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1. Introduction

The prediction of nontrivial properties of the vacuum is agohe most interesting results of
guantum field theory. These properties are manifested iregponse of the vacuum under external
influences. In particular, it is of interest to consider thilience of the classical gravitational field
on the characteristics of quantum vacuum. The correspgnalioblems are exactly solvable for
highly symmetric background geometries only. In particulae investigations of quantum effects
in anti-de Sitter (AdS) spacetime have attracted a greatofiedtention. There are several reasons
for that. Much of early interest to AdS spacetime was moggaby the questions of principle
nature related to the quantization of fields propagatingusmex! backgrounds. The lack of global
hyperbolicity and the presence of both regular and irregmades give rise to a number of new
features which have no analogues in quantum field theoryeMthkowski bulk. The importance
of this theoretical work increased when it was realized Hhad$ spacetime emerges as a stable
ground state solution in extended supergravity and KakKlea models and in string theories.
The appearance of the AdS/CFT correspondence and bradewodels of Randall-Sundrum type
has revived interest in this subject considerably.

The boundary conditions, imposed on the field operator, maké spectrum of the vacuum
fluctuations of a quantum field. As a consequence, the vacwpectation values (VEVS) of
physical observables are shifted. This is the well knownir@iaffect (for reviews see [1]). The
investigations of the Casimir effect on AdS bulk have atedca great deal of attention. The
Casimir energy and the corresponding forces for two paratknes in AdS spacetime have been
evaluated in Refs. [2], both for scalar and fermionic fielog,using either dimensional or zeta
function regularization methods. Local Casimir densitiese considered in Refs. [3]. The Casimir
effect in higher-dimensional generalizations of the Ad&cgtime with compact internal spaces has
been investigated in [4]. Induced vacuum currents for aggwascalar field in AdS background
with toroidally compactified spatial dimensions have besgently studied in [5].

In the present paper we consider the influence of the plagdiglaro the AdS boundary on
the properties of the electromagnetic field. On the platebthndary condition is imposed that
is a generalization of the perfect conductor boundary ¢mmdin 4-dimensional spacetime. The
two-point function for the electromagnetic field in the bdary-free AdS spacetime is investigated
in [6]. The electromagnetic Casimir densities in de Sitacetime for flat boundaries have been
considered in [7]. The electromagnetic two-point funcsi@md the Casimir effect in background
of more general Friedmann-Robertson-Walker cosmologeesliacussed in [8].

The outline of our investigation is the following. First wersider the mode functions for the
electromagnetic field for the AdS background described im¢zwe coordinates. In Section 3 we
consider the two-point functions for the vector potentiad &or the field tensor in AdS spacetime
when the boundary is absent. The mode functions and the déiv-fpinctions in the geometry with
a plate parallel to the AdS boundary are discussed in Sedti@ur main interest are the Casimir
densities and, in Section 5, we study the VEV of the energyardum tensor for both the regions
on the right and on the left of the boundary.
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2. Electromagnetic field modes
Consider the electromagnetic field in background®f 1)-dimensional AdS spacetime. In
the Poincaré coordinates the corresponding line elemearthiesform
ds = gydXdxX = e /9, dxdx’ — dy? (2.1)

wheren, =diag(1,—1,..... — 1) is the metric tensor faD-dimensional Minkowski spacetime and
a is the curvature radius. The latter is related to the Ricalies® of the background spacetime and
to the cosmological constan by the formulaeR= —D(D +1)/a? andA = —D(D — 1)a—2/2.
Here and below,k =0,1,...,D, andu,v =0,1,...,D — 1. By the coordinate transformatian=

ae//% 0< z< o, the line element is presented in a conformally-flat form
ds? = (a/2)?nikdxdxX, (2.2)

with xP = z. For the action of the electromagnetic fields one has

S= —%T/d')*lx\/@ﬁk (X)F%(x), (2.3)

whereFy (X) = d A« (X) — dAi (X) is the field tensor. In what follows it is convenient to fix theuge
by the conditionsAp = 0, ;A = 0. For the line element (2.2) the second condition is reduced
o0,AH = 0.

