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ABSTRACT 

A new scheme for accelerating electrons, employing a bunched relativistic 

electron beam in a cold plasma, is analyzed. We show that energy gradients can 

exceed 1 GeV/m and that the driven electrons can be accelerated from remc2 to 

37emc2 before the driving beam slows down enough to degrade the plasma wave. 

If the driving electrons are removed before they cause the collapse of the plasma 

wave, energies up to 4$mc2 are possible. A non-collinear injection scheme is 

suggested in order that the driving electrons can be removed. 
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In the past several years, the laser-plasma interaction as a mechanism for 

charged particle acceleration has attracted interest? because of the large electric 

field which a plasma can support (- 100 GeV/m). However, these “beat-wave” 

accelerators2,3 rely heavily on the state of the art of laser Jechnologies. For 

example, the scheme requires a fine tuning4 between the plasma frequency wP and 

the beat-wave frequency of the laser in order that the wake plasma wave excited 

by the laser beat-wave grows linearly. This in turn either puts a severe constraint 

on the uniformity of the plasma density, or relies on very high power lasers to 

shorten the time of growth. In addition, it may be necessary to deliver the 

laser energy in a pulse shorter than 10 pecoseconds in order to avoid competing 

instabilities.5 

This letter presents another scheme for a plasma accelerator. Lasers are 

not required and large energy gradients are attained. The idea is to inject a 

sequence of bunched high energy electrons into a cold plasma. As in the two 

stream instability, the streaming electrons lose energy to the background plasma 

by exciting a wake plasma wave. If a late coming electron bunch rides on the wave 

at a proper phase, it will be boosted to a higher energy due to the longitudinal 

electric field in the wave. 

Consider a system in which a chain of relativistic electron bunches with initial 

/?e = vb/c 5 1 stream through a cold, uniform plasma along the z-axis with a 

constant separation d. Assuming that the longitudinal spread I* of each electron 

bunch is much smaller than the plasma wavelength, X,, the whole bunch of q 

electrons behaves as a single particle with charge Q = qe. 

- - 
The linearized equation of motion and equation of continuity for the cold, 

non-relativistic background plasma are dtv’,r = -(e/m)& and dtn,l+ 

2 



npov - $1 = 0, respectively, where &  is the electric field of plasma and beam: 

&  = &,I + &,I, where the plasma velocity is G” = $0 + $1 (~7’0 = 0), and the 

plasma density is np = npo + npl (r+o >> npr). For N driving electron bunches, 

the charge and current densities are 

&(Z’) = -enpoi$l(Z’) - QT?,, x6(2- ZJ , (2) 

respectively, where 3 f per + zes in cylindrical coordinates, and Zi’s are the 

instantaneous positions of the N bunches: Si = [vbt + (N - ;)d]es, and the 

summations are over i = 1, . . . , N. 

The longitudinal electric field in the wake of these N bunches is 21 = 

-(l/c)&& - 04,. F or an ultra-relativistic electron beam, where PO N 1, vb 

is approximately constant over several plasma wavelengths, even though sub- 

stantial energy is transferred to the plasma wave. It is thus convenient to work 

with the variable < f z - vbi! 5 0 which measures the distance behind the last 

bunch, and we may put dt = -vbas and a, = d,. In the Coulomb gauge, the 

equation for the scalar potential is V2& = -47rrp1, and that for the vector po- 

tential is Vyir = -(4s/c)Zr - /3oVa,&, where 0: is the transverse Laplacian 

and (1 - ,802) is neglected. 

To solve for 41, we take the c-derivative twice and combine the result with 

the equations of motion and continuity, and Eq. (1) to obtain 

- (3) 

where kp E Up/% = (47rnpee2/mvi)1/2, and 3 - Zi = per - [(N - i)d - c]e3. 
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The solution of this equation requires that we solve 

-which has the solution6 

41 (A s) = Q c -(l/12- Gl) + kp 7 dg’ sin k,(c’ - <)/Ii? - Zil 

c 

where <’ E z’-vbt and 12-2iI = {~~+[(N-i)d-c’]~}l/~. A favorableaspect of 

our acceleration scheme is that the phase velocity, wp/kp, of this plasma wave is 

the same as the beam velocity, Vb. This contrasts with the two stream instability 

observed in a continuous beam. In that case, even though the phase velocity is 

shifted slightly below the beam velocity, the corresponding 7 may be significantly 

below the 7 of the beam. 7 This would be a serious disadvantage for the purpose 

of collective particle acceleration. 

