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Abstract

We study collective modes of vortex lattices in two-component Bose—Einstein condensates subject to
synthetic magnetic fields in mutually parallel or antiparallel directions. By means of the Bogoliubov
theory with the lowest-Landau-level approximation, we numerically calculate the excitation spectra
for arich variety of vortex lattices that appear commonly for parallel and antiparallel synthetic fields.
We find that in all of these cases there appear two distinct modes with linear and quadratic dispersion
relations at low energies, which exhibit anisotropy reflecting the symmetry of each lattice structure.
Remarkably, the low-energy spectra for the two types of fields are found to be related to each other by
simple rescaling when vortices in different components overlap owing to an intercomponent
attraction. These results are consistent with an effective field theory analysis. However, the rescaling
relations break down for interlaced vortex lattices appearing with an intercomponent repulsion,
indicating a nontrivial effect of an intercomponent vortex displacement beyond the effective field
theory. We also find that high-energy parts of the excitation bands exhibit line or point nodes as a
consequence of a fractional translation symmetry present in some of the lattice structures.

1. Introduction

Formation of quantized vortices under rotation is a hallmark of superfluidity. When quantized vortices
proliferate under rapid rotation, they organize into a regular lattice owing to their mutual repulsion. The
resulting triangular vortex lattice structure was originally predicted by Abrikosov [1] for type-II
superconductors in a magnetic field, and observed in superconducting materials [2], superfluid “He [3, 4], and
Bose—Einstein condensates (BEC) [5-7] and Fermi superfluids [8] of ultracold atoms. In ultracold atomic gases,
in particular, the rotation frequency can be tuned over a wide range, and the equilibrium and dynamical
properties of vortex lattices can be investigated in considerable detail [9-11]. Rotation can be viewed as the
standard way to induce a synthetic gauge field for neutral atoms since the Hamiltonian in the rotating frame of
reference is equivalent to that of charged particles in a uniform magnetic field. Notably, experimental techniques
for producing synthetic gauge fields via optical dressing of atoms have also been developed over the past decade
[12, 13], and a successful application of these techniques led to the creation of around 10 vortices ina BEC
without mechanical rotation of the gas [14].

Throughout this paper, we assume that a BEC is confined in a three-dimensional harmonic potential and
that the interparticle interaction is so strong that the BEC at rest is in the Thomas—Fermi regime. A BEC under
rotation (or in a synthetic magnetic field) undergoes different regimes with increasing the rotation frequency
Q[11]. When a BEC rotates slowly, the size of the vortex core is much smaller than the intervortex separation.
In this regime, the spatial variation of the BEC density, V|V, can be ignored, and the Thomas—Fermi
approximation is applicable [15]. This regime is called the mean-field Thomas—Fermi regime. With increasing
Q, the intervortex separation decreases and eventually becomes comparable with the size of a vortex core. Then
the BEC flattens to an effectively two-dimensional (2D) system, and the interaction energy per particle becomes
small compared with the kinetic energy per particle. It is thus reasonable to assume that atoms reside in the
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Figure 1. Upper panels: vortex-lattice structures in two-component BECs in synthetic magnetic fields [41-44]. Within the GP mean-
field theory, the same phase diagrams are obtained for both the parallel- and antiparallel-field cases [45]. Five different structures
appear as the ratio of the coupling constants, g, /¢, is varied: (a) overlapping triangular lattices (—1 < /8 < 0), (b)interlaced
triangular lattices (0 < g; /g < 0.1724), (¢c) thombic lattices (0.1724 < g;, /g < 0.3733), (d) square lattices (0.3733 < g /g <
0.9256), and (e) rectangular lattices (0.9256 < &1/8 < 1). Here, g;, is the intercomponent coupling constant, and gis the
intracomponent one which is assumed to be the same for both components. Black (gray) circles indicate the vortex positions of the
spin-T () component. As shown in (f), each lattice structure is characterized by the primitive vectors a; = (a, 0) and

a, = b(cos 0, sin 0) satisfying ab sin @ = 27£? (see equation (3)), and the vortex displacement u;a; + 1,2, of one component relative
to the other. The angle § (the aspect ratio b/a) varies continuously in the rhombic-lattice (rectangular-lattice) phase, as shown in

[41, 44]. Lower panels: the first Brillouin zone corresponding to each lattice structure placed above. The reciprocal primitive vectors
are givenby b; = (bsinf, —b cos ) /£?and b, = (0, a) /£? (see equation (4)). Uppercase letters indicate high-symmetry points.
Excitation spectra presented in figure 2 are calculated along the paths indicated by dotted arrows.

lowest-Landau-level (LLL) manifold for the motion in the 2D plane and to perform the mean-field calculation in
this manifold [16, 17]. This regime is called the mean-field LLL regime [10]. As 2 is further increased, the mean-
field description breaks down, and the system is expected to enter a highly correlated regime. In particular, in a
regime where the number of vortices N, becomes comparable with the number of atoms N, it has been predicted
that the vortex lattice melts and a variety of quantum Hall states appear at integral and rational values of the
filling factor v := N /N, [10, 18, 19].

Avortex lattice supports an elliptically polarized oscillatory mode, which was predicted by Tkachenko
[20-22] and observed in superfluid *“He [23]. While Tkachenko’s original work predicted a linear dispersion
relation for an incompressible fluid, a number of theoretical studies have been done to take into account a finite
compressibility of the fluid [24—29]. It has been shown that the compressibility leads to hybridization with sound
waves and qualitatively changes the dispersion relation into a quadratic form for small wave vectors. Collective
modes of a vortex lattice have been observed over a wide range of rotation frequencies in a harmonically trapped
BEC [30]. Theoretical analyses of the observed modes have been conducted with the hydrodynamic theory
[31-33] and the Gross—Pitaevskii (GP) mean-field theory [34, 35]. For a uniform BEC in the mean-field LLL
regime, the dispersion relation of the Tkachenko mode can analytically be obtained within the Bogoliubov
theory, and it is found to take a quadratic form [36-38]. Effective field theory for the Tkachenko mode has been
developed in [39, 40].

The properties of vortex lattices can further be enriched in multicomponent BECs, such as those made up of
different hyperfine spin states of identical atoms. For two-component BECs under rotation, GP mean-field
calculations have shown that several different types of vortex lattices appear as the ratio of the intercomponent
coupling g, to the intracomponent oneg > 0is varied (see figure 1) [41-43]. Among them, interlaced square
vortex lattices (figure 1(d)), which are unique to these systems, have been observed experimentally [46].
Furthermore, optical dressing techniques can produce a variety of (possibly non-Abelian) gauge fields in
multicomponent gases [12, 13,47, 48]. In particular, mutually antiparallel synthetic magnetic fields have been
induced in two-component BECs, leading to the observation of the spin Hall effect [49]. If the antiparallel fields
are made even higher, such systems are expected to show a rich phase diagram consisting of vortex lattices and
(fractional) quantum spin Hall states [45, 50, 51]. Notably, it has been shown within the GP mean-field theory
that BECs in antiparallel magnetic fields exhibit the same vortex-lattice phase diagram as BECs in parallel
magnetic fields [45] (see also section 2.1). It is thus interesting to ask whether and how the difference between the
two types of systems arises in other properties such as collective modes. In this context, it is worth noting that in
the quantum Hall regime, which is far beyond the mean-field description, the two types of systems exhibit
markedly different phase diagrams [45, 52—55], which has been interpreted in light of pseudopotentials and
entanglement formation [55].

In this paper, we study collective modes of vortex lattices in two-component BECs in parallel and antiparallel
synthetic magnetic fields in the mean-field LLL regime. On the basis of the Bogoliubov theory with the LLL
approximation, we numerically calculate excitation spectra for all the vortex-lattice structures shown in figure 1.

2



10P Publishing

NewJ. Phys. 21(2019) 015001 T Yoshino et al

We find that in all the cases there appear two distinct modes with quadratic and linear dispersion relations at low
energies, which originate from in-phase and anti-phase (i.e. -phase difference) oscillations of vortices of the
two components, respectively. The obtained dispersion relations show anisotropy reflecting the symmetry

of each lattice structure. Remarkably, the low-energy spectra for the two types of synthetic fields are related

to each other by simple rescaling in the case of overlapping vortex lattices (figure 1(a)) that appear for an
intercomponent attraction. These results are consistent with an effective field theory analysis for low energies,
which is a generalization of [39] guided by symmetry consideration of the elastic energy of a vortex lattice.
However, the rescaling relations are found to break down for interlaced vortex lattices (figures 1(b)—(e)) that
appear for an intercomponent repulsion, presumably due to a nontrivial effect of a vortex displacement between
the components beyond the effective field theory. We also find some interesting features of the excitation bands
at high energies, such as line and point nodes, which arise from ‘fractional’ translation symmetries or special
structures of the Bogoliubov Hamiltonian matrix.

