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ABSTRACT

It is presently thought that the mass of all of the elementary particles is de-
termined by the Higgs field. This scalar field couples directly into the trace
of the energy momentum tensor of the elementary particles. The attrac-
tion between two or more masses arises from the exchange of gravitational
quantum particles of spin 2, called gravitons. The gravitational field couples
directly into the energy momentum tensor. Then there is a close connec-
tion between the Higgs field, that originates the mass, and the gravitational
field that dictates how the masses interact. Our purpose in this thesis is to
discuss this close connection in terms of fundamental definitions of inertial
and gravitational masses. On a practical level we explore two properties of
mass from the viewpoint of coupling into the Higgs field: (i) The coupling of
the both the Higgs and gravity to the energy-pressure tensor allows for the
decay of the Higgs particle into two gravitons. We use the self energy part
of the Higgs propagator to calculate the electromagnetic, weak, fermionic
and gravitational decay rate of the Higgs particle. We show that the former
process appears to dominate the other decay modes. Since the gravitons
are detectable with virtually zero probability, the number of Higgs particles
with observable decay products will be much less than previously expected.
(ii) Some new experimental results seem to indicate that the mass of the
heavy elementary particles like the Z,W+,W− and especially the top quark,
depends on the particle environment in which these particles are produced.
The presence of a Higgs field due to neighboring particles could be respon-
sible for induced mass shifts. Further measurements of mass shift effects
might give an indirect proof of the Higgs particle. Such can be in principle
done by re-analyzing some of the production data e+e− → ZZ (or W+W−)
already collected at the LEP experiment. About the physical property of
the top quark, it is too early to arrive at any conclusion. In the foreseeable
future, there will be more extended top quark production statistics from the
Tevatron accelerator so that the mass shift hypothesis can be experimentally
probed.
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Chapter 1

Introduction

Notions of inertial and gravitational mass have been fundamental in physics

since the time of Newton first introduced both concepts. Presently the man-

ner in which notions of gravitational mass enter into contemporary physical

theory is via Einstein’s general relativistic theory of gravity in which the

gravitational field describes the metric geometry of the space time. Inertial

mass of elementary particles enters into Standard Model physical theory is

via the Higgs field. For non-relativistic (slowly moving massive) particles

the inertial and gravitational masses are equal to the high degree of accu-

racy, but this rule is not absolute. In detail, the source of the Higgs field

particle is the trace of the stress (energy-pressure) tensor T = T µ
µ. While

there have been a considerable number of experiments checking the theory of

gravity, and thereby sources of gravitational mass, so far there has no direct

experimental confirmation of that the Higgs field as the source of elementary

particle inertial masses. The attempts at verification consists of high energy

1
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experimental searches for an observable Higgs particle.

The purpose of this thesis is to explore theoretically the new evidentiary

signatures for the Higgs hunting experimentalists probe:

1. Since the source of both gravitational and inertial mass come from the

stress tensor it follows that the coupling between the Higgs particle

and gravitons should be particularly strong. A process such the Higgs

to two graviton decay modes appears to dominate the width of the

Higgs particle once it is produced. If such proves to be the case, then

one would have to detect the Higgs by the “missing four momentum”.

Recall that Z particle decays into a neutrino anti-neutrino pair also has

such “missing four momenta”. The Higgs to two graviton decay rate

will be computed in detail.

2. The Higgs is the source of the inertial mass. If two heavy particle are

very closely situated together, then the presence of one of the particles

shifts the mass of the other and vice-versa. It is possible (for example)

that the mass of a Z or W boson or a top quark can be shifted by the

fact that they can be produced in pairs. Mass shift will be computed

in details.

So far there is experimental evidence for any scalar field producing inertial

masses, although there have been and continue to be extensive high energy

experimental programs searching for experimental confirmation of the Higgs

particle.

To develop the above concepts, we will explain in Chapt.2 how in a classi-
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cal limit it is possible to define a Newtonian theory of gravity starting from an

action principle. Based on the principle of equivalence, the non-relativistic

gravitational field due to many massive particles is a linear superposition

of the fields due to each of the masses taken separately. Applying to the

non-relativistic gravitational case, the same superposition principle conven-

tional to the electromagnetic case, it is possible to write the gravitational

Lagrangian as quadratic in the gravitational field. (ii) The most general

local rotationally invariant quadratic scalar formed from the vector gravi-

tational is |g|2. The transition from the classic scenario to the quantum

non-relativistic one will be done studying the solution of a massive particle

in a linear potential. Because the solution is dependent on the mass of the

particle we will prove the principle of equivalence does not hold in a quantum

mechanical system. In the final part of Chapt.2 we will derive the Einstein’s

field equation and point out the connection between the space-time curva-

ture and the trace of the matter energy momentum tensor. In Chapt.3 we

will explain why the Higgs particle couples to the trace of the stress tensor.

We will derive a standard technique to calculate the decay rate of the Higgs

into a particle anti-particle pair. For example we will calculate the decay

rate for an Higgs particle originating a fermion anti-fermion pair, two spin

one bosons, such as the photon, the W± and the Z0. We will also explain

why the H → gg is the predominant decay channel in the Standard Model.

In the Chapt.4 we will explain how the theory of final state interaction will

be a prove to determine or not the presence of a mean Higgs field. Final

state interaction is a theory usually employed in nuclear physics. The en-
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hancement or the suppression of certain precesses are explain as an effect

of the Coulomb potential between the nucleons and the leptons inside the

nucleus. To be able to reproduce the already known Coulomb result starting

from an action principle will permit to develop a technique to calculate the

final state interaction due by the Higgs exchange, for example between two

electro-weak bosons or the gluon exchange between two quarks. We will show

also how to obtain a mass shift in the massive particle pairs (ZZ,W+W−, tt̄)

produced near threshold. This will allow to explain the reason why the mass

of a particle depends by the presence (very closely) of another.



Chapter 2

General Relativity

2.1 Inertial and Gravitational Mass

In this section we consider the concept of inertial and gravitational mass

in classical non-relativistic theory. The inertial mass occurs originally in

Newton’s second law of motion for a test particle.

F = Minertial a. (2.1)

The gravitational force (known as the weight) is a special force normally

written as

W = Mgravitational g (2.2)

5
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where g is the gravitational acceleration field. The equality of inertial and

gravitational mass is normally assumed; i.e.

Mgravitational = Minertial = M. (2.3)

The gravitation field itself is derived from a potential

g = −gradΦ (2.4)

so that the motion of a particle in a gravitational field may be described by

the non-relativistic Lagrangian

L(v, r) =
1

2
M |v|2 −MΦ(r). (2.5)

The particle orbit obeys an equation of motion

d

dt

(

∂L

∂v

)

=

(

∂L

∂r

)

⇒ v̇ = g (2.6)

which is independent of the mass M . This is an expression of the principle

of equivalence implicit in Eq.(2.3).

For several masses the interaction between masses and the gravitational

field may be described by the Lagrangian

Lint = −
∑

a

MaΦ(ra) = −
∫

ρ(r)Φ(r)d3r (2.7)
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wherein the mass density is defined as

ρ(r) =
∑

a

Maδ(r − ra). (2.8)

To obtain the complete Newtonian field equations for g, it is necessary to

consider the Lagrangian for gravitational field; i.e.

Lfield = − 1

8πG

∫

|g|2d3r. (2.9)

Eq.(2.9) may be understood as follows: (i) By the principle of equivalence,

the gravitational field due to many massive particles must be a linear super-

position of the fields due to each of the masses taken separately. The gravita-

tional field Lagrangian must thereby be quadratic in the gravitational field.

(ii) The most general local rotationally invariant quadratic scalar formed

from the vector gravitational acceleration is |g|2. (iii) The sign in Eq.(2.9)

is chosen for attractive gravitational forces. (iv) The coupling strength must

be experimentally determined; i.e.

G ≈ 6.674 × 10−8

[

cm3

gm sec2

]

. (2.10)

The classical action principle for the gravitational field equations reads

δS =
∫

(δLfield + δLint)dt = 0 (2.11)
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From Eq.(2.9), we have

δLfield = − 1

4πG

∫

g · δgd3r =
1

4πG

∫

g · gradδΦd3r. (2.12)

Integrating Eq.(2.12) by parts yields

δLfield = − 1

4πG

∫

(div g)δΦd3r. (2.13)

From Eq.(2.7),

δLint = −
∫

ρδΦd3r. (2.14)

Eqs.(2.11), (2.13) and (2.14) imply

δS = −
∫ ∫ {

1

4πG
div g + ρ

}

δΦd3rdt = 0. (2.15)

The full Newtonian gravitational field equations are thereby

div g = −4πGρ,

curlg = 0

g = −gradΦ. (2.16)

Gravitational static forces then follow from

∆Φ = 4πGρ,

Φ(r) = −G
∫ ρ(r′)d3r′

|r − r′| , (2.17)
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yielding the Newtonian two body gravitational potentials

Uab = −G
(

MaMb

rab

)

U =
∑

a<b

Uab. (2.18)

The important point is that the form of the Newtonian gravitational interac-

tion follows from Galilean invariance, the equality of gravitational and inertial

mass, the superposition principle for gravitational forces and the principle of

equivalence.

2.2 Non-relativistic Quantum Theory

While the equality of gravitational and inertial mass in Eq.(2.3) holds in

both the classical and quantum mechanical versions of non-relativistic grav-

itational dynamics, the principle of equivalence does not hold true in the

quantum mechanical theory. To see what is involved one may consider the

problem of a Newtonian gravity “bouncing ball”. The Hamiltonian of a

bouncing ball has the form

H =
p2

z

2M
+MΦ(z),

Φ(z) = gz, if z > 0,

Φ(z) = ∞, if z ≤ 0. (2.19)

Classically a ball falls from a height h, hits the ground with an elastic bounce

and rises back to a height h. The classical frequency for this periodic process
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is

ωc = π

√

g

2h
(2.20)

independently of the mass of the ball. The mass independence is an expres-

sion of the classical principle of equivalence. Note that

ωc = πg

√

M

2E
. (2.21)

For the quantum mechanical bouncing ball problem, for z > 0 and ψ(0+) = 0,

we have

Hφ(z) =







− h̄2

2M

(

d

dz

)2

+Mgz







ψ(z) = EΨ(z) = Mghψ(z). (2.22)

Employing the change of variable

ξ = 1 −
(

z

h

)

= 1 −
(

Mgz

E

)

, (2.23)

we have

β2 =

(

h̄2

2M2h3g

)

=

(

h̄ωc

πE

)2

,

β2 =
h̄2g2M

2E3
,

−β2ψ′′(ξ) = ξψ(ξ),

ψ(1) = 0 and ξ < 1. (2.24)
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The solution of Eq.(2.24) in terms of the Airy function is

ψ(ξ) = Ai

(

− ξ

β

)

. (2.25)

The energy levels are thereby given by the roots of the Airy function [26]

Ai

(

− 1

βn

)

= 0, n = 1, 2, 3, 4, . . . ,

En =

[

h̄2g2M

2β2
n

]1/3

,

En ≈ M1/3

2

[

3πh̄g
(

n− 1

4

)]2/3

n≫ 1, (2.26)

which depend explicitly on mass. The principle of equivalence does not work

for the quantum mechanical case.

Several experiments investigate on the principle of equivalence [1, 6], among

them we consider the one performed by R. Colella, A. W. Overhauser, and

S. A. Werner (COW-experiment) [2, 3, 4, 5]. This experiment is essentially

a thermal-neutron interferometry. A beam of neutrons is diffracted by a Si

glass. The two coherent beams move along different paths (ABCEF and

ABDEF) and are then detected by a He3 counter at F. Fig. 2.1 represents a

schematic drawing of the COW experimental neutron interferometer.

The COW-experiment analysis employs the Hamiltonian

H(p, r) =

(

|p|2
2M

+Mg · r
)

. (2.27)
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Figure 2.1: Schematic drawing of the COW experiment interferometer.

Rotating the apparatus along the AD axis allows to study the relative role

of the two paths.

2.3 Classical Relativistic Particle Mechanics

A relativistic event is specified by where r and when t the event takes place.

In flat space-time, a moving particle is endowed with an internal clock which

reads an invariant proper time between two neighboring events along the

particle path

−c2dτ 2 = |dr|2 − c2dt2. (2.28)

In terms of flat inertial space-time coordinates xµ = (x1, x2, x3, x0) = (r, ct)

Eq.(2.28) reads

−c2dτ 2 = ηµνdx
µdxν . (2.29)
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In an non-inertial system of reference in flat space-time or in curved space-

time where there is a true gravitational field, the interval is defined by a

quadratic form with a space-time metric

−c2dτ 2 = gµν(x)dx
µdxν . (2.30)

A massive particle has a four vector velocity along its path defined as

vµ =
dxµ

dτ
where gµν(x)v

µvν = −c2. (2.31)

The classical action for a moving point particle has the form

S = −Mc2
∫

dτ

S =
∫

L(v, x)dτ,

L(v, x) =
1

2
M
(

gµν(x)v
µvν − c2

)

. (2.32)

The variational principle δS = 0 yields the Lagrangian equations of motion

d

dτ

∂L
∂vµ

=
∂L
∂xµ

,

d

dτ
(gµσv

σ) =
1

2
∂µgλσv

λvσ,

gµσ
dvσ

dτ
=

1

2
[∂µgλσ − ∂λgµσ − ∂σgµλ] v

λvσ. (2.33)
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With the matrix {gµν} defined as the inverse of the matrix {gµν} and the

gravitational connection coefficients defined as

Γµ
λσ =

1

2
gµν (∂λgνσ + ∂σgνλ − ∂νgλσ) , (2.34)

the classical geodesic equations of motion of a classical particle in a gravita-

tional field read

dvµ

dτ
+ Γµ

λσv
λvσ = 0. (2.35)

The four momentum of the particle pµ = (p,−E/c) is given by

pµ =
∂L
∂vµ

= Mgµν(x)v
ν ,

vµ =
gµν(x)pν

M
. (2.36)

From Eqs.(2.31) and (2.36) one finds

gµν(x)pµpν +M2c2 = 0. (2.37)

More generally, the Hamiltonian corresponding to the Lagrangian in Eq.(2.32)

is defined as

H(p, x) = vµpµ − L(v, x),

H(p, x) =
(gµν(x)pµpν +M2c2)

2M
. (2.38)
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The single particle action and classical equations of motion now read

S =
∫

(pµdx
µ −H(p, x)dτ) ,

δS = 0

dxµ

dτ
=

∂H
∂pµ

dpµ

dτ
= − ∂H

∂xµ
. (2.39)

The classical definition of the particle mass comes directly from the constraint

Eq.(2.37), i.e.

2MH(p, x) = gµνpµpν +M2c2 = 0. (2.40)

The proper time dτ enters in Eq.(2.39) as a Lagrange multiplier for the

constraint Eq.(2.40).

