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Abstract

In this thesis we will investigate the problem of quantum gravity from a variety

of directions. Each avenue we explore begins at the quantum gravity path integral,

and throughout our investigations the notion of spacetime causal structure will

frequently appear.

After a brief introduction to the path integral for quantum gravity we will

present several of the concepts behind Causal Set Theory — an approach to quantum

gravity in which the continuum spacetime is replaced by a discrete structure.

We will then familiarise ourselves with the gravitational action that appears in

the path integral, and its necessary boundary terms, in preparation for our discussion

of the analogous quantities in Causal Set Theory. In particular, we will focus on the

boundary terms in the causal set action and propose causal set expressions for the

case of a spacelike boundary. We will then formulate causal set expressions to encode

other boundary geometry, and conclude our discussion of the causal set action by

investigating what boundary terms, if any, are present in the current proposal for

the bulk causal set action.

Finally, we will return to the continuum quantum gravity path integral and

explore whether the sum over spacetimes should include spacetimes which exhibit

spatial topology change. To attempt to answer this question we will focus our

attention on the simple case of the trousers spacetime, and use the Sorkin-Johnston

formalism to study a scalar quantum field theory living on the spacetime.
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Chapter 1

Introduction

Our current understanding of the physical world rests on two great pillars of theore-

tical physics: Einstein’s theory that gravity is a consequence of spacetime curvature

(General Relativity), and the quantum theory of matter (Quantum Field Theory).

Despite their tremendous successes in their respective regimes, they resist a peaceful

merger when we consider extremely high energy densities, e.g. the Planck mass

in a region of diameter roughly equal to the Planck length. Such situations arise

inside black holes, or far enough back in time towards the Big Bang. It is this

incompatibility that has motivated a nearly century long search for a consistent

theory that can describe gravity in a quantum regime. We call this hypothetical

theory Quantum Gravity.

The quest for quantum gravity has seen many proposals attempt to solve the

problem, but the lack of experimental evidence has made it extremely difficult to

verify a given theory. Moreover, the proposed theories themselves have not yet been

fully understood even in a theoretical sense. One might think that quantising gravity

is simply a matter of writing down a quantum gravity path integral, that mirrors

the quantisation of matter:

Zg =

∫

Dgµν eiS[gµν ] , (1.1)

where the integral symbolically represents a sum over different spacetimes, and

S[gµν ] is the classical action for a given spacetime. The integral in (1.1) turns out

to be extremely complicated, both technically and conceptually. There is still no

consensus on what exactly the sum over spacetimes should include, an issue we will

return to later. Solving the problem of quantum gravity may require more than

just evaluating this integral; we may have to make creative leaps from our current

foundations to an entirely new conception of the physical world ((1.1) may still be

13



14 Chapter 1. Introduction

relevant at an effective level in this new theory). In formulating a new theory of

quantum gravity one must decide which fundamental principles are to be retained,

and which should be cast aside. This is not straightforward, and there are many

conflicting ideas, as can be seen by attempted resolutions of Hawking’s black hole

information paradox [5–7].

Causal Set Theory attempts to solve the problem of quantum gravity, while

retaining certain principles from General Relativity and quantum theory, namely

the causal structure and the path integral respectively. The theory hypothesises

that spacetime is fundamentally discrete at the Planck scale, and this discreteness,

married with causal order, results in the proposal that the fundamental structure of

spacetime is a causal set (to be defined shortly). The quantum dynamics is then

described by a path integral over causal sets:

ZC =
∑

C
eiS[C] , (1.2)

where the discreteness has turned the usual integral into a well defined sum over

causal sets, and where S[C] is the action of the causal set C 1.

There are still open questions surrounding (1.2), and one that we will investigate

in this thesis is what is the causal set action S[C]? One requirement we would like

to impose on the causal set action is that it reproduces the action of a continuum

spacetime in an appropriate limit. The continuum action will be introduced in

Chapter 2 and we will derive its associated boundary terms, which are a necessary

addition to the action in order to obtain a consistent variational principle. In

Chapter 3 we will then propose a causal set counterpart to the boundary terms of

the continuum action, and investigate what boundary terms, if any, are present in

the recently proposed bulk causal set action in [9–11]. In Chapter 4 we will return

to the continuum path integral, (1.1), and investigate the open question of what the

sum over spacetimes in (1.1) actually includes. More specifically, we will investigate

whether the sum should include spacetimes that undergo spatial topology change.

An example of this would be a spacetime in which two black holes are pair produced.

Causal structure will again play an important role, and we shall see that it helps

us extend the framework of curved spacetime Quantum Field Theory to include

spacetimes that exhibit topology change 2.

1Within Causal Set Theory there exists another approach to causal set dynamics that envisages
the causal set as a growing network [8]. This approach does not, at present, involve a path integral
such as (1.2).

2It should be noted that there are a few differences in conventions between the chapters, but
this should not be a cause for concern since the chapters themselves are sufficiently self-contained.
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Before confronting these questions regarding spacetime causal structure and its

place in quantum gravity, let us first introduce the main concepts behind Causal Set

Theory.

1.1 Causal Set Theory

The discreteness of Causal Set Theory is motivated by the somewhat troubling

infinities that arise when describing physics on a continuum background. The first,

and least troubling, infinity is encountered in Quantum Field Theory, and is usually

dealt with via renormalisation, although this is not always possible. The second

infinity arises in General Relativity, at singularities where the curvature of spacetime

blows up. The third and final infinity occurs when considerring black hole entropy.

Specifically, we obtain an infinite result for the entropy of a black hole when trying

to enumerate the degrees of freedom of the horizon [12].

These infinities all occur around the Planck length, and hence we might hope to

resolve them using a fundamental cut-off around that scale. The continuum manifold

would then be replaced by a “discrete manifold”, and in 1854 Riemann had already

noted that such a discrete manifold could contain its own metric relations, in contrast

to a continuum manifold that must be supplemented with a metric. The volume

of any region of this discrete manifold is then determined by simply counting the

discrete elements that make it up.

A causal set is a particular discrete structure with an order relation that mirrors

the causal order (or structure) of a continuum spacetime. The motivation for the

link between this order relation and causal order derives from results by Malament,

Levichev, and Hawking et al [13–15] that together show that one can recover the

metric up to a conformal (or volume) factor from the causal structure alone 3. Since

a causal set is a discrete structure it contains its own volume information, and so

together with the order relation one might expect it to encode all the geometric

information about a spacetime, on scales much larger than the discreteness scale.

All of the above has led to a causal set being defined as a locally finite partial

order. Specifically, a causal set is a pair (C,�), where C is a set, and ∀ x, y, z ∈ C, �
is an order relation that is

1. Reflexive: x � x

2. Acyclic: x � y � x ⇒ x = y

3Technically speaking, when the spacetime is distinguishing [16], the causal structure allows
one to determine the differential structure, the topology, and the metric up to a conformal factor.
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3. Transitive: x � y � z ⇒ x � z

4. Locally finite: |I(x, y)| < ∞

where |I(x, y)| is the cardinality of the interval I(x, y) = { z | z ∈ C, x � z � y}.
The first three conditions resemble the requirements of a causal order on a continuum

spacetime (provided we are discussing spacetimes that do not contain closed timelike

curves for which the acyclic condition fails), while the final condition encodes the

discreteness of the causal set, since an interval in a continuum spacetime would

contain an uncountably infinite number of points. A causal set can be represented

by a directed graph, where the vertices are the elements of the causal set, and the

directed edges represent the causal relations.

We now turn to the question of how to relate a given causal set to a spacetime,

and vice versa. This is done via a sprinkling, which is a random process for generating

a causal set from a given spacetime. In a sprinkling the elements of the causal set

are generated using a Poisson process to select points from the spacetime manifold

at some density, ρ, such that the expected number of points in a spacetime region

of volume V is given by ρV . The selected points are said to be “sprinkled” into

the manifold, and the probability of sprinkling k points into a spacetime region of

volume V is

P(k points in region of volume V ) =
(ρV )k

k!
e−ρV . (1.3)

The order relations amongst the elements of the causal set are then induced from

their causal order within the continuum spacetime 4. The correspondence between

causal sets and spacetimes is then as follows: a causal set, C, is well approximated

by a spacetime, M, if C is generated, with relatively high probability, by sprinkling

into M.

We will return to causal sets in Chapter 3 where we will discuss proposals for

the action of a causal set, but before then let us first introduce the continuum action

and its boundary terms.

4It should be noted that the process of sprinkling is purely kinematical, and is unrelated to any
dynamical processes that generate causal sets, such as sequential growth models [8].



Chapter 2

Boundary Terms in the

Gravitational Action

2.1 Introduction

The action of a spacetime in the continuum is usually taken to be the Einstein-

Hilbert (EH) action. This action depends on the metric and its first and second

derivatives. Indeed, the dependence on second derivatives is forced on us by the

principle of general covariance, since there is no local coordinate scalar that can be

formed from the metric and its first derivatives.

While the EH Lagrangian does depend on the second derivatives of the metric,

the dependence is rather innocuous since, as it turns out, the equations of motion

are second order in metric derivatives, rather than fourth order, as one might

naively expect. One can remove the dependence on second derivatives by adding

a total divergence to the EH Lagrangian, which integrates to a boundary term.

The appropriate action for general relativity is therefore the EH action with this

boundary term. This makes the action first order in the metric derivatives: the

second derivative term ∂∂g present in the Einstein Hilbert Lagrangian is replaced by

a term of the form (∂g)2. All of this has been known for a while [17, 18].

The action principle for General Relativity is important when we consider the

path integral approach to quantum gravity. In summing over histories, we would like

the quantum amplitudes to have the “folding” property, which we write symbolically

as:

K(X1, X3) =

∫

dX2K(X1, X2)K(X2, X3), (2.1)

where X1 and X3 are initial and final states respectively and X2 is an intermediate

state which is summed over. In the metric representation X1, X3 represent the metrics

17
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on an initial and final spatial hypersurface Σ1,3 and (Σ2, X2), an intermediate spatial

geometry. We would clearly like the action to be additive under a decomposition

of spacetime into pieces. There is a close relation between additivity of the action

and having a first order Lagrangian. This can be clearly seen in a particle mechanics

analogy. Consider the amplitude for a particle to go from x0 at time t0 to xN at

time T = tN , K(x0, t0; xN , T ). Introducing time slices at tk = kǫ = kT/N , we have

the skeletonised version of the path integral

K(x0, t0; xN , T ) =

∫

dx1...dxN−1K(x0, t0; x1, t1)...K(xN−1tN−1; xN , T ), (2.2)

If the Lagrangian is first order, i.e. if L depends only on x and ẋ, the additivity of

the action is immediate. One writes the short time propagator replacing ẋ in the

Lagrangian by (xk+1 − xk)/ǫ. This results in nearest neighbour couplings on the

time lattice with the sites labelled by k. Decomposing the lattice into two parts

separated by tj gives us the folding property Eqn (2.1). However, for a second

order Lagrangian L(x, ẋ, ẍ), one needs three time steps in order to define ẍ. E.g

ẍk = (xk+1 + xk−1 − 2xk)/ǫ
2. This brings in next nearest neighbour couplings on the

time lattice, which spoils the additivity of the action.

A related point stems from the tensor nature of the gravitational field, which is

not captured in the simple particle analogy above. In summing over histories that

go from X1 to X3 via X2 we allow all spacetime geometries, which on pullback agree

with X2. No further restriction needs to be placed on the metric. In particular,

the components of the metric in directions transverse to the spacelike surfaces need

not be held fixed. Textbook treatments (see [19, 20] for example) however hold all

components of the metric fixed on the boundary, which is a stronger requirement.

In a path integral, one typically sums over all paths without requiring continuity

of all components of the metric across Σ2. All we need is that the pullback of the

four-metric to Σ2 agrees with X2.

Another reason for investigating the action principle is to explore boundaries of

different signatures. A region in spacetime may have boundaries with components

which are spacelike, timelike and null. There may also be corners where components

of the boundary join. We present a formalism in which all these cases are derived

in a transparent manner. The role of boundaries in gravitational physics has been

increasing in recent years. Ideas relating bulk and boundary degrees of freedom have

been discussed in the context of black hole entropy, and hence one of the possible

applications of this work is in black hole physics.

The need for adding a total divergence to the Einstein-Hilbert action was re-
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alised very early in the history of General Relativity[21]. The required boundary

counterterm was given a geometric interpretation by York[17] and this line of thought

was carried further by Gibbons and Hawking in their work on black hole thermo-

dynamics. When the boundary has corners, there is a need for additional corner

terms. These were first discussed by Sorkin and Hartle [22, 23], and subsequently by

Hayward[24], Brill and Hayward[25] for timelike and spacelike boundaries. The need

for a treatment of null boundaries was recognised by Parattu et al [26, 27]. There

are also several contributions by Neiman[28–31] and Epp[32]. Very recently Lehner

et al [33] have given a detailed account of this problem. The work in this chapter

will differ from these in a few respects. We postpone a discussion of the differences

to the concluding section.

Our treatment uses the tetrad formulation to give us a unified approach to

the different boundary signatures. If one has a good understanding of the tetrad

formalism of General Relativity then this simplifies the calculation of the boundary

terms considerably. In Section 2.2 we review some of the mathematical preliminaries.

In Section 2.3 we present the tetrad formulation, which brings out the need for the

corner terms and their explicit forms. Section 2.4 contains a discussion and some

open questions.

2.2 Mathematical Preliminaries

Let the orientable spacetime manifold (M, gab) be described by a Lorentzian

metric gab of signature (−+++), and take xa to be coordinates on the spacetime,

with the spacetime index a = 0, 1, 2, 3. We begin with the Einstein-Hilbert action

SEH =
1

2

∫

M
d4x

√−gR (2.3)

for a spacetime (M, gab), where the boundary of the manifold, ∂M = ∪iΣi, can

have several piecewise C2 components Σi whose normal covectors ni a are everywhere

either timelike, spacelike or null. We have chosen units in which 8πG has been set

to 1.

2.2.1 Boundary Geometry

Consider a single component of the boundary Σ ⊂ ∂M. We define the normal

covector, na, using a function S(x) that increases going from the inside to the
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(a) Covector orientation (b) Vector orientation

Figure 2.1: An illustration of how the normal covectors and normal vectors would be
orientated on a patch of 1 + 1 Minkowski spacetime whose boundary is a circle. We
have also included the transverse covector/vector, la/l

a, for when the normal is null.
We also note that we are visualising both the covectors and vectors with arrows, and
that the arrows only illustrate the direction, not the magnitude.

outside of M (when M is embedded in some larger spacetime), and that satisfies

S(x)|x∈Σ = 0. The normal covector is then defined as

na = (ǫgbc∂bS∂cS)
−1/2∂aS (Non− Null)

na = ∂aS (Null) .
(2.4)

When Σ is non-null, the unit normal na satisfies n
ana = ǫ where ǫ ≡ ±1 depending on

whether Σ is timelike or spacelike respectively. When Σ is null, na is null (nana = 0).

The normal in this case is not unique, as we could always scale it by some factor, and

for each na there is an equivalence class of null vectors la which satisfy nal
a = −1.

See Figure 2.1 to better understand how these vectors and covectors are orientated

for different components of the boundary. We define the transverse parts of the

metric in the non-null and null cases as

hab = gab − ǫnanb (Non− Null)

σab = gab + lanb + nalb (Null) (2.5)

The transverse parts satisfy habn
b = 0, and σabn

b = σabl
b = 0.

For a non-null Σ with coordinates yi, where i = 1, 2, 3, the induced metric is

defined as

hij = gab
∂xa

∂yi
∂xb

∂yj
. (2.6)
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One can then show that hab = hij ∂xa

∂yi
∂xb

∂yj
, where hab = gacgbdhcd and hij is the inverse

of hij.

When Σ is null we find that the surface is ruled by the null geodesics generated

by the null normal vector na. This normal vector can be written as na = dxa

dλ
, where

λ is the parameter along the geodesic (this parameter is not necessarily affine). We

take our coordinates on Σ to be yi = (λ, θA), where A = 2, 3 and θA are spatial

coordinates that label the different ruling null geodesics. The induced metric on the

spatial sections of Σ is then defined as

σAB = gab
∂xa

∂θA
∂xb

∂θB
. (2.7)

Given some choice of coordinates θA we can pick a unique null vector la from the

class of those satisfying nal
a = −1 by imposing that la

∂xa

∂θA
= 0. One can then show

that σab = σAB ∂xa

∂θA
∂xb

∂θB
, where σab = gacgbdσcd and σAB is the inverse of σAB.

2.2.2 Joint Signatures

The “joins” or intersections Jij = Σi∩Σj of ∂M are allowed to be discontinuous

in the sense that na
i and na

j differ at Jij. The Jij are of codimension two and, like

the boundary components, may also be timelike, spacelike or null.

To determine the signature of Jij, given the signatures of Σi and Σj, we can

first pick a point p ∈ Jij . Any curve γ ∈ Jij passing through p must have a tangent

vector that is orthogonal to the vectors ni and nj at p. Thus, the signature of Jij

is given by the signature of the part of the tangent space that is orthogonal to the

span of ni and nj.

Using the letter S/T/N to denote spacelike/timelike/null, the six different

possibilities for the two surfaces Σi and Σj are TT, TS, TN, SS, SN, NN. The

corresponding normals are SS, ST, SN, TT, TN, NN. The signature of the plane

spanned by ni and nj can be inferred from the determinant of the metric induced on

this plane, which we denote by g′IJ := gabn
a
In

b
J , where I, J = i or j. The determinant,

g′ := det(g′IJ), is positive/negative/zero when the plane is S/T/N. From the signature

of the plane we can determine the signature of its orthogonal subspace, which is the

signature of Jij . For any pair of normals ni and nj we have that g
′ = ni

2nj
2−(ni.nj)

2,

where ni
2 = gabn

a
i n

b
i and ni.nj = gabn

a
i n

b
j. We will now go through each of the

signature possibilities for Σi and Σj, and find the resulting signature of Jij:

TT: Normals are SS, so ni
2 = nj

2 = 1, and hence g′ = 1− (ni.nj)
2.

If (ni.nj) > 1, g′ < 0, the plane of the normals is T, and Jij is S.
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If (ni.nj) = 1, g′ = 0, the plane of the normals is N, and Jij is N.

If (ni.nj) < 1, g′ > 0, the plane of the normals is S, and Jij is T.

TS: Normals are ST, so ni
2 = −nj

2 = 1, and hence g′ = −(1 + (ni.nj)
2). Therefore,

g′ < 0, and the plane of the normals is T, and Jij is S.

TN: Normals are SN, so ni
2 = 1 and nj

2 = 0, and hence g′ = −(ni.nj)
2.

If (ni.nj) = 0, g′ = 0, the plane of the normals is N, and Jij is N.

If (ni.nj) 6= 0, g′ < 0, the plane of the normals is T, and Jij is S.

SS: Normals are TT, so ni
2 = nj

2 = −1, and hence g′ = 1 − (ni.nj)
2. One can

verify that g′ < 0, and hence the plane of the normals is T, and Jij is S.

SN: Normals are TN, so ni
2 = −1 and nj

2 = 0, and hence g′ = −(ni.nj)
2. ni.nj

cannot be zero, hence g′ < 0, the plane of the normals is T, and Jij is S.

NN: Normals are NN, so ni
2 = nj

2 = 0, and hence g′ = −(ni.nj)
2. One can verify

that g′ < 0 (g′ = 0 only if the normals are proportional to one another, which

cannot happen), and hence the plane of the normals is T, and Jij is S.

2.2.3 Introduction to Tetrads

In Section 2.3 we use the Cartan tetrad formalism. This has the significant

advantage offered by differential forms which can be integrated over manifolds without

reference to a metric or its signature. It also has the advantage of giving us a fiducial

Minkowski vector space as a reference. Given a metric gab on M we choose an

orthonormal frame such that gab = eµae
ν
bηµν . The tetrad eµa maps a vector X ∈ TpM

to a point in (M0, ηµν)

eµa : X → eµ(X) = eµaX
a = Xµ ∈ M0, (2.8)

where (M0, ηµν) is a fixed fiducial Minkowski vector space, with a the spacetime

index and µ the frame index ranging over 0′, 1′, 2′, 3′ (the primes allow us to more

easily distinguish whether a tetrad has the fixed spacetime/frame indices up or

down, e.g e0
′

1 has the frame/spacetime index up/down). The map Eqn (2.8) is

invertible, since we assume that the metric is non-degenerate, and its inverse is given

by e a
µ = gabηµνe

ν
b. Frame indices µ, ν are raised and lowered with ηµν . There is

an O(1, 3) gauge freedom in the choice of the eµa. Associated with the eµa are the

connection 1-forms Aµν
a = eµb∇ae

ν b where ∇a is the metric compatible Christoffel
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connection. Aµν takes values in the Lie Algebra of O(1, 3) and is antisymmetric in

the frame indices: Aµν = −Aνµ. Aµν is compatible with frames and satisfies Cartan’s

equation

deµ + Aµ
ν ∧ eν = 0 , (2.9)

where d is the exterior derivative, and the wedge product, ∧, is with respect to

the spacetime indices. We can write this more succinctly by defining a covariant

derivative, Da, compatible with the Christoffel connection and Aµν
a . Some examples

of the action of Da are:

Dae
µ
b = ∂ae

µ
b + Aµ

a νe
ν
b − Γc

abe
µ
c

DaA
µν
b = ∂aA

µν
b + Aµ

a ρA
ρν
b + Aν

a ρA
µρ
b − Γc

abA
µν
c

Daηµν = −Aρ
a µηρν − Aρ

a νηµρ = 0 ,

(2.10)

and it is straight forward to generalise its action to tensors with more frame and

spacetime indices. In the last line we have used the asymmetry of Aρλ to deduce

that Daηµν = 0. We can use Da to define an exterior derivative on a p-form Xµ...ν

(with some number of frame indices) as

DXµ...ν = DaX
µ...ν
a1...ap

dxa ∧ dxa1 ∧ ... ∧ dxap . (2.11)

D satisfies a graded product rule just as d does, and its action on a tensor with no

frame indices is the same as the action of d. Finally, we can now rewrite (2.9) more

compactly as Deµ = 0.

Written explicitly in the spacetime indices, the 2-form field strength of Aµν is

F µν
ab = ∂aA

µν
b − ∂bA

µν
a + Aµ

aρA
ρν
b − Aµ

bρA
ρν
a = Rabcde

µ ceν d , (2.12)

where Rabcd is the usual Riemann tensor. This can be more succinctly expressed

using form notation as F µν = dAµν + Aµ
ρ ∧ Aρν .



24 Chapter 2. Boundary Terms in the Gravitational Action

2.3 The Tetrad Formalism

2.3.1 The Einstein-Hilbert Action

We will now show that the Einstein-Hilbert action can be written as

1

4

∫

M
εµνρλ eµ ∧ eν ∧ F ρλ , (2.13)

where εµνρσ is the Levi-Civita symbol. From now on, unless otherwise stated,

we will use the ε symbol, followed by r spacetime or frame indices to stand for

the r-dimensional Levi-Civita symbol. (2.13) is an integral over the 4-form L =
1
4!
Labcddx

a ∧ dxb ∧ dxc ∧ dxd = εµνρλ eµ ∧ eν ∧ F ρλ, and the integral of such a top

form can be defined as
∫

M
L =

∫

M
d4x L0123 . (2.14)

One finds that the component L0123 is

L0123 =
4!

2
eµ[0e

ν
1F

ρλ
34]εµνρλ =

1

2
eµae

ν
bF

ρλ
cd εµνρλε

abcd , (2.15)

where the square brackets denote anti-symmetrisation of the enclosed indices. From

the defining relation for the tetrads, gab = eµae
ν
bηµν , one can see that g := det(gab) =

− det(eµa)
2, and therefore that e := det(eµa) = ±√−g. The +/− sign means the

tetrad has the same/opposite orientation as the coordinate system. That is, there is

a linear transformation between the tetrad and the coordinate vectors, ∂a, which has

positive/negative determinant. We can fix the tetrad to have the same orientation

by taking the canonical volume form, Ω =
√−g dx0 ∧ dx1 ∧ dx2 ∧ dx3, and imposing

that Ω = e0
′ ∧ e1

′ ∧ e2
′ ∧ e3

′

. This then ensures that e =
√−g.

The determinant of the tetrad can be written using the Levi-Civita symbol as

eεabcd = εµνρσe
µ
ae

ν
be

ρ
ce

σ
d , (2.16)

from which we find that

εµνρσe
µ
ae

ν
b = eεabcde

c
ρ e

d
σ . (2.17)

We can use this relation in (2.15) to find that

L0123 =
e

2
εabcdεabefe

e
ρ e

f
λ F

ρλ
cd . (2.18)

Using the relation εabcdεabef = 4δc[eδ
d
f ] and the defintion of F ρλ

cd from (2.12) in terms
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of the Riemann tensor we arrive at

L0123 = 2
√−gR , (2.19)

where R is the Ricci scalar. Thus, we have that

1

4

∫

M
εµνρλ eµ ∧ eν ∧ F ρλ =

1

2

∫

M
d4x

√−gR , (2.20)

which is the same as SEH above 1.

The tetrad form of SEH is invariant under local gauge transformations that

preserve the orientation of the tetrad. That is, it is independent of our choice

of tetrad, provided we maintain the same orientation. To see this, define a new

tetrad e′µ
′

a = Λµ′

µ(x)e
µ
a, where Λµ′

µ(x) is the local gauge, or Lorentz, transformation

that leaves the frame metric unchanged. Under this transformation we get that

F ′µ′ν′ = Λµ′

µΛ
ν′

νF
µν , and hence

εµ′ν′ρ′λ′ e′
µ′

∧ e′
ν′ ∧ F ′ρ′λ′

= εµ′ν′ρ′λ′Λµ′

µΛ
ν′

νΛ
ρ′

ρΛ
λ′

λ eµ ∧ eν ∧ F ρλ (2.21)

The first part on the right can be rewritten as the determinant of Λµ′

µ using the

Levi-Civita symbol as

det(Λµ′

µ)εµνρλ = εµ′ν′ρ′λ′Λµ′

µΛ
ν′

νΛ
ρ′

ρΛ
λ′

λ , (2.22)

but since we have preserved the tetrad orientation we have that det(Λµ′

µ) = 1, and

hence the form of SEH is unchanged. If we had changed orientation then we would

have that det(Λµ′

µ) = −1, and hence we would have an additional minus sign in front

of SEH . This minus sign would then be cancelled by another minus sign that would

appear in the relationship between the determinant of the tetrad and
√−g. Thus,

one would still obtain the original EH action. To avoid having to deal with these

extra minus signs we will stick to tetrads of the same orientation.

When we take the variation of SEH we will get a bulk term (which yields the

equations of motion) and a boundary term. The boundary term will be expressed as

the variation of a boundary action −SB, which gives us a counterterm to be added

to the action. The total gravitational action is therefore

SG = SEH + SB (2.23)

1Note that we do not regard this tetrad formalism as a first order Palatini action, since Aµν
a is

a function of eµa determined by Eqn (2.9) and is not independent.
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where SB in the non-null case is the usual Gibbons-Hawking-York (GHY) term.

From its definition, the boundary term SB is only defined up to terms that have zero

variation. Certain imaginary terms that have been discussed before in the literature

are of this variety. We will ignore them for the most part and comment on them in

the conclusion. When the boundary is only piecewise C2 the boundary contribution

includes “corner” terms. We will now derive the various boundary contributions in

the tetrad formalism.

2.3.2 Varying the Action

We will now vary the action SEH with respect to the metric, and hold fixed

the pullback of the metric to the boundary. The metric and the tetrad are related

through gab = eµae
ν
bηµν , and hence the variation of the metric induces a variation on

the tetrad. Varying the tetrad form of the action SEH we find

δSEH =
1

4

(

2

∫

M
εµνρλ δe

µ ∧ eν ∧ F ρλ +

∫

M
εµνρλ e

µ ∧ eν ∧ δF ρλ

)

. (2.24)

The first term gives us Einstein’s vacuum equations. To see this we define the 4-form

X = εµνρλ δe
µ ∧ eν ∧ F ρλ, so that

∫

M
εµνρλ δe

µ ∧ eν ∧ F ρλ =

∫

M
X =

∫

M
d4xX0123 . (2.25)

The component X0123 is

X0123 =
1

2
εµνρλε

abcdδeµae
ν
bR

ef
cd eρee

λ
f . (2.26)

Using (2.16) we have that εµνρλe
ν
be

ρ
ee

λ
f = e εgbefe

g
µ , and hence

X0123 =
1

2
εgbefε

abcde g
µ δe

µ
aR

ef
cd . (2.27)

We can now perform the contractions on the Levi-Civita symbols using the relation

εgbefε
abcd = 3!δa[gδ

c
eδ

d
f ]. We also note that, for any symmetric tensor Sab, we have that

e b
µδe

µ
aS

a
b =

1
2
Sabηµνδ(e

µ
ae

ν
b) =

1
2
Sabδgab. With these relations one finds that

X0123 = −e δgab(R
ab − 1

2
gabR) = −e δgabG

ab , (2.28)
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where Gab is the Einstein tensor. Thus,

∫

M
εµνρλ δe

µ ∧ eν ∧ F ρλ = −
∫

M
d4x

√−g δgabG
ab . (2.29)

The second term in (2.24) reduces to a boundary contribution. This can be

seen by first noting that εµνρλδF
ρλ = εµνρλDδAρλ. The exterior derivative, D, can

then be pulled out to the front of the integrand using the graded product rule, the

fact that Deµ = 0 from (2.9), and that Dεµνρλ = 0:

∫

M
εµνρλ e

µ ∧ eν ∧ δF ρλ =

∫

M
εµνρλ e

µ ∧ eν ∧DδAρλ =

∫

M
D(εµνρλ e

µ ∧ eν ∧ δAρλ) .