Here we comment on some related studies. Kegeli and Oktel [44] have studied collective excitation spectra in
two-component BECs in parallel fields by means of the hydrodynamic theory, and predicted the appearance of
two low-energy modes with linear and quadratic dispersion relations similar to ours. Our calculation is based on
the Bogoliubov theory, provides unbiased results for weak interactions, and also contains information on the
higher-energy part of the spectra. Furthermore, in the effective field theory analysis, we point out a term missing
in [44], which is responsible for the anisotropy of the quadratic dispersion relation for interlaced triangular
lattices (figure 1(b)). We also note that Woo et al [56] have numerically investigated excitation spectra in rotating
two-component BECs in a harmonic trap, and have identified a variety of excitations such as Tkachenko modes
and surface waves.

The rest of this paper is organized as follows. In section 2, we introduce the systems that we study in this
paper, and formulate the problem in terms of the Bogoliubov theory in the LLL basis. We then present our
numerical results of Bogoliubov excitation spectra. In section 3, we use an effective field theory to derive
analytical formulae of low-energy excitation spectra. In particular, we find remarkable rescaling relations
between the spectra for the two types of synthetic magnetic fields. In section 4, we analyze the anisotropy of low-
energy excitation spectra using the numerical data, and discuss its consistency with the effective field theory. In
section 5, we summarize the main results and discuss the outlook for future studies. In appendix A, we derive
expressions of the LLL magnetic Bloch states (the basis states used throughout this paper) in terms of Jacobi’s
theta functions; such expressions are used when plotting density profiles of excitation modes in section 2 and
appendix D. In appendix B, we describe the derivation of the matrix elements of the interaction used in section 2.
In appendix C, we give precise definitions of the fractional translation operators used in section 2. In
appendix D, we discuss some features of the Bogoliubov excitation spectra at high-symmetry points (found in
section 2) by using the data of the Bogoliubov Hamiltonian matrix and the density profiles of the excitation
modes. In appendix E, we present symmetry consideration of the elastic energy of vortex lattices, which is used in
section 3.

2. Bogoliubov analysis of excitation spectra

In this section, we introduce the systems that we study in this paper, and formulate the problem in terms of the
Bogoliubov theory with the LLL approximation. Our formulation is closely related to those in [36—38]. In
particular, the LLL magnetic Bloch states [38, 57, 58], which have a periodic pattern of zeros, play a crucial role
here. We then present our numerical results of Bogoliubov excitation spectra and discuss their low- and high-
energy characteristics.

2.1. Systems

We consider a system of a 2D pseudospin-% Bose gas having two hyperfine spin states (labeled by o = T, |). The
spin-a component is subject to a synthetic magnetic field B,, in the z direction. In the case of a gas rotating with
an angular frequency €2, parallel fields B; = B = 2M(2/q are induced in the two components in the rotating
frame of reference, where M and q are the mass and the fictitious charge of a neutral atom. An optical dressing
technique of [49], in contrast, can be used to produce antiparallel fields B; = —B;. We focus on a central region
of the system where the atomic density is sufficiently uniform and the effect of the harmonic potential can be
ignored. In the second-quantized form, the Hamiltonian of the system is given by

H = Hy;n + Hiy

9 - Aa 2, gLYL 0 0 0 0
:agT:,L [ @ %T(r)%%(r) + gf [ @ bbb b, 1)
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where r = (x, y) isthe coordinate on the 2D plane, p = —i/% (9,, 9,) isthe momentum, and TA% (r) is the bosonic
field operator for the spin-ao component satisfying the commutation relations [ﬁ)a (r), ﬁ}g (] = 6,36P (@ — 1)

and [72)&(1’), 1,7)@(1”)] = [12);f (r), 1,71; (r")] = 0. The gauge field for the spin-a component is given by
B B
Aa == z X — E—\=) > 2
S € XTI =6 (= %) ()

whereweassume B > Oand ¢; = ¢ = 1 (¢; = —¢| = 1) for parallel (antiparallel) fields. For a 2D system of
area A, the number of magnetic flux quanta piercing each component (or the number of vortices) is given by
N, = A/(2n¢?), where ¢ = ./ /1 /qB is the magnetic length. The total number of atoms is given by

N = N; + N, where N, is the number of spin-c bosons.

In the Hamiltonian (1), we assume a contact interaction between atoms. For a gas tightly confined in a
harmonic potential with frequency w, in the z direction, the effective coupling constants in the 2D plane are
givenby g, = an+/87/°w, /M and & = & = a 87/i%w, /M,” where a, and a; | are the s-wave
scattering lengths between like and unlike bosons, respectively, in the 3D space. For simplicity, we set
&1 = §, = g > 0and Ny = N inthe following discussions. We further assume that the synthetic magnetic
fields B,, are sufficiently high or the interactions are sufficiently weak so that the energy scales of the interaction
peratom, |g, 5|7, are much smaller than the Landau-level spacing /aw. = /gB/M, where n := N; /A = N| /A s
the density of atoms of each component. In this situation, it is legitimate to employ the LLL approximation in
which the Hilbert space is restricted to the lowest Landaulevel [10, 16, 17].

When the filling factor v = N /N, is sufficiently high (v >> 1), the system is well described by the GP mean-
field theory. In this theory, the GP energy functional E [y, v|]is introduced by replacing the field operator
121& (r) by the condensate wave function /), (r) in the Hamiltonian (1); then, the functional is minimized under
the conditions f &r|y.l? = N, (@ = 1, |) to determine the ground-state wave functions {1/, (r) }. Using the
LLL wave functions which have periodic patterns of zeros and are equivalent to the LLL magnetic Bloch states
described in section 2.2, Mueller and Ho [41] have obtained a rich ground-state phase diagram for the parallel-
field case, which consists of five different vortex-lattice structures as shown in the upper panels of figure 1.
Notably, the GP energy functionals for the parallel- and antiparallel-field cases are related to each other as
Eantiparaliel (V1> ] = Eparaltel [¥1, z/ff] [45]. This implies that within the GP theory, the ground-state wave
function of one case can be obtained from that of the other through the complex conjugation of the spin- |
component”. Therefore, BECs in antiparallel fields also exhibit a rich variety of vortex-lattice structures as
shown in figure 1 in the same way as BECs in parallel fields.

2.2.LLL magnetic Bloch states

To describe the excitation properties of a vortex lattice, it is important to choose the basis states consistent with
the periodicity of the lattice. Following [38, 57, 58], we utilize the LLL magnetic Bloch states for this purpose. Let
a; and a, be the primitive vectors of a vortex lattice as shown in figure 1(f). These vectors satisfy

(al X a2)z = 27Tf2 = A/Nva (3)

which implies the presence of one vortex in each component per unit cell. The reciprocal primitive vectors are
then given by

by = —e, x a/¢% by =€, x a/¢?, 4

which satisfy a; - b; = 276;; (i, j = 1, 2). Using the pseudomomentum for a spin-« particle
B
Ka:P—qAa-i-qBa><r=p+faq7ez><r, (5)

we introduce the magnetic translation operator as T, (s) = e~ /% [59]. We note that the pseudomomentum
K, = (Ko« Ki,y) satisfies the commutation relation [K,, , Koyl = —i€, h?/¢°. Starting from the most

localized symmetric LLL wave function ¢y (r) = e /4 2/ N 272, we construct a set of LLL wave functions by
multiplying two translation operators as

(—1)mm
N2m?

where r,, = mja; + mya, withm = (my, m,) € Z? Here, T, (m,a;) and T, (m,a,) commute with each other
since every unit cell is pierced by one magnetic flux quantum as seen in equation (3); this property justifies the

cma (1) = To(map) T (maas) co(x) = exp[—ffz(r St - M rm)z],

207

!

? These are obtained b multiplying the coupling constants gf D) = 4nia, / M and g® = 4n/ia;, / M for the 3D contact interactions by
the factor / Mw, /(277 ) . This factor arises from the restriction to the ground state of the confinement potential in the z direction.

A similar situation arises for the ferromagnetic and antiferromagnetic Heisenberg models on a bipartite lattice, whose classical
Hamiltonians are related to each other through the spin inversion S; — —8; on one of the two sublattices.
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application of Bloch’s theorem. By superposing ¢y, (r) for N, possible translations m on a torus, we can
construct the LLL magnetic Bloch state as [57]

Pa(r) = Cma(T) elkrm (6)
. N} g « Z
with the normalization factor
C) = Jo (= Dy a/ A"k, @)

This state is an eigenstate of T;, (a;) with an eigenvalue e ika;,
The LLL magnetic Bloch state Wy, (r) represents a vortex lattice with a periodic pattern of zeros for any value

of the wave vector k. Indeed, by rewriting equation (6) as

VNG C(K) Uy (r) = E ck (D)exp [i(—%ez X r+ k) . rm]
= Z CITla(r)eXp { _ifi(;[ez X (l‘ + Eafzez X k)] . rm}

and comparing it with the complex conjugate of the Perelomov overcompleteness equation
Y (=Dmtme (r) = 0[60], we find that Wy, (r) has zeros at [58]

1
r=r, + E(al +a) — 6, 0%, x k, n = (n, m) € 7% (8)

When one describes a triangular vortex lattice of a scalar BEC using a LLL magnetic Bloch state, the choice of
the wave vector k is arbitrary once the primitive vectors a; and a, are set appropriately. This is because a change
in k only leads to a translation of zeros as seen in equation (8). The vortex lattices of two-component BECs in
figure 1 can also be described by the LLL magnetic Bloch states ¥, ,(r) (o = T, | ); however, the wave vectors
q; and q| have to be chosen in a way consistent with the displacement 1a; + 1,2, between the components (see
figure 1(f)). One useful choice is

€
q; =+ Tz e; X (ma) + way) = —T(—u2b1 + uby),
2¢
€
9= _ﬁez X (ma + hay) = —L(+u2b1 — u1by). ®
Here, we displace the spin- T component by %(ul a; + wpa,) and the spin- | component by f%(ul a; + pay)
instead of displacing only one of the components. This is useful for avoiding zeros of the normalization factor
¢ (k) at some high-symmetry points in the first Brillouin zone [57] °.