The particle proper time in Eq.(2.30) has two classical solutions

cdτ± = ±
√

−gµνdxµdxν . (2.41)

A classical particle moves forward in proper time dτ+ > 0 while a classical

anti-particle moves backward in proper time dτ− < 0. In the presence of an

electromagnetic field,

Fµν = ∂µAν − ∂νAµ, (2.42)

the Lagrangian and Hamiltonian for a particle with mass M and charge e
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have, respectively, the forms

L(v, x) =
1

2
M
(

gµν(x)v
µvν − c2

)

+
(

e

c

)

vµAµ(x),

H(p, x) =
1

2M

[

gµν(x)
(

pµ − e

c
Aµ(x)

)(

pν −
e

c
Aν(x)

)

+M2c2
]

.(2.43)

Either of the sets of equations of motion

d

dτ

(

∂L
∂vµ

)

=

(

∂L
∂xµ

)

,

or
dxµ

dτ
=

∂H
∂pµ

and
dpµ

dτ
= − ∂H

∂xµ
, (2.44)

yields the Lorentz force on a charge equation of motion

Maµ = M

[

dvµ

dτ
+ Γµ

λσv
λvσ

]

,

Maµ =
e

c
F µνvν . (2.45)

The Hamilton-Jacobi equation for a classical particle in an electromag-

netic field allows for the solution of the Lorentz force on a charge Eq.(2.45)

in the following form: (i) There is a velocity field vµ(x) obeying the rule

Mvµ(x) = ∂µS(x) − e

c
Aµ(x), (2.46)

wherein the action function S(x) obeys the constraint Hamilton-Jacobi equa-

tion

H(p = ∂S(x), x) = 0 i.e. gµν(x)vµ(x)vν(x) + c2 = 0. (2.47)
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The classical particle orbit may be found from the first order differential

equation

dxµ

dτ
= vµ(x). (2.48)

In reality, there are two sets of orbits that one may compute employing the

two velocity fields, both obeying the Hamilton-Jacobi equation

vµ
±(x) = ±vµ(x),

gµν(x)v
µ
±(x)vν

±(x) = −c2,
dxµ

±

dτ±
= vµ

±(x). (2.49)

One path is a charged particle moving forward in time and the conjugate

path is an anti-particle moving backward in time.

Both types of solutions (particle and anti-particle) must in reality exist.

To see this most clearly, consider the particle Hamiltonian in a given system

of coordinates

{xµ} = (x1, x2, x3, x0) = (r1, r2, r3, ct) = (r, ct),

{pµ} = (p1, p2, p3, p0) = (p1, p2, p3,−E/c) = (p,−E/c). (2.50)

The constraint equation

2MH(p, x) = gµν(x)
(

pµ − e

c
Aµ(x)

)(

pν −
e

c
Aν(x)

)

+M2c2 = 0 (2.51)
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is quadratic equation in the energy E and thereby has two solutions

E = H±(p, r, t) (2.52)

and the two sets of solutions (particle and anti-particle) follow from the two

Hamiltonians

dr

dt
=

∂H±(p, r, t)

∂p
,

dp

dt
= −∂H±(p, r, t)

∂r
. (2.53)

Two examples will suffice: (i) For a charged particle in flat space-time in a

vector potential Aµ = (A,−Φ) the two Hamiltonians are

H±(p, r, t) = eΦ(r, t) ± c

√

(

p − e

c
A(r, t)

)2

+M2c2 . (2.54)

With e = −|e| as the electronic charge,H+(p, r, t) is the electron Hamiltonian

and H−(p, r, t) is the positron Hamiltonian. (ii) For an uncharged particle

moving in the gravitational field of the Sun,

rs ≡ 2GMSun

c2
,

c2dτ 2 =
(

1 − rs

r

)

c2dt2 − dr2

1 − (rs/r)
− r2(dθ2 + sin2 θdφ2), (2.55)

the particle Hamiltonian is

H(pr, pθ, pφ, r, θ, φ) = c
(

1 − rs

r

)

×
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√

√

√

√p2
r +

1

r2[1 − (rs/r)]

(

p2
θ +

p2
φ

sin2 θ

)

+M2c2 . (2.56)

The orbit of a neutral massive particle moving in the gravitational field of

the Sun may be found from

ṙ =
∂H

∂pr

, θ̇ =
∂H

∂pθ

, φ̇ =
∂H

∂pφ

,

ṗr = −∂H
∂r

, ṗθ = −∂H
∂θ

, ṗφ = −∂H
∂φ

. (2.57)

The relativistic orbit in space depends on the mass M . In the limit M → 0

we have the photon Hamiltonian

Hγ(pr, pθ, pφ, r, θ, φ) = c
(

1 − rs

r

)

√

√

√

√p2
r +

1

r2[1 − (rs/r)]

(

p2
θ +

p2
φ

sin2 θ

)

.

(2.58)

The Hamiltonian Eq.(2.58) describes the photon orbit in the neighborhood

of the Sun’s gravitational field, i.e. the bending of light around the Sun.

2.4 Quantum Relativistic Particle Mechanics

The presence of a gravitational field changes the curvature of space-time.

The classical motion of a free particle no longer corresponds to a space-time

straight line. The classical curve corresponds to a geodesic. To illustrate

the quantum motion of a spin-zero particle let us consider the Klein Gordon
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equation and a scalar field φ(x). It reads

(

−2g + κ2
)

φ(x) = 0. (2.59)

In Eq.(2.59) κ = Mc/h̄. The presence of the gravitational field appears

directly in the definition of the d’ Alambertian operator

2gφ(x) =
1

√

−g(x)
∂λ

(

√

−g(x)gλσ(x)∂σφ(x)
)

, (2.60)

and g ≡ det||gµν ||. The spin-zero Green’s function in space-time obeys an

equation of the form

(

−2g + κ2
)

G(x, y) = δ4(x, y),

H
(

p = −ih̄ ∂
∂x

, x

)

G(x, y) =

(

h̄2

2M

)

δ4(x, y). (2.61)

where the delta function is defined with respect to the invariant space-time

volume dΩx =
√−gd4x; i.e.

f(x) =
∫

δ4(x, y)f(y)dΩy. (2.62)

The propagator G(x, y) represents the amplitude to go in space-time from

the point x to the point y; In detail, for x ∈ Ω

φ(x) =
∫

Ω
δ4(x, y)φ(y)dΩy,

φ(x) =
∫

Ω

(

−2g(x) + κ2
)

G(x, y)φ(y)dΩy,
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φ(x) =
∫

Ω

{(

−2g(y) + κ2
)

G(x, y)
}

φ(y)dΩy, (2.63)

which, together with (−2g(y) + κ2)φ(y) = 0 yields

φ(x) =
∫

Ω

{(

−2g(y)G(x, y)
)

φ(y) +G(x, y)
(

2g(y)φ(y)
)}

dΩy, (2.64)

where Ω is a space-time region with a boundary “surface” volume Σ = ∂Ω.

Converting Eq.(2.64) into an integral over the boundary

φ(x) =
∮

Σ

{

G(x, y)
∂φ(y)

∂yµ
− φ(y)

∂G(x, y)

∂yµ

}

d3Σµ
y . (2.65)

From the values of the field φ and the field derivatives ∂µφ on the boundary

Σ = ∂Ω one may find from the Green’s function the value of the field in the

space-time region Ω.

If the Feynman boundary conditions are used for G(x, y), then φ(x ∈ Ω)

is determined in part by boundary conditions in the future on Σ+ and partly

by boundary conditions in the past on Σ−. Thus, anti-particles in Ω arrive

from the future Σ+ and particles in Ω arrive from the past Σ−. The Green’s

function with the proper boundary conditions to describe both particles and

anti-particles is written as

G(x, y) =

(

1

−2g + κ2 − i0+

)

δ4(x, y),

G(x, y) =
(

i
∫ ∞

0
e−is(κ2−2g)ds

)

δ4(x, y). (2.66)
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Introducing the proper time τ = (2Ms/h̄) yields

G(x, y) =

(

ih̄

2M

∫ ∞

0
e−iτH(p=−ih̄∂,x)/h̄dτ

)

δ4(x, y),

G(x, y) =

(

ih̄

2M

)

∫ ∞

0
〈x| e−iτH(p,x)/h̄ |y〉 dτ. (2.67)

The formal Dirac notation is employed, which obeys

∫

dΩx|x >< x| = 1,

< x|y > = δ4(x, y). (2.68)

The propagator is defined in Eq.(2.67) as an integral over all possible values

of the proper time. For a quantum particle, the amplitude for going from x

to y is given by the sum of the amplitudes along different paths with different

proper times.

Eq.(2.67) cannot in general be solved. Here we will review an expression

for the propagator in a flat space-time metric. Eq.(2.60) then reads

2φ(x) = ηλσ∂λ∂σφ(x) (2.69)

where the tensor ηµν is diagonal and its elements are (1, 1, 1,−1). In flat

space-time there is translational invariance. The propagator has the form

G(x, y) = G(x− y). (2.70)
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Using the completeness relation in |k > space

∫

|k >< k| d
4k

(2π)4
= 1 (2.71)

for

< x|k >= eik·x, (2.72)

the propagator in Eq.(2.67) now reads

G(x− y) =

(

ih̄

32π4M

)

∫

d4k
∫ ∞

0
dτ exp

[

−ih̄(k
2 + κ2)τ

2M
+ ik(x− y)

]

.

(2.73)

The k-integrals are Gaussian. With z = y − x, the propagator is given by

G(z) =
(

M

8π2h̄

) ∫ ∞

0

dτ

τ 2
exp

[

−iMc2τ

2h̄
+
iMz2

2h̄τ

]

=
(

M

8π2h̄

) ∫ ∞

0

dτ

τ 2
exp

[

−
(

iMz2

2h̄τ

)(

c2τ 2

z2
− 1

)]

. (2.74)

Employing the change of variables t = τc/
√
z2 Eq. (2.74) reads

G(z) =

(

Mc

8π2h̄
√
z2

)

∫ ∞

0

dt

t2
exp

[

−
(

iMc
√
z2

2h̄

)

(

t− 1

t

)

]

. (2.75)

Noting that the function exp[w(t− 1/t)/2] is the generating function of the

first order Bessel’s functions

ew(t−1/t)/2 =
+∞
∑

n=−∞

tnJn(w), (2.76)



24

the propagator 2.75 assumes the form

G(z) =

(

Mc

8π2h̄
√
z2

)

+∞
∑

n=−∞

∫ ∞

0
dttn−2Jn

(

−iMc
√
z2

h̄

)

. (2.77)

The last equation is not very useful to understand the behavior of the propa-

gator near z2 ≈ 0. Thus we prefer to use an other, equivalent representation

1

G(z) = 2i
∫ d4k

(2π)4

e−ik·z

k2 −K2
= 2iθ(z0)G+(z) − 2iθ(−z0)G−(z), (2.78)

where θ(z0) is the Heaviside function. The functions G±(z) are defined

G+(z) =
1

2

(

∆(z) − i∆
′

(z)
)

G−(z) =
1

2

(

∆(z) + i∆
′

(z)
)

. (2.79)

The two functions are odd (∆(x)) and even (∆
′

(z)), but both satisfy

(2 +K2)∆(z) = 0 (2.80)

(2 +K2)∆
′

(z) = 0. (2.81)

Let’s focus on the function ∆(x)

∆(z) = − i

2(2π)3

∫ d3k

k0

(

e−ik·z − eik·z
)

= − i

(2π)3

∫

d4kǫ(k0)δ(k2 −K2)e−ik·z (2.82)

1Only in this paragraph we use the metric with a signature equal to + −−−.
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ǫ(k0) = θ(k0) − θ(−k0). (2.83)

This function can be expressed as

∆(z) =
1

4πr

∂

∂r
F (r, z0), where r = |z|

F (r, z0) =
1

π

∫ +∞

−∞

dk√
k2 +K2

cos(kr) sin
(√

k2 +K2z0
)

= J0

(

K
√

z2
0 − r2

)

for z0 > r

= 0 for − r < z0 < r

= −J0

(

K
√

z2
0 − r2

)

for z0 < −r. (2.84)

We can write explicitly ∆(z) as

∆(z) = − 1

2π
ǫ(z0)



δ(z2) − K2

2
θ(z2)

J1

(

K
√
z2
)

K
√
z2



 , (2.85)

where the Bessel function J1(w) can be obtained from

J0(w) =
1

π

∫ +∞

−∞
dβ sin(w cosh β)

J1(w) = − ∂

∂w
J0(w). (2.86)

Near the light cone (z2 ≈ 0) Eq. (2.85) reads

∆(z) = − 1

2π
ǫ(z0)

(

δ(z2) − K2

2
θ(z2) + . . .

)

, (2.87)

this last equation shows that ∆(z) [9, 10, 11] has a delta function singularity
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as well as a finite (jump) discontinuity on the light cone. Note that the delta

function singularity is independent of the mass (that is central to the result

of Higgs case in Chap.4 whereas the θ(z2) depends upon the mass. Let’s

consider the other function ∆
′

(z). In the same fashion we can write

∆
′

(z) =
1

4πr

∂

∂r
F (r, z0)

F
′

(r, z0) = − 1

π

∫ +∞

−∞

dk√
k2 +K2

cos(kr) cos
(√

k2 +K2z0
)

= N0

(

K
√

z2
0 − r2

)

for |z0| > r

= −iH ′

0

(

iK
√

z2
0 − r2

)

for r > |z0|, (2.88)

where Nn(w) are the Neuman functions

N0(w) = − 1

π

∫ +∞

−∞
dβ cos(w cosh β) (2.89)

and Hn(w) are the Hankel functions. Near the light cone (z2 ≈ 0) Eq. (2.87)

reads

∆
′

(z) = − 1

2π2

(

P
1

z2
− K2

2
ln
(

γ

2

√

K2|z2|
)

+
K2

4
+ . . .

)

, (2.90)

where P denotes the principal part. We must note that the function ∆
′

(z)

does not vanish outside the light cone.

The difference between the motion of a classical and a quantum particle
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can be described in terms of the action in the exponential of Eq.(2.73); i.e.

S(x− y) =
M

2

(

(x− y)2

τ 2
− c2

)

τ. (2.91)

For a classical particle

−c2τ 2 = (x− y)2,

Sclassical(x− y) = −Mc2τ = −Mc
√

−(x− y)2 . (2.92)

For a quantum particle Eq.(2.92) does not hold true. There are quantum

fluctuations about the classical path so that cτ 6=
√

−(x− y)2 with ampli-

tude exp(S(x− y)/h̄). The strength of this amplitude depends on the mass

M so that the principle of equivalence no longer holds true. For example,

the amplitude for a particle going backward in time to switch to going for-

ward in time (quantum particle anti-particle pair production) is very strongly

dependent upon the mass.

2.5 Einstein’s Field Equation

The set of equations describing a system, that from now on we consider as

matter, and a gravitational field are generally referred to as Einstein’s equa-

tions. These express the relation between the gravitational Ricci tensor and

the matter energy momentum tensor.

To obtain these equations we write the total action as the sum of the gravi-
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tational and matter parts.

S = Sg + Smatter. (2.93)

The action of a gravitational field, Sg, must be expressed as a scalar integral,

and the integrand function must contain the derivatives of gµν not higher

than the first order. The usual choice is to write the gravitational action as

Sg =
c3

16πG

∫

dΩxR, (2.94)

where R is the curvature of the space-time. The curvature is normally derived

contracting the Ricci tensor,

R = gµνRµν

= gµν

(

∂Γλ
µν

∂xλ
− ∂Γλ

µλ

∂xν
+ Γλ

µνΓ
σ
λσ − Γσ

µλΓ
λ
νσ

)

. (2.95)

Although the curvature contains derivatives of the second order in gµν , Sg

can be expressed as

Sg =
c3

16πG

∫

dΩxR

=
c3

16πG

∫

dΩxF +
c3

16πG
δ
∫

d4x
∂(
√−gwσ)

∂xσ
(2.96)

where the function F contains only the first derivatives of gµν .

