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K−MESON PRODUCTION IN ELECTRON-POSITRON ANNIHILATION
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National Science Center “Kharkov Institute of Physics and Technology”,

Kharkov, Ukraine

A model for electromagnetic form factors of the charged and neutral on-shell K−mesons is developed. The
formalism is based on Lagrangian of Chiral Perturbation Theory which includes vector mesons. Presented
terms describe even- as well as odd-intrinsic-parity interactions up to O(p4). The kaon form factor, calculated
without parameters fine tuning, is compared to experiment for space-like and time-like photon momentum. The
status of the muon anomalous magnetic moment (AMM) is reviewed and contribution of the two-kaon channels
to AMM is calculated.

1 Introduction

K−mesons (or kaons) are the particles with quantum numbers I (JP ) = 1
2 (0−) and nonzero “strangeness”,

which have lead to discovery of many interesting phenomena due to weak interactions, such as strangeness
oscillation, K0 regeneration, CP violation. These particles have the following basic properties [1].

Quark composition of mass eigenstates reads :

K+ = us̄, K0 = ds̄ (strangeness = +1),

K− = K+ = ūs, K̄0 = d̄s (strangeness = −1).

These particles are created in strong-interaction processes.
Time of life is defined and measured for the states participating in weak decays

K± : τ = 1.2× 10−8 s,

KS = (1 + |ε|2)−1/2(K1 + εK2) : τ = 0.9× 10−10 s, short-lived,

KL = (1 + |ε|2)−1/2(K2 + εK1) : τ = 5.2× 10−8 s, long-lived,

where CP -eigenstates are defined as

K1 =
1√
2
(K0 + K̄0) : CP -even,

K2 =
1√
2
(K0 − K̄0) : CP -odd

and parameter ε ∼ 10−3 describes small CP violation effects.
Electromagnetic properties of K−mesons. Experimental information onK−meson electromagnetic (EM)

properties in the time-like region (q2 ≡ s ≥ 4m2
K) of photon momentum q comes from measurements of the

cross section of electron-positron annihilation e+e− → KK̄:

σ(e+e− → KK̄) =
πα2

3q2
(
1− 4m2

K

q2
)3/2|FK(q2)|2. (1)

High precision measurements are performed by CMD-2 and SND Collaborations in Novosibirsk [2, 3], and
KLOE Collaboration in Frascati (Italy) [4].

In the space-like region (q2 ≡ s < 0) the form factor is measured in:
(i) kaon scattering on atomic electrons at relatively small momentum transfer −s < 0.16 GeV2 (CERN,

SPS [5]),
(ii) electron-proton scattering with kaon-hyperon production (ep → eΛK+ and ep → eΣ0K+) at large

momentum transfer up to −s ∼ 3 GeV2 (currently are carried out at Jefferson Laboratory in USA [6]).
Main motivations of the present work are:
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1. Test of effective hadronic models such as
(i) Chiral Perturbation Theory (ChPT) – effective low-energy theory,
(ii) vector-meson dominance of electromagnetic interaction,
(iii) anomalous Lagrangians1.
2. Study of vector mesons (JP = 1−): ρ(770), ω(782), φ(1020), and their radial excitations ρ′ = ρ(1450),

ω′ = ω(1420), φ′ = φ(1680), etc.
3. Calculation of hadronic contribution to the muon anomalous magnetic moment (AMM). Hadronic con-

tribution is the main source of uncertainty in theoretical prediction for muon AMM. The existing discrepancy
between theory and experiment may indicate new physics beyond the Standard Model, thus it is important to
precisely calculate every allowed contribution in Standard Model.

Kaon form factors. The quark EM current is

jµem(x) =
2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x). (2)

The EM form factors (FF’s) are defined in terms of this current

〈K(p1)K̄(p2)|jµem(x = 0)|0〉 ≡ (p1 − p2)
µFK(q2), (3)

where q2 = (p1 + p2)
2 ≡ s.

The form factors are analytic functions of q2 and describe both the time-like and space-like regions of photon
momentum.

2 Formalism

Meson interactions in ChPT. At low energies, strong, electromagnetic and weak interactions are described
by effective Lagrangian of Chiral Perturbation Theory (ChPT). The underlying theory of strong interactions –
Quantum Chromodynamics (QCD) – has global chiral symmetry SU(3)L×SU(3)R, if masses of the quarks are
zero, and ChPT has this symmetry built in on the hadronic level.

The version of ChPT which includes explicit vector meson degrees of freedom (Ecker, Gasser, Pich and de
Rafael [7, 8]) has an extended range of applicability. In this approach the vector mesons ρ, ω, φ, ... are not
considered as gauge bosons of chiral symmetry and are treated on equal footing with other mesons.

The chiral symmetric part of Lagrangian is

Lch−sym =
F 2
π

4
Tr(DµUD

µU †) +
eFV

2
√

2
FµνTr(Vµν(uQu

† + u†Qu))

+
iGV√

2
Tr(Vµνu

µuν) + LV, kin + [axial-vector + scalar mesons], (4)

where the nonlinear field representation for pseudoscalar mesons is

U ≡ exp(i
√

2Φ/Fπ), u = U1/2, uµ = iu†(DµU)u†.

Here Φ is octet of pseudoscalar mesons (JP = 0−) – Nambu-Goldstone bosons of spontaneously broken chiral
symmetry

Φ =




π0/
√

2 + η8/
√

6 π+ K+

π− −π0/
√

2 + η8/
√

6 K0

K− K̄0 −2η8/
√

6


 ,

and Fπ = 92.4 MeV is constant of the weak pion decay π+ → µ+νµ. The covariant derivative is defined as

DµU ≡ ∂µU + ıeBµ[U,Q]

with quark charge matrix for flavor SU(3)f

Q ≡ diag

(
2

3
,−1

3
,−1

3

)
,

Bµ – electromagnetic field, F µν = ∂µBν − ∂νBµ, Vµν is nonet of vector mesons (JPC = 1−−)

Vµν =




ρ0/
√

2 + ω8/
√

6 ρ+ K∗+

ρ− −ρ0/
√

2 + ω8/
√

6 K∗0

K∗− K̄∗0 −2ω8/
√

6




µν

+
(ω1)µν√

3
,

1By “anomalous” we mean interactions which do not conserve intrinsic parity and thus do not conserve “normality” quantum
number N .
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Table 1. Electromagnetic coupling constants for vector mesons V = ρ0, ω, φ

ρ0 ω φ

fV = mρ/FV , SU(3): f 3f −3f/
√

2
exper. fV 4.966± 0.038 17.06± 0.29 −13.38± 0.21

Table 2. Vector-meson coupling to two pseudoscalars in SU(3)f

π+π− K+K− K0K̄0

ρ0 GV GV /2 −GV /2
ω – GV /2 GV /2

φ – −GV /
√

2 −GV /
√

2

in the antisymmetric tensor representