearing in (3.12) is, through relation (3.1), equivalent to the operator (l - t) 

used in this chapter. Thus 

1 

J d5. 
0 2 

V. 

ltin - 
f(Si) = fcl) - C n! f@)(O) = 0 - ti> f(Ei) (5.15) 

n=O 

where the 1 in 1 - ti is really an operator which sets ti = 1. We first consider 

the subset y. of 9’ whose members do not properly contain members of 9 
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themselves. We can use the representation (5.15) for the 5 operations 

. ‘corresbdnding to ‘the membkrs ‘of ‘Po’&nd if it’ &xi bk’ shown that titj vanishes” .. . ‘.’ mm 

in (3.12) whenever Si E go and Sj E go overlap, then (3.12) takes the’ following 

form. 

(5.16) 

-ie) . 1 
where the summation is over all sets of mutually disjoint members of go. 

When a term in this summation does not contain ti where Si E PO , then Ii 

is to be set equal to 1. 

We next consider those members. of 9’ which properly contain only 

the subgraphs in go. We again use (5.15) for the 5 operations corresponding 

to these graphs and we will show that a product ,of t operators corresponding 

. 
to two overlapping members of this set gives zerowhen. in (5.16) due to 5 

. .._ : 
operations corresponding to the union of these two graphs. This procedure 

can be continued working from the inside out and the result is that Wp’ 

becomes 

(5.17) 

: 

. 
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The summation is over all non-empty sets {Sl.. . Sm) of non-overlapping 
. . . ’ .%I ‘; ~~&,ers~of ‘9. ‘&‘t’hat.‘&err;b&rs of (5-‘..“. s;n} may be n&bd. t * ” . ’ 

In order to show that (5.17) i& equivalent to the definition of Wg) 

given by (5.9) and (5.11), we re-arrange the summation in (5.17) by defining 

an operator Q, recursively by 

QG 
) 9 

m f 

the sum being over 

which are properly 

all non-empty sets of mutually disjoint members of J?’ 

contained in G. Then 

W(G) = < nG 00 

R 0 J- 1 0 
dXG@-to)QG 

(5.18) 

(5.19) 

where to = 0 for v. =v G < 0. The reader can easily convince himself by 

inspection that (5.19) is identical to (5.17). The equivalence of (5.19) with 

the definition of Wr) via (5.9) and (5.11) should be clear since these two 

. . expressions have the same form. Regularization is npt necessary in (5.19) . .. . 
. . . . * 

since the subtraction operations are performed directly on the integrand. 

It remains to prove that the overlaps do indeed vanish as we have 

stated above. We have shown in reference (l4) that if two members Sa . - 

and Z& of L2’ overlap, then they must both be vertex- subgraphs and Sa U Sh 

mu+ be either a self-energy or vertex subgraph. If S,U i$, E 9, we let 

SC = s,u sb. If SaU Sb is a vertex subgraph which is not an element of 9, 

we let SC be the self-energy subgraph formed from S,U S,, by adjoining one 

line. Thus the vertex subgraph of Figure 4 composed of lines 1 to 6 is not a 
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member of 9’but the self-energy graph formed by adjoining line 7 is a member 

.of .g : . . ‘.:.” ., . . ‘, ,,.... . . . . ..* :: . : f ,. . :., . . ‘, & ., ‘. ., .,‘.. . ..;. 

A graph with a superfic’ially divergent 
subgraph which is not a member of ,Y. 

Figure 4 

In either of the above cases, SC E 9 and hence there will be a 6 opera- 

tion corresponding to this graph. The operation t,$, simply sets ta and lb 

equal to zero. Since 6 does not have a zero when E, = 5, = 0, the tat,, operation 

can be commuted with the 5 derivatives and what we must show is that 

. : . : . . 
1 

02(5a=5b= 0) 
exp iV ((,=tb=Oj - C xr(mf-‘if) 1 =o (5.20) 

reG 

. . 
Consider any term in 6 or I? which contain a factor tc. This term must be 

at least of order nS + 1 iii x n 
C r , r E SC and hence at least of order saus+l in 

X r’ rE SaU Sh. Suppose that it is of order ns + ma, (n + mb) in xr, r E Sa, (Sb). 
a 93 

Then since any term is at least of order n rE San%, 

“sau s <’ ,sa+ ma + ,q,+ “b - nSafI Sh ’ (5.21) 
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But clearly 

: -. . : ‘,I . . . ‘..; . -. . . .:. .,... . .;.. :‘t : . . - : . :,’ .’ . *’ . ‘. . . *.,. -. 

nsau %I = nsa+%- “San% 

for two overlapping vertex graphs and hence 

ma+m b > 0 

(5.22) 

(5.23) 

. . 
This means that any term in U or w” which contains a factor 5, must also 

contain either a factor C;, or 5,. Thus all dependence on 5, vanishes when 

2, and 5, are set equal to zero. This gives the result (5.20). 

. . 
: 

. . . 
. : 

. 
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VI. Fourth Order Vacuum Polarization 
. . . . ! . “.. j. . . 

The starting point for any calculation in quantum electrodynamics 

‘is expression (3.5) with vertex -y-matrices, socstant factors and traces over 

closed fermion loops in.serted. To illustrate the technique, we first look at 

the second order vacuum polarization. 

Second order vacuum polarization graph. 

Figure 5 

The unsubtractcd amplitude is 

“(6 .l) 

where Q! is the fine structure constant. According to (3.5)) the corresponding 

renormalized amplitude is 

[g \v YpYUYvY, (6 4 

x exp i “lx2 [21i’ 

[ x1 +x2 ‘1 +x2)m2 
I 
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where m2 includes a small negative imaginary part. Since flPV (k) is gauge 

.invariant, it must be .of the form : ., ..,. . :. :, ,: 

Thus doing the trace in (6.2) and extracting the coefficient of - kPkv gives 

l-F(k). 

x exp xlx2 2 2 2 i;;-+.Fxt; 
1 2 

k -im (3+x2) 
I 

Inserting the identity 

1 = 

scaling x r - A xr and doing the 5 integral gives 

&x(l -x) ‘iAm - exp[- iAm 1 

Using the identity CD 
,iah _ ,ibA 

1 = i0g & 

we have 
1 

lj2’(k) = 2a! 
A f dxx(l-x) log 

0 

(6.3) 

(6 -4) 

(6.5) 

. (6.6) 

(6.7) 

(6.4 
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which for 2 2 -k /m > > 1 becomes 

‘. *,. ._., ., . ‘_.. . ,’ : : :. ,’ .,‘. 

The fourth order vacuum polarization 11 (4) 
WJ 

consists of contributions 

from the three diagrams of Figure 6. 

Fourth order vacuum polarization graphs. 

Figure 6 

The contributions from graphs 6b and 6c are identical and hence 

.., .* . .:.. . . . . :. . . 

1-&4,)(k) = (gPv k2- kPkv )rft4)(k) = I-$)(k) + 2 I-#)(k) (6 .lO) 

where II (a) 0)) 
PV 

(k) and II 
P 

(k) are the amplitudes corresponding to graphs 6a and 

6b, respectively. For the graph of Figure 6a, the set Pin (3.5) consists of 

the entire graph and the two overlapping vertex graphs composed of lines 
m 

1,4,5 and 2,3,5. We associate the parameter 5, with the entire graph, the 

parameter ,1 c with the 1,4,5 vertex and the parameter 5, with the 2,3,5 

vertex. Then defining parametric functions Da, wa, yra and xrsa according 
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to the rules of. Section III and introducing the notation 

.: ..‘. . . . f . . . . .:. . . .: ‘;. - - : : ; :. . . . . . 