2.3. Representation of the Hamiltonian

Using the magnetic Bloch states (6), we expand the field operator as P (r) = >k Yka(r) by, where k runs over
the first Brillouin zone, and by, is a bosonic annihilation operator satisfying [y, blj,a,] = O’ Ona’- Substituting
this expansion into the Hamiltonian, we obtain

H= Hkin + Hint

) + = Z Z (yﬁ(kl’ kZa k3, k4) bll‘la b]l@ bk3/3bk4(w (10)
2 08 kykoksky

where fiw,/2 is the LLL single-particle zero-point energyand N, = Y7, by} by, is the number operator for the
spin-a component. The interaction matrix element V, 5 (k;, ky, k3, ky) is given by

Vag(ky, ko, ks, ka) = g,5 f dr W () W (1) Wi(0) W (). an

As described in appendix B, this matrix element is calculated to be

gozﬂ aﬁ(kl’ k2> k3)
24 (k) C (ko) C(k3)C(ky)

Here, 61y := Y Oii/+ g is the periodic Kronecker’s delta with G running over the reciprocal lattice vectors. In
the case of parallel fields, the function S,3(k;, k;, k3) does not depend on «v or 3, and is given by

12)

Vag(k, ky, ks, ky) = 6kl+k2,k3+k4

5 . > . . . P .
Mueller and Ho [41] instead use Jacobi’s theta function to express a vortex-lattice wave function. Such an expression is obtained by
performing the Poisson resummation in equation (6) for Ny, — 00; see appendix A.

6 Ifwe set q = (b; — by) / 2and q =0 for square lattices, for example, we have ¢ (@) =0 and equation (6) is not well-defined unless we
factor out a nonanalytic dependence around the point of our concern [57].
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Sy, ky, ky) = > (—Dpne /ARl (kg 4k, — 2k + (1, X e, — irp) /267)
pe{0,1}?

X (ki + (rp X e, + irp) /42D ( (ko + (rp X €, + irp) /4£7),
where

Z(k) = Z e—rfn/Zfz—ikrm'

(13)

(14)

In the case of antiparallel fields, S,3(k;, ks, ks) depends on avand 3, and is given in terms of S(kj, k,, k3) defined

above by
STT(kI) k2) k3) = S(kla k2) k3)) Sll(kl) kZ; k3) = S(_kl) _k2) _k3)*)
STl(kI: kZ) k3) = S(kl’ _k33 _k2)> Sﬂ(kla kZ: k3) = S(_kla kSa kZ)*

2.4. Bogoliubov approximation

At high filling factors, the condensate is only weakly depleted and therefore we can apply the Bogoliubov

approximation [36-38, 61]”. Provided that the condensation occurs at the wave vector q,, inthe spin-o
component, it is useful to introduce

Ek(x = bqu+k,a) ‘705(1(1: k2) k?n k4) = \/aﬂ(qa + k], qB + kz, qs + k3, q. + k4)

~ ~t ~F =~
bOa' =~ boa, = N(y - Z bkabka
\ k=0

and retaining terms up to the second order in by, and Elja (k = 0), we obtain the following Bogoliubov
Hamiltonian:

By setting

Hipe = %Z Nal\]ﬂ Vaﬁ(o) 0, 0, 0) - l Z Z[ha(k) + waa(k)]

a3 k=0 «
-
L 7t 71 7 ¢ b
+ — Z(ka) bkl) bfk,T) b,k)l)M(k) ~F .
2 k=0 bfk,T
~F
by,
Here, the matrix M (k) is given by
by (k) + wyp (k) wr| (k) A (k) Arp (k)
M(k) B w”(k) I’ll(k) + Wu(k) )\”(k) )\u(k)
N Nfi(k) X(k) hy(=k) + wip(=k) w1 (=k) ’
N (k) X (k) wi(—k) h(—k) + wy (—k)

where

hﬂ(k) = ZN@[‘ZIM(I() 0) 0) k) - ‘7043(0> 0) 0) 0)])
wap(k) = N, N3 Vo5(k, 0, k, 0), Aop(k) == /N,N; V,5(k, —k, 0, 0).

To diagonalize the Bogoliubov Hamiltonian (18), we perform the Bogoliubov transformation

EkT Yk, 1

by k2 U Vi(—k
=W ,W(k):( (k) *( )).
—k, 1 ;’ V(k) u (—k)
ot gl

b_k’l k,2

7 Inthe thermodynamic limit, however, this approximation is not valid since the fraction of quantum depletion diverges as
%Zkzo, olbrabra) ~ In(Ny) / v [36, 38]. The Bogoliubov theory is still applicable since Ny is at most of the order of 100 in typical
experiments of ultracold atomic gases [7].

(15)

(16)

17)

(18)

19)

(20)

21
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Here, W (k) is a paraunitary matrix satisfying
Wik)nW k) = Wk)nW(k) = 7 = diag(1, 1, —1, —1), (22)
which ensures the invariance of the bosonic commutation relation. If the matrix W (k) is chosen to satisfy
WTK)M&)W (k) = diag(E;(k), E,(k), E;(—k), E»(—k)), (23)

the Bogoliubov Hamiltonian is diagonalized as

Hin = ézNaNma(o, 0,0,0 — =5 S [ha(l) + woa @] + 3 5 Ei(k)(viivki + l). (24)

o, k=0 « k=0 i=1,2 2
By multiplying equation (23) from the left by W (k) 73 and using equation (22), one finds
BMEW (k) = W (k)diag(E (k), E2(k), —Ei(—k), —Ex(—K)). (25)

Therefore, the excitation energies E;(k) (i = 1, 2) can be obtained as the right eigenvalues of 73 M (k).
With the Bogoliubov Hamiltonian (24), the field operator shows the following time evolution:

Doty 1) = VN Uq o) + 32 Uy a0 3 Uaik)e EO iy 4 VE(_L)elECRI/E 10 (26)

k=0 i=1,2

If wereplace v, ; and 71:1‘ by c-numbers, we may view this equation as the classical time evolution of a condensate

wave function ¢, (r, t).In particular, by setting ~, , VL‘ — ¢/N, = c/nA = 0 (with cbeingareal constant)
for the specific mode (k, i), we obtain

LD TRy 00 + VAT U0 4 0y VIR, @)
n

This can be used to show how the density profiles |1, (r, t)|*/n (o = T, | ) and the vortex positions change in
time in the concerned mode (k, 7). In doing so, it is useful to use the representation of JA Uy o(r) in terms of
Jacobi’s theta function (equation (A.2) in appendix A) as this function is supported in various computing

8
systems".

2.5.Numerical results

We use the formulation described above to numerically calculate the Bogoliubov excitation spectrum { E; (k) } in
the following way. For a given wave vector k, we calculate the matrix M (k) in equation (19) by using

equations (12), (13), and (15). We note that each of the functions ¢ (-) and (-) used in equation (13) involves an
infinite sum but only with respect to two integer variables (see equations (7) and (14)), which can numerically be
taken with high accuracy. We then calculate the right eigenvalues of 73 M (k) to obtain { E;(k)}.

Figure 2 presents the obtained energy spectra for all the lattice structures in figure 1 and for both the parallel-
and antiparallel-field cases. In all the cases, we find that there appear two modes with linear and quadratic
dispersion relations at low energies around the I point. Furthermore, we find anisotropy of the coefficients of
these dispersion relations. For example, such anisotropy can clearly be seen along the path M; — I' — Rfor (¢c)
rhombic, (d) square, and (e) rectangular lattices. We discuss such anisotropy in detail in later sections.

To gain some physical insight into the low-energy excitation modes, we present in figure 3 the density
profiles of the modes with quadratic (i = 2) and linear (i = 1) dispersion relations at k = (0.2a/£?2, 0) for (b)
interlaced triangular lattices in parallel fields. As seen in this figure, vortices move perpendicularly to k relative
to the ground state. Furthermore, spin-T and | vortices show in-phase (anti-phase) oscillations in the i = 2
(i= 1) mode. Specifically, around k, = 0, both spin-T and | vortices move in the —y directioninthei = 2
mode (upper panels of figure 3) while they move in opposite directions (Fy) in the i = 1 mode (lower panels).
Similar results are also obtained in the antiparallel-field case (not shown). These features are consistent with
those obtained from the effective field theory described in section 3.

