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Abstract 

The recent theory of critical phenomena and the renormalization 

group as promoted by Wilson is considered on an introductory level. 

The main emphasis is on the idea of the fixed point Hamiltonian (asym- 

ptotic invariance of the critical Hamiltonian under change of the length 

scale) and the resulting homogeneity laws. 

1. CRITICAL BEHAVIOR 

A. Critical Points 

The transition I from one phase to another like melting or boiling 

changes the properties of a system discontinuously. Such a phase tran- 

sition is called a first order transition or discontinuous transition. 

By varying one or several thermodynamic variables like the temperature, 

it is frequently possible to follow the coexistence curve so that the 

two distinct phases become more and more similar until both phases be- 

come equal at a certain point. If beyond this point only one homoge- 

neous phase exists and all changes are smooth and continuous, then this 

point is called a critical point.2 

Examples of critical points are (a) the termination point of the 

coexistence curve of a liquid and its vapor (or two phases of different 

density of a lattice gas like hydrogen in metals) at the critical tem- 

perature T c and pressure Pc' (b) the critical point of separation of 

mixtures and alloys above (or below) which the components mix without 

a miscibility gap, (c) the ordering temperature of a homogeneous binary 

crystal below which one sublattice is primarily occupied by one species. 

A second class of systems exhibits domains of magnetic or elec- 

tric moments of different orientation which vanish at the critical tem- 

perature. Examples are (d) ferromagnets with ferromagnetic domains of 

different orientation whose spontaneous magnetization vanish continuous- 

ly at the Curie temperature, (e) ferroelectrics with ferroelectric 
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domains whose spontaneous polarization go to zero at the critical tem- 

perature, and (f) NH 4 compounds whose electric octupole moments order 

primilary in one or the other direction below T c. (g) The alternating 

spin order of antiferromagnets goes to zero at the Neel point so that 

two counterphase domains become indistinguishable. Analogously one ob- 

serves (h) alternating ordering of electric dipole moments in antiferro- 

electrics and (i) alternating ordering of electric octupole moments in 

NH 4 compounds. 

Thirdly (j) superfluid helium and (k) superconductors are cha- 

racterized by a condensate associated with a phase below T . This con- 
c 

densate vanishes continuously approaching T from below so that domains 
c 

with different phase cannot be distinguished above T . This list does 
c 

not exhaust the types of critical points observed. But it gives an im- 

pression of the variety of phenomena which can be described by the the- 

ory of critical phenomena. 

To unify the description of critical phenomena one has introdu- 

ced the concept of the order parameter. For the liquid-vapor transition 

and other transitions characterized by a difference of densities in 

both phases (sublattices) the order parameter is the difference between 

the expectation value of the density of the phase (sublattice) from its 

value at criticality. For orientational transitions the expectation 

value of the electric (magnetic) moment (or the difference on the sub- 

lattices) serves as the order parameter. In superfluid helium and su- 

perconductors the expectation of the condensate wave function is the 

order parameter. The amount of the order parameter is (approximately) 

the same in all phases but it differs in sign, direction and phase, 

respectively, in different phases (domains). 

The field conjugate to the order parameter is often called the 

symmetry breaking field, since it breaks the symmetry of the Hamiltonian 

in the case of orientational phase transitions and the transitions to 

the superfluid and superconducting state. Without this field the Hamil- 

tonian is invariant under certain rotations of the order parameter or 

invariant under the change of the phase (gauge transformation). This 

symmetry breaking field is the magnetic field for ferromagnets, the 

electric field for ferroelectrics, the chemical potential for the li- 

quid vapor transition, the difference of chemical potentials for mix- 

tures. In several cases the symmetry breaking field is not experimen- 

tally accessible as in superfluids and in superconductors. But it is 

often introduced in theoretical physics for conceptual reasons like the 

staggered field in antiferromagnets and antiferroelectrics. 
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This unified description allows us to restrict to one class of 

system in explaining the main features of critical phenomena, provided 

we neglect a number of peculiar features of certain systems. Two fea- 

tures we will often neglect are (i) the quantum mechanic (or discrete) 

nature of the microscopic origin of many phase transitions (superfluid 

He, superconductors, spin and exchange interaction in magnets, etc). 