= R @+I> 
i 

we have 

d”rs (3) 0) 0) . . ..dx5Ro Rl R2 \ 

To form iI;y (k), we first apply the rules of Section III which effect 

subtractions at the origin of momentum space. The result will be a contri- 

bution similar to (6.12). In order to insure that the second order electron 

propagator composed of lines 1,2,3 and 5 has a simple pole at k =m, we must 

subtract from this contribution a term in which the second order renormalized 
. . ‘, .electron self energy Z ‘2’tW is replaced by 2 f2)$ =m), ’ A ssociating the par,a- ” 1” . . ’ : 

meter E, with the entire graph and the parameter 5, with the self energy sub- 

graph composed of lines 2 and 5, we have 
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00 

n@)(k) = i -&’ dx 
PV ,: of ,_. .o .*..l 

,. . . ,dx5R~)R1(2j 
‘. ‘I . . . .. .* ‘. . I’ . 

x exp 
4 4 4 

c xrlr l yrb - 2 
c 

c x 4X5 

r=l r, s=l r=l r 

- 2 (2j(m) nitj (k) 

where R is the graph formed from that of Figure 6b by shrinking lines 2 and 

5 to a point. 

To calculate II (4) (k), we carry out the Pr derivatives in (6.12) and 

(6.13), do the traces and keep only the coefficient of -lcPkV in each. Defining 

these coefficients to be l7 (aj(k) and II(bj(k) respectively, 

nt4) @) = nca)(k) -t 2 n”‘(k). 

er= 0 

(6.14j 

The:yl.. operators in (6.12). and (6.13) generate terms which have either zero, . 
r 

one or two factors of Xrs. The last of these clearly do not give rise to k k PV 

terms. The trace calculations are very simple since there is only one 

momentum kcl involved. The symmetry of the graph of Figure 6a can be used 

to write II!“) (1 ) c in a simple form in which the overlapping divergence has been 

removed. The results are 
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.. 1 . . . . . 7r dy..dx5 6(1-xl--.:.-x5) 
. 0's. . . . ; . . . . .,.'.. ,-. . ‘_ a 

bo 
nta)(k) = 2 g 2 

Of 

x5 x +x 1 4 
- 4A2 -4i4, - ̂ v 
‘a 

- A& 1 ( log k2 l- - ‘a 
m2 Ga(Xi +. . . +x4, 

(6.15) 
a 

- iilii4 I( 
m2 (x1+. . .+x4,ca 

l- 7 

‘a 

where 

ca = (9 + X4)(% + X3 + x5) + E x5(x2 + x3) 

(6.16a) 

5x4( 2 x +x3+x5) + 5 X2X3(xl+X4+EX5) + ‘x5(~x3+x2x4) 

1 Ai = ; x4(x2+ X3+X5) + 03x5 1 
a 

i4 = -r, [ xl (“2 + x3 + x5) ,+ 5 x2.x5, 
3 

. 

‘a 

. . 

A2=$ 13 34 35 a [I 
xx +x x +x x +x x 45 1 

(6.16b) . 

and where Uar Wa, Al and A4 are formed by setting 5 = 1 in fia, ca, il 
w 

and ii, respectively and 
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1 

f dt -!- G4 
xjx5(x2 +x5)2 2 4x2 + 3x5 

(6.17) 

+ -m x 4 
0 0 at, ^5 

ub 1 
X ‘b A 

‘b 

tok2 

where 

ir, = (Xi + X3 -t- X4)(% + X5) + 5 x2x5 

Wb = x4(x1+ x3)(x2 + x5) + 4 xzX4”5 (6.18) 

1 g4 = L 
C 

(X1 + X3)(% + X5) + 5 x2x5 1 * 
‘b 

. 
. :’ . 

., . .’ 

2’. *‘>. .’ 
We now restrict our attention to the asymptotic region -k2 >> m 

and keep only those terms in II (“)(k) and II@)(k) which behave like log (-k2/m2) 

2 2 or 1og2(- k /m ) in this region. da)(k) becomes 

da) (k) = IIf) (k) + I$$) + $) (k) (6.19) 

where IIF) (k) comes from those terms multiplying the log in (6.15) which do 

not require the internal subtraction (those containing a factor of 5 or 5 2). 



For these terms, the log can be expanded and 

\ 
+ (Y$ + X4) 3 

a 
[x5(x2 ’ x2 + x5) (xlx2 ’ x2x4) + x2x3xl] 1 * 

(6.20) 

(a) 112 (k) comes from that term multiplying the log which does require the in- 

ternal subtraction. For this term, the log cannot be expanded since this 

would introduce a logarithmic divergence in 
xp4and5 l 

CQ 

I-f)(k) = 2 0 Q! 2 f 
1 

dxl.. . dx5 rS(l -xl- l ._. -x5) f d[ a ’ 7r 0 0 agg 
a 

(6.21) 

Since the log serves as a cutoff for a logarithmically divergent integral, we 

(a) expect II2 (k) to give a log2 (- k2/m2) contribution. The remaining terms in 
. 