We make the Fourier transform with respect to the coordavdteuy =0,...,D — 1:

Au(x) = / APk A (2 K)e Mvak' (2.4)

From the gauge conditions it follows thigtA¥(z k) = 0, k, = nuvk”. In terms of the Fourier
components for the vector potential, the action is writtethie form

2 D-1
s | ”i / dz / Ak (ar/2)P 3NV [9pAu (2. K)IbAS (2. K) — A2Au(ZKAL(ZK)],  (2.5)
where we have introduced the notatidf = k3 —k? —--- — k3, with kg = w and the star stands

for the complex conjugate.
For the variation of the action (2.5) with respectf(z k) one gets

D-1
3S= _% /dz/de nH{dp[(a/2)P2apAu(z k)] + (a/2)P3A%A,(z K) }OA; (2 k),
(2.6)
where we have assumed that on the limits of the integratienzene has

(a /2P 30 apAL (2, k)SA; (2, k)|, = 0. (2.7)

This limits depend on the problem at hand. In the boundag-&dS spacetime they are given by
z=0andz= «. FromdS= 0 the following equation is obtained for the Fourier compune

2230p [2 P opAu(zK)| +A%Au(z k) = 0. (2.8)
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The solution of this equation (2.8) is given by
A“(Z, k) - g(a)uzD/27lZD/2—l()‘ Z), (2-9)

whereZ,(x) is a cylinder function of the ordev and &), are polarization vectors. Here the
index o, with the valuess = 1,...,D — 1, enumerates the — 1 independent polarizations for the
electromagnetic field.

As a complete set of mode functions for the electromagnetid éine can take

Ak = EouZ*  Zpjp-1(A2)dk X, (2.10)

wherex = (x},x?,...,xP~1) andk = (k',k?,...,kP~1). We assume that the polarization vectors are
normalized by the condition
U“Vﬁ(a/)uﬁ(a)v = —0gq'- (2.11)

From the gauge conditions one hgg)p = 0 andktg4), = 0. In the evaluation of the two-point
functions we also need the s@gj E)u€oyv- It can be seen that the following relation takes

place:
D_1 Ky ky
Z Eo)u€oyy = —Nuv + 7 (2.12)
o=1

The mode functions are normalized in accordance with tHeodrmalization condition
D * 0 0 ax .
/d Xv/191[A 6 a10yu DAy = (O A aiy i) Aloak)] = 48007 e Oy (2.13)

By using the expression for the metric tensor we see AharAY — (0CA:)AY = —2iwg®A; A,
Hence, the normalization condition takes the form

§ 21
/dDX\/ ‘g‘googuvA(a’/\’k’)uAv(a)\k) = _6500’5‘«’5)\)\’- (2-14)

Substituting the mode functions (2.10) and by making usedlaion (2.11) for the polarization
vectors, for the functio@p »_;(A2z) we find

5/\/\/

2T b (2.15)

/dzz%/Zfl(A/z)ZD/Zfl(A 2) =
The integration range depends on the problem under coasigier In the boundary-free geometry
one has X z < o,

3. Two-point functions in the boundary-free geometry

Here, the only interaction of the quantum electromagnetid fis with the background gravi-
tational field. As a result, all the information on the prdjer of the vacuum state are contained in
the two-point functions. We will evaluate the two-point &tions for the vector potential and for
the field tensor. First we consider the case of the boundag/AdS spacetime. F@ > 4, from
the normalizability condition of the modes on the AdS boumd&follows that in (2.10) we should
take

Zpj2-1(A2) =Cp/2-1(A2), (3.1)

4
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whereJ, (x) is the Bessel function. Now, from the normalization cormlit{2.15), with the integra-
tion over the interval0, »), for the coefficienC we get

A
cff= —— 2 3.2
C1 (2mP2aP-3w S

Hence, the electromagnetic field mode functions in the baynfiee geometry have the form
Aok = Co)uZ2* 1p a1 (A2Z)dx e, (3.3)
The two-point function of the vector potential can be evidady using the mode-sum formula

D-1 )
OAUIAX)[0) = (Au9A X))o = 5 / dk /O A Aorion A oau ) (3.4)

where|0) stands for the vacuum state. Substituting the expressartbé mode functions, we get

(z2) b/2-1 k-Ax—iwAt
(Au()A (X))o = an 75 3/dk/ dA e x-ic
Kuky

XJD/Z—l()‘Z)JD/Z—l(AZ,)( Nuv + =5 A2 ) (3.5)