(2.30)

D is now acting on a scalar with respect to the frame indices, and hence it acts as d,

and we can use Stokes’ theorem to reduce this to a boundary integral:

∫

M
D(εµνρλ e

µ ∧ eν ∧ δAρλ) =

∫

∂M
εµνρλ e

µ ∧ eν ∧ δAρλ . (2.31)

In using Stokes’ theorem we must remember that the orientation of the coordinates

on M induces an orientation on the boundary coordinates yi. This fact will be

important when it comes to rewriting our tetrad boundary term in the usual GHY

format.

To fix the orientation of the boundary coordinates we introduce coordinates

x′a′ = (S, yi) in some spacetime neighbourhood of Σ, where S is the function used

above to define the surface Σ, and the coordinates yi act as coordinates on Σ when

S = 0. The orientation of the yi coordinates is then fixed by requiring that the

determinant of the transformation matrix is positive, i.e. that det
(

∂xa

∂x′a′

)

> 0.

A more covariant way to define the boundary orientation uses the canonical

volume form Ω, which defines an orientation on M. In a similar manner a top-form,

Ω̃, on Σ can define an orientation on Σ. To fix this orientation we require that,

for any three vectors V1,2,3 ∈ TΣ (TΣ is the tangent space of Σ), the action of Ω̃

on these vectors satisfies Ω̃(V1, V2, V3) = Ω(∂S, V1, V2, V3), where the vector ∂S = ∂
∂S

has components dxa

dS
. Given the coordinates x′a′ above one can then show that

Ω̃ =
√−g′ dy1 ∧ dy2 ∧ dy3, where g′ is the determinant of the metric written in x′a′

coordinates and evaluated at S = 0, i.e. on Σ.

When performing the integral on the right hand side of (2.31) we must pullback

the 3-form from M to the boundary manifold. Above we stated that the pullback of

δgab to the boundary vanishes, that is δgab
∂xa

∂yi
∂xb

∂yj
= 0. This condition imposes certain

constraints on the variation of the tetrad, δeµa, since δgab = ηµν(δe
µ
ae

ν
b + eµaδe

ν
b).
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These constraints afford us 6 free parameters when choosing δeµa, and one can always

pick δeµa such that its pullback vanishes. With this choice of δeµa we can pull the

variation outside of the integral and write it as

∫

∂M
εµνρλ e

µ ∧ eν ∧ δAρλ = δ

(∫

∂M
εµνρλ e

µ ∧ eν ∧ Aρλ

)

. (2.32)

We then define the general boundary term to be

SB = −1

4

∫

∂M
εµνρλ e

µ ∧ eν ∧ Aρλ , (2.33)

so that δSG = δSEH + δSB only contains bulk term involving Gab.

2.3.3 The Boundary Term

Our derivation so far is independent of the type of boundary ∂M. We will

now show that this expression is the GHY term written in a universal form, by

looking at the three types of boundaries: spacelike, timelike and null. Let us denote

the 3-form in the integrand of (2.33) as B = εµνρλ e
µ ∧ eν ∧ Aρλ. To evaluate the

boundary integral we must pullback B to ∂M, and we denote this pullback as B̃.

The components of B are Babc = εµνρλ 3!e
µ
[ae

ν
bA

ρλ
c] . If x

a are our coordinates on M,

and yi are coordinates on the boundary ∂M (i = 1, 2, 3), then the components of B̃

are

B̃ijk = εµνρλ 3!e
µ
[ae

ν
bA

ρλ
c]

∂xa

∂yi
∂xb

∂yj
∂xc

∂yk
= εµνρλ 3!ẽ

µ
[iẽ

ν
jÃ

ρλ
k] , (2.34)

where ·̃ denotes the pullback, so for example ẽµi = eµa
∂xa

∂yi
. The integral is then

∫

∂M
εµνρλ e

µ ∧ eν ∧ Aρλ =

∫

∂M
d3yB̃123 . (2.35)

where B̃123 = εµνρλ ẽ
µ
iẽ

ν
jÃ

ρλ
k εijk.

First, let us treat the case where Σ is spacelike. It will be convenient to pick

a tetrad that is adapted to Σ, which we do by choosing e0
′

a = na. We then have

that ẽ0
′

i = e0
′

a
∂xa

∂yi
= N∂a(S)

∂xa

∂yi
= N ∂S

∂yi
= 0, where N is the normalisation factor

(ǫgbc∂bS∂cS)
−1/2 in the definition of the normal (2.4). The fact that ẽ0

′

i = 0 means

that the indices µ and ν in B̃123 cannot be 0′, which simplifies the component to

B̃123 = −2εi′j′k′ ẽ
i′

i ẽ
j′

jÃ
k′0′

k εijk , (2.36)

where i′ = 1′, 2′, 3′, and we have used the fact that ε0′i′j′k′ = εi′j′k′ .
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The pulled-back tetrad ẽi
′

i satisfies hij = δi′j′ ẽ
i′

i ẽ
j′

j , and hence the determinant

of the pulled-back tetrad ẽ = ±
√
h. The sign in this relationship is fixed by the

orientation of the boundary. This can be seen by first recalling the expression for

the volume form in terms of the tetrads, Ω = e0
′ ∧ .. ∧ e3

′

. One can then show that

the top-form on Σ is given in terms of the pulled-back tetrad as Ω̃ = Nẽ1
′ ∧ ẽ2

′ ∧ ẽ3
′

,

and using the expression for the determinant of the tetrad one finds that Ω̃ =

±N
√
h dy1 ∧ dy2 ∧ dy3. If we compare this expression with the previous expression

for Ω̃, one finds that ±N
√
h must equal

√−g′, and hence the plus sign must be chosen

for consistency. We can now write the relationship between the tetrad determinant

and
√
h as √

hεijk = εi′j′k′ ẽ
i′

i ẽ
j′

j ẽ
k′

k , (2.37)

from which we can derive the relation
√
h εijkẽ

k
k′ = εi′j′k′ ẽ

i′

i ẽ
j′

j , where the indices of

the pulled-back tetrad are raised and lowered with hij and δi′j′ . From this relation,

and the fact that Ãk′0′

k = ek
′

a∇b(e
0′ a) ∂x

b

∂yk
= ek

′

a∇b(n
a) ∂x

b

∂yk
, we can show that

B̃123 = −2
√
h εijlε

ijkẽ l
k′e

k′

a∇b(n
a)
∂xb

∂yk
. (2.38)

Using the relations εijlε
ijk = 2δkl and ẽ l

k′ = δk′l′h
lm ∂xa

∂ym
el

′

a, we can rewrite the

component as

B̃123 = −4
√
h δi′j′e

i′

ce
j′

a∇b(n
a)hij ∂x

c

∂yi
∂xb

∂yj
. (2.39)

We then have that δi′j′e
i′

ce
j′

a = ηµνe
µ
ce

ν
a + e0

′

ce
0′

a = gca + ncna = hca, and that

hij ∂xc

∂yi
∂xb

∂yj
= hcb. This allows us to write B̃123 = −4

√
hhach

bc∇b(n
a), which is equal

to −4
√
hhab∇anb since hach

bc = (gac + nanc)h
bc = gach

bc. The extrinsic curvature is

defined as K = hab∇anb, and hence we have our desired result that the boundary

term can be written in GHY format as

SB =

∫

Σ

d3y
√
hK . (2.40)

When Σ is timelike the derivation of the boundary term in GHY form is similar,

so we will not reproduce all the details. The first important difference is that we

choose e1
′

a = na in our adapted tetrad. The pullback of this tetrad covector vanishes,

i.e. ẽ1
′

i = 0, and hence the indices µ and ν cannot be 1′ in B̃123. The component in

this case can be written as

B̃123 = 2εi′j′k′ ẽ
i′

i ẽ
j′

jÃ
k′1′

k εijk , (2.41)
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where i′ = 0′, 2′, 3′. Another important difference is that the top-form on Σ in terms

of the pulled-back tetrad is Ω̃ = −Nẽ0
′ ∧ ẽ2

′ ∧ ẽ3
′

, and hence the determinant of

the pulled-back tetrad is ẽ = −
√
−h. This means that the pulled-back tetrad has

opposite orientation to the coordinates yi on Σ.

The other steps in the timelike calculation are almost identical to the spacelike

case, so we will just state the final result for the boundary term:

SB =

∫

Σ

d3y
√
−hK . (2.42)

When Σ is null we make the following choice for our adapted tetrad: e+a = na and

e−a = la, with e±a = (e0
′

a ± e1
′

a)/
√
2. Recall that our coordinates on Σ are yi = (λ, θA),

where na = dxa

dλ
. The pulled-back tetrad then satisfies ẽ+i = 0, ẽ−i = (−1, 0, 0),

ẽA
′

i = (0, ẽA
′

A), and σAB = δA′B′ ẽA
′

A ẽ
B′

B , where A′ = 2′, 3′.

The canonical volume form can be written as Ω = e− ∧ e+ ∧ e2
′ ∧ e3

′

, and the

orientation of the θA coordinates on the spatial slices of Σ (slices of constant λ)

is fixed by a particular 2-form, Ω̃, defined on those surfaces. The definition of Ω̃

follows a similar procedure to what was done for non-null surfaces Σ. Specifically,

for any two vectors V1,2, belonging to the tangent spaces of these spatial slices, we

require that Ω̃(V1, V2) = Ω(∂S, ∂λ, V1, V2), where the vector ∂λ = ∂
∂λ

has components

na. One then finds that Ω̃ =
√−g′ dθ2 ∧ dθ3, where g′ is the determinant of the

metric written in the coordinates x′a′ = (S, λ, θA). Ω̃ can be written in terms of the

pulled-back tetrad as Ω̃ = ẽ2
′ ∧ ẽ3

′

, and hence, using the relation σAB = δA′B′ ẽA
′

A ẽ
B′

B ,

we have that
√
σ εAB = εA′B′ ẽA

′

A ẽ
B′

B .

We can now write the component B̃123 as

B̃123 = εµνρλẽ
µ
iẽ

ν
jÃ

ρλ
k εijk = 2εA′B′εAB ẽA

′

A

(

ẽB
′

BÃ
−+
1 − 2ÃB′+

B

)

. (2.43)

The first term on the far right, 2εA′B′εAB ẽA
′

A ẽ
B′

BÃ
−+
1 , can be simplified, using

√
σ εAB = εA′B′ ẽA

′

A ẽ
B′

B , to the expression 2
√
σ εABε

ABÃ−+
1 = 4

√
σÃ−+

1 , where we have

used the relation εABε
AB = 2. We also have that Ã−+

1 = e−a∇b(e
+ a)∂x

b

∂y1
= la∇b(n

a)nb,

using the fact that ∂xb

∂y1
= dxb

dλ
= nb along the null geodesics on Σ. This can be

simplified further using the definition of the surface gravity, κ, which measures the

failure of na to be affinely parameterised. Specifically, κ is defined by the geodesic

equation for the null generators, na∇a(n
b) = κnb. If we contract this will lb we get

Ã−+
1 = la∇b(n

a)nb = −κ, and hence the first term on the far right above is simply

−4
√
σ κ.

The second term on the far right, −4εA′B′εAB ẽA
′

AÃ
B′+
B , can be simplified using

the relation
√
σ εAB ẽ

B
B′ = εA′B′ ẽA

′

A, where we raise and lower the A and A′ indices
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with σAB and δA′B′ . We also have that ÃB′+
B = eB

′

a ∇b(e
+ a) ∂xb

∂θB
= eB

′

a ∇b(n
a) ∂xb

∂θB
.

Using these results, and following similar steps to the spacelike case, one finds that

the second term can be written as −4
√
σ σab∇a(nb), which is simply −4

√
σΘ , using

the definition of the null expansion Θ = σab∇a(nb).

Thus, the entire component can be written as B̃123 = −4
√
σ (Θ + κ), and the

boundary term is

SB =

∫

Σ

d2θdλ
√
σ (Θ + κ) . (2.44)

The boundary term in the null case differs from the non-null case in that it depends

on the choice of coordinates, specifically the choice of parameter λ. This means that

the boundary term is not geometrical, which at first glance appears to be an issue.

In fact, as we will discuss more in the conclusion of this chapter, the unphysical

dependence on the parameter will drop out when deriving physical probabilities using

a double path integral, or a Schwinger-Keldysh formalism of quantum mechanics.

Similarly, it will drop out when considering the more physical equations of motion,

since a variation of this boundary term will not depend on the parameter λ.

Note that we have made no assumption above regarding extending the normal

na off the boundary. The normal is only defined at points on the boundary and we

only use its tangential derivatives.

2.3.4 Gauge Transformation of the Boundary Term

The boundary term Eqn (2.33) is not gauge invariant under O(1, 3) transfor-

mations (although its variation is), unlike the tetrad form of the bulk action SEH .

This is because Aρλ transforms inhomogeneously under local transformations of the

tetrad such as

e′
µ′

a = Λµ′

µ(x)e
µ
a . (2.45)

Using the definition of Aρλ we can derive how it transforms:

A′ρ′λ′

= Λρ′

ρΛ
λ′

λA
ρλ + ηρλΛρ′

ρ dΛ
λ′

λ , (2.46)

with the result that

S ′
B = SB − 1

4

∫

∂M
εµνρλ e

µ ∧ eν ∧ gρλ (2.47)

where gρλ = Λ λ
λ′ dΛλ′ρ is in the Lie Algebra of O(1, 3), where the µ (µ′) indices are

raised and lowered with ηµν (ηµ′ν′) and its inverse, and where we have restricted
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ourselves to orientation preserving transformations. The variation of the second

term on the right hand side above vanishes since the gauge transformation does not

depend on the spacetime geometry and the pullback of δeµa vanishes. This ensures

that the variation of SB is gauge invariant, i.e. that it is independent of the choice

of frame eµa.

We note that in the adapted tetrads there is a residual gauge freedom in the

little group H, which preserves the normal. The little group is given by H = O(3)

for timelike, H = O(1, 2) for spacelike and H = E(2) for null normals. It is easily

checked that the adapted boundary term is invariant under gauge transformations of

the little group. In fact for Λ ∈ H, hρλ = Λ λ
λ′ dΛλ′ρ satisfies hα̂λ = hρα̂ = 0 for α̂

a fixed index labelling the normal, i.e. when the normal is timelike/spacelike/null

α̂ = 0′/1′/+. The change in SB under such a gauge transformation,

∆SB = S ′
B − SB = −1

4

∫

∂M
εµνρλ e

µ ∧ eν ∧ hρλ , (2.48)

vanishes entirely. One can see this by noting that the Levi-Civita symbol and the

fact that hα̂λ = hρα̂ = 0, means that the tetrads must take on the frame index α̂.

Evaluation of the integral requires us to pullback the tetrads to the surface and

under this pullback, eα̂ vanishes. Hence, ∆SB = 0.

Let D be four discrete elements of O(1, 3) corresponding to each of the connected

components of the group. They are the elements: I for identity, P for parity, T for

time-reversal, and PT for parity and time-reversal. Since these are constant matrices,

the connection Aρλ transforms homogeneously and the boundary term Eqn (2.33) is

invariant under such transformations, up to a sign determined by the determinant of

the transformation matrix (SEH is also determined up to a sign in the same way).

2.3.5 Corner Terms

The fact that the boundary term Eqn (2.33) is not gauge invariant can be

exploited to identify the corner terms. By adapting our frame to the normal we have

been able to derive the forms Eqns (2.40),(2.42),(2.44) of the boundary GHY terms

for all signatures of the boundary. When there is a join of two boundary components,

the adapted frames will not, in general, agree at the join. In order to pass from

one frame to the other we will use the following procedure. By means of a gauge

transformation in the little group H, we will ensure that two of the frame fields

from each boundary component are tangent to the join and agree with each other at

the join (they may not agree but are related by a constant orientation preserving
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transformation using the discrete elements D). With these choices, the relation

between the two frames is a Lorentz transformation in the 2-dimensional plane of

the normals. The change in the boundary term Eqn (2.33) under this O(1, 3) gauge

transformation gives us the corner terms. Crucially, the variation of this corner term

will not vanish like additional piece in (2.47), since the gauge transformation will

depend on the spacetime geometry, in the sense that the amount we need to rotate

between frames depends on the spacetime. Therefore, the corner term is a necessary

addition to the gravitational action.

This transformation between tetrads will have to happen discontinuously in

order to have adapted tetrads on both boundary components. This is not strictly

permitted, since the tetrad should be twice differentiable if the tetrad form of SEH is

to make sense. To overcome this technical difficulty we will take a limit of a smooth

transformation of the tetrads across the join.

For a spacelike join Jij between two boundary components Σi and Σj we can

use transformations in the little group to arrange that e2
′

(i) = e2
′

(j), and e3
′

(i) = e3
′

(j) on the

join, and that both of these are orthogonal to the timelike plane of normals. When

Σi is spacelike/timelike we will choose the tetrad vector e1
′ a

(i) /e0
′ a

(i) to be outward

pointing with respect to Σi, while e0
′ a

(i) /e1
′ a

(i) still corresponds to the normal vector.

When Σi is null e(i)
+
a
is still the normal covector, and e(i)

−
a
is fixed to be la, which is

outward(inward) pointing with respect to Σi when λ decreases(increases) towards

the join. See Figure 2.2 for an example of how we choose our adapted tetrads.

In any of the above cases the two frames eµ(i) and eµ(j) are related by a Lorentz

boost in the timelike plane of e0
′

a and e1
′

a,

eµ(j) = Λ(ij)
µ
ν
eν(i) . (2.49)

In some cases the frames might need an additional transformation using orientation

preserving discrete elements to relate them, but this will not affect the form of the

boundary terms (since it preserves orientation) and hence we can ignore it. We also

note that the frames eµ(i) and eµ(j) are defined throughout the entire spacetime.

Let Σδ be a thin neighbourhood of Jij within the union of the two boundary

components Σi ∪ Σj, and let Σi,δ (Σj,δ) be the points in Σi (Σj) that are not in the

interior of Σδ. When we take the δ → 0 limit we will take Σδ → Jij , Σi,δ → Σi, and

Σj,δ → Σj. See Figure 2.2 for an illustration of these regions.

We now define the gauge transformation λ ∈ O(1, 1) that is the identity on Σi,δ,

Λ(ij) on Σj,δ, and interpolates between the two in Σδ:

λµ
ν = (exp [ηKΘ

(H)
δ ])µν , (2.50)
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Figure 2.2: An illustration (in 3D spacetime) of a join Jij between a spacelike
boundary component Σi and a timelike component Σj. The two adapted tetrad
1-forms, eµ(i) and eµ(j), are also shown, and one can see that e0

′

(i)/e
1′

(j) is the normal

on Σi/Σj. The diagram also illustrates how we can choose our tetrads such that
e2

′

(i) = e2
′

(j) on Jij , and choose e1
′

(i) to be be outward pointing with respect to Σi when
evaluated on the join. Σδ is the region on Σi ∪ Σj between the dotted lines, and
Σi,δ/Σj,δ is the region of Σi/Σj outside of Σδ. Again we note that we have used
arrows to visualise the covectors.
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where Θ
(H)
δ is a smooth approximation of the Heaviside function over the spacetime

with the requirement that it takes the value 0 on Σi,δ, 1 on Σj,δ, and interpolates

between the two in Σδ. η is some function over the spacetime satisfying the condition

that its values on Jij match the rapidity of the boost to take you from frame eµ(i) to

frame eµ(j) (η may be a function of position within the join). K is the boost generator

in the plane of normals. The only non vanishing components of the boost generator

are K0′

1′ = K1′

0′ = 1, and hence K0′1′ = −K1′0′ = 1 are the only non vanishing

components with the frame indices up.

We define a new frame as e′µ = λµ
νe

ν
(i), so that e′µ = eµ(i) for x ∈ Σi,δ, and

e′µ = eµ(j) for x ∈ Σj,δ. This frame transformation is smooth for any finite δ, and in

the limit of δ → 0 it corresponds to a discontinuous transformation between the

adapted frames across the join. Since the tetrad form of SEH is undefined for a

discontinuous transformation, we will define the bulk part of the action by taking

the δ → 0 limit of SEH calculated for finite δ. For finite δ the tetrad form of SEH is

the usual EH action, and hence this is obtained in the δ → 0 limit.

The boundary integral over Σi ∪ Σj can be written in terms of the e′µ frame as

SB =− 1

4

∫

Σi∪Σj

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ

=− 1

4

∫

Σi,δ

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ − 1

4

∫

Σj,δ

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ

− 1

4

∫

Σδ

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ

=− 1

4

∫

Σi,δ

εµνρλ e
µ
(i) ∧ eν(i) ∧ Aρλ

(i) −
1

4

∫

Σj,δ

εµνρλ e
µ
(j) ∧ eν(j) ∧ Aρλ

(j)

− 1

4

∫

Σδ

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ .

(2.51)

When we take the limit δ → 0 the two integrals on the 2nd last line will tend to the

usual GHY boundary terms on Σi and Σj. The integral on the last line will give us

the corner term in the δ → 0 limit, and we denote this by SJij
:

SJij
= lim

δ→0
−1

4

∫

Σδ

εµνρλ e
′µ ∧ e′ν ∧ A′ρλ . (2.52)

By using our definition of the new frame, e′µ = λµ
νe

ν
(i), and the gauge transformation

in (2.47) we have that

SJij
= lim

δ→0
−1

4

∫

Σδ

εµνρλ e
µ
(i) ∧ eν(i) ∧ Aρλ

(i) −
1

4

∫

Σδ

εµνρλ e
µ
(i) ∧ eν(i) ∧ gρλ . (2.53)
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where gρσ = −Kρσd(ηΘ
(H)
δ ), and the first term goes to zero as δ → 0. Using the fact

that d(ηΘ
(H)
δ ) = D(ηΘ

(H)
δ ), and that DKρλ = 0, we can pull the exterior derivative

out to the front and write SJij
as

SJij
= lim

δ→0

1

4

∫

Σδ

d(εµνρλ e
µ
(i) ∧ eν(i) ∧KρσηΘ

(H)
δ )

= lim
δ→0

1

4

∫

∂Σδ

εµνρλ e
µ
(i) ∧ eν(i) ∧KρσηΘ

(H)
δ .

(2.54)

In using Stokes’ theorem we must remember to inherit the orientation of the coordi-

nates on ∂Σδ from the orientation of the coordinates on Σδ. The boundary ∂Σδ is a

disjoint union of a part in Σi, which we denote by Ci,δ, and a part in Σj, denoted

by Cj,δ. The integral over Ci,δ vanishes since Θ
(H)
δ = 0 there. Θ

(H)
δ = 1 on Cj,δ and

hence we can write

SJij
= lim

δ→0

1

4

∫

Cj,δ

εµνρλ e
µ
(i) ∧ eν(i) ∧Kρση . (2.55)

As δ → 0 we have that Cj,δ → Jij. Since the only non-zero components of Kρλ are

when ρ, λ = 0′, 1′, the frame indices of the tetrads must be 2′ or 3′. In the δ → 0

limit the two tetrads eµ(i) and eµ(j) agree for µ = 2′, 3′, and hence we can drop the

subscript (i) in the limit. Taking the limit results in the corner term

SJij
=

1

4

∫

Jij

εµνρσe
µ ∧ eνKρση . (2.56)

Putting in the value K0′1′ = −K1′0′ = 1 we get

SJij
=

∫

Jij

e2
′ ∧ e3

′

η , (2.57)

The join Jij is part (or possibly all) of the boundary ∂Σi, and the orientation

induced on the coordinates over Jij is the same as the orientation induced on the

coordinates over ∂Σi from the orientation of the coordinates yi on Σi. Explicitly, we

pick coordinates zi = (Z, zA) on Σi, where Z is some function on Σi that increases

towards the join where it vanishes, and where the other two coordinates zA act as

coordinates on Jij when Z = 0. The orientation is then fixed by requiring that

det
(

∂yi

∂zj

)

> 0. This particular orientation will determine whether the pullback of

the 2-form e2
′ ∧ e3

′

to Jij will give plus or minus the joint area element
√
σ, where σ

is the determinant of σAB = gab
∂xa

∂zA
∂xb

∂zB
. The correct sign can be derived in a similar

manner to what was done in the derivation of the GHY boundary terms, and hence
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we will just state the results.

When Σi is spacelike(timelike), or null with λ increasing(decreasing) in the

direction of Jij:

SJij
= ±

∫

Jij

d2z
√
σ η , (2.58)

where one recalls that η is the boost parameter to go from frame eµ(i) to frame eν(j).

For timelike joins, the argument is very similar, and from 2.2.2 we know that Σi

and Σj must timelike in order for Jij to be timelike. We can, by gauge transformations

in the little group, arrange that e0
′

(i) = e0
′

(j) and e3
′

(i) = e3
′

(j), and that both of these are

orthogonal to the spacelike plane of normals (again we may require an additional

action with the discrete elements D to relate the frames, but this will not alter the

form of the boundary terms). e1
′

(i) and e1
′

(j) are still the respective normals for the two

surfaces, and we take e2
′

(i) to be outward pointing with repsect to Σi. The two frames

eµ(i) and eµ(j) are now related by a rotation in the spacelike plane of normals

eµ(j) = Λ(ij)
µ
ν
eν(i). (2.59)

Again, we define a little neighbourhood about the join and a gauge transformation

λ ∈ O(2) that interpolates between the two frames as you move from Σi to Σj:

λµ
ν = (exp [ηJΘ

(H)
δ ])µν , (2.60)

where η is now the rotation angle and J the rotation generator in the plane of

normals. −J1′

2′ = J2′

1′ = 1 are the only non-zero components of the generator, and

hence its only non-zero components with indices up are −J1′2′ = J2′1′ = 1. In the

δ → 0 limit the boundary term again gives rise to a contribution from the join

SJij
=

1

4

∫

Jij

εµνρσe
µ ∧ eνJρση . (2.61)

Since the nonvanishing components of J are −J1′2′ = J2′1′ = 1, we have the form of

the corner term:

SJij
= −

∫

Jij

e0
′ ∧ e3

′

η . (2.62)

Defining coordinates zA on Jij, with the correct orientation as before, we find that

SJij
= −

∫

Jij

d2z
√
−σ η . (2.63)

A salient difference between this case and the spacelike join is that the angles are
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only defined modulo 2π. This arises because the group SO(1, 1) is simply connected

(π1(SO(1, 1)) = 0), while the group SO(2) is multiply connected (π1(SO(2)) = Z).

This ambiguity does not however affect the variation.

Null joins differ in that the plane of normals and the tangent space to the

join share a one dimensional, null subspace. If ni is spacelike and nj is null (with

ni.nj = 0), nj belongs both to the span of normals and the tangent space to the

join. It is possible to adapt a null Lorentz frame to both Σi and Σj as follows:

e+(i) = e+(j) = nj, e
3′

(i) = e3
′

(j) = ni and e2
′

(i) = e2
′

(j), e
−
(i) = e−(j). Since eµ(i) = eµ(j), we have Λ(ij)

equal to the identity and η = 0. The corner term therefore vanishes, and the same

can be shown when both normals are spacelike and the join is null.

2.3.6 Creases

A physically interesting situation covered by the above analysis occurs when

one of the boundaries of spacetime is the event horizon of a dynamically evolving

black hole. In this case the horizon does not remain smooth when new generators

enter or leave the horizon. Suppose that we are interested in the boundary of a

future set (the case of past sets is similar). The boundary of a future set is ruled by

null generators. However, when these null generators cross because of gravitational

focussing effects, they leave the boundary and enter into the interior of the future set.

The horizon then develops a caustic, generically a spacetime region of codimension-2,

where the normal to the wavefront is discontinuous. When this happens, we have

a “crease” which separates regions of the null surface with different normal vectors.

Locally, this is no different from a null-null join discussed above. From the analysis

already presented we would expect a boundary term to appear as an integral along

the crease of the rapidity parameter. This crease would be the join of two null

surfaces, and hence it would be spacelike from our analysis in section 2.2.2. Thus, it

would contribute a joint term equal to that which we saw in the spacelike join case

treated above.

2.4 Summary

The main new advance of this work is the realisation that the tetrad formulation

of Einstein’s theory permits a unified approach to boundaries of all signatures. The

calculations are considerably simplified and the use of differential forms permits us

to integrate over boundary manifolds regardless of their signature. Additionally, our
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derivation of the corner terms is extremely simple when one sticks to the tetrads. The

complications arise when one tries to relate the expressions back to more standard

geometric objects. The methods used are complementary to [26, 27, 33] and the

perspective is somewhat different. The differential form version of the boundary

term also makes manifest the fact that the boundary corrected action is additive. In

any splitting of a spacetime into pieces, the boundary term SB, Eqn (2.33), appears

twice on the shared boundary with opposite orientation, due to our application of

Stokes’ theorem, and so cancels out.