Using the Gauss theorem, the last integral can be evaluated on the hyper-

surface where, according to the least action principle, the variation of the
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field is just equal to zero.

c3

16πG
δ
∫

d4x
∂(
√−gwσ)

∂xσ
=

c3

16πG
δ
∫

∂Σ
dΣσ

√−gwσ = 0 (2.97)

The variation of the gravitational action is hence

δSg =
c3

16πG
δ
∫

dΩxF

=
c3

16πG
δ
∫

dΩxR− c3

16πG
δ
∫

d4x
∂(
√−gwσ)

∂xσ

=
c3

16πG
δ
∫

dΩxR. (2.98)

The Einstein equations are derived setting equal to zero the variation of the

total action S respect to gµν .

δS = δ(Sg + Smatter)

=
c3

16πG
δ
∫

dΩxR + δSmatter = 0. (2.99)

The variation of the matter action with respect to the metric tensor gµν

allows us to derive the energy-momentum tensor Tµν , defined as a constant

times the functional derivative of the Smatter.

Tµν = −2c
δSmatter

δgµν
(2.100)

or simply

δSmatter = − 1

2c

∫

dΩxTµνδg
µν =

1

2c

∫

dΩxT
µνδgµν . (2.101)
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The variation of the gravitational action reads

δSg =
c3

16πG
δ
∫

dΩxR

=
c3

16πG

∫

d4xδ(
√−ggµνRµν)

=
c3

16πG

∫

dΩx

(

Rµν −
1

2
gµνR

)

δgµν . (2.102)

Using this result and Eq (2.101) we write.

Rµν −
1

2
gµνR =

8πG

c4
Tµν

= Gµν , (2.103)

wherein Gµν is the Einstein tensor. Because Tµν is a symmetric 4× 4 tensor

and R is defined in Eq. (2.95) as the product of the partial derivatives of

the metric, the Einstein equations are a set of 10 coupled elliptic-hyperbolic

nonlinear partial differential equations. Their solutions are generally not

trivial, but they can be solved in a weak gravitational field,

gµν = ηµν + hµν , (2.104)

where |hµν | << 1, and the equations become linear. The general solution of

the Einstein equations is the metric of the space-time.

The relation between the curvature and the energy-momentum tensor trace
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is explicit once we multiply both sides of Eq. (2.103) by gµν

R = −8πG

c4
T. (2.105)

To summarize this section we say that the Einstein equations describe how,

in a gravitational field, a particle curves in space and how the gravitational

field stretches or squeezes (deforms) matter, depending upon whether we

consider R = R(T ) or T = T (R).

2.6 The Tolman Mass and the Gravitational

Pressure Tensor

The Einstein equations may be written as Eq. (2.103) or as

Tµν −
1

2
gµνT =

c4

8πG
Rµν , (2.106)

wherein the explicit expression for T reads

T = gµνTµν =
c4

8πG
Rµ

µ = T 0
0 + T 1

1 + T 2
2 + T 3

3

= −E + 3P. (2.107)

Where these two quantities correspond to the pressure P and the energy

density E .

Using this information we can write an exact expression for the tensor Rµ
ν ,
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that for the particular case of µ = ν = 0 reads

R0
0 =

8πG

c4

(

T 0
0 −

1

2
T
)

(2.108)

= −4πG

c4
(E + 3p) . (2.109)

When the gravitational field is weak the metric tensor is diagonal and Eq.

(2.30) is written as

c2dτ 2 ≈
(

1 +
φ

c2

)

dt2 −
(

1 − φ

c2

)

dr2. (2.110)

where φ << c2. In this approximation Eq. (2.109) reads

R0
0 = − 1

c2
∆φ. (2.111)

According to Eq. (2.16), ∆Φ = 4πGρgr, therefore we find

R0
0 = −4πG

c4
(E + 3P )

≈ − 1

c2
∆Φ = −4π

c2
Gρgr. (2.112)

Solving the last equation for ρgr defines the gravitational mass density

ρgr ≈
1

c2
(E + 3p) . (2.113)
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The mass obtained from integrating ρgr with respect to space is called the

Tolman Mass

MTolman ≈ 1

c2

∫

d3r (E + 3p) . (2.114)

Because 3P < E the inertial and gravitational masses satisfy this relation

MI ≤MTolman ≤ 2MI . (2.115)

For any given mass distribution the force per unit volume in a gravitational

field is

w = ρgrg = − 1

4πG
(divg)g

wi = − 1

4πG
(∂jgj)gi. (2.116)

Using the fact that

curlg = 0. (2.117)

we write Eq. (2.116) as

wi = − 1

4πG
(∂j(gjgi) − gi∂igj) , (2.118)

or simply w = −div
⇒

P gr, where
⇒

P gr is the gravitational pressure tensor

defined in dyadic notation as

⇒

P gr=
1

8πG

(

2gg − g2 ⇒
1
)

. (2.119)
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Taking the trace of this tensor we obtain the energy density for the gravita-

tional field

Tr
⇒

P gr =
1

8πG

(

2g2 − 3g2
)

= − 1

8πG
g2 = ugr. (2.120)

For the case of a static mass distribution, the equilibrium condition reads

div
(

⇒

P +
⇒

P gr

)

= 0, (2.121)

hence writing the integral

∫

d3rdiv
(

⇒

P +
⇒

P gr

)

= 0 integrating by parts

−
∫

d3r

(

⇒

P +
⇒

P gr

)

= 0. (2.122)

and taking its trace allows us to find out how the energy density of the

gravitational field is related to the pressure

tr
∫

d3r
(

⇒

P +
⇒

P gr

)

= 0
∫

d3r (3P + ugr) = 0 (2.123)

The difference between MI and Mgr seems to be zero up to many significant

digits, the reason is because for an everyday object like a chair or a table the

ratio 3p/E can have a value as big as 10−15. An immediate consequence is that

any experiment with an accuracy less than 10−15 will confirm the principle
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of equivalence. A completely different picture can be found in many stellar

objects such as a neutron star or a black hole where the pressure does play

an important role in the definition of the gravitational mass.

2.7 Pressure-Energy Tensor

In a macroscopic body the configuration of the molecules corresponds to a

status of thermal equilibrium. Once the body is deformed the positions of the

molecules change and therefore there are forces, defined as internal stresses,

that tend to bring the body back in its equilibrium position. The exerted

force on an internal element of surface area ∆Ak is defined as

F i = P ik∆Ak, (2.124)

wherein P ik is the classical three-dimensional pressure tensor. Considering a

four dimensional space-time approach we change from P ik to T µν and write

Eq. (2.124) as

P µ =
1

c

∫

T µνd3Σν , (2.125)

where the P µ is the four-momentum of the system. The Noether theorem

states that for every continuous symmetry of the action there exists a con-

served current. In a relativistic theory the invariance under space-time trans-

lations corresponds to the conservation of the energy momentum tensor. In

the presence of a gravitational field the conservation of energy and momen-



36

tum reads

T µν
;ν =

∂T µν

∂xν
+ Γµ

λνT
λν + Γν

λνT
µλ = 0, (2.126)

while in a flat space-time metric Eq. (2.126) reads

T µν
,ν =

∂T µν

∂xν
= 0. (2.127)

As examples we will derive the energy-momentum tensor in two cases, the

first one for an electromagnetic field and the second one for a free particle.

The action for an electromagnetic system is

SEM = − 1

16πc

∫

dΩxFµνF
µν

= − 1

16πc

∫

dΩxFµνFστg
µσgτν , (2.128)

therefore the variation with respect to the metric gives

δSEM = − 1

16πc
δ
∫

dΩxFµνFστg
µσgτν

= − 1

16πc

∫

d4xFµνFστδ
(√−ggµσgτν

)

= − 1

16πc

∫

dΩxFµνFστ

(

δgµσgτν + gµσδgτν − 1

2
gµσgτνgαβδg

αβ
)

= − 1

8πc

∫

dΩx

(

FανF
ν

β − 1

4
gαβFµνF

µν
)

δgαβ. (2.129)

This expression corresponds to Eq. (2.101) and therefore we can now write

the energy-momentum tensor as

Tαβ =
1

4π

(

FανF
ν

β − 1

4
gαβFµνF

µν
)

. (2.130)
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The relativistic form of the action, with an explicit expression of the metric

tensor, permits one to define the energy momentum tensor directly in a

symmetric way.

We now consider the case of a particle moving in a gravitational field.

The action is

Smatter = −Mc2
∫

dτ. (2.131)

To vary the action with respect to the metric we start varying Eq. (2.30)

−2c2dτδdτ = δgµνdx
µdxν

−c2δdτ =
1

2
δgµνv

µvνdτ. (2.132)

The action can be written as

Smatter = −Mc2
∫

dτ
∫

dΩyδ
4(x, y). (2.133)

and Eq. (2.100) reads

1

2c

∫

dΩxT
µνδgµν =

1

2
M
∫

dτ
∫

dΩyδ
4(x, y)δgµνv

µvνdτ. (2.134)

Taking the functional derivative of this equation with respect to the variation

in the metric and multiplying both sides by 2c we find the energy-momentum

tensor to be

T µν = Mc
∫

dτδ4(x, x(τ))vµvν , (2.135)

this equation, in the case of many non-interacting particles, defines the energy
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momentum tensor for a system of dust.

2.8 Electromagnetic and Gravitational Waves

The existence and the variation of electromagnetic and gravitational fields are

inferred through the detection and study of electromagnetic and gravitational

waves. In the theory of electromagnetism the interaction between a current

jµ = (j,−cρ) and the four-potential Aν = (A,−φ) is described in the action

term

Sint = − 1

c2

∫

d4xjµAµ, (2.136)

where space-time is considered to be flat (
√−g = 1). The presence of the

electromagnetic field occurs with a term in the action given by Eq.(2.128),

therefore the total action reads

S = − 1

c2

∫

d4xjµAµ − 1

16πc

∫

d4xF µνFµν . (2.137)

According to the least action principle the “equation of motion” for jµ are

determined by varying the action with respect to the four-potential Aν ,

δS = − 1

c2

∫

d4xjµδAµ − 1

16πc

∫

d4xδ (F µνFµν)

= − 1

c2

∫

d4xjµδAµ +
1

4πc

∫

d4x
∂F µν

∂xµ
δAν

= − 1

c2

∫

d4x

(

jν − c

4π

∂F µν

∂xµ

)

δAν = 0. (2.138)
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Hence this equation relates the current jν and the electromagnetic tensor

F µν according to

∂F µν

∂xν
= −4π

c
jµ. (2.139)

Recalling that the first two Maxwell’s equations are derived from the def-

inition of the electric field E = −Ȧ/c − gradφ and of the magnetic field

B = curlA.

curlE = curl

(

−1

c

∂A

∂t
− gradφ

)

= −1

c

∂B

∂t
(2.140)

and

divB = div (curlA) = 0. (2.141)

The other two Maxwell equation are obtained writing Eq. (2.139) for ν = 0

∂F µ0

∂xµ
=

4π

c
j0

divE = 4πρ, (2.142)

or for ν = 1, 2, 3

∂F µν

∂xµ
=

4π

c
jν

curlB =
1

c

∂E

∂t
+

4π

c
j (2.143)
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In the case of an empty space (ρ = 0 and j = 0) Eq. (2.142), (2.143) reduce

to

divE = 0 (2.144)

curlB = −1

c

∂E

∂t
(2.145)

Writing the very last equation in a gauge where the scalar potential is zero

(φ = 0) and divA = 0 leads to

curlB − 1

c

∂E

∂t
= −∆A +

1

c2
∂2A

∂t
= 0

−
(

∆ − 1

c2
∂2

∂t

)

A = 0 (2.146)

This is the equation of an electromagnetic wave. Taking either the curl or the

div of Eq. (2.146) we find that the electric field E and the magnetic field B

satisfy the very same equation. In the case of a plane Electromagnetic wave

for any given direction of propagation n the three vectors E,B,n satisfy this

relation

E = n × B, (2.147)

therefore the waves are transverse. The Poynting vector for a plane wave

reads

S =
c

4π
E × B

=
c

4π
E2n =

c

4π
B2n, (2.148)
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hence the energy flux along the direction of propagation is proportional to

the energy density of the wave

WEM =
1

8π
(E2 +B2) (2.149)

and then S = cWn. To summarize, electromagnetic waves propagate in

vacuum at the speed of light, they transport energy according to the defi-

nition of the Poynting vector. Moreover the photon, although it is a spin

1 particle, comes only in two helicity states, the reason is F µν is a 4 × 4

anti-symmetric tensor with 6 degrees of freedom, but there are 4 constraints

given by Maxwell’s equations hence the total number of degrees of freedom

is just 2 = 6 − 4.

The theory of General Relativity predicts that a non-static gravitational

field produces gravitational waves [12, 13]. Because the coupling constant G

is very small compared to the strong and electro-weak ones, it is very difficult

to have a strong enough source of gravitational waves in a laboratory based

on earth. Such sources of these waves are to be found through all those phe-

nomena, happening inside stars or galaxies that involve a very fast change

in the mass distribution. As an example we can cite the supernova explosion

which occurred in 1987, the Supernova 1987A where the collapse of a massive

star produced a large amount of gravitational radiation. During a supernova

explosion there is almost immediately the emission of a neutrinos flux that

precedes the electromagnetic and gravitation radiation, just because the neu-

trinos interacts very weakly and hence propagate as soon as the star starts to
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collapse before the explosion. In 1987, in Italy, there were two running exper-

iments denominated UNO (underground neutrino observatory) and Geograv,

the first was an experiment about the detection of neutrinos while the second

was a gravitational antenna. UNO detected a huge neutrino flux just before

the supernova explosion, while Geograv detected a signal contemporaneous

to the supernova explosion [7, 8]. The probability that these two events

were casual and not correlated was calculated to be about 3%. The hunt

for the gravitational waves started with Weber with his detector made by a

resonant alluminium bar [14, 15, 16] and nowadays there are several experi-

ments around the globe employing a laser interferometer [17, 19, 20, 21, 23]

or a super conductive alluminuim bar [24]. Their discovery, or better their

study, if we consider reliable the Weber and Geograv’s results, will give an-

other confirmation of the theory of General Relativity and moreover of the

quantum nature of the gravitational radiation. Recently is available a Tesi

di Laurea, from University of Perugia, where the author, Silvia Chiacchiera,

explores different possibilities of detection of gravitational waves [25]. To see

the connection between gravitational waves and General Relativity we use

the assumption made in Eq. (2.104), remembering that |hµν | << 1 does not

fix an unique choice of a reference system. In a weak gravitational field the

Ricci tensor reads

Rµν =
1

2
(∂σ∂µhσν + ∂σ∂νhσµ − 2hµν − ∂µ∂νh) +O(h2), (2.150)

where to lower an index we just use the Minkowski’s metric ηµν and to raise



43

one we use ηµν . The curvature of the gravitational field is obtained from the

Ricci tensor according to

ηµνRµν = R = ∂µ∂νhµν − 2h+O(h2). (2.151)

The Einstein equations, linear in h, read

2Rµν − ηµνR =
1

2
∂σ∂µhσν + ∂σ∂νhσµ − 2hµν

−∂µ∂νh− ηµν (∂σ∂µhσµ − 2h)

=
16πG

c4
Tµν . (2.152)

An appropriate choice of a gauge condition allows to substantially simplify

these equations. For example in harmonic coordinate system

gµνΓλ
µν = 0 (2.153)

the Einstein equations read

2hµν −
1

2
ηµν2h = −16πG

c4
Tµν . (2.154)

In writing these equations we have use the fact that in the weak field ap-

proximation Eq. (2.153) reads

∂µh
µλ − 1

2
∂λh = 0, (2.155)
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that defines the Lorentz gauge. Usually one introduces a tensor hµν defined

as

hµν = hµν −
1

2
ηµνh, (2.156)

because in this way Eq. (2.152) assumes a form similar to the wave equation

for the electromagnetic field, Eq. (2.139)

2hµν = −16πG

c4
Tµν . (2.157)

In this case considering an empty space means Tµν = 0 and Eq. (2.156)

reduces to

2hµν = 0, (2.158)

that describes the propagation of a gravitational wave in the vacuum. A

generic solution to Eq. (2.158) is

hµν = ǫµνe
ikαxα + ǫ∗µνe

−ikαxα , (2.159)

where ǫµν is the polarization tensor and kα is the four vector wave number.