Apart from the low-energy features, the spectra in figure 2 also exhibit unique structures of band touching
at some high-symmetry points or along lines in the Brillouin zone. In particular, the spectra for (c) rhombic,

(d) square, and (e) rectangular lattices in parallel fields exhibit line nodes, whose locations in the Brillouin zones
are shown in figure 2(f). This can be understood as a consequence of a ‘“fractional’ translation symmetry” [62, 63].
Namely, in these cases, the system is invariant under the product 7 of the translation by a3 /2 and the spin
reversal | <« |, where a; := a, + a,. Since the unitary operator 7 ¥) commutes with the Bogoliubov
Hamiltonian and (7 ()2 gives the translation by a3, the Bloch states at k can be chosen to be the eigenstates of
T® with T®|wE) = 4e /2|y ). Forasmooth change k — k + b; (i = 1, 2), the two eigenstates must
be swapped, indicating the occurrence of an odd number of degeneracies. In figure 2(f), we can indeed confirm

8 We used Mathematica and took W (k) with the phase choices U;i(k) > 0 (i = 1, 2) in obtaining the density profiles in figures 3and D1.

We give more precise definitions of the fractional translation operators 7 ® and 74P in appendix C.

7
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o
N

E/gn

6
4
2
0

r——— T M,
RM1FkRM2F 1

Figure 2. Bogoliubov excitation spectra { E; (k) } (scaled by gn) for the lattice structures shown in figure 1: (a) overlapping triangular,
(b) interlaced triangular, (c) rhombic, (d) square, and (e) rectangular lattices. Each panel shows both results of parallel (black) and
antiparallel (red) magnetic fields. Excitation spectra are calculated along the paths indicated by dotted arrows shown in the lower
panels of figure 1. The left and right panels in (f) show the lines (solid) in the Brillouin zones along which the two bands touch in the
cases of (c) rhombic and (e) rectangular lattices, respectively, under parallel fields. Dashed straight lines connecting the centers of the
edges are guides to the eyes.

that starting from any point other than the line nodes, the degeneracy occurs once or three times for the above
changes of k. The emergence of point nodes at the M, and M, points for the same lattices ((c)—(e)) in antiparallel
fields can be understood by considering the symmetry under the product 7 *P) of the time reversal and the
translation by a3 /2. Since (7 4P)? is equal to the translation by a3, we have (7 “P)? = e~k in the subspace
with the wave vector k. The Kramers degeneracy thus occurs at time-reversal-invariant momenta with

e~ = 1 whichis the case for k = b;/2 and b, /2 (M, and M, points). In appendix D, we further discuss
some other features of the spectra at high-symmetry points, such as the coincidence of the excitation energies
between the two types of fields at the M; and M, points in figures 2(c)—(e) by using the numerical data of the
Bogoliubov Hamiltonian matrix M (k) and the density profiles of the excitation modes.

3. Effective field theory for low-energy excitation spectra

We have seen in the preceding section that vortex lattices of two-component BECs exhibit two excitation modes
with linear and quadratic dispersion relations at low energies. Here we derive such low-energy dispersion
relations by using an effective field theory. Specifically, we apply the formalism for a scalar BEC developed by
Watanabe and Murayama [39] to the present two-component case. This approach is equivalent to the
hydrodynamic theory applied by Kegeli and Oktel [44] to two-component BECs in parallel fields. However, we
point out that an important term is missing in the elastic energy of vortex lattices used in [44]. This term is

8
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Figure 3. Density profiles [t/ (r, t = 0)]?/n (a = 1, | ) of the modes with quadratic (i = 2)and linear (i = 1) dispersion relations
atk = (0.2a/¢2, 0) for interlaced triangular lattices in parallel fields. Calculations are performed using equation (27) with ¢ = 0.3.
A relatively large value of ¢, which might be beyond the scope of the Bogoliubov theory, is taken to emphasize the changes due to the
excitations. Black (gray) circles indicate the locations of spin-T (|) vortices in the ground state.

crucial for explaining the anisotropy of the quadratic dispersion relation for interlaced triangular lattices.
Furthermore, we derive remarkable ‘rescaling’ relations between the spectra for the two types of synthetic fields;
these relations are confirmed for overlapping triangular lattices in section 4.

3.1. Effective Lagrangian for phase variables
The Lagrangian density of the two-component BECs corresponding to the Hamiltonian (1) is given by [61]

— i VRV _L _ _ 2]_ &Lﬂ 2 2
r ;[2(%% it = gl Y = anwl | - S P 28)

where v, (r, t) is the bosonic field for the spin-a component. To describe the low-energy properties of the
BECs, it is useful to decompose the field as ¢, = /1, exp(—i6,), where n,,(r, t) and 6, (r, t) are the density and
phase variables, respectively. Substituting this into equation (28) and keeping only the leading terms in the
derivative expansion, we obtain

L= pym + pmm = f("% ) = gymm, 29)
where

; 1
Ho = f?pa — ﬁ(ﬁv% + qAa)Z (30)

is an effective chemical potential for the spin-cvcomponent. Introducing ny = n; £ njand g, = g £ g, we
can rewrite equation (29) as
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+ —
g__ni —+ un+ —+ un_. (31)
4 2 2

&t 2
L= %52
1

By integrating out n.(r, t), we obtain the effective Lagrangian for the phase variables {6, (r, )} as

1 1
L= —u + p)* + — @y — ) (32)

3.2. Relation between vortex displacement and phase variables

In the presence of vortices, the phase variables {6, (r, t)} involve singularities. It is thus useful to decompose 0,
into regular and singular parts as 0, = O,cg o + Osing,q- Since the singular part 0, , varies rapidly in space, it is
not a convenient variable for a coarse-grained description over long length scales. To describe the long-
wavelength physics, it is useful to start from the vortex-lattice ground state (as in figure 1) and to consider small
displacement of vortices from the equilibrium positions. Specifically, we introduce the displacement vector field
u,(r,t) = r — X, (1, 1), where r is the equilibrium position of the vortex and X,, is the position at time ¢. The
derivatives of the singular part 6, , of the phase are related to the displacement u,, as [39]

/ qB . qB . .
fsing, 0 = *TQ(ua X W)z 7 Vsinga + qAq = qB,e, X u, — TQZ Eijtig, Vi,
i,j
where €;;is an antisymmetric tensor with €, = — ¢, = +1. The effective chemical potential in equation (30)
can then be expressed in terms of { g o, U} as
2
. qB . 1 qB . .
ftg = Mrega — —2(ug X 04);, — —| 2V iega + qB e, X ug — =23 €u,Vul | .
2 2M 2 7
One should also note that the displacement u,(r, t) leads to a change in the elastic energy f dr E4(u,, Ouy).

Here, the form of the elastic energy density &, depends on the type of a lattice as discussed in the next section and
appendix E. The effective Lagrangian in terms of { ;g o, U, } is then obtained as

Lot = —— Gy + ) + — (g — 1)* — Ea. (33)
4g. 4g
Here, the difference from equation (32) occurs because the rapidly varying { fging « } have been replaced by the
slowly varying {u,, } via coarse graining.

The ground state of H — 1, (Ny + N))is givenby 0o o = f1yt/7% and u, = 0. To discuss the low-energy
properties, it is therefore useful to introduce ¢, = f1yt/7% — 0Oreq o and expand the Lagrangian (33) in terms of
{¢,» uy}. Keeping only the quadratic terms in these variables, we obtain

fi%p? 20,2 B
‘Ceff = i + & - @Z[&(ua X W), + L(ﬁez X v@@ + qBaua)Z:I - gel) (34)
g 8 & M

where ¢, = ¢, + ¢,.Because {u,} have the mass term —u2, one can expect that they can safely be integrated

outin the discussion of low-energy dynamics. To do so, it is useful to derive the Euler—Lagrange equations for

{ua}:

9a

, ) 8.0 0&.
a+ afzzxvg_f_azx ++— - 8 = :0, 35
! e K wce ! o /twe | Oug Z]: ! d(du,) 49

where we use the cyclotron frequency w. = qB/M and the magneticlength ¢ = /7 /qB. The third and fourth
terms on the left-hand side can be ignored in the LLL approximation (/w;, |g, |7 < 7w, where wis the
frequency of our interest). Similar relations are also found in hydrodynamic theory [25-29, 31-33, 44].
Introducing u. := u; £ uy, equation (35) can be rewritten as

{ —£%, X Vo, (parallel fields);
uyr =

36
—¢%, x V. (antiparallel fields). (36)

These relations indicate that the vortex displacements u . and the phases ¢, are coupled in an opposite manner
between the parallel- and antiparallel-field cases. Namely, the symmetric u, (antisymmetric u_) is coupled to
the symmetric ¢, (antisymmetric _) in parallel fields, while they are coupled in a crossed manner in
antiparallel fields. Equation (36) also indicates that the vortex displacement is perpendicular to the wave vector
k, which is consistent with the results shown in figure 3.

Substituting equation (36) into the Lagrangian density (34), we obtain the Lagrangian density in terms of
{1}, which can be used to determine the excitation spectrum. For this purpose, we need to determine the form
of the elastic energy density &, which is done next.

