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Abstract
We study collectivemodes of vortex lattices in two-component Bose–Einstein condensates subject to
syntheticmagnetic fields inmutually parallel or antiparallel directions. Bymeans of the Bogoliubov
theorywith the lowest-Landau-level approximation, we numerically calculate the excitation spectra
for a rich variety of vortex lattices that appear commonly for parallel and antiparallel synthetic fields.
Wefind that in all of these cases there appear two distinctmodes with linear and quadratic dispersion
relations at low energies, which exhibit anisotropy reflecting the symmetry of each lattice structure.
Remarkably, the low-energy spectra for the two types offields are found to be related to each other by
simple rescaling when vortices in different components overlap owing to an intercomponent
attraction. These results are consistent with an effective field theory analysis. However, the rescaling
relations break down for interlaced vortex lattices appearingwith an intercomponent repulsion,
indicating a nontrivial effect of an intercomponent vortex displacement beyond the effective field
theory.We alsofind that high-energy parts of the excitation bands exhibit line or point nodes as a
consequence of a fractional translation symmetry present in some of the lattice structures.

1. Introduction

Formation of quantized vortices under rotation is a hallmark of superfluidity.When quantized vortices
proliferate under rapid rotation, they organize into a regular lattice owing to theirmutual repulsion. The
resulting triangular vortex lattice structurewas originally predicted byAbrikosov [1] for type-II
superconductors in amagnetic field, and observed in superconductingmaterials [2], superfluid 4He [3, 4], and
Bose–Einstein condensates (BEC) [5–7] and Fermi superfluids [8] of ultracold atoms. In ultracold atomic gases,
in particular, the rotation frequency can be tuned over awide range, and the equilibrium and dynamical
properties of vortex lattices can be investigated in considerable detail [9–11]. Rotation can be viewed as the
standardway to induce a synthetic gaugefield for neutral atoms since theHamiltonian in the rotating frame of
reference is equivalent to that of charged particles in a uniformmagnetic field.Notably, experimental techniques
for producing synthetic gaugefields via optical dressing of atoms have also been developed over the past decade
[12, 13], and a successful application of these techniques led to the creation of around 10 vortices in a BEC
withoutmechanical rotation of the gas [14].

Throughout this paper, we assume that a BEC is confined in a three-dimensional harmonic potential and
that the interparticle interaction is so strong that the BEC at rest is in the Thomas–Fermi regime. ABECunder
rotation (or in a syntheticmagnetic field) undergoes different regimeswith increasing the rotation frequency
Ω [11].When a BEC rotates slowly, the size of the vortex core ismuch smaller than the intervortex separation.
In this regime, the spatial variation of the BECdensity,  Y∣ ∣, can be ignored, and the Thomas–Fermi
approximation is applicable [15]. This regime is called themean-field Thomas–Fermi regime.With increasing
Ω, the intervortex separation decreases and eventually becomes comparable with the size of a vortex core. Then
the BECflattens to an effectively two-dimensional (2D) system, and the interaction energy per particle becomes
small comparedwith the kinetic energy per particle. It is thus reasonable to assume that atoms reside in the
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lowest-Landau-level (LLL)manifold for themotion in the 2Dplane and to perform themean-field calculation in
thismanifold [16, 17]. This regime is called themean-field LLL regime [10]. AsΩ is further increased, themean-
field description breaks down, and the system is expected to enter a highly correlated regime. In particular, in a
regimewhere the number of vortices Nv becomes comparable with the number of atomsN, it has been predicted
that the vortex latticemelts and a variety of quantumHall states appear at integral and rational values of the
filling factor n ≔ N Nv [10, 18, 19].

A vortex lattice supports an elliptically polarized oscillatorymode, whichwas predicted by Tkachenko
[20–22] and observed in superfluid 4He [23].While Tkachenko’s original work predicted a linear dispersion
relation for an incompressible fluid, a number of theoretical studies have been done to take into account afinite
compressibility of thefluid [24–29]. It has been shown that the compressibility leads to hybridizationwith sound
waves and qualitatively changes the dispersion relation into a quadratic form for small wave vectors. Collective
modes of a vortex lattice have been observed over awide range of rotation frequencies in a harmonically trapped
BEC [30]. Theoretical analyses of the observedmodes have been conductedwith the hydrodynamic theory
[31–33] and theGross–Pitaevskii (GP)mean-field theory [34, 35]. For a uniformBEC in themean-field LLL
regime, the dispersion relation of the Tkachenkomode can analytically be obtainedwithin the Bogoliubov
theory, and it is found to take a quadratic form [36–38]. Effective field theory for the Tkachenkomode has been
developed in [39, 40].

The properties of vortex lattices can further be enriched inmulticomponentBECs, such as thosemade up of
different hyperfine spin states of identical atoms. For two-component BECs under rotation, GPmean-field
calculations have shown that several different types of vortex lattices appear as the ratio of the intercomponent
coupling g to the intracomponent one g>0 is varied (see figure 1) [41–43]. Among them, interlaced square
vortex lattices (figure 1(d)), which are unique to these systems, have been observed experimentally [46].
Furthermore, optical dressing techniques can produce a variety of (possibly non-Abelian) gaugefields in
multicomponent gases [12, 13, 47, 48]. In particular,mutually antiparallel syntheticmagnetic fields have been
induced in two-component BECs, leading to the observation of the spinHall effect [49]. If the antiparallel fields
aremade even higher, such systems are expected to show a rich phase diagram consisting of vortex lattices and
(fractional) quantum spinHall states [45, 50, 51]. Notably, it has been shownwithin theGPmean-field theory
that BECs in antiparallelmagnetic fields exhibit the same vortex-lattice phase diagram as BECs in parallel
magnetic fields [45] (see also section 2.1). It is thus interesting to askwhether and how the difference between the
two types of systems arises in other properties such as collectivemodes. In this context, it is worth noting that in
the quantumHall regime, which is far beyond themean-field description, the two types of systems exhibit
markedly different phase diagrams [45, 52–55], which has been interpreted in light of pseudopotentials and
entanglement formation [55].

In this paper, we study collectivemodes of vortex lattices in two-component BECs in parallel and antiparallel
syntheticmagnetic fields in themean-field LLL regime.On the basis of the Bogoliubov theorywith the LLL
approximation, we numerically calculate excitation spectra for all the vortex-lattice structures shown infigure 1.

Figure 1.Upper panels: vortex-lattice structures in two-component BECs in syntheticmagnetic fields [41–44].Within theGPmean-
field theory, the same phase diagrams are obtained for both the parallel- and antiparallel-field cases [45]. Five different structures
appear as the ratio of the coupling constants, g g , is varied: (a) overlapping triangular lattices (- < <g g1 0), (b) interlaced
triangular lattices ( < <g g0 0.1724), (c) rhombic lattices ( < <g g0.1724 0.3733), (d) square lattices ( < <g g0.3733
0.9256), and (e) rectangular lattices ( < <g g0.9256 1). Here, g↑↓ is the intercomponent coupling constant, and g is the
intracomponent onewhich is assumed to be the same for both components. Black (gray) circles indicate the vortex positions of the
spin- () component. As shown in (f), each lattice structure is characterized by the primitive vectors = ( )aa , 01 and

q q= ( )ba cos , sin2 satisfying q p= ℓab sin 2 2 (see equation (3)), and the vortex displacement +u ua a1 1 2 2 of one component relative
to the other. The angle θ (the aspect ratio b/a) varies continuously in the rhombic-lattice (rectangular-lattice) phase, as shown in
[41, 44]. Lower panels: thefirst Brillouin zone corresponding to each lattice structure placed above. The reciprocal primitive vectors
are given by q q= - ℓ( )b bb sin , cos1

2 and = ℓ( )ab 0,2
2 (see equation (4)). Uppercase letters indicate high-symmetry points.

Excitation spectra presented infigure 2 are calculated along the paths indicated by dotted arrows.
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Wefind that in all the cases there appear two distinctmodeswith quadratic and linear dispersion relations at low
energies, which originate from in-phase and anti-phase (i.e.π-phase difference) oscillations of vortices of the
two components, respectively. The obtained dispersion relations show anisotropy reflecting the symmetry
of each lattice structure. Remarkably, the low-energy spectra for the two types of synthetic fields are related
to each other by simple rescaling in the case of overlapping vortex lattices (figure 1(a)) that appear for an
intercomponent attraction. These results are consistent with an effective field theory analysis for low energies,
which is a generalization of [39] guided by symmetry consideration of the elastic energy of a vortex lattice.
However, the rescaling relations are found to break down for interlaced vortex lattices (figures 1(b)–(e)) that
appear for an intercomponent repulsion, presumably due to a nontrivial effect of a vortex displacement between
the components beyond the effective field theory.We alsofind some interesting features of the excitation bands
at high energies, such as line and point nodes, which arise from ‘fractional’ translation symmetries or special
structures of the BogoliubovHamiltonianmatrix.