These satisfy the relations

kαkα = 0 (2.160)

and

kµǫµν = 0. (2.161)

According to Eq. (2.160) the graviton is a massless particle with a dispersion
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relation equal to the photon one.

ω2 = c2k2. (2.162)

The approximation defined in Eq. (2.148) requires that the metric must be

globally invariant. A change of coordinates

xµ → x
′µ = xµ + ξµ(x), (2.163)

must leave the metric unchanged. The perturbation hµν transforms according

to

hµ → h′µ = hµ − ∂µξν(x) − ∂νξµ(x), (2.164)

wherein |∂µξν(x)| << |hµν |. The condition expressed in the Eq. (2.155) fixes

an unique choice of a reference system only is the four functions ξµ satisfy

the condition

2ξµ = 0. (2.165)

To summarize, the gravitational waves propagate in the vacuum at the speed

of light and carry out gravitational energy as was theorized by Einstein in

1916 and verified by Hulse and Taylor in 1974 studying the declining orbit

period of the binary pulsar system called PSR 1913 + 16. The graviton is a

spin 2 particle, but like the photon it comes in only two helicity states. The

reason is because hµν is a 4×4 symmetric tensor with 10 degrees of freedom,

but there are 8 constraints given by the Lorentz gauge (4) and by Eq. (2.165)

(4), hence the total number of degrees of freedom is just 2 = 10 − 4 − 4.
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2.9 Non-Commutative Geometry

It is useful to write Maxwell’s and Einstein equations for electromagnetic and

gravitational waves in a gauge invariant form.

2.9.1 Gauge Invariance for Photons and Gravitons

For the Maxwell case we may write in complex form

F = E + iB

div F = 0

i
∂F

∂t
= c curl F (2.166)

One can write Eq.(2.166) in the column vector form

ψ =













Fx

Fy

Fz













=













Ex + iBx

Ey + iBy

Ez + iBz













,

∂ψ

∂t
= −c(S · grad)ψ, (2.167)

wherein the spin operator components S = (Sx, Sy, Sz) are represented by

Sx =













0 0 0

0 0 −i

0 i 0













, Sy =













0 0 i

0 0 0

−i 0 0













, and Sz =













0 −i 0

i 0 0

0 0 0













.

(2.168)
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The spin operator compenets obey

[Si, Sj] = iǫijkSk and S · S ≡ S2
x + S2

y + S2
z = S(S + 1) = 2, (2.169)

which is expected for a spin S = 1 photon. Introducing the momentum

operator operator p = −ih̄grad allows us to write

ih̄
∂ψ(r, t)

∂t
= Hψ(r, t) (2.170)

with the single photon Hamiltonian

H = cS · p. (2.171)

The form of Eqs.(2.170) and Eqs.(2.171) makes manifest that the wave func-

tion for a single photon is merely Maxwell’s equations in a thinly disguised

form. The main point is that the vacuum Maxwell’s equations can be written

in a gauge invariant form for the complex field tensor

Fµν = Fµν + i ∗Fµν

∂µFµν = 0, (2.172)

wherein ∗Fµν is the dual tensor to Fµν .

Let us now derive the gauge invariant form of the graviton equation. One

starts from the Weyl conformal tensor Cµναβ [18] defined in terms of the
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curvature tensor Rµναβ via

Rµναβ = Cµναβ+

1

2
(gµαRνβ + gνβRµα − gµβRνα − gναRµβ) − 1

6
(gµαgνβ − gναgµβ)R. (2.173)

The complex gauge invariant gravitational wave amplitude is

Gµν
αβ = Cµν

αβ + i ∗Cµν
αβ (2.174)

wherein ∗Cµν
αβ is the dual tensor to Cµν

αβ From the Einstein equations

Rµν =
8πG

c4

(

Tµν −
1

2
gµνT

)

and R = −
(

8πG

c4

)

T, (2.175)

it follows that

Rµναβ = Cµναβ (vacuum). (2.176)

From the Bianchi identities follows the vacuum equations of motion for the

graviton

DµGµν
αβ = DνGµν

αβ = 0. (2.177)

Eqs.(2.174) and (2.177) are the gravitational wave analogs to the electro-

magnetic Eqs.(2.172). Given a vacuum space-like unit normal Killing vec-

tor NµNµ = −1, one may define gravitational-electric and gravitational-

magnetic fields according to

GµναβN
νNβ = Gµ0α0 = Eµα + iBµα, (2.178)
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in direct analogy to the electromagnetic fields

ψµ ≡ FµνN
ν = Fµ0 = Eµ + iBµ, (2.179)

where Eq.(2.167) has been invoked. It is now evident that the gauge invariant

graviton wave function is a spatial tensor

ψµν ≡ Gµ0ν0 = Eµν + iBµν . (2.180)

While the photon is described by the complex three vector ψµ, the graviton

is described by the symmetric three tensor ψµν . Since the Weyl conformal

tensor is traceless Cµ
αµβ = 0, the gravitational wave tensor is also traceless;

gµνψµν = 0. (2.181)

A three by three symmetric traceless tensor has (2S + 1) = 5 independent

amplitudes corresponding to the graviton spin S = 2. Let us consider this in

more detail.

The equation of motion for the tensor graviton wave function follows from

the vacuum Einstein equations via Eqs.(2.177) and (2.180); It is

ih̄
∂ψab

∂t
=
cp

S
· (δbb′saa′ + δaa′sbb′)ψa′b′ , (2.182)

where scc′ are the matrix elements of spin one operators as in Eq.(2.168).
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Equivalently, the graviton wave function obeys

ih̄
∂ψ

∂t
= Hψ,

H = c
p · S
S

S · S ≡ S(S + 1) = 5 (graviton). (2.183)

The spin two operators follow from adding two spin one operators. In general,

one may add two spin operators and find the possibilities S = 0 or S = 1

or S = 2. Since the wave function is spin symmetric, ψab = ψba it is not

possible to have S = 1. Since the wave function is traceless
∑

a ψaa = 0 it is

not possible to have S = 0. The graviton is thus shown to be S = 2 object

as in Eq.(2.183).

2.9.2 Momentum Space wave functions

In momentum space a massless particle such as a graviton (S = 2) or a

photon (S = 1) obeys a Schrödinger equation of the form

ih̄
∂ψ(p, t)

∂t
= Hψ(p, t) = c

S · p
S

ψ(p, t). (2.184)

Since these particles are massless only the two values Λ = ±S of the Helicity

Λ =
p · S
|p| (2.185)



51

appear in physical states

H = ǫ
(

Λ

S

)

where ǫ = c|p|. (2.186)

The fact that helicity is used instead of spin implies interesting properties

concerning the position of a massless particle.

To see what is involved consider the total angular momentum of a massless

particle. It is

J = r × p + h̄S where r = ih̄
∂

∂p
. (2.187)

Only the helicity components of the spin are observable so we may write

S =
p

p
Λ

(

1 − pp

p2

)

· S, (2.188)

or equivalently by the sequence of relations

u(p) = h̄
S × p

p2

r = R + u(p)

J = R × p + h̄

(

p

p

)

Λ. (2.189)

When only the helicity components of the spin contribute to the total angular

momentum, then the position becomes an operator with components which

do not commute. In detail,

i

h̄
[Ra, Rb] = ǫabc

(

h̄pcΛ

p3

)

. (2.190)
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For example, consider a photon or graviton with helicity Λ = S moving along

the the z-axis. The coordinates of the particle R = (X,Y, Z) in the plane

normal to the axis of propagation obey a non-commutative geometry relation

i [X,Y ] =
h̄2

p2
S ≡ L2. (2.191)

For example the pythagorean theorem in the (X,Y ) plane is quantized ac-

cording to

X2 + Y 2 = (2n+ 1)L2 = (2n+ 1)Sλ2 wherein λ =
h̄

p
. (2.192)

The quantization of position functions according to the non-commutative

geometry is not without interest for quantum optics when the positions of

photons are made manifest by the “pixel” positions of the detectors. For the

case of gravitational wave detection the pixel positions of uncertainty

∆X∆Y > (L2/2) (2.193)

with a graviton length scale of (perhaps) L ∼ 106 meters.



Chapter 3

The Higgs Model

In this chapter we show the analogy between the mass grown mechanism of

a photon inside a super-conductor and the mass grown mechanism of the

electro-weak bosons in a Higgs field. We define the action describing the

interactions of the Higgs particle. We derive the Yukawa potential between

massive particle distributions, where the Higgs particle is the mediator. We

compute and confront several decay rates for the Higgs particle. These calcu-

lations are very important if we want to understand the chances of detecting

the Higgs particle at the next high energy accelerators.

3.1

The Standard Model (SM) is a successful model describing the interactions

of elementary particles. As every model, it is not perfect and presents some

aspects which do not totally agree with the experimental results, these may

53
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be the evidences for new Physics. One of the weak point of the SM is that

the mass of the elementary particles cannot be determined a priori. Over

the past decades several different models have been proposed for the mass

problem, but among them the most well received one was the Higgs model by

Peter Higgs. He used some of the concepts already developed in the theory of

super-conductivity to explain how a mass is grown on all the particles through

a spontaneous symmetry breaking of the local gauge invariance [28, 29]. The

connection between these two theories can be understood considering the

diamagnetic properties of a super-conductor. Given a super-conductor in

a magnetic field, the intensity of the field, inside the material, decreases

exponentially, according to this law

Prob. ∝ e−x/ΛL , (3.1)

wherein the typical length scale of this phenomenon is defined as the London

penetration depth ΛL. The magnetic field cannot deeply penetrate inside

the superconductor because the mass-less photon acquires a mass through

its interaction with the condensate made by super-conductive electrons. The

elementary particle physics approach to the mass-growth problem reads that

a mass-less particle acquires its mass through the interaction with the Higgs

condensate. To understand how these two Physics fields are connected we

will start deriving the mass of the photon inside a super-conductor and the

London penetration. We will employ only the Newton’s first law of mechan-

ics, F = ma, and the Maxwell’s equations. In a gauge where gradφ = 0 and
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divA = 0 the electric field is equal to:

E = −1

c

∂A

∂t
. (3.2)

Inside a super-conductor only a fraction of the total number of electrons

is responsible for carrying the super-conductive currents. These electrons

pair up in couple called a Cooper pair. The density of the Cooper’s pair

is a critical parameter of the super-conductive state and it is indicated by

nc = |Ψ|2, where

Ψ ∝ 〈ψ↑ψ↓〉 (3.3)

and ψ is the wave-function of a single electron. A Cooper pair can be consid-

ered as one particle boson with spin 0, charge e∗ = −2e and mass m = 2me.

Because the super-conductor is a dia-magnet, the Lorentz force on a Cooper

pair is just given by the electric field E. The equation of motions then reads

F = m∗dv

dt
= e∗E = −e

∗

c

∂A

∂t
. (3.4)

The expression for the super-conductive current density can be derived di-

rectly from Eq. (3.4)

J = nce
∗v = −nce

∗2A

m∗c
. (3.5)

To obtain the equation of motion for a photon inside a superconductor we

note that the fourth Maxwell’s equation and Eq. (3.5) are just functions of
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A

curlB =
1

c

∂E

∂t
+

4π

c
J

curl (curlA) = −∆A = − 1

c2
∂2A

∂t2
− 4πnce

∗2A

m∗c2
(

2 +
4πnce

∗2

m∗c2

)

A = 0 (3.6)

This last equation is known as Klein-Gordon (K-G) equation, it describes a

massive spin 1 particle and differs from the electromagnetic wave equation

by a term that can be identified as a (mass × c/h̄)2. The mass Mγ is here

obtained as a function of fundamental physical constants (like the electron

mass and charge, the Plank’s constant and the speed of light) and the London

penetration depth.

Mγ =
h̄

ΛLc
, (3.7)

ΛL =

√

m∗c2

4πe∗2nc

. (3.8)

The main result of this section is that inside a superconductor a mass-less

gauge boson (the photon γ) acquires a mass due to its interaction with the

super-conductive electrons. In the next section we will generalize the concept

of symmetry gauge symmetry and we will discuss the Higgs mechanism.

To obtain the masses for the three electro-weak gauge bosons we write in

complete analogy the density of super conductive electrons as v = | < φ(x) >
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| over the vacuum and the electro-weak currents as1

Jµ
W± = −g2

Wv
2W µ

± (3.9)

Jµ
Z = −g2

Zv
2Zµ (3.10)

MW± = gWv/2 (3.11)

MZ± = gZv/2 (3.12)

In the next session we will derive how the Higgs particle couples with other

elementary particles.

3.2 The Higgs Particle

In the Standard Model the Higgs field is responsible for creating masses for

all the elementary particles in the universe. The mediator of this interaction

is a scalar neutral particle called the Higgs boson. The search and discovery

of the Higgs boson is the principal goal of the modern experimental High

Energy Physics as it was in the last thirty years. Although the Standard

Model does not predict a value for the Higgs particle mass, present opinion

is that its mass is confined, with a 95% confidence, in the interval between

114 GeV/c2 and 195 GeV/c2. As is the case for most “elementary particles”,

the Higgs boson is unstable and decays in several different channels. There

is an extend bibliography about all the decay modes of the Higgs particle.

To detect these decay products will be one of the main goals of the Large

1In natural units h̄ = c = 1
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Hadron Collider (LHC), under construction at CERN, Geneve Switzerland.

The discovery of the Higgs particle would complete the Standard Model, and

thereby confirm that there is no new physics at presently attainable energies.

On the other hand if the Higgs particle remains undetected, then there will be

a valid reason to look with a more objective eye to many alternative theories

which have been proposed in the last forty years and unfairly ignored by the

majority of the physics community.

3.3 Stress as the Source of the Higgs Field

Theoretical calculations about the decay rates of the Higgs particle into di-

verse channels, provides an understanding of the possibility of detection and

the possible discovery the Higgs boson. To derive all these products we must

start from a microscopic action. Although the Higgs particle is responsible

for creating the mass of all the elementary particles, an effective action can

be derived starting from the detailed model action. Suppose that the Higgs

field obeys

φ = 〈0 |φ| 0〉 + σ = v + σ,

h̄cv ≈ 246 GeV. (3.13)

The source of the Higgs σ−field may be written as

T (x) = c

[

φ(x)

(

δS

δφ(x)

)]

φ(x)=v

. (3.14)
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In terms of the elementary particle masses that enter into the Lagrangian

density, source becomes

T (x) =
∑

a

Ma
∂L(x)

∂Ma

(3.15)

so that

Sint =
1

vc

∫

T (x)σ(x)d4x. (3.16)

Eq.(3.15) establishes the Higgs source as the trace of the stress tensor, T =

T µ
µ. Finally, the Fermi weak interaction coupling strength GF is determined

by the mean Higgs field according to

√
2

(

h̄GF

c3

)

=
1

v2
. (3.17)

To obtain the trace of the stress tensor we use the formula

T (x) = M
∂L(x,M)

∂M
(3.18)

A few examples will suffice:

TFermi(x) = MF
∂LFermi(x)

∂MF

= −MF c
2ψ̄(x)ψ(x), for a massive fermion

TW(x) = MW
∂LW(x)

∂MW

= −
(

2M2
W c

2

h̄

)

W †(x)W (x), for the W± bosons,

TZ(x) = MZ
∂LZ(x)

∂MZ

= −
(

M2
Zc

2

h̄

)

Z̄(x)Z(x), for the Z0 boson. (3.19)
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For a free classical particle with mass m, the action and Lagrangian density

is given by

Sclassical = −mc2
∫

dτ =
1

c

∫

Lclassical(x)d
4x

Lclassical(x) = −mc3
∫

δ4(x− x(τ))dτ. (3.20)

From Eqs.(3.15) and (3.20) we have

Tclassical = m
∂Lclassical(x)

∂m
= −mc3

∫

δ4(x− x(τ))dτ. (3.21)

Our reasoning is as follows: (i) One may obtain a Yukawa potential between

any two massive particles via an effective action to be discussed below; i.e.