10
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3.3. Elastic energy

Since the elastic energy is invariant under a uniform change in u, (r, ) (i.e. translation of the lattices), & should
beafunction of O;u, (i = x, y) and u_ to theleading order in the derivative expansion. We therefore introduce
the form

Ea=EP Oy + EQ@) + E5(0muy, u). (37)

+

o »itis useful to introduce

To express £
wo = Optif + Oyuf, wy= Ocul — Oyul, wy = Oyul + Oul. (38)

In the LLL regime, the vortex density stays constant, and therefore w, = 0; this can also be confirmed by using
equation (36). From a symmetry consideration (see appendix E), each term in equation (37) can be expressed as

2
gn
(+)(3 uy) = 7(C1W12 + Cowy 2 + Cswiwy),
) gn’
o (u) = —[Dl(uf)2 + Dy(u?)? + Dsu*u’],

EGIOu, u) = gz—fFl(wluy + wyu®), (39)

where n := N; /A = N, /A is the average number density of each component. For each of the vortex lattices in
figures 1(a)—(e), the dimensionless elastic constants { C;, C,, Cs, Dy, D,, D3, F; } satisfy

@G=C,=C>0,D;,=D,=D>0,C3=D3=F = 0;

BG=C=C>0,D,=D,=D>0,C3=D;=0, F = 0;

(c) G, Cy, Dy, Dy >0, G5, D3 = 0, F; = 0;

@G, C;,>0,D,=D,=D>0,C3=D;=F =0

(e C,C,>0,D,D,>0,C3=D3;=F =0. (40)
Kegeli and Oktel [44] have considered an elastic energy consisting of G~ above, but have not included £ .
Therefore, in their work, the symmetric and antisymmetric displacements u_ are decoupled from each other in
collective modes. In our analysis in appendix E, £ ~ is found to be allowed by symmetry for interlaced
triangular lattices. As shown below, this part crucially changes the low-energy spectrum, and explains the
anisotropy of the spectrum for the concerned lattice structure.

We note that within the mean-field theory, the elastic energy density & should take the same form
(equations (37) and (39)) for the parallel- and antiparallel-field cases because of the exact correspondence of the
GP energy functionals between the two cases [45]. The dimensionless elastic constants are also expected to take
the same values between the two cases. However, as we will see in section 4, the elastic constants estimated from
the numerical results of the energy spectra are different between the two cases. We discuss this puzzling issue in
section4.2.

3.4. Excitation spectrum
The Lagrangian density in terms of ¢, is obtained by substituting equation (36) into equation (34) and using the

above & . After performing the Fourier transformation ¢, (r, t) = >, f djf eilkr— ”)go (k, w), we obtain the
action
dUJ 1 . _ S0+(k) OJ)
s=3 [0k 0, o (k —w)iGk, w) 1( , (4D
Z " ¢ (k, w)
where
f52w?

—Tuk)  +il(k)
iGk, w)y ! = &+ (42)

g 2

is the inverse of Green’s function in Fourier space with
L (k) = gn*f*[C(2keky)?* + Colky — k) — C3(2keky) (k7 — k)],
I (k) = gn’¢*(Dik; + D1k} — Dskk,),

Tk = %gnzﬁFl(Skfk}, e (43)
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In equation (42) (and equations (44), (45), and (47) below), the upper and lower of the double signs correspond
to the parallel- and antiparallel-field cases, respectively.

The excitation spectrum corresponds to the poles of the Green’s function, and can thus be obtained by
solving the equation det[iG (k, w)~!] = 0.Since I (k) > I'(k) > ' (k) for kZ < 1, we obtain the low-energy
dispersion relations as

I'k)?
Ey(k) = \/Zgi(ll(k) - m) , Eik) = dzgzpr—(k)- (44)

Using equation (43) and the fact that I" (k) is isotropic when F; = 0 (see equation (40)), we obtain the following
explicit expressions

Ey (k) 8t : 2 2 2 2 (3k3ky - k;)z :
3] 22| Cu2kek))? + Colk2 — K22 — Cy(2kek ) (k2 — K2) — Gy — 7 |
Tagn (g 1( y) 2( 5) 3( 2)( y) 4 P2
B0 (&) e 1
=|=| £(Dik; + D2k} — D3k k)2 45
Tagn (g (Dik, 2 skik,) (45)

with C, := F,%2/4D,. We thus find the emergence of quadratic and linear dispersion relations whose anisotropy
reflects the symmetry of each lattice structure. Furthermore, we find that the modes with the quadratic and
linear dispersion relations originate mainly from the symmetric and antisymmetric parts u .. of the vortex
displacement, respectively (we, however, note that these two parts are mixed slightly in the case of interlaced
triangular lattices owing to F; = 0). This explains the in-phase (anti-phase) oscillations of thei = 2 (i = 1)
mode found in figure 3.

To discuss the anisotropy further, we parametrize the wave vector in terms of polar coordinates as
k = k(cos b, sinf) (k¢ < 1)andintroduce the dimensionless functions {f()} via

Ei(k) = V2gn(ke)if,(0), i=1, 2. (46)

Using the dispersion relations (45) obtained from the effective field theory, these functions are calculated as

L) = \/gg;[Cl sin?(20) + C, cos?(20) — Cssin(26)cos(20) — C,sin?(30)]'/2,

f0) = gf (D; sin?6 + D, cos?8 — Djsin 6 cos6)!/2. (47)

In this result (and also in equations (44) and (45)), the dependence on the type of synthetic fields occurs only in
the coefficients /g, /g. This observation leads to the following remarkable relations:

£7(6) ng — f2%(0) ng 0 \/gz — f4(6) \/gz , (48)
+ - - +

where the superscripts P and AP refer to the parallel- and antiparallel-field cases, respectively. Namely, the
functions { fiP/ AP ()} for the two types of synthetic fields are related to each other by simple rescaling. While
these rescaling relations are expected for all the lattice structures within the effective field theory, we show in the
next section that the relations hold only for overlapping triangular lattices and break down for the other lattices.

4. Anisotropy of low-energy excitation spectra

We have seen in section 2.5 that the Bogoliubov excitation spectrum exhibits linear and quadratic dispersion
relations at low energies with significant anisotropy in some cases. In this section, we analyze this anisotropy
further by calculating the dimensionless functions {f; (§)} defined in equation (46) for the cases shown in

figure 2. We compare the numerical results with the analytical expressions (47) obtained by the effective field
theory. We also examine whether the numerical results satisfy the rescaling relations (48) derived by the effective
field theory.

4.1. Overlapping triangular lattices
For (a) overlapping triangular lattices, by using equations (40) and (47), the analytic expressions of { fl.P/ AP(9))
for parallel (P) and antiparallel (AP) fields are obtained as

o = 2, oy = |5, o) = [, 0 = [Sp. (49)
b4 8 4 b4

Notably, these functions show no dependence on 6 in the effective field theory.

12
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Figure 4. Dimensionless functions fzP /AP () (left) and flP /AP () (right) for parallel (P; gray) and antiparallel (AP; pink) fields for the
same cases as in figures 2(a)—(e). These functions are calculated from the Bogoliubov excitation spectra { E; (k) } along a circular path

k = k(cos 0, sin @) with k = 0.001la/£?and 0 € [0, 27). The rescaled functions (left- and right-hand sides of equation (48)) are also
shown (black and red), confirming the rescaling relations (49) through the overlap of the curves for (a) overlapping triangular lattices.

In numerical calculations, we obtain { fiP/ AP (9)} from the data of the Bogoliubov excitation spectra alonga
circular path k = k(cos 0, sin 0) with sufficiently small k and arbitrary 6 € [0, 27). Figure 4(a) presents
numerical results for g, /¢ = —0.2. We find that the functions { fl.P/ AP ()} stay constant to a good accuracy
consistent with the analytical expressions (49). The figure also shows the rescaled functions (defined by the left-
and right-hand sides of equation (48)), clearly demonstrating the rescaling relations (48). The dimensionless
elastic constants Cand D thus take the same values for the two types of fields and are plotted as functions of
8, /g infigure 5(a). Both constants are linear functions of g;| /g, which is consistent with the fact that the elastic

13
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Figure 5. Constants Cip/ AP (1 =1,2,3, 4) (left)and D,-P/ A i=1,2,3) (right) for parallel (P; black) and antiparallel (AP; red)
fields for (a) overlapping triangular, (b) interlaced triangular, (c) rhombic, (d) square, and (e) rectangular lattices (see equation (40) for
the symmetry constraints on the constants). These are obtained by fitting the numerically obtained functions { fiP /AP ()} (as in

figure 4) using equation (47). Semi-logarithmic scales are used in (e). Vertical dashed lines indicate the transition points.

energy is alinear function of & /¢ for afixed vortex-lattice structure (see also figure 4 of [44]). Thus the
numerical results are consistent with the effective field theory in the case of overlapping triangular lattices.