Here we comment on some related studies. Keçeli andOktel [44]have studied collective excitation spectra in
two-component BECs in parallel fields bymeans of the hydrodynamic theory, and predicted the appearance of
two low-energymodeswith linear and quadratic dispersion relations similar to ours. Our calculation is based on
the Bogoliubov theory, provides unbiased results for weak interactions, and also contains information on the
higher-energy part of the spectra. Furthermore, in the effective field theory analysis, we point out a termmissing
in [44], which is responsible for the anisotropy of the quadratic dispersion relation for interlaced triangular
lattices (figure 1(b)).We also note thatWoo et al [56] have numerically investigated excitation spectra in rotating
two-component BECs in a harmonic trap, and have identified a variety of excitations such as Tkachenkomodes
and surfacewaves.

The rest of this paper is organized as follows. In section 2, we introduce the systems that we study in this
paper, and formulate the problem in terms of the Bogoliubov theory in the LLL basis.We then present our
numerical results of Bogoliubov excitation spectra. In section 3, we use an effective field theory to derive
analytical formulae of low-energy excitation spectra. In particular, wefind remarkable rescaling relations
between the spectra for the two types of syntheticmagnetic fields. In section 4, we analyze the anisotropy of low-
energy excitation spectra using the numerical data, and discuss its consistencywith the effective field theory. In
section 5, we summarize themain results and discuss the outlook for future studies. In appendix A, we derive
expressions of the LLLmagnetic Bloch states (the basis states used throughout this paper) in terms of Jacobi’s
theta functions; such expressions are usedwhen plotting density profiles of excitationmodes in section 2 and
appendixD. In appendix B, we describe the derivation of thematrix elements of the interaction used in section 2.
In appendix C,we give precise definitions of the fractional translation operators used in section 2. In
appendixD, we discuss some features of the Bogoliubov excitation spectra at high-symmetry points (found in
section 2) by using the data of the BogoliubovHamiltonianmatrix and the density profiles of the excitation
modes. In appendix E, we present symmetry consideration of the elastic energy of vortex lattices, which is used in
section 3.

2. Bogoliubov analysis of excitation spectra

In this section, we introduce the systems thatwe study in this paper, and formulate the problem in terms of the
Bogoliubov theorywith the LLL approximation.Our formulation is closely related to those in [36–38]. In
particular, the LLLmagnetic Bloch states [38, 57, 58], which have a periodic pattern of zeros, play a crucial role
here.We then present our numerical results of Bogoliubov excitation spectra and discuss their low- and high-
energy characteristics.

2.1. Systems
Weconsider a systemof a 2Dpseudospin- 1

2
Bose gas having two hyperfine spin states (labeled by a =  , ). The

spin-α component is subject to a syntheticmagnetic fieldBα in the z direction. In the case of a gas rotatingwith
an angular frequencyΩ, parallel fields = = W B B M q2 are induced in the two components in the rotating
frame of reference, whereM and q are themass and thefictitious charge of a neutral atom. Anoptical dressing
technique of [49], in contrast, can be used to produce antiparallel fields = - B B .We focus on a central region
of the systemwhere the atomic density is sufficiently uniform and the effect of the harmonic potential can be
ignored. In the second-quantized form, theHamiltonian of the system is given by

ò òå åy y y y y y

= +

=
-

+
a

a
a

a
a b

ab
a b b a

= 

ˆ ( ) ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )† † †

H H H

q

M

g
r r

p A
r r r r r rd

2 2
d , 1
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,

2
2

,

2
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where = ( )x yr , is the coordinate on the 2Dplane, = - ¶ ¶( )p i ,x y is themomentum, and yaˆ ( )r is the bosonic

field operator for the spin-α component satisfying the commutation relations y y d d¢ = - ¢a b ab[ ˆ ( ) ˆ ( )] ( )† ( )r r r r, 2

and y y y y¢ = ¢ =a b a b[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )]† †
r r r r, , 0. The gaugefield for the spin-α component is given by

= ´ = -a
a

a ( ) ( )B B
y xA e r

2 2
, , 2z

wherewe assumeB>0 and  = =  1 ( = - =  1) for parallel (antiparallel)fields. For a 2D systemof
areaA, the number ofmagnetic flux quanta piercing each component (or the number of vortices) is given by

p= ℓ( )N A 2v
2 , where =ℓ qB is themagnetic length. The total number of atoms is given by

= + N N N , whereNα is the number of spin-α bosons.
In theHamiltonian (1), we assume a contact interaction between atoms. For a gas tightly confined in a

harmonic potential with frequency wz in the z direction, the effective coupling constants in the 2Dplane are

given by p w=aa ag a M8 z
3 and p w= =  g g a M8 z

3 ,3 where aα and a↑↓ are the s-wave
scattering lengths between like and unlike bosons, respectively, in the 3D space. For simplicity, we set

= º > g g g 0 and = N N in the following discussions.We further assume that the syntheticmagnetic
fieldsBα are sufficiently high or the interactions are sufficiently weak so that the energy scales of the interaction
per atom, ab∣ ∣g n, aremuch smaller than the Landau-level spacing  w ≔ qB Mc , where = ≔n N A N A is
the density of atoms of each component. In this situation, it is legitimate to employ the LLL approximation in
which theHilbert space is restricted to the lowest Landau level [10, 16, 17].

When thefilling factor n º N Nv is sufficiently high n ( )1 , the system iswell described by theGPmean-
field theory. In this theory, theGP energy functional y y [ ]E , is introduced by replacing the field operator

yaˆ ( )r by the condensate wave function ya ( )r in theHamiltonian (1); then, the functional isminimized under
the conditions ò y =a a∣ ∣ Nrd2 2 (a =  , ) to determine the ground-state wave functions ya{ ( )}r . Using the
LLLwave functionswhich have periodic patterns of zeros and are equivalent to the LLLmagnetic Bloch states
described in section 2.2,Mueller andHo [41]have obtained a rich ground-state phase diagram for the parallel-
field case, which consists offive different vortex-lattice structures as shown in the upper panels offigure 1.
Notably, theGP energy functionals for the parallel- and antiparallel-field cases are related to each other as

*y y y y=   [ ] [ ]E E, ,antiparallel parallel [45]. This implies thatwithin theGP theory, the ground-state wave
function of one case can be obtained from that of the other through the complex conjugation of the spin-
component4. Therefore, BECs in antiparallel fields also exhibit a rich variety of vortex-lattice structures as
shown infigure 1 in the sameway as BECs in parallel fields.

2.2. LLLmagnetic Bloch states
Todescribe the excitation properties of a vortex lattice, it is important to choose the basis states consistent with
the periodicity of the lattice. Following [38, 57, 58], we utilize the LLLmagnetic Bloch states for this purpose. Let
a1 and a2 be the primitive vectors of a vortex lattice as shown infigure 1(f). These vectors satisfy

p´ = =ℓ( ) ( )A Na a 2 , 3z1 2
2

v

which implies the presence of one vortex in each component per unit cell. The reciprocal primitive vectors are
then given by

= - ´ = ´ℓ ℓ ( )b e a b e a, , 4z z1 2
2

2 1
2

which satisfy pd= =· ( )i ja b 2 , 1, 2i j ij . Using the pseudomomentum for a spin-αparticle

= - + ´ = + ´a a a a ( )q q
qB

K p A B r p e r
2

, 5z

we introduce themagnetic translation operator as =a
- a( ) ·T s e K si [59].We note that the pseudomomentum

=a a a( )K KK ,x y, , satisfies the commutation relation [Kα,x,Kα,y]=−iòα ÿ
2/ℓ2. Starting from themost

localized symmetric LLLwave function p= - ℓ( ) ℓc r e 2r
0

4 22 2
, we construct a set of LLLwave functions by

multiplying two translation operators as



p
= =

-
- - - ´a a a

a⎡
⎣⎢

⎤
⎦⎥ℓ ℓ ℓ

( ) ( ) ( ) ( ) ( ) ( ) ( )c T m T m cr a a r r r r r
1

2
exp

1

4

i

2
,

m m

m m zm 1 1 2 2 0
2 2

2
2

1 2

where = +m mr a am 1 1 2 2 with = Î( )m mm ,1 2
2. Here,Tα(m1a1) andTα(m2a2) commutewith each other

since every unit cell is pierced by onemagnetic flux quantum as seen in equation (3); this property justifies the

3
These are obtained bymultiplying the coupling constants p=a a

( )g a M43D 2 and p= 
( )g a M43D 2 for the 3D contact interactions by

the factor w p( )M 2z . This factor arises from the restriction to the ground state of the confinement potential in the z direction.
4
A similar situation arises for the ferromagnetic and antiferromagneticHeisenbergmodels on a bipartite lattice, whose classical

Hamiltonians are related to each other through the spin inversion  -S Sj j on one of the two sublattices.
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application of Bloch’s theorem. By superposing a ( )c rm for Nv possible translations m on a torus, we can
construct the LLLmagnetic Bloch state as [57]

å
z

Y =a a( )
( )