Since critical phenomena become apparent on a macroscopic scale, it is 

assumed that the commutators can be neglected and the order parameter 

can be handled like a continuous classical variable. (ii) In many cases 

we will neglect long range interactions or the long range part of these 

interactions. Therefore we will neglect dipolar interactions and the 

coupling of the interaction to lattice distortions which induce long 

range interactions. 

We will mainly use the magnetic language. Thus we will discuss 

the critical behaviour of a ferromagnet consisting of classical spins 

on a rigid lattice for which the exchange interaction dominates so that 

the dipolar interaction can be neglected. 

B. Critical Exponents - the Hom0geneity Assumption 

The first theory to explain the critical behavior of ferromagnets 

was the molecular field theory by P. Weiss. 3 According to this theory 

the spontaneous magnetization m is zero above T c and goes to zero from 

below like J'T c - T The susceptibility diverges like IT-Tc I-I from 

below and above T c and the specific heat shows a finite jump at T c- 

one finds m ~ (Tc-T)~ with S~ 1/3 for the sport- Experimentally however 

taneous magnetization, × ~ ITc-TI -Y with y : 4/3 and a singular contri- 

bution to the specific heat like Csing ~ ITc-TI -~ with a close to zero. 

For negative a the specific heat shows a cusp, for positive ~ it diver- 

ges. The exponents a,B and y are called critical exponents. The de- 

viation of the molecular field exponents from the experimental critical 

exponents has led to the search of soluble models. Unfortunately most 

models (approximations)lead back to the molecular field behavior. Two 

models which give different sets of critical exponents are the spheri- 

cal model and the two dimensional Ising model. The exponents are listed 

in table I. None of these models give exponents which are close to the 

experimentally observed exponents. The reason is that the molecular 

field theory completely neglects the critical fluctuations (apart from 

the homogeneous component) which leads to a y which is too small; the 

spherical model overestimates the critical fluctuations which leads to 

a y which is too large. The two dimensional Ising model describes the 
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Fig. 1. The schematic behavior of the spontaneous magnetization, 

susceptibility and specific heat near T . 
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fluctuations properly. However the dimensionality of the system plays 

an important role in critical phenomena so that the two dimensional 

Ising model does not yield a reasonable approximation for the three 

dimensional Ising model. 

Apart from some other two dimensional models (F-model, KDP-model, 

eight-vertex-model), there are no exactly soluble models available. 

Therefore one has tried a different approach to determine critical ex- 

ponents by means of series expansions. One expands for example the 

susceptibility or the specific heat of a model like the Ising model in 

powers of the inverse 4 temperature 8 = (kBT) -1, assumes that the quan- 

tity considered shows a power law behavior close to T c and analyzes the 

series accordingly. This yields estimates for the critical exponents 

listed in the last columns of table 1 for three models: The Ising model 

(a model of spins S with two states S = ~1), the XY-model (a model of 

: COS ~, S : sin~) planar spins S, that is spins with two components S x Y 

and the classical Heisenberg model (a model of three dimensional (clas- 

sical) vectors S with S 2 = i). The spins are located at the sites of a 

lattice and interact via an (isotropic) short range (in most cases nea- 

rest neighbor) interaction . Low temperature expansions are only avai- 

lable for the Ising model. Therefore 8 is quoted only for the Ising 

model. One can estimate the low temperature exponents for the specific 

heat and the susceptibility of the Ising model. They are slightly dif- 

ferent from the high temperature exponents. Since it is hard to esti- 

mate the accuracy of the exponents determined, it is hard to decide 

whether high and low temperature exponents are equal within the error 

bars. One finds that the exponents determined from the expansions are 

quite close to the experimentally observed ones. But unfortunately one 

does not learn from these expansions why the systems exhibit these bro- 

ken power laws near T c. It is the aim of this paper to review on an 

introductory level the ideas which provide an understanding of the 

critical behavior. 

