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Abstract The gravitational time advancement (negative time delay) is a natural
but a consequence of curve space-time geometry. In the present work the possibil-
ity of experimental detection of time advancement effect has been explored.
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1 Introduction

The Shapiro time delay (also known as gravitational time delay) [1] constitutes
one of the three classic solar system tests of general relativity. The effect arises
from both the spatial and temporal coefficients of space-time metric and thus
serves as a comprehensive test of general relativity. Nowadays the effect has also
been employed as a tool to extract information about the distribution of matter in
the Universe, particularly to detect dark matter in our Galaxy.

The general perception about the Shapiro effect is that due to the influence of
a gravitating object the average speed of light decreases from its canonical special
relativistic value c0 and hence the signal always suffers an additional (positive)
non-Newtonian delay. We wish to point out that this is not the case in general;
depending on the position of the observer, the delay can as well be negative im-
plying a time advancement. Note that the effect of time advancement does not
violate causality, information could not be sent by an observer into his/her own
past exploiting the effect, neither can it be used for a warp drive or time machine.
The reason is that we are not considering motion in a configuration with matter
violating known energy conditions.

So far all conclusive gravitational time delay measurements, including the one
using Cassini spacecraft that has verified gravity with a remarkable accuracy of
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about 2.3 parts in 105 [2], have tested general relativity in the gravitational field of
the Sun and in all such cases observers were far away from the gravitating object.
Consequently the delay has been found to be positive in all such measurements,
as expected [3; 4]. Instead if we consider the situation that light signal is sent say
from the Earth’s surface to a certain distance from where the signal is reflected
back to the point of transmission, then the observer should notice a time advance-
ment (see the following section). Here we explore the possibility of detecting the
gravitational time advancement effect in a future astrometric experiment. We par-
ticularly consider the situation in which light signal will be sent from Earth to one
of its artificial satellites/space station from where the signal will be reflected back
along the same trajectory and the total travel time between signal transmission
and reception will be measured with required precision. When a light signal is
sent from Earth to one of its artificial satellites, the signal would also come under
the influence of Sun’s gravity and we need to isolate time advancement effect due
solely to Earth’s gravity from the resulting motion. However, we will show that
the magnitude of the time advancement/delay effect is negligible when the dis-
tance between the points of transmission and reflection of the signal is very small
in comparison to the impact parameter and hence the gravitational effects of Sun
can be ignored for a suitable trajectory of light rays.

The organization of the article is as follows. In the Sect. 2, we describe the
gravitational time advancement. In Sect. 3, we obtain the model independent ex-
pressions for time advancement/delay when the length of signal propagation is
very small. In Sect. 4, we explore the possibility of detecting time advancement
effect experimentally. Finally we conclude our results in Sect. 5.

2 Gravitational time advancement

The proposed effect can be understood by considering the following scenario: A
radar signal is sent from the surface of the Earth (A) to a point B close to the Sun,
(B is the point of closest approach for the trajectory) as in the Fig. 1 from where
the signal is reflected back along its original trajectory to the Earth.

Assuming standard Schwarzschild geometry, to first order µ ≡ GM/c2
0, the

well-known coordinate time delay in round trip journey from Earth A to the point
B and back is given by [1; 5]

c0∆ tAB = 2
√

r2
A− r2

B +4µ� ln
rA +

√
r2

A− r2
B

rB
+2µ�

(
rA− rB

rA + rB

)1/2

, (1)

where µ� ≡ GM�/c2
0, M� being the mass of the Sun and rA and rB are the values

of coordinate r evaluated at the positions of A and B respectively. The difference
in proper time between transmission and reception of the signal to be measured

Fig. 1 Schematic view of gravitational time delay/advancement



Gravitational time advancement and its possible detection 3

Fig. 2 Gravitational time delay (along y-axis) as a function of ratio between rA and rB (along
x-axis) when the observer is at A. The delay has been given in artitrary units

Fig. 3 Gravitational time delay (along y-axis) as a function of ratio between rA and rB (along
x-axis) when the observer is at B. The delay has been given in arbitrary units

by the observer at A is

c0∆τAB ' (1−µ�/rA)∆ tAB
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Hence the signal takes an excess time over the time that it would have taken in
the absence of the Sun and the delay (the part proportional to µ�) is positive for
any rA (see Fig. 2).