For the integral with the part containing the tenggy, one has the following result

A keaxione _ 2027321 ((D-1)/2)
/ dk /0 dA Z-3b/0 1(A230y2 1(A2)€ ST R (3.6)
with the notation
u=1+[(82)+ X - (80)7] /(222). 3.7)

The latter is related to the invariant distance between dietpx andx. As a consequence, the
two-point function is expressed as

,a3 P r(D-1)/2 7)P/z1
(Au()AL (X))o = —’;?Df’l)/z zZ((( ))D/ 1))/2 + (Z;Z) D)ZC{D3

_1(A2)Jpjp_1 (AZ )l BxTIOR (3.8)

Though the second term in the rlght hand-side of this fornmuleot simplified, like the first one,
the corresponding contribution to the two-point functiémsthe field tensor is further transformed
to the form which is expressed in terms of the elementarytfons (see below).

With the expression (3.8) we can evaluate the corresportdiagpoint functions for the field
tensor (0|Fgy (X)Fou (X)[0) = (Fou(X)Fov(X))o. First of all, we can see that the second term in
the right-hand side of (3.8) does not contribute to the camepts (Fg, (X)Fou (X))o with 0 =
0,1,...,D— 1. For these components we get

4g[uv(z)ga]p(zl) + ga[p(z)guv] (Z) r((D + l)/Z)U

(Fou(X)Fou (X))o = {O-1)/2gD+1 (@ — 1)’
_ 2 ((D-1)/2) / 1
(Fou(X)Fv (X))o = W”[“Vd“]azzz(uz_1)<D—1>/2’ (3.9)



Quantum effects for the electromagnetic vacuum A. S. Kotanjyan

for o,p =0,1,...,D—1. Here the square brackets in the index expressions meantisym-
metrization with respect to the indices enclosed. The ksnhtin the right-hand side of (3.8)
contributes only to the components,; (x)F, (X))o and to the ones obtained from this by the in-
terchange of the indices. The corresponding integral ikieted in a way similar to that for (3.6):

20-2(®=3/2r (D —-1)/2)u

“ A iK-AX—iwAt __
/ dk /0 dA 2302 (A2 2-2(A2)é S o o (3.10)
For the two-point function this gives
_ r((D B l)/2) / / 1

with u,v=0,1,... . D—1.

4. Two-point functions in the geometry with a boundary

Now we assume the presence of a boundary located=at, on which the field obeys the
boundary condition

nHF*

MV1--Vp-1

—0, (4.1)

wheren* is the normal vector to the boundafy,, ..., , is the dual of the field tensd#,,. For
D = 3 this corresponds to the perfectly conducting boundargitiom. Here we consider the region
Zp < z< ». The mode functions in this region are given by the expres&d.0) whereZp ;,_1(A2)

is a linear combination of the functiody »_1(A2) andYp,>_1(A2), whereY(x) is the Neumann
function. The relative coefficient in this combination igetenined from the boundary condition.
By taking into account that in the gauge at hakd,p = 0, from the boundary condition it
follows thatF,y|,—o =0 for u,v =0,1,...,D — 1. From here for the mode functions we find

Aok = Co) 2> 1ap2-1(A20, AZ) X1t (4.2)
with yu,v=0,1,...,D—1, and

Op/2-1(%Y) = Jp/2-1(Y)Yp/2-1(X) = Ip/2-1(X)Yp 21 (Y)- (4.3)

From the normalization condition (2.15), with the integratover|zy, ), for the coefficienC one

gets
2 a®Pr 2 -1
C= (2m)P 2 © [95/2-1(A20) + Y5 _1(A20)]

With the mode functions (4.2), for the two-point functiorfalte vector potential one finds

Abn )~ —Z i [Car A 2 (- )

27TD 2qD-3
9D/2 1()\207AZ)9D/2 1(A2, )\Z')e.kAx ont
Y512 1(A20)+ 35, 1(A%0)

(4.4)

(4.5)
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We are interested in effects induced by the boundary. Inraeeparate from the two-point
function the boundary-induced contribution, we subtraotf (4.5) the two-point function for the
boundary-free geometry, given by (3.5). By using the refati

9D/2 1()‘207AZ)9D/2 1(A20,AZ)
Y3/0-1(A20) + 35, 1(A20)