(6.15) are c&&gent tiithout the internal subtraction, however, there is . 

one non-vanishing subtraction term (5 =0 term). It is only for this term, 

Ii!)(k), that the limit - k2/m2 - UJ is not finite. 

dxl...dx56(l-x1-.,.-x5) TX4 

(xl+ x4,4(x2 + x3 -I- x5)2(x1 +. - l +x4) 

s 

-1 (6.22) 
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This integral diverges logarithmically when -k2/m2+ ~0 and hence it will 
. . : . _.:. . : : _. : ..give a ,log(-; k2/m2) .contribution;. ‘. ‘..,. ,., i .,., . . .‘. . . 

Similarly, 

zr+)(k) . = n?)(k) +n$)(k) +r$)(k) (6.23) 

@) where I$ (k) comes from the term multiplying the log in (6.17) for which the 

subtraction term (t =0 term) vanishes. The log can be expanded and 

rip)(k) =-6($og($)[dxl... dx5,,-xl-...-x5)x2x4x$x2+x5) . (6.24) 

comes from those terms multiplying the log in (6.17) which require the 

internal subtraction. Expanding the log would produce a logarithmic divergence 

for these terms in x1, x2, 4 x and < and so we expect a log2 (- k2/m2) contri- 

bution. 

2 O3 
1 

(k) = -2 4 
0 J- 

dxl...dx5 6(l-xl-...-x5) o dt $ J & 
. . . 0 .._. ., : ‘._ .- ._,.‘.. yb .’ . . ;y : . ..’ 

‘. (6’.25) 

x x4x5(x2 + x5)2 (3x1+- 3x3 

2 - 
comes from the term in (6.17) with k in the numerator which requires 

the internal subtraction. 
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1 
)., 4. d[ . + . . . .,. . . _ _. - . ’ . . 

(6.26) 

-1 

When - k2/m2 - 00 9 this integral diverges logarithmically in 3, x3, x4 and 

5. Hence we expect it to give a log (- k2/m2) contribution. The finite mass 

counterterm Z (2) (m) dR)(k) in (6.17) remains finite at - k2/m2 - 00. 
__----__--~__-______ _----.._- _ -. .-.- -__ 

There are six contributions to the asymptotic form of II (4) (k) . Four 

of them, II?), II r), ill@’ and II p), give rise to log (- k2/m2) contributions 

while II$a) and IIf) both give rise to log2.(-k2/m2) and log (-k2/m2) contributions. 

It will be shown in Appendix B that the 1og2(- k2/m2) terms cancel and that 

l-p +II P’ gives only a log (-k2/m2) contribution. The integrals giving rise 

to log (-k2/m2) contributions are straightforward. The calculations are pre- 

sented briefly in Appendix B. The results are 

. . . . . . . = .5/8 (y/r )2 log (- k2/m2) ~ ‘. ., (6.27.a) 

l-q = - l/3 (Q/T )2 log (- k2/m2) (6.27b) 

I-$@) = - l/8 (a/~)~ log (- k2/m2) (6.27~) 

Jp = - l/12 (a/n )2 log (- k2/m2) (6.27d) 

l/6 (b/r )2 log (- k2/m2) i I (6.27e) 

The integrations have also been checked numerically (5). Adding these con- 

tributions together we have the complete renormalized fourth order vacuum 
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polarization contribution in the asymptotic region - k2 > > m2. 

. . _’ t .- ,.. ‘. 
. ‘_. .n;4i, ‘= ;/41 ~~;ll~ ;,, ;- k2/,2) . :- ‘. ,? .‘... .’ ..: .: ;. 

(6.28) . 

This result fcr II (4) (k) is identical to that appearning elsewhere in the 

literature (5) (6). -- 

: . 
: . : . . -_. . . 