( ) ( )·

N
cr

k
r

1
e 6k

m
m

k r

v

i m

with the normalization factor

åz = - - -( ) ( ) ( )ℓ ·k 1 e . 7m m

m

r k r4 im m1 2
2 2

This state is an eigenstate of a ( )T a j with an eigenvalue - ·e k ai j.
The LLLmagnetic Bloch state Y a( )rk represents a vortex lattice with a periodic pattern of zeros for any value

of thewave vector k5 . Indeed, by rewriting equation (6) as

*

*






å

å

z Y = - ´ +

= - ´ + ´

a a
a

a
a

a

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

{ }
ℓ

ℓ
ℓ

( ) ( ) ( ) ·

( ) [ ( )] ·

N c

c

k r r e r k r

r e r e k r

exp i

exp
i

z

z z

k
m

m m

m
m m

v 2

2
2

and comparing it with the complex conjugate of the Perelomov overcompleteness equation
å - =a

+( ) ( )c r1 0m m
m m

1 2 [60], we find that Y a( )rk has zeros at [58]

 = + + - ´ = Îaℓ( ) ( ) ( )n nr r a a e k n
1

2
, , . 8zn 1 2

2
1 2

2

When one describes a triangular vortex lattice of a scalar BECusing a LLLmagnetic Bloch state, the choice of
thewave vector k is arbitrary once the primitive vectors a1 and a2 are set appropriately. This is because a change
in k only leads to a translation of zeros as seen in equation (8). The vortex lattices of two-component BECs in
figure 1 can also be described by the LLLmagnetic Bloch states aY =  aa

( ) ( )r , ;q , however, thewave vectors

q and q have to be chosen in away consistent with the displacement +u ua a1 1 2 2 between the components (see
figure 1(f)). One useful choice is

 

 

=+ ´ + = - +

=- ´ + = + -


 


 

ℓ

ℓ

( ) ( )

( ) ( ) ( )

u u u u

u u u u

q e a a b b

q e a a b b

2 2
,

2 2
. 9

z

z

2 1 1 2 2 2 1 1 2

2 1 1 2 2 2 1 1 2

Here, we displace the spin- component by +( )u ua a1

2 1 1 2 2 and the spin- component by- +( )u ua a1

2 1 1 2 2

instead of displacing only one of the components. This is useful for avoiding zeros of the normalization factor
z ( )k at some high-symmetry points in the first Brillouin zone [57] 6.

2.3. Representation of theHamiltonian
Using themagnetic Bloch states (6), we expand thefield operator as y = å Ya a aˆ ( ) ( )br rk k k , where k runs over

thefirst Brillouin zone, and abk is a bosonic annihilation operator satisfying d d=a a aa¢ ¢ ¢ ¢[ ]†b b,k k kk . Substituting
this expansion into theHamiltonian, we obtain

 å åw
= +

= + +
a b

ab a b b a ( ˆ ˆ ) ( ) ( )† †

H H H

N N V b b b bk k k k
2

1

2
, , , , 10

k k k k
k k k k

kin int

c

, , , ,
1 2 3 4

1 2 3 4

1 2 3 4

where ÿωc/2 is the LLL single-particle zero-point energy and = åa a aˆ †N b bk k k is the number operator for the
spin-α component. The interactionmatrix element ab ( )V k k k k, , ,1 2 3 4 is given by

* *ò= Y Y Y Yab ab a b b a( ) ( ) ( ) ( ) ( ) ( )V gk k k k r r r r r, , , d . 11k k k k1 2 3 4
2

1 2 3 4

As described in appendix B, thismatrix element is calculated to be

d
z z z z

=ab
ab ab

+ +( )
( )

( ) ( ) ( ) ( )
( )V

g

A

S
k k k k

k k k

k k k k
, , ,

2

, ,
. 12k k k k1 2 3 4 ,

P 1 2 3

1 2 3 4
1 2 3 4

Here, d då¢ ¢+≔kk G k k G
P

, is the periodic Kronecker’s delta with G running over the reciprocal lattice vectors. In
the case of parallel fields, the function ab ( )S k k k, ,1 2 3 does not depend onα orβ, and is given by

5
Mueller andHo [41] instead use Jacobi’s theta function to express a vortex-lattice wave function. Such an expression is obtained by

performing the Poisson resummation in equation (6) for  ¥N ;v see appendix A.
6
If we set = - ( )q b b 21 2 and =q 0 for square lattices, for example, we have z =( )q 0 and equation (6) is notwell-defined unless we

factor out a nonanalytic dependence around the point of our concern [57].
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å z

z z

= - + - + ´ -

´ + ´ + + ´ +
Î

- + ℓ

ℓ ℓ

( ) ( ) ˜ ( ( ) )

( ( ) ) ( ( ) ) ( )

ℓ

{ }

·S k k k k k k r r

k r r k r r

, , 1 e 2 e i 2

e i 4 e i 4 , 13

p p
z

z z

p

r k r
p p

p p p p

1 2 3
0,1

4 i
1 2 3

2

1
2

2
2

p p

2

1 2
2 2

3

where

åz - -˜ ( ) ≔ ( )ℓ ·k e . 14
m

r k r2 im m
2 2

In the case of antiparallel fields, ab ( )S k k k, ,1 2 3 depends onα andβ, and is given in terms of ( )S k k k, ,1 2 3 defined
above by

*

*

= = - - -

= - - = -
 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

S S S S

S S S S

k k k k k k k k k k k k

k k k k k k k k k k k k

, , , , , , , , , ,

, , , , , , , , , . 15

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 3 2 1 2 3 1 3 2

2.4. Bogoliubov approximation
At highfilling factors, the condensate is only weakly depleted and therefore we can apply the Bogoliubov
approximation [36–38, 61]7. Provided that the condensation occurs at thewave vector aq in the spin-α
component, it is useful to introduce

+ + + +a a ab ab a b b a+a
˜ ≔ ˜ ( ) ≔ ( ) ( )b b V Vk k k k q k q k q k q k, , , , , , , . 16k q k, 1 2 3 4 1 2 3 4

By setting

å-a a a a a
¹

 ˜ ˜ ˜ ˜ ( )† †
b b N b b 17

k
k k0 0

0

and retaining terms up to the second order in ab̃k and a
˜ †
bk ( ¹k 0), we obtain the following Bogoliubov

Hamiltonian:



å å å

å

w= - +

+

a b
a b ab

a
a aa

¹

¹
  -  - 





- 

- 

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

˜ ( ) [ ( ) ( )]

( ˜ ˜ ˜ ˜ ) ( )

˜
˜

˜

˜

( )† †
†

†

H N N V h

b b b b

b

b

b

b
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k
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2
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2

1
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, , , . 18

k

k
k k k k
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0
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Here, thematrix( )k is given by

* *

* *



w w l l
w w l l

l l w w

l l w w
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+
+

- + - -

- - + -
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where

å

w l

-

-

a
b

b ab ab

ab a b ab ab a b ab

( ) ≔ [ ˜ ( ) ˜ ( )]

( ) ≔ ˜ ( ) ( ) ≔ ˜ ( ) ( )

h N V V

N N V N N V

k k k

k k k k k k
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Todiagonalize the BogoliubovHamiltonian (18), we perform the Bogoliubov transformation

*

*

 
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⎜⎜⎜⎜
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⎠⎟
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k

k

k

k

k

k

k

k

,

,

,1

,2

,1

,2

7
In the thermodynamic limit, however, this approximation is not valid since the fraction of quantumdepletion diverges as

nå á ñ ~a a a¹
˜ ˜ ( )†
b b Nln

N k k k
1

0, v [36, 38]. The Bogoliubov theory is still applicable since Nv is atmost of the order of 100 in typical
experiments of ultracold atomic gases [7].
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Here, ( )W k is a paraunitarymatrix satisfying

t t t= = - -( ) ( ) ( ) ( ) ≔ ( ) ( )† †W W W Wk k k k diag 1, 1, 1, 1 , 223 3 3

which ensures the invariance of the bosonic commutation relation. If thematrix ( )W k is chosen to satisfy

 = - -( ) ( ) ( ) ( ( ) ( ) ( ) ( )) ( )†W W E E E Ek k k k k k kdiag , , , , 231 2 1 2

the BogoliubovHamiltonian is diagonalized as

å å å å åw g g= - + + +
a b

a b ab
a

a aa
¹ ¹ =

⎜ ⎟⎛
⎝

⎞
⎠˜ ( ) [ ( ) ( )] ( ) ( )†H N N V h Ek k k

1

2
0, 0, 0, 0

1

2

1

2
. 24

i
i i i

k k
k kint

, 0 0 1,2

Bymultiplying equation (23) from the left by t( )W k 3 and using equation (22), onefinds

t = - - - -( ) ( ) ( ) ( ( ) ( ) ( ) ( )) ( )W W E E E Ek k k k k k kdiag , , , . 253 1 2 1 2

Therefore, the excitation energies =( ) ( )E ik 1, 2i can be obtained as the right eigenvalues of t ( )k3 .
With the BogoliubovHamiltonian (24), thefield operator shows the following time evolution:

*  å åy g gY + Y + -a a a a a a
¹

+
=

- -
-a a

ˆ ( ) ( ) ( ) [ ( ) ( ) ] ( )( ) ( ) †t Nr r r k k, e e . 26
i

i
E t

i i
E t

iq
k

q k
k

k
k

k,
0

,
1,2

i i
,

i i

If we replace g ik and g†
ik by c-numbers, wemay view this equation as the classical time evolution of a condensate

wave function ya ( )tr, . In particular, by setting g g  = ¹a
† c N c nA, 0i ik k

(with c being a real constant)
for the specificmode ( )ik, , we obtain

*  y
= Y + Y + Ya

a a a a a+
-

-a a a

( ) ( ) [ ( ) ( ) ( ) ( ) ] ( )( ) ( )t

n
A c A

r
r r k r k

,
e e . 27i

E t
i

E t
q q k

k
q k

k
, ,

i
,

ii i

This can be used to showhow the density profiles y a =  a∣ ( )∣ ( )t nr, ,2 and the vortex positions change in
time in the concernedmode ( )ik, . In doing so, it is useful to use the representation of Y a( )A rk, in terms of
Jacobi’s theta function (equation (A.2) in appendix A) as this function is supported in various computing
systems8.