UY = −
√

2GFM1M2

4πR
e−KR (3.22)

(ii) The “classical” coupling between (say) fermions and the Higgs scalar is

generally written as

SF = −1

c

∫

fφ(x)ψ̄(x)ψ(x)d4x

MF c
2 = fv

SF = −MF c
3
∫

(

1 +
σ(x)

v

)

ψ̄(x)ψ(x)d4x. (3.23)

in agreement with Eqs.(3.16) and Eqs.(3.19). We stress the importance of

the connection between the Yukawa potential UY and the Higgs particle

because UY was first introduced in order to describe the interaction between
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two nucleons exchanging a scalar meson. Below, we wish to study how two

particles, one at the origin and the other at r, interact through the Higgs

field. We derive an expression for the effective action up to the second order

in v−1 employing perturbation theory in the form

exp
[

i

h̄
Seff

]

=
〈

exp
[

i

h̄
Sint

]〉

+

i

h̄
Seff ≈ −

〈

1

2h̄2S
2
int

〉

+

Seff =
i
√

2GF

2c5

∫ ∫

T (x) < σ(x)σ(y) >+ T (y)d4xd4y

Seff =

√
2GF

2c5

∫ ∫

T (x)D(x− y)T (y)d4xd4y. (3.24)

In particular the effective action describes how the sources in T (x) interact

through a scalar Higgs field described by the propagator D(x−y). The static

limit of Eq.(3.24) yields the Yukawa potential. We assume here the static

limit of classical point particle sources as in Eq.(3.21) which read

Ta(x) = −Mac
2δ3(x − ra)

Tb(y) = −Mbc
2δ3(y − rb). (3.25)

According to this definition Eq. (3.24) reads

Seff =

√
2GF

2c5

∫ ∫

T (x)D(x− y)T (y)d4xd4y

Sab =

√
2GFMaMb

c

∫ ∫

δ3(x − ra)D(x− y)δ3(y − rb)d
4xd4y

Sab =
√

2GFMaMbc
∫ ∫

D(rab − c(ta − tb))dtadtb. (3.26)
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wherein rab = ra − rb. Because the above integral depends on the difference

between the two times it comes on handy to compute it after we have made

the following change of variables

t =
ta + tb

2

tab = ta − tb. (3.27)

The Fourier transform of the Higgs boson propagator reads

D(x− y) =
∫ d4k

(2π)4

eik·(x−y)

k2 +K2 − i0+
where h̄K = MHc. (3.28)

We can write the Eq.(3.26) as

Sab =
√

2GFMaMb

∫

dt
∫ d4k

(2π)3

eik·rab

k2 +K2 − i0+
δ(ck0)

Sab =
√

2GFMaMb

∫

dt
∫ d3k

(2π)3

[

eik·rab

|k|2 +K2 − i0+

]

Sab =
∫

[√
2GFMaMb

4πrab

e−Krab

]

dt, (3.29)

wherein the integral in tab yielded 2πδ(ck0). Normally a static potential is

obtained from the action as

ℜe(Sab) = −
∫

Uab(rab)dt. (3.30)
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Therefore from equation Eq. (3.76) we derive that the static Yukawa poten-

tial simply reads

Uab(rab) = −
[√

2GFMaMb

4πrab

e−Krab

]

. (3.31)

We have here shown that the Higgs particle couples to the trace of the stress

tensor. To consolidate our hypothesis about the properties of the Higgs

boson, we seek to compute its decay rate into two gravitons [31, 32], or a

fermion anti-fermion pair or two photons and so forth. In order to do the

computation we will start again from the very same action Eq. (3.70), but

we will look at it from an other prospective. In this case we want to see how

to write the total Higgs propagator in momentum space, including the “loop

contribution” at the lowest order perturbation theory in v−1. We will then

obtain all the decay modes of the Higgs boson taking the imaginary part of

the self-energy part of the full propagator. The appropriate choice of the

trace of the energy momentum tensor will determine which particular decay

mode is calculated. The generic decay rate, H → XX, is obtained from

the expansion of the effective action and considering only the quadratic term

in the source T (x). Practically we want to find out how a scalar particle

propagates in space time from x to y. We employ a new effective action,

exp
[

i

h̄
Seff

]

=
〈

exp
[

i

h̄
Sint

]〉

+

i

h̄
Seff ≈ −

〈

1

2h̄2S
2
int

〉

+

Seff ≈ i

2h̄c2v2

∫ ∫

d4xd4y < T (x)T (y) >+ σ(x)σ(y)
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Seff =
i
√

2GF

c5

∫ ∫

d4xd4y < T (x)T (y) >+ σ(x)σ(y). (3.32)

To understand the physical meaning of Eq. (3.30) we write the total action

for the Higgs boson as

SH = − h̄
2

∫

d4x
(

∂µσ(x)∂µσ(x) +K2σ(x)2
)

,

+
i
√

2GF

c5

∫ ∫

d4xd4y < T (x)T (y) >+ σ(x)σ(y), (3.33)

where the constant κ is defined as κ = MHc/h̄. The exact propagator for a

scalar particle reads

DH(k2) =
1

k2 +K2 − Π(k2)
. (3.34)

The self-energy part follows from Eq.(3.32) according to

Π̃(x− y) =
2i
√

2GF

h̄c5
< T (x)T (y) >+

=
1

(2π)4

∫

d4kΠ(k)eik(x−y). (3.35)

and the decay rate is given by

Γ =
c

κ
ℑmΠ(−κ2 − i0+). (3.36)

In the next sections we will derive the gravitational, fermionic and electro-

weak decay rates.
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3.4 Particle Propagators

In the next sections we need to employ the propagator of a fermion, a spin

1 boson (either massive or massless) and a spin 2 massless boson. These

function are defined as

SF (x− y) = i < ψ̄(x)ψ(y) >+

=
∫ d4k

(2π)4

eik·(x−y)

k2 +K2
F − i0+

(γ · k −KF ), (3.37)

KF =
MF c

h̄

for a fermion,

Dµν
γ (x− y) =

(

i

h̄c

)

< Aµ(x)Aν(y) >+=
∫ d4k

(2π)4

4πeik·(x−y)

k2 − i0+
ηµν (3.38)

for a photon[33],

Dµν
W±(x− y) =

(

i

h̄c

)

< W †(x)W (y) >+

=
∫ d4k

(2π)4

eik·(x−y)

k2 +K2
W − i0+

(

ηµν +
kµkν

K2
W

)

, (3.39)

KW =
MW c

h̄

for a W± electro-weak boson,

Dµν
Z (x− y) =

(

i

h̄c

)

< Z(x)Z(y) >+

=
∫ d4k

(2π)4

eik·(x−y)

k2 +K2
Z − i0+

(

ηµν +
kµkν

K2
Z

)

, (3.40)
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KZ =
MZc

h̄

for a Z electro-weak boson and

Dµναβ
g (x− y) =

(

ic3

h̄G

)

< hµν(x)hαβ(y) >+

= Gµναβ
∫ d4k

(2π)4

4πeik·(x−y)

k2 − i0+
, (3.41)

Gµναβ = 4(ηµαηνβ + ηµβηνα − ηµνηαβ)

for a graviton.

3.5 An Useful Integral

To calculate the decay rate of the Higgs particle we must always solve this

integral

I(q2, K) =
∫

d4Qδ(Q2 +K2)δ((Q− q)2 +K2), (3.42)

where qµ is a four vector such as q2 = q2 − q2
0 = −M2

Hc
2/h̄2 and K = Mc/h̄,

being M the mass of the particle originating the loop in the Higgs particle

propagator. We calculate I(q2, K) in all the details.

I(q2, K) =
∫

d4Qδ((Q+ q/2)2 +K2)δ((Q− q/2)2 +K2)

=
∫

d4Q
ds

2π

dt

2π
eis((Q+q/2)2+K2)eit((Q−q/2)2+K2)

=
∫

d4Q
ds

2π

dt

2π
ei(s+t)(Q2+q2/4+K2)ei(s−t)(Q·q)

=
1

2

∫

d4Qδ(Q2 + q2/4 +K2)δ(Q · q) (3.43)



67

The product Q · q is equal to Q ·q−Q0q0, therefore the integral in dQ0 reads

∫

dQ0δ(Q2 + q2/4 +K2)δ(Q · q) =
∫

dQ0δ(Q2 + q2/4 +K2)δ(Q · q −Q0q0)

=
1

q0
δ



Q2 −
(

Q · q
q0

)2

− g2



 , (3.44)

where

g2 = −q2/4 −K2 (3.45)

and I(q2, K) is

I(q2, K) =
1

2q0

∫

d3Q
1

q0
δ



Q2 −
(

Q · q
q0

)2

− g2





=
π

q0

∫ +1

−1
dz



1 −
(

|q|z
q0

)2




−3/2
∫ +∞

0
y2dyδ(y2 − g2)

=
πg

2q0

∫ +1

−1
dz



1 −
(

|q|z
q0

)2




−3/2

=
πg

2q0















z
√

1 −
(

|q|z
q0

)2















+1

−1

=
πg√
−q2

=
π

2

√

1 +
4K2

q2
=
π

2

√

√

√

√1 − 4
(

M

MH

)2

. (3.46)

Having defined the propagators and calculates the integral I(q2, K) we can

derive the decay rates of the Higgs particle.
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3.6 Weak and Electromagnetic decay modes

The Higgs boson couples directly to all the massive elementary particles and

indirectly (for example as in H → X̄X → γγ) to massless particles. There

exists an wide literature about all these decay modes that will be deeply

investigate at the LHC experiments. In particular the Higgs particle can

decay into a quark anti-quark pair H → q̄q, up to the bottom quark, and

lepton anti-lepton pair H → f̄f . Moreover, if the Higgs mass were big

enough, it is also possible for the Higgs to decay into electro-weak bosons,

H → ZZ, H → W+W− or into top quark pairs, H → t̄t.

3.6.1 Electromagnetic decay mode

In this part we will calculate the H → γγ decay rate. Although there is not

direct coupling between the Higgs particle and the photon we can write down

the interaction considering that the polarization of the fermionic vacuum

creates the electromagnetic field and then we will consider the interaction

between the neutral scalar boson and the fermions and between the fermions

and the electromagnetic field. Schwinger [30] calculated the action describing

the interaction between a scalar meson and a photon. Using directly his

result2 we write

Sint =
α

12π2v

∫

d4xσ(x)(B2 − E2)

=
α

24π2v

∫

d4xσ(x)Fµν(x)F
µν(x). (3.47)

2Schwinger uses this definition of the fine structure constant α = e2/(4πh̄c), while we
simply use α = e2/(h̄c)
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This expression is correct for a lepton originating the electro-magnetic field,

in the case of quarks Eq. 3.47 must be multiplied by

Nc × q2
q ,

where Nc is the number of colors and q2
q is the ratio of the quarks and the

electron charges squared (either 4/9 or 1/9). The effective action is obtained

with the same technique used in the other cases and it is

Seff =
i

2h̄

(

α

24π2v

)2 ∫

d4xd4yσ(x)σ(y) < Fµν(x)F
µν(x)Fαβ(y)Fαβ(y) >+ .

(3.48)

The self-energy part of the propagator is equal to

Π̃(x− y) =
2i
√

2GF

h̄c3

(

α

24π2

)2

< Fµν(x)F
µν(x)Fαβ(y)Fαβ(y) >+ . (3.49)

Focusing on the time ordered product, we can write it as

< Fµν(x)F
µν(x)Fαβ(y)Fαβ(y) >+=

2 < Fµν(x)Fαβ(y) >+< F µν(x)Fαβ(y) >+ . (3.50)

Let us calculate explicitly the first one

< Fµν(x)Fαβ(y) >+=< (∂µAν(x) − ∂νAµ(x))(∂αAβ(y) − ∂βAα(y)) >+

= < ∂µAν(x)∂αAβ(y) >+ − < ∂µAν(x)∂βAα(y) >+ − < ∂νAµ(x)∂αAβ(y) >+

+ < (∂νAµ(x)∂βAα(y)) >+
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=
h̄c

i
[ηνβ∂

x
µ∂

y
α − ηνα∂

x
µ∂

y
β − ηµβ∂

x
ν∂

y
α + ηµα∂

x
ν∂

y
β]Dγ(x− y)

=
h̄c

i

∫ d4k

(2π)4

[ηνβkµkα − ηναkµkβ − ηµβkνkα + ηµαkνkβ]eik·(x−y)

k2 − i0+
(3.51)

therefore Eq. (3.50) reads

< Fµν(x)F
µν(x)Fαβ(y)Fαβ(y) >+

= 2

(

h̄c

i

)2
∫ d4k

(2π)4

4π[ηνβkµkα − ηναkµkβ − ηµβkνkα + ηµαkνkβ]eik·(x−y)

k2 − i0+
×

∫ d4Q

(2π)4

4π[ηνβQµQα − ηναQµQβ − ηµβQνQα + ηµαQνQβ]eiQ·(x−y)

Q2 − i0+

= −256π2h̄2c2
∫ d4k

(2π)4

d4Q

(2π)4

(k ·Q)2 +Q2k2/2

(k2 − i0+)(Q2 − i0+)
ei(k+Q)·(x−y) (3.52)

The self-energy part of the propagator is equal to

Π̃(x− y) = −i512π2
√

2h̄GF

c

(

α

24π2

)2 ∫ d4k

(2π)4

d4Q

(2π)4
×

((k ·Q)2 +Q2k2/2)ei(k+Q)·(x−y)

(k2 − i0+)(Q2 − i0+)
(3.53)

The Fourier transform of Eq. (3.53) reads

Π(q) = −i512π2
√

2h̄GF

c

(

α

24π2

)2 ∫

d4x
d4k

(2π)4

d4Q

(2π)4
×

((k ·Q)2 +Q2k2/2)ei(k+Q−q)·(x−y)

(k2 − i0+)(Q2 − i0+)

= −i8
√

2h̄GF

c

(

α

3π

)2 ∫

d4k
d4Q

(2π)4
×

((k ·Q)2 +Q2k2/2)δ(k +Q− q)

(k2 − i0+)(Q2 − i0+)
. (3.54)
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The imaginary part of the self energy reads

ℑmΠ(q) =
i
√

2h̄GF

2c

(

α

3π3

)2

×
∫

d4kd4Q((k ·Q)2 +Q2k2/2)δ(k +Q− q)δ(k2)δ(Q2)

=

√
2h̄GF q

4

8c

(

α

3π2

)2

I(q2, 0) =

√
2h̄GF q

4

c

(

α

12π

)2

. (3.55)

The possible spin 0 configurations of two on shell photons are (1,−1), (−1, 1).