= Jp/2-1(A2)dpj2-1(AZ)

l Jp/2-1(A20) o)
) H) D/2-1
2Mpjo1

(A2HY), 1 (A2), (4.6)

with H\Sj)(x), j = 1,2, being the Hankel functions, the boundary-induced coution is presented
as

Au(A (X))o = (Au()A (X)) = (Au(X)Av (X))o

_ (z2)°* elkAx d/\)\ D/z 1(A20)
B 27TD 2qDb-3 (A
/2 1(Az0)

Kuky
XHé)J/)z 1(AZ) D/2 1(AZ’) ImAt( an+ AZ > (4.7)

As the next step, under the conditiar- Z > 2z, + |At|, we rotate the integration contour in
the complex plan@ by the anglert/2 for the term withj = 1 and by the angle-1/2 for j = 2.
Introducing the modified Bessel functions, for the boundaduced part of the two-point function
we get the expression

(z2)P/%1 1Y dk-Ax
(Au()AL(X))p = W/dk/ dx (X +du0;) €
At/ 2 _ k
XCOS;( xzikz )fD/Z—l(XZC)aXvaz)a (4.8)

with u,v =0,1,...,D — 1 and the other components vanish. In (4.8) we use the notatio

Ip/2-1(U)

fD/Zfl(ua \ W) = KD/Zfl(u)

Kp/2-1(V)Kp/2-1(W), (4.9)
wherel, (x) andK, (x) are the modified Bessel functions.

Having the boundary-induced contribution to the two-pduriction for the vector potential
we can find the corresponding contribution to the two-paimiction for the field tensor by differ-
entiations. First of all for the components withv,p,0 =1,...,D — 1 we get

8(z2)° Ak (8korkp + aipkiuky ) K2
W/ (Guuvkorko + v)

VX2 — K
X/ dxxcosr(At X2 — k2)
k

2 _ K2

(Fou(¥)Fou(X))b =

fo/2-1(X20,X2 XZ). (4.10)
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The components with one index being zero are given by
(Fou (X)Fpv (X))b = (Fou (X)Fou (X))

8i zZD/Zl A
= 27TD 10{'3 3/dk ulv p]el X/ dx

xxsinh(Aty/x2 — k?) fp o1 (X20, X2 X2), (4.11)
whereu,v,p=1,....,D— 1. Next, for the components with two indices being zero ore ha

—Lw/dkém/ dxx (@ — K2) By + kyky |
(ZH)D laD 3 Hv HRv

" coshAtv/x2 —k?)

2 _ K2

(Fou () Fou (X))n

fo/2-1(X20, X2 X2), (4.12)

with y,v=1,....D—1.
Now let us consider the functions havibgcomponents. After the appropriate differentiations
wegetu,v=1...,.D-1)

gizD/2-1 e [
(Fou(9)Fpy (X)) —W/dkdmvkp]e' /k dxx
MVER2
X cosH{ = —Xk2 )dz [ZD/ZflfD/z_l(xzo,xz XZ’)} , (4.13)
Or3 b _cosh{Aty/x2 —
(Fou(X)Fou (X)) = /dke‘“x/ oSN — k%)

_ Kk, ky
X 050 [(Zi) fD/Z_l(xzo,xz,xZ)] (‘)’(—2 — 5w> , (4.14)

and

3-D 5

(Fop(X)Fon (X))o = — /dkékAx/ i Cos%)
2

0202 [(Zi) . fD/zfl(XZO,XZ,XZ’)] = (4.15)

All the remaining components are zero. In the evaluatiomeMEVs of local observables bilinear
in the field we need to have the coincidence limit of the bowitaduced parts in the two-point

functions. For points away from the boundary, this limit igte. All the divergences are contained
in the boundary-free part. For the illustration of the detai the evaluation of the coincidence
limit we consider the components

452 (9 vOsp — OupOgv
(Fou(X)Fov ()b = ((Zg)D_faD‘;” )

@ ufpm
x/ dub/2 1(Uz,uz uz)
2 _K2

[k (1 +12)

, (4.16)
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with o, u,p,v=1,...,D—1. By taking into account that

dk k2 o2 dkPg( 4.17
/ r(D+1)/2) / alk (4.17)
this functions is written as

(am)P~Y/2gD-3r (D +1)/2)

></0 deP/O dny/z_l(uzo,uz,uz)]u:\/W. (4.18)

(Fou(X)Fov (X))b

Introducing polar coordinates in tlik, y)-plane, after the integration of the angular part we get the
final expression. Other components are evaluated in a simélg and one finds

2(’7uv'7crp—f7upl7m,) P2 o 1
- (4mP/ZIT (D/2+ 1)aD3/o dutP** fp 51 (uz, uz u2),

N (D—1)a3>PP2 =
(Fou(X)Fov (X))p = (47.[)D/2—1F(D/2+1)/0 dud?