However, if the observer is at the point B instead of A, the coordinate time
delay for the round trip journey from the position B to A and again back to B
would remain the same as given in Eq. (1) but the difference in proper time to be
measured by the observer at B now reads

c0∆τAB ' (1−µ�/rB)∆ tAB

' 2
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(
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−2µ�
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A− r2
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. (3)

Note that the first term in the right hand side of the above equation represents
the time taken by light while traveling in a straight line (between the points) at
unit velocity (i.e. total elapsed time when M� = 0), the next two terms describe
the usual gravitational time delay whereas the last term arises because of clock
runs differently in gravitational field depending on the curvature. Because of the
last term in the right hand side of Eq. (3), the delay works out to be negative
as clearly revealed from the Fig. 3. Such a negative time delay is also followed
from the expression of time transfer functions for a general post-Minkowskian
expansion [6].

Here it is worthwhile to mention that the effect is not a version of red shift ef-
fect, though both the effects originate from temporal coefficient of the space-time
metric. Unlike the case of time advancement/delay effect, if light signal is trans-
mitted from a point in a gravitational field to another point and again is received at
the point of transmission (after reflection), there will be no gravitational red shift
at all i.e. the frequencies of the transmitted and received signal would remain the
same in that case (Fig. 3).
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In the abobe, the mass distribution of the Sun was assumed to be exactly spher-
ically symmetric. When the quadrupole moment of the Sun is also taken into con-
sideration, the gravitational potential at radius r takes the form

φ =−µ�
r

[
1− J2�

R2
�

r2 P2

]
. (4)

where J2� is a measure of the gravitational quadrupole moment of the Sun, R� is
the average radius of the Sun, P2 ≡ 1

2 (3cos2 θ − 1) is the second Legendre poly-
nomial, θ being the azimuthal angle from the polar axis. The effect of quadrupole
moment of the mass distribution on the time delay/advancement in transmitting
the signal from the point A to B and back or vice versa is [5]

δc0∆τAB(J2) =−4
J2�P2µR2

�

√
r2

A− r2
B

rAr2
B

. (5)

For Sun, J2� ∼ 10−7, hence the effect of quadrupole moment is insignificant
in comparison to other terms.

3 Gravitational time advancement/delay for small distance travel

As mentioned earlier, in all gravitational time delay measurements conducted so
far observers were far away from the gravitating object and the distances between
the points of signal transmission and reflection were much larger in comparison
to the distance of closest approach. In situations where the signal travel distance
is small relative to the distance of closest approach, the standard expression for
time advancement as given by Eq. (3) needs to be applied with caution, giving
due importance to the operational meaning of the distance of light propagation. In
the following we would obtain model independent explicit expressions of the time
advancement for geodesic motions for the stated circumstances.

We start with the general static and spherically symmetric spacetime in isotropic
coordinates given by

ds2 =−B(ρ)c2
0dt2 +A(ρ)

(
dρ

2 +ρ
2dθ

2 +ρ
2 sin2

θdφ
2) . (6)

The post-Newtonian (PN) formalism to some orders [5] is generally used to
describe the gravitational theories in a weak gravitational field. This description
gives additional advantage of comparing predictions of general relativity with
those from any alternative metric theory of gravity. In order to discuss light propa-
gation to any given order, knowledge of every component of space-time metric to
the same order is required [7]. When considered up to the second-PN correction
terms, the metric coefficients read [7]

B(ρ) = 1−2
µ

ρ

(
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R2

ρ2 P2

)
+2β

µ2

ρ2 (7)

and

A(ρ) = 1+2γ
µ

ρ

(
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ρ2 P2

)
+

3
2

δ
µ2

ρ2 , (8)
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where β ,γ are the parametrized Post-Newtonian (PPN) parameters, δ can be con-
sidered as the second-PN parameter (these parameters are different for different
theories [5; 8]; in general relativity, all of them are equal to 1), J2 and R are the
quadrupole moment parameter and radius of the object respectively. ρ is related
to the usual parametrized PN coordinates ρ =

√
x2 + y2 + z2.

Consider that a light signal is transmitted from point B on the surface of the
gravitating object horizontally (with respect to an observer at B) to a nearby point
A from where it is reflected back to the point B along the same trajectory. Here B
is the point of closest approach for the trajectory. The distance (∆X) between A
and B is very small in comparison to the radius of the gravitating object. The light
signal will travel a null curve of the space-time satisfying ds2 = 0. Note that in
this section all the quantities, namely J2, ∆R/R and µ/R are considered small and
since our present discussion is restricted to the second order accuracy, any product
of at least three of these symbols (even if some of them are repeated or absent) is
being neglected.