4.2. Interlaced lattices

We have performed similar analyses for interlaced lattices as shown in figures 4(b)—(e). The functions

{ fiP/ AP (#)} displayed in the figure show anisotropy except in the right panels for (b) interlaced triangular and (d)
square lattices. These behaviors are consistent with the analytical results in equations (40) and (47). Indeed, we
can fit the numerical data perfectly using equation (47) if we determine Cip/ AP (i=1,2,3,4)and
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DiP/ AP (i = 1, 2, 3) separately for parallel or antiparallel fields. Figure 5(b)—(e) presents the determined
constants { C;} and { D;}. We note that the constant C,, which is newly introduced in this work and originates
from the coupling between the symmetric and antisymmetric vortex displacements u., is indeed nonvanishing
for (b) interlaced triangular lattices.

However, the rescaling relations (48) derived from the effective field theory do not hold in figures 4(b)—(e). It
can also be seen in different values of the constants { CiP /APY and {DiP/ AP} between the parallel- and antiparallel-
field cases in figures 5(b)—(e). The difference between the two cases tends to increase with increasing the ratio
81, /8 > 0.Furthermore, the constants for (d) square lattices show nonlinear dependences on g /g, whichis
inconsistent with the expected linear dependences for a fixed vortex-lattice structure (see figure 6 of [44]). These
results cannot be explained within our effective field theory.

As discussed in the last paragraph of section 3.3, the elastic constants should take the same values between
the parallel- and antiparallel-field cases because of the exact correspondence of the GP energy functionals
between the two cases [45]. Therefore, a possible insufficiency of our effective field theory may be ascribed to the
way the elastic constants are related to the coefficients in the dispersion relations. We infer that the derivative
expansions and the coarse graining of the variables done in the derivation of the effective Lagrangian should be
improved for interlaced vortex lattices which have a finite displacement between the components.

5. Summary and outlook

We have studied collective excitation modes of vortex lattices in two-component BECs subject to synthetic
magnetic fields in parallel or antiparallel directions. Our motivation for studying the two types of synthetic fields
stems from the fact that theylead to the same mean-field ground-state phase diagram [45] consisting of a variety
of vortex-lattice phases [41, 42]—it is interesting to investigate what similarities and differences arise in
collective modes. Our analyses are based on a microscopic calculation using the Bogoliubov theory and an
analytical calculation using a low-energy effective field theory. We have found that there appear two distinct
modes with linear and quadratic dispersion relations at low energies for all the lattice structures and for both
types of synthetic fields. These dispersion relations show anisotropy that reflects the symmetry of each lattice
structure. In particular, we have pointed out that the anisotropy of the quadratic dispersion relation for
interlaced triangular lattices can be explained by the term in the elastic energy that mixes the symmetric and
antisymmetric vortex displacements—such a term was missing in a previous study [44]. We have also found that
the low-energy spectra for the two types of synthetic fields are related by simple rescaling in the case of
overlapping triangular lattices that appear for intercomponentattraction (—1 < g, /g < 0). However, contrary
to the effective field theory prediction, such relations are found to break down for interlaced vortex lattices,
which appear for intercomponent repulsion (g; | /¢ > 0) and involve a vortex displacement between the
components. This indicates a nontrivial effect of an intercomponent vortex displacement on excitation
properties that cannot be captured by the effective field theory developed in this paper. We have also found that
the spectra exhibit unique structures of band touching at some high-symmetry points or along lines in the
Brillouin zone. We have discussed their physical origins on the basis of fractional translation symmetries and the
numerical data of the Bogoliubov Hamiltonian matrix.

The Bogoliubov excitation spectra studied in this work can be utilized to calculate the quantum correction to
the ground-state energy due to zero-point fluctuations (see equation (25)), where the correction is expected to be
enhanced as the filling factor v is reduced. Despite the exact equivalence of the mean-field ground states between
the parallel- and antiparallel-field cases [45], we have found quantitatively different Bogoliubov excitation
spectra for the two cases as shown in figure 2. It is thus interesting to investigate how quantum corrections affect
the rich vortex-lattice phase diagrams in the two cases. The present work would be a step toward understanding
how the systems evolve from equivalent phase diagrams in the mean-field regime to markedly different phase
diagrams in the quantum Hall regime [45, 52-55] as the filling factor is lowered.
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Appendix A. LLL magnetic Bloch states in terms of Jacobi’s theta function

Here we show that for N, — 00, the LLL magnetic Bloch states (6) discussed in section 2.2 can be rewritten in a
compact form using Jacobi’s theta function. In the resulting expression (A.2), we can see the equivalence of these
states to the vortex-lattice wave functions introduced by Mueller and Ho [41]. Furthermore, the expression (A.2)
is useful for plotting density profiles of the vortex lattices and the excitation modes as in figures 3 and D1.
To derive such a compact expression of equation (6), we first rewrite it as

VAT, (1) = e /M2 ¢(—ka), ko =k — 2%2 - 26;2 e X I. (A1)
Next we rewrite the function ( (k) defined in equation (7) in terms of the theta function. To this end, we
parametrize the primitive vectors of the vortex lattices as a; = a(1, 0)and a, = a(7, 1), and introduce the
modular parameters 7 = 73 + imand 7 = 7} — im; the area of the unit cell in equation (3) is then given by a7,
In thelimit Ny — oo, the function ( (k) can be rewritten as

C(k) = Z:exp[—zl(ml2 + |TPm3 + 2nmymy) — imk - ap — imyk - ay + iwmlmz]
m T2

= Zexp(— m$ — imyk - az) Z:exp[—z—m1 + 1m1( —k-a + iﬁmz)]

m 2 2

=2 eXp(

mez

_ 2
imk - az)w/ZTz Z exp[——( k-a + 1Em — an) }

nez T2

In thelast line, we have used

Z efam“riﬁm — E Z 67(13727771)2/(4&) (Oé, ﬁ c (C) Ra > 0)’

mez Q ez,

which is obtained by the Poisson resummation. Using Jacobi’s theta function of the third type
Os(wlT) = 3,,cpexp(mitm? 4+ 2mwiwm) and the relation
O3(w + mn|T) = exp(—m7iTn? — 2mwiwn)O3(w|T)(w € C), we can further rewrite ¢ (k) as

C(k) = 27 exp[—z(k . a1)2] > exp(—2mmn? — 2mnk - a1)93(ik - (Ta) — ap) + n7T
2m ned, 2T
7)03(Lk . (’7'31 — az) — ’7‘)
27

=4/ 27_2 exp I:* 2(k . 31)2]93(L
2m 2
Using thisand 65 (w|T) = 6;(—w|7) (w € C)andintroducingz, = (x + i€ y)/a, Ky = T kya/2m,and
k+ = To(kx £ ik,)a/2m, we can rewrite equation (A.1) as

)

VAU, (r) = 2m) 4 exp [zi(—lzal2 + 22 + 4ikyzo — ZHfC)][@s(imlT)Hs(iﬁl -2
T

Hs

Although the entire expression looks involved, the spatial dependence is expressed in a manner more compact
than the original expression (6). Specifically, for €, = +1, the spatial dependence occurs in the part

1 .
X 93( —zfazu + 1K+

€a Zo + K- ‘ - 7'). (A2)

exp [i(—lztll2 + 22 4 4ikezg — 2/<;i)]03 (2o + ik4|T). From the property of the theta function, this expres-
sion is found to have periodic zeros at z, = (nl + l) + (nz + l)7' — ik with (ny, ;) € Z?, whichis

7€ X (a1 + &) = _(bl —by = a(Tz, —1 — 7), this
expression is rewritten as

2
T 1+ 7
exp[sz( |zol* + 22 + 2iTyz4 — 7)]93( 5 7')

= eXp[ziTz( |zl + 220) + —(2 - 7'1):|01(Za|7')> (A.3)

consistent with equation (8). If weset k = — 5 fz

16



I0OP Publishing NewJ. Phys. 21(2019) 015001 T Yoshino et al

where we use Jacobi’s theta function of the first type

bWy =—i >, (=1 Zexp(rirr? + 2mwr)
mezZ+1/2

. 247 147
= +=T"]6
exp[m(w 2 )] 3( 5

Equation (A.3) is equivalent to the vortex-lattice wave function of Mueller and Ho [41] up to multiplication by a
constant factor.

7') w e Q).

Appendix B. Derivation of the interaction matrix element (12)

Here we derive the representation (12) of the interaction matrix element from equation (11). By rewriting the
LLL magnetic Bloch state (6) as

mym, 1 2 2 1 . .
PUpa(r) = Z( 1) xp[—M(r +ry) + ﬁr - (tm — i€atm X €,) + ik - rm],

VA C(k) m

we can calculate the integral of the product of four wave functions in equation (11) as
[H <<kj)] [ @t W0 W ) Vs (0) o)
j
E (— 1); e f d’r expl— —r2 4+ — Z (tm; — i€jTm; X €;)

2f2

Z I + 1Zk rm]]

41,”2
1 E mjitj, 3 ~
= exp Faﬁ(rmp I'my I'mjy rm4) + IZ k] *Tm; s (B.1)
24N, (o -
where we define (€5, €, €3, €4)=(—€n, —€3 €3, €4)s 121,2 =~k 1~<3,4 = k3 4,and
’ 1
. 2
E3(tmp Tmy> Tmyp Im,) = o7 lZ(rmj 1€Tm; X ez)] v gy
j

Introducingn; = m; — my (j = 1, 2, 3), E,3(tm;> Tm,» Im, I'm,) can be rewritten as

Faﬂ(rmp T'm, Tmj rm4)

2
1 . 1
161,”2 lélrm4 + Z(rn) iejry, ¥ ez)] e [Z(rm + 1) + rml

i
202

3
rm4 ‘ Z fj(rn]- X ez) + E,yﬁ(rnp rnp rng)
j=1

3
—im Y €j(munj — mapnj) + Es(tny, tny In),
i1

where we define

Faﬂ(rnp I'ny rn3) = 16f2

2
. 1<
[Z(rn, 1Ejrnj X ez)] - _Z rflj

, 13
Z[( - 6i6j)rni ' rnj + 1(61' - Ej)(rni X rn])z - _Zr n;

sfz = 42
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Equation (B.1) can then be rewritten as

3 3
1 myymy+ Y (my+njp)(my+np) = 3" €j(maunjp—mynjy)

AN > (=D = (=1 =

vV my,n;,ny,n;3

4 3
X expl:ﬁag(rm, Tny Tny) + i[ij] T, 1) kj- rnj}
j=1 j=1

3
1 En‘ln'z - . 3.
= —6F, Z (=Di= Y exp[Fag(rm, I'ny I'ny) + 1ij . rn}].