. . 
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. VII. Discussion 
-1.. . . . .‘, . . . ..,.‘I..‘. . . . . . : ‘. * . . . . -...a ‘..-.. . . . .I . . _..- .: ‘, “, . ‘% ,,’ 

The formalism developed here has been shown to be useful from 

both a formal and practical point of view. It gives a concise way of ex- 

pressing renormalized amplitudes for arbitrary graphs and the proof of 

convergence of these integrals is a great deal simpler than the corresponding 

proof when the renormalized amplitude is given by a recursive subtraction 

formula. We do not claim great mathematical rigor but the present dis- 

cussion could be transcribed into a mathematically more precise language 

without too much difficulty. 

From a practical point of view, we feel that this formalism could 

be very useful especially when combined with numerical integration techni- 

ques. For example, the fourth order vacuum polarization is a sum of two 

parametric integrals, (6.15) and (6.17). These integrals can be done numeri- 

cally quite easily to give the result (6.28). Several such calculations are 

being looked into at the present time. A further point of interest is the 

question of the gauge invariance of the vacuum polarization. A proof of 

_: . . this for the renormalized fourth order amplitude *using the parametric. 
. . 

formalism is being looked into. 
: . 
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Appendix A ’ 

: ‘., .: : . . . . 
‘No Theorems Con&king the Convergence of the &&alked“Amplitudes 

In this appendix we will prove the two theorems which were stated 

in Section IV. 

Proof of Theorem 1: We first consider the nested sequence of sets 

S(S’) C S(S’) U [ HfE(S’- 1)] C S(S- 1) C . l l l C S(l) C S(l) U H C G. For any 

nested sequence of setsK1, K2. l *Km, it is certainly always possible to 

choose independent integration momenta such that nK of the momenta in- 
i 

ternal to Ki are independent and hence there is always at least one term in 

6 which is of order ixK in xr, r E Ki for i =1,2,. . . , m. For the above 
i 

sequence it then follows that this term in 6 will be of order 

%nR(i) = nS(i+l) U [HnS(i)] - nS(i+l) 

illX r, r E HnR(i). It will thus be of order 

., . \ 

(A4 

“HnR(S’) + nHf7R(S’- 1) + ’ l ’ nHnR(l) + “HnR(0) 

. . . . . . . 
iIlX r’ r E H. Suppose that this term is of order nS .+ mi in kr;’ r E Si for. 

i 
i=l,2,. . . , S’. Itwillthenbeoforderml+m2+...+ms, in {l,E, ,..., ts,. 

Certainly one restriction on the above numbers is 

S’ S’ 

c (ns + mi) = c 
i=l i 1 =1 “w l 

(A.2) 
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Then defining 

. . ‘: . . ‘,. _ . _.. ‘. . .S’. . . ,‘. S’. i ._ ‘. , . . ) 

f-t = c c i=l ‘S(i) - i=l nSi ’ 

it follows that the term in 6 under consideration is of order 

nHfEt(S’) + nHnR(S1-l) + l l l + nHnR(l) = “HnR(0) + ‘gl 

‘. .” 

(A.3) ’ 

(A-4) 

in51,52,m-,5s, and+ r E H. A similar analysis shows that any term in 

fi is at least of this order and hence we have the result (4.4) of Theorem 1. 

Proof of Theorem 2: We first prove the useful fact that for any non-empty 

set K of lines in G, the expressionR,(x, 5 ) appearing in (4.1) is at least of 

order 

n&3,+2) - NK+ 1 (A.5) 

illX 
r' 

r E K. In thi.s expression, NKis the number of lines inK, and nKis 

the number of independent loops formed by these lines. If vK< 0, the proof 

is trivial since. each time a derivative operator in..(4,1) acts in such.a. way . _, . ~ 
. : ‘_ . . 

as to increase the power 6 in the denominator, it’ also introduces a term 

into the numerator which is at least of order nK in xr, r E K. It follows 

that Ro (x, 5) is at least of order nKpa z nKpa + vK+ 1 = nK(p, +2) - NK + 1 

in xr, r E K. Next suppose that vKr 0. For any-set K we can associate 

a member of 9’ as follows. We first throw out as many lines of K as pos- 
w 

sible without decreasing the number of independent loops. We assume the 

resulting set is connected since if it is not we can apply the following con- 

siderations to each connected part individually. To this set we add all lines 
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connecting any two of its vertices. Suppose that there are B such lines. 