A first step to link different aspects was the homogeneity as- 

sumption by Widom 5. We bring a modified version of it. (Widom's as- 

sumption included the possibility of logarithmic singularities which 

will not be considered in this section). Widom assumes that the free 

energy can be separated as a function of the magnetic field h and the 

temperature difference r = T-T into a regular and a singular part 
c 

~ V~(~ + F~L~,~ ~ (1.1) 
where the singular part is responsible for the critical behavior. He 

assumes that the singular part is a homogeneous function of the vari- 
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ables ~ and h, that is 

~<~(~'~ = '~I~-~ ~±CI~] ( 1 . 2 )  

where the + denotes that the function is different for positive and ne- 

gative r . ~ is called the gap exponent. Homogeneity means that multi- 

plying ~ by a factor c and h by a factor c A multiplies the function by 

a factor c 2-a. 

Let us discuss some consequences. We obtain the specific heat 

by differentiating 6 F twice with respect to e. This gives the singular 

part of the specific heat at constant vanishing field h 

c ~ -  I~I ~Co~ (1.3) 

which was the reason for calling the exponent in e~. (1.2) 2-~. The 

magnetization is obtained from eq. (1.2) by differentiating with respect 

to h 

A~ = - l~i l± (1.4) 

At h = 0 this leads to 

with 

(1.5) 

Differentiating twice with respect to h we obtain 

which yields 

(1.6) 

( 1 . 7 )  

= ~ + 2 ~ - 2 _  ( 1 . 8 )  

From eqs.  ( 1 , 6 )  and ( 1 , 8 )  we f i n d  a r e l a t i o n  between the  exponen ts  ~, 

B , y  

A look at table 1 shows that this relation is fulfilled for all listed 

sets of exponents. We note that from eqs. (1.6) and (1.8) we obtain 

a : (~+~ (1.1o) 

Then eq. (1.4) can be easily cast in the form 

= - ( 1  1 1 )  
i=1(~ 

Solving with respect to h/ITI A yields 

= (1.12) 
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with some function g, which can be written 

£- = , ~ - + / " " _ 1  (1.15) 
,m, IDt~ " l=t~"  

with 4 o - ( X ) =  ~ ( X ) / X  . Thus ~/1~1 & should be  a function 

of m/ ITI 6 only. In Fig.2 data 7 of the magnetization m of CrBr 5 as a 

function of the two variables, temperature and field, are plotted in 

the variables m~ ITI 8 and h/(m ITIY). If the homogeneity assumption 

would not hold, the data points would be scattered in the whole plot. 

Since the data follow the homogeneity assumption,they lie on two lines 

corresponding on the behaviour above and below T c. 

In the following section we will show how the homogeneity rela- 

tion can be derived. 
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Fig. 2. This plot of h/(mlxl Y) against m/IT[ B confirms the scaling 

hypothesis for CrBr 3. The two branches are for T>T c and T<T c. After 

J.T. Ho and J.D. Litster, J. Appl. Phys. 40, 1270 (1969) 
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2. RENORMALIZATION GROUP EQUATION 

A. Motivation 

A hint on how the critical state can be characterized can be ob- 

tained from the correlation functions. Let us consider the auto corre- 

lation function of the spins So(r). From what one knows from exactly 

solvable systems this correlation function decays at criticality with 

a power law for large distances 

C 

< Se(o) So ("r) >c,~4; - ,,r&_2.+ % (2.1) 

where q is a new critical exponent and d the dimensionality of the sy- 

stem. q describes the deviation from the 0rnstein-Zernicke-behavior 

of the correlation function. Let us now consider the same ferromagnet 

under a different length scale. To accomplish this we divide the sam- 

ple into cubic cells of length b lattice spacings in each direction. 

Then the magnetization of a cell 

=..~_ ~o(-,r') (2.2) 
c ~  #.,g 

obeys asymptotically 

~(o) &(~)~ = ~&-2~% (2.3) 

since each cell contains b d spins. Now we change the length scale by 

a factor b and the scale for the magnetization by a factor b (d+2-n)/2 

<= &~ ) 6(~) = ~(&+2-%)/~ ~4(~ ) (2.4) 

Then we obtain the asymptote behavior of our new spin variables 

o 

Therefore the correlation function is invariant under the change of the 

scale (2.4). This invariance of the correlation function suggests that 

the effective interaction at criticality is invariant with respect to 

the change of the length scale. We call the procedure which changes 

the scale of the hamiltonian (effective interaction) renormalization 

group (RG) procedure and the corresponding transformation is called RG 

transformation. In the remainder of this section we outline some re- 

quirements and properties of RG transformation and derive one of the RG 

equations. 