2.5. Numerical results
Weuse the formulation described above to numerically calculate the Bogoliubov excitation spectrum { ( )}E ki in
the followingway. For a givenwave vector k , we calculate thematrix( )k in equation (19) by using
equations (12), (13), and (15).We note that each of the functions z (·) and z̃(·) used in equation (13) involves an
infinite sumbut onlywith respect to two integer variables (see equations (7) and (14)), which can numerically be
takenwith high accuracy.We then calculate the right eigenvalues of t ( )k3 to obtain { ( )}E ki .

Figure 2 presents the obtained energy spectra for all the lattice structures infigure 1 and for both the parallel-
and antiparallel-field cases. In all the cases, wefind that there appear twomodeswith linear and quadratic
dispersion relations at low energies around theΓ point. Furthermore, wefind anisotropy of the coefficients of
these dispersion relations. For example, such anisotropy can clearly be seen along the pathM1→Γ→R for (c)
rhombic, (d) square, and (e) rectangular lattices.We discuss such anisotropy in detail in later sections.

To gain some physical insight into the low-energy excitationmodes, we present infigure 3 the density
profiles of themodeswith quadratic (i= 2) and linear (i= 1) dispersion relations at = ℓ( )ak 0.2 , 02 for (b)
interlaced triangular lattices in parallel fields. As seen in thisfigure, vorticesmove perpendicularly to k relative
to the ground state. Furthermore, spin- and  vortices show in-phase (anti-phase) oscillations in the i= 2
(i= 1)mode. Specifically, around kx=0, both spin- and  vorticesmove in the-y direction in the i=2
mode (upper panels offigure 3)while theymove in opposite directions (y) in the i=1mode (lower panels).
Similar results are also obtained in the antiparallel-field case (not shown). These features are consistent with
those obtained from the effective field theory described in section 3.

Apart from the low-energy features, the spectra in figure 2 also exhibit unique structures of band touching
at some high-symmetry points or along lines in the Brillouin zone. In particular, the spectra for (c) rhombic,
(d) square, and (e) rectangular lattices in parallel fields exhibit line nodes, whose locations in the Brillouin zones
are shown infigure 2(f). This can be understood as a consequence of a ‘fractional’ translation symmetry9 [62, 63].
Namely, in these cases, the system is invariant under the product  ( )P of the translation by a 23 and the spin
reversal  « , where +≔a a a3 1 2. Since the unitary operator  ( )P commutes with the Bogoliubov
Hamiltonian and ( )( )P 2 gives the translation by a3, the Bloch states at k can be chosen to be the eigenstates of
 ( )P with  ñ =  ñ - ∣ ∣( ) ·w wek

k a
k

P i 23 . For a smooth change  + =( )ik k b 1, 2i , the two eigenstatesmust
be swapped, indicating the occurrence of an odd number of degeneracies. Infigure 2(f), we can indeed confirm

8
WeusedMathematica and took ( )W k with the phase choices  > = ( ) ( )ik 0 1, 2i in obtaining the density profiles infigures 3 andD1.

9
We givemore precise definitions of the fractional translation operators  ( )P and  ( )AP in appendixC.
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that starting fromany point other than the line nodes, the degeneracy occurs once or three times for the above
changes of k . The emergence of point nodes at theM1 andM2 points for the same lattices ((c)–(e)) in antiparallel
fields can be understood by considering the symmetry under the product  ( )AP of the time reversal and the
translation by a 23 . Since ( )( )AP 2 is equal to the translation by a3, we have  = -( )( ) ·e k aAP 2 i 3 in the subspace
with thewave vector k . TheKramers degeneracy thus occurs at time-reversal-invariantmomentawith

¹- ·e 1k ai 3 , which is the case for =k b 21 and b 22 (M1 andM2 points). In appendixD, we further discuss
some other features of the spectra at high-symmetry points, such as the coincidence of the excitation energies
between the two types offields at theM1 andM2 points infigures 2(c)–(e) by using the numerical data of the
BogoliubovHamiltonianmatrix( )k and the density profiles of the excitationmodes.

3. Effectivefield theory for low-energy excitation spectra

Wehave seen in the preceding section that vortex lattices of two-component BECs exhibit two excitationmodes
with linear and quadratic dispersion relations at low energies. Herewe derive such low-energy dispersion
relations by using an effective field theory. Specifically, we apply the formalism for a scalar BECdeveloped by
Watanabe andMurayama [39] to the present two-component case. This approach is equivalent to the
hydrodynamic theory applied byKeçeli andOktel [44] to two-component BECs in parallel fields. However, we
point out that an important term ismissing in the elastic energy of vortex lattices used in [44]. This term is

Figure 2.Bogoliubov excitation spectra { ( )}E ki (scaled by gn) for the lattice structures shown infigure 1: (a) overlapping triangular,
(b) interlaced triangular, (c) rhombic, (d) square, and (e) rectangular lattices. Each panel shows both results of parallel (black) and
antiparallel (red)magnetic fields. Excitation spectra are calculated along the paths indicated by dotted arrows shown in the lower
panels offigure 1. The left and right panels in (f) show the lines (solid) in the Brillouin zones alongwhich the two bands touch in the
cases of (c) rhombic and (e) rectangular lattices, respectively, under parallel fields. Dashed straight lines connecting the centers of the
edges are guides to the eyes.
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crucial for explaining the anisotropy of the quadratic dispersion relation for interlaced triangular lattices.
Furthermore, we derive remarkable ‘rescaling’ relations between the spectra for the two types of synthetic fields;
these relations are confirmed for overlapping triangular lattices in section 4.

3.1. Effective Lagrangian for phase variables
The Lagrangian density of the two-component BECs corresponding to theHamiltonian (1) is given by [61]


 å åy y y y y y y= - - -  - -

a
a a a a a a

a b

ab
a b

⎡
⎣⎢

⎤
⎦⎥( ˙ ˙ ) ∣( ) ∣ ∣ ∣ ∣ ∣ ( )† †

M
q

g
A

i

2

1

2
i

2
, 282

,

2 2

where ya ( )tr, is the bosonic field for the spin-α component. To describe the low-energy properties of the
BECs, it is useful to decompose thefield as y q= -a a a( )n exp i , where a ( )n tr, and qa ( )tr, are the density and
phase variables, respectively. Substituting this into equation (28) and keeping only the leading terms in the
derivative expansion, we obtain

 m m= + - + -        ( ) ( )n n
g

n n g n n
2

, 292 2

where

 m q q= -  +a a a a˙ ( ) ( )
M

qA
1

2
302

is an effective chemical potential for the spin-α component. Introducing   ≔n n n and  ≔g g g , we
can rewrite equation (29) as

Figure 3.Density profiles y a= =  a∣ ( )∣ ( )t nr, 0 ,2 of themodeswith quadratic (i=2) and linear (i=1) dispersion relations
at = ℓ( )ak 0.2 , 02 for interlaced triangular lattices in parallelfields. Calculations are performed using equation (27)with =c 0.3.
A relatively large value of c, whichmight be beyond the scope of the Bogoliubov theory, is taken to emphasize the changes due to the
excitations. Black (gray) circles indicate the locations of spin- () vortices in the ground state.
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
m m m m

= - - +
+

+
-+

+
-

-
 

+
 

- ( )
g

n
g

n n n
4 4 2 2

. 312 2

By integrating out ( )n tr, , we obtain the effective Lagrangian for the phase variables qa{ ( )}tr, as

 m m m m= + + -
+

 
-

 ( ) ( ) ( )
g g

1

4

1

4
. 322 2

3.2. Relation between vortex displacement and phase variables
In the presence of vortices, the phase variables qa{ ( )}tr, involve singularities. It is thus useful to decompose θα
into regular and singular parts as θα=θreg,α+θsing,α. Since the singular part θsing,α varies rapidly in space, it is
not a convenient variable for a coarse-grained description over long length scales. To describe the long-
wavelength physics, it is useful to start from the vortex-lattice ground state (as infigure 1) and to consider small
displacement of vortices from the equilibriumpositions. Specifically, we introduce the displacement vector field
uα(r, t)=r−Xα(r, t), where r is the equilibriumposition of the vortex andXα is the position at time t. The
derivatives of the singular part θsing,α of the phase are related to the displacement au as [39]

  åq q= - ´  + = ´ - a
a

a a a a a a
a

a a
˙ ( ˙ )

qB
q qB

qB
u uu u A e u

2
,

2
,z z

i j
ij

i j
sing, sing,

,

where òij is an antisymmetric tensor with òxy=−òyx=+1. The effective chemical potential in equation (30)
can then be expressed in terms of q a a{ }u,reg, as

  åm q q= - ´ -  + ´ - a a
a

a a a a a
a

a a

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˙ ( ˙ )

qB

M
qB

qB
u uu u e u

2

1

2 2
.z z

ij
ij

i j
reg, reg,

2

One should also note that the displacement a( )tu r, leads to a change in the elastic energy ò ¶a a( )r u ud , i
2

el .
Here, the formof the elastic energy density el depends on the type of a lattice as discussed in the next section and
appendix E. The effective Lagrangian in terms of q a a{ }u,reg, is then obtained as

 m m m m= + + - -
+

 
-

 ( ) ( ) ( )
g g

1

4

1

4
. 33eff

2 2
el

Here, the difference from equation (32) occurs because the rapidly varying {θsing,α} have been replaced by the
slowly varying a{ }u via coarse graining.