Next, turn to the vector potential x 1. Taking the c-derivative on both sides 

of the equation for the vector potential, and invoking the equation of motion for 

the current term, we obtain 

a, (v: - Pik;) 21 = -PoV (8; + k;) 41 + 47rQjio c a,~?(& zi) . (6) 

Combining with Eq. (4), th e above equation decouples entirely from the scalar 

potential. Removing the c-derivative common to each term, this equation further 

reduces to a inhomogeneous modified Helmholtz equation in two dimensions for 

each component of Ai. 



We are interested in the wake field trailing behind the N bunches on the 

z axis. However, the integral in Eq. (5) includes < = 0 and therefore is loga- 

rithmically divergent when p = 0. This is certainly unphysical. The origin of 

this symptom is due to the lack of any thermal effects in our-cold fluid model. 

Thus Eq. (5) is not applicable to the region within a Debye length from the axis. 

Bearing this in mind, Eq. (5) reads 

00 

1 
-k&G + [(N - i)d - 512 + 

sin kp(<’ - c) 

p2 + [(N - i)d - f]2 ’ 

(7) 
where A, = 2Tlkp. By the same token the vector potential in Eq. (6) is not 

applicable to the region within a Debye length behind the plane < = 0 and 

p’dp’ Ko ( 
/30kpdp2 + $2 - 2pp’ cos 8 

> 
0 0 

P-9 

a2 1 
’ &“2 kp,/$” + [(N - i)d - 512 ’ 

where KO is the modified Bessel function of order zero. Plots of ~$1 and Al, as 

functions of IsI evaluated at p = c/wp are shown in Fig. 1, where N = 5 and 

d=X,. 

The longitudinal electric field is computed by taking c-derivatives since El, w 

&(Alz - 41). Th e maxima of El, are at IsI N (n + 1/2)X,, where n is any non- 

negative integer, and the contribution to the maximum El, comes predominantly 
- - 

from the scalar potential. If the separation between the driven bunch and the 

last driving bunch is such that 111 is around X,/2, the energy gradient attainable 
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for each electron in the driven bunch is 

E = -eElz 21 167r2eQ/Xg . (9) 

-As an example, consider a plasma of density npe = 1015cme3 (which sets the limit 

on the longitudinal bunch spread: lb < A, cv l.Omm). If each bunch consists of 

q 11 2.5 x 1O1’ particles, Eq. (9) h s ows that & = 2.4 GeV/m. This treatment 

ignores non-linear plasma effects and self-consistency effects that act to slow the 

driving bunches. It is only valid if the electric field does not approach the cold 

wave-breaking amplitude, and if the electric energy is small compared to the free 

energy of the driving bunches. The first condition provides an upper limit on 

the maximum allowed energy gradient: &,, N m eV/cm 1z 3.2 GeV/m>2.4 

GeV/m, so our linear theory is still reasonable. The second condition requires 

that (E12,/87r) . L < q7emc2/Area, where L is the length of the beam-plasma 

interaction region. For the above example, and 100~ radii bunches, this limits 

the effective acceleration length to L < 0.3770 cm. 

To complement the above analytic treatment, self-consistent numerical sim- 

ulations have been done, using a one-and-two-halves dimensional (z, vz, vy, vz), 

relativistic, fully electromagnetic, particle code. Two bunched electron beams 

with mean densities of 10m3 and low5 relative to the background electron plasma 

served as the driving and driven beams, respectively. Bunching was represented 

by density profiles of the form 1 + sin kx, 180’ out of phase for the two beams. 

Each beam was initially mono-energetic with momentum (/37)0 = 5.9, and had 
- - 

16 bunches within the 2048-gridpoint periodic system. The speed of light was 

chosen to satisfy kpc = wP in order to best excite the plasma wave. Since the 
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background plasma had an initial temperature T/mc2 = 10m3, this wave had 

essentially zero group velocity. 

Figure 2 shows the momentum distribution of the two beams at the time 

(wpt = 88) when the maximum momentum (P7),, = 16, was attained. The 

wave grew so that the bulk of the driving and driven electrons were in the re- 

gions of greatest negative and positive force, respectively. The driving electrons 

lost momentum to the wave until they were significantly slower than the wave, 

i.e., until P7 W 1. They quickly fell behind the wave until they reached the accel- 

erating region, where they regained momentum and energy from the wave until 

it essentially vanished. Except for the relatively short interval when the driving 

electrons fell behind the wave, the force on the bulk of the driven electrons was 

equal in magnitude to that on the driving electrons, but always positive. Thus 

we expect (P7)max M 3(P7)e - 2, which was well satisfied in our simulation. 

The cycle of wave growth and decline repeated as the simulation continued. 

However, further acceleration of the driven electrons did not occur. In falling 

behind the wave by a half wavelength, most of the driving electrons had come 

into phase with the maximally accelerated driven electrons, and both,groups were 

decelerated together as the wave was re-created during the second cycle. 

