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Abstract. Recent results from several researchers, in the area of automated high-order computation of quantities in
QCD, the Standard Model, and other models are summarized.

The AIHENP Workshop series has traditionally in-
cluded cutting edge work on automated computation of
Feynman diagrams. The conveners of the Symbolic Prob-
lem Solving topic in this ACAT conference felt it would
be useful to solicit presentations of brief summaries of the
interesting recent calculations. Since this conference was
the first in the series to be held in the Western Hemisphere,
it was decided that the summaries would be solicited both
from attendees and from researchers who could not attend
the conference. This would represent a sampling of many
of the key calculations being performed. The results were
presented at the Poster session; contributions from ten re-
searchers were displayed and posted on the web.

Although the poster presentation (which can be viewed
at conferences.fnal.gov/acat2000/ placed equal emphasis
on results presented at the conference and other contribu-
tions, here we primarily discuss the latter, which do not
appear in full form in these proceedings.

This brief paper can’t do full justice to each contibu-
tion; interested readers can find details of the work not
presented at this conference in references (1), (2), (3), (4),
(5), (6), (7).

Standard Model Higgs Production

Robert Harlander has results(1) for gg �! H to two
loops (NNLO) in the heavy top limit. This will be the
dominant production mechanism for the Higgs at the
LHC, so it is important to improve on the theoretical accu-
racy. At next-to-leading-order, the theoretical uncertainty
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FIGURE 1. Sample two-loop diagram contributing to gg�!H
at NNLO.

is a factor of 1.5 to 2. The NNLO contributions include
diagrams like that shown in figure 1.

When MH < Mt an expansion in M2
H=M2

t yields an
excellent approximation at NLO) (and presumedly at
NNLO). The leading term in this expansion may be ob-
tained by using effective Lagrangian for the Higgs-gluon
interaction. The coefficient of H(Gµν)

2 for the effective
vertex (marked
 in the figure) was previously computed
to the needed order in αS(9).

The NNLO corrections sum several contributions, for
example, one-loop amplitudes involving radiation of a
single quark or gluon. Some (but not all) of these have
been determined. The Harlander calculation computes
contribution of the gauge invariant set of corrections (of
order α4

S) involving two loops and no extraneous radia-
tion.

The diagrams which are planar had been reduced,
using an integration-by-parts algorithm, to convolutions



of one-loop integrals(11). Non-planar diagrams such
as the one shown are, as usual, less straightforward.
The technique used was one developed by Baikov and
Smirnov(10): The recurrence relations for these 2-loop
integrals with 3 external legs are related to those for 3-
loop integrals with two external legs. Thus such diagrams
as Fig. 1 are mapped onto massless three-loop two-point
functions.

These calculations were done, using a modification of
the program MINCER(13) which is written in the sym-
bolic manipulation system FORM(16). Programmed in
this manner, the computer calculation was not very exten-
sive: It completed in a few minutes on a fast processor.

The primary result(1) is a second order correction to
the virtual cross section for gg �! H. As an estimate
on the magnitude of the corrections, the ratio of time-like
to space-like form factor is considered. For 5 light (on
the scale of MH) quarks, the NLO correction to this was
52.8%. The newly computed NNLO correction is found
to be 17.2% (and in the same direction). Thus the correc-
tion is large, but there is good convergency.

Advanced mathematical techniques and
high-order diagrams

A.V. Kotikov(2) uses a Differential Equations Method
to do two-loop self-energy diagrams with one non-zero
internal mass or external momentum.Combinations of
DEM and programs by O.L. Veretin and M. Kalmykov
have been used to evaluate that full set of two-loop, two-
point onshell master diagrams, as well as three-point two-
loop integrals with one and two-mass thresholds in a
small-moment expansion.

The Differential Equations Method makes use of the
integration-by-parts method(15): when applied to an in-
ternal n-point subgraph of a Feynman diagram, IBP gen-
erates new diagrams which can be represented as deriva-
tives with respect to masses (or external momenta) of the
initial diagram. Thus a differential equation for the initial
diagram can be found; this equation has inhomogeneous
terms containing diagrams with more trivial topological
structure and/or fewer loops or legs. Complicated dia-
grams may be evaluated by recursively applying this pro-
cedure to reduce to known results for simpler diagrams.
Some results can be found in reference (2).

In the summary posted at the conference results for
two-loop self-energy diagrams in figure 2 were presented.
For example,
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FIGURE 2. Two-loop self-energy diagrams. Solid lines denote
propogators with mass m; dashed lines denote massless propa-
gators.
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A.L. Kataev, G. Parente and A.V. Sidorov sent
results(3) of using the method of Jacobi polynomials to to
a next-to-next-to-leading order analysis of Fermilab data
for the xF3 structure function of νN deep-inelastic scatter-
ing. Using analytical expressions(14) for the theoretical
behaviour of QCD (including αS(MZ) and higher-twist
terms), these researchers along with A.V.Kotikov(4) use
a FORTRAN program realizing the Jacobi Polynomial
method, to fit the data. This results in values of ΛMS
normalized to the x-behavior of the nonperturbative
contribution, modeled as h(x)=Q2.