The ground state of m- + ( )H N N0 is given by q m=a treg, 0 and =au 0. To discuss the low-energy
properties, it is therefore useful to introduce j m q= -a at0 reg, and expand the Lagrangian (33) in terms of
ja a{ }u, . Keeping only the quadratic terms in these variables, we obtain

 
 å

j j m
j= + - ´ + ´  + -

a

a
a a a a a

+

+

-

- +

⎡
⎣⎢

⎤
⎦⎥

˙ ˙ ( ˙ ) ( ) ( )
g g g

qB

M
qBu u e u

4 4 2

1

2
, 34z zeff

2 2 2 2
0 2

el

wherej j j ≔ 1 2. Because a{ }u have themass term- au2 , one can expect that they can safely be integrated
out in the discussion of low-energy dynamics. To do so, it is useful to derive the Euler–Lagrange equations for

a{ }u :






 åj
w m w

+ ´  - ´ +
¶
¶

- ¶
¶

¶ ¶
=a a a

a

a a

+
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ℓ

ℓ
˙

( )
( )

g
u e e u

u u
0, 35z z

j
j

j

2

c

2

0 c

el el

wherewe use the cyclotron frequencyωc=qB/M and themagnetic length =ℓ qB . The third and fourth
terms on the left-hand side can be ignored in the LLL approximation ( w wab ∣ ∣g n, c, whereω is the
frequency of our interest). Similar relations are also found in hydrodynamic theory [25–29, 31–33, 44].
Introducing   ≔u u u , equation (35) can be rewritten as

j
j

=
- ´ 

- ´ 




⎪

⎪

⎧
⎨
⎩

ℓ
ℓ

( )
( )

( )u
e

e

parallel fields ;

antiparallel fields .
36

z

z

2

2

These relations indicate that the vortex displacements u and the phasesj are coupled in an oppositemanner
between the parallel- and antiparallel-field cases. Namely, the symmetric u+ (antisymmetric u−) is coupled to
the symmetricj+ (antisymmetricj−) in parallel fields, while they are coupled in a crossedmanner in
antiparallel fields. Equation (36) also indicates that the vortex displacement is perpendicular to thewave vector
k , which is consistent with the results shown infigure 3.

Substituting equation (36) into the Lagrangian density (34), we obtain the Lagrangian density in terms of
{j±}, which can be used to determine the excitation spectrum. For this purpose, we need to determine the form
of the elastic energy density el, which is done next.
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3.3. Elastic energy
Since the elastic energy is invariant under a uniform change in +( )tu r, (i.e. translation of the lattices), el should
be a function of ¶ =+( )i x yu ,i and -u to the leading order in the derivative expansion.We therefore introduce
the form

   = ¶ + + ¶+
+

-
-

+-
+ -( ) ( ) ( ) ( )( ) ( ) ( )u u u u, . 37i iel el el el

To express  +( )
el , it is useful to introduce

¶ + ¶ ¶ - ¶ ¶ + ¶+ + + + + +≔ ≔ ≔ ( )w u u w u u w u u, , . 38x
x

y
y

x
x

y
y

y
x

x
y

0 1 2

In the LLL regime, the vortex density stays constant, and thereforew0=0; this can also be confirmed by using
equation (36). From a symmetry consideration (see appendix E), each term in equation (37) can be expressed as







¶ = + +

= + +

¶ = +

+
+

-
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2
,

2
,
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2

, 39
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i
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el

2

1 1
2

2 2
2

3 1 2

el

2

2 1
2

2
2

3

el

2

1 1 2

where = ≔n N A N A is the average number density of each component. For each of the vortex lattices in
figures 1(a)–(e), the dimensionless elastic constants {C1,C2,C3,D1,D2,D3, F1} satisfy

= º > = º > = = =
= º > = º > = = ¹

> ¹ =
> = º > = = =
> > = = =

( )
( )
( )
( )
( ) ( )

C C C D D D C D F

C C C D D D C D F
C C D D C D F

C C D D D C D F
C C D D C D F

a 0, 0, 0;

b 0, 0, 0, 0;
c , , , 0, , 0, 0;

d , 0, 0, 0;
e , 0, , 0, 0. 40

1 2 1 2 3 3 1

1 2 1 2 3 3 1

1 2 1 2 3 3 1

1 2 1 2 3 3 1

1 2 1 2 3 3 1

Keçeli andOktel [44] have considered an elastic energy consisting of  ( )
el above, but have not included  +-( )

el .
Therefore, in their work, the symmetric and antisymmetric displacements u are decoupled from each other in
collectivemodes. In our analysis in appendix E,  +-( )

el is found to be allowed by symmetry for interlaced
triangular lattices. As shown below, this part crucially changes the low-energy spectrum, and explains the
anisotropy of the spectrum for the concerned lattice structure.

We note thatwithin themean-field theory, the elastic energy density el should take the same form
(equations (37) and (39)) for the parallel- and antiparallel-field cases because of the exact correspondence of the
GP energy functionals between the two cases [45]. The dimensionless elastic constants are also expected to take
the same values between the two cases. However, as wewill see in section 4, the elastic constants estimated from
the numerical results of the energy spectra are different between the two cases.We discuss this puzzling issue in
section 4.2.

3.4. Excitation spectrum
The Lagrangian density in terms ofj±is obtained by substituting equation (36) into equation (34) and using the
above el. After performing the Fourier transformation òj j w= å w

p
w


-

( ) ( )( · )tr k, e ,
A

t
k

k rd

2
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In equation (42) (and equations (44), (45), and (47) below), the upper and lower of the double signs correspond
to the parallel- and antiparallel-field cases, respectively.

The excitation spectrum corresponds to the poles of theGreen’s function, and can thus be obtained by
solving the equation w =-[ ( ) ]G kdet i , 01 . Since G G G- + ( ) ( ) ( )k k k for ℓk 1, we obtain the low-energy
dispersion relations as

= G -
G
G

= G +
-
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⎛
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⎞
⎠⎟( ) ( ) ( )
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k
k k2 , 2 . 442

2

1

Using equation (43) and the fact that G-( )k is isotropic when ¹F 01 (see equation (40)), we obtain the following
explicit expressions
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with ≔C F D44 1
2

1.We thusfind the emergence of quadratic and linear dispersion relationswhose anisotropy
reflects the symmetry of each lattice structure. Furthermore, wefind that themodes with the quadratic and
linear dispersion relations originatemainly from the symmetric and antisymmetric parts u of the vortex
displacement, respectively (we, however, note that these two parts aremixed slightly in the case of interlaced
triangular lattices owing to ¹F 01 ). This explains the in-phase (anti-phase) oscillations of the i=2 (i=1)
mode found infigure 3.

To discuss the anisotropy further, we parametrize thewave vector in terms of polar coordinates as
q q= ℓ( ) ( )k kk cos , sin 1 and introduce the dimensionless functions {fi(θ)} via

q= =ℓ( ) ( ) ( ) ( )E gn k f ik 2 , 1, 2. 46i
i

i

Using the dispersion relations (45) obtained from the effective field theory, these functions are calculated as

q q q q q q

q q q q q

= + - -

= + -


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sin cos sin cos . 47
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In this result (and also in equations (44) and (45)), the dependence on the type of synthetic fields occurs only in
the coefficients g g . This observation leads to the following remarkable relations:

q q q q= =
+ - - +

( ) ( ) ( ) ( ) ( )f
g

g
f

g

g
f

g

g
f

g

g
, , 48

2
P

2
AP

1
P

1
AP

where the superscripts P andAP refer to the parallel- and antiparallel-field cases, respectively. Namely, the
functions q{ ( )}f

i
P AP for the two types of synthetic fields are related to each other by simple rescaling.While

these rescaling relations are expected for all the lattice structures within the effective field theory, we show in the
next section that the relations hold only for overlapping triangular lattices and break down for the other lattices.