The photons of the self energy loop are virtual, off shell particle, therefore a

spin 0 status can be obtained as (1,−1), (0, 0), (−1, 1). To write the correct

value for decay rate we must first multiply Eq. (3.55) by a factor of 2/3 and

then by h̄/MH . Finally the decay rate reads

Γ(H → γγ) =
2

3

(

α

12π

)2
√

2GFM
2
H

h̄c

MHc
2

h̄
. (3.56)

This decay rate, being proportional to the fine structure constant α squared,

is much less than the other ones. Anyway it is interesting to show the tech-

nique used.

3.6.2 Fermionic decay mode

The Higgs particle interacts with all the massive lepton families e, µ, τ and

with all the quark generations, (d, u), (s, c), and (b,t). In particular the decay,

H → tt̄, happens if the Higgs mass were in a region already excluded by past
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experimental results. The trace of energy-momentum tensor is

T (x) = −mc2ψ(x)ψ(x). (3.57)

Among all the possible fermionic decays of the Higgs particle we have to note

that, the coupling being proportional to the mass of the fermion, the H → bb̄

will be the one with the biggest decay rate. Moreover the Higgs decay into a

quark anti-quark couple comes with an extra factor of 3 due to the numbers

of color. We can directly write Eq. (3.33) using the trace of the stress tensor

defined in Eq. (3.57)

Π̃(x− y) =
i2
√

2GFm
2

h̄c
< ψ(x)ψ(x)ψ(y)ψ(y) >+

= −i2
√

2GFm
2

h̄c
< ψ(y)ψ(x)ψ(x)ψ(y) >+

=
i2
√

2GFm
2

h̄c
T r{SF (y − x)SF (x− y)}

=
i2
√

2GFm
2

h̄c
T r

∫ d4k

(2π)4

d4Q

(2π)4

ei(k+Q)·(x−y)(γµkµ +K)

(k2 +K2 − i0+)

(γνQν −K)

(Q2 +K2 − i0+)

= −i8
√

2GFm
2

h̄c

∫ d4k

(2π)4

d4Q

(2π)4

ei(k+Q)·(x−y)(k ·Q+K2)

(k2 +K2 − i0+)(Q2 +K2 − i0+)

= −i4
√

2GFm
2

h̄c

∫ d4k

(2π)4

d4Q

(2π)4
ei(k+Q)·(x−y) ×

((k +Q)2 + 4K2 − (k2 +K2) − (Q2 +K2))

(k2 +K2 − i0+)(Q2 +K2 − i0+)
. (3.58)

The Fourier transform of the self-energy gives

Π(q2) =
∫

d4xe−iq·xΠ̃(x)
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=
i4
√

2GFm
2

h̄c

∫ d4Q

(2π)4
×

(q2 + 4K2 − ((q −Q)2 +K2) − (Q2 +K2))

((q −Q)2 +K2 − i0+)(Q2 +K2 − i0+)
. (3.59)

Taking the imaginary part of this equation allows to simply write

ℑmΠ(q2) = −
√

2GFm
2q2

4π2h̄c

(

1 +
4K2

q2

)

∫

d4Qδ((q −Q)2 +K2)δ(Q2 +K2)

= −
√

2GFm
2q2

4π2h̄c

(

1 +
4K2

q2

)

I(q2, K2)

= −
√

2GFm
2q2

8πh̄c

(

1 +
4K2

q2

)3/2

. (3.60)

The decay rate is again obtained from Eq. (3.34) and is equal to

Γ(H → ff̄) =

(

Nc

√
2GFm

2

8πh̄c

)

(

MH

h̄c

)

(

1 − 4m2

M2
H

)3/2

, (3.61)

where Nc is the number of colors, 3 for a quark and 1 for a lepton.

3.6.3 Weak decay modes

The calculations of decay rate of the Higgs boson into charged and neutral

weak bosons are very similar. We calculate them in parallel. The action

describing the interaction reads

Sint,W = −2K2
W

vc

∫

d4xσW †
µW

µ

Sint,Z = −K
2
Z

vc

∫

d4xσZµZ
µ. (3.62)
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The effective actions for the self-energy parts read

Seff,W =
2i

h̄

K4
W

v2c2

∫

d4xd4yN(σ(x)σ(y)) < W †
µ(x)W µ(x)W †

ν (y)W ν(y) >

Seff,Z =
i

2h̄

K4
Z

v2c2

∫

d4xd4yN(σ(x)σ(y)) < Z(x)Zµ(x)Zν(y)Z
ν(y) > .(3.63)

The polarizations are then given by

ΠW (x− y) =
8iK4

W

h̄2c2v2
< W †

µ(x)W ν(y) >+< W †
ν (y)W µ(x) >+

= −8iK4
W

v2
Dµν,W (x− y)Dµν

W (x− y)

ΠZ(x− y) =
4iK4

Z

h̄2c2v2
< Zµ(x)Zν(y) >+< Zµ(x)Zν(y) >+

= −4iK4
Z

v2
Dµν,Z(x− y)Dµν

Z (x− y). (3.64)

At first we define this function3

F(k,Q,K) =

(

ηµν +
kµkν

K2

)

(

ηµν +
QµQν

K2

)

, (3.65)

and then we write the imaginary part of the Fourier transform of the self

energy parts

ℑmΠW (q) =
K4

W

2π2v2

∫

d4kd4QF(k,Q,KW )

×δ(k2 +K2
W )δ(Q2 +K2

W )δ(q − k −Q)

=
K4

W

8π2v2
I(q,KW )

(

12 +
4q2

K2
W

+
q4

K4
W

)

3We drop here the pedeces Z and W .
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=
K4

W

16πv2

√

√

√

√1 +
4K2

W

q2

(

12 +
4q2

K2
W

+
q4

K4
W

)

ℑmΠZ(q) =
K4

Z

4π2v2

∫

d4kd4QF(k,Q,KZ)

×δ(k2 +K2
Z)δ(Q2 +K2

Z)δ(q − k −Q)

=
K4

Z

32πv2

√

√

√

√1 +
4K2

Z

q2

(

12 +
4q2

K2
Z

+
q4

K4
Z

)

. (3.66)

These expressions are simplified defining xW = −K2
W/q

2 and xZ = −K2
Z/q

2

ℑmΠW (q) =
h̄q4

16πv2

√

1 − 4x2
W (12x4

W − 4x2
W + 1)

ℑmΠZ(q) =
h̄q4

32πv2

√

1 − 4x2
Z(12x4

Z − 4x2
Z + 1). (3.67)

At this point we can write the decay rate as

ΓH→W+W− =
h̄

MH

ℑmΠW (q2 − M2
Hc

2

h̄2 )

=
M3

Hc
4

16πh̄2v2

√

1 − 4x2
W (12x4

W − 4x2
W + 1)

=

(√
2GFM

2
H

16πh̄c

)

MHc
2

h̄

√

1 − 4x2
W (12x4

W − 4x2
W + 1)

ΓH→Z0Z0 =

(√
2GFM

2
H

32πh̄c

)

MHc
2

h̄

√

1 − 4x2
Z(12x4

Z − 4x2
Z + 1). (3.68)

3.7 Gravitational decay modes

The decay of the Higgs particle into graviton pairs gg is either neglected or

wrongly calculated. We believe that because of gravity, the mass and the

Higgs field are deeply connected. The value of Γ(H → gg) will predominate
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all the decay modes of the Higgs boson, bieng the most important one. The

gravitons will escape detection with a probability of virtually unity. Thus any

Higgs producing two gravitons will be overlooked unless the experimentalists

keep their eyes wide open for missing four momentum as is the case for

decays into neutrinos. From an experimental prospective, the decay rate into

“missing” graviton four momenta can explain why it might not be possible to

detect as many Higgs events as already theorized in many books and articles.

Nevertheless it may still be possible to indirectly detect the Higgs particle

at LHC by looking for the missing gravitational four momenta. Although at

first this eventuality could not seem to be very interesting, we should always

remember that it is not the first time that information about the physics of an

elementary particle is obtained in this way. For example the Z boson is well

known to decay ∼ 20% of the time according to Z → νν̄+γsoft. To calculate

the Higgs decay rate into two gravitons, we need a suitable expression for

the trace of the gravitational pressure-energy tensor. In the weak field limit

and at the second order exapansion in the metric perturbation hµν(x), one

can write
〈

R(2)
µν − 1

2
ηµνR

(2)
〉

=
8πc4

G
T (2)

µν =
8πc4

G
t(2)µν (3.69)

and then employs the pseudo tensor tµν(x) instead of Tµν [27]. The time

ordered vacuum expectation value is then written as

< t(x)t(y) >+=

(

c4

32πG

)2

<
(

∂µhαβ∂µhαβ

)

x

(

∂νhγδ∂νhδγ

)

y
>+ . (3.70)
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Using Wick’s theorem, the explicit expansion of the time order reads

< ∂µhαβ(x)∂µhαβ(x)∂νhγδ(y)∂νhδγ(y) >+=

2 < ∂µhαβ(x)∂νhγδ(y) >+< ∂µhαβ(x)∂νhδγ(y) >+ . (3.71)

Apart from a constant, and the partial derivatives this last expression de-

scribes a graviton propagating in a close loop from x to y and y to x, confront

with Eq. 3.42. Eq. (3.70) reads

< t(x)t(y) >+ = −2

(

h̄c

32π

)2

(∂µ∂νDαβγδ(x− y))(∂µ∂νDαβγδ(x− y))

= −2

(

h̄c

32π

)2

Gαβγδ

∫ d4k

(2π)4

4πkµkνe
ik·(x−y)

k2 − i0+
×

Gαβγδ

∫ d4Q

(2π)4

4πQµQνeiQ·(x−y)

Q2 − i0+
. (3.72)

The product GαβγδGαβγδ gives

GαβγδGαβγδ = 4(ηµαηνβ + ηµβηνα − ηµνηαβ) × 4(ηµαηνβ + ηµβηνα − ηµνηαβ)

= 16[(16 + 4 − 4) + (4 + 16 − 4) − (4 + 4 − 16)]

= 640 (3.73)

and therefore Eq.3.72

< t(x)t(y) >+ = −20h̄2c2
∫ d4k

(2π)4

kµkνe
ik·(x−y)

k2 − i0+
×

∫ d4Q

(2π)4

QµQνeiQ·(x−y)

Q2 − i0+
. (3.74)
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The Fourier transform of the self energy reads

Π(q2) = −20i

v2

∫

d4x
d4k

(2π)4

d4Q

(2π)4

(k ·Q)2ei(k+Q−q)·x

(k2 − i0+)(Q2 − i0+)

= −20i

v2

∫

d4k
d4Q

(2π)4

(k ·Q)2δ4(q − k −Q)

(k2 − i0+)(Q2 − i0+)
(3.75)

To calculate the decay rate we need to take the imaginary part of Eq. (3.75).

ℑmΠ(q2) = −ℜe20

v2

∫

d4k
d4Q

(2π)4

(k ·Q)2δ4(q − k −Q)

(k2 − i0+)(Q2 − i0+)

=
5

4π2v2

∫

d4kd4Q(k ·Q)2δ4(q − k −Q)δ(k2)δ(Q2)

=
5q4

16π2v2
I(q2, 0) =

5q4

32πv2
(3.76)

To obtain the H → gg decay rate we must remember that the outgoing

gravitons have only two possible values for the spin polarizations (+2,−2),

while the gravitons used in the calculation are off mass-shell particles with

five possible values for the spin polarizations (+2,+1, 0,−1,−2). Thus to

write down the correct result we must multiply Eq. (3.76) by a factor of 2/5

because of the presence of three ghosts in the theory. The decay rate is then

Γ(H → gg) =
h̄

MH

ℑmΠ(q2 = −M2
Hc

2/h̄2)

=

(√
2GFM

2
H

16πh̄c

)

MHc
2

h̄
(3.77)

For the well accepted value of the Higgs mass, 114.4 GeV/c2 < MH <

195 GeV/c2, the decay rate is included in the interval [0.96 : 4.88]GeV .

These values make H → gg the predominant decay mode compared to the
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other Standard Model Higgs decays. The branching ratio between the grav-

itational and the other decays is close to 2.44 in the case of the Higgs mass

close to the upper limit of 195 < GeV/c2 and it is about equal to 102 in the

case of an Higgs mass close to the lower limit of 114 < GeV/c2. We predict

that the LHC experiments will not detect as many Higgs particles as theo-

rized because most of them will “disappear” decaying into two undetectable

gravitons.



Chapter 4

Proximity Effects

4.1 Final State Interaction

In nuclear physics, it is well known that the electromagnetic (Coulomb) in-

teraction between final state products can drastically effect particle reaction

rates. Near thresholds, for example, nuclear alpha decay is strongly sup-

pressed while nuclear beta decay is enhanced by final state Coulomb interac-

tions. Here we discuss high energy physics enhancement and/or suppression

of reactions wherein the potentials must include weak and strong as well as

electromagnetic interactions. Potentials due to the exchange of gluons and

the exchange of a hypothetical Higgs particle are explicitly considered. The

Coulomb interaction

UCoul = Z1Z2

(

h̄cα

r

)

(4.1)

between the final products of nuclear reactions can have a large effect on par-

ticle reaction rates and cross sections. If the final state Coulomb potential is

80
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repulsive, then the reaction is suppressed. Such is the case for (say) nuclear

alpha decay or inverse nuclear beta decay. If the Coulomb final state interac-

tion is attractive, then the reaction is enhanced. Such is the case for nuclear

beta decay. The effects of the final state Coulomb potential is (i) particularly

large near threshold and (ii) requires methods far beyond standard low order

perturbation theory for a proper calculation.

Although the application of final state interaction theory to problems of

nuclear physics is by now fairly routine, the theory is not yet quite standard

practice in high energy physics wherein perturbation theory perhaps too often

reigns supreme. Yet the potentials of the weak and strong interactions, if not

the gravitational potential

UNewton = −G
(

M1M2

r

)

, (4.2)

surely play a final state interaction role similar to the Coulomb interaction in

nuclear physics. In particular, we wish to discuss these final state interactions

due to both weak and strong forces. There has been considerable earlier

work[36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] with applications to the

W+W− and heavy flavor qq̄ production.

The strong force potential, presumed due to gluon exchange, has the form

UGlue =

(

h̄cαs

r

)

T1 · T2, (4.3)

in which the matrices {T} are the color SU(3) group generators. The gluon

exchange potential Eq. (4.3) is written down in close analogy to the photon
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exchange potential Eq. (4.1); It reads

Uq̄q = Vqq̄ = −4

3

(

h̄cαs

r

)

(quark anti − quark),

Uq̄q̄ = Vqq = −2

3

(

h̄cαs

r

)

(quark quark). (4.4)

However, Eqs.(4.3) and (4.4) hold true only in the r → 0 limit. For large r,

the presumed confinement (linear) portion of the potential is presently only

partially understood. The details of the full quark potentials are summarized

in 4.7.

The weak Higgs exchange potential has the form

UHiggs = −
(√

2GF

4π

)

(

M1M2

r

)

e−(MHc/h̄)r (4.5)

in close analogy to the graviton exchange potential Eq. (4.2). Here, the

Fermi interaction strength GF plays a role analogous to the Newtonian grav-

itational coupling G while the mass MH of the Higgs particle plays the role

of an inverse screening length. That the graviton exchange potential should

bear a strong resemblance to the Higgs exchange potential (apart from screen-

ing) is due to the fact that gravitational mass is the source and sink of the

gravitational field while inertial mass is the source and sink of the Higgs field.

The principle of equivalence between gravitational and inertial mass dictates

that the Higgs particle (if it exists) is intimately connected with gravity.