2A Z k;0 n;,ny,n; j=1
j=1

Therefore, the interaction matrix element can be expressed as in equation (12) with

Sap ki, ko, ks3)

> mjnj
= > (=17

n;,n,n3

eXP[Faﬂ(rnp T, rn;) - lk1 * Iy — lk2 + I'p, + lk3 : rn;]-

Let us focus on the case of parallel fields (¢; = €] = +1). In this case, the function S,g(k;, k;, ks) depends
on neither avnor (3, and therefore we drop the subscripts «, 5. Using

. X ,
46%F(tny Tnp Tn) = — to + (tn, * Ty + Tn, - Tn) — i(tn, X Tny + Iny X In)s,
j

we find

S(ky, ka, k3) = D (= D)™ exp(—13 /467 + iks - 1)

n

X C(ky + (ry X e, + iry) /42D ((ky + (1, X e, + iry) /4672, (B.2)

where the sums over n; and n, are rewritten in terms of ¢ (k) in equation (7), and the remaining dummy variable
n; is replaced by n. We can further rewrite this by exploiting the following property of ¢ (k) for s € Z:

Ck + (ry X e, + iry) /2£7)
= Z(—l)ml”‘2 exp[(—r12 + 2ry - 1) /467 — i(ty X 1), /26% — ik - 1]

=Y (=DM exp[—(rm — 1)? /462 + r2/40% — im(mysy; — mys)) — ik - 1)
= (—1)"2exp(rl/4¢? — ik - 1y D (=D mm)tm=Dexp[— (1, — 1,)? /4% — ik - (tm — 1o)]

= (1) exp(rZ/4t? — ik - 1) ((K).
Bysettingn = 2s + pwiths € Z?and p € {0, 1} 2, equation (B.2) can be rewritten as
Stk ko, ka) = > > (—DPPrexp[—(2r, + 1'p)2/4£2 + iks - 2rg + 1) + r2/2£?
€{0,1}2 s
i {i(kl} + ko) - 1 — i(r, X e, +irp) - 1,/267
X (ki + (rp X e, + irp) /42D ((ky + (1rp X €, + irp) /46?)
= Y. (=Dhk exp(frf,/4f2 + iks - 1p) (ki + ko — 2ks + (1, X €, — irp) /267)

pe{0,1}?

X (ki + (rp X e, + irp) /425 (ko + (1p X €, + irp) /4£7).

In the case of antiparallel fields, Sy (kj, ky, ks) is given by S(k;, k;, ks) shown above. The other
Sag(ky, ks, k3)’s can be obtained by using the relation Uy | (r) = \IlfkT(r), leading to the result in equation (15).

Appendix C. Fractional translation operators

Here we give precise definitions of the fractional translation operators, 7® and 7 "), which are introduced for
the parallel- and antiparallel-field cases, respectively, in section 2.5. We consider the cases of (c) thombic, (d)
square, and (e) rectangular lattices. For these lattices, the wave vectors in equation (9), at which condensation
occurs, are given by q; = €1q and q = —€q, where q == e, x a;/(4¢£%) = (=b; + b,) /4.

To introduce the fractional translation, let us first recall that its square is equal to the translation by a;. Fora
single particle, the latter is expressed as T, (a)) T, (a,). It acts on the magnetic Bloch states (with the shifted
momenta as in equation (16)) as

18
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T (ay) Ta(aZ)\Ilk+q“,a(r) = eii(kJrq”)'as\Iijrqa,a(r) = eiik'as\IIkJrqa,a(r)- (C.1)

Notably, the shift q,, does not appear in the eigenvalue e~ since it is perpendicular to as. The translation
operator T, (a)) T, (ay) can be rewritten as

T, (a) T, (a) = e~ [KaanKoasl /277 o—iKoas/ /i — elee™ T (as) = Ta 2, (C.2)

where T, := e'@™/2T,, (a3/2). In the following, we use T, in expressing the fractional translation.

C.1. Case of parallel fields
In the case of parallel fields (¢; = ¢ = 1), we can drop the subscript avin T;, (s) and T,,. To express the fractional
translation, it is useful to modify the basis slightly from the magnetic Bloch states introduced in section 2.2. For
the spin- | component, we use the same magnetic Bloch states as discussed in section 2.2. For the spin-T
component, we define Wy, ¢ 1(r) by operating T on Wy _4 |(r) as
T\I/k,q)l(r) = e*ik'“/z\IlHq,T(r). (C.3)
Using T (a)) T = e*[K'aﬂKW/Z]/”"ZTT(aj) = — TT(aj) (j = 1, 2), we can confirm that W o +(r) defined in this
way has the expected momentum:
T (aj) \I/k_H”(I') = — e*i(k*q)'af\I/Hq,T(r) = efi(kJrq)'af\I’k_‘_q)T(r).

Furthermore, by operating T on WUy 4q,1(x), we have

TW g 1(r) = X3/ 2720 (1) = e /2y (1), (C.4)

Equations (C.3) and (C.4) indicate that the operator T has the role of interchanging W g |(r) and Wy ¢ 1(r) with
the multiplication of the same phase factor e /2, which is a useful feature of the present basis. In this
representation, one can show

Vol Koy ks, k) = [drde’ Wi g oW, g 508,562 = 1) Wi, 5() Wi g 00
= e—ilkitk—ks—ky)as/2 fdrdr/[T\Ilk1+qﬁ,d(r)]*[T\I/kz+q3,ﬁ(r/)]*

X 8,560 — V) TWi g 5N TV 1,0 (0]
= e itk ko a2V 5 (k), ky, ks, ka), (C.5)

where the bars on aand Findicate the spin reversal T <« | and we use the invariance of the interaction
£.,30® (r — r') under the translation and the spin reversal (g, 5= 8ap)-

For a single particle, we define the fractional translation as the wave function changes by T in equations (C.3)
and (C.4) followed by the spin reversal o,. For many particles, the fractional translation operator 7 ® can be
expressed in the second-quantized form as

YA AN N » ISP VY S S Y
T (ka) bki) bfk,T) bfk,l)T € (ka) bkl) b,k)T, bfk,l) 0 Oy . (C6)

Using equation (C.5), one can confirm that the Bogoliubov Hamiltonian (18) is invariant under 7 ®. The
ground state |GS) is obtained as the vacuum annihilated by the Bogolon annihilation operators v, ; (j = 1, 2)

in equation (21). The single-particle excitations 71 j|GS> (j = 1, 2) can be used for the Bloch states |w;") in the
argument of section 2.5.

C.2. Case of antiparallel fields

In the case of antiparallel fields (¢; = —¢; = 1), we again modify the basis slightly from the magnetic Bloch
states introduced in section 2.2. While we use the same magnetic Bloch states as in section 2.2 for the spin- |
component, we define Wy, ¢ 1(r) for the spin-T component via

T0H g (1) = e /20 o(x). (C.7)
Using T, (a)) T, = fﬁn(aj) and T:(aj) =Ti(@) (j= 1,25 a =T, | ), wecan confirm that Uy 4 4(r)
defined in this way has the expected momentum:
Ti(a) Wiy g, 1(r) = —eXB/ 2T [T (@) Wiy g, | (0)F = e I EFDUT (1),
Wealso find
Ty g0 = Ti[e ™ PTTR, o (O] = e 592 (). (C.8)
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In this representation, one can show

\70,5 (ky, ky, k3, ky) = e—ilkatky—ks—ky)as/2 fdrdrl[’f&\l’fkl+q,(x(r)]*[TB\I/fk2+q,3(rl)]*
X 8,50 — [TV L DT Y, a(D)]
= eilitkelak0a 2055k, —ky, —ks, —ku). (C9)

We define the fractional translation as the time reversal followed by the translation by T'. Here, the time
reversal involves the complex conjugation, the wave vector reversal k — —k (about q), and the spin reversal
T + |.Inthesecond-quantized form, the fractional translation operator 7 " for many particles is
represented as

0
(AP) (AP)T — o—ikas/2
T (b k1 b k> ka bkL)T =& (ka, bkl’ b k1> b kl)( 0 0) (CIO)

Since 7 AP is antiunitary, we find
St s - P
(T(AP))Z(ka) bkl) b,k)T, bfk,l)(T(AP)T)z =¢ ik a3(ka, bki) b,k,T, b,k,l),

by which we can confirm that (7 4?)? is indeed equal to the translation by a;. By using equation (C.9), we can
also confirm that the Bogoliubov Hamiltonian (18) is invariant under 7 AP,
Finally, we note that in the above argument, we have used o, rather than the more standard one ioy, for the

spin part of the time reversal. If we define Th by replacing oy by io, in equation (C.10), the original

Hamiltonian (10) in the LLL basis is invariant under TP However, the Bogoliubov Hamiltonian (18) obtained
after the breaking of U(l) x U(1) symmetry as in equation (17) is not invariant under 7 “" because of the
presence of the terms bka b’ o and b_ 1 obyo- Namely, the mixing of a particle and a hole in the Bogoliubov
theory is in conflict with time-reversal symmetry in the standard form (see [64] for a different type of conflict
between condensation and time-reversal symmetry).