4. Anisotropy of low-energy excitation spectra

Wehave seen in section 2.5 that the Bogoliubov excitation spectrum exhibits linear and quadratic dispersion
relations at low energies with significant anisotropy in some cases. In this section, we analyze this anisotropy
further by calculating the dimensionless functions {fi (θ)} defined in equation (46) for the cases shown in
figure 2.We compare the numerical results with the analytical expressions (47) obtained by the effective field
theory.We also examinewhether the numerical results satisfy the rescaling relations (48) derived by the effective
field theory.

4.1.Overlapping triangular lattices
For (a) overlapping triangular lattices, by using equations (40) and (47), the analytic expressions of q{ ( )}f

i
P AP

for parallel (P) and antiparallel (AP)fields are obtained as

q q q q= = = =+ - - -( ) ( ) ( ) ( ) ( )f
g

g
C f

g

g
D f

g

g
C f

g

g
D, , , . 49

2
P

1
P

2
AP

1
AP

Notably, these functions showno dependence on θ in the effective field theory.
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In numerical calculations, we obtain q{ ( )}f
i
P AP from the data of the Bogoliubov excitation spectra along a

circular path q q= ( )kk cos , sin with sufficiently small k and arbitrary θä[0, 2π). Figure 4(a) presents
numerical results for = -g g 0.2.Wefind that the functions q{ ( )}f

i
P AP stay constant to a good accuracy

consistent with the analytical expressions (49). Thefigure also shows the rescaled functions (defined by the left-
and right-hand sides of equation (48)), clearly demonstrating the rescaling relations (48). The dimensionless
elastic constantsC andD thus take the same values for the two types offields and are plotted as functions of

g g infigure 5(a). Both constants are linear functions of g g , which is consistent with the fact that the elastic

Figure 4.Dimensionless functions q( )f2
P AP (left) and q( )f1

P AP (right) for parallel (P; gray) and antiparallel (AP; pink)fields for the
same cases as infigures 2(a)–(e). These functions are calculated from the Bogoliubov excitation spectra { ( )}E ki along a circular path

q q= ( )kk cos , sin with = ℓk a0.001 2 and q pÎ [ )0, 2 . The rescaled functions (left- and right-hand sides of equation (48)) are also
shown (black and red), confirming the rescaling relations (49) through the overlap of the curves for (a) overlapping triangular lattices.
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energy is a linear function of g g for afixed vortex-lattice structure (see alsofigure 4 of [44]). Thus the
numerical results are consistent with the effective field theory in the case of overlapping triangular lattices.

4.2. Interlaced lattices
Wehave performed similar analyses for interlaced lattices as shown infigures 4(b)–(e). The functions

q{ ( )}f
i
P AP displayed in the figure show anisotropy except in the right panels for (b) interlaced triangular and (d)

square lattices. These behaviors are consistent with the analytical results in equations (40) and (47). Indeed, we
canfit the numerical data perfectly using equation (47) if we determine =( )C i 1, 2, 3, 4i

P AP and

Figure 5.Constants =( )C i 1, 2, 3, 4i
P AP (left) and =( )D i 1, 2, 3i

P AP (right) for parallel (P; black) and antiparallel (AP; red)
fields for (a) overlapping triangular, (b) interlaced triangular, (c) rhombic, (d) square, and (e) rectangular lattices (see equation (40) for
the symmetry constraints on the constants). These are obtained by fitting the numerically obtained functions q{ ( )}fi

P AP (as in
figure 4) using equation (47). Semi-logarithmic scales are used in (e). Vertical dashed lines indicate the transition points.
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=( )D i 1, 2, 3i
P AP separately for parallel or antiparallel fields. Figure 5(b)–(e)presents the determined

constants {Ci} and {Di}.We note that the constantC4, which is newly introduced in this work and originates
from the coupling between the symmetric and antisymmetric vortex displacements u , is indeed nonvanishing
for (b) interlaced triangular lattices.

However, the rescaling relations (48) derived from the effective field theory do not hold infigures 4(b)–(e). It
can also be seen in different values of the constants { }Ci

P AP and { }Di
P AP between the parallel- and antiparallel-

field cases infigures 5(b)–(e). The difference between the two cases tends to increase with increasing the ratio
>g g 0. Furthermore, the constants for (d) square lattices shownonlinear dependences on g g , which is

inconsistent with the expected linear dependences for afixed vortex-lattice structure (see figure 6 of [44]). These
results cannot be explainedwithin our effective field theory.

As discussed in the last paragraph of section 3.3, the elastic constants should take the same values between
the parallel- and antiparallel-field cases because of the exact correspondence of theGP energy functionals
between the two cases [45]. Therefore, a possible insufficiency of our effective field theorymay be ascribed to the
way the elastic constants are related to the coefficients in the dispersion relations.We infer that the derivative
expansions and the coarse graining of the variables done in the derivation of the effective Lagrangian should be
improved for interlaced vortex lattices which have afinite displacement between the components.

5. Summary and outlook

Wehave studied collective excitationmodes of vortex lattices in two-component BECs subject to synthetic
magnetic fields in parallel or antiparallel directions. Ourmotivation for studying the two types of synthetic fields
stems from the fact that they lead to the samemean-field ground-state phase diagram [45] consisting of a variety
of vortex-lattice phases [41, 42]—it is interesting to investigate what similarities and differences arise in
collectivemodes. Our analyses are based on amicroscopic calculation using the Bogoliubov theory and an
analytical calculation using a low-energy effective field theory.We have found that there appear two distinct
modeswith linear and quadratic dispersion relations at low energies for all the lattice structures and for both
types of synthetic fields. These dispersion relations show anisotropy that reflects the symmetry of each lattice
structure. In particular, we have pointed out that the anisotropy of the quadratic dispersion relation for
interlaced triangular lattices can be explained by the term in the elastic energy thatmixes the symmetric and
antisymmetric vortex displacements—such a termwasmissing in a previous study [44].We have also found that
the low-energy spectra for the two types of synthetic fields are related by simple rescaling in the case of
overlapping triangular lattices that appear for intercomponent attraction (- < <g g1 0). However, contrary

to the effective field theory prediction, such relations are found to break down for interlaced vortex lattices,
which appear for intercomponent repulsion ( >g g 0) and involve a vortex displacement between the

components. This indicates a nontrivial effect of an intercomponent vortex displacement on excitation
properties that cannot be captured by the effective field theory developed in this paper.We have also found that
the spectra exhibit unique structures of band touching at somehigh-symmetry points or along lines in the
Brillouin zone.We have discussed their physical origins on the basis of fractional translation symmetries and the
numerical data of the BogoliubovHamiltonianmatrix.

The Bogoliubov excitation spectra studied in this work can be utilized to calculate the quantum correction to
the ground-state energy due to zero-point fluctuations (see equation (25)), where the correction is expected to be
enhanced as thefilling factor ν is reduced. Despite the exact equivalence of themean-field ground states between
the parallel- and antiparallel-field cases [45], we have found quantitatively different Bogoliubov excitation
spectra for the two cases as shown infigure 2. It is thus interesting to investigate howquantum corrections affect
the rich vortex-lattice phase diagrams in the two cases. The present workwould be a step toward understanding
how the systems evolve from equivalent phase diagrams in themean-field regime tomarkedly different phase
diagrams in the quantumHall regime [45, 52–55] as thefilling factor is lowered.

Acknowledgments

The authors thankKazuya Fujimoto andDaisuke ATakahashi for stimulating discussions. This workwas
supported byKAKENHIGrantNos. JP18H01145 and JP18K03446 and aGrant-in-Aid for Scientific Research
on Innovative Areas ‘TopologicalMaterials Science’ (KAKENHIGrantNo. JP15H05855) from the Japan Society
for the Promotion of Science (JSPS), and theMatsuo Foundation. TY and SHwere supported by JSPS through
the Program for LeadingGraduate Schools (ALPS). SH also acknowledges support from JSPS fellowship
(KAKENHIGrantNo. JP16J03619).

15

New J. Phys. 21 (2019) 015001 TYoshino et al



AppendixA. LLLmagnetic Bloch states in terms of Jacobi’s theta function

Herewe show that for  ¥Nv , the LLLmagnetic Bloch states (6) discussed in section 2.2 can be rewritten in a
compact formusing Jacobi’s theta function. In the resulting expression (A.2), we can see the equivalence of these
states to the vortex-lattice wave functions introduced byMueller andHo [41]. Furthermore, the expression (A.2)
is useful for plotting density profiles of the vortex lattices and the excitationmodes as infigures 3 andD1.