. ‘..men for the resulting graph S(K),’ ‘. .’ ‘- : . : .‘:. . . .: . . . . ?. ,’ . 

%m 
= %+I (A.6) 

NS W 
5 NK+P (A-7) 

Thus vstK) z vK + 1 Z 0 and hence S(K) must be a member of 9. The 5 
‘. 

operation corresponding to S(K) will insure that Ra (x, 5) is at least of order 

nS(K)P, + ‘S(K) + 1 in x1, r E S(K). Thus it is at least of order n SPY + 

“S(K) 
t-1 -1 in xr, r E K. But vStKJ -1 1 vK = 2nK- NK and ns(Kj z nK, and 

therefore R,(x, 5) is at least of order nK(po+2) - NK+ 1 in xr, r E K. 

It follows that Ra(x, 5) will be at least of order n [HnS(i)] U S(i+l)@cs+2) 

- N[HiX3(i)] 9 S(i+l) + 6io in xr9 
r E [HnS(i)] U S(i +l). The above condition has 

been relaxed for all i except i= 0 to account for the fact that each might be 

empty. We assume, however, that HUS(l) is not empty. Similarly, Ra(x, 5) 

must be at least of order n s(i)@o+2) - NSfi)+ 1 in xr, r E S(i). Suppose that 

it is of order n Cp +2)-N S(i) 0 S(i) 
+ 1 + L(i) in xr, r E S(i). Subtracting cor- 

responding terms and using the definition of R(i), we see that Ra(x,, 5) must . .’ 

be at least of order 

S’ 

C nHC)R(S’) + “HC)R(S’-1) + * l ’ + nHnR(0) 1 @,+2) - NH-S’ - c L(i) t- 1 
i=l 

illX - r, r E H. Let Ra(x,[) be of order ns @,+2) 
i 

NS + 1 + Li inxr, r E Si. 
i 

Then clearly 
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S’ - S’ 

. ., -’ .,.. . +2) + NS + I.+ L.i SCi)@a, 2) + NsuJ.+ 1 + L-Q) . (A.8) 
i 1 

From this and the definition (A.3) of p97, , it follows that RC(x, 5) is at least 

of order 

S’ 

nHflR(Sl) + ’ l ’ + “HnR((-j) + ‘9, 1 @,+ 2, - NH -s- c Li.+l’ 
i=l 

in xr, r E H. Finally we note that R,(x, 5) must be of order L i in 5 i for 

i=l to**, S’. This gives (4.6) and hence Theorem 2 is proven. 

0. : 
. 

. . . . . 

‘. 
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Appendix B 

. 

.’ ‘.. . . ‘.. :, 

In this app’end&‘we will ,c&culh& 9 @) 
: : “’ 

log2 (-k2/m2) terms in II2 (a) and II?’ cancel. The other integrals are done 

in exactly the same way. 

We first calculate II?’ (k), The integral in (6.24) can be made more 

symmetric and we have 

II?)(k) = - ;(blog(=$) &xl...dx5 d(l-x1-,.,-xX5) i 

x2 x5 (x2 + x5J2 (Xl + x4) 
X c 

[(xl+x3+x4G2+x5) +x2x51 
il 

A convenient substitution of variables is 

x1 = uy x2 = vz 

x4 = O-NY x5 = (I-v)z (B-2) 

dxldx4 = ydydu dx2dx5 = zdzdv. 

Then 
I. 

. ‘. . . 

II{b+k) = - ;(j?og($) jdx3dydzdv 6(l-x3-y-z) 

(B.3) 

X vo -v) Y2 
[y+ x3+ zv(l- v)l 5 

The change of variables 

X 3 = (T t. iv) x 

dydx3 = xdxdw 

(B-4) 
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leads to . 