To compute the final state interaction effects of the effective exchange

potentials which may enhance or may suppress the reaction, it is convenient
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to employ the quasi-classical relativistic Hamilton-Jacobi equation. If the

potential is repulsive and the reaction suppressed, then the effect lies mainly

in the classically disallowed region (quantum tunneling). If the potential

is attractive and the reaction is enhanced, then the effect arises due to the

strong overlap of the attracted particle wave functions. This point is illus-

trated in Sec.4.2 wherein the amplification of beta decay and the suppression

of inverse beta decay will be reviewed. In Sec.4.3 the attractive gluon ex-

change potential will be discussed with regard to enhancement factors for

the production of quark anti-quark pairs, i.e. quark jets. Final state interac-

tions induced by the Higgs field are discussed in Sec.4.4 for ZZ̄ and W+W−

production. The Higgs effects become more important as the mass increases.

In principle these effects may be of use in experimental probes which seek

to verify that the Higgs field exists. This point is briefly discussed in the

concluding Sec.4.6.

4.2 The Coulomb Potential

Consider the inverse beta decay of a nucleus written as the reaction

ν̄e + (Z + 1, A) → (Z,A) + e+. (4.6)

The finally produced positron interacts with the final nucleus via the repulsive

Coulomb potential

U+(r) =
h̄cαZ

r
. (4.7)
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Since the nucleus is much more massive than is the positron, it is normally

sufficient to treat the Coulomb interaction potential as if it were external.

The positron energy equation then reads

(E − U+(r))2 = m2c4 + c2|p|2. (4.8)

Relativistic Hamilton-Jacobi dynamics asserts that the momentum is the

gradient of the positron action

p = gradW (r, E). (4.9)

The radial solution of Eqs.(4.8) and (4.9) reads

c2p(r, E)2 = c2
[

∂W (r, E)

∂r

]2

= (E − U+(r))2 −m2c4,

c2p(r, E)2 =

[

E − h̄cαZ

r
+mc2

] [

E − h̄cαZ

r
−mc2

]

. (4.10)

The classically allowed (p2 > 0) and classically disallowed (p2 < 0) regions

in the radial coordinate r are defined by

0 < r < a or r > b =⇒ (allowed),

a < r < b =⇒ (disallowed), (4.11)

wherein

a =
h̄cαZ

E +mc2
and b =

h̄cαZ

E −mc2
. (4.12)
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The reaction suppression is described by the barrier factor B for the regime

in which classical motion is forbidden; In detail

B =
2

h̄
ℑm|W (b, E) −W (a,E)| =

2

h̄

∫ b

a
|ℑm[p(r, E)]|dr,

B =
2

h̄c

∫ b

a

√

√

√

√

∣

∣

∣

∣

∣

E − h̄cαZ

r
+mc2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E − h̄cαZ

r
−mc2

∣

∣

∣

∣

∣

dr,

B(E,Zα) = 2πZα

[

E√
E2 −m2c4

− 1

]

= 2πZα
[(

c

v

)

− 1
]

, (4.13)

where v is the positron velocity. In the non-relativistic limit v << c, the

Coulomb barrier factor B ≈ (2πZαc/v) is well known. Eq. (4.13) represents

the relativistic theory in which the barrier factor vanishes in the high energy

limit (v → c).

The physical picture in the relativistic theory is worthy of note. The

“tunneling” through the barrier is in reality electronic “pair creation” under

the barrier for (a < r < b). When the pair is created the positron half of

the pair rushes off to infinity (b < r < ∞). The electron half of the pair

falls into the center (0 < r < a) converting one of the nuclear protons into

a neutron and emitting an electron neutrino. The total inverse beta decay

reaction may then be represented as

(vacuum) → e− + e+,

ν̄e + e− + (Z + 1, A) → (Z,A), (4.14)

for which Eq. (4.6) is the total reaction. The full suppression factor cross

section ratio induced by the Coulomb repulsion between the positron and
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the final state nucleus is given by

S(E,Z) =
σ
[

ν̄e + (Z + 1, A) → (Z,A) + e+
]

σ(0)
[

ν̄e + (Z + 1, A) → (Z,A) + e+
] ,

S(E,Z) =
B(E,Zα)

exp(B(E,Zα)) − 1
. (4.15)

Eq. (4.15) concludes our discussion for the case of inverse beta decay.

For the case of beta decay

(Z − 1, A) → (Z,A) + e− + ν̄e, (4.16)

the Coulomb potential between the outgoing electron and the nucleus is

attractive

U−(r) = − h̄cαZ
r

. (4.17)

The Hamilton-Jacobi equation for the attractive Coulomb energy reads

(E − U−(r))2 = m2c4 + c2|p|2 wherein p = gradW (E, r). (4.18)

Since there is a particle anti-particle “duality” corresponding to positive and

negative energy solutions in any relativistic theory, if an electron sees an at-

tractive potential then the positron will see a repulsive potential. Relativistic

dynamics with Poincaré symmetry automatically includes both particle and

antiparticle dynamics. Employing this duality of solutions one finds that the

beta decay for the electron is again described by Eq. (4.13) but this time

with an amplification factor. The full ratio of decay rates corresponds to



87

Figure 4.1: For an outgoing beta decay electron or inverse beta decay positron

with energy E = {mc2/
√

1 − (v/c)2} there will be, respectively, an attraction
or repulsion from the central nuclear final state charge Ze. Shown are the
curves for the electron rate amplification A(Z,E) and the positron rate sup-
pression S(Z,E) implicit in the conventional Coulomb final state corrections.
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[34, 35]

A(E,Z) =
Γ
[

(Z − 1, A) → (Z,A) + e− + ν̄e

]

Γ(0)
[

(Z − 1, A) → (Z,A) + e− + ν̄e

] ,

A(E,Z) =
B(E,Zα)

1 − exp( −B(E,Zα))
. (4.19)

The suppression factor for an outgoing positron and the amplification

factor for an outgoing electron are plotted in Figure 4.1. For the inverse beta

decay of Eq. (4.15), the positron emerges with velocity

v =
c
√
E2 −m2c4

E
(4.20)

and the cross section is suppressed by the coulomb interaction factor S. For

the beta decay case in Eq. (4.19), the electron can still emerge with the

velocity in Eq. (4.20) but the decay rate is enhanced with an amplification

factor A.

4.3 The Gluon Exchange Potential

Consider the production of a quark and an anti-quark with momenta p and

p̄. The pair interacts with an attractive gluon exchange potential Uq̄q(r). On

a short distance scale one expects a Coulomb-like potential with a strong

interaction charge which dominates the actual Coulomb potential; i.e.

Uq̄q(r) = −4

3

(

g2

4πr

)

= −4

3

(

h̄cαs

r

)

as r → 0. (4.21)
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On a larger distance scale, the potential is discussed in 4.7.

The total mass
√
s of the final state pair is determined by

c2s = −P 2 = −(p+ p̄)2 = 2(c2m2 − p̄ · p). (4.22)

In the center of mass reference frame of the pair (P = p+ p̄ = 0), kinematics

dictates

−c2p̄ · p = ĒE − c2p̄ · p = c4m2 + 2c2|p|2; (4.23)

In detail, the relative momentum of the quark anti-quark pair is given by

|p| = c
√

(s/4) −m2 . (4.24)

The enhancement factor for the quark anti-quark jet production then follows

a form closely analogous to the Coulomb case in Eqs.(4.17) and (4.19). The

production amplification is

Aq̄q(s) =
Γq̄q(s)

Γ
(0)
q̄q (s)

,

Bq̄q(s) =
4παs

3

[√

s

s− 4m2
− 1

]

,

Aq̄q(s) =
Bq̄q(s)

1 − exp( −Bq̄q(s))
, (4.25)

which has been plotted in Figure 4.2. The amplification is particularly strong

near the threshold value s0 = 4m2.
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Figure 4.2: The gluon exchange potential amplification of quark anti-quark
jet production is plotted as a function of the invariant mass squared. The
amplification begins at threshold. A reasonable but approximate value for
the strong coupling strength αs has been employed.
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4.4 The Higgs Exchange Potential

The calculation of Higgs exchange amplification factor from the potential in

Eq. (4.5) is a bit more delicate due to the screening effect of the Higgs mass

MH . As shown in what follows, it turns out that the Higgs mass drops out of

the result since the amplification factor is determined by the wave function

of the two produced particle at zero distance for a fixed time. In effect, this

represents a “zero space time interval” for the exchange and it is well known

that the nature of the light cone singularity in the mass propagator is mass

independent. The Higgs boson exchange Feynman diagram producing the

exchange potential is shown in Figure 4.3.

The action associated with this exchange is given by

SHiggs =

√
2GF

2c5

∫ ∫

T (x)D(x− y)T (y)d4xd4y, (4.26)

wherein T (x) is the trace of the stress tensor and D(x−y) is the Higgs boson

propagator

D(x− y) = h̄2
∫

[

eip·(x−y)/h̄

p2 + (MHc)2 − i0+

]

d4p

(2πh̄)4
. (4.27)

A more physical space-time representation of the Higgs boson propagation

follows from the Schwinger proper time representation

D(x− y) =
MH

8π2h̄

∫ ∞

0
e[iMH/2h̄]{−c2τ+[(x−y)2/τ ]}

(

dτ

τ 2

)

. (4.28)
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For two particles moving at uniform velocities the trace of the stress tensor

quasi-classical sources reads Ta,b(x) = −Ma,bc
3
∫

δ(x − va,bτ)dτ . Eq. (4.26)

now yields the action

Sab =

(√
2GFMaMb

c

)

c2
∫ ∞

−∞

∫ ∞

−∞
D(vaτa − vbτb)dτadτb . (4.29)

If Eq. (4.28) is substituted into Eq. (4.29), then the resulting Gaussian

integrals over dτa and dτb can be performed yielding

Sab =

(√
2GFmamb

c

)

∫ ∞

0
F̃ (va, vb, τ)

(

dτ

τ

)

, (4.30)

wherein

F̃ (va, vb, τ) =





c2

4π
√

(va · vb)2 − c4



 e−iMHc2τ/2h̄. (4.31)

The Higgs mass MH drops out of the final expression for the imaginary part

of the action,

ℑm Sab = −
(√

2GFMaMb

8c

)





MaMbc
2

√

(pa · pb)2 − (MaMbc2)2



 , (4.32)

wherein the momenta pa = Mava and pb = Mbvb have been introduced.

Suppose the production of a particle anti-particle pair each of mass M .

Associated with such a mass is a weak coupling strength

αF (M) =

(√
2GFM

2

4πh̄c

)

(4.33)
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such that

Bpair(s) = −2

h̄
ℑmSpair = 2παF (M)





M2

√

s(s− 4M2)



 . (4.34)

The resulting Higgs induced amplification factor is determined by

Apair(s) =
Bpair(s)

1 − exp(−Bpair(s))
. (4.35)

In this regard one may consider the reactions

e+ + e− → W+ +W−,

e+ + e− → Z + Z̄. (4.36)

The amplification coupling strengths for the above reactions are, respectively,

2παF (MW ) ≈ 0.0532,

2παF (MZ) ≈ 0.0687. (4.37)

For these massive particles the Higgs boson exchange induced amplification

is somewhat larger than the photon exchange amplification which contributes

in the W+W− production case.

In Figure 4.4, we exhibit the amplification factor for ZZ̄ production due

to the exchange potential of the Higgs boson; It is

A(Z−pair)(s) =
Γ(e+ + e− → Z + Z̄)

Γ(0)(e+ + e− → Z + Z̄)
,
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Figure 4.3: The exchange of a Higgs boson between two particles gives rise to
the attractive potential Uab = −(

√
2/4π)(GFMaMb/r) exp(−MHr/h̄c). The

action Sab of the exchange is examined in detail.
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Figure 4.4: Shown is the amplification factor A(Z−pair)(s) of the Z pair pro-
duction reaction e+ + e− → Z + Z̄ due to a Higgs boson exchange.
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Figure 4.5: Shown is the amplification factor A(W−pair)(s) of the W+W− pair
production reaction e+ + e− → W+ +W− due to both Higgs boson exchange
and photon exchange. Both Higgs exchange and photon exchange contribute
to the amplification factor yielding a somewhat larger effect than for the case
of e+ + e− → Z + Z̄.

A(Z−pair)(s) =
B(Z−pair)(s)

1 − exp[−B(Z−pair)(s)]
.

B(Z−pair)(s) = 2παF (MZ)





M2
Z

√

s(s− 4M2
Z)



 , (4.38)

For the case of W+W− production, the enhancement is due to both pho-

ton exchange (which surely exists) and Higgs boson exchange (which may

exist). The complete answer for W+W− amplified production reads

A(W−pair)(s) =
Γ(e+ + e− → W+ +W−)

Γ(0)(e+ + e− → W+ +W−)
,
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A(W−pair)(s) =
B(W−pair)(s)

1 − exp[−B(W−pair)(s)]
,

B(W−pair)(s) = 2παF (MW )





M2
W

√

s(s− 4M2
W )





+πα





√
s−

√

s− 4M2
W

√

(s− 4M2
W )



 , (4.39)

which is plotted in Figure 4.5. The amplification factor for W+W− pro-

duction is more pronounced than the amplification factor for ZZ̄ production

since photon exchange contributes to the former process but not to the latter.

4.5 Environmental Mass Shifts

The experimental evidence that the mass of electro-weak bosons seem to

depend by the number of Ws or Zs produced in one event does not have so

far a theoretical explanation. In this section we will prove how it is possible

to obtain the mass shift starting from the action described by Eq.(4.26). So

far we have consider only the imaginary part of the action. We now wish

to determine the mass shift from the real part of the action. The argument

is as follows: (i) The real part of the action for a particle whose life time is

τ0 = Γ−1, obeys

ℜe(∆S) = −∆Mc2
∫

dτ = ∆Mc2τ0,

∆M = −
[

Γℜe(∆S)

c2

]

. (4.40)
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The dispersion relation for the full action

∆S(k2) = − 2

π

∫ +∞

0

ℑm∆S(µ2 − i0+)

k2 + µ2 − i0+
dµ. (4.41)

We have already proved that the ℑmS does not depend by the mass of

the Higgs and therefore we can write ℑmS = W , where W is a constant.

According to this Eq. (4.41) reads

∆S(k2) = −W
π

∫ +∞

0

1

k2 + µ2
dµ2

∆S(k2) = −W
π
P
∫ +∞

0

1

k2 + µ2
dµ2

∆S(k2) = −W
π

(

∫ k2−ǫ

0

1

µ2 + k2
dµ2 +

∫ +∞

k2+ǫ

1

µ2 + k2
dµ2

)

(4.42)

Introducing a logarithmic high mass cut-off, we can express the real part of

the action to a sufficient degree of accuracy

ℜe(∆S) =
W

π
ln

(

MHc
2

h̄ΓH

)

. (4.43)

Eqs.(4.32), (4.40) and (4.43) imply the mass shift when two massive particles

are produced together is

∆M = −
(

h̄Γ

c2

)

αF (M2)M2

√

s(s− 4M2)
ln

(

MHc
2

h̄ΓH

)

,

αF (M2) =

√
2GFM

2

4πh̄c
. (4.44)
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A complete and organic explanation of this theory of proximity effects is

clearly exposed in a new paper [49].