To derive time delay to the order of µ2, one needs to know, to the accuracy
of µ , the deviation of photon trajectory from the vertical direction while traveling
from B to A. The study of geodesic equations reveal that within such accuracy light
trajectory does not involve the azimuthal angle and follows straight Euclidean path
between B and A for small ∆x [7]. Following the standard practice of choosing the
PPN coordinate axes in such a way so that both the transmitter and reflector lie in
the z = 0 surface, to the second order in µ the proper distance (∆LBA) between the
two points B (x = 0,y = ρo,z = 0) and A (x = ∆x,y = ρo,z = 0) is

∆LBA =
∆x∫
0

√
A(x)dx

= ∆x
[

1+
γµ(1− J′2)

R
− 1

4
(
2γ

2−3δ −4γ
2J′2

) µ2

R2

]
(9)

where J′2 ≡ J2P2. Hence the lapse of coordinate time in transiting from B to A and
back is given by

∆ tt = 2
∆x∫
0

√
A(x)
B(x)

dx

= 2∆LBA

[
1+

µ(1− J′2)
R

+
(
3/2−β −3J′2

) µ2

R2

]
(10)

In the above expression we have retained coordinate radius R. Since usually R
is very large, the difference of coordinate radius and proper radius is very small
in comparison to coordinate radius and the relative errors resulting thereby is also
very small. Consequently the proper time interval to be measured by the observer
at B between transmission and reception of the signal is given by

∆τt = B1/2(R)∆ tt = 2∆LBA, (11)

which shows that for motion in the transverse direction there is no gravitational
time delay (or advancement) effect at least up to the second PN order when the
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distance between the points of transmission and reflection is small. The effect of
rotation of Earth (as gravitating object) on gravitational time delay for geodesic
motion in horizontal direction has been studied in [9] where it was found that
rotational contribution is much smaller than the second PN effect.

Next consider the case of radial motion. Restricting to orbits in the equatorial
plane (θ = π/2), the geodesic equation for φ leads to

ρ
2 dφ

dt
=

B
A

J2, (12)

where J is a constant of integration which in the far field region describes angular
momentum of the photon. If initially the motion of the photon is set along the
radial direction (so that J = 0), the above equation warrants the motion would
remain radial throughout.

For the PN metric as given by Eq. (6) through Eqs. (7) and (8), the proper
distance between the point B (R,θ ,φ ) and the point (R + ∆R,θ ,φ ) (denoted as
point C) is given by

∆LBC =
R+∆R∫

R

√
A(r)dr

= ∆R
[

1+
γµ(1− J′2)

R
− 1

4
(
2γ

2−3δ −4γ
2J′2

) µ2

R2 −
1
2

γµ
∆R
R2

]
. (13)

The coordinate time interval in transiting a light signal from B to C and back,
up to the order in µ2, is given by

∆ tt = 2
R+∆R∫

R

√
A(r)
B(r)

dr

= 2∆LBC

[
1+

µ(1− J′2)
R

− µ∆R
2R2 +

(
3/2−β −3J′2

) µ2

R2

]
. (14)

Translating from difference in coordinate time to that in proper time to be
measured by the observer at B between transmission and reception of the signal is
given by

∆τt = B1/2(R)∆ tt = 2∆LBC

(
1− µ∆R

2R2

)
. (15)

Clearly in this case the signal suffers a negative delay due to the negative sign
i.e., gravitational time advancement occurs. It is worthwhile to mention that the
corrective term follows also from dimensional arguments [10]. Please note that the
calculated effect is independent of PPN γ parameter unlike the standard expres-
sion for time delay [1; 3; 4; 5] because we expressed the time delay/advancement
results in terms of proper length that includes the γ factor (in a gravitational field
physical parameters should be expressed in terms of proper quantities particularly
in situations like the present one where proper quantities differ substantially from
those of coordinate expressions).

A curious aspect of the above expression is that the time advancement factor is
in second order in 1/ρ though it is first order in µ . Till now gravitational theories
have been tested only to the first order both in µ and 1/ρ in the solar system.
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4 Possibility of experimental detection of time advancement

The gravitational time advancement due to Earth’s gravity can be measured by
sending light signal to one of its artificial satellites/space station from where the
signal will be reflected back to Earth along the same trajectory and then measuring
the total travel time. Note that when a light signal is sent from Earth to one of its
artificial satellites/space station, the signal would also come under the influence
of Sun’s gravity. To overcome this light signal may be sent (to a satellite) in the
perpendicular direction to the axis passing through the Sun and the Earth. In that
case the motion of light signal would be in the transverse direction with respect to
the Sun and since the distance involved is small, according to the Eq. (8) up to the
second PPN order there will be no gravitational time advancement or delay effect
due to the Sun. On the other hand with respect to the Earth the propagation dis-
tance is considerable and hence expression given in Eq. (3) will be applicable with
the identification rB and rA as R⊕ and Rsat (Rsat and R⊕ are the coordinate posi-
tions of the satellite and the observer at Earth’s surface) respectively provided the
motion is transverse as in Fig. 1. In that case to the leading order the gravitational
time advancement due to Earth’s gravity would be