This integral is elementary and yields 

II?(k) = - i (a/n )2 log (- k2/m2) . G3.6) 

\ 

In the integral ti the expression (6.22) for IIf) a variable change 

of the type (33.2) is also useful. It leads to 

dydzdxgdu 6 (l-y-z- x5) 

(B-7) 

u2(l-q2 z 
2 -I 

x (~-+ X,HY + z) ( 
J&-u) - (y+z$- 

1 
- 

We next let 

y = wx 

z = (l-w)x Q3.8) 

. 
. dydz 7 .x.dxdw . . . s ,. . ., . . . . . . . . .‘. 

and arrive at 

Ip(k) = -2($log(=$)ldxdudw u2(;;$$w) (wu(l-u) - $)-I 

. 2 * 
= -2 Q f duu(l-u) log 1 

0 
[ - $(1-U]- - :(+($) ’ (B.10) 

. 
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(a) Finally, we will show that II2 + rip behaves as log (-k2/m2) and 

. . . . . . not log2 (’ k2/m2) in the asymptotic ‘l;egion. ,We first poi.&o~$ fhat’sinc’e we .“. . ’ 

are only interested in terms which increase as (-k2/m2) - 00, the terms 

containing 5 i;; I?, in (6.21) and in Gb in (6.25) can be dropped. We show 

this for (6.25) by rewriting the log appearing there in the form 

(B.11) 

sxxx 245 
2* 

x4(~+x3)(~+x5)-~ub$~‘*‘+x4) 

The limit (-k2/m2) - i can be taken in the second term and the integral 

(6.25) will still be convergent. Thus only the first term in (B.ll) which is 

formed by dropping terms containing 4 ‘in Gb contributes in the asymptotic 

region. A similar result holds for (6.21). 

We further simplify (6.25) by making a change of variables. We let 

“1 -u “1, x3 - (I-“‘“1, dxldx3 -xXldxldy (B.12) 

with the limits on the u’integration being zero and one. 
..’ 

The result 1s 
. . . .:. 

dxldx2dx4dx5 6(l-7-x2-x4-x5) 

(B.13) 

1 

s 
8 y4x5@2 + x5j2 (3x1 -x4) 

X 
0 @zg 

ii5 
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where 

. f * . . ;. . . : ..jj = (xl+,x4)(xpx5) +( x2x5. . .. . . . . (B.14) : . . 

In (6.21) the change of variables 

3 kx2, x3--. (I-u)x,, dx2dx3 -+x2dx2dy (B.15) 

leads to i 

$Q) =2 Q! 
2 l 

OS a 0 
d”zdx2dx4dx5 6(l-x1-%-x4-x5) 

1 

f dE 
8 x1x4x2 (“2 + x512 (Xl + 

X 0 3 &5 
U 

From (B.13) and (B.le), we have 

dx2 dx4 dx5 6 (I- 3 -x2 - x4 - x5) 

1 

f 8 dE; Yg xlx4(xJ + x5j2 II (x1+ x4) (3 -x5) - 2 x5(x1 - x4) 1 
X A5 

(B.17) 
0 U .‘. . . . . ‘_ . . _. . ..’ _. . . 

. 

The second term in the square brackets clearly gives no contribution since 

,3 
and x4 appear symmetrically everywhere else. The remainder can be 

written in the form 
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2 l 

Of 2; . dxldx2dx4dx5 b(l-x~-x2 -x4-x5) 
0 

. .‘. . . ..,. ‘.. *...:: ,. _’ .: ,;‘. 1 ‘, . , ‘: . ..‘. .’ . . . . . . . : : 
(B.18) 

1 

J 
8 

dt ag 
9x2x4(x2 + x5J2 (“1 -I- x4) 

X 
c5 log ’ 0 

,\ 

The subtraction is no longer necessary to make this integral convergent in 

x2 and x5 and we can examine the 5 = 1 and the 5 = 0 terms separately. The 

first is seen to be convergent when (-k2/m2) - 03 while the second becomes 

logarithmically divergent in xl and x4 when (-k2/m2) - ~0. Thus for 

-k2 >> m2, 

l-p(k) + rp(k) M -2 y 
2 1 

Of 7r 0 
d”ldx2dx4dxg’6(l-x1-x2-x4-x5) 

(B.19) 

This integral can be evaluated by the type of variable substitution used 

above and the result is (6.27e). 
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