We have worked within the Dirichlet formalism for gravity in which the pullback

metric, hij , is held fixed on the boundary during the variation. One can also conceive

of “Neumann gravity” in which the conjugate variable is held fixed. For example if

the boundary is spacelike, the quantity
√
h(Kij − 1/2Khij) related to the extrinsic

curvature is conjugate to the three-metric. There has been recent work [34] exploring

this possibility, albeit in the Euclidean context. Such alternate formalisms are of

interest since it is far from clear which ensemble would prove the most advantageous

under quantisation. It is also possible that these different choices may lead to different

quantum theories. For example, it is known in statistical mechanics that conjugate

ensembles may not always be equivalent. Such issues are particularly acute in the

case of long range forces like gravity. A classic example is the stability question of a

black hole in equilibrium with thermal radiation in a box.

A notable feature of the boundary term Eqn (2.33) is that it is not gauge

invariant, although its variation is, which means that the more physical equations of

motion are gauge invariant. One must bear in mind that the boundary action is only

determined up to a functional of the boundary data that is held fixed, in our case

the pullback of the metric to the boundary. One may worry that the value of the

action changes under change of gauge. However, there is no cause for concern. In a

path integral formulation of quantum mechanics observable quantities are related to

the absolute value squared of the Feynman amplitude in Eqn (2.1). This leads to

expressions for physical probabilities having the form of a closed time double path

integral of Schwinger-Keldysh form. The quantity that appears in the exponent in

the double path integral is then a difference of two actions, S(X3,Γ) − S(X3,Γ),

where Γ and Γ are histories going between X1 and X3. While the two histories

share the same final geometry X3, they have different values of the connection at the

final point. The two boundary terms at X3 then combine to give a gauge invariant

answer, since the difference of two connections transforms homogeneously. Another

situation that arises is when one considers asymptotically flat spacetimes, takes the

boundary to infinity, and interprets the boundary term in terms of the total mass.
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In this case, as is well known, we need to make a background subtraction in order

to get a finite answer. Once again, this subtraction results in a gauge invariant

boundary term, since the difference of two connections is a gauge covariant object.

The gauge non-invariance of the boundary term is precisely what we have exploited

in order to identify the corner terms. This remark has a parallel in the GHY format

of the boundary term too. The integrand in the boundary term Eqn (2.44) is not

coordinate invariant since it depends on the parameter λ.

In the literature, it is suggested that the corner terms [28] or their close analogs

[35] may pick up imaginary contributions (imaginary contributions figure heavily in

the Lorentzian Gauss-Bonnet theorem as well.) Using our methods, such contributions

would not be detected, as they have zero variation. However, the origin of such

terms can be understood when the normal changes from timelike to spacelike. We

have chosen different adapted frames depending on whether the normal to the

boundary is null, spacelike or timelike. This is because no Lorentz transformation

can connect these different normals. However, in connecting spacelike normals

to timelike normals, it is possible to use complex Lorentz transformations, which

may allow us to connect up the two results. In certain situations these imaginary

contributions can be interpreted as black hole entropy, as was done by Neiman (see

[28] for a fuller discussion). While such a term affects the value of the action, it

does not affect the variation. In a double path integral for quantum gravity such

imaginary contributions would also cancel out.

The case of null boundaries has not received much attention till the recent

works of Neimann[28–31], Parattu et al [26, 27] and Lehner et al [33]. Neimann

was mainly interested in imaginary contributions to the action at the join of null

boundaries. He used affine parametrisations to describe the null generators, which is

unnecessarily restrictive in the present context. The treatment of Parattu et al [26]

allows for arbitrary parametrisation of the null generators and correctly identifies

the form of the boundary action for null surfaces. However, these authors do not

consider the corner terms, which are necessary for a more complete treatment of

the boundary action. In a second paper [27], they attempt a unified description of

both the null and non-null case. Their treatment is coordinate bound and makes

assumptions about the behaviour of the normal away from the boundary. Lehner

et al [33] provide a metric treatment of the null boundary terms and identify the

corner terms. They also have a detailed discussion of reparameterisation invariance

and suggest counterterms to be added to the boundary action. In this work we offer

a perspective on reparameterisation invariance (RI) in the null case which differs

slightly from [33]. Rather than try to restore RI, we note that the lack of RI in the
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boundary action does not affect any physical quantity in the double path integral or

the equations of motion.

Finally, it should be noted that this work is not a complete treatment of

boundary terms for the action in General Relativity. We have not treated the case

in which a timelike or spacelike boundary component tends to a null surface just as

it meets another boundary component at a join. Our results would suggest that the

join contribution from such a situation would be divergent, but more work should be

done to confirm this. We have also not stated whether codimension-3 lines (meetings

of joins), or codimension-4 points (meetings of codimension-3 lines) contribute to

the action.



Chapter 3

Boundary Terms and Related

Geometry in Causal Set Theory

3.1 Introduction

One approach to constructing a quantum dynamics for the causal set approach to

quantum gravity [36] is to discover a discrete counterpart of the gravitational action,

S[C] that can furnish the weight, eiS[C], of each causal set, C, in the gravitational

sum over histories. A start in this direction has been made with a proposal for

scalar curvature estimators for causal sets of dimension d [9–11]. Summing such a

scalar curvature estimator over all elements of a causal set (causet for short) gives a

natural proposal for a causet analogue of the Einstein-Hilbert action, a proposal that

remains to be studied in depth. This chapter will be concerned with the boundary

terms for the action of causets. This is likely to be important as, in the continuum,

we have seen that the Einstein-Hilbert action, SEH , is not the full story in the

presence of spacetime boundaries. Indeed, the gravitational action must include a

boundary term SGHY , the Gibbons-Hawking-York (GHY) boundary term, in order

to yield a well-defined variational principle when the pullback of the metric is fixed

on the boundary of spacetime [37, 38]. If the classical limit of quantum gravity is

to arise from the path integral in the expected way, such a term in the action will

be essential when boundaries are present. Whilst we do not yet know how to fix

boundary conditions for causal sets in general, it is likely to be useful to have an

analogue of the GHY boundary term for any causal set which is well-approximated by

a manifold with a boundary. In this chapter we will propose a causal set analogue of

the continuum boundary term in the case of spacelike boundaries. We will also look

at other causal set analogues of geometrical objects relating to spatial boundaries, as

42
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well as investigating the above mentioned bulk causal set action for a causal interval

with null boundaries. First we consider causal sets which are well approximated

by (M, g), a d-dimensional, causal, Lorentzian spacetime with finite volume which

admits a compact spacelike submanifold, Σ, such that the causal past and future

sets, M± := J±(Σ), satisfy M+ ∩M− = Σ. Then Σ is a component of the future

(past) spacelike boundary for M− (M+) and the GHY term for Σ, considered as a

boundary of M+ or M−, is given by

SGHY

[

Σ,M±] = ∓ 1

ld−2
p

∫

Σ

dd−1x
√
hK , (3.1)

where xµ = (x0, ..., xd−1) are the spacetime coordinates, K is the trace of the

extrinsic curvature tensor Kµν = hρ
µh

σ
ν∇ρnσ of Σ, hµν is the transverse metric on Σ,

lp = (8πG)
1

d−2 is the rationalised Planck length, and we are working in units where

~ = 1. Here we take nµ to be the future-pointing timelike unit covector normal to Σ.

We work with a mostly plus convention for the metric so nµ is past-pointing 1.

We recall that the integral in (3.1) is equal to the normal derivative of the

volume of Σ along the unit normal vector field, nµ:

∫

Σ

dd−1x
√
hK =

∂

∂n

∫

Σ

dd−1x
√
h , (3.2)

where this is the rate of change of the volume backwards in time, as nµ is past-

pointing. This observation suggests a natural candidate for an analogue of the GHY

boundary term for Σ for a causet that can be faithfully embedded in M . Spacetime

volume corresponds to cardinality in a causet. Hence the spatial volume gradient

corresponds intuitively to the difference between the number of causet elements

that are future nearest neighbours of Σ and the number of past nearest neighbours.

This intuition turns out to be a good guide and we will identify a family of causal

set boundary terms based on it. The family of causet boundary terms we find

corresponds to the different ways to define a discrete derivative that tend to the

same limit in the continuum. We will also find higher order discrete derivatives and

relate them to geometrical objects in the continuum.

Before discussing the causal set expressions we will need to derive a particular

continuum result in Section 3.2. In Sections 3.3 and 3.4 we will use this continuum

result to construct our causal set expressions for geometric objects relating to the

boundary, and show that they have the appropriate continuum limits. In Section

3.5 we investigate the proposed causal set bulk action for causal intervals in flat

1This convention of an always past-pointing normal vector differs from the convention in the
previous chapter. We have chosen it here for convenience.
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spacetime and show that its mean takes the form, in the continuum limit, of a

boundary contribution from the codimension-2 “joint” of the interval’s boundary.

There are many geometric quantities that already have causal set analogues,

and in this chapter we will add to that list. The more quantities that are accu-

mulated, the more evidence there is that any geometrical quantity can be “read

off” from the causal set. This growing list of quantities also provides evidence for

the Hauptvermutung — the conjecture that two very different Lorentzian manifolds

cannot be good approximations of the same causal set [39].

3.2 Volume of a Small Causal Cone

One aspect of spacetime structure in which research has been fruitful recently

is the geometry of certain small spacetime regions [2, 40–46]. Understanding the

geometry of such regions has led to new ways of deriving Einstein’s equations from a

different set of fundamental principles [41], and an understanding of the geometry

of small spacetime intervals, in particular, has been beneficial for the causal set

approach to quantum gravity [39, 47]. There is motivation, therefore, to study small

spacetime regions in Lorentzian geometry, to further our understanding of spacetime

and to provide tools in the search for quantum gravity.

In order to construct our causal set expressions we need to study a particular

small region of spacetime — the causal cone, which will be defined shortly. In this

section we will derive a universal formula for the volume of a small causal cone. This

formula will be general in that it can be applied to a wide class of spacetimes.

3.2.1 The Setup

We will restrict our discussion to a d-dimensional, causal, Lorentzian spacetime,

(M, g), of finite volume that admits a compact spacelike submanifold, Σ. A causal

cone is then constructed in the following way. Choose a base point p ∈ Σ and let

γ be the affinely parameterised timelike geodesic starting at p with tangent vector,

Vp, normal to Σ and future pointing. Travel along this geodesic (in the positive

time direction) a proper time T , to a point q. Past going null rays are sent out

from q to form the past light-cone of q, denoted by ∂J−(q). We can then define

the causal cone to be the region that is the intersection of the future of Σ and the

past of q, i.e. the region Xq := J+(Σ) ∩ J−(q). The base of the causal cone is the

region Bq := Σ ∩ J−(q) and the upper bounding null surface, the hat, is the region
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Figure 3.1: A illustration of a causal cone in 3 dimensions of spacetime.

Tq := J+(Σ) ∩ ∂J−(q). An illustration of this setup is shown in Figure 3.1.

We then ask, what is the spacetime volume of this causal cone as an expansion in

small T (relative to the curvature scales of the chosen spacetime and hypersurface)?

The terms in front of each power of T in the expansion will be universal, in that they

will have the same form (in terms of known geometrical quantities) for any sufficiently

well behaved spacetime. These terms can only depend upon the geometry of the

spacetime local to the small causal cone (global topology does not enter the discussion,

as we assume the causal cone is small enough to not see it). We can encode this

local geometric dependence by having the terms depend upon geometrical quantities

evaluated at p. If we chose the terms to depend upon geometrical quantities at

another point, say q, then we could always represent these quantities at q as series

expansions in T with coefficients depending upon the quantities evaluated at p. In

this way one can see that any choice of where to evaluate the geometric quantities

(local to the small causal cone) can be related to the choice we make here — to

evaluate them at p. For small enough T this volume should tend to the volume of a

flat cone in Minkowski spacetime with a flat base. In the next section we will discuss

this in more detail, along with the leading order correction to the cone volume after

this flat contribution.

3.2.2 Leading Order Correction to Small Volume

In this section we will use special coordinates in order to simplify the calculation

of the cone volume correction.

Let xµ = (t,x) be “synchronous” or Gaussian Normal Coordinates (GNCs)
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adapted to Σ such that in a neighbourhood UΣ of Σ the line element is

ds2 = −dt2 + hij(t,x)dx
idxj . (3.3)

In these coordinates the surface Σ corresponds to t = 0, and the spatial coordinates

on Σ are x. Each point x ∈ UΣ lies on a unique timelike geodesic with a tangent

vector whose components at Σ are −nα, where nα is the past pointing normal to the

surface as defined previously. The t coordinate of x is equal to the proper time from

Σ to x along that geodesic. The restriction of the spacetime to this neighbourhood

of Σ is globally hyperbolic with Cauchy surface Σ. These coordinates will also be

useful later when deriving the causal set expressions.

Recall that p is the point on Σ where the unique timelike geodesic through

q, whose tangent is normal to Σ, intersects Σ. Let the values of q’s GNCs be

xµ
q = (tq,xq), then p has GNCs xµ

p := xµ(p) = (0,xq). We choose T small enough

such that there exists a Riemann normal neighbourhood centred on p containing

the cone region Xq. We choose Riemann Normal Coordinates (RNCs) centered at p,

yµ = (y0,y) = (t,y), such that the GNC time coordinate of q equals the RNC time

coordinate of q: tq = tq =: T .

The relationship between RNCs yµ and GNCs xν is, to second order,

yµ = Aµ
ν(x

ν − xν
p) +

1

2
Aµ

µΓ
µ
νρ(p)(x

ν − xν
p)(x

ρ − xρ
p) +O((x− xp)

3) . (3.4)

The constant matrix Aµ
µ obeys

Aµ
µA

ν
νηµν = gµν(p) , (3.5)

and the metric and Christoffel symbols in RNCs are flat at p:

gµν(p) = ηµν ,

Γµ
νρ(p) = 0 .

(3.6)

The inverse coordinate transformation is

xµ = xµ
p + Aµ

µy
µ +O(y3) , (3.7)

where Aµ
µ is the inverse matrix of Aµ

µ, i.e. Aµ
µA

µ
ν = δµν and Aµ

µA
µ
ν = δµν . There

is no O(y2) term in (3.7) due to the fact that Γµ
νρ(p) = 0. The components of Aµ

µ

satisfy A0
0 = 1, A0

i = 0, Aı

iA


jδı = hij(p) and δı = Ai
ı
Aj


hij(p).

In the T → 0 limit we have that q → p along the geodesic normal to Σ. That
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makes the region Xq, whose volume we need, tend to a truncated solid, nearly flat

cone with apex q and a base on Σ defined by a quadratic form in the three spatial

RNCs around p. The leading contribution to the volume,

VN(q) =

∫

Xq

ddy
√

−g(y) , (3.8)

is therefore the volume, vol(Sd−2)

d(d−1)
T d, of the flat cone of height T with a flat base on

surface t = 0, where vol(Sd−2) is the volume of a unit (d− 2)-sphere. Corrections to

this are higher order in T and come from three sources: (i)
√

−g(y) 6= 1, (ii) the

null geodesics down from q to Σ, making up the hat Tq, are not straight, and (iii)

the base, Bq is not a flat disc. The first two corrections are due to the curvature of

M and the third comes from the extrinsic curvature of Σ.

The correction from (iii) is found by taking the spacetime to be flat, so that

RNCs are the usual Cartesian coordinates centred at p and Tq is the top boundary of

the flat cone, satisfying
∑d−1

ı=1 (y
ı)
2
= (T − t)2 and t ∈ [0, T ]. The base Bq in GNCs

lies in the surface t = 0, so we can use (3.4) to find the equation for the surface in

RNCs. This gives

t =
1

2
Γ0

ij(p)(x
i − xi

p)(x
j − xj

p) +O((x− xp)
3) . (3.9)

The linear part on the right hand side of (3.4) vanishes, since A0
µ(x

µ−xµ
p ) = t (which

follows from A0
i = 0 and A0

0 = 1) and t = 0 on the bottom surface. Using the inverse

RNC relation (3.7), the equation for Bq in RNCs is

t =
1

2
Γ0

ij(p)A
i
ı
Aj


yıy +O(y3) . (3.10)

Let us rewrite this equation in spherical polar coordinates, i.e. define r :=
√

δıyıy

and the usual angular coordinates φ1, .., φd−2 in terms of the spatial coordinates

y1 = r cos(φ1), . . . , y
d−1 = r sin(φ1) · · · sin(φd−3) sin(φd−2). Then

t =
1

2

(

Γ0
ij(p)A

i
ı
Aj



yıy

r2

)

r2 +O(y3) =
1

2
f(xq,φ)r

2 +O(y3) , (3.11)

where φ stands collectively for all the angular coordinates φ1, .., φd−2. The function

f(xq,φ) depends on xq since Γ0
ij and Ai

ı
depend on the position p.

With the boundaries of the integration region in hand, we can now write down



48 Chapter 3. Boundary Terms and Related Geometry in Causal Set Theory

Figure 3.2: A 3-dimensional representation of the region Xq in RNCs. The hat,
Tq, of ∂Xq can be approximated as a flat cone, and the base, Bq, intersects Tq at a
radial coordinate, rmax(φ), which will in general be a function of the angles φ (in 3
dimensions there is one angle φ). This function is found by projecting down from
the intersection to the t plane.

the integral explicitly in spherical coordinates:

∫

Xq in flat space

ddy =

∫

Sd−2

dΩd−2

∫ rmax(φ)

0

rd−2dr

∫ −r+T

1

2
f(xq ,φ)r2

dt+O(T d+2) , (3.12)

where rmax(φ) is the value of the radial coordinate for which Bq intersects Tq at an

angle φ, as shown in Figure 3.2. Equating the time coordinates of Tq and Bq gives

1

2
f(xq,φ)rmax

2(φ) = −rmax(φ) + T . (3.13)

We solve this for rmax(φ) and take the positive solution. The solution can be

expanded in T and is simply rmax = T + O(T 2), with angular dependent terms

contributing at O(T 2). The O(T 2) term will contribute at O(T d+2) in the volume

integral. Substituting rmax = T into (3.12) allows us to evaluate the integral (3.12),

which equals

vol(Sd−2)

d(d− 1)
T d

(

1− d

2(d+ 1)
Γ0

ij(p)A
i
ı
Aj


δıT

)

+O(T d+2) , (3.14)

where the δı comes from the fact that cross terms (ı 6= ) vanish under the angular

integration. The defining relations for Ai
ı
can be rearranged to give Ai

ı
Aj


δı = hij(p),

and in GNCs the extrinsic curvature on the surface is given by

K = −Γ0
ijh

ij = −1

2

ḣ

h
. (3.15)
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Substituting this into (3.14) we obtain

vol(Sd−2)

d(d− 1)
T d

(

1 +
d

2(d+ 1)
K(0,xq)T

)

+O(T d+2) , (3.16)

where the arguments of the extrinsic curvature K are the GNC’s of p. We can now

see that the first contribution is the volume of the flat cone with flat base as expected,

and the first correction is of order T d+1.

The corrections (i) and (ii) come from the non-flatness of the metric. The

determinant
√−g can be expanded in RNCs and the deviation of Tq from straight lines

considered. The curvature contribution to the volume of a small, approximately flat

causal interval – or Alexandrov neighbourhood – of these effects has been calculated

[40, 46, 48] and the same arguments show that the corrections (i) and (ii) in our

case are of the same order, O(T d+2), which means they are suppressed with respect

to the correction derived above. This is to be expected on dimensional grounds as

extrinsic curvature has dimensions of inverse length whereas Riemann curvature has

dimensions of inverse length squared. We will see that O(T d+2) corrections do not

contribute to the causal set boundary term in the limit.

If (T,x) are the GNCs of a point q ∈ UΣ ∩M+ then we have T > 0. If we allow

ourselves to use the GNCs of q as the argument of the cone volume function, i.e

VN(q) = VN(T,x), we have

VN(T,x) =
vol(Sd−2)

d(d− 1)
T d

(

1 +
d

2(d+ 1)
K(0,x)T

)

+O(T d+2) . (3.17)

If we take (−T,x) to be the GNCs of a point q ∈ UΣ∩M−, then T > 0 and T denotes

the absolute value of the proper time along the geodesic from p to q. Following the

same steps as above we can compute the volume of the “upside down” causal cone

to the past of Σ. Such a cone is constructed by moving backwards in time along the

geodesic from p to q, and by sending out forward going null rays from q till they

intersect Σ. The upside down causal cone is the region J−(Σ)∩J+(q) and its volume,

VH(q) = VH(−T,x), is:

VH(−T,x) =
vol(Sd−2)

d(d− 1)
T d

(

1− d

2(d+ 1)
K(0,x)T

)

+O(T d+2) , (3.18)

where T > 0.
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3.2.3 Definitions for Higher Order Terms

We now turn to the question of the higher order corrections to the cone volume.

There may be more geometric objects, other than the extrinsic curvature, that can

contribute at this order, and in the next section we derive exactly which geometric

objects enter into the formula for the volume, up to the order we are considering.

Some of these geometric quantities relate to the past pointing normal vector (one

could equally use the future pointing normal) to Σ, which we denote by NΣ, and the

future pointing tangent vector along γ (the geodesic from p to q), Vγ. To simplify

our search for the different geometric quantities we define a vector field that captures

the information of both NΣ and Vγ . Finding all of the quantities relating to NΣ and

Vγ then reduces to enumerating all the possible derivatives of this single vector field,

up to the relevant order, and evaluating them at p. We now define such a vector

field.

Let xα be coordinates for (M, g), where α = 0, ..., d − 1. In Section 2.2 we

used a function S(x) to define the normal, and we will do something similar here.

Choose a function S(x) (where x ∈ M) that increases to the future, equals zero

on Σ, and equals the proper time along γ from p to x for x ∈ γ 2. We then define

the normalised covector nα := (−gµν∂µS∂νS)
− 1

2∂αS, and the past pointing vector

nα := gαβnβ. When evaluated on the surface, nα are the components of NΣ, and

when evaluated along γ they are the components of −Vγ (the factor of −1 comes

from the fact that nα is past pointing and the tangent vector to γ is future pointing).

In this way the vector field nα encodes the vectors NΣ and Vγ at the same time.

The conditions that our chosen function must satisfy afford us a lot of freedom.

Any function satisfying the above conditions will give the same vector nα evaluated

at x ∈ Σ ∪ γ, but two such functions will in general give rise to vector fields that

differ for x 6∈ Σ ∪ γ. When we choose our function S(x) we are effectively choosing

the form of nα away from Σ∪ γ. This choice is independent of our causal cone setup,

and any geometric quantities relating to our setup cannot depend on this choice.

Recall the transverse metric on Σ is defined as hαβ := gαβ + nαnβ. If we raise

an index with gαβ then we get the tensor hα
β which projects vectors into the tangent

space of Σ, and satisfies hα
βn

β = 0 and hα
βh

β
γ = hα

γ. The extrinsic curvature

tensor is defined as Kαβ := nσ;ρh
ρ
αh

σ
β, where the semi-colon denotes the covariant

derivative. The extrinsic curvature scalar is then K := Kαβg
αβ, and it can be shown

2The definition of S(x) may be reminiscent of the construction of the time coordinate in
Gaussian normal coordinates. The definition of the time coordinate in that case requires us to
talk about all the geodesics with tangent vectors normal to Σ. Here we only care about the single
geodesic γ.
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that K = nα
;α and KαβKαβ = nα

;βn
β
;α on Σ. The last two relations are both

independent of our choice of nα away from Σ. For more discussion on the geometric

quantities mentioned here we refer the reader to [49].

3.2.4 All Possible Contributions

In this section we will work out the next-to-leading contributions to the general

volume formula for a small causal cone. In section 3.2.2 we saw that

VN(T ) = Vflat(T )

(

1 +
d

2(d+ 1)
KT +O(T 2)

)

, (3.19)

where K is evaluated at p, Vflat(T ) := vol(Sd−2)

d(d−1)
T d is the volume of a flat cone in

Minkowski spacetime with a flat base, and we have omitted the spatial coordinates

of p from the arguments for brevity. Here, we are interested in the O(T 2) term in

the brackets in (3.19), which is O(T d+2) if we include the prefactor. The expression

multiplying T 2 in this term will be a sum of geometric scalars which, by dimensional

analysis, must all have dimensions of length L−2. The only scalars that contribute

are K2, KαβKαβ, R and Rαβn
αnβ (where we have used the usual definitions of the

Ricci tensor and Ricci scalar), which we will now show.

To systematically determine all the possible scalar quantities we start with the

basic dimensionless objects, gαβ and nα, from which any geometric expression relating

to our setup can be constructed. In order to get the right dimensions of length we

then form all the scalars involving these objects that contain two derivatives. Every

scalar we form will either contain a second order derivative or a product of first order

derivatives.

Let us start with the metric gαβ. There are no covariant expressions that can

be formed from first order derivatives of gαβ so we only need to consider its second

order derivatives. At second order we have the Riemann tensor, Rαβγδ, and in order

to make a scalar we must contract it with gαβ and/or nα. The only two resulting

expressions that can be formed from such contractions are R and Rαβn
αnβ.

There are no terms related to the intrinsic curvature of Σ that can be inclu-

ded. For example, the intrinsic Ricci scalar d−1R cannot be included as it is not

independent from the four quantities we have already, which can be seen from the

Gauss-Codazzi equations [49]. The only other possibility is the Ricci tensor of Σ,

but we cannot include this as there is nothing to contract it with to give a non-zero

quantity other than d−1R.

We now turn to the vector field nα. It still remains to be checked that there
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are no other scalars that should be included involving a second order derivative or a

product of first order derivatives of nα. To completely exhaust the latter possibility

let us write down the most general (in the sense that we have not contracted any

indices) product of two first order derivatives: nα
;βn

γ
;δ. We can use the fact that

nα
;βn

β = 0 at p, and that nα;βn
α = 1

2
(nαnα);β = 0 to show that contracting any of

the indices with nµ will give 0. We, therefore, must contract with the metric to get

something non-zero, and one can show that such contractions will give either K2 or

KαβKαβ. For example, take the following contraction:

nα
;βn

γ
;δgαγg

βδ = nα;βnγ;δg
αγgβδ

= nα;βnγ;δh
αγhβδ

= nα;βnγ;δh
α
ρh

γ
σg

ρσhβ
µh

δ
νg

µν

= KµρKνσg
ρσgµν

= KνσKνσ .

(3.20)

In the first line we have used the fact that gαβ = hαβ − nαnβ, and that the resulting

contractions with nµ vanish. In the second line we have used the fact that hαβ =

hα
γh

β
δg

γδ, and in the third line we have combined the relevant terms to form the

two extrinsic curvature tensors. The other possible contractions of nα
;βn

γ
;δ with the

metric trivially result in either K2 or KαβKαβ.

The most general second order derivative of nα is nα
;βγ (in the sense that no

indices have been contracted). If we do not contract the bottom two indices with

nβnγ or hβ
δh

γ
σ the resulting expression will depend on our choice of nα away from

Σ∪ γ, which cannot be the case for any quantity relating to our geometric setup. To

see this let us do the following contraction: nα
;βγn

βhγ
σ. If we evaluate this at p then

the contraction with nβ projects the first derivative along the geodesic γ, and the

contraction with hγ
σ projects the second derivative tangent to the surface. Such a

second order derivative will depend on the form of nα away from Σ ∪ γ. If we stick

to contractions with nβnγ or hβ
δh

γ
σ then we only have to deal with second order

derivatives along γ or within the surface respectively, which do not depend on nα

away from Σ∪ γ. If we contract nα
;βγ with nβnγ the resulting expression vanishes at

p, using the fact that nα
;βn

β = 0 along γ and that nα
;βnα = 0. If we contract with

hβ
δh

γ
σ then the two indices δ and σ must be contracted with gδσ, as a contraction

with nδ will give 0. We also need to contract the free α index, which we can only

do with nα. The resulting expression does not give anything new, as can be seen by
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manipulating it as follows:

nα
;βγnαh

β
δh

γ
σg

δσ = nα
;βγnαg

βγ

=
(

(nα
;βnα);γ − nα

;βnα;γ

)

gβγ

= −nα
;βnα;γg

βγ

= −nα;βnρ;γg
αρgβγ

= −KαβKαβ .

(3.21)

The equality in the first line comes from the fact that hβ
δh

γ
σg

δσ = hβγ = gβγ + nβnγ ,

and that the resulting contraction with nβnγ vanishes, as explained above. The first

term in brackets on the second line vanishes as nα
;βnα = 0, and in the fourth line

we have used (3.20). We have now exhausted the list of possible scalars that can

contribute to the volume formula.

The most general formula for the expansion of VN(T ) up to O(T d+2) can be

written down as

VN(T ) = Vflat(T )

(

1 +
d

2(d+ 1)
KT +

(

c1K
2 + c2K

αβKαβ

+c3R + c4Rαβn
αnβ
)

T 2 +O(T 3)

)

,

(3.22)

where the geometric quantities are evaluated at p. The coefficients c1, c2, c3 and c4

cannot depend on any geometrical quantities related to the spacetime, since we have

already incorporated this information in the four quantities K2, KαβKαβ, R and

Rαβn
αnβ. The only remaining quantity that we can encode in these coefficients, and

that is local to the causal cone, is the dimension of the spacetime. Therefore, the

coefficients c1, c2, c3 and c4 can only depend on the dimension, and their form in

terms of the dimension will not depend on the geometry of the spacetime, i.e. they

are universal for a given dimension.

We could proceed as in 3.2.2 and use RNC’s to find these coefficients as was done

in [44, 46], but this would be more complicated now that we are dealing with a higher

order contribution to the volume. Instead, we can follow the approach of Gibbons

and Solodukhin in [40]. Their approach only requires us to use different spacetime

setups in which we know the volume expansions and the relevant geometric quantities.

The different spacetime setups can then be used to pin down the dependence of these

coefficients on the dimension.