c0∆τadv =
√

R2
sat −R2

⊕− c0∆τ

= 2µ⊕

√
R2

sat −R2
⊕

R⊕
−4µ⊕ ln

Rsat −
√

R2
sat −R2

⊕

R⊕

−2µ⊕

(
Rsat −R⊕
R⊕+Rsat

)1/2

+4
J2⊕P2µ⊕R2

⊕

√
R2

sat −R2
⊕

RsatR2
⊕

, (16)

where J2⊕ is the quadrupole moment of Earth. In the above equation the first term
of the right hand side will dominate over the other terms and thus clearly there will
be time advancement. Note that for Earth J2⊕ ∼ 10−3 and hence the effect due to
quadrupole moment is about 500 times smaller than the first term. For a high al-
titude satellite of typical distance 36,000 km, the time of advancement would be
about 0.2 nsec when γ = 1 i.e. for general relativity. In order to measure the time
advancement with such a high precision, one has to know the distances with ac-
curacy better than 10 cm. Instead, in measuring the usual Shapiro effect [3; 4] the
distances are treated as unknown parameters and they are determined by fitting the
observed times for various positions of reflector. In the proposed case, however,
the requirement of high accuracy in distance measurements can be avoided in a
novel way by repeating the measurement from the satellite i.e. by sending light
signal to the Earth from the satellite from where the signal will be reflected back
to the satellite and then measuring the total travel time between transmission and
reception of the signal (for satellite bound measurement the Eq. (2) will be appli-
cable). To the leading order the difference in total travel times as measured from
Earth and the satellite would be

δ (c0∆τadv)' 2µ⊕

√
R2

sat −R2
⊕

(
1

R⊕
− 1

Rsat

)
. (17)

The magnitude of this difference in travel times would be nearly 0.3 ns (for
Rsat ∼ 36,000 km). Here it is worthwhile to mention that the ionospheric refraction
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remains a major error source in measuring time interval for a photon to travel
between a satellite and the receiver at Earth for real-time applications such as in a
Global Positioning System. The magnitude of the ionospheric delay is of the order
of 10 nsec which is much higher than the estimated gravitational advancement in
the proposed scenario. However, the ionospheric delay is inversely proportional to
the frequency squared. Hence in principle the effect can be disentangled from the
gravitational effect by using signals of different frequencies. Further note that the
ionospheric delay should be the same for the Earth bound and the satelite bound
(simultaneous) measurements and hence the difference of these measurements as
predicted via Eq. (17) should be free from ionospheric delay effect.

On the other hand if the light propagation is radial, straight forward calcula-
tions gives that to the leading order the difference in total travel times as measured
from Earth and the satellite (ignoring the quadrupole effect)

δ (c0∆τadv) = 2
Rsat∫

R⊕

√
A(r)
B(r)

dr

= 2µ⊕

(
Rsat

R⊕
− R⊕

Rsat

)
, (18)

and the magnitude of the difference in travel times would remain nearly the same
of that for transverse motion. If a space station is used as reflector, the Eq. (15)
have to be applied, as the altitude of a space stations is normally small (∼300km)
compare to the radius of Earth.

5 Conclusion

The gravitational time advancement effect arises predominantly because clock
runs differently in gravitational field depending on the curvature i.e. due to grav-
itational time dilation. The time dilation in a gravitational field has already been
confirmed through measurements of gravitational redshift. Thus indirect experi-
mental support to the gravitational time advancement effect with magnitude as
dictated by the Eq. (3) is already in existence. But no direct observation of the
effect exits so far.

Despite of their common origin, the gravitational time advancement effect dif-
fers from redshift effect in various aspects. As mentioned before, if a light signal
is transmitted from a point to another point in a gravitational field from where it is
reflected back to the point of transmission then there will be no gravitational red
shift at all unlike the case of gravitational time advancement/delay. Moreover the
gravitational time advancement has a cumulative nature i.e. magnitude of gravi-
tational time advancement increases (proportionally) with the number of turns of
light ray trajectory (i.e. with the number of times that a light ray propagates from
the point of transmission to the point of reflection and back to the transmission
point). Hence direct experimental observation of gravitational time advancement
appears imperative.

Gravitational time advancement effect also has some interesting consequences.
For instance, the effect suggests that an observer at a stronger gravitational field



Gravitational time advancement and its possible detection 9

has a better chance to communicate with a distant observer during his/her life
period than the one at weaker gravitational field.

We thus conclude the following: Contrary to the common belief gravitational
time delay could be negative as well leading to time advancement. A possible way
of detecting this effect in future is through radar echo delay like experiment with
Earth’s satellites as reflector.
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