One way to continue the acceleration of the driven electrons is to remove the 

driving beam from the plasma before it begins to destroy the wave. Therefore, 

the previous simulation was repeated (but with T/mc2 = 10V6), and when the 

maximum wave amplitude was attained (wpt = 48), the charge of the driving 

electrons was set to zero. 
- - 

Figure 3 shows the momentum distribution at wpt = 512, when the driven 

momenta were as large as P7 = 69.5 and were still increasing. A more recent 
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run gave maximum attainable value of (/?7)max = 130 at wpt = 1568. This agrees 

well with the modified9 wave-breaking limit of Tajima and Dawson, (P7)max M 

4(py2)o = 142. The behavior of the lowest energy driven electrons suggests that 

the velocity of the wave had increased to P7 = 9 for the l_ater stages of the 

simulation, probably because these lower energy driven electrons were serving 

as a weak driver for the wave. We speculate that this effect may enable one to 

achieve still higher energies. 

In the first simulation, the maximum energy was gained by those electrons 

in the region of maximum positive force, one half wavelength behind the bulk 

of the driving electrons. In the second, the maximum energy was gained by 

those electrons initially at the potential-energy peak of the wave, three quarter 

wavelengths behind the driving bunches. Using beams 270’ out of phase would 

double the relative number of high-energy electrons. However, the large number 

of low-energy driven electrons can be reduced only by using significantly shorter 

driven bunches. 

Experimentally, it may be possible to remove the driving electrons from the 

acceleration region by employing a non-collinear injection scheme.rO The basic 

idea is to inject two sets of electron bunches at a slight angle, 20, towards each 

other and then accelerate particles down the axis of symmetry in the superposed 

wake fields of the two intersecting beams. In this way, the electrons in the 

driving bunches may pass out of the interaction region before they can reabsorb 

the accelerating waves. Such a scheme also allows one to stage the driving beams 

by bringing in fresh driver beams at different positions. 

- - 
An advantage of this non-collinear injection scheme is that the effective phase 

velocity CPh of the superposed wakefield can be controlled by selecting the angle 
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of the two intersecting waves, i.e., i&‘ph = (vph/cos8) > vph(” vb). In principle, 

one can choose an angle 8 such that & is larger than c. However, since the 

energy gain is limited by the finite spatial extent of the interaction region, which 

is proportional to sin -’ 8, there should be an optimum angle th-at gives maximum 

-energy-gain per stage. A detailed discussion will be reported elsewhere. 

One of us, (PC), gratefully acknowledges helpful discussions with A. W. Chao, 

R. Ruth, P. B. Wilson, and S. Yu of SLAC. 
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FIGURE CAPTION 

Fig. 1. Potentials as functions of distance behind the last bunch. 

Fig. 2. Momentum distribution of the driving and driven electron beams when 

the latter has attained its maximum upper limit. 

Fig. 3. Momentum distribution of the driven electrons before the maximum 

upper limit is attained. This case differs from that of the preceding figure in 

that the driving beam is removed from the system when the plasma wave reaches 

its maximum amplitude, at which time the driving beam has the momentum 

distribution shown. Note the different scales in the two figures. 

- - 
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The paragraph starting line 14 on p. 694 is incorrect and should be replaced 

by the following: 

“ We are interested in the wake field trailing behind the N bunches on the 

z axis. However, the integral in Eq. (5) includes < = 0 and therefore is loga- 

rithmically divergent when p = 0. This is certainly unphysical. The origin of 

this symptom is due to the lack of any thermal effects in our cold fluid model. 

Thus Eq. (5) is not applicable to the region within a Debye length from the axis. 

Bearing this in mind, Eq. (5) reads 

co 
1 

+ 
J d 

dc' 
sinIcp(<’ - <) 

-k,~p2+[(N-i)d-c]2 s 
1 

pz+[(N-i)d-5’12 ’ 

(7) 
where A, = 27r/lep. By the same token the vector potential in Eq. (6) is not 

applicable to the region within a Debye length behind the plane < = 0 and 

&(P,c) = - - 2”xf;Q c Tg ip’dp’ K. (Pok,dp2 + PI2 - 2ppkos 8) 

0 0 
(8) 

a2 1 

’ v kP,/p12 + [(N - i)d - cl2 ’ 

where Ko is the modified Bessel function of order zero. Plots of 41 and Al, as 

functions of I<\ evaluated at p = c/wp are shown in Fig. 1, where N = 5 and 

d=X,. n 

Equation (9) should read 

E = -eEIZ N 16?r2eQ/Xi . (9) 

- AA 4 lines below Eq. (9), th e number of particles should be Q N 2.5 x lOlo. In the 

last line of the same paragraph, L should be < 0.37~0 cm. 
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