It should be mentioned that our derivation of this volume formula has not

presupposed a specific spacetime. This volume formula can be applied to any
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sufficiently well behaved spacetime. Different spacetimes will give different causal cone

volumes if the geometric quantities present in (3.22) differ for the given spacetimes,

or if their dimensions differ.

Finally, the next order correction to this volume expansion is assumed to be

of order T d+3, since all of the volume expansions we have encountered in specific

spacetimes have had this form.

3.2.5 Intrinsic Curvature Terms

In order to determine the coefficients in front of the terms involving R and

Rαβn
αnβ we can follow what was done in [40]. There, Gibbons and Solodukhin derive

the volume formula for a small interval in a general spacetime by calculating the

volume of specific intervals in the Einstein static universe and in de Sitter spacetime.

In both spacetimes we can form causal cones from the intervals that Gibbons and

Solodukhin considered by taking their “top-halves”. The construction of the top-half

of the interval in the Einstein static universe or the de Sitter spacetime is as follows.

Take the geodesic going from the past-most point of the interval to the future-

most point, and take p to be the point half way along that geodesic in proper time.

The point q is the future-most point of the interval and the tangent vector of this

geodesic at p is Vp. This tangent vector is orthogonal to a family of spacelike vectors

which generate geodesics expanding out from p. We can take the union of these

geodesics to be Σ. Given that we have p, q and Σ, we can construct our causal cone

as above. In both spacetimes the base surface generated in this way will have zero

extrinsic curvature, and hence we can write the volume expansion as

VN(T ) = Vflat(t)
(

1 + (c3R + c4Rαβn
αnβ)T 2 +O(T 3)

)

. (3.23)

In both spacetimes the volume of the causal cone is simply half the volume of

interval from which it was constructed. Therefore, the values of the coefficients c3

and c4 can immediately be determined from the interval volume formula in [40]. We

find that

c3 = − d

6(d+ 1)(d+ 2)

c4 =
d

6(d+ 1)
.

(3.24)
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3.2.6 Extrinsic Curvature Terms

We now move on to the extrinsic curvature terms in (3.22). For simplicity we

can take the spacetime to be Minkowski so that the intrinsic curvature terms all

vanish, and look at two curved surfaces within the spacetime. The two surfaces will

be specific cases of a one parameter family of surfaces defined by

Σa := {x ∈ M |Sa(x) = 0} , (3.25)

where a is the one (positive) parameter and

Sa(x) := t− r2
(

a cos2(θ1) + sin2(θ1)
)

. (3.26)

We have used spherical polar coordinates for the spatial coordinates, such that the

coordinates are xµ = (t, r, θ1, ..., θd−2) (where θd−2 ranges over [0, 2π) while the others

range over [0, π]). Each surface in the family is not necessarily spacelike everywhere,

so we choose the base point of the cone, p, to be at the origin of the coordinate

system where the surfaces are spacelike. We also choose T small enough, with respect

to a, such that the causal cone’s base is a region of the surface that is entirely

spacelike. We will first determine the volume of a causal cone for a general choice of

the parameter a, and then specify at the end to determine the coefficients c1 and c2.

Using the function Sa(x) one can determine the geometric quantities of interest:

K = −2(a+ d− 2) ,

KαβKαβ = 4(a2 + d− 2) ,
(3.27)

evaluated at p. The volume of the causal cone is

VN(T ) =

∫

dΩd−2

∫ rint(θ1)

0

dr rd−2

∫ −r+T

r2(a cos2 θ1+sin2 θ1)
dt

= vol(Sd−3)

∫ π

0

dθ1 sind−3(θ1)

∫ rint(θ1)

0

dr rd−2

∫ −r+T

r2(a cos2 θ1+sin2 θ1)
dt

=
vol(Sd−2)

d(d− 1)
T d

(

1− d(a+ d− 2)

d+ 1
T

+
d (3a2 + 2a(d− 2) + d(d− 2))

2(d+ 1)
T 2 +O(T 3)

)

.

(3.28)

In the first line we have evaluated the integrals for the angular coordinates that do

not appear in the rest of the integral. In this case the radius of intersection of the
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hat and base, rint(θ1), depends on θ1. Explicitly this radius is

rint(θ1) =
−1 +

√

1 + 4aT cos2(θ1) + 4T sin2(θ1)

2
(

a cos2(θ1) + sin2(θ1)
) . (3.29)

Given that we only need the O(T 2) correction to the flat volume of the causal cone,

we only require rint(θ1) up to O(T 2). We can, therefore, Taylor expand the RHS

of (3.29) in small T and only keep up to O(T 2). Using this expansion in place of

rint(θ1) in (3.28) makes it possible to evaluate the θ1 integral and arrive at the final

expression.

We equate the O(T 2) correction in the volume to c1K
2 + c2K

αβKαβ, and by

using (3.27) we find the following equation for c1 and c2:

(a+ d− 2)2c1 + (a2 + d− 2)c2 =
d (3a2 + 2a(d− 2) + d(d− 2))

8(d+ 1)
. (3.30)

We now specialise to the two surfaces given by a = 0 and a = 1. Both choices of a

can be substituted into (3.30) to give two simultaneous equations for c1 and c2, the

solution for which is

c1 =
d

8(d+ 1)
, (3.31)

c2 =
d

4(d+ 1)
. (3.32)

The final formula for the volume of a causal cone is then

VN(T ) = Vflat(T )

(

1 +
d

2(d+ 1)
KT +

d

4(d+ 1)

(

1

2
K2 +KαβKαβ

− 2

3(d+ 2)
R +

2

3
Rαβn

αnβ

)

T 2 +O(T 3)

)

.

(3.33)

Similar steps can be carried out to determine the formula for the volume of the

“upside down” causal cone VH(−T ):

VH(−T ) = Vflat(T )

(

1− d

2(d+ 1)
KT +

d

4(d+ 1)

(

1

2
K2 +KαβKαβ

− 2

3(d+ 2)
R +

2

3
Rαβn

αnβ

)

T 2 +O(T 3)

)

,

(3.34)

where we recall that T > 0.
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3.3 Use In Causal Set Theory

In this section we will apply (3.33) and (3.34) to causal set theory. The general

motivation for this work is to add to the list of geometric quantities that we can

glean from the causal set. Each new quantity added to this list provides further

evidence in favor of the Hauptvermutung, and strengthens the idea that the causal

set can encode all of spacetime geometry.

3.3.1 The Mean of Pk and Fk

We say an element of a causal set, C, is of Pk (Fk) type if it has k elements

to its past (future), and we understand that this property can only be attributed

to an element if C is past (future) finite. We define the functions Pk[C] and Fk[C]
on a causal set, C, to be those that return the number of Pk and Fk elements in C
respectively.

We will restrict ourselves to sprinklings into the spacetime (M, g) described

above with a spatial surface Σ and its future and past sets M± = J±(Σ). A sprinkling

into such a spacetime naturally generates a partition of the sprinkled causal set, that

which has been sprinkled to the future of Σ, M+, which we call C+, and that which

has been sprinkled to the past of Σ, M−, which we call C−. We define the random

variable Pk (Fk) as that which takes the value of the function Pk (Fk) acting on the

sprinkled causal set C+ (C−). It should be noted that strictly speaking the random

variable is a function of the spacetime, the surface Σ and the sprinkling density ρ. In

this section we aim to find the average over the sprinkling process of Pk and Fk as

an expansion in large ρ. This will allow us to then craft causal set expressions that

give continuum geometrical quantities on average in the ρ → ∞ limit. An illustrative

sketch of the idea is shown in Figure 3.3.

The probability that, in a given sprinkling, a point x ∈ M+ is a Pk element

of C+ is given by the probability that k points of the sprinkling lie in the region

J−(x) ∩ J+(Σ). For the Poisson process the probability of such an event is

P
(

k points in J−(x) ∩ J+(Σ)
)

=
(ρ VN(x))

k

k!
e−ρVN(x) , (3.35)

We have written the causal cone volume as a function of the point x, as given a

point x above Σ we can find the geodesic that intersects x with an initial tangent

vector normal to Σ on the surface. From this geodesic we can get the proper time, T ,

between Σ and x, which we then insert into the causal cone volume formula in (3.33).
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Figure 3.3: An illustration of a sprinkling into a spacetime partitioned by a spacelike
hypersurface. Black points correspond to causal set elements and links (irreducible
causal relations) between elements are shown as thin black lines. The maximal (F0)
elements in C− and the minimal (P0) elements in C+ have been highlighted with
white filling. The shaded areas illustrate the regions whose volumes are VN and VH.
In this sketch P0[C+] = 11 and F0[C−] = 5 (with time flowing upwards).

The probability of sprinkling an element into an infinitesimal d-volume, dVx, at x

is ρdVx, and so the expected number of Pk elements above Σ is an integral of the

product of these probabilities, over all the spacetime points in M+. We, therefore,

have the following expression for the expectation value of Pk:

〈Pk〉 = ρ

∫

J+(Σ)

dVx
(ρ VN(x))

k

k!
e−ρVN(x) . (3.36)

Similarly the expected number of Fk elements below Σ is

〈Fk〉 = ρ

∫

J−(Σ)

dVx
(ρ VH(x))

k

k!
e−ρVH(x) , (3.37)

where VH(x) = vol(J−(Σ) ∩ J+(x)).

In order to evaluate (3.36) and (3.37) for large ρ we use “synchronous” or

Gaussian Normal Coordinates (GNCs), xµ = (t,x), adapted to Σ as was done in

section 3.2.2. In a neighbourhood UΣ of Σ the line element is

ds2 = −dt2 + hij(t,x)dx
idxj , (3.38)

the surface Σ corresponds to t = 0, and the spatial coordinates on Σ are x. The t

coordinate is the proper time along the geodesics from Σ that are generated by the

normal vectors to Σ.

The integrals (3.36) and (3.37) seem intractable as they stand, since the in-

tegration is over the entire causal past/future of the surface. However, since Σ is

compact and M+ and M− are of finite volume, we can always find a subneighbour-

hood of UΣ such that the contribution to the integrals from the complement of that
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subneighbourhood tends to zero exponentially quickly as ρ → ∞. Let ε > 0 be small

enough such that for all p ∈ Σ and |t| < ε, (t,x(p)) are the GNCs of a point in UΣ.

Define UΣ(ε) := {q ∈ UΣ : |t(q)| < ε} and consider the integral in (3.37) restricted

to W := J+(Σ) \ UΣ(ε):

∣

∣

∣

∫

W

dVx
(ρ VN(x))

k

k!
e−ρVN(x)

∣

∣

∣ ≤ ‖e−ρVN‖
∫

W

dVx
(ρ VN(x))

k

k!
, (3.39)

where ‖e−ρVN‖ is the uniform norm over the integration region W . Since VN(x)

increases with t along the geodesics from Σ, and {q ∈ UΣ : t(q) = ε} is diffeomorphic

to Σ and so is compact, VN(x) achieves its minimum value Vmin > 0 in W at

some point with t = ε. Then ‖e−ρVN‖ = e−ρVmin and so the integral (3.39) falls off

exponentially fast as ρ → ∞. Similarly for (3.36).

Thus, so long as ρ is large enough, we make only an exponentially small error

by cutting off the integration ranges in (3.36) and (3.37) at t = ±ε with ε as small

as we need in order to be able to expand in powers of t.

In GNC’s we can expand the determinant of the metric around t = 0 to write

the volume factor as

√−g = h
1

2



1 +
1

2

ḣ

h
t+

1

4





ḧ

h
− 1

2

(

ḣ

h

)2


 t2 +O(t3)





= h
1

2

(

1−Kt+
1

2

(

K2 −KαβKαβ −Rtt

)

t2 +O(t3)

)

(3.40)

where h := det (hij), and we use a dot for a partial derivative with respect to t. All

the geometric quantities have been evaluated at t = 0 and their spatial dependence

has been omitted for brevity. To arrive at the second line we have used the fact

that, in GNC’s, we have that K = −ḣ/2h and K̇ = Rtt +KαβKαβ. Using the above

expansion, the integrals in (3.36) and (3.37) become

〈Fk〉 = ρ

∫

Σ

dd−1x

∫ 0

−ε

dt h
1

2

(

1−Kt+
1

2

(

K2 −KαβKαβ −Rtt

)

t2 +O(t3)

)

× (ρ VH(t,x))
k

k!
e−ρVH(t,x) + . . . ,

〈Pk〉 = ρ

∫

Σ

dd−1x

∫ ε

0

dt h
1

2

(

1−Kt+
1

2

(

K2 −KαβKαβ −Rtt

)

t2 +O(t3)

)

× (ρ VN(t,x))
k

k!
e−ρVN(t,x) + . . . ,

(3.41)
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where we have used the GNC’s as the arguments of the cone volume function, and

+ . . . denotes “terms that vanish exponentially fast with ρ in the limit ρ → ∞”. It

should be noted that the spatial integrals above are over the entire hypersurface Σ.

The spatial integrals involved in the causal cone volume calculations, however, are

only over the base surface region of Σ.

3.3.2 Use of the Cone Volume Expansion

We will now use the expansions of the cone volumes (3.33) and (3.34) in (3.41),

and evaluate the integrals in the large ρ limit. We will focus our attention on 〈Pk〉
as the case of 〈Fk〉 is very similar.

If we substitute in the formula for the volume expansion we get

〈Pk〉 = ρ

∫

Σ

dd−1xh
1

2

∫ ε

0

dt
(

1−Kt+Dt2 +O(t3)
)

×
(

ρ Atd (1 + Bt+ Ct2 +O(t3))
)k

k!
e−ρAtd(1+Bt+Ct2+O(t3)) + . . . ,

(3.42)

where we have defined

A :=
vol(Sd−2)

d(d− 1)
, B :=

d

2(d+ 1)
K ,

C :=
d

4(d+ 1)

(

1

2
K2 +KαβKαβ −

2

3(d+ 2)
R +

2

3
Rtt

)

,

D :=
1

2

(

K2 −KαβKαβ −Rtt

)

.

(3.43)

The definitions of C and D are consistent with previous formulae for the volume of

the small causal cone as Rαβn
αnβ = Rtt in our setup with the GNC’s. We will now

try and manipulate the integrand into the form of a Gamma function. To do this we

split the exponential into a product of two exponentials

e−ρAtd(1+Bt+Ct2+O(t3)) = e−ρAtde−ρAtd(Bt+Ct2+O(t3))

= e−ρAtd
(

1− ρAtd
(

Bt+ Ct2 +O(t3)
)

+O
(

t2(d+1)
))

.

(3.44)

To get to the second line we have expanded the second exponential on the RHS in

the first line in small t. If we use (3.44) in (3.42), and do a small t expansion of

the rest of the integrand, then each term in this expansion gives an integral of the

following form

ρη
∫ ε

0

dt tζe−ρAtd , (3.45)
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where η, ζ ∈ R. If we make the substitution z = ρAtd then this integral takes on the

form of an incomplete gamma function.

A−( ζ+1

d )

d
ρη−(

ζ+1

d )
∫ ρAεd

0

dz z(
ζ+1

d )−1e−z . (3.46)

We then take ρ → ∞ to get

lim
ρ→∞

∫ ρAεd

0

dz z(
ζ+1

d )−1e−z = Γ

(

ζ + 1

d

)

+ . . . , (3.47)

where, as before, + . . . denotes terms that tend to zero exponentially fast in ρ, and

so are zero in the limit ρ → ∞.

We can now evaluate any integral in (3.42). This gives us the limiting behaviour

of 〈Pk〉 as

〈Pk〉 =ρ1−
1

d
A− 1

d

d

Γ
(

1
d
+ k
)

k!
I0 − ρ1−

2

d
(d+ 2)A− 2

d

d(d+ 1)

Γ
(

2
d
+ k
)

k!
I1

+ ρ1−
3

d
A− 3

d

4d(d+ 1)2
Γ
(

3
d
+ k
)

k!
I2 +O

(

ρ1−
4

d

)

,

〈Fk〉 =ρ1−
1

d
A− 1

d

d

Γ
(

1
d
+ k
)

k!
I0 + ρ1−

2

d
(d+ 2)A− 2

d

d(d+ 1)

Γ
(

2
d
+ k
)

k!
I1

+ ρ1−
3

d
A− 3

d

4d(d+ 1)2
Γ
(

3
d
+ k
)

k!
I2 +O

(

ρ1−
4

d

)

.

(3.48)

where we have included 〈Fk〉 as well for completeness, and we have defined the

integrals over the geometric quantities as

I0 :=

∫

Σ

dd−1x
√
h

I1 :=

∫

Σ

dd−1x
√
hK

I2 :=

∫

Σ

dd−1x
√
h
(

ω1(d)K
2 + ω2(d)K

αβKαβ + ω3(d)R + ω4(d)Rαβn
αnβ
)

,

(3.49)

with

ω1(d) := 11 + 2d(d+ 5)

ω2(d) := −(d+ 1)(2d+ 5)

ω3(d) :=
2(d+ 1)

(d+ 2)

ω4(d) := −2(d+ 1)(d+ 2) ,

(3.50)
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and where we have substituted Rαβn
αnβ back in for Rtt in (3.49).

The three integrals I0, I1 and I2 that appear in (3.49) are all integrals over

geometric quantities that only depend upon the metric and the hypersurface. This

means that the integrals do not depend upon our particular choice of GNCs, and

hence neither does the result (3.48).

The Gauss-Codazzi equations relate the four geometric quantities in I2 to the

Ricci scalar for the surface, d−1R. We can use this relation to swap out any of the

four quantities in I2 for d−1R.

It is interesting to note that from the limiting behaviour of 〈Pk〉 or 〈Fk〉 we can
find the dimension, d, by taking the ratio of either 〈P0〉 and 〈P1〉, or 〈F0〉 and 〈F1〉.
The limiting behaviour of the latter ratio, expressed in terms of the discreteness

length l = ρ−1/d, is found to be

〈F0〉
〈F1〉

= d− bdΓ
(

2
d

)

adΓ
(

1
d
+ 1
)

∫

Σ
dd−1x

√
hK

∫

Σ
dd−1x

√
h

l +O(l2) . (3.51)

In the limit of l → 0 one gets the dimension exactly. The fraction involving the two

integrals is simply the average value of the extrinsic curvature across Σ. The case

for the ratio of 〈P0〉 and 〈P1〉 is the same as (3.51) but with a positive sign after d.

3.4 Causal Set Expressions

3.4.1 The Boundary Terms

Given a finite causet, (C,�), with two subcausets, C+ and C− we introduce the

following family of causal set “boundary terms” (CBT):

S
(d)
CBT

[

C, C−, C+; ~p, ~q
]

:= (l/lp)
d−2 ad

(

∑

m

pmFm

[

C−]+
∑

n

qnPn

[

C+
]

)

, (3.52)

where the constant ad is given by

ad =
d(d+ 1)

(d+ 2)

(

vol(Sd−2)

d(d− 1)

) 2

d

. (3.53)

vol(Sd) = (d + 1)π
d+1

2 /Γ
(

d+1
2

+ 1
)

is the volume of the unit d-sphere, l is the

discreteness length and lp the Planck length. ~p and ~q denote finite strings of real

numbers (p0, . . . , pm, . . .) and (q0, . . . , qn, . . .) respectively. The sums, which are over
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the non-negative integers, will terminate at some point since ~p and ~q are finite strings.

We have also partitioned the causal set into C+ and C−, and restricted the functions

Fm and Pn to act on C− and C+ respectively. We can think of this as a family of

functions, with each member of the family specified by their particular strings ~p and

~q.

We will now prove that the strings must satisfy the following conditions in order

for S
(d)
CBT to be considered a boundary term:

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!
= 0 , (3.54)

∑

m

pm
Γ
(

2
d
+m

)

m!
−
∑

n

qn
Γ
(

2
d
+ n
)

n!
= 1 . (3.55)

We call (3.52) a boundary term but in general, when C+ and C− are arbitrary

subcausets of C, it will have no physical significance.

Let (M, g) be a d-dimensional spacetime with finite volume and spacelike,

compact hypersurface Σ as described above. Given such a spacetime (M, g) and the

regions M± = J±(Σ), S
(d)
CBT defines a family of random variables in the following

way. The Poisson process of sprinkling points into M with density ρ = l−d generates

a random causet (C,�) together with subcausets C± which consist of those elements

sprinkled into M±. The functions Pk and Fk acting on the random causets C+ and

C− respectively are random variables Pk and Fk. These random variables can be

substituted into (3.52) to give the family of random variables S
(d)
CBT :

S
(d)
CBT [M,Σ, ρ; ~p, ~q ] := (l/lp)

d−2 ad

(

∑

m

pmFm +
∑

n

qnPn

)

. (3.56)

We claim that in the limit of infinite density the expectation value, in the sprinkling

process, of S
(d)
CBT tends to the continuum GHY boundary term of the surface Σ:

lim
l→0

〈

S
(d)
CBT [M,Σ, ρ; ~p, ~q]

〉

=
1

ld−2
p

∫

Σ

dd−1x
√
h K = SGHY

[

Σ,M−] , (3.57)

where 〈·〉 denotes the mean over sprinklings.

Given the limiting behaviour of 〈Pk〉 and 〈Fk〉 in the previous section this
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follows almost immediately:

lim
ρ→∞

〈

S
(d)
CBT

〉

= lim
ρ→∞

ρ
2

d
−1

ld−2
p

ad

(

∑

m

pm 〈Fm〉+
∑

n

qn 〈Pn〉
)

= lim
ρ→∞

[

ρ
1

d

ld−1
p

(d+ 1)

(d+ 2)
A

1

d

(

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!

)

∫

Σ

dd−1x
√
h

+
1

ld−2
p

(

∑

m

Γ
(

2
d
+m

)

m!
−
∑

n

qn
Γ
(

2
d
+ n
)

n!

)

∫

Σ

dd−1x
√
hK +O(ρ−

1

d )

]

=
1

ld−2
p

∫

Σ

dd−1x
√
hK ,

(3.58)

using the conditions (3.54) and (3.55) for ~p and ~q.

One can see that at least two non-zero entries in ~p and ~q together are necessary

in order to satisfy (3.54) and (3.55) and if exactly two entries are non-zero they

will be uniquely fixed, but if more than two entries are non-zero this uniqueness is

lost. This accords with the continuum boundary term being a first derivative. The

freedom of choice in ~p and ~q is the freedom to discretise a derivative in many ways

but the difference of two nearby values is sufficient.

We introduce special notation for the simplest member of the family:

S
(d)
0

[

C, C−, C+
]

:= (l/lp)
d−2 ad

2Γ
(

2
d

)

(

F0

[

C−]− P0

[

C+
])

. (3.59)

This is proportional to the difference in the numbers of minimal elements of C+

and maximal elements of C−. An example of this on a causal set can be seen in

Figure 3.3. This case is the easiest to investigate computationally, and we shall use

its random variable counterpart, S
(d)
0 [M,Σ, ρ], later when we study the fluctuations

of the discrete boundary terms numerically.

There are two special subfamilies of boundary terms, one defined by ~p = 0

and the other by ~q = 0. In the former (latter) case, this corresponds to defining a

boundary term for the past (future) boundary of C+ (C−) using only data from C+

(C−) itself. The simplest cases of these boundary terms are

S
(d)
− [C+] := (l/lp)

d−2 ad

Γ
(

2
d

)

(

P0

[

C+
]

− d P1

[

C+
])

, (3.60)

S
(d)
+ [C−] := (l/lp)

d−2 ad

Γ
(

2
d

)

(

d F1

[

C− ]− F0

[

C− ]) . (3.61)

These give rise to random variables S
(d)
− [M,Σ, ρ] and S

(d)
+ [M,Σ, ρ] via sprinkling at
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density ρ = l−d as before.

3.4.2 The Surface Volume Family

We also propose a family of causet functions that will give the volume of a

spacelike hypersurface in the appropriate context:

A(d)[C, C−, C+; ~p, ~q] := (l/lp)
d−1 bd

(

∑

m

pmFm

[

C−]+
∑

n

qnPn

[

C+
]

)

, (3.62)

where

bd = d

(

vol(Sd−2)

d(d− 1)

) 1

d

, (3.63)

and ~p and ~q now satisfy

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!
= 1 . (3.64)

We see that only one non-zero entry is necessary to give an expression for the discrete

surface volume. Once again, for (M, g), Σ and ρ = l−d, we can define a family of

random variables,

A(d) [M,Σ, ρ; ~p, ~q ] := (l/lp)
d−2 bd

(

∑

m

pmFm +
∑

n

qnPn

)

. (3.65)

In the limit of infinite density, the expectation value of A(d) in the sprinkling process

tends to the spatial volume of the surface Σ:

lim
l→0

〈

A(d)[M,Σ, ρ; ~p, ~q]
〉

=
1

ld−1
p

∫

Σ

dd−1x
√
h , (3.66)

since

lim
ρ→∞

〈

A(d)
〉

= lim
ρ→∞

ρ
1

d
−1

ld−1
p

bd

(

∑

m

pm 〈Fm〉+
∑

n

qn 〈Pn〉
)

= lim
ρ→∞

[

1

ld−1
p

(

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!

)

∫

Σ

dd−1x
√
h+O(ρ−

1

d )

]

=
1

ld−1
p

∫

Σ

dd−1x
√
h ,

(3.67)
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using (3.64).

One can define functions for the volumes of future and past boundaries respecti-

vely as the two simplest members of the family:

A
(d)
+ [C−] := (l/lp)

d−1 bd

Γ
(

1
d

) F0[C−] , (3.68)

A
(d)
− [C+] := (l/lp)

d−1 bd

Γ
(

1
d

) P0[C+] . (3.69)

3.4.3 Higher Order Causal Set Expressions

In the last section we constructed causal set expressions for the integrals I0 and

I1 in (3.49). Here we will focus on an expression for I2.

Take the following causal set function

I
[

C, C+, C−; ~p, ~q
]

:= ld−3Ad

(

∑

m

pmFm

[

C−]+
∑

n

qnPn

[

C+
]

)

, (3.70)

where l = ρ−
1

d is the discreteness length and Ad is a real constant that depends only

on dimension.

Just as before the strings are not totally arbitrary, and we will show that they

must satisfy certain constraints if we are to recover I2.

We define the random variable I as that which takes the value I [C, C+, C−; ~p, ~q]

under sprinkling into M . This random variable depends on the spacetime M , surface

Σ, density ρ, and the strings ~p and ~q.

I can be written in terms of the random variables Fm and Pn, where we

recall that these random variables realise the values of Fm [C−] and Pn [C+] under a

sprinkling into M . Writing I in this way gives

I := ρ
3

d
−1Ad

(

∑

m

pmFm +
∑

n

qnPn

)

, (3.71)

where we have omitted the arguments of the random variables for brevity. We want

to take the expectation value of this random variable over the sprinkling process and

extract out the integral I2 in the limit of ρ → ∞. That is, we are aiming for

lim
ρ→∞

〈I〉 = I2 . (3.72)

Given we have (3.48) we can take the expectation value of (3.71) in the limit of
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ρ → ∞ to find

lim
ρ→∞

〈I〉 = lim
ρ→∞

ρ
3

d
−1Ad

(

∑

m

pm 〈Fm〉+
∑

n

qn 〈Pn〉
)

=Ad lim
ρ→∞

[

ρ
2

d
A− 1

d

d

(

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!

)

I0

+ρ
1

d
(d+ 2)A− 2

d

d(d+ 1)

(

∑

m

Γ
(

2
d
+m

)

m!
−
∑

n

qn
Γ
(

2
d
+ n
)

n!

)

I1

+
A− 3

d

4d(d+ 1)2

(

∑

m

Γ
(

3
d
+m

)

m!
+
∑

n

qn
Γ
(

3
d
+ n
)

n!

)

I2

]

.

(3.73)

In order for (3.72) to be satisfied we get the following conditions on ~p and ~q:

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!
= 0 ,

∑

m

pm
Γ
(

2
d
+m

)

m!
−
∑

n

qn
Γ
(

2
d
+ n
)

n!
= 0 ,

∑

m

pm
Γ
(

3
d
+m

)

m!
+
∑

n

qn
Γ
(

3
d
+ n
)

n!
= 1 .

(3.74)

We also find that the constant Ad must be

Ad = 4d(d+ 1)2A
3

d , (3.75)

where A was defined in (3.43). There are many different ~p and ~q strings that

satisfy (3.74). This freedom comes from the fact that we are effectively discretising

a mix of second order derivatives. From (3.74) we see that at least three non-zero

entries in ~p and ~q are needed, which is consistent with the idea that it is a discrete

second order derivative.

The simplest causal set expressions that give I2 (in the sense of (3.72)) are those

formed by taking only the smallest k components of pk and qk to be non-zero. For

example, if the only non-zero components are p0, q0 and q1 then solving (3.74) gives

p0 =
1

4Γ
(

3
d

) , q0 = − 3

4Γ
(

3
d

) , q1 =
d

2Γ
(

3
d

) , (3.76)

with all other components equal to 0.

We denote the strings with these as the only non-zero components by ~pa and ~qa.



68 Chapter 3. Boundary Terms and Related Geometry in Causal Set Theory

Inserting these strings into (3.70) simplifies the causal set function to

I
[

C, C+, C−; ~pa, ~qa
]

= ld−3 Ad

4Γ
(

3
d

)

(

F0

[

C−]− 3P0

[

C+
]

+ 2dP1

[

C+
])

(3.77)

We define Ia[C, C+, C−] as the function on the RHS in (3.77), and its random variable

counterpart as Ia, where the counterpart is formed in the usual way by promoting

the functions Fm and Pn to random variables.