Appendix D. Excitation modes at high-symmetry points

In section 2.5, we have discussed the origins of point and line nodes in the Bogoliubov excitation spectra in
figures 2(c)—(e) from the viewpoint of fractional translational symmetries. In figure 2, we further notice the
following interesting features of the spectra at high-symmetry points: (i) coincidence of the excitation energies
between the two types of fields at the M; and M, points for (c) rhombic, (d) square, and (e) rectangular lattices,
and (ii) the point node at the K; point for (a) overlapping and (b) interlaced triangular lattices in antiparallel
fields. We have not succeeded in explaining these features from a symmetry viewpoint. Here, we instead discuss
their origins on the basis of the numerical data of the Bogoliubov Hamiltonian matrix M (k) and the density
profiles of the excitation modes.

(i) The matrix M (k) at the M point for (e) rectangular lattices is given by

1.63 0 0.605 — 1.05i 0
2 0 1.63 0 0.605 T 1.05i
SME | = , e | (D.1)
p L |0605 + Losi 0 1.63 0

0 0.605 + 1.05i 0 1.63

where the upper and lower of the double signs correspond to the parallel- and antiparallel-field cases,
respectively, and ‘0’ indicates elements whose numerical values vanish with high accuracy. The structure
of the matrix indicates that the spin-T and | components are completely decoupled at this wave vector.
We can thus construct the excitation mode involving only the spin- T component, which is given by the
vector (U, Vp) = (1.12, —0.248 — 0.431i). For this mode, we present the density profiles

[t (r, t = 0)]?/n (o = 1, | ) and the schematic illustration of the vortex movement in figure D1(i).
From this figure, we can interpret the decoupling of the two components in the following way: the forces
acting on each spin- | vortex from the surrounding spin- T vortices cancel out owing to the staggered
nature of the displacement. Once the two components are decoupled in this way, they independently
exhibit collective modes with identical spectrairrespective of the direction of the synthetic field. This
explains the two-fold degeneracy of eigenenergies and the coincidence of those energies between the
parallel- and antiparallel-field cases. Similar structures of the matrix M (k) are also seen at the M; point
for (c) rhombic and (d) square lattices and at the M, point for (e) rectangular lattices.
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Figure D1. Left and middle columns: density profiles |, (r, t = 0)|*/n (o = 1, |) calculated using equation (27) with ¢ = 0.3 for the
following three excitation modes: (i) the mode involving only the spin- T component at the M, point for rectangular lattices, (ii) the mode
involving a spin- T particle and a spin- | hole at the K; point for overlapping triangular lattices in antiparallel fields, and (iii) the mode
involving only a spin-T particle at the K; point for overlapping triangular lattices in antiparallel fields. In (i), the result is independent of
the field direction for the spin- | component because of the decoupling of the two components. In (i) and (iii), |4}, (r, £)|*/n is the same as
the ground-state density profile. Right column: schematic illustration of the vortex movement. Black (gray) circles indicate the locations
of spin-T (|) vortices in the ground state (also shown in the other columns). Black arrows indicate the displacement of spin- T vortices
from the equilibrium positions at t = 0, and empty arrows indicate their changes over the time interval 27/ /E; (k). We note that in (ii),
spin- | vortices are also displaced in a way similar to spin- T ones albeit with much smaller amplitudes.

xI!

(if) The matrix M (k) at the K; point for (a) overlapping triangular lattices in antiparallel fields is given by

1.46 0 0  —0.368
2 _ 0 146 —0368 0
gnM(k) . o 0 —0.368 1.46 o | (D-2)
' —0.368 0 0 1.46

This matrix consists of two independent blocks—a block corresponding to a spin- T particle and a spin- | hole
and a block corresponding to a spin- | particle and a spin-T hole. Since the two blocks have identical matrix
elements, they show identical eigenenergies, which leads to the two-fold degeneracy at the K; point. For the
mode involving a spin-T particle and a spin- | hole (given by (4}, V)) = (1.01, 0.129)), we present the density
profiles and the vortex movement in figure D1(ii), which exhibits a V3 x /3 structure reminiscent of the
120° spin structure of an antiferromagnet on a triangular lattice. We note that the density changes and thus the
amplitude of the vortex displacement are much smaller in the spin- | component than in the spin- component
because | V|| < |U4].

The matrix M (k) at the K; point for (b) interlaced triangular lattices in antiparallel fields is given by

136 0 0 0

2 _|o 13 0o o0

EM(I‘) |0 0 144 0205] 0-3)
1

0 0 029 1.44
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In this matrix, there is no coupling between a particle and a hole or between spin- | and | particles. Thus, spin-T1
and | particles exhibit independent excitation modes, leading to the two-fold degeneracy at the K; point. For the
mode involving only a spin- T particle (given by U/; = 1), we present the density profiles and the vortex
movement in figure D1(iii); the spin- vortices are again found to exhibita~/3 x /3 structure. We note that in
equation (D.3), there is a coupling between the spin-T and | holes, which leads to excitations with non-
degenerate negative eigenenergies; by performing the particle-hole transformation to these excitations, we
obtain non-degenerate positive eigenenergies at the K, point, which is seen in figure 2(b).

Unfortunately, we have not been able to relate the vortex structures in figures D1(ii) and (iii) with the matrix
structures in equations (D.2) and (D.3). At first sight, the cancellation of forces acting on a spin-down vortex
from the surrounding spin-up vortices seem to occur in (iii); however, this assumption cannot explain why the
block structure in equation (D.3) appears solely in the antiparallel-field case. Understanding the physical origins
of the block structures in equations (D.2) and (D.3) is still elusive.

Appendix E. Symmetry consideration of the elastic energy

Here we consider the elastic energy density &,(u,, 0;u,) of the vortex lattices of two-component BECs shown in
figure 1, and discuss how the symmetry constrains it into the form of equations (37), (39), and (40).
We start from the quadratic forms of w := (w}, w,)'and u_:

2 2 2
£ = %Wth, £y = f—;zuiDu,, £ = %thu,, (E.1)

where C,D,and Farereal 2 X 2 matrices, and Cand D can be assumed to be symmetric. We assume that the
vortex lattices are symmetric under the coordinate transformation

x x/ x
(y) R (y,) - A(y). (E.2)
Under this transformation, while u_ is transformed by the same matrix A, w is, in general, transformed by a

different matrix A. In order for the elastic energy to be invariant under this transformation, the following
equations must be satisfied:

A'CA =C, ADA =D, A'FA =F. (E.3)

Here we consider the following transformations:

Rotation through the angle ¢: A = R(¢) = (cos¢ —sin (;5)’ ~

sing coso A = R@o);

Mirror about the yz plane: A = M, = (_01 (1)>’ A= ((1) _01);

Mirror about the xz plane: A = M, = ((1) _01>, A= ((1) _01>

Each lattice structure in figures 1(a)—(e) is invariant under the following coordinate transformation A:
(@) R(r/3), M, (b) R(27/3), M, (c) R(7) (d) R(7/2), My, M, (e) R(7), My, M,.

Requiring equation (E.3) for these transformations, we obtain a number of constraints on C, D, and F. For
e~xample, (i) the invariance under rotation through ¢ = 7 (satisfied by all but (b)), for which A = —I and
A = I (identity), leads to F = 0. (ii) The invariance under rotation through ¢ leads to

(Gi1 — Cp)sin(29) = Gipsin(2¢) = (D1 — Dyy)sing = Dy, sing = 0,

which gives C;; = Cyyand Gy, = 0for ¢ = nw/2and Dy} = Dyyand Dy = Ofor ¢ = nm (n € 7). (iii) The
invariance under the mirror reflection about the yz plane leads to C;, = Dy, = Fj; = F5; = 0.(iv) The
invariance under rotation through ¢ = 27 /3 leadsto F;; = F;. Setting

(G, Cy, Cs, Dy, Dy, D3, Fy) := (Gi1, Coa, 2Cio, Diyy Do,y 2Di, 2F),
we finally obtain equations (39) and (40).
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