They observe that using the Jacobi polynomial method
it is possible to reconstruct the structure function to rather
high precision, using only ten of its Mellin moments.
An interesting physics point is that there is interplay be-
tween the effects of the NNLO perturbative QCD cor-
rections and 1=Q2-contributions, which result in effective
“shadowing” of the power-supressed terns by the pertur-
bative NNLO effects. If the 1=Q2-contributions are fixed
through a special model, the NNLO value of αS(MZ) is
0:118�0:002(stat)�0:005(syst)�0:003(theory).

S. Eidelman, F. Jegerlehner, A.L. Kataev, and O.V.
Veretin(5) contributed results of three-loop massive cor-
rections to the Adler D-function of the e+e� annihilation
process. These were calculated in the Euclidean region,
uing a Padé resummation method(12). Massive diagrams
with one external momentum were considered, with the
Padé resummations realized in a custom FORTRAN pro-
gram. These were run in several minutes on an Alpha
workstation.

At high energies, the perturbative QCD prediction
starts to agree with the experimentally motivated behav-



iour of the Adler D-function only after inclusion of the
mass dependence of this 3-loop order α2

S term. Thus,
these results allow extraction of hadronic shifts to the fine
structure constant, from experimental data on the cross
section for annihilation of e+e� into hadrons, including
data obtained at the low-enery e+e� in Novosibursk.

D.J. Broadhurst, A.L. Kataev and C.J. Maxwell(6) re-
port on large Nf expansion of scalar correlators and esti-
mates of higher-order QCD corrections to Higgs �! b̄b
and strange-quark-mass sum rules. These large Nf terms
come from a single chain of quark bubble diagrams, and
the two-point correlator of the scalar quark current ψ̄ψ
was calculated to 20 loops analytically, and up to 100
loops numerically. Such correlators are related to the de-
cay width of the scalar Higgs into quark-antiquark pairs.

The n-loop diagrams were calculated by inserting n�2
quark loops in the pair of two-loop skeletons for the scalar
correlator. The method entails recurrence relations for
3F2 hypergeometric series, which were implemented in
REDUCE. The analysis demonstrates that one must take
a twice-cubtracted dispersion relation to avoid an ambi-
guity of order Λ2=Q2 even in the zero-quark-mass limit.
Failure to do so leads to explosion of the perturbation se-
ries.

Estimates are obtained for order α4
S contributions, pay-

ing particular attention to terms that result from analytic
continuation, which are resummed to all orders in αS and
to leading order in β0. It is concluded that the perturbative
uncertainties in the extraction of strange quark mass are
mild, compared with uncertainties related to poor knowl-
edge of the low-enery hadronic spectral function.

C. Oleari, contributed results(8) obtained in collabora-
tion with C. Anastasiou, E.W.N. Glover and M.E. Tejeda-
Yeomans, on two-loop QCD corrections to qq̄ �! q0q̄0.
They associate tensor integrals with scalar integrals in
higher dimension and with higher powers of propaga-
tors, by using the Schwinger-parameter form. Systematic
application of the Integration-By-Parts technique, along
with recursion relations, is sufficient to reduce these inte-
grals to master intergrals in D= 4�2ε. With four external
quark lines, the most challenging two-loop topology is the
“crossed box” diagram:

The IBP and recursion techniques for reducing these
two-loop, four-leg diagrams to master integrals (and in
particular integrals for the massless crossed box topology)
are discussed in Oleari’s parallel session presentation at
this conference(17).

They have used these identities to construct MAPLE,
MAXIMA, and FORM programs to rewrite the tensor inte-
grals for massless 2 �! 2 scattering directly in terms of
the basis set of master integrals.
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FIGURE 3. The generic two-loop crossed box.

Then amplitudes are computed by generating the one-
and two-loop diagrams using QGRAF. After projecting
by tree level and summing over colours, spins and Dirac
traces in D dimensions, they identify the scalar and ten-
sor integrals present and replace them with combinations
of master integrals. These are then expanded in ε. The
expansion can be broken into two parts: one proportional
to the Born amplitude A4, and one that depends on kine-
matic structures that do not occur at the tree level. The de-
tailed results are rather lengthy for presentation in a sum-
mary paper such as this, and can be examined in (8).

Calculations in the MSSM Model

S. Heinemeyer presented work(7) done with G. Wei-
glein, the developer of the MATHEMATICA program
TwoCalc. They used that program, along with Feyn-
Arts (developed by T. Hahn) to compute electroweak two-
loop corrections in the Minimal Supersymmetric Standard
Model.

The physics motivation is that SUSY particles are too
heavy to directly observe in today’s colliders, so one must
search for indirect effects, by looking at precision observ-
ables. The electroweak precision data can be compared
with theoretical predictions of the Standard Model and
MSSM, to see which model fits better and potentially con-
tradict one or the other. But this tests the theory at the
quantum level, and is sensitive to loop corrections. Very
high accuracy of measurements and theoretical predic-
tions are needed. In particular, two-loop calculations are
necessary to achieve this accuracy on the theoretical side.