One can also take an entire string to be zero. For example, take ~p to be the

zero string ~0 (every component pk = 0). If we take the first 3 components of ~q to be

the only non-zero components then, by solving (3.74), we find

q0 =
1

Γ
(

3
d

) , q1 = −d(d+ 3)

2Γ
(

3
d

) , q2 =
d2

Γ
(

3
d

) . (3.78)

We denote the string with these as the only non-zero components as ~q−.

If these strings are inserted into the arguments of I we find

I
[

C, C+, C−;~0, ~q−

]

= ld−3 Ad

Γ
(

3
d

)

(

P0

[

C+
]

− d(d+ 3)

2
P1

[

C+
]

+ d2P2

[

C+
]

)

.

(3.79)

The causal set C− does not enter on the RHS as there are no Fk functions to act on

it, and hence we can view the RHS as being a function on a single causal set, C+,

without reference to it being part of some larger causal set. We define the function

I−[C+] as the RHS of (3.79). I− is really a function of a single causal set, as it does

not depend on C−. The random variable counterpart, I−, can be formed in the usual

way. This random variable does not depend on J−(Σ), and so can be viewed as being

a function of the spacetime J+(Σ) and its past boundary Σ only (and the density ρ).

Thus, given a single causal set, C, we can think of I−[C] as the causal set analogue of

the geometrical quantity I2 corresponding, in some sense, to the “past boundary” of

C. A similar expression can be formed for the “future boundary” of a causal set by

taking ~q = ~0 and having only the first 3 components of ~p be non-zero.

The continuum quantity, I2, for which we have constructed the family of causal

set expressions, I, contains four different geometric quantities. This means that given

some causal set, and the value of I acting on that causal set, we do not know what

contribution to that number has come from the causal set analogue of one of the

four geometric quantities in I2 alone. We also do not know whether this value will

be close to the continuum value of some manifold from which our causal set could

arise as a typical sprinkling. This question will be addressed in the next section.

The family of causal set functions found here are not as immediately useful as
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causal set functions that correspond to a single geometrical quantity, such as those

found for the integrals I0 and I1. We can attempt to extract a single quantity from

the integral I2 using other causal set expressions alongside I. We will now sketch

out how one might attempt to extract KαβKαβ. The number of causal set elements

in an interval gives the spacetime volume of the interval, and using the formulae

in [40, 46] one might be able to extract c3R + c4Rαβn
αnβ from this number. One

could also determine K from the causal set expressions for the integrals I0 and I1
3.

The remaining quantity in I2, K
αβKαβ, can then be extracted on its own.

3.4.4 Finite ρ and Fluctuations

To decide under what circumstances the causal set expressions above, evaluated

on a single causal set sprinkled into M , are close to the continuum expressions for Σ,

it is necessary to know both the size of the fluctuations about the mean and when

that mean is close to its limiting value.

To take the second point first, the mean is close to its limiting value when the

next order term in the expansions performed in the previous sections can be ignored.

Firstly, ρ must be large enough that an ε > 0 exists such that the expansions in

GNCs are valid in a neighbourhood UΣ(ε), and such that ρVmin ≫ 1 so e−ρVmin ≪ 1,

and the integral over the region outside UΣ(ε) is negligible. Vmin ∼ εd, and so ε ≫ l.

The expansions in equations (3.41), (3.33) and (3.34) are valid if the curvature

scales of the surface and spacetime are much larger than ε, i.e. that Kε ≪ 1 and

Rε2 ≪ Kε, where K and R stand for any component of the extrinsic curvature of Σ

and spacetime curvature of M , respectively, evaluated on Σ. The resulting conditions

are Rl2 ≪ Kl ≪ 1. This simply tells us that the discreteness length must be much

smaller than the curvature scales of the surface and spacetime, which is just what

one would expect if the discrete causal set is to encode the geometry of Σ and M

around Σ.

We now turn to the fluctuations or standard deviation, and we will start by

looking at those of the boundary terms, i.e. σ[S
(d)
CBT ] = Var[S

(d)
CBT ]

1

2 . A heuristic

argument gives an estimate of the dependence of fluctuations on ρ = l−d. In any

spacetime region of fixed volume V the number of causal set elements in a sprinkling

is a Poisson random variable, N, with mean 〈N〉 = ρV and s.d.
√

〈N〉. Consider the

3The causal set expressions for I0 and I1 give the spatial volume of the hypersurface and the
extrinsic curvature integrated over the hypersurface respectively. If we divide the latter by the
former we get the average value of the extrinsic curvature over the hypersurface, Kavg. We can only
use these expressions to determine K when the region of the hypersurface that we are interested in
is such that Kavg ≈ K for any point in that region.
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Figure 3.4: A plot of the standard deviation in samples of 100 of S
(d)
0 for a flat

(K = 0) surface bisecting a d = 2, 3 and 4-dimensional unit cube in Minkowski space
for different values of N = ρ. Black dots, blue triangles and red squares correspond to
the simulation results in d = 2, 3 and 4 dimensions, respectively. The corresponding
black, blue and red lines have gradients 1

4
, 0 and −1

8
and best-fit intercepts of order

1.

simplest boundary term S
(d)
0 . The volume of a region corresponding to a thickening

of the hypersurface Σ by one unit of the discreteness scale l (e.g. by Lie dragging

the surface along its normal by an amount l) is approximately vol(Σ)l = vol(Σ)ρ−
1

d .

Since F0 and P0 are random variables that count nearest neighbours of Σ we may

therefore expect their mean values to scale like ρ vol(Σ)l = vol(Σ)ρ
d−1

d ∝ 〈N〉
d−1

d ,

and indeed this agrees with the leading order behaviour of (3.48). This suggests that

P0 and F0 will be subject to fluctuations of order 〈N〉
d−1

2d = (ρV )
d−1

2d in the limit

of large ρ, and we should see similar fluctuations for Pk and Fk. Moreover F0 and

P0 are independent and so σ[S
(d)
CBT ] should behave like ρ

2−d
d ρ

d−1

2d = ρ
3−d
2d . Hence for

d = 2 these fluctuations should grow like ρ
1

4 as ρ → ∞, for d = 3 they should be

constant, and for d > 3 they should be damped.

We tested this with simulations in the simplest case of flat spacetime and flat

surface Σ. For each different sprinkling density, ρ = l−d, we took a sample of 100

sprinklings of a d-cube [0, 1]d in d-dimensional Minkowski space with hypersurface

Σ : t = 1/2, and evaluated the sample mean and (corrected) sample standard

deviation of S
(d)
0 . The expectation value of S

(d)
0 is exactly zero due to the symmetry

of the situation.



3.4. Causal Set Expressions 71

Figure 3.4 shows the results for d = 2, 3, 4 spacetime dimensions, with 〈N〉 = ρ

ranging up to 220. Each data point represents the sample standard deviation for a

sample of 100. The solid lines have been obtained by fitting an arbitrary constant

multiplier in the scaling law predicted by the argument above, γ(d)× 〈N〉
3−d
2d , to the

data. The best fit values are all of order 1: γ(2) = 0.80, γ(3) = 0.97, and γ(4) = 1.07.

The data are evidence for the scaling predicted by the heuristic argument. The

sample means (not shown) for different ρ are consistent with zero within the standard

error. Simulations for the boundary term S
(d)
+ (which is proportional to dF1 − F0)

show the same dimension dependent scaling behaviour for the standard deviation,

though in this case the heuristic argument is complicated by the fact that the random

variables of which the boundary term is a sum are not independent.4

This complication of the heuristic argument also arises when estimating the

fluctuations of I, since every memeber of the family has at least two Fk’s or two Pk’s

(examples of this can be seen above in (3.77) and (3.79)). Since the heuristic argument

gave the correct scaling behaviour of S
(d)
+ , even though the random variables involved

were not independent, we shall use the same argument here for the fluctuations,

σ[I] = Var[I]
1

2 , in the hope that it will be supported by numerical evidence. The

argument then says that the deviation of I will go like that of Fk or Pk (as ρ
d−1

2d )

but multiplied by the dependence on ρ from the factor of ld−3 (or ρ
3−d
d in terms

of the density) at the front of the RHS in (3.71). That is, σ[I] should scale like

ρ
3−d
d ρ

d−1

2d = ρ
5−d
2d , or as 〈N〉

5−d
2d in terms of the mean number of elements sprinkled.

This scaling law was tested numerically by sprinkling into a d-dimensional

cube as we did for the boundary terms. In this case the mean number of sprinkled

elements, 〈N〉, ranged from 27 to 212, and for each mean number of elements we did

400 sprinklings. The mean and standard deviation of Ia was then calculated for the

sample of 400 sprinklings at each 〈N〉. In this setup the mean of Ia is zero as the

surface and spacetime are flat. This was done for dimensions d = 3, 4, 5, 6 and the

results of log2(σ[Ia]) against log2(〈N〉) can be seen in Figure 3.5. The fitted lines

have the form 5−d
2d

log2(〈N〉) + ξ, where the constants ξ for each dimension are of

order 1. The results for σ[I−] also show a similar scaling.

These results suggest that the heuristic argument is correct as it has predicted

the right scaling. Unfortunately, this means that in 4 dimensions the causal set

random variable I has fluctuations that grow with 〈N〉, much like the Benincasa-

4While the heuristic argument predicts a scaling of the mean and standard deviations consistent
with the data, a closer look at the samples we generated for Fk and Pk for k = 0, 1 suggests that
their distributions deviate from a Poisson distribution: they are “underdispersed”, i.e. their s.d.
grows like the square root of the mean but is related to it by a constant of proportionality less than
1. We have begun to investigate this further and hope to return to a more careful study of the
distributions of these random variables in a future note.
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Figure 3.5: Base-2 log-log plot of the standard deviation of Ia against 〈N〉. In the
graph these quantities have been denoted by σ and N respectively. From top to
bottom the data and the corresponding best fit lines are for dimensions d = 3, 4, 5
and 6 respectively.

Dowker-Glaser action [42, 43, 50, 51]. In the case of the action one can modify it

with an intermediate length scale to dampen the fluctuations. Perhaps this can be

done here too. Without this damping the fluctuations about the mean will only be

small for large ρ if d > 5. Further work should be done to determine if the scaling of

the fluctuations persists in cases where the spacetime and/or the hypersurface are

not flat.

3.4.5 Normal Derivatives of a Scalar Field

The techniques we have seen in the previous sections can be used to find causal

set expressions relating to the normal derivatives of a scalar field. A scalar field on a

causal set is a function from the causal set to the real numbers (or complex numbers

for a complex scalar field). These real numbers can be denoted by φi where the index

i runs over the causal set elements.

The functions Fk and Pk sum up the number of Fk and Pk elements respectively.

We will now define functions that sum up the values of φi on those particular elements.

Explicitly, we define these new functions as

F φ
k [C] =

∑

i∈{Fk}
φi , (3.80)
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P φ
k [C] :=

∑

i∈{Pk}
φi , (3.81)

where we take {Fk} and {Pk} to denote lists of the indices of the Fk and Pk elements

respectively, so that the sums run over these elements. These functions depend on

the causal set and the scalar field values, φi, defined on that causal set.

Under the sprinkling process the scalar field on the causal set defines random

variables for the functions in (3.80) and (3.81) in the following way. We start with

the usual notion of a scalar field, φ(x), defined on the manifold, M , we wish to

sprinkle in to. The sprinkling generates a random causal set, C, and we take xi to

be the spacetime point of the ith element. The scalar field value on the ith element

of the causal set is then simply the value of the scalar field φ(x) evaluated at xi, ie.

φi = φ(xi). We then define the random variables Fφ
k and P

φ
k as those that return

the values of the functions F φ
k [C−] and P φ

k [C+] respectively, where we have the same

spacetime setup as before. These random variables, for a given k, are functions of

the manifold, sprinkling density, surface Σ, and the scalar field φ(x).

We wish to find the expectation values of these random variables in the hope

that we can use them to construct causal set expressions for continuum quantities. To

get the expectation value of Pφ
k , say, we need to take the product of the probability

for an element to have been sprinkled in an infinitesimal volume element at x, times

the probability that it is a Pk element, times the value of the scalar field at x, φ(x),

and then integrated over all x in the region to the future of Σ. The expectation value

is then
〈

P
φ
k

〉

= ρ

∫

J+(Σ)

dVx φ(x)
(ρ VN(x))

k

k!
e−ρVN(x) . (3.82)

Likewise, for Fφ
k we have

〈

F
φ
k

〉

= ρ

∫

J−(Σ)

dVx φ(x)
(ρ VH(x))

k

k!
e−ρVH(x) . (3.83)

We can, once again use GNCs, xµ = (t,x), adapted to Σ such that in a

neighbourhood UΣ of Σ the line element is given by (3.3), and Σ is the surface

defined by t = 0. The integrals can be simplified as before, so that we only integrate

to ε in the time coordinate, and only make an exponentially small error in doing so.

The addition of φ(x) in the integrand will not change this fact as it does not depend

on ρ and so will not alter how the integrand changes with ρ. We take ε small enough

such that we can expand the determinant of the metric about Σ as before. We will
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also expand the scalar field about Σ as

φ(t,x) = φ+ φ̇t+
1

2
φ̈t2 +O(t3) , (3.84)

where the dots above φ denote time derivatives and the terms φ, φ̇ and φ̈ are evaluated

at t = 0 and depend on the surface coordinate x.

We can now write the expectation values as

〈

F
φ
k

〉

=ρ

∫

Σ

dd−1x

∫ 0

−ε

dt h
1

2

(

1−Kt+
1

2

(

K2 −KαβKαβ −Rtt

)

t2 +O(t3)

)

×
(

φ+ φ̇t+
1

2
φ̈t2 +O(t3)

)

(ρ VH(t,x))
k

k!
e−ρVH(t,x) + . . . ,

〈

P
φ
k

〉

=ρ

∫

Σ

dd−1x

∫ ε

0

dt h
1

2

(

1−Kt+
1

2

(

K2 −KαβKαβ −Rtt

)

t2 +O(t3)

)

×
(

φ+ φ̇t+
1

2
φ̈t2 +O(t3)

)

(ρ VN(t,x))
k

k!
e−ρVN(t,x) + . . . ,

(3.85)

where all of the geometric quantities are defined similarly to (3.40). Again, we use

+ . . . to stand for “terms that vanish exponentially fast in the limit ρ → ∞”.

As before we expand the cone volumes in t and evaluate the integrals by

transforming them into the form of Gamma functions. The only difference here

is that one must take into account of one more expansion, that of the scalar field.

Because of the similarities we will just state the final expansion in large ρ for both

of the required expectation values:

〈

P
φ
k

〉

=ρ1−
1

d
A− 1

d

d

Γ
(

1
d
+ k
)

k!
Iφ0 − ρ1−

2

d
A− 2

d

d

Γ
(

2
d
+ k
)

k!

(

(d+ 2)

(d+ 1)
Iφ1 − I φ̇0

)

+ρ1−
3

d
A− 3

d

d

Γ
(

3
d
+ k
)

k!

(

1

4(d+ 1)2
Iφ2 − (2d+ 5)

2(d+ 1)
I φ̇1 +

1

2
I φ̈0

)

+O
(

ρ1−
4

d

)

,

〈

F
φ
k

〉

=ρ1−
1

d
A− 1

d

d

Γ
(

1
d
+ k
)

k!
Iφ0 + ρ1−

2

d
A− 2

d

d

Γ
(

2
d
+ k
)

k!

(

(d+ 2)

(d+ 1)
Iφ1 − I φ̇0

)

+ρ1−
3

d
A− 3

d

d

Γ
(

3
d
+ k
)

k!

(

1

4(d+ 1)2
Iφ2 − (2d+ 5)

2(d+ 1)
I φ̇1 +

1

2
I φ̈0

)

+O
(

ρ1−
4

d

)

,

(3.86)

where we have added superscripts to the integrals I0,1,2 given in (3.49) to mean that

one must include whatever is in the superscript in the integrand. For example,

I φ̇1 =

∫

Σ

dd−1x
√
hKφ̇ , (3.87)
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which is the integral I1 with the integrand multiplied by φ̇.

We can now define causal set expressions utilising (3.86) that give the different

integrals in the expansion. First, we will construct an expression for Iφ0 . We define

Jφ
0

[

C, C+, C−; ~p, ~q
]

:= ld−1dA
1

d

(

∑

m

pmF
φ
m

[

C−]+
∑

n

qnP
φ
n

[

C+
]

)

, (3.88)

where pm and qn are strings of real numbers that satisfy

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!
= 1 . (3.89)

Only one of the components needs to be non-zero to satisfy (3.89).

We can also define the random variable counterpart, Jφ
0 , in the usual way, by

promoting F φ
k and P φ

k to random variables. Given that the coefficients satisfy (3.89)

one can follow the same steps as in (3.58) to show that

lim
ρ→∞

〈

J
φ
0

〉

= Iφ0 , (3.90)

where we have omitted the arguments of Jφ
0 , which are the spacetime M , the surface

Σ, the density ρ, the field φ(x), and the strings ~p and ~q.

The simplest choices of pm and qn are those in which there is only one non-zero

component. If we take the first element of ~p to be the only non-zero one, so that

~q = ~0, then p0 = Γ( 1
d
)−1 solves (3.89). Using these strings the RHS of (3.88) becomes

ld−1 dA
1

d

Γ
(

1
d

)F φ
0

[

C−] . (3.91)

For the opposite case where ~p = ~0 and q0 is the only non-zero component we get a

causal set function which is proportional to P φ
0 [C+]. These two causal set functions

have corresponding random variables whose expectation values give
∫

Σ
dd−1x

√
hφ in

the ρ → ∞ limit. This seems intuitively correct, as one would expect that summing

the values of the scalar field at the causal set elements close to the surface will give

something like
∫

Σ
dd−1x

√
hφ in the continuum limit.

Next, we would like to construct a causal set expression for the part in brackets

in the second term on the RHS in (3.86). We define the causal set function

Jφ
1

[

C, C+, C−; ~p, ~q
]

:= ld−2dA
2

d

(

∑

m

pmF
φ
m

[

C−]+
∑

n

qnP
φ
n

[

C+
]

)

(3.92)
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where the strings pm and qn now satisfy

∑

m

pm
Γ
(

1
d
+m

)

m!
+
∑

n

qn
Γ
(

1
d
+ n
)

n!
= 0 ,

∑

m

pm
Γ
(

2
d
+m

)

m!
−
∑

n

qn
Γ
(

2
d
+ n
)

n!
= 1 .

(3.93)

With this, one can verify that the random variable counterpart, Jφ
1 , for (3.92) satisfies

lim
ρ→∞

〈

J
φ
1

〉

=
(d+ 2)

(d+ 1)
Iφ1 − I φ̇0 . (3.94)

In order to form the simplest causal set expressions we can pick the strings ~p and

~q, where only the lowest k components are non-zero. Such strings are given in

section 3.4.1 so we will not repeat them here. If we sprinkle into a flat spacetime

with a flat surface then Iφ1 = 0. In this case J
φ
1 is the causal set analogue of the

normal derivative of φ(x) integrated across Σ.

Finally, we construct a causal set expression for the part in brackets in the third

term on the RHS of (3.86). We define

Jφ
2

[

C, C+, C−; ~p, ~q
]

:= ld−3dA
3

d

(

∑

m

pmF
φ
m

[

C−]+
∑

n

qnP
φ
n

[

C+
]

)

, (3.95)

where pm and qn satisfy (3.74). The corresponding random variable, Jφ
2 , can be

shown to satisfy

lim
ρ→∞

〈

J
φ
2

〉

=
1

4(d+ 1)2
Iφ2 − (2d+ 5)

2(d+ 1)
I φ̇1 +

1

2
I φ̈0 . (3.96)

The same simple strings that were chosen towards the end of section 3.4.3 can

be chosen here to get simple causal set expressions that give the RHS of (3.96)

as ρ → ∞. Again, if we sprinkle into a flat spacetime with a flat surface, this

expression will give something analogous to the second order normal derivative of

φ(x) integrated across Σ.

The causal set expressions that we have derived involve normal derivatives of

a scalar field. Such expressions may be of use when constructing the causal set

analogue of the scalar field stress energy tensor contracted with a timelike vector.
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3.5 The Causal Set Action for a Flat Alexandrov

Interval

Section 3.4.1 provides us with a family of analogue GHY boundary terms for

causal sets. We can now consider if such terms need to be included in any putative

action for causal sets. In particular we can ask whether boundary terms need to be

added to the recently proposed Benincasa-Dowker-Glaser (BDG) causal set actions

[9–11]. Before that question can be answered, it is necessary to determine whether

the BDG actions already contain any boundary contributions.

The BDG action S
(d)
BDG [C] of a finite causal set C is

1

~
S
(d)
BDG [C] = −αd(l/lp)

d−2

(

N [C] + βd

αd

nd−1
∑

i=1

C
(d)
i Ni[C]

)

, (3.97)

where Ni[C] is the number of (i+ 1)-element inclusive order intervals in C, N [C] is
the cardinality of the causal set, and l/lp is the ratio of a fundamental length to the

Planck length5. The constants are

αd =















− 1

Γ
(

1 + 2
d

)c
2/d
d d odd

− 2

Γ
(

1 + 2
d

)c
2/d
d d even ,

(3.98)

βd =















d+ 1

2d−1Γ
(

1 + 2
d

)c
2/d
d d odd

Γ
(

d
2
+ 2
)

Γ
(

d
2
+ 1
)

Γ
(

2
d

)

Γ (d)
c
2/d
d d even ,

(3.99)

and

nd =







d
2
+ 3

2
d odd

d
2
+ 2 d even ,

(3.100)

where cd = 21−
d
2vol(Sd−2)/(d(d − 1)) (recall that vol(Sd) is the volume of the unit

d-sphere). The coefficients C
(d)
i of the terms Ni[C] in the sum are

C
(d)
i =























i−1
∑

k=0

(−1)k
(

i− 1

k

)

Γ
(

d
2
(k + 1) + 3

2

)

Γ
(

d
2
+ 3

2

)

Γ
(

d
2
k + 1

) d odd

i−1
∑

k=0

(−1)k
(

i− 1

k

)

Γ
(

d
2
(k + 1) + 2

)

Γ
(

d
2
+ 2
)

Γ
(

d
2
k + 1

) d even .

(3.101)

5We reintroduce ~ in this section.
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Figure 3.6: The Alexandrov interval I(p, q). The boundary consists of the null
sections B± and the spatial sphere Sd−2 at their joint.

We note here that these coefficients can be expressed more compactly as generalised

hypergeometric functions of type {q + 1, q}:

C
(d)
i = q+1Fq ({a1, . . . , aq, i− 1}, {b1, . . . , bq}|1) , (3.102)

with q = d+1
2
, ai =

d+2i
d

and bi =
2i
d
for d odd, and q = d

2
, ai =

d+2i+2
d

and bi =
2i
d
for

d even.

As in Section 3.4, given a causal Lorentzian spacetime (M, g), the sprinkling

process at density ρ = l−d turns this function of causal sets into a random variable

S
(d)
BDG[M, ρ], the “random discrete action” of (M, g). A requirement for the causal

set action to be physically interesting is that its mean should tend to the continuum

action of (M, g) as ρ → ∞. The question at hand is whether in this limit it includes

boundary contributions in addition to the Einstein-Hilbert term.

We will explore this question by calculating the mean of the d-dimensional BDG

action for causal sets sprinkled into causal intervals or “Alexandrov intervals” in

d-dimensional flat spacetime. Since the Einstein-Hilbert contribution is expected to

be zero, this will teach us something about what boundary contributions, if any, are

included in the BDG action. The boundary of an Alexandrov interval consists of

a past and a future null cone which intersect at a codimension-2 joint of topology

Sd−2 (see Figure 3.6). From Chapter 2 we know that the boundary terms for the
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interval will depend on the parameterisation of the null generators of the boundary.

As was shown in [52], when d = 2 the continuum limit of the expectation value

of the discrete random action of an Alexandrov interval of arbitrary size is equal to 2.

While this might suggest topological invariance, we will now show that it is a part of

a more general result for d > 2 and has a geometrical origin. Namely, it corresponds

to the volume of the joint of the Alexandrov interval, which in flat spacetime is a

(d− 2)-sphere and independent of the interval size only in d = 2.

Consider an Alexandrov interval, I(p, q), of proper height τ between two

points p and q in d-dimensional Minkowski spacetime. Its boundary consists

of the two null cones from p and q which intersect at the joint, J (d−2) :=

∂J+(p) ∩ ∂J−(q), a codimension-2 sphere of radius τ/2. The joint has volume

vol(J (d−2)) = (τ/2)d−2vol(Sd−2). The interval itself has volume vol(I(p, q)) =

2(vol(Sd−2)/(d(d − 1)))(τ/2)d. For the sprinkling process at density ρ = l−d, the

mean, N := 〈N〉, of the number of causal set elements sprinkled into I(p, q) is

N = ρ vol(I(p, q)). In what follows we take the continuum limit ρ → ∞ while

keeping τ fixed. The mean of the random discrete action of this flat region should

give, in the limit of large ρ, contributions from the boundary only.

In [53] a closed form expression was obtained for the mean value of the number of

(i+1)-element inclusive intervals contained in an Alexandrov interval in d-dimensional

flat spacetime:

〈

N
(d)
i

〉

=
Γ (d)2 N i+2

Γ (i)

∞
∑

k=0

(−N)k Γ (k + i+ 1) Γ
(

d(k+i)
2

+ 1
)

Γ
(

d(k+i+1)
2

+ 1
)

Γ (k + i+ 3) Γ (k + 1) Γ
(

d(k+i)
2

+ d
)

Γ
(

d(k+i+1)
2

+ d
) ,

(3.103)

where i ≥ 1. Importantly, this power series can be expressed more compactly in

terms of a generalised hypergeometric function of type {d, d} as shown in [53], and

is therefore convergent for all N . All the power series in N that appear subsequently

in this section are therefore also convergent. We now use this to evaluate 〈S(d)
BDG〉 in

an Alexandrov interval in flat spacetimes of different dimensions.

We begin with the simplest case of d = 2, where

1

~

〈

S
(2)
BDG

〉

= 2

(

N − 2
〈

N
(2)
1

〉

+ 4
〈

N
(2)
2

〉

− 2
〈

N
(2)
3

〉

)

. (3.104)

Using (3.103) gives a power series expansion in N with coefficients (−1)i−1

i!
, i ∈ N, so

that
1

~

〈

S
(2)
BDG

〉

= 2
(

1− e−N
)

, (3.105)

which agrees with the result in [52]. In anticipation of the results for higher d we
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note that the volume of the zero sphere at the joint, vol(J (0)) = vol(S0) = 2, so that

lim
N→∞

1

~

〈

S
(2)
BDG

〉

= vol(J (0)) . (3.106)

This is in agreement with the result obtained for a 2-dimensional flat causal interval

[52].

Next, substituting (3.103) into the d = 3 averaged BDG action,

1

~

〈

S
(3)
BDG

〉

= −α3

(

l

lp

)(

N −
〈

N
(3)
1

〉

+
27

8

〈

N
(3)
2

〉

− 9

4

〈

N
(3)
3

〉

)

, (3.107)

gives a power series expansion in N with coefficients

− α3

(

l

lp

)

× (−1)i+1

i!

8

(3i+ 1)(3i− 1)
, (3.108)

where i ∈ N. Rearranging indices we find a closed form for the action:

1

~

〈

S
(3)
BDG

〉

= −8α3

(

l

lp

)

×
(

−1 + 2F2

({

1

3
,−1

3

}

,
{

4

3
,
2

3

}∣

∣

∣
−N

)

)

, (3.109)

where 2F2 is a generalised hypergeometric function of type {2, 2}. This can be

re-expressed more simply as

1

~

〈

S
(3)
BDG

〉

= −8α3

(

l

lp

)(

−1 +
1

6N
1

3

γ

(

1

3
, N

)

− N
1

3

6
γ

(

−1

3
, N

))

, (3.110)

where γ(s, x) ≡
∫ x

0
ts−1e−tdt is a lower incomplete Gamma function. The large N

behaviour is thus dominated by the last term in the above expression. Using γ(s, x) =

Γ(s)−Γ(s, x), where the upper incomplete Gamma function Γ(s, x) ∼ xs−1e−x in the

asymptotic limit, the dominant term in (3.110) simplifies to −4α3lN
1/3Γ(2/3)/lp =

vol(J (1))/lp. Hence

lim
N→∞

1

~
〈S(3)

BDG〉 =
1

lp
vol(J (1)) . (3.111)

For d = 4

1

~

〈

S
(4)
BDG

〉

= −α4

(

l

lp

)2(

N−
〈

N
(4)
1

〉

+9
〈

N
(4)
2

〉

−16
〈

N
(4)
3

〉

+8
〈

N
(4)
4

〉

)

. (3.112)

Excluding the first term, this is a power series in N with coefficients

− α4

(

l

lp

)2

× (3!)2

3

(−1)i+1(i− 1)(2i− 3)!

i!(2i+ 1)!
, (3.113)
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where now i ∈ N. Using this, Mathematica yields the closed form expression

1

~

〈

S
(4)
BDG

〉

=− α4

(

l

lp

)2(
3(2N − 1)

2
√
N

√
πErf

(√
N
)

− 3
(

γ − e−N + Γ(0, N) + ln(N)
)

)

,

(3.114)

where γ is the Euler-Mascheroni constant, and Erf is the error function. Since

Erf(
√
N) goes to 1 in the asymptotic limit, the dominant contribution to the

above expression comes from the second term, −3α4l
2
√
πN/l2p, which simplifies to

2
√
6πNl2/l2p = vol(J 2)/l2p. Thus, again

lim
N→∞

1

~

〈

S
(4)
BDG

〉

=
1

l2p
vol(J (2)) . (3.115)

We now turn to the case of general d. We begin by writing the (averaged) sum

in (3.97) as a power series in N :

nd
∑

i=1

C
(d)
i 〈Ni〉 =

∞
∑

j=1

A
(d)
j N j+1 . (3.116)

After a rearrangement and redefinition of indices we find that

A
(d)
j = Γ (d)2

(−1)j

(j + 1)!