B. 
8-12 

Properties of the RG transformation 

We denote the hamiltonian function~ and the free energy ~ . 
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We introduce 

, F = P  v 

where V is the volume of the system. 

and F hamiltonian and free energy, resp. 

- F - ~ ~. ~ . ~  e ~ p ( - ~ )  V 

The RG transformation consists of 

= jc..~ -[-. (2.6) 

For simplicity's sake we call H 

(2.7) 

(i) a change of the length scale by a factor b=e £ in all linear dimen- 

sions (we leave the partition function Z=trace exp (-H) invariant). 

Since the volume shrinks by a factor e -d~ we obtain 

Fo = e - ~  ~c ( 2 . 8 )  

(ii) a transformation and/or elimination of the spin variables S which 

leaves the free energy invariant. The transformation shall not gene- 

rate long-range interactions. The new hamiltonian Hg has to be compa- 

rable with the original hamiltonian H o (same Hilbert or function space). 

This demands an extension of the system to the original volume for fi- 

nite systems. The RG transformation transforms H ° into Hg 

~ = ~ 6 ( ~ o )  (2.9) 

C. RG equation with smooth momentum cut-off 

There are various ways to construct RG equations which transform 

hamiltonians: 

(i) Wilson's recurrence relation (approximation) 13. Numerical solu- 

tion for d=5 see Refs 14 Expansion in E=4-d see Refs 15 

(ii) Wilson's differential RG equation with smooth momentum cut-off 10, 
16 generalization Ref. 

(iii) Differential RG equation with sharp momentum cut-off (generates 

long-range interactions): Wegner and Houghton 17 

(iv) Aharony's method  18 

(v) Two-dimensional Ising models: Niemeijer and van Leeuwen 19 
2O 

Nauenberg and Nienhuis . 

We do not discuss the other varieties of the RG, which transform 

the correlation functions. (Compare the review by Zinn-Justin21). 



181 

Now we derive the RG equation with smooth momentum cut-off. We repre- 

sent the hamiltonian as a functional of the Fourier components. 

-CI* 

of the variable S(r) 

I~! "T ~ +... 

We perform an infinitesimal change of the length scale 

q- -~ -t Cd-~) ~ infinitesimal (2.13) 

o (2.15) 

1° ---- V@( d ÷  &'(~) = Vd + c~'&'V 'f (2.16) 

Therefore the hamiltonian H transforms into 

The transformation (2.11) is unitary apart from a volume dependent con- 

stant. This volume dependence produces the term d/2 in eq. (2.17). 

From this eq. we obtain the generator Gdi I of the dilatation 

Secondly we allow a transformation of the variables 

~i -> Sl + ~dC1tS ] (2.19) 

which transforms the hamiltonian according to 

-~ ~ + ~ ~ q  ~q (2.20) 

where ~ is a functional of the spin variables. The volume element 

in phase space transforms according to 
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which with 

yields 

(2.21) 

(2.22) 

6"~- ~__.J/~)C[d.~l(2 23a) _ -  • 

so that the hamiltonian transforms into 

The generator Gtr a (~) of this transformation is 

(2.23b) 

(2.24) 

The transformation is performed so that the free energy is invariant 

(eq. (2.25a)). 

From eqs. (2.18) and (2.24) we obtain the renormalization group 

equation 

~ = ~C~ = (~ ÷ G~¢~)~ <2.25) 
~{ 

in differential form. Wilson I0 has choosen a special dependence for 

where the constant c has to be adjusted properly. This choice guaran- 

tees that the Fourier components Sq with large q are eliminated and 

survive only in u2(q) which for large q approaches unity. 

3. SCALING AND THE LINEARIZED RG EQUATION 

A. Fixed point ~ classificati0n ' of operators ' 

In the Wilson theory of critical phenomena the following two 

assumptions are made: 

(i) It is assumed that a fixed point hamiltonian H ~ exists 

@~*= o (3.1) 
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This is a hamiltonian which maps into itself. 