The ρ-parameter gives the main contribution to cor-
rectins to electroweak observables such as MW and
sin2 θeff

W , and the leading two-loop corrections in MSSM
to ∆ρ, which are of order G2

Fm4
t , are comparable to the

accuracy obtained in the Standard Model and to prospec-
tive experimental uncertainties. The two-loop results for
∆ρSUSY

1 are given in (7).
The contribution of these two-loop diagrams to

∆MW (MSSM–SM) depends on the Standard Model



tanβ, and on mh or MA (which are related in MSSM). Its
dependence on mh is presented in (7) for several values
of tanβ, and the poster summary displays the dependence
of ∆MW on tanβ, for several values of MA.

Beyond the large number of diagrams involved in this
computation, the probelm of a proliferation of scales in
the MSSM further complicates evaluation of the two-
loop corrections. The computation made heavy use
of MATHEMATICA-based computer algebra programs:
FeynArts to generate Feynman diagrams and amplitudes,
and TwoCalc for reduction of tensor integrals to scalar in-
tegrals and evaluation of those integrals. The computing
time amounted to about a day on a 500 MHz Pentium.

Results Presented in Parallel or Poster
Sessions

The Feynman calculation summary poster was in-
tended to be inclusive: neither all extra-conference ma-
terial, nor all in-conference presentations. The following
summaries were provided based on work presented at this
conferences; the detailed papers can of course be found in
these proceedings:

S. Groote and A.A. Pivovarov submitted results of a
calculation of three-loop QCD diagrams for massive bary-
onic correlators. These are next-to-leading-order calcula-
tions for such processes. Such diagrams are ingredients
for QCD sum rules which aim to determine basic bary-
onic quantities like gorund state energy or residues. The
massless contributions were comuputed using REDUCE

and MATHEMATICA in a few minutes of computing time;
the massive contributions were done by hand and took a
few days. These results were presented as a poster session
by R. Kreckel, and appear, co-authored by J.G. Körner, in
these proceedings(18).

E.E. Boos presented a scheme(19) for finding gauge-
invariant subclasses of diagrams for a given process. For
example, in Bhabha-scattering, the two s-channel and
two t-channel SM diagrams are separately gauge invari-
ant. Aside from the advantage of being able to deal with
smaller pieces of a difficult calculation and still produce
physically meaningful numbers, this subclassing scheme
is important because the precision of computation can be
helped by the freedom to use different kinematical vari-
ables of integration for different susbsets of diagrams.

F. Yuasa, T. Kaneko and T. Ishikawa presented the
Feynman graph selection tool (grcsel) in the GRACE
system. GRACE(20) is a collection of tools which pro-
vides automated generation of Feynman graphs and cor-
responding helicity amplitudes, phase space integration

of the squared amplitudes, and event generation for data
analysis. It also contains a facility GRACEFIG for gen-
erating figures containing the generated diagrams. The
grcsel tool(21) can handle tree and 1-loop graphs and
supports the Standard and MSSM Models.

State of Computer Techniques

This sample of leading-edge work can provide a per-
spective on the way advanced computing techniques are
being applied to the difficult problem of high-order Feyn-
man graph calculation. Four observations:

� The state of the art has long since passed the point
where you could consider doing all these calcula-
tions by hand, though there are still some important
calculations which have not been done, yet which are
not so large as to absolutely require computer assis-
tance.

� There is no clearly established prefered symbolic
manipulation system for Feynman integral calcula-
tions. Of the ten summaries submitted, five sys-
tems (FORM, REDUCE, MATHEMATICA, MAC-
SYMA, MAPLE, and QGRAF) were utilized for cal-
culations, and only one (MATHEMATICA) was used
in two cases. Three major programs within sys-
tems (Mincer, FeynArts, TwoCalc), three special-
ized FORTRAN programs, and a major framework
GRACE for the non-integration parts of the problem
were also used.

� Not everything that could be automated was done
via computer. There were a couple of cases where
one class of diagrams or one major step was done
by hand. This reflects either continuing difficulty in
expressing to an automated system the steps done
by hand, or a lack of faith that the automated ex-
pressions of these steps would be executed correctly.
Here, there is room for improvement in the computer
tools available.

� Surprisingly, none of the calculations occupied a sig-
nificant amount of computer time. The running times
were generally several minutes and ranged up to one
day, and there was no temptation to use any comput-
ing platform beyond a simple workstation.

This last observation leads to the conclusion that in
principle, the Symbolic Probelm Solving community has
the hardware and the software frameworks to attack sub-
stantially more complex problems than are currently be-
ing pursued. Instead of computing power, one limiting
factor (and an area where work being done today will



fundamentally advance the field) is continuing develop-
ment of mathematical techniques and physical insights to
do (and to organize) higher-loop calculations with several
distinct masses and external momenta. And a related op-
portunity for improvement is in tools to comfortably pro-
gram those sophisiticated mathematical techniques in a
reliable and readable manner.
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