Γ
(

d
2
(j − 1) + 1

)

Γ
(

d
2
j + 1

)

Γ
(

d
2
(j − 1) + d

)

Γ
(

d
2
j + d

)

D+2
∑

i=1

(−1)i
(

j − 1

i− 1

)

C
(d)
i , (3.117)

where d = 2D for d even and d = 2D + 1 for d odd. While (3.116) can be directly

evaluated by Mathematica for small values of d = 2, . . . , 5, it is greatly assisted by

the following simplifications to the A
(d)
j for higher d.

We begin by evaluating the sum in (3.117). We first use Mathematica to evaluate

it for d = 2, . . . , 20 which then suggests the general form

D+2
∑

i=1

(−1)i
(

j − 1

i− 1

)

C
(d)
i =















(−1)D ((2D + 1)2j2 − 1) (3− (2D + 1)j/2)D−1

4Γ(2 +D)
d odd

(−1)DDj(2 + 2D)(1−Dj)D−1

2Γ(2 +D)
d even ,

(3.118)

where (a)k is the Pochhammer symbol. Inserting this into (3.117) we use Mathematica

to evaluate it for d = 2, . . . , 20. After some manipulations this suggests the general

expression

A
(d)
j =

Γ (d)2 (−1)j+1

Γ
(

d
2
(j + 1)

)

Γ
(

d
2
(2 + j)

)

Γ (2 + j)
γ
(d)
j , (3.119)
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where

γ
(d)
j =



















√
π

21+dj

Γ (2 + dj)

Γ
(

d−1
2

) d odd

Γ
(

1 + d
2
j
)

Γ
(

2 + d
2
j
)

Γ
(

d
2

) d even .

(3.120)

Taking a hint from the behaviour of 〈S(d)
BDG〉 for d = 2, 3, 4 in the N → ∞ limit,

we will consider the ratio

ld−2
p

〈

S
(d)
BDG

〉

~ vol(J (d−2))
=

εd

d(d− 1)Γ
(

1 + 2
d

)

N
d−2

d

(

N +
βd

αd

nd
∑

i=1

C
(d)
i 〈Ni〉

)

, (3.121)

where εd = 1 for d odd and 2 for d even. Finally inserting (3.119) into (3.121)

Mathematica gives for d = 2, . . . , 16

lim
N→∞

1

~

〈

S
(d)
BDG

〉

=
1

ld−2
p

vol(J (d−2)) . (3.122)

This is the main result of this section and can be interpreted as saying that, in

the continuum limit, the mean of the random discrete action of a causal diamond

is a pure boundary term coming only from the volume of the codimension-2 joint.

Interestingly, this may coincide with the joint contribution to the action given in

Chapter 2, with the causal set possibly “picking-out” a particular parameterisation

of the null generators. The result we have obtained is for flat spacetime and it

would be interesting to see how the presence of curvature affects it by repeating this

calculation in RNCs to the lowest order corrections.

Finally, while efforts have been made to find a closed form expression of 1
~
〈S(d)

BDG〉
for arbitrary d this has proved difficult, even in the asymptotic limit. As we now

show, the most obvious approach of using the asymptotic form of the 〈N(d)
i 〉’s is

insufficient for this purpose. In the large N limit [53]

〈

N
(d)
i

〉

=
Γ
(

2
d
+ i
)

Γ(d)

i!
(

d
2
− 1
) (

d
2
+ 1
)

d−2

N2− 2

d +O(Nαf(N)) , (3.123)

where α = 1 for d = 3, 4 and 2 − 4
d
for d > 4, and f(N) = lnN for d = 4 and 1

otherwise. For d = 2
〈

N
(2)
i

〉

= N lnN +O(N) . (3.124)

Since this dominates the leading order contribution of N
d−2

d to 1
~
〈S(d)

BDG〉 for all d, it
is clear that this contribution must vanish. Inserting (3.123) and (3.124) into the

BDG action confirms that this is indeed the case for d = 2, . . . 16. In fact, the next
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to leading order terms in (3.123) and (3.124) also do not have the requisite N
d−2

d

dependence, and are dominant in comparison. Hence their contribution too should

vanish, but we do not have an explicit expression for their coefficients to check this.

Suffice to say that the asymptotic behaviour of 〈N(d)
i 〉 is indeed not enough to find

the leading order dependence of the BDG action in the flat spacetime interval.

3.6 Summary

We have derived a family of causal set boundary terms that agree in the mean

with the Gibbons-Hawking-York boundary term for a spacelike hypersurface. We

have also found causal set expressions for the surface area and other geometric objects

relating to the surface. We presented a heuristic argument for how the fluctuations of

these expressions go with ρ, and provided numerical evidence in different dimensions

to support that reasoning. In 4 dimensions the fluctuations of the boundary terms

decrease with ρ, and increase for the causal set expressions in 3.4.3. The use of an

intermediate length scale in the BDG action seems like a promising approach that

may dampen these fluctuations. More work should be done to determine how the

fluctuations scale in more complicated spacetimes, and in the case where a scalar field

is included. It would also be interesting to also find causal set analogues of the GHY

boundary term for timelike boundaries. The situation is more complicated in that

case because the identification of “nearest neighbours” to a timelike hypersurface in

terms of causal structure is less straight-forward than in the spacelike case.

The other major result of this chapter is that the average over sprinklings of the

BDG action for an interval in Minkowski spacetime is proportional to the volume of

the “joint” of that interval, which may indicate that the BDG action contains the

joint contribution to the continuum action with a particular choice of null parameter.

There is still more work to be done to determine what sort of boundary contributions

are already contained in the BDG action, and we do not know if the joint contribution

is contained in the BDG action for a general spacetime.

Other interesting results obtained along the way were causal set expressions for

the normal derivatives of a scalar field and the dimension of the manifold the causet

has been sprinkled into.

In order to obtain these results we derived a universal formula for the expansion

of the volume of a small causal cone, up to O(T d+2). As the geometrical setup

of the causal cone involves a hypersurface one might hope that the small volume

formula can be used to derive the Hamiltonian formulation of General Relativity in
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the continuum, in a similar way to how Jacobson derives the Einstein equations using

the volume of a small spacetime region in [41]. The geometric quantities that are

encoded in the causal set expressions in 3.4.3 appear in the Hamiltonian formulation

of General Relativity. Perhaps these causal set expressions can be used to formulate

the dynamics of causal sets from a Hamiltonian perspective.



Chapter 4

Topology Change in Quantum

Gravity

4.1 Introduction

Thusfar we have seen how causal structure can be used to recover spacetime

geometry in causal set theory. In this chapter we utilise causal structure to enlarge

the set of spacetimes in which we can study quantum field theory to those that

include topology change. There are good reasons to believe that topology change

will play a role in quantum gravity. From the point of view of a gravitational sum-

over-histories, dimensional analysis of the path integral suggests that structures on

Planckian scales will have a gravitational action of order ~, which would lead to very

little suppression in the path-integral [54]. Such considerations suggest that Planck

scale topology-change, at least, should be taken into account in a quantum theory of

gravity. Going further, Sorkin has argued that without topology change quantum

gravity would be inconsistent, with the strongest evidence coming from the theory

of topological geons [55], particles built on non-trivial spatial topology. Geons suffer

from violations of the spin-statistics correlation and other problems in a framework

with frozen spatial topology. Allowing topology change might solve these problems

and, conversely, considering how to make the physics of geons consistent might give

clues about the rules that govern topology change in quantum gravity [56–58].

At a formal level, it is easy enough to conceive of including topology changing

manifolds in the gravitational path integral. However, a theorem of Geroch [59] tells

us that a Lorentzian metric on a manifold in which the spatial topology changes

must contain closed timelike curves. If one wants to avoid the pathologies that go

along with closed timelike curves [54, 60], one can consider the alternatives of metrics

85
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that are Lorentzian almost everywhere (degenerating at a finite set of isolated points)

and which retain a well-defined causal order [57], or, going further, metrics with

signature change [61] or Euclidean signature [62]. One can then investigate the action

of a topology changing spacetime in a background field approximation by studying

linear-order quantum fluctuations, or as a first step by investigating a free massless

scalar quantum field in the background spacetime, a study within the framework of

quantum field theory in curved spacetime.

Choosing the histories in the path integral to be Lorentzian spacetimes with well-

defined causal order and isolated singularities, one is then faced with the challenge

that such topology changing spacetimes are not globally hyperbolic in the usual

sense. Since global hyperbolicity is a basic assumption in textbook quantum field

theory, this means that one is necessarily charting new territory in investigating

quantum field theory in such spacetimes. New rules must be created and analysed

to see if they are self-consistent and physically plausible.

Work along these lines was carried out by Anderson and DeWitt [63], who

studied the quantum theory of a free massless scalar field on the topology-changing

two-dimensional “trousers” spacetime, in which a circle splits into two (or vice-versa),

see Figure 4.1. This spacetime admits an almost everywhere Lorentzian metric,

which is flat everywhere except at an isolated singular point, the “crotch singularity”.

Expanding the scalar field in terms of modes on a spacelike hypersurface in the

“in”-region and specifying a particular “shadow rule” to propagate the modes past

the topology-changing hypersurface into the “out”-region, Anderson and DeWitt

concluded that the expectation value of the stress-energy tensor evaluated in the

in-vacuum has incurable (squared Dirac-delta) divergences on the light-cone of the

singularity. They argued that this means that the trousers-type topology-change

is dynamically forbidden. Manogue et al. [64] revisited the problem with a more

careful analysis. They argued that the propagation rule of Anderson and DeWitt is

unphysical because the Klein-Gordon product is not conserved when using the shadow

rule to propagate solutions past the topology-changing hypersurface. Deriving a

one-parameter family of propagation laws that conserve the inner product they

arrived, nevertheless, at the same conclusion: an infinite burst of energy emanating

from the singularity.

Recently a new approach to QFT has been proposed by Sorkin [65, 66] based on

work by Johnston on QFT on a causal set [67]. In this chapter we apply the Sorkin-

Johnston (SJ) formalism to the trousers, not only to see what light it might shed on

previous results, but also as an exercise in the new approach. The starting point of

the SJ approach for a free scalar field is the retarded Green function, rather than
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the field operator as a solution of the equations of motion. The Green function leads

to a distinguished quantum state — a candidate “ground state” — for a spacetime

region without further input. In a globally hyperbolic spacetime the retarded Green

function is unique but in a topology changing spacetime we expect that there will be

a choice of Green functions. This turns out to be the case and we will see that there

is a separate QFT for each choice.

4.2 Background and Setup

4.2.1 The SJ Formalism

Here we give a brief review of the SJ formalism [65, 66] for a free scalar field, φ, in

a globally hyperbolic spacetime, (M, gµν), of finite volume. Given the retarded Green

function, G(x, y), the Pauli-Jordan function is defined as ∆(x, y) = G(x, y)−G(y, x)

(x and y are spacetime points). Note that ∆(x, y) is antisymmetric. In a globally

hyperbolic spacetime, the transpose of the retarded Green function is the advanced

Green function and so ∆(x, y) is a solution of the equations of motion in both its

arguments. We will see that this condition will need to be imposed by hand in

the trousers spacetime, as the connection between retarded and advanced Green

functions is not automatic.

The Hilbert space L2(M) of equivalence classes of complex functions on (M, gµν)

has inner product

〈[f ], [g]〉 :=
∫

M

dVxf(x)
∗g(x) (4.1)

where [f ], [g] ∈ L2(M) (square brackets denote equivalence classes and ∗ denotes

complex conjugation), and dVx denotes the spacetime volume element at x. In what

follows we will abuse notation and refer to an element of the Hilbert space by one of

its representative functions.

We define the Pauli-Jordan operator as an operator on the Hilbert space which

is given by the integral operator on representative functions whose kernel is the

Pauli-Jordan function ∆(x, y):

(∆f)(x) =

∫

M

dVy∆(x, y)f(y). (4.2)

Assuming that ∆(x, y) is a square integrable kernel, i.e. that ∆(x, y) ∈ L2(M ×M),

then the operator i∆ is a self-adjoint Hilbert-Schmidt operator [68, Thm. VI.23] and
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the spectral theorem for such operators says that i∆ has a set of real eigenvalues λa

and a complete orthonormal set of eigenfunctions ua which satisfy

i∆ua = λaua, λa ∈ R. (4.3)

Since ∆(x, y) is a real function, it follows that

i∆ua = λaua =⇒ i∆u∗
a
= −λau

∗
a
, (4.4)

which means that for the non-zero eigenvalues, the eigenfunctions of i∆ come in

pairs:

i∆u±
a
= ±λau

±
a
, (4.5)

where λa > 0 and u−
a
= u+∗

a
. Moreover, these eigenfunctions (appropriately normali-

sed) are orthonormal in the L2(M) inner product:

〈u±
a
, u±

b
〉 = δab

〈u+
a
, u−

b
〉 = 0.

(4.6)

i∆(x, y) is the sum of its positive and negative parts:

i∆(x, y) = Q(x, y)−Q(x, y)∗, (4.7)

where

Q(x, y) =
∑

a

λ
a
u+
a
(x)u−

a
(y). (4.8)

The SJ state is the pure Gaussian state defined by its Wightman function,

WSJ(x, y) := Q(x, y) =
∑

a

λ
a
u+
a
(x)u−

a
(y) . (4.9)

Although the topology changing spacetime we will look at is not globally

hyperbolic in the usual sense, it does have a well-defined causal structure so that the

notion of retardedness of a Green function makes sense, and it has finite volume so

the SJ formalism can be extended to our case if an appropriate Green function can

be found.
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⨯ ⨯ ⨯

λ λ

2λ
Figure 4.1: The trousers spacetime is shown on the left. The flat two-dimensional
representation of the trousers on the right is obtained by cutting along the dotted
lines and unwrapping the trousers on the left. The arrows indicate the respective
identifications in the trunk and in the left and right legs. The crosses are identified
and mark the location of xc, the singularity. The dashed lines on the right form the
boundary of a neighbourhood of xc which we call the pair of diamonds.

4.2.2 The Trousers Spacetime

Keeping with tradition, let us hang the trousers upside down as in Figure 4.1

and use Cartesian coordinates (T,X) in which T = 0 separates the “legs” and the

“trunk”. The spatial coordinate X lies in the range [−λ, λ] and the singularity, xc

lies at the origin: xc = (0, 0). The coordinates in the trunk extend to coordinates in

the left and right legs, i.e. we identify points (0+, X) in the legs with points (0−, X)

in the trunk for X 6= 0. In the trunk, i.e. for T < 0, we identify X = −λ with

X = λ. In the legs T > 0. In the left leg we identify X = −λ with X = 0− and in

the right leg, we identify X = λ with X = 0+. The metric on the trousers is locally

flat everywhere except at xc where it is degenerate.

To build the SJ state in the trousers we need to identify the positive eigenvalue

eigenfunctions of i∆ as in the analysis of the flat causal diamond [69]. For this, we

need the Pauli-Jordan function ∆(x, y) = G(x, y)−G(y, x), and thus the retarded

Green function in the trousers.

One way in which Green functions in the trousers differ from those in Minkowski

space is due to the cylindrical topology of the trunk and legs. Consider the quantum

field theory on a flat cylinder S1 × R (no topology-change). The future and past
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light-cones of any point, x, will wrap around the cylinder and intersect at a set of

conjugate points. This means that the retarded Green function on the cylinder is

not equal to the retarded Green function GMink(x, y) of two-dimensional Minkowski

space. At the first conjugate point to the past of x, call it x′, there is a contribution

−δ(2)(x− x′) to ✷xGMink(x, y). The Green function on the cylinder is obtained by

adding to GMink(x, y) appropriate multiples of GMink(x
′, y) for every conjugate point

x′: the usual method of images.

In order to isolate the features of the trousers spacetime that are most pertinent

to the physics of topology-change, we could restrict ourselves to a thin enough slab

of the trousers containing the singularity such that no wrapping around occurs, e.g.

|T | ≤ Tmax for some Tmax < λ
4
. However, it will be most convenient to restrict

further to a smaller neighbourhood of the singularity. Consider, therefore, two points,

one in the left and one in the right leg, each lying directly above the singularity:

x±
leg = (T0, 0±). Consider the intersection of the union of their causal pasts with the

causal future of two points in the trunk, x+
trunk = (−T0, 0) and x−

trunk = (T0, λ), each

of which lies directly below the singularity. This region consists of the two diamonds

outlined with dashed lines in Figure 4.1. We refer to this spacetime as the pair of

diamonds. Figure 4.2 shows the pair of diamonds, with the topological identifications

inherited from the trousers. When the two diamonds are depicted next to each other

as in Figure 4.2, the left diamond (A) corresponds to the diamond seen in the centre

of the cut open trousers (the right diagram in Figure 4.1) and the right diamond (B)

is made up of the two halves at the sides of the cut open trousers. Figure 4.3 shows

how the pair of diamonds embeds in the original picture of the trousers. The pair of

diamonds spacetime captures the essential causal structure of the trousers topology

change.

4.2.3 The Pair of Diamonds

In order to discuss the pair of diamonds, denoted by M, and functions on it,

it will be useful to have a coordinate system that respects the symmetry between

the two diamonds, A and B. We will use both Cartesian, (Ti, Xi), and light-cone

coordinates, (ui, vi) (where ui =
1√
2
(Ti −Xi) and vi =

1√
2
(Ti +Xi)), and subscripts

i = A,B, refer to the corresponding diamond. The trousers coordinates (without

subscript) defined previously and the coordinates on the two diamonds are related

as follows. The coordinate system on diamond A agrees with the trousers coordinate

system since they have the same origin: TA = T, XA = X , uA = u, vA = v. On

diamond B, the left side comes from the right edge of the trousers and the right side
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vAuA vBuB

2L2L

⨯ ⨯
1
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4

5 5

6

7

8

1

Figure 4.2: The pair of diamonds in more detail. Diamond A is on the left and
diamond B is on the right. The arrows in regions 1 and 5 indicate the topological
identifications inherited from the trousers. The dashed lines are the past and future
lightcones from the singularity.

Figure 4.3: The pair of diamonds on the trousers. The numbers illustrate the different
regions of the pair of diamonds.

comes from the left edge of the trousers, so the relations between the coordinate
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systems are

TB = T

XB = X − λ for X > 0

XB = X + λ for X < 0

⇐⇒

uB = u+ λ/
√
2

vB = v − λ/
√
2

}

for X > 0

uB = u− λ/
√
2

vB = v + λ/
√
2

}

for X < 0.

(4.10)

The coordinate range for the light-cone coordinates on each diamond is [−L,L] where√
2L < λ/2. In both the A and B coordinate systems the singularity, xc, is at the

origin of coordinates. For 0 < TA, TB <
√
2L, we identify XA = 0− with XB = 0+

and vice versa. The two coordinate systems do not correspond to a split into left and

right legs in the trousers manifold: for example, both the top left part of diamond A

(i.e. uA > vA > 0) and the top right part of diamond 2 (i.e. vB > uB > 0) belong to

the left leg of the trousers.

We will use notation x, y without subscripts to denote general points in the

manifold and use indicator functions to restrict support of functions onto subregions.

We define χR(x) to be the function that is 1 when x ∈ R and zero otherwise. We

define eight regions, Ri, where i = 1, ..., 8, whose boundaries are the past and future

null lines from the singularity, as shown in Figure 4.2. For definiteness we choose the

regions to include their boundaries so that their union is the whole manifold minus

the singularity xc, but we could choose them to be open or assign the boundary

points to exactly one of the regions. This does not make a difference, as we are

working in L2(M).

For convenience we write the corresponding indicator functions as χi(x) :=

χRi
(x). We will also use notation χ1,2(x) := χ1(x) + χ2(x) and χ2,3,5(x) := χ2(x) +

χ3(x) + χ5(x) etc. to denote the indicator functions for unions of these regions.

We consider the singularity as a point of spacetime. The metric degenerates

at the singularity but the pair of diamonds spacetime including the singularity

nevertheless possesses a natural, well defined causal order. For example the singularity

xc is to the causal past (future) of all points in and on the boundaries of regions

1 and 5 (3 and 7) in Figure 4.2. We denote the causal order by � where y � x

(equivalently, x � y) means that y is in the causal past of x. We denote by [x, y] the

causal interval, [x, y] = {z ∈ M| x � z � y}.
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Figure 4.4: The pair of diamonds on the trousers, as “viewed from above”. The
numbers correspond to the same 8 regions as before. The arrows represent the
direction of time in each region. Isometry P is reflection in the dotted horizontal line,
labelled P. Isometry T is reflection about the dotted line at 45◦ to the horizontal,
labelled T.

4.2.4 Isometries of the Pair of Diamonds

The isometry group for the pair of diamonds is generated by two transformations,

one of which can be thought of as a “parity” transformation and the other as a “time

reversal”. The parity transformation, P : M → M, is the isometry that reflects

both diamonds, A and B, each in its own vertical axis of symmetry. To define the

time reversal map, T : M → M, we need only specify its action on a single region

Ri and that fixes its action on the other regions by continuity. We choose to specify

the action of T on R1 to be a reflection of R1 in its own horizontal axis of symmetry

followed by a translation (in the obvious sense) of R1 onto R3. Then the action of T

on the other regions is: reflect R2 in its horizontal axis; reflect R3 in its horizontal

axis and translate onto R1; reflect R4 in its horizontal axis and translate onto R8;

reflect R5 in its horizontal axis and translate onto R7; reflect R6 in its horizontal

axis; reflect R7 in its horizontal axis translate onto R5; reflect R8 in its horizontal

axis and translate onto R4.

There are actually two isometries that have an equal claim to being called

“time reversal” on M and we chose one of them above to be T. The isometry that

time-reverses R1 and then translates it onto R7 — instead of R3 — is equal to

P ◦T ◦P. P and T generate the isometry group. For example, the “swap” isometry

that interchanges the two diamonds, A ↔ B, is equal to (P ◦ T)2.
The isometry group is the dihedral group, D4, the symmetry group of the square

which can be seen by viewing the trousers in Figure 4.1 from above. From this point
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of view, the regions R1 to R8 are arranged as in Figure 4.4. Representing topology

change in this way is useful in studying the causality properties of topology change

[70]. One can determine how the parity and time reversal operations act on this

representation of the spacetime, Figure 4.4. P is reflection in the horizontal dotted

line marked P and T is reflection in the dotted line marked T at 45◦ to the horizontal.

The group D4 is the symmetry group of a square and is generated by a reflection in

the horizontal axis and a reflection in a diagonal. Thus, the isometry group of the

pair of diamond is D4.

4.3 Green Functions

4.3.1 1 + 1 dimensional Minkowski

To construct the SJ theory of a massless scalar field, φ, on the pair of diamonds,

M, we must decide what it means to be a solution of the wave equation at the

singularity, as the differential equation is not defined there. So let us first look at

different ways to express the wave equation in 1+1 dimensional Minkowski space.

The wave equation is

✷f = 0 (4.11)

so that
∫

A

dV ✷f = 0 (4.12)

for every measureable region A. By Stokes’ theorem we have

∫

A

dV ✷f =

∮

∂A

dΣµ ∂

∂xµ
f , (4.13)

where the boundary ∂A is traversed anti-clockwise and dΣµ
x is the normal surface

element. We have implicitly assumed here that A is such that its boundary is nice

enough — say, connected, non-self intersecting and piecewise smooth, for definiteness

— for this to be meaningful. If we define

BAf :=

∮

∂A

dΣµ ∂

∂xµ
f (4.14)

then a solution satisfies BAf = 0 for all nice enough A.

When the region is a causal interval, or causal diamond,D, this boundary integral

only picks up the values of the function at the corners of the diamond, because the
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normal derivatives in the integrand become tangential when the boundary is null.

The full boundary integral is a sum of the integrals along the four null segments, and

each one of the integrands is a total derivative with respect to the null coordinate u

or v, so that

∫

D

dV ✷f =

∮

∂D

dΣµ
x

∂

∂xµ
f = −2 [f(x1)− f(x2) + f(x3)− f(x4)] , (4.15)

where x1 is the future tip of the diamond and the other corners are labelled in

clockwise order. The boundary integral condition can therefore be written

CDf = 0 , (4.16)

for each causal diamond, D, where we have defined

CDf := f(x1)− f(x2) + f(x3)− f(x4) . (4.17)

If f is differentiable then the condition (4.16) for all causal diamonds implies

✷f = 0 since

✷f(u, v) = −2
∂

∂u

∂

∂v
f(u, v)

= −2 lim
δu,δv→0

f(u+ δu, v + δv)− f(u, v + δv) + f(u, v)− f(u+ δu, v)

δuδv

= 0 .

Green’s equation is

✷xG(x, y) = δ(x, y) (4.18)

for all x, y, where ✷x denotes the d’Alembertian with respect to argument x. This

means that
∫

A

dVx ✷xG(x, y) = χA(y) (4.19)

for any measureable region A.

Again, Stokes’ theorem gives the boundary integral form of the condition,

BA
xG(x, y) = χA(y) (4.20)

for each point y and each nice enough region A, where

BA
xG(x, y) :=

∮

∂A

dΣµ
x

∂

∂xµ
G(x, y) . (4.21)
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And, when the region is a causal diamond, D, with corners x1, . . . x4 as before we

have

CD
x G(x, y) = −1

2
χD(y) , (4.22)

where

CD
x G(x, y) := G(x1, y)−G(x2, y) +G(x3, y)−G(x4, y) , (4.23)

and the subscript x denotes that CD
x acts on the argument x of G(x, y).

Similarly to the solution, the condition (4.23) for all causal diamonds and all

points y is equivalent to Green’s equation.

Finally, we note that the explicit form of the 1+1 dimensional Minkowski space

retarded Green function is

GMink(x, y) = −1

2
χ≻(x, y) , (4.24)

where χ≻(x, y) = 1 when x ≻ y and is 0 otherwise.

4.3.2 The Pair of Diamonds

Consider now the massless scalar field theory on the pair of diamonds, M. We

say that function f is a solution of the wave equation if it satisfies

CDf = 0 , (4.25)

for every causal diamond D that does not contain xc, as illustrated in Figure 4.5,

and

CDDf = 0 , (4.26)

for each “double diamond”, DD, whose interior contains xc — like the example

shown in Figure 4.6 — and where the definition of CDD is the obvious generalisation

of (4.23), the alternating sum of the values of f at the vertices of DD:

CDDf := f(x1)− f(x2) + f(x3)− f(x4) + f(x5)− f(x6) + f(x7)− f(x8) . (4.27)

The order of the labels of the vertices is clockwise starting from the futuremost vertex

in region R1 as in Figure 4.6. Note that for every double diamond, exactly one of its

corners lies in the interior of each of the regions Ri of M. In the labelling we have

chosen, xi ∈ Ri.

It is straightforward to extend this concept of solution to define a Green function
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Figure 4.5: A causal interval or causal diamond not containing the singularity.
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Figure 4.6: Example of a double diamond containing the singularity.

in M. A Green function G(x, y) satisfies

CD
x G(x, y) = −1

2
χD(y) , (4.28)

for every causal diamond, D, that does not contain xc, and, in addition,

CDD
x G(x, y) = −1

2
χDD(y) , (4.29)

for every double diamond, DD, surrounding xc. The subscript x on the operator

CDD
x indicates that it acts on the argument x of G(x, y).

The Hilbert space we are working in is L2(M), in which members of the same
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x

Figure 4.7: The Minkowski retarded Green function GMink(x, y) = −1
2
χ≻(x, y) in the

pair of diamonds, drawn as a function of y for fixed x where x is in the causal future
of the singularity. The dashed contour corresponds to the boundary of a double
diamond, DD, centred on the singularity.

equivalence class differ only on a set of measure zero. We say that an element

of L2(M) is a solution if it contains a member, f(x), that satisfies the above

requirements, (4.25) and (4.26). Other members of the equivalence class can fail the

above conditions but only on a set of diamonds and double diamonds of measure

zero in the space of all diamonds.

4.3.3 A One-Parameter Family of Green Functions

In the SJ construction of the quantum theory the role of the retarded Green

function G(x, y) is its appearance in the Pauli-Jordan function ∆(x, y) = G(x, y)−
G(y, x). The causal structure of the spacetime is imposed on the quantum field

theory through the commutation relations [φ(x), φ(y)] = i∆(x, y), the covariant form

of the equal-time canonical commutation relation. For the field operators to be

solutions of the field equations we also have that ∆ must be a solution to the field

equations in both its arguments. We satisfy this condition by requiring that G(x, y)

be a Green function in both its arguments.

If a causal interval [x, y] does not contain the singularity then [x, y] is contained

in an open, globally hyperbolic subregion of Minkowski space, and so the retarded

Green function G(x, y) will take its usual Minkowski form, G(x, y) = GMink(x, y).