(ii) It is assumed that for a critical hamiltonian 

~,~ = 44 ~ 

The RG e q u a t i o n  

(3.2) 

@+I #~ + 6~ ~ (3.3) 

yields in linear order in AH 

+£~(<+21.)(_ ~/~_=+ __#) ~A~ = LAJ4 (3.4) 

We define eigenoperators 0 i by the eigenvalue equation 

LQ = ~io~ (3.5) 

We assume in the following that the eigenoperators form a complete set 

of operators so that any hamiltonian H o can be expanded 

J~o = J~@ + ~- p; O; (3.6) 

Then we obtain in linear order in 

Corresponding to the eigenvalues y one distinguishes 

y >0 relevant operator, 

y:O marginal operator, 

y <0 irrelevant operator. (3.8) 

From equation (3.7) we find immediately that at the critical point the 

fields (in high energy physics sources) Wi of all relevant operators 

have to vanish. 

Depending on the nonlinear terms marginal operators may act as 

relevant, irrelevant, and substantially marginal operators (as in the 

eight-vertex-model), resp. 

There is a special operator, the constant V(u o -u I), eq. (2.12) 
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which formally has 

0 o :i, Yo :d (3.9) 

However the addition of a constant to the hamiltonian does not change 

its critical behavior. Therefore ~o =0 is not necessary for criticali- 

ty. This is the origin of the regular part of the free energy. 

The type of the critical behavior depends on the number of sym- 

metry conserving relevant operators. (Symmetry conserving means that 

the symmetry of the hamiltonian is conserved, it does not exclude a 

spontaneously broken symmetry of the system). Let us expand 

~F.~ = .~__~ O~ (3 .10)  

~ = ~0~ 
then we obtain 

(3.11) 

For a normal critical point one has one relevant symmetry conserving 

operator (apart from 0 o) 0 E which determines the critical temperature 

Crudely speaking 0 E is proportional to the hamiltonian minus its expec- 

tation value at the critical point. At a tricritical point one has two 

relevant symmetry conserving operators (apart from 0 o) and consequently 

two conditions for criticality. 

Redundant operators: 

We state a few results on redundant operators (see ref. 16). 

The hamiltonian H* is not uniquely defined, it depends on the functio- 

nal ~ . Varying this functional one can show that any hamiltonian H* 

+ 6 Gtr a (~) H ~ can be a fixed point. ($ infinitesimal). We call these 

hamiltonians equivalent to H ~ and the operators Gtra(~) H * redundant 

operators. One shows that L applied to a redundant operator yields 

again a redundant operator. Since equivalent hamiltonians can be ob- 

tained from H* by means of the transformation (2.23) both hamiltonians 

have equal free energy. Therefore the redundant operators 0 i do not 

contribute to the critical behavior. Therefore Pi=O need not be ful - 

filled for redundant operators at the critical point. 
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The eigenvalues y for redundant operators are not uniquely de- 

fined. They depend on the choice of ~ for the RG equation. The eigen- 

values of the other operators are uniquely defined. An example of a 

redundant operator (see Hubbard and Schofield 22) which corresponds to 

a shift of S(r) by a constant: ~q = 6(q) 

d£ ° (3.14) 

For the hamiltonian 

one obtains 

=<o~o + ~'.t,~'~l..,~.,~'_1..,_q g-21 = ..~(%~("Q + ~ "~')I c(~.(3"16 ) 

B. Scaling of the free ener6y 

Within a simplified picture (Kadanoff's cell model 23) we consider 

which yields 

We choose ~ by 

and the magnetization O h 

~o "= @~-+-c O~ + ~ 0 ~  (3.17) 

Jr~/. = J~'~ +'c ¢'~-'0~ +~eg~'£O~ (3.18) 

T::(-cI#o ) = ~ T:: (~ ~' ) (3.19) 

I~16 ~ z  = d (3.20) 

and obtain Widom's scaling law (1.2) 

~(~,~) = I~l ~ / ~  v (~I) I~I ~/~ 

with 

) (3.21) 

Normally one has an infinite number of perturbations 0 i in equation 

(3.17). To study their effect on the scaling law we add at least one 

only two operators 0 E 
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further operator pars pro toto 