4.6 Conclusions

The threshold amplification and/or suppression factors familiar from the the-

ory of final state interactions have been applied in this work in a higher energy

regime. In particular we have considered final state interactions involving the

Higgs boson under the supposition that it exists. Even below the threshold

for the physically real Higgs particle production, the Higgs field can act as

a messenger field entering into enhanced production rates for pairs of heavy

particles such as ZZ̄, W+W− or tt̄ pairs[44]. The sharp peaks shown in

the plots of enhancement factors will be considerably “rounded” due to (i)

particle lifetime effects, (ii) radiative corrections and (iii) energy resolution

factors from the energy distributions in incoming beams. Nevertheless, even

if a sharp peak no longer appears, the physically “smoothed” threshold region

will be affected. Since the production amplification is above the threshold

mass squared, i.e. s > s0 ≡ 4M2, it follows that the threshold transition re-

gion will occur at a mass slightly higher than the threshold to be expected if

the amplification were ignored. For example, experimental reaction threshold

mass shifts of order

e+ + e− → Z + Z̄ ⇒ ∆MZ ≈MZαF (MZ),

e+ + e− → W+ +W− ⇒ ∆MW ≈MW [αF (MW ) + 0.5α],(4.45)



99

0.25

0.5

0.75

1

1.25

170 175 180 185 190 195 200 205

σ(
s)

 [
p
b
]

√(s) [GeV/c
2
]

e
+
e

-→ ZZ

Enhanced cross-section

Figure 4.6: The e+ + e− → ZZ cross section calculated and enahnced and
the LEP experiment data points are shown in the picture.

would not be unreasonable and might constitute an unexpected probe of the

Higgs field existence.

The experimental evidence of the final state interaction has been done

calculating the cross sections for the electro weak gauge boson pair produc-

tion and comparing the experimental data from the LEP experiment with the

enhanced cross section. This should provide a check on the final state higgs

field interaction. Moreover in the near future it will be possible to apply the

same technique to the study of the top quark pair production and determine

if there is as important mass difference when the quark top is produced in
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pairs or not. The reaction e+e− → ZZ was widely studied at LEP. In the

particular case the final state correction depends only on the Higgs potential.

The reaction e+e− → W+W− was also measured at LEP and in this case

both Coulomb and Higgs potentials have been taken into account.
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4.7 Quark Potentials

The one gluon exchange potential between a quark and anti-quark has been

approximated as

VGlue(r) =

(

h̄cαs

r

)

(T1 · T2) =
∫

(

4πh̄cαs

|k|2
)

eik·r d
3k

(2π)3
(T1 · T2). (4.46)

In reality, the strong interaction coupling strength itself depends on |k|2 so

that the Coulomb-like potential is modified to read

ṼGlue(r) = 4πh̄c
∫

(

αs(|k|2)
|k|2

)

eik·r d
3k

(2π)3
(T1 · T2). (4.47)

More simply,

ṼGlue(r) =

[

h̄c(T1 · T2)

r

]

χ(r),

χ(r) =
2

π

∫ ∞

0
αs(k

2)sin(kr)
dk

k
. (4.48)

If αs(k
2) were a constant, then Eqs.(4.48) would reduce to Eq. (4.3). However

the Coulomb-like law from gluon exchange breaks down at large distances.

To see what happens as r → ∞, one may presume a finite limit in the

form

lim
k2→0+

{h̄ck2αs(k
2)} = 2σ, (4.49)

and differentiate Eq. (4.48) twice with respect to r; i.e.

χ′′(r) = − 2

π

∫ ∞

0
kαs(k

2)sin(kr)dk,
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lim
r→∞

χ′′(r) = −2σ

h̄c
. (4.50)

What is called a “QCD motivated potential” results from the assertion that

χ′′(r) = −(2σ/h̄c) for all of the important distance scales. If this is indeed

the case, then

ṼGlue(r) = T1 · T2

{

h̄cαs

r
− σr

}

, (4.51)

wherein the long range linear part of the potential describes the intrinsic

tension σ in a QCD string. In detail, for the quark anti-quark potential

Uq̄q(r) = −4

3

(

h̄cαs

r

)

+ τq̄qr where τq̄q =
4σ

3
, (4.52)

and for the quark-quark potential

Uqq(r) = −2

3

(

h̄cαs

r

)

+ τqqr where τqq =
2σ

3
. (4.53)



Chapter 5

Conclusion

5.1 Mass and Stress

In this thesis we have proved how the principle of equivalence holds true

only in a classical system. We have derived the energies eigenvalues for

the non-relativistic quantum case of a linear potential (quantum bouncing

ball) and shown that the mass is a parameter of the problem that does

not drop out. We derived the expression for the free particle propagator. It

can be written as as series of mass dependent Bessel, Hankel, and Neumann’s

functions and a mass-less term. This term has a primary importance because

it explain why the mass of the Higgs particle does not appear in the mass-

enhancement factor calculated in the fourth chapter. In the third chapter we

have determinated the connection between the trace of the stress tensor and

104
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the Higgs field. We were able to prove that from the action

Sint =
1

vc

∫

T (x)σ(x)d4x (5.1)

it is possible to obtain the correct Yukawa potential between two mass distri-

butions and we calculated the decay rates of the Higgs particle into massive

leptons, quarks and electroweak bosons and into mass-less gravitons and pho-

tons. We calculate that H → gg decay will be the predominant decay mode.

It is important to note that this decay is a function of the Fermi constant

GF and not of the gravitational one G therefore it is many order of magni-

tudes bigger than previously thought [50]. This decay rate must to be taken

in serious consideration to correctly understand and evaluate the number of

Higgs particles that will be produced at LHC.

5.2 Mass and Higgs

Using some of the ideas developed in the third chapter we obtain in the

fourth the enhancement and suppression factor for the beta and inverse beta

decay. Then we applied the same technique to obtain also the enhancement

factor due to the Higgs and gluon field. We determined the amplification

factor in the tt̄ production and we have shown how the Higgs mean field

modifies the cross section in the reaction e+e− → W+W− and e+e− → ZZ.

From the real part of the action we were able to determinate the mass shift

that seems to happen when two heavy particles are produced next to each

other. It is important to note that the mass-shift effect is due to the Higgs
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field and does not depend upon the detection of the Higgs particle. It is

very important to have a large statistics about near to threshold production

of W+W−, Z0Z0 and t̄t. Within the measure a mass difference between

single and pair production will indirectly determine the Higgs particle. If

no mass difference will be measured then the Higgs particle will should be

removed from the Standard Model and the research for new Physics should

be intensified.

In this thesis we exposed different properties of the Higgs particle physics

and proposed an original way to look at the Higgs field detection. We expect

that the experimental results will bring the necessary data to completely

understand the Standard Model.



Note Added in Proof

This note is my response to the comments of the thesis review committee.

Introduction

To fulfill the requirements of the thesis review committee and the current

Physics Department Chairman, Professor Sridhar, I have been asked to ad-

dress the following issues:

1. Chapter 2: Explain what is your original contribution in Chapter 2 and

provide a more appropriate and up-to-date set of references.

2. Chapter 3: Describe why your calculations presented in this chapter are

original. Show in detail the differences between your calculations and

the others done by Srivastava-Widom and Srivastava’ s former student.

Describe how the Delbourgo paper results are (or are not) related to

your calculation.

3. Chapter 4: Compare your result with the known literature and exper-

imental results.
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Chapter 2

The subject of the thesis is to describe different ideas regarding the concept

of mass in Particle Physics. This is partially achieved giving a broad intro-

duction about the interaction between particles and the gravitational field in

both relativistic and non-relativistic contexts and in classical and quantum

ones. It is important to remark how the principle of equivalence does not

hold true in the non-relativistic quantum case.

In the second part of the chapter the Einstein’s equations are introduced to

explain why the inertial and gravitational mass are not equivalent. They also

define how matter interacts with the gravitational field.

The final part of the chapter draws a parallel between electromagnetic and

gravitational waves using non-commutative geometry.

The original contribution of the author of the thesis are:

• The definition of the real coupling between the gravitational waves and

matter. The gravitational field couples with the trace of the energy

momentum stress tensor. This can help to understand and correctly

interpret some experimental results such as Weber’s1.

• Gauge invariance for Photons and Gravitons. The electromagnetic re-

sult has already been published2. The Gravitational one has not yet

been published, but it gives a fundamental scale limit about the size of

the arms of a gravitational wave interferometer.

1J. Weber, ”Gravitational-Wave-Detector Events,” Phys. Rev. Lett. 20, 1307 (1968)
2G. Castellani, S. Sivasubramanian, N. Fabiano, A. Widom, J. Swain, Y.N. Srivastava,

G. VitielloNon-Commutative Geometry and Measurements of Polarized Two Photon Co-
incidence Counts, Annals Phys. 311 (2004) 191-203
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Part of the department committee criticisms regarded the lack of proper ref-

erences. The following publications complete the standard derivations:

A. Einstein, The Meaning of Relativity, Princeton University Press, Prince-

ton, (1953).

R.C. Tolman, Relativity Thermodynamics and Cosmology, Oxford Univer-

sity Press, Oxford, (1934).

J. Weber, General Relativity and Gravitational Waves, Interscience Publish-

ers, New York, (1961).

S. Weinberg, The Quantum Theory of Fields II, Cambridge University Press,

Cambridge, (1996).

F. W. Byron, R. W. Fuller, Mathematics of Classical and Quantum Physics,

Dover Publications, (1992).

S. Sivasubramanian, Y. N. Srivastava, A. Vitiello and A. Widom, Phys. Lett.

A 311, 97, (2003).

S. Sivasubramanian, G. Castellani, N. Fabiano, A. Widom, J. Swain, Y.N.

Srivastava, G. Vitiello, “Quantum Limits on pixel resolution from non-commutative

photon coordinates”, Journal of Modern Optics, vol. 51, 1529-1534, (2004).

J. Schwinger, “Particles, Sources and Fields”, Percous Books, Reading, Vol.

1, Sec. 1-3, (1998).

Chapter 3

This chapter contains an independent derivation of the result previously ob-

tained by Srivastava and Widom [arXiv:hep-ph/0003311]. The same result
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has been obtained in three different ways: the way of this thesis, Srivastava

and Widom’ s one and a former Srivastava student’s one.

To derive my result one needs to start from the definition of the Higgs prop-

agator.

DH(k2) =
1

k2 +K2 − Π(k2)
. (5.2)

The graviton self-energy part of the Higgs particle propagator is related to

the decay rate of the Higgs particle into gravitons5.1:

Γ =
c

κ
ℑmΠ(−κ2 − i0+). (5.3)

In Chapter 3 the full derivation is carried out from the definition of the

Figure 5.1: Higgs propagator with a self-energy graviton contribution.

effective and interaction action to the value of the decay rate.
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Srivastava and Widom, instead, started from an effective action such as:

Seff = −
(

2

G < φ >

)

∫

dΩχLg, (5.4)

where dΩ =
√−gd4x, < φ >= MF h̄c, Lg is the gravitational Lagrangian,

χ is related to the Higgs particle total field as φ =< φ > +χ and G is the

gravitational constant. Srivastava and Widom derived the H → gg decay

rate calculating the value of the < gg|Seff |H > matrix element. Moreover

they used a Lagrangian of a harmonic oscillator, L = (h̄ω/2)(a†a†+aa), that,

in the gravitational field case, may create or may destroy two gravitons.

The third approach, developed by Professor Srivastava’ s former student,

starts from the definition of the graviton field:

hij(x) =
√

32Gπ
∑

λ

∫

dk̃ǫλij(k)aλ(k)eikx + ǫ∗λij (k)a†λ(k)e−ikx. (5.5)

Then she derived the H → gg decay rate using:

• a Lagrangian similar to Srivastava-Widom’s one.

• The S-Matrix expansion method3.

On the other hand Professor R. Delbourgo and Doctor D. Liu calculated

the decay rate of the H → gg using a different process. In this case they

started from the loop-level rather than three level diagram. Not surprisingly

they arrived at a different conclusion [R. Delbourgo and Dongsheng Liu hep-

ph/0004156]. The difference between the Feynman diagrams used in this

3This method is well described in many Quantum Field Theory books. For example,
at University of Perugia, Quantum Field Theory, by Mandl and Shaws, is widely used.
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derivation and Srivastava-Widom’s one can be better understood with picture

5.2:

H

g

g

Castellani-Chiacchera-Srivastava-Widom

H

H

H

H

Delbourgo-Liu

Figure 5.2: Different H → gg diagrams leading to different decay rates.

Chapter 4

The commitee’ s review pointed out that our Higgs calculations were not

correct. They based their assumption on a paper where the Higgs mass was

either zero or ∞. On the other hand our Higgs phenomenology is based on the

SM Higgs. Experiments over the past two decades have put stringent limits

on the Higgs mass. Our calculations use a low mass Higgs in accordance

with the experimental data4. The limit of an infinite Higgs mass is outside

the scope of experiments and also our theoretical computations.

The goal of Chapter 4 is to demonstrate how it is possible to find the presence

4LEP Electroweak Working Group and LEP Collaborations
http://lepewwg.web.cern.ch/LEPEWWG/.
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of Higgs field looking at the mass shift of massive particles when these are

produced in pairs or single. Near threshold pair production of electroweak

bosons like the W± and the Z0 or the top quark t can be used to detect the

Higgs field5. The definition of the mass difference between massive particles

produced in pairs or not was given in Eq. 4.44 of the my thesis. This equation

can be rewritten as:

∆MX ≈ −ΓX

(

M2
X

2πv2

)

×
(

M2
X

M2
XX

)√

1

M2
XX − 4M2

X

× ln
[

MX

ΓX

]

. (5.6)

Where MX and ΓX are the mass and width of either W , Z or t and MXX is

the effective mass of the W+W−, Z0Z0 and tt̄ pair and v is the Higgs vacuum

expectation value.

Different decay modes of the electroweak bosons and the top quark make the

accurate reconstruction of the particle masses a task of different difficulty.

In detail it is a standard technique to precisely determine the mass of the Z0

when it decays in e+e− or µ+µ−. A plot of the invariant masses versus the

relative speed of the Z0Z0 allows to detect the mass shift. Fig. 5.3 shows

how the mass shift is relevant only in the region close to the Z0Z0 effective

mass threshold. The mass of the Z has been determined at LEP16 and LEP2

7. The average value for the mass is MZ = 91.1875 ± 0.0021GeV/c2. Fig.

5arXiv:hep-ph/0511233 contains an exhaustive analysis of the electroweak bosons and
top quark mass shifts.

6R. Barate et al. (ALEPH Collaboration), Euro. Phys. J. C14 (2000) 1.
P. Abreu et al. (DELPHI Collaboration), Euro. Phys. J. C16 (2000) 371.
M. Acciarri et al. (L3 Collaboration), Euro. Phys. J. C16 (2000) 1.

7H. Li et al. (ALEPH Collaboration), ALEPH-2001-006 (2001).
R. Barate et al. (ALEPH Collaboration), Phys. Lett. B469 (1999) 287.
J. Abdallah et al. (DELPHI Collaboration), Euro. Phys. J. C30 (2003) 447.
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Figure 5.3: The Z mass shift plotted against the ZZ effective mass in the ZZ
threshold region.

5.4 shows the expected mass shift over the LEP2 center of mass (CM) en-

ergies. The weighted average value of the mass shift over the energy range

is ∼ 140MeV/c2. The expected value of the Z0 mass shift nearby threshold

(ECM = 182.7GeV ) is almost 1GeV/c2, this implies that MZ ∼ 90.3GeV/c2.

The LEP experiments did not have enough near threshold statistic8 to pre-

cisely measure the mass of the Z0Z0 pair. This measure will be obtained

with the new LHC accelerator at CERN from Spring 2009 to the next ten,

twenty years.

8Note the cross section value near threshold at:
J. Alcaraz et al. A Combination of preliminary electroweak measurements and constraints
on the standard model, CERN-PH-EP-2006-042, 2006, figure 9.4 page 63.
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