To derive such a compact expression of equation (6), wefirst rewrite it as


z zY = - = - - ´a a a

a- -

ℓ ℓ
( ) [ ( )] ( ˜ ) ˜ ( )ℓA r k k k k

r
e re , i

2 2
. A.1zk

r 4 1 2
2 2

2 2

Nextwe rewrite the function z ( )k defined in equation (7) in terms of the theta function. To this end, we
parametrize the primitive vectors of the vortex lattices as = ( )aa 1, 01 and t t= ( )aa ,2 1 2 , and introduce the
modular parameters t t t= + i1 2 and t t t= -¯ i1 2; the area of the unit cell in equation (3) is then given by a

2τ2.
In the limit  ¥Nv , the function z ( )k can be rewritten as
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which is obtained by the Poisson resummation. Using Jacobi’s theta function of the third type
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Using this and q t q t= - Î( ∣ ) ( ∣ ) ( )w w w3 3 and introducing zα= (x+ iòαy)/a, k t p= k a 2x x2 , and
k t p=  ( )k k ai 2x y2 , we can rewrite equation (A.1) as

 

t
p
t

k k q k t q k t

q k t q k t

Y = - + + - -

´
+

+
-

+ -

a a a a

a
a

a
a

+ -
-

+ -

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ∣ ∣ ) [ ( ∣ ) ( ∣ ¯ )]

¯ ( )

A z z z

z z

r 2 exp
2

4i 2 i i

1

2
i

1

2
i . A.2

x xk 2
1 4

2

2 2 2
3 3

1 2

3 3

Although the entire expression looks involved, the spatial dependence is expressed in amannermore compact
than the original expression (6). Specifically, for òα=+1, the spatial dependence occurs in the part
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wherewe use Jacobi’s theta function of the first type
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Equation (A.3) is equivalent to the vortex-lattice wave function ofMueller andHo [41] up tomultiplication by a
constant factor.

Appendix B.Derivation of the interactionmatrix element (12)

Herewe derive the representation (12) of the interactionmatrix element from equation (11). By rewriting the
LLLmagnetic Bloch state (6) as
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we can calculate the integral of the product of four wave functions in equation (11) as
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Equation (B.1) can then be rewritten as
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Therefore, the interactionmatrix element can be expressed as in equation (12)with

å= - - - +
å

ab

ab

( )

( ) [ ˜ ( ) · · · ]

S

F

k k k

r r r k r k r k r
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1 2 3 1 2 3

Let us focus on the case of parallelfields ( = = +  1). In this case, the function ab ( )S k k k, ,1 2 3 depends
on neitherαnorβ, and therefore we drop the subscriptsα,β. Using

å= - + + - ´ + ´ℓ ˜( ) ( · · ) ( )F r r r r r r r r r r r r4 , , i ,
j

zn n n n n n n n n n n n
2 2

j1 2 3 2 3 1 3 2 3 1 3

wefind
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where the sums over n1 and n2 are rewritten in terms of z ( )k in equation (7), and the remaining dummy variable
n3 is replaced by n.We can further rewrite this by exploiting the following property of z ( )k for Îs 2:
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By setting = +n s p2 with Îs 2 and Î { }p 0, 1 2, equation (B.2) can be rewritten as

å å
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In the case of antiparallel fields, ( )S k k k, ,1 2 3 is given by ( )S k k k, ,1 2 3 shown above. The other

ab ( )S k k k, ,1 2 3 ʼs can be obtained by using the relation *Y = Y - ( ) ( )r rk k , leading to the result in equation (15).

AppendixC. Fractional translation operators

Herewe give precise definitions of the fractional translation operators,  ( )P and  ( )AP , which are introduced for
the parallel- and antiparallel-field cases, respectively, in section 2.5.We consider the cases of (c) rhombic, (d)
square, and (e) rectangular lattices. For these lattices, thewave vectors in equation (9), at which condensation
occurs, are given by = q q and = - q q, where ´ = - +ℓ≔ ( ) ( )q e a b b4 4z 3

2
1 2 .

To introduce the fractional translation, let usfirst recall that its square is equal to the translation by a3. For a
single particle, the latter is expressed as a a( ) ( )T Ta a1 2 . It acts on themagnetic Bloch states (with the shifted
momenta as in equation (16)) as
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Y = Y = Ya a a a a+
- +

+
-

+a
a

a a
( ) ( ) ( ) ( ) ( ) ( )( )· ·T Ta a r r re e . C.1k q

k q a
k q

k a
k q1 2 ,

i
,

i
,

3 3

Notably, the shift aq does not appear in the eigenvalue - ·e k ai 3 since it is perpendicular to a3. The translation
operator a a( ) ( )T Ta a1 2 can be rewritten as

  = = =a a
p

a a
- -a a a a( ) ( ) ( ) ˜ ( )[ · · ] ( ) ·T T T Ta a ae e e , C.2K a K a K a

1 2
, 2 i i

3
21 2

2
3

where 
a

p
aa˜ ≔ ( )T T ae 2i 2

3 . In the following, we use ãT in expressing the fractional translation.

C.1. Case of parallelfields
In the case of parallel fields ( = =  1), we can drop the subscriptα in a ( )T s and ãT . To express the fractional
translation, it is useful tomodify the basis slightly from themagnetic Bloch states introduced in section 2.2. For
the spin- component, we use the samemagnetic Bloch states as discussed in section 2.2. For the spin-
component, we define Y + ( )rk q, by operating T̃ on Y - ( )rk q, as

Y = Y- 
-

+ ˜ ( ) ( ) ( )·T r re . C.3k q
k a

k q,
i 2

,
3

Using = = - =-( ) ˜ ˜ ( ) ˜ ( ) ( )[ · · ]T T TT TT ja a ae 1, 2j j j
K a K a, 2j 3

2
, we can confirm that Y + ( )rk q, defined in this

way has the expectedmomentum:

Y = - Y = Y+ 
- -

+ 
- +

+ ( ) ( ) ( ) ( )( )· ( )·T a r r re e .j k q
k q a

k q
k q a

k q,
i

,
i

,
j j

Furthermore, by operating T̃ on Y + ( )rk q, , we have

Y = Y = Y+  - 
-

- ˜ ( ) ˜ ( ) ( ) ( )· ·T Tr r re e . C.4k q
k a

k q
k a

k q,
i 2 2

,
i 2

,
3 3

Equations (C.3) and (C.4) indicate that the operator T̃ has the role of interchanging Y - ( )rk q, and Y + ( )rk q, with
themultiplication of the same phase factor - ·e k ai 23 , which is a useful feature of the present basis. In this
representation, one can show

* *

* *

ò
ò
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where the bars onα andβ indicate the spin reversal  «  andwe use the invariance of the interaction
d - ¢ab ( )( )g r r2 under the translation and the spin reversal ( =ab ab¯ ¯g g ).

For a single particle, we define the fractional translation as thewave function changes by T̃ in equations (C.3)
and (C.4) followed by the spin reversal sx. Formany particles, the fractional translation operator  ( )P can be
expressed in the second-quantized form as

 
s

s
=  -  - 

-
  -  -  ⎜ ⎟⎛

⎝
⎞
⎠( ˜ ˜ ˜ ˜ ) ( ˜ ˜ ˜ ˜ ) ( )( ) † † ( ) † · † †

b b b b b b b b, , , e , , ,
0

0
. C.6x

x
k k k k

k a
k k k k

P
, ,

P i 2
, ,

3

Using equation (C.5), one can confirm that the BogoliubovHamiltonian (18) is invariant under  ( )P . The
ground state ñ∣GS is obtained as the vacuum annihilated by the Bogolon annihilation operators g =( )j 1, 2jk,

in equation (21). The single-particle excitations g ñ =∣ ( )† jGS 1, 2jk, can be used for the Bloch states ñ∣wk in the

argument of section 2.5.

C.2. Case of antiparallelfields
In the case of antiparallel fields ( = - =  1), we againmodify the basis slightly from themagnetic Bloch
states introduced in section 2.2.While we use the samemagnetic Bloch states as in section 2.2 for the spin-
component, we define Y + ( )rk q, for the spin- component via

*Y = Y - + 
-

+ ˜ ( ) ( ) ( )·T r re . C.7k q
k a

k q,
i 2

,
3

Using = -a a a a( ) ˜ ˜ ( )T T T Ta aj j and * a= = =  a a( ) ( ) ( )¯T T ja a 1, 2; ,j j , we can confirm that Y + ( )rk q,

defined in this way has the expectedmomentum:

*Y = - Y = Y +    - + 
- +

+ ( ) ( ) ˜ [ ( ) ( )] ( )· ( )·T T Ta r a r re e .j jk q
k a

k q
k q a

k q,
i 2

,
i

,
j3

Wealsofind

* * *Y = Y = Y - +  
-

 + 
-

+ ˜ ( ) ˜ [ ˜ ( )] ( ) ( )· ·T T Tr r re e . C.8k q
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In this representation, one can show
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Wedefine the fractional translation as the time reversal followed by the translation by T̃ . Here, the time
reversal involves the complex conjugation, thewave vector reversal  -k k (about q), and the spin reversal
 « . In the second-quantized form, the fractional translation operator  ( )AP formany particles is
represented as

 
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Since  ( )AP is antiunitary, wefind

  =  -  - 
-
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k a
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, ,

AP 2 i
, ,

3

bywhichwe can confirm that ( )( )AP 2 is indeed equal to the translation by a3. By using equation (C.9), we can
also confirm that the BogoliubovHamiltonian (18) is invariant under  ( )AP .