Consider, firstly, GMink(x, y)) = −1
2
χ≻(x, y) on the whole of the pair of diamonds

as illustrated in Figure 4.7.
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Figure 4.8: An ansatz for the retarded Green function G(x, y) for fixed x ∈ R1.
If β1 + β2 = 1, then CDD

y G(x, y) = 0 for any double diamond, DD, around the
singularity.

Choose x to the future of xc and let DD be a double diamond around xc small

enough that it does not contain x as shown in Figure 4.7. In order for G(x, y) to be a

Green function in both arguments we need it to satisfy, for example, CDD
y G(x, y) = 0,

since χDD(x) = 0. However, CDD
y GMink(x, y) = −1/2. This is reminiscent of the

cylinder, in which GMink(x, y) does not satisfy Green’s equation due to the conjugate

points on the cylinder, and this motivates an analogous method of images to find a

Green function on the pair of diamonds.

If x /∈ R1 ∪ R5 and y ≺ x then the interval [x, y] does not contain xc and

G(x, y) = GMink(x, y). So the only cases we need to consider are x ∈ R5 or x ∈ R1,

and y ∈ R3 or y ∈ R7.

For x ∈ R1 let us add to the Minkowski Green function two contributions from

an image point at xc, one on diamond A and the other on diamond B:

G(x, y)|x∈R1
= −1

2
[χ≻(x, y)− β1χ3(y)− β2χ7(y) ] . (4.30)

See Figure 4.8 for an illustration. Considering a double diamond, DD, around xc we

find that CDD
y G(x, y) = 0 if β1 + β2 = 1.

Similarly, for x ∈ R5, consider the ansatz,

G(x, y)|x∈R5
= −1

2
[χ≻(x, y)− α1χ3(y)− α2χ7(y)] . (4.31)

Then, CDD
y G(x, y) = 0 implies α1 + α2 = 1.

This leaves us with a two-parameter family of retarded functions on M, with
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Figure 4.9: The retarded Green function Gp(x, y) for fixed y in R3 as a function of x.

parameters α := α1 = 1 − α2 and β := β1 = 1 − β2. However, there is a further

condition because G is a Green function in its first argument and from CDD
x G(x, y) = 0

for y /∈ DD we obtain an additional constraint, α+ β = 1. To see this, fix y ∈ R3 as

in Figure 4.9, where we have plotted G(x, y) as a function of x. If we take a double

diamond, DD, such that y /∈ DD, then CDD
x G(x, y) = −1

2
(1− α− β), and since this

must equal 0 we obtain the constraint α + β = 1.

We are thus left with a one-parameter family of retarded Green functions Gp(x, y)

parametrised by p := α = 1− β. The case p = 1
2
corresponds to the symmetric case

in which the source at xc is of equal strength in each of the two disconnected pieces

of spacetime that come together or come apart at xc (see Figures 4.8 and 4.9). These

additional sources in Gp(x, y) do not by themselves constitute an “infinite burst

in energy”; at this stage they are merely a presage of trouble ahead. In order to

reach such conclusions, one first has to obtain the quantum state and try to compute

physical quantities.

4.4 Eigenfunctions of the Pauli-Jordan Operator

The one-parameter family of retarded Green functions derived in the previous

section provides us with a one-parameter family of Pauli-Jordan functions ∆p =

Gp −GT
p . For an example illustrating its form see Figure 4.10. In order to calculate

the SJ state our task is now to find the positive part of i∆p and to do that we will
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Figure 4.10: The Pauli-Jordan function ∆p(x, y) in the pair of diamonds as a function
of y, with the first argument x fixed in the causal future of the singularity. Here
q = 1− p.

solve for the eigenfunctions of i∆p,

∫

M
dy i∆p(x, y)f(y) = λf(x) , (4.32)

for λ > 0. As mentioned before, the eigenfunctions of i∆p with non-zero eigenvalues

come in pairs: the function f with eigenvalue λ > 0, and its complex conjugate, f ∗,

with eigenvalue −λ.

Since i∆p(x, y) is a solution in its argument x, (4.32) shows that every eigen-

function with non-zero eigenvalue will also be a solution. Indeed, the eigenfunctions

with nonzero eigenvalues form a basis for the space of solutions of the equations of

motion on the pair of diamonds. In Appendix A.1 we show that the eigenfunctions

with zero eigenvalue — elements of the kernel of i∆ — are not solutions.

4.4.1 The Norm of the Pauli-Jordan Function

i∆p(x, y) is a Hilbert-Schmidt integral kernel and its L2-norm squared is equal

to the sum of the squares of its eigenvalues λk:

∫

M
dVx

∫

M
dVy|i∆p(x, y)|2 =

∑

k

λ2
k . (4.33)
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The eigenvalues come in pairs with opposite signs, so this sum is twice the sum of

the squares of the positive eigenvalues. The integral on the LHS gives

∫

M
dVx

∫

M
dVy|i∆p(x, y)|2 =

8
∑

i,j=1

∫

Ri

dVx

∫

Rj

dVy|i∆p(x, y)|2

=2L4 [2− p(1− p)] .

(4.34)

Compare this to the single flat diamond, on which the norm squared of i∆ equals

2L4 [71]. The relation (4.34) is useful because one can check if a given set of

eigenfunctions of i∆p is complete: if the eigenvalues sum to less than 2L4 [2− p(1− p)]

then there are missing eigenfunctions. Note that the value depends on p so the

eigenvalues will be functions of p.

4.4.2 Isometries and the Pauli-Jordan Function

The isometries P and T that generate the isometry group can be represented as

operators, P̂ and T̂, on the Hilbert space L2(M). The action of P̂ on a function f(x)

is given by P̂(f)(x) := f(P−1x). The action of T̂ is given by T̂(f)(x) := f ∗(T−1x).

We can ask if the operators P̂ and T̂ commute with i∆p. We find that

P̂ ◦ i∆p = i∆1−p ◦ P̂
T̂ ◦ i∆p = i∆p ◦ T̂ ,

(4.35)

so that for p = 1
2
both P̂ and T̂ commute with i∆ 1

2

. This means that i∆ 1

2

commutes

with the full isometry group.

4.4.3 “Copy” Eigenfunctions

Since we know the SJ modes for the single causal diamond from [71], we can

use them as a guide to finding eigenfunctions on the pair of diamonds. In [71] it was

shown that on the single diamond of area 4L2, the eigenfunctions of i∆Mink(x, y) =

− i
2
[χ≻(x, y)− χ≻(y, x)] are linear combinations of positive frequency plane waves

and a constant:

fk(u, v) := e−iku − e−ikv, with k =
nπ

L
, n = 1, 2, . . .

gk(u, v) := e−iku + e−ikv − 2 cos(kL), with k ∈ K
(4.36)
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where K = {k ∈ R | tan(kL) = 2kL and k > 0} and the eigenvalues are L/k. The

eigenfunctions with eigenvalues −L/k are the complex conjugates of these. Consider

now each of these — fk and gk — modes in turn, extended to the pair of diamonds by

duplicating the mode onto both diamonds in Figure 4.2, as if each were a disconnected

single diamond. It can be shown that each of these “copy modes” on the pair of

diamonds is an eigenfunction of i∆p, for any p. The norm squared of the fk copy

mode on the pair of diamonds is

||fk||2 :=
∫ L

−L

duA

∫ L

−L

dvAfk
∗fk +

∫ L

−L

duB

∫ L

−L

dvBfk
∗fk = 16L2 . (4.37)

We define the normalised mode as f̂k := ||fk||−1fk. Similarly, we define the normalised

mode ĝk := ||gk||−1gk, where ||gk||2 = 16L2 (1− 2 cos(kL)).

The (positive and negative) eigenvalues of the copy modes sum to 2L4, as was

shown in [71]. Since this is less than the total in (4.34), the copy modes cannot be a

complete set.

4.4.4 The Other Eigenfunctions

The form of the remaining eigenfunctions was investigated by solving for them

in a discrete, finite version of the problem. The pair of diamonds was discretised

in two different ways, with a regular lattice in the coordinates X and T , and with

causal set sprinklings [36]. In each case, i∆p is a finite matrix whose indices run

over the elements of the lattice or causal set. We solved for the eigenvectors of this

matrix numerically and looked for those that did not resemble the f̂k or ĝk modes.

This led to an ansatz for the extra modes as piecewise continuous functions with the

following form:

f(x) =
8
∑

i=1

(

aie
−iku + bie

−ikv + ci
)

χi(x) , (4.38)

where i denotes the region, as shown in Figure 4.2, and the coefficients ai, bi and ci

are complex. When x, the argument of f , is in diamond A (B) the coordinates (u, v)

in (4.38) are equal to (uA, vA) ((uB, vB)).

The calculations provided evidence that each of the new modes is odd under

interchange of the diamonds, A ↔ B. This implies that ai = −ai+4, bi = −bi+4

and ci = −ci+4 for i = 1, ..., 4. The calculations also showed that the modes are

discontinuous across the past and future directed null lines from the origin on both

diamonds.

All the non-zero eigenvalue eigenfunctions of i∆p are solutions of the wave
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equation. Using (4.25) for a diamond straddling the boundary between two regions,

gives conditions on the constants:

a1 = −a4 , a2 = a3 , b1 = b2 , b3 = b4 . (4.39)

The above conditions leave us with 8 complex parameters {a1, a2, b1, b3, c1, c2, c3, c4}.
These, and the allowed values of k, are fixed by the eigenvalue equation for i∆p. In

the following sections we will only discuss the eigenfunctions with positive eigenvalues

unless otherwise stated. The eigenvalues are given in terms of k by λk = L/k.

4.4.5 p = 1
2

In this case k > 0 satisfies

(

2 + (kL)2
)

cos (kL) + 2kL sin (kL)− 2 = 0 . (4.40)

The eigenvalue corresponding to each solution of this equation is degenerate and

there are two modes with that eigenvalue, one for which a1 = b1 and one for which

a1 = −b1.

a1 = b1

The coefficients are

a1 = b1 = kL+ 2i

a2 = −b3 = ikL cot

(

kL

2

)

e−ikL

c1 = −2i
(

1 + e−ikL
)

c2 = −c4 = − 2

kL

(

1− ikL− e−ikL
)

c3 = 0 .

(4.41)

We denote the mode with these coefficients as f
( 1
2
)

k . The norm-squared of this mode

is

||f ( 1
2
)

k ||2 = 8
L

k

(

8kL+ 4kL cos (kL) + (kL)3 csc2
(

kL

2

)

− 8 sin (kL)

)

. (4.42)

The mode that is normalised under the L2 inner product is then f̂
( 1
2
)

k := ||f ( 1
2
)

k ||−1f
( 1
2
)

k .

The lowest k mode is plotted in Figure 4.11.
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Figure 4.11: The f̂
( 1
2
)

k mode for the lowest k satisfying (4.40). On the top we have
plotted the absolute value of the mode across the pair of diamonds. In the middle we
have plotted its real part, and at the bottom its imaginary part. The discontinuity
across the line of X = 0 for T > 0 is not a discontinuity in the mode. It is simply a
consequence of how we have set up the identifications on the pair of diamonds.
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a1 = −b1

The coefficients are

a1 = −b1 = ikL cot

(

kL

2

)

eikL

a2 = b3 = k − 2i

c1 = 0

c2 = c4 = − 2

kL

(

1 + ikL− eikL
)

c3 = 2i(1 + eikL) .

(4.43)

A mode with these coefficients will be denoted as g
( 1
2
)

k . The norm-squared is ||g(
1

2
)

k || =
||f ( 1

2
)

k || and the normalised mode is ĝ
( 1
2
)

k := ||g(
1

2
)

k ||−1g
( 1
2
)

k . The f̂ ( 1
2
) modes and the

ĝ(
1

2
) are orthogonal. The phase of ĝ

( 1
2
)

k was chosen such that T̂(f̂
( 1
2
)

k ) = ĝ
( 1
2
)

k .

i∆ 1

2

commutes with the isometry group D4 and for each k the 2-dimensional

eigensubspace of i∆ 1

2

, spanned by {g(
1

2
)

k , f
( 1
2
)

k }, carries the 2-dimensional irreducible

representation of D4.

In Appendix A.2 we verify that these, and the f̂
( 1
2
)

k modes, are indeed all the

extra modes. That is, we show that the sum of the squares of the eigenvalues (both

the positive and negative values) for the modes f̂k, ĝk, f̂
( 1
2
)

k and ĝ
( 1
2
)

k is

∑

all modes

λk
2 =

7L4

2
. (4.44)

The right side of (4.44) agrees with (4.34) when p = 1
2
.

4.4.6 p 6= 1
2

We start with the ansatz for a mode (4.38) with ai+4 = −ai, bi+4 = −bi,

ci+4 = −ci for i = 1, . . . 4, a1 = −a4, a2 = a3, b1 = b2 and b3 = b4, as before. For

p 6= 1
2
we expect to see a dependence on p in the coefficients. With this ansatz one

can show that each eigenvalue, λk, satisfies one of two possible equations:

(

(kL)2 + 2
)

cos (kL) + kL(2± kL(1− 2p)) sin (kL)− 2 = 0 , (4.45)

where k = L
λk
, This is consistent with the p = 1

2
case as the above two equations

become (4.40) when p = 1
2
. By using the ansatz (4.38), and by using (4.45) to
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simplify the resulting equations we find that the coefficients are

a1 = eikLkL
{

i(1 + kL(kLp+ i)) + eikL [kL(2− kL(kL+ i)(p− 1))− 3i]

+ie2ikL [3− kL(kL(p− 1)− i)] + e3ikL
[

(kL)2(kLp+ i(p− 2))− i
]}

a2 = kL
{

i− kL(2 + kL(kL+ i)p) + eikL [kL(3 + ikL(p− 1))− 3i]

+e2ikL
[

(kL)2(i(p+ 1) + kL(p− 1)) + 3i
]

− ie3ikL [1 + kL(kLp− i)]
}

b1 = eikLkL
{

i− (kL+ ikL(p− 1))− eikL [3i− kL(2 + kL(kL+ i)p)]

+e2ikL [(kL)(ikLp− 1) + 3i]− e3ikL
[

(kL)2(p+ 1 + kL(p− 1)) + i
]}

b3 = kL
{

kL(2− kL(kL+ i)(p− 1))− i+ ieikL [3 + kL(kLp+ 3i)]

+e2ikL
[

i(kL)2((p− 2) + kLp)− 3i
]

+ e3ikL [kL(1− ikL(p− 1)) + i]
}

c1 = 2eikL
(

eikL + 1− ikL
)

(eikL − 1)
((

(kL)2 + 2
)

cos(kL) + 2kL sin(kL)− 2
)

c2 = 2e2ikLkL sin(kL)
[

kL(ikL(1− 2p) + 2) sin(kL)−
(

(kL)2 + 2
)

cos(kL) + 2
]

c3 = (kL)2(2p− 1)
(

1− eikL
)2 (

1 + eikL
) (

eikL(1− ikL)− 1
)

c4 = 2e2ikLkL sin(kL)
[

kL(ikL(1− 2p)− 2) sin(kL) +
(

(kL)2 + 2
)

cos(kL)− 2
]

.

(4.46)

A mode with these coefficients and k satisfying (4.45) with the “+” sign will be

denoted as f
(p)
k . Likewise, for the “−” sign we call the mode g

(p)
k . The p 6= 1

2
case

differs from the p = 1
2
case in that the coefficients have the same form in terms of k for

both the f
(p)
k and g

(p)
k modes. The f

(p)
k and g

(p)
k modes still have different coefficients,

though, because the allowed values of k are different as they come from (4.45) with

either the “+” or “−” sign.

In Appendix A.2 we verify that these two sets of modes, together with the fk

and gk copy modes, are all the eigenfunctions of i∆p with positive eigenvalues. There

we show that the sum of the squares of the eigenvalues for all the modes agrees with

the right hand side of (4.34). That is,

∑

all modes

λk
2 = 2L4 (2− p(1− p)) . (4.47)

The norm-squared for either mode has the same form in terms of k, and is

||f (p)
k ||2 = ||g(p)k ||2 = 32k5L7(1− 2p)2 sin2(kL)

×
[

kL(3 + (kL)2 − 2 cos(kL)− cos(2kL)) + 4(cos(kL)− 1) sin(kL)
]

.
(4.48)

We define the normalised modes f̂
(p)
k := ||f (p)

k ||−1f
(p)
k and ĝ

(p)
k := ||g(p)k ||−1g

(p)
k .
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Both these modes tend to the f̂
( 1
2
)

k mode in the p → 1
2
limit. That is,

lim
p→ 1

2

f̂
(p)
k = lim

p→ 1

2

ĝ
(p)
k = f̂

( 1
2
)

k . (4.49)

The ĝ
( 1
2
)

k mode appears as an entirely new eigenfunction (in the sense that the

coefficients for this mode have a different form in terms of k) only when p = 1
2
.

4.5 Energy momentum in the SJ State

Knowing the complete set of positive eigenvalue eigenfunctions of i∆ means

that one knows the SJ state since its Wightman function can be expressed as the

sum (4.9) over these eigenfunctions. For each p, we have found this complete set and

so we have the SJ state. We can now turn to studying what physical properties this

SJ state has. Sorkin argues that, ultimately, quantum field theory should be based

on the path integral and will not be able to be fully self-consistent except within a

theory of quantum gravity in which the effect of quantum matter on spacetime itself

is taken into account [65]. Quantum gravity and the interpretation of path integral

quantum theory are works in progress, so we will proceed here by seeing what can

be gleaned by investigating the expectation value of the energy momentum tensor,

Tµν . In order to calculate this expectation value one can regulate the divergence

of the Wightman function and its derivatives in the coincidence limit using point

splitting and subtraction of the corresponding quantity in the “same” theory in

Minkowski spacetime, if the state has the Hadamard property. Fewster and Verch

[72] showed that the SJ state in a finite slab of a cosmological spacetime with closed

spatial sections generically is not Hadamard. It seems likely that the SJ state in

the pair of diamonds is also not Hadamard since it seems like the SJ state for the

single diamond is not [73]. It is possible that the SJ states in the single diamond

and pair of diamonds can be rendered Hadamard by a smoothing of the boundary

of the diamond [74] and it is an open question whether the Hadamard property

should be considered to be physically significant when quantum gravity suggests

that the differentiable manifold structure of spacetime breaks down at the Planck

scale. Here we will simply ignore this question and provide heuristic evidence that

an infinite burst of energy along the lightcones from the singularity will be present

in the SJ state. It should be noted that this heuristic argument will not involve any

regularisation, and we will only attempt such an endeavour in section 4.6.

A creation and annihilation operator can be assigned to each mode and the
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field operator can be written as a sum over modes [65–67]

φ(x) =
∑

a

√

λa

(

ua(x)aa + u∗
a
(x)a†

a

)

, (4.50)

where {ua} are the orthonormal eigenfunctions of i∆p with positive eigenvalues λa

and [aa, a
†
b
] = δab and [aa, ab] = [a†

a
, a†

b
] = 0. The SJ state,

∣

∣0(p)
〉

, is then the state

that is annihilated by aa for all a. For each p there is an inequivalent quantum

theory.

The operator for the stress energy of the massless field is

Tαβ = φ,αφ,β −
1

2
ηαβη

λσφ,λφ,σ , (4.51)

in Cartesian (T,X) coordinates in which the metric locally is the Minkowski metric,

ηαβ. We can construct the operator for the energy on the future (or past) null

boundary of the pair of diamonds by integrating Tαβξ
β across the surface, where ξα

is the Killing vector ∂/∂T . Let N+ be the future null boundary of M. The energy

operator for this boundary is

E+ :=

∫

N+

dΣαTαβξ
β . (4.52)

Using (4.51) and converting to light-cone coordinates, this becomes

E+ =
1√
2

(

∫ L

−L

duA(φ,uA
)2
∣

∣

∣

vA=L
+

∫ L

−L

dvA(φ,vA)
2
∣

∣

∣

uA=L

∫ L

−L

duB(φ,uB
)2
∣

∣

∣

vB=L
+

∫ L

−L

dvB(φ,vB)
2
∣

∣

∣

uB=L

)

,

(4.53)

where the first (second) line comes from integrating over the part of the surface on

diamond A (B). We can similarly define the energy operator E− for the past null

boundary N−.
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4.5.1 p = 1
2

Using the expansion for the field operator in the SJ modes gives the formal

expression

〈

0( 1
2
)

∣

∣E+

∣

∣0( 1
2
)

〉

=
√
2L

∫ L

−L

du

(

∑

k

k−1∂uf̂k∂uf̂
∗
k +

∑

k∈K
k−1∂uĝk∂uĝ

∗
k

+
∑

k

k−1
(

∂uf̂
( 1
2
)

k ∂uf̂
( 1
2
)∗

k + ∂uĝ
( 1
2
)

k ∂uĝ
( 1
2
)∗

k

)

)∣

∣

∣

∣

v=L

+(u ↔ v) ,

(4.54)

where the (u, v) coordinates refer to the light-cone coordinates on either diamond, as

both diamonds give the same result. In the first sum in (4.54) k = nπ
L
, where n ∈ N,

and the third sum runs over the positive roots of (4.40).

This expression (4.54) involves products of derivatives of the discontinuous SJ

modes so it is not rigorously defined. However, we see that as the discontinuities

are along the past and future directed light rays from xc, the integrals along the

v = L and u = L lines in (4.54) have integrands that contain squared Dirac-delta

functions located at u = 0 and v = 0 respectively. The same situation also arises

in the expectation value of E−. This squared Dirac-delta divergence was found in

previous works on the trousers, although here the divergence is along both the past

and the future lightcones of the singularity, while in previous work the divergence

only appears in the future. We now check that the delta-function squared terms

have positive coefficients.

Restricting attention to the integral over the v = L line, a mode has the following

form:

(Θ(u)a1 +Θ(−u)a2) e
−iku + b1e

−ikL + (Θ(u)c1 +Θ(−u)c2) , (4.55)

up to some normalisation constant, and the coefficients are given by (4.41) or (4.43).

Taking a u derivative of the mode in (4.55) and ignoring the parts with no

δ-function dependence we get

δ(u)
(

(a1 − a2)e
−iku + c1 − c2

)

. (4.56)

Each of the terms ∂uf̂
( 1
2
)

k ∂uf̂
( 1
2
)∗

k and ∂uĝ
( 1
2
)

k ∂uĝ
( 1
2
)∗

k in the sum in (4.54) gives a contri-

bution to the energy equal to δ(0) times a positive coefficient if the complex number

(a1 − a2 + c1 − c2) is non-zero. Using (4.41), and the eigenvalue equation (4.40),
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we find that this complex number is zero for the f̂
( 1
2
)

k mode and is non-zero for ĝ
( 1
2
)

k .

A similar conclusion can be drawn for the integral over the u = L line. There,

the f̂
( 1
2
)

k mode doesn’t contribute whilst the ĝ
( 1
2
)

k mode does. For the expectation

value of E− the situation is reversed — the ĝ
( 1
2
)

k mode doesn’t contribute while the

f̂
( 1
2
)

k mode does. Therefore, on both the past and future null boundaries of M there

appears to be a divergence in the energy. This divergence implies that the QFT in

curved spacetime approximation in which back reaction on the spacetime is ignored

must break down. It could be a signal that the trousers topology change cannot

occur at all but at the very least it means that the spacetime cannot be approximated

by the flat geometry we have been working with.

4.5.2 p 6= 1
2

The expectation value of E+ in the SJ state is

〈

0(p)
∣

∣E+

∣

∣0(p)
〉

=
√
2L

∫ L

−L

du

(

∑

k

k−1∂uf̂k∂uf̂
∗
k +

∑

k∈K
k−1∂uĝk∂uĝ

∗
k

+
∑

k

k−1∂uf̂
(p)
k ∂uf̂

(p)∗
k +

∑

k

k−1∂uĝ
(p)
k ∂uĝ

(p)∗
k

)∣

∣

∣

∣

v=L

+(u ↔ v) ,

(4.57)

where the first two sums are over the same values of k as those in (4.54), and the last

two sums are over the solutions of (4.45) with the “+” and “−” signs respectively.

For p 6= 1 and p 6= 0 one finds that, on all parts of the null boundaries, both

f̂
(p)
k and ĝ

(p)
k modes contribute δ(0) terms to the expectation value of E+ and E−.

However, when p = 0 there is no divergence on the lefthand segments of N+ and

N− i.e. u = L and v = −L, respectively. For p = 1 there is no divergence from the

righthand segments of N+ and N−, i.e. the lines v = L and u = −L, respectively.

4.6 From the Pair of Diamonds to the Infinite

Trousers

In this section we provide further evidence that the divergence in energy is

located along the past and future lightcones of the singularity by examining the

infinite limit of the pair of diamonds. This allows us better to compare the SJ

state to scalar QFT in 1+1 Minkowski spacetime. Specifically, we take L → ∞ in
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the pair of diamonds to get two copies of Minkowski spacetime with trousers-type

identifications along the positive time axes. We call this double sheeted Lorentzian

spacetime the infinite trousers. The two planes are labelled A and B in the same

way as the pair of diamonds. The conformal compactification of the infinite trousers

is the pair of diamonds. The retarded Green function is the same function, i∆p as in

the pair of diamonds.

We take an appropriate limit of the eigenfunctions of i∆p and compare them

with the usual modes of Minkowski spacetime. Strictly, we are leaving the finite

spacetime volume regime in which the SJ formalism is defined. Nevertheless, we can

renormalise the modes in order that they have a sensible limiting form and display

the usual feature of the passage from a finite box to an infinite spacetime, namely the

transition from a countable set of modes to an uncountable, delta-function normalised

set.

Consider first the f̂k copy modes. We define fL
n := L√

πk
f̂k where natural number

n labels the eigenvalues in increasing order, in this case via the simple relationship

k = nπ
L
. For each real number k > 0 and each value of L, we can find an integer nk,L

such that limL→∞
π
L
nk,L = k. Indeed nk,L = ⌊Lk

π
⌋ will do the job.

Then, in the limit L → ∞, for each real k > 0 we define the infinite trousers

copy mode f̃k := limL→∞ fL
nk,L

= 1√
16πk

(

e−iku − e−ikv
)

, where coordinates u and v

here are light-cone coordinates on the infinite trousers.

Considering the ĝk modes, we define gLn := L√
πk
ĝk where n labels the discrete

eigenvalues kn satisfying tan(kL) = 2kL in increasing order. Now there is no simple

relationship between n and eigenvalues kn but kn → (n + 1
2
) π
L
as n → ∞. So,

again, for each real k > 0 and all values of L there exist integers nk,L such that

limL→∞(nk,L + 1
2
) π
L
= k. Then, in the limit L → ∞, for each real k > 0 we define

the infinite trousers copy mode g̃k := limL→∞ gLnk,L
= 1√

16πk

(

e−iku + e−ikv
)

.

4.6.1 The Discontinuous Modes in the Infinite Trousers

The discontinuous modes in the infinite trousers are odd under interchange of

the two sheets and, using the same limiting procedure as above applied to the modes

f̂ (p) and ĝ(p) from section 4.4.6, we obtain

f̃
(p)
k (x) =

1√
16πk

8
∑

i=1

(

afi e
−iku + bfi e

−ikv
)

χi(x)

g̃
(p)
k (x) =

1√
16πk

8
∑

i=1

(

agi e
−iku + bgi e

−ikv
)

χi(x) ,

(4.58)
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respectively, where the coefficients are

af1 = 1 , af2 =
i+ 1

(1 + i)p− i
− i , bf1 = i , bf3 =

i− 1

(1 + i)p− i
+ 1

ag1 = 1 , ag2 = i+
1 + i

(1 + i)p− 1
, bg1 = −i , bg3 = 1 +

1− i

(1 + i)p− 1
.

(4.59)

The wave number, k ∈ R and k > 0.1

4.6.2 Wightman function

Denoting all the modes collectively as ũi,k =
(

f̃k, g̃k, f̃
(p)
k , g̃

(p)
k

)

, where i = 1, ..., 4

labels the type of mode, the field operator can be expanded as

φ =
4
∑

i=1

∫ ∞

0

dk (ai,kũi,k + a†i,kũ
∗
i,k) , (4.60)

where a†k and ak are creation and annihilation operators respectively. The Wightman

function is

Wp(x, y) =
4
∑

i=1

∫ ∞

k0

dk ũi,k(x)ũ
∗
i,k(y) , (4.61)

where k0 is an infrared cutoff, needed because the theory is IR divergent, as is the

theory in Minkowski space. In certain regions, this Wightman function equals the

Minkowski Wightman function. Specifically, for all values of p, Wp(x, y)|x,y∈Ri
=

WMink(x, y) for i = 1, 3, 5 and 7. The Wightman function differs from WMink when the

arguments lie in regions spacelike to the singularity, or when x and y lie in different

regions. It can also be shown that Wp(x, y) = 0 if x ∈ R1 and y ∈ R5, or x ∈ R3 and

y ∈ R7: there is no correlation between the two disjoint pieces of the future/past of

the singularity.