"~o = J~"~ + "U O~ * ~OA+ ~ O< (3.23) 

and obtain 

~EA 

A ~ (3.25) "F-(~I~,~.~) = i~1 ~ / ~  F(-+4~ 1~1~/~ ~ ~ i~Iu~/~ • 

We are interested in the c r i t i c a l  behavior that is in the l im i t  T÷O 

~ (3.26) 
~+o l~t ~</~e -}  _+~ ~4>o ~ b4~o 

If 0 i is relevant (Yi >0) then ~i has explicitly to be taken into ac- 

count. For irrelevant operators the term Ui/lwl ~/~ can be neglected 

if F can be expanded in powers of ~i" Note that the right hand side 

of eq. (3.26) contains the free energy well apart from the critical 

point. The irrelevant operator yields a correction to scaling 

~= [~l ~ e  ~ ( ~ )  ~ 0 1 +  ]~l ~'5~)~e ~ ' ~ , , ~ / ~ +  "(3.27) 

as observed in superfluid He (Ahlers24). If F cannot be expanded in 

powers of ~i' then Fisher's idea of the anomalous dimension of the va- 

cuum might apply 25. 

C. 

ons. 

Oi (Wilson and Kogut iO) 

From the representation 

O~ = 

we define 

Correlations 

Until now we considered only translational invariant perturbati- 

Let us consider the eigenvalue equation for localized operators 

(3.28) 

(3.29) 

(~("-) = ~{J'q ~-i (3.30) 
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It follows that 

In linear approximation we obtain from 

Let us define 

Then 

yields 

By comparison for q:O with (3.5) we see 

From 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Therefore we obtain 

we obtain in linear approximation 

Differentiating the free energy of the Hamiltonian (3.38) yields the 

correlation function 

~z ~:(Q~ (3.40) 9~ ~Az 
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As an example we consider the spin-spin-correlation 

(YI:Y2:Yh) 

(i) ~:h:O 

With qe z =i we obtain 

and identify the exponent 

&-28~=-2 +X 
(ii) T # O, h:O 

With ITI ey~ : d we find 

(3.43) 

(3.44) 

(3.45) 

~.(ZS&-~L)~ G (~e/',-ce ~j~] (3.46) 

_2~-&rl , -al~e 
G(~,~] :Irl Y~ ~L~I~ }+-~): ~F~o(~ ~). (3.47) 

Apart from a constant factor ~ is called the correlation length and 

scales with an exponent ~ . we obtain 

2B~-& ~ ~ l~l -~ v= ~--- (Z-~) (3.48) 

4. NONLINEAR CONTRIBUTIONS 

A. Scaling fields 9 

Apart from certain exceptions which will be discussed below the 

nonlinearities of the RG equation can be absorbed in scaling fields gi 

which depend nonlinearly on the fields ~j, so that g can be formally 

expanded in powers of U and 

From equation (3.3) we find 

@p~ a , 
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with 

_z[~ (~,~ ~-o~ 5o~ = ~_<s~o ~ (4.3) 

To obtain equation (4.1) we require 

~ -- ~ (4.4) 
and expand 

~ = ~ +~ ~ b~ ~ + o(g ~) (4.5) 

which yields 

&t 

which can be solved provided Yi ~ Yj+Yk " Similarly the terms of nth 

order in g can be calculated if Yi differs from any sum of n exponents 

Y. 

B. Losarithmic Corrections 9 

If Yi :Yj+Yk' then logarithmic factors arise. We give an exam- 

ple in which we neglect all terms in the equations (4.2) which do not 

contribute to the logarithm. Suppose 

2-~e = ~o = eL (4.8) 

~6 + ~ ~L°~ ~ (4.9) 

~- ~ (4.1o) 
&t 

then we obtain (I= = ~) 

(4.11) 

! 
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(4.14) 
A 

Again we choose l ~ /  ~01~" ~ ='~ and obtain 

F(0  = oc 

C. B_~roken powers . of Logarithms31 

If Yu:O, then logarithms to some broken powers arise. Again we 

start from simplified equations to demonstrate the singularity 

and obtain 

~6 Z 0~ ~ (4.16) 

~: ~(i+~o)-~ s =- ~ (4.18) 

\ ~o / ~ ~ (4.19) 

Such singularities appear in four dimensions at a critical point and 

in three dimensions at a tricritical point 31-33. 