(Fou(¥)Fov (X)b

+1 Ipj2-1(uz)
Kp,2-1(Uzo)

foro,u,p,v=0,1,...,D— 1. Remaining components vanish.

The consideration for the region<0z < zy is done in a similar way. The corresponding mode
functions, regular on the AdS boundary, are obtained fraarettpression (4.2) by the replacement
Op/2-1(A20,A2) — J(Az). From the boundary condition on the plate z it follows that the eigen-
values forA are roots of the equatiady »_1(A2) = 0. The mode-sum for the two-point function
contains series over these eigenvalues. For the summdtithe ceries we use the generalized
Abel-Plana formula from [9]. As a result the two-point fuioct is presented in the decomposed
form (the details will be presented elsewhere)

K32 o(uz), (4.19)

(Au ()AL (X)) = (Au ()AL (X))o + (Au (XA (X))o, (4.20)
where the boundary-induced contribution is given by

)o/2-1
(Au()A (X)) = Qﬁw/dk/ dx (NuvX? + 8,0)) €<

y cosh{Atv/x2 — k2) Kp j2—1(X2)

xvVx2—k2  lpjp_1(xn)

Ip/2-1(X2)Ip/2-1(XZ). (4.21)

The latter is related to the corresponding expression imag@nzy < z < « by the replacements
I, = K. The corresponding formulas for the two-point functionghef field tensor are obtained
from those given above by making these replacements.

5. VEV of the energy-momentum tensor

It is well known that the important characteristic of the wam state is the VEV of the energy-
momentum tensor. It acts as the source of gravity in the glaasical Einstein equations and plays
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an important role in modelling self-consistent dynamia®ining the gravitational field. The VEV
of the energy-momentum tensor is decomposed into the boyxfidee and boundary-induced parts:

<TVH> - <TVH>0+<TVH>b' (5.1)

For points outside the plate the renormalization is regufioe the boundary-free part only. Because
of the maximal symmetry of the background geometry, thedat proportional to the metric
tensor: (TJ’}O — const &}'. Here we are interested in the boundary-induced part wiicliréctly
evaluated with the help of the formula

1 5

= ) ),

By using the expressions for the two-point functions in tlncidence limit, we can see that
the vacuum energy-momentum tensor is diagonal. For thedawyfinduced contributions in the
VEVs of the diagonal components one gets (no summationlyver

D-1 D+2 © Ip/2-1(X)
T = —(4H§D/zr ()Ejj/;j)l)am [oopr i ey w69

where

Gy (u) = VK2 _,(u)+ (v —1)KZ(u), | =0,1,....D—1,
Gy (u) = (v+1) [KE(u) — K2, (u)]. (5.4)

It can be seen tha}(l'/)z(u) = 0 and, hence, the boundary-induced contribution vanistrds £ 3.
Of course, we could expect this result from the conformaltieh to the corresponding problem in
Minkowski bulk. From (5.4), by taking into account th&§(u) > K, _1(u) for v > 1, we conclude
that for D > 4 all the components of the boundary-induced VEV are negati0|T,'|0), < O.
The boundary-induced contribution in the VEV of the enemgymentum tensor for the region
0 < z< 7y is obtained from (5.3) and (5.4) by the replacemépts: K,,.

Note that the boundary-induced VEVs (5.3) dependzandz, in the form of the ratiaz/z
which is related to the proper distance from the boundasyyo, by z/zy = €¥=%)/@ Hence, for a
given proper distance from the boundary, the VEVs do not déjpa the location of the boundary.
The latter property is a consequence of the maximal symnoéthye AdS spacetime.