Finally, we note that in the above argument, we have used sx rather than themore standard one si y for the

spin part of the time reversal. If we define ̃
( )AP

by replacing sx by si y in equation (C.10), the original

Hamiltonian (10) in the LLL basis is invariant under ̃ ( )AP
. However, the BogoliubovHamiltonian (18) obtained

after the breaking ofU(1)×U(1) symmetry as in equation (17) is not invariant under ̃ ( )AP
because of the

presence of the terms a a-
˜ ˜† †
b bk k, and a a-̃

˜b bk k, . Namely, themixing of a particle and a hole in the Bogoliubov
theory is in conflict with time-reversal symmetry in the standard form (see [64] for a different type of conflict
between condensation and time-reversal symmetry).

AppendixD. Excitationmodes at high-symmetry points

In section 2.5, we have discussed the origins of point and line nodes in the Bogoliubov excitation spectra in
figures 2(c)–(e) from the viewpoint of fractional translational symmetries. Infigure 2, we further notice the
following interesting features of the spectra at high-symmetry points: (i) coincidence of the excitation energies
between the two types offields at theM1 andM2 points for (c) rhombic, (d) square, and (e) rectangular lattices,
and (ii) the point node at theK1 point for (a) overlapping and (b) interlaced triangular lattices in antiparallel
fields.We have not succeeded in explaining these features from a symmetry viewpoint. Here, we instead discuss
their origins on the basis of the numerical data of the BogoliubovHamiltonianmatrix( )k and the density
profiles of the excitationmodes.

(i) Thematrix( )k at theM1 point for (e) rectangular lattices is given by

 =

-

+



⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( ) ( )

gn
k

2
1.63 0 0.605 1.05i 0

0 1.63 0 0.605 1.05i
0.605 1.05i 0 1.63 0

0 0.605 1.05i 0 1.63

, D.1
M1

where the upper and lower of the double signs correspond to the parallel- and antiparallel-field cases,
respectively, and ‘0’ indicates elements whose numerical values vanish with high accuracy. The structure
of thematrix indicates that the spin- and  components are completely decoupled at this wave vector.
We can thus construct the excitationmode involving only the spin- component, which is given by the
vector   = - - ( ) ( ), 1.12, 0.248 0.431i . For thismode, we present the density profiles
y a= =  a∣ ( )∣ ( )t nr, 0 ,2 and the schematic illustration of the vortexmovement in figure D1(i).
From this figure, we can interpret the decoupling of the two components in the following way: the forces
acting on each spin- vortex from the surrounding spin- vortices cancel out owing to the staggered
nature of the displacement. Once the two components are decoupled in this way, they independently
exhibit collectivemodes with identical spectra irrespective of the direction of the synthetic field. This
explains the two-fold degeneracy of eigenenergies and the coincidence of those energies between the
parallel- and antiparallel-field cases. Similar structures of thematrix( )k are also seen at theM1 point
for (c) rhombic and (d) square lattices and at theM2 point for (e) rectangular lattices.
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(ii) Thematrix( )k at theK1 point for (a) overlapping triangular lattices in antiparallel fields is given by

 =

-
-

-
-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( )

gn
k

2
1.46 0 0 0.368

0 1.46 0.368 0
0 0.368 1.46 0

0.368 0 0 1.46

. D.2
K1

Thismatrix consists of two independent blocks—a block corresponding to a spin-particle and a spin-hole
and a block corresponding to a spin-particle and a spin-hole. Since the twoblocks have identicalmatrix
elements, they show identical eigenenergies,which leads to the two-folddegeneracy at theK1 point. For the
mode involving a spin-particle and a spin-hole (givenby   = ( ) ( ), 1.01, 0.129 ), wepresent thedensity
profiles and the vortexmovement infigureD1(ii), which exhibits a ´3 3 structure reminiscent of the
120° spin structure of an antiferromagnet on a triangular lattice.Wenote that the density changes and thus the
amplitude of the vortex displacement aremuch smaller in the spin- component than in the spin- component
because   ∣ ∣ ∣ ∣.

Thematrix( )k at theK1 point for (b) interlaced triangular lattices in antiparallel fields is given by

 =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( )

gn
k

2
1.36 0 0 0

0 1.36 0 0
0 0 1.44 0.295
0 0 0.295 1.44

. D.3
K1

FigureD1. Left andmiddle columns: density profiles y =a∣ ( )∣t nr, 0 2 (a =  , ) calculated using equation (27)with =c 0.3 for the
following three excitationmodes: (i) themode involving only the spin- component at theM1 point for rectangular lattices, (ii) themode
involving a spin-particle and a spin-hole at theK1 point for overlapping triangular lattices in antiparallelfields, and (iii) themode
involving only a spin-particle at theK1 point for overlapping triangular lattices in antiparallelfields. In (i), the result is independent of
thefield direction for the spin- component because of the decoupling of the two components. In (i) and (iii), y∣ ( )∣t nr, 2 is the same as
the ground-state density profile. Right column: schematic illustrationof the vortexmovement. Black (gray) circles indicate the locations
of spin- () vortices in the ground state (also shown in the other columns). Black arrows indicate the displacementof spin- vortices
from the equilibriumpositions at =t 0, and empty arrows indicate their changes over the time interval p ( )E k2 i .Wenote that in (ii),
spin- vortices are also displaced in away similar to spin-ones albeitwithmuch smaller amplitudes.
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In thismatrix, there is no coupling between a particle and a hole or between spin- and particles. Thus, spin-
and particles exhibit independent excitationmodes, leading to the two-fold degeneracy at theK1 point. For the
mode involving only a spin-particle (given by  = 1), we present the density profiles and the vortex
movement infigureD1(iii); the spin- vortices are again found to exhibit a ´3 3 structure.We note that in
equation (D.3), there is a coupling between the spin- and holes, which leads to excitationswith non-
degenerate negative eigenenergies; by performing the particle-hole transformation to these excitations, we
obtain non-degenerate positive eigenenergies at theK2 point, which is seen infigure 2(b).

Unfortunately, we have not been able to relate the vortex structures infiguresD1(ii) and (iii)with thematrix
structures in equations (D.2) and (D.3). Atfirst sight, the cancellation of forces acting on a spin-down vortex
from the surrounding spin-up vortices seem to occur in (iii); however, this assumption cannot explainwhy the
block structure in equation (D.3) appears solely in the antiparallel-field case. Understanding the physical origins
of the block structures in equations (D.2) and (D.3) is still elusive.

Appendix E. Symmetry consideration of the elastic energy

Herewe consider the elastic energy density  ¶a a( )u u, iel of the vortex lattices of two-component BECs shown in
figure 1, and discuss how the symmetry constrains it into the formof equations (37), (39), and (40).

We start from the quadratic forms of ≔ ( )w ww ,1 2
t and -u :

  = = =+ -
- -

+-
-ℓ ℓ

( )( ) ( ) ( )gn
C

gn
D

gn
Fw w u u w u

2
,

2
, , E.1el

2
t

el

2

2
t

el

2
t

whereC,D, and F are real ´2 2matrices, andC andD can be assumed to be symmetric.We assume that the
vortex lattices are symmetric under the coordinate transformation


¢
¢

= L
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )x

y
x
y

x
y . E.2

Under this transformation, while -u is transformed by the samematrixΛ, w is, in general, transformed by a
differentmatrix L̃. In order for the elastic energy to be invariant under this transformation, the following
equationsmust be satisfied:

L L = L L = L L =˜ ˜ ˜ ( )C C D D F F, , . E.3
t t t

Herewe consider the following transformations:

f f
f f
f f

fL = =
-

L =

L = = - L =
-

L = =
-

L =
-

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

( ) ˜ ( )

˜

˜

R R

M

M

Rotation through the angle :
cos sin

sin cos
, 2 ;

Mirror about the yz plane: 1 0
0 1

, 1 0
0 1

;

Mirror about the xz plane: 1 0
0 1

, 1 0
0 1

.

x

y

Each lattice structure infigures 1(a)–(e) is invariant under the following coordinate transformationΛ:

p p p p p( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R M R M R R M M R M Ma 3 , b 2 3 , c d 2 , , e , , .x x x y x y

Requiring equation (E.3) for these transformations, we obtain a number of constraints onC,D, and F. For
example, (i) the invariance under rotation through f p= (satisfied by all but (b)), for which L = -I and
L =˜ I (identity), leads to =F 0. (ii)The invariance under rotation throughf leads to

f f f f- = = - = =( ) ( ) ( ) ( )C C C D D Dsin 2 sin 2 sin sin 0,11 22 12 11 22 12

which gives =C C11 22 and =C 012 for f p¹ n 2 and =D D11 22 and =D 012 for f p¹ n ( În ). (iii)The
invariance under themirror reflection about the yz plane leads to = = = =C D F F 012 12 11 22 . (iv)The
invariance under rotation through f p= 2 3 leads to =F F12 21. Setting

( ) ≔ ( )C C C D D D F C C C D D D F, , , , , , , , 2 , , , 2 , 2 ,1 2 3 1 2 3 1 11 22 12 11 22 12 12

wefinally obtain equations (39) and (40).
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