D. Correlation Functions 

The operators Oi(q) become extremely small, if q >>qo (qo momen- 

tum cut-off). Therefore the correlations G become extremely small as 

soon as q >>qoand equation (3.42) will not apply for qel>>q o. The per- 

turbations ~ (q) + k 2 02 (-q) will generate contributions Oo Og ... 

because of the nonlinear terms of the RG equation. Similarly homogene- 

ous perturbations and nonhomoEeneous perturbations generate contributi- 

ons nonlinear in ~ and y. To discuss these effects we make the follow- 

ing simplifying assumption: 

(i) We assume that the linear approximation is good for q < qo" 

(ii) In a narrow region around qo the nonlinear contributions dominate. 

(iii) For q ~ qo we neglect the inhomogeneous perturbations. 
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Then from 

- -  + (4.20) 

we obtain according to (i) with g~= ~ o / ~  

where actually q e & should be slightly smaller than qo" According to 

our assumption (ii), we obtain with a slight change of ~ (which we do 

not indicate explicitly in the next equation) 

' ~°'~m ~ ' ( A  50 e + C ' c [ # )  -E ) . (4 .22)  

We have a l ready  neg lec ted  the inhomogeneous p e r t u r b a t i o n s  i n  t h i s  equa- 
t i o n  accord ing  to  ( i i i ) .  Now we have a homogeneous i n t e r a c t i o n  and we 
can apply the inverse RG transformation 

Since the free energy is conserved under the total of these transfor- 

mations we obtain 

a result suggested by Fisher and Langer 26 and which has also been deri- 

ved by means of the Callan-Symanzik-equation 27. We emphasize that the 

conditions (i) and (ii) are not necessary to derive eq. (4.23). It is 

only necessary 30 that the operators Oi(q) can be neglected for q>>qo" 

Then, however, the derivation of (4.23) becomes more complicated. We 

note that for a linear RG equation (3.42) holds exactly which means 

that Oi(q) does not become negligible for q>>qo" Therefore a linear 

RG does not eliminate the Fouriers components for large q. We see 

that the elimination of short wave length fluctuations and the lineari- 

ty of a RG equation exclude each other. 
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5. FINAL REMARKS 

We have outlined the basic ideas of the RG procedure as initia- 

ted by Wilson. These ideas can be applied to actual calculations. 

We display in table 2 the critical exponents ~ and y for three- 

dimensional systems as obtained by various methods. In section 2C we 

mentioned already a number of them. We can distinguish three types 

of calculations: 

(i) Approximate calculations. Wilson's recurrence relation 13 can be 

used to calculate numerically the critical exponents. They are 

shown in the table (r.r. numerical). 

(ii) The critical exponents can be expanded around dimensionality 

4 (e-expansion, e = 4-d). Unfortunately, however, the series seem 

to be asymptotically. As a thumb-rule one finds that the expo- 

nents in order e 2 yield a good approximation. In 4 dimensions 

one obtains molecular-field behaviour (with logarithmic correc- 

tions) which can be described by a free fixed-point. It is pos- 

sible to expand around this fixed point since the coupling con- 

stant g for the four-spin interaction (which is marginal for 

d : 4) can be expanded in powers of e 

(iii) The critical exponents can be expanded in powers of I/n. For 

n = ~ one obtains the critical exponents for the spherical 

model 34 

&-~ 
2 ~ ~ ~ ~ (5.1) 

One can perform a ~ystematic expansion 35 around this limit which yields 

for d = 3 

~=2- 2--k-~ +o ~ j ~ ~24~ + 0 • .(5.2) 

These numbers are not yet good approximations although they tend into 

the correct direction. One has to wait for terms in order i/n 2. 
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Table 2. Critical exponents as obtained by various methods 

for d=3 

high temp.exp. 

r. r. numerical 

in 0 (e) 

in 0 (2) 

a in O( E 3) 

experiment 

y high temp. exp. 

y r. r. numerical 

y in 0 (E) 

y in 0 (2) 

y in 0 (E 3) 

n:l n:2 n:3 Ref. 

.13 .00 -.10 

.17 .07 -.O4 

.17 .io .o5 

.08 -.02 -.10 

.20 +.08 .01 

.16 -.02 -.14 

28, compare 1 

13,14 

15 

15 

15 

24. 29 

1.25 1.32 1.38 28, compare 1 

1.22 1.29 1.36 13, 14 

1.17 1.20 1.23 15 

1.24 1.30 1.35 15 

1.19 1.26 1.32 15 
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