It can be seen that the boundary-induced contributionsarMBV of the energy-momentum
tensor obey the continuity equatiﬁiu('l’ik>b = 0 which for the geometry under consideration takes
the form

22120, (z7P(T8)p) + D(T§)p = 0. (5.5)

Let us consider the asymptotic behavior of the VEVs at laigeadces from the plate and near
the plate. Atdistances larger that the AdS curvature razfieshay — Yo > a and, hencez/z, > 1.
In (5.3) we introduce a new integration variable= xz/z; and use the asymptotic expressions for
the modified Bessel functions for small arguments. For th&\dEthe energy-momentum tensor

we find
D<Too>b

<TEE)>b R m,

(5.6)

10
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and
(D—1)? (D-2)(D—-3)I?(D)r (3D/2—-2)
2mP/2qP+1(z/z5)P-2  [2(D/2)r (2D)
Hence, at large distances the VEVs are suppressed as fumcfithe proper distance by the factor
e (D=2)(y-yo)/a
At small distances from the plate, compared with the AdSatumne radius, one hgs-yp < a
and, hence, £ zy/z< 1. In this case the dominant contribution to the integral(®i8) comes from
the region wittk ~ 1/(z/7 — 1) > 1 we can use the asymptotic expressions for the modified Besse
functions for large values of the argument. To the leadimtgothis gives

(D-1)(D-3)r((b+1)/2)
2(47.[)(D+l)/2 (y_ yO)D+1
(D-1)(D-3)r((b+1)/2)

TPV ~ — , 5.8
ol 2(4m) P V2 a(y—yo)P ©8)

(To) ~ — (5.7)

(To)b

%

for the components of the energy-momentum tensor. Therigadims for the VEVs of the energy
density do not depend on the curvature radiuand coincide with the corresponding results for
the plate in Minkowski spacetime. Hence, for these VEVs tieaiplate the effects of gravity are
small.

6. Conclusion

We have discussed the effects of a boundary in AdS spacetintieegproperties of the elec-
tromagnetic vacuum in an arbitrary number of spatial dirfe1ss The boundary is parallel to the
AdS boundary and on it the electromagnetic field obeys theliton (4.1). ForD = 3 the latter
corresponds to the standard perfect conductor boundajitemn First we have considered the
complete set of mode functions for the electromagnetic frethe boundary-free AdS spacetime,
given by (3.3). With these functions, the two-point funosdor the vector potential is expressed
as (3.8). Though the last term in this formula is not expreéssdaerms of elementary functions,
its contribution to the two-point functions for the field gam is simplified and one gets simple
expressions (3.9) and (3.11).

In the regiony > yp, the mode functions obeying the boundary condition (4.3)-atyp, are
given by (4.2) and for the two-point function of the vectotgrtial one gets the expression (4.5).
In order to extract the part induced by the boundary, we aut#d from the two-point function the
corresponding function in the boundary-free AdS spacetiffieer the appropriate rotations of the
integration contours, the boundary-induced part in thepwimt function for the vector potential
is written in the form (4.8). The corresponding part in th@{point function of the field tensor
is obtained by simple differentiations. In particular, fbe evaluation of the VEVs for physical
quantities bilinear in the field, we need the boundary-irdupart of the two-point function in
the coincidence limit of the arguments. For points away ftbeboundary the latter is finite and
the nonzero components are given by the expressions (4TI8).divergences are contained in
the boundary-free parts only and the renormalization isiced to the one for the boundary-free
geometry. The expressions of the boundary-induced catiwits in the two-point functions for
the regiony < yp are obtained from those in the regipn- yo by the replacements = K,,..
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In section 5 we have investigated the boundary-inducedribotibns in the VEV of the
energy-momentum tensor. For spatial dimensibns 4, the boundary-induced contributions to
all the components of the energy-momentum tensor are negafit distances from the bound-
ary much larger than the AdS curvature radius the boundatyeed contributions are suppressed
by the factore (P~2(y-¥o)/@  For points near the boundary the contribution of the vactiug:
tuations with the wavelengths much smaller that the AdS ature radius dominates and the
boundary-induced VEVs, in the leading order, coincidelie corresponding VEVs for a plate
in Minkowski bulk. We have shown that the boundary-inducadrgy density is negative and the
normal stress corresponds to positive pressure. The seshtidined can be used for the investi-
gation of the vacuum characteristics in the geometry of tes@ltel plates, including the Casimir
forces acting on the plates.
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