4.6.3 Energy Density in the SJ State in the Infinite Trousers

The SJ Wightman function in the infinite trousers provides evidence that the

energy density is zero everywhere except for the past and future lightcones of the

singularity, for any p. Consider x and y in the same region, Ri, and not on the

lightcone of xc. Denote the UV cutoff Wightman function as WΛ
p (u, v; u

′, v′), where

1In the special case p = 1
2 the discontinuous modes above, {f̃ (p)

k , g̃
(p)
k }|p= 1

2

, are actually linear
combinations of the modes that one obtains by performing the limiting procedure directly on the
f̂ ( 1

2
) and ĝ(

1

2
) modes in the pair of diamonds from Section 4.4.5.
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(u, v) and (u′, v′) are the lightcone coordinates of x and y respectively, and Λ is a

UV cutoff on the k-integral in (4.61). Define the quantity

TΛ
p (u, v; u

′, v′) :=
1

2
(∂u∂u′ + ∂v∂v′)W

Λ
p (u, v; u

′, v′) . (4.62)

and the corresponding quantity TΛ
Mink

(u, v; u′, v′) for the Minkowski Wightman

function, WΛ
Mink

(u, v; u′, v′). The regularised expectation value of the energy density

(on a surface of constant time) is then given by

〈

0∞(p)
∣

∣T00(x)
∣

∣0∞(p)
〉

reg
:= lim

Λ→∞
lim
y→x

(

TΛ
p (u, v; u

′, v′)− TΛ
Mink

(u, v; u′, v′)
)

, (4.63)

where
∣

∣0∞(p)
〉

is the SJ state in the infinite trousers. We already know that the

difference is zero, before the limits are taken, in regions Ri, i = 1, 3, 5 and 7 because

the SJ and Minkowski Wightman functions are equal there. It turns out that this

difference is zero, before the limits are taken, in the other regions Ri, i = 2, 4, 6, 8 as

well.

We can also see, at a formal level, that there is a factor of δ(0) in the energy

density on the lightcones from xc. Consider, without point splitting,

〈

0∞(p)
∣

∣T00

∣

∣0∞(p)
〉

reg
:=
〈

0∞(p)
∣

∣T00

∣

∣0∞(p)
〉

− 〈0Mink|TMink

00 |0Mink〉 , (4.64)

where

〈

0∞(p)
∣

∣T00

∣

∣0∞(p)
〉

=
1

2

∫ Λ

0

dk
(

∂uf̃k∂uf̃
∗
k + ∂vf̃k∂vf̃

∗
k + ∂ug̃k∂ug̃

∗
k + ∂vg̃k∂vg̃

∗
k

+∂uf̃
(p)
k ∂uf̃

(p)∗
k + ∂vg̃

(p)
k ∂vg̃

(p)∗
k + ∂ug̃

(p)
k ∂ug̃

(p)∗
k + ∂vg̃

(p)
k ∂vg̃

(p)∗
k

)

,

(4.65)

and the Minkowski vacuum energy is

〈0Mink|TMink

00 |0Mink〉 =
1

2

∫ Λ

0

dk ∂uuk∂uu
∗
k + ∂vvk∂vv

∗
k

=
1

2

∫ Λ

0

dk
k

2π
,

(4.66)

where the Klein-Gordon normalised Minkowski space modes are uk := 1√
4πk

e−iku and

vk :=
1√
4πk

e−ikv.

Let the point at which we evaluate this quantity have time coordinate less than
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zero. In this region the modes f̃
(p)
k and g̃

(p)
k take the form

f̃
(p)
k =

1√
16πk

((

−af1Θ(u) + af2Θ(−u)
)

e−iku +
(

bf1Θ(v)− bf3Θ(−v)
)

e−ikv
)

(4.67)

g̃
(p)
k =

1√
16πk

(

(−ag1Θ(u) + ag2Θ(−u)) e−iku + (bg1Θ(v)− bg3Θ(−v)) e−ikv
)

, (4.68)

resulting in

〈

0∞(p)
∣

∣T00

∣

∣0∞(p)
〉

reg
=

1

2

∫ Λ

0

dk

{

k

4π
+

1

8πk

[

k2
(

Θ(u)2 +Θ(−u)2 +Θ(v)2 +Θ(−v)2
)

+
4

1 + 2p(p− 1)

(

p2δ(u)2 + (1− p)2δ(v)2
)

]

− k

2π

}

.

(4.69)

Integrating this over a segment of a constant time surface that does not intersect

u = 0 or v = 0 gives 0. However, if the surface intersects the u = 0 (v = 0) line then

the result diverges unless p = 0 (p = 1).

For all p, the SJ state has divergent energy on both the past and future lightcones

of the singularity. This is a consequence of the time reversal symmetry of the infinite

trousers which is respected by the SJ state.

4.7 Propagation and Nonunitarity

4.7.1 Propagation

Returning to the pair of diamonds, we can ask what “propagation law” the

Green function corresponds to, in order to compare with previous work in [64]. We

recall the usual evolution of initial data with a retarded Green function. Given a

solution f(x) of the field equation and its derivative on a spacelike hypersurface Σ

and a retarded Green function G(x, y), the forward-propagated solution at a point x

in the future domain of dependence, D+(Σ), is

f(x) =

∫

Σ

dΣµ
y

[

f(y)∇y
µG(x, y)−G(x, y)∇y

µf(y)
]

. (4.70)

Consider now the pair of diamonds and retarded Green function Gp(x, y). Take

Σ to be a spacelike surface that is a union of two disjoint pieces, Σ = ΣA ∪ ΣB,
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where ΣA (ΣB) goes from the left to right corners of diamond A (B) and passes

under the singularity: Σ is as close as possible to a Cauchy surface. Using (4.70)

we can propagate continuous initial data on Σ to any point in its future. Given a

solution on and to the past of Σ we call the completely propagated solution that

which is generated by propagating to every point to the future of Σ in this way.

For discontinuous initial data, the propagation law is not well defined, as it would

involve derivatives of the discontinuous function multiplied by the discontinuous

Green function.

If the initial data is continuous and even under the exchange A ↔ B, the

completely propagated solution is also even under the exchange. To see this, we first

show that initial data corresponding to the f̂k and ĝk modes will propagate to the f̂k

and ĝk modes respectively everywhere. The result then follows because any solution

that is even under the exchange is a linear combination of the f̂k and ĝk modes.

To see how initial data corresponding to an f̂k or ĝk mode propagates it suffices

to consider the propagation of plane waves. Let us denote by uA
k (x) the function

whose initial data is a right-moving plane wave on ΣA and which is zero on ΣB,

i.e. uA
k (y) = e−ikuχ2,3,4(x). (4.70) evolves u

A
k to +p for x ∈ R1 and to e−iku − p for

x ∈ R5.

We can also specify the initial data on Σ for the following plane waves: uB
k (x) =

e−ikuχ6,7,8(x), v
A
k (x) = e−ikvχ2,3,4(x) and vBk (x) = e−ikvχ6,7,8(x). uB

k (x) and vBk (x)

are zero on ΣA, and vAk (x) is zero on ΣB. Their corresponding completely propagated

solutions are:
uA
k (x) = e−ikuχ2,3,4,5(x) + p [χ5(x)− χ1(x)]

uB
k (x) = e−ikuχ1,6,7,8(x) + p [χ1(x)− χ5(x)] ,

(4.71)

and
vAk (x) = e−ikvχ1,2,3,4(x) + (1− p) [χ5(x)− χ1(x)]

vBk (x) = e−ikvχ5,6,7,8(x) + (1− p) [χ1(x)− χ5(x)] .
(4.72)

Taking linear combinations of the above modes, one can verify that the f̂k and ĝk

modes “propagate into themselves” in the sense described above.

To compare this to the results in [64] we recall how the pair of diamonds was

cut out from the trousers. The modes on the pair of diamonds corresponding to the

natural “right-moving plane waves in the trunk” from [64] with periodic boundary

conditions take the form uA
k (x) + (−1)nuB

k (x) with k =
√
2nπ/λ in our conventions

(the factor of
√
2 here arises from our definition of the light-cone coordinates). For

even n, the constant terms in (4.71) cancel. For odd n, they add up, leading to

opposite constant terms ±2p in the causal futures of the singularity in the left/right

legs. Similar statements apply to left-moving incoming modes. This corresponds
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Figure 4.12: Illustration of the Γ0(x) function. The function is zero in the white
regions.

precisely to the one-parameter family of propagation laws found in [64], which the

authors arrived at by demanding the conservation of what they call the “Klein-

Gordon inner product” under the evolution past the singularity. Our parameter p is

related to the parameter A in [64] via p = 1
2
(1 + A).

At the end of [64] the authors mention certain discontinuous functions, which

they call γ0(x) and γ(x), that violate the propagation rule, and ask whether they

are required to form a complete set of modes. The analogous functions in M are

Γ0(x) = χ1(x)− χ5(x) and Γ(x) = χ3(x)− χ7(x) as illustrated in Figure 4.12 and

4.13 respectively. Each function satisfies the requirements for a solution, and so is

expressible as a linear combination of the SJ modes and this means that in the pair

of diamonds the notion of “propagation” becomes ill-defined. Solutions f(x) and

f(x) + λΓ0(x), where λ is a constant, share the same initial data. Similarly, f(x)

and f(x) + λΓ(x) have the same final data.

4.7.2 Nonunitarity

The ambiguity in the notion of propagation indicates that the theory in the

pair of diamonds is nonunitary. We will see that this can be expressed as the algebra

of observables, A−, associated to the past null boundary, N−, being a strict subset

of the algebra of observables, A, for the full spacetime.

Let the vertices of the pair of diamonds be labelled z1, z2, . . . z8 in clockwise order

starting from z1 which is the top vertex of region R1, as shown in Figure 4.14 and 4.15.

zi ∈ Ri for all i. Given any point x not in the causal future of the singularity, xc, the
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Figure 4.13: Illustration of the Γ(x) function. The function is zero in the white
regions.

equation of motion (4.25) for a diamond with x at its top vertex and the other three

vertices on the past null boundary N− shows that φ(x) is determined by values of φ

on N−. However, if y ∈ R1 then φ(y) is not specified by the initial data on N− since,

using equation of motion (4.26) for the double diamond shown in Figure 4.14,

φ(y) = φ(y2)− φ(z3) + φ(z4)− φ(z5) + φ(z6)− φ(z7) + φ(y8) , (4.73)

where y2 ∈ R2 ∩ N− and y8 ∈ R8 ∩ N− are the points shown in Figure 4.14 and

z5 /∈ N−.

Similarly, if y ∈ R5, then the double diamond in Figure 4.15 gives

φ(y) = φ(y6)− φ(z7) + φ(z8)− φ(z1) + φ(z2)− φ(z3) + φ(y4) , (4.74)

where y4 ∈ R4 ∩ N− and y6 ∈ R6 ∩ N− are the points shown in Figure 4.15 and

z1 /∈ N−. In both cases φ(y) is not specified by data on N−. However, the extra data

needed is not φ(z1) and φ(z5) since, the equation of motion from the double diamond

that is the whole pair of diamonds implies their sum is specified by data on N−:

φ(z1) + φ(z5) = φ(z2)− φ(z3) + φ(z4) + φ(z6)− φ(z7) + φ(z8) . (4.75)

Therefore, only Φ+ := φ(z1)− φ(z5) is needed to complement φ on N−.

Similarly, a solution φ is specified by data on the future null boundary, N+,

together with Φ− := φ(z3)− φ(z7).

Thus, Φ+ (Φ−) and all operators generated from it are missing from the algebra
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Figure 4.14: The double diamond for equation (4.73).

A− (A+). The structural relationship between A−, A+ and A remains to be worked

out. Here we just note that

[Φ+,Φ−] = [φ(z1), φ(z3)]− [φ(z5), φ(z3)]− [φ(z1), φ(z7)] + [φ(z5), φ(z7)]

= i(∆(z1, z3)−∆(z5, z3)−∆(z1, z7) + ∆(z5, z7))

= i(1− 2p) ,

(4.76)

so the operators commute for p = 1
2
.

4.8 Summary

Trying to make sense of quantum field theory on a topology changing background

not only advances the study of topology change but requires us to think afresh about

QFT and its foundations. As the SJ formalism for free quantum field theory depends

only on spacetime causal order and the retarded Green function, it is straightforward,

at least in principle, to apply it to the pair of diamonds, a topology changing

spacetime. The surprise was that the SJ modes could be found, and the Wightman

function constructed, explicitly. Some of these modes are discontinuous across the

future and past lightcones of the singularity and this discontinuity gives rise to

a divergence in the energy density on these null lines, confirming the expectation

arising from past work by Anderson and DeWitt and by Copeland et al. A similar

conclusion was reached by examining the limiting case of the infinite trousers. As
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Figure 4.15: The double diamond for equation (4.74).

the SJ state is time reversal symmetric, the divergences appear on both the past and

future lightcones of the singularity in contrast to previous work. We have also found

a relation between the SJ framework based on the Green function and previous work

by Copeland et al. by analysing the concept of propagation forward in time. In

a unitary theory, if spacetime region X is in the domain of dependence of region

Y then then the corresponding algebras of observables are related by AX ⊆ AY .

However we have seen that this fails in the pair of diamonds: the future boundary,

N+, is in the domain of dependence of the past boundary, N−, but the corresponding

algebra A+ contains an operator that is not in A−.

How should these results be viewed by those who believe that topology change

should be part of full quantum gravity? One could argue that since topology change

is expected to be a quantum gravity effect we should study it in the context of a

background spacetime with no structure at the Planck scale, for example a causal

set and this would be interesting to do. It is possible, though, that these results

and the previous work are telling us that topology-change of the trousers type is

disallowed whilst leaving the question of other types of topology-change very much

open. The transition in the trousers belongs to the class of topology-changes in

which the spacetime exhibits “causal discontinuity” [70, 75] where the causal past

or future of a point changes discontinuously as the point moves across the past or

future lightcones of the singularity. The authors of [76] found evidence that causally

discontinuous topology changing processes in 1 + 1 dimensions are suppressed in a

sum-over-histories, while causally continuous ones are enhanced. Such observations

lend support to Sorkin’s conjecture that the pathology of infinite energy production
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occurs in a topology-changing spacetime if and only if it is causally discontinuous.

It would be very interesting therefore to study the type of topology change

in 3+1 dimensions with a singularity with Morse signature (+ + −−) which is

causally continuous. This type of topology change is particularly interesting in

3+1 dimensions because, given any two closed connected 3-manifolds, there exists a

cobordism between them which admits a Lorentzian metric with only these types of

singularity. It would be interesting to study the SJ theory of a scalar field in such a

spacetime. If it can be shown that the SJ Wightman function is well behaved in a

case like this, it would be strong evidence that the pathology of divergent energy

production is associated only with the trousers.



Chapter 5

Conclusions and Future Directions

In this thesis we have investigated certain questions pertaining to the problem of

quantum gravity, and we have made progress by utilising the spacetime causal

structure. We began by discussing the quantum gravity path integral, and its

discrete alternative found in Causal Set Theory — a theory of quantum gravity that

is intimately tied to spacetime causal structure.

In Chapter 2 the gravitational action that enters into the continuum path

integral was investigated, and the necessary boundary terms were derived for all

signatures of the spacetime boundary. This was done using the tetrad formalism, in

which the derivation of the boundary terms is significantly simplified. Using the gauge

non-invariance of the tetrad formalism we were able to derive, in a suitable limit,

the joint contribution to the action for an intersection of two boundary components.

Chapter 3 saw our attention turn to the action of a causal set, specifically its

boundary terms. There we derived a family of causal set expressions for an analogue

of the spacelike Gibbons-Hawking-York boundary term in the continuum, which

was derived in Chapter 2. Other causal set expressions were also obtained that

encapsulated more of continuum boundary geometry. In the process of determining

these causal set expressions we also derived a continuum result for the volume of a

small causal cone. The fluctuations (due to the sprinkling process) of the different

causal set expressions were then investigated numerically, and interestingly the

fluctuations of the spacelike boundary terms decreased with sprinkling size in 4D.

We extended the different causal set expressions to include a scalar field defined on

the causal set, which enabled us to encode continuum objects relating to the normal

derivative of a scalar field on the causal set. Finally, the bulk causal set action, or

BDG action, was investigated. Specifically we looked at whether it already contained

any boundary terms when the spacetime is taken to be a flat interval. We found that

the bulk action gave the area of the joint between the top and bottom lightcones of

122
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the interval, which might indicate that the bulk action contains an analogue of the

continuum null boundary term and/or the joint contribution.

We then left the causal set action and returned to the continuum path integral in

Chapter 4, where we explored the question of whether spacetimes exhibiting spatial

topology change are prohibited in the quantum gravity path integral. To attempt to

answer this question we looked at one of the simplest topology changing spacetimes

— the trousers spacetime — and asked whether one could define a pathology free

quantum field theory on that spacetime; the idea being that any pathologies would

likely suppress such a topology change in a path integral including a sum over fields

as well as spacetimes. The non-globbally hyperbolic nature of the trousers spacetime

forced us to extend the usual framework of quantum field theory, and our extension

resulted in a one parameter family of different quantum field theories that could be

defined on the trousers spacetime, all of which contained a pathological infinite energy

burst. Our treatment of the quantum field theory using the novel Sorkin-Johnston

formalism was more complete than previous works on the trousers spacetime, in the

sense that we were able to construct a complete set of basis functions on the space

of solutions.

The topics covered in this thesis have been somewhat broad, and hence there

are a variety of future directions. That being said, the possible future avenues are

all motivated by the same underlying goal — to understand Quantum Gravity.

Take the continuum action derived in Chapter 2. As was discussed in Chapter 2

we do not yet have a complete treatment of the continuum action. Our treatment,

for example, did not account for certain boundaries that tend from spacelike/timelike

to null at a join, and we did not argue whether codimension-3 meetings of joins

contribute to the action. The question of the role of the gravitational action in a

quantum theory of gravity is still unclear. The final action proposed in Chapter 2

only contains first order derivatives of the metric, unlike the Einstein-Hilbert action,

but it is also not reparameterisation invariant when one considers null boundaries. If

one believes that the double path integral is the correct way to formulate a quantum

theory, and not a single path integral, then this is no longer an issue, since the

parameter dependence drops out when a difference of two actions is taken in the

double path integral. Of course one might argue that this gravitational action is

only an effective description of a deeper underlying theory, such as String Theory or

Causal Set Theory, in which case the issues arising from a continuum gravitational

path integral can simply be ignored. The aforementioned concerns aside, it was

nonetheless interesting to find that the problems of the gravitational action (its

non-reparameterisation invariance) disappeared when considering the more physical



124 Chapter 5. Conclusions and Future Directions

equations of motion, and the arguably more physical double path integral.

There is still much we do not understand about the full causal set action. We

have formulated an analogue of the spacelike boundary terms but we do not yet

know how to incorporate the timelike or null cases. The bulk causal set action itself

is divergent when one considers timelike boundaries, and more work is needed to

control this divergence. The bulk causal set action has also been investigated in

Monte Carlo simulations of the “Euclidianised” causal set path integral [77, 78], and

in those simulations the causal set expression for the spacelike boundary term was

not included. Recently some work has been done to include the causal set boundary

term in these simulations, and the preliminary results suggest that the boundary

term dominates over the bulk term. This is most likely due to the fact that the

simulations use the 2D form of the bulk and boundary causal set action, and in

2D the fluctuations of the boundary term grow as the number of causal set points

increases. The fluctuations of the 2D bulk term are dampened with the inclusion

of an additional non-locality scale, and hence one can only see the effects of the

boundary term when studying the two simultaneously. To solve this issue one would

need to introduce a non-locality scale (possibly the same scale used in the bulk action)

into the causal set boundary action to control its fluctuations in 2D. Alternatively,

one could study Monte Carlo simulations using higher dimensional versions of the

causal set bulk and boundary actions. The fluctuations of the boundary term do not

increase with increasing causal set size in higher dimensions, and hence the boundary

term would most likely not dominate the bulk term in higher dimensions. As alluded

to in 3.6 the continuum formula for the small causal cone could be useful for deriving

the Einstein equations in a similar manner to how Jacobson derives them with the

small interval volume formula and the 2nd law of thermodynamics. Or perhaps one

could use the small cone formula to formulate an approximate Hamiltonian dynamics

on causal sets, akin to the sequential growth models. Both of these avenues should

be explored.

Perhaps the most interesting future direction, in the author’s opinion, involves

extending the work of Chapter 4. The Sorkin-Johnston formalism ensures one has a

complete description of the solution space, and hence a more complete understanding

of the corresponding quantum field theory. The formalism is also powerful enough to

deal with topology changing spacetimes such as the trousers spacetime, which makes

it a promising tool for dealing with higher dimensional spacetimes with topology

change. Another useful feature of the formalism is how it can be easily adapted to a

discrete spacetime lattice or causal set. This opens up the possibility of a numerical

investigation into higher dimensional topology changing spacetimes, where one could
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use a lattice or causal set to approximate a continuum spacetime. It would be

interesting to see whether the higher dimensional cases come with same pathological

infinite energy burst seen in the trousers spacetime. Sorkin has conjectured that this

pathology is due to the trousers spacetime being causally discontinuous, and that

one should see similar pathologies in other causally discontinuous topology changes

in higher dimensions. The Sorkin-Johnston formalism offers us a way to test this

conjecture, numerically and/or analytically. Even more tantalising is the possibility

of finding a type of topology change that does not fall victim to the same pathology,

but if Sorkin’s conjecture is correct then this cannot happen in 3D where all the

relevant topology changes are causally discontinuous. In 4D we get our first glimpse

at a spacetime that is causally continuous — the spacetime with Morse signature

(+ + −−) mentioned in 4.8. If this topology change does not produce an infinite

energy burst in the quantum field theory then it has more of a chance of not being

suppressed in the quantum gravity path integral. Interestingly, this very topology

change occurs in the process of black hole pair production.
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Appendix A

A.1 Zero Eigenvalue Eigenfunctions Are Not So-

lutions

We first derive a simple formula that must be satisfied by a zero eigenvalue

eigenfunction (ZEE).

Consider x in diamond A with coordinates (L, v′) with v′ < 0. For a function

f , i∆pf = 0 implies
∫ v′

−L
dv
∫ L

−L
duf(u, v) = 0. Differentiating this expression with

respect to v′ implies
∫ L

−L
duf(u, v′) = 0, for all v′ < 0. Similarly, all integrals of f

along lines of constant u vanish. So,

∫ L

−L

duf(u, v′) = 0 and

∫ L

−L

dvf(u′, v) = 0 ∀ u′, v′ 6= 0 . (A.1)

We say a nonzero function f is a ZEE if it satisfies (A.1). We say an element of

L2(M) is a ZEE if it has a nonzero representative which satisfies (A.1).

Claim: If [f ] ∈ L2(M) is both a ZEE and a solution, then it has a representative

function that is both a ZEE and a solution.

Proof: It suffices to show that a representative function of [f ] which is a solution,

and which we might as well call f , can be changed on a set of measure zero, so that

it satisfies (A.1), whilst remaining a solution. Recall the conditions for a function

to be a solution are CDf = 0 for every diamond, D, that doesn’t contain xc and

CDDf = 0 for every double diamond, DD, that contains xc.

The function f(x) can only fail (A.1) on a set of lines of measure zero, since [f ]

is a ZEE. On one such null line the integral of f(x) will be some non-zero real number,

η. We can alter f(x) by subtracting from it the function that is η
2L

along that null

line and zero everywhere else. The resulting function, f̃(x), now satisfies (A.1) on

that particular null line and f̃(x) still satisfies the conditions for it to be a solution.

We can continue to adjust the function in this way for all of the null lines on which

f(x) failed (A.1). The resulting function will be both a solution and a ZEE.

Claim: [h] ∈ L2(M) cannot be both a ZEE and a solution.
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Proof: Let [h] ∈ L2(M) be both a ZEE and a solution and let the representative, h,

be both a ZEE and a solution. We will prove that h ∼ 0, the zero function.

h(x) satisfies CDh = 0 for all diamonds D that do not contain xc. Take such

a D in diamond A with corners x1, x2, x3 and x4 that have light-cone coordinates

(u, v), (−L, v), (−L,−L) and (u,−L) respectively, where u ∈ [−L,L] and v ∈ [−L, 0).

With these coordinates the equation CDh = 0 becomes

h(u, v)− h(−L, v) + h(−L,−L)− h(u,−L) = 0 . (A.2)

Integrating this along u, and using
∫ L

−L
du h(u, v) = 0 for all v 6= 0 gives h(−L, v) =

h(−L,−L). This is true for all v < 0 and so h(x) is constant along the line of

u = −L for v < 0. The same reasoning shows that on the line of v = −L for u < 0

the function must equal the same constant, which we call C.

Using this in (A.2) implies that h(u, v) = C if u, v < 0 in diamond A, i.e. in

region R3. Similar reasoning shows that h(x) is constant in the interior of each region

Ri for i = 1, ..., 8. Given that h(x) is a ZEE it must satisfy (A.1) which implies the

constants must be equal in magnitude in each region with alternating signs as one

traverses the regions R1 to R8 in order. Therefore h(x) = C
∑8

i=1(−1)i−1χi(x). The

equation of motion, CDDh = 0, then implies that C = 0.

A.2 Sum of Squares of Eigenvalues

A.2.1 p 6= 1
2

The sum over all the positive and negative eigenvalues is

∑

all modes

λ2
k =

∑

cont.

λ2
k +

∑

discont.

λ2
k , (A.3)

where the first sum on the right is over the continuous copy modes (f̂k, ĝk and their

complex conjugates), and the second sum is over the discontinuous modes (f̂
(p)
k , ĝ

(p)
k

and their complex conjugates). The sum over the continuous modes equals 2L4 [71].

As the eigenvalues come in positive and negative pairs the second sum equals twice
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the sum over just the positive eigenvalues. Then

∑

all modes

λ2
k = 2L4 + 2

∑

pos.
discont.

λ2
k = 2L4 + 2L2







∑

pos.
+

k−2 +
∑

pos.
−

k−2






, (A.4)

where the last expression uses λk = L
k
, and the sum over the positive eigenvalues of

the discontinuous modes is split into two sums over k > 0 satisfying (4.45) with the

“+” and “−” signs respectively.

The “+” sign in (4.45) gives the following transcendental equation for k:

(

(kL)2 + 2
)

cos(kL) + kL(2 + kL(1− 2p)) sin(kL)− 2 = 0 . (A.5)

For p 6= 1
2
, equation (A.5) has both positive and negative roots with no degeneracy.

One can verify that the set of negative roots of (A.5) is equal to the set of positive

roots of (4.45) with the “−” sign chosen. This means that the last two sums in (A.4)

can be written as a single sum over all roots (positive and negative) of (A.5), which

we write as
∑

i ki
−2.

Taylor expanding cos(kL) and sin(kL) about k = 0 in (A.5) gives

2(kL)2 + (1− 2p)(kL)3 − 3

4
(kL)4 +O(k5) = 0 . (A.6)

We can think of (A.6) as an infinite degree polynomial, if we imagine continuing

the expansion forever. We want to evaluate a sum over a particular power of the

roots of this infinite polynomial. To do this we require a result from finite degree

polynomials.

Expressing a polynomial of finite degree in terms of its roots,

αnx
n + αn−1x

n−1 + ...+ α1x+ α0 = αn(x− x1)(x− x2)...(x− xn) , (A.7)

one can verify Vieta’s formulae. From these it is straightforward to show that

(

−α1

α0

)2

− 2
α2

α0

=
1

x1
2
+

1

x2
2
+ ...+

1

xn
2
. (A.8)

Such formulae are extended in [79] to infinite polynomials such as (A.5). Divi-

ding (A.6) by (kL)2 gives

2 + (1− 2p)kL− 3

4
(kL)2 +O(k3) = 0 , (A.9)
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so that α0 = 2, α1 = (1−2p)L, and α2 = −3L2

4
, which gives

∑

i ki
−2 = L2(1−p(1−p)).

The sum of the squares of all the positive and negative eigenvalues of i∆p is then

∑

all modes

λ2
k = 2L4 + 2L4 (1− p(1− p)) = 2L4 (2− p(1− p)) . (A.10)

This agrees with (4.34), which means that we have all the eigenfunctions of i∆p.

A.2.2 p = 1
2

The sum over the eigenvalues is again split into sums over the continuous and

discontinuous modes. The sum over the continuous modes gives 2L4, as before, and

the sum over the discontinuous modes can be written as twice the sum over the

positive eigenvalues. Then,

∑

all modes

λ2
k = 2L4 + 2

∑

pos.
discont.

λ2
k = 2L4 + 2L2







∑

pos.
f

k−2 +
∑

pos.
g

k−2






, (A.11)

where, in the last two sums, we have used λk = L
k
with k > 0 satisfying (4.40). The

sum over the discontinuous modes is split into two sums over the eigenvalues of the

f̂
( 1
2
)

k and ĝ
( 1
2
)

k modes respectively.

Since the transcendental equation (4.40) for k is the same for the two sets of

modes f̂
( 1
2
)

k and ĝ
( 1
2
)

k , the last two sums in (A.11) are equal. The transcendental

equation is

(2 + (kL)2) cos(kL) + 2kL sin(kL)− 2 = 0 . (A.12)

The roots of this equation come in positive/negative pairs of the same absolute value,

and so the sum over the positive roots will be equal to half the sum over all the

roots. Hence the last term in brackets in (A.11) is equal to a sum over all the roots

of (A.12), which we write as
∑

i ki
−2.

The Taylor expansion of (A.12) around k = 0 is

2(kL)2 − 3

4
(kL)4 +O(k6) = 0 . (A.13)

Dividing by (kL)2 we find α0 = 2, α1 = 0 and α1 = −3L2

4
and hence

∑

i ki
−2 = 3L2

4
.
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The sum over all the eigenvalues is then

∑

all modes

λ2
k = 2L4 +2L2







∑

pos.
f

k−2 +
∑

pos.
g

k−2






= 2L4 +2L2

∑

i

ki
−2 =

7L4

2
, (A.14)

which is equal to the right hand side of (4.34) with p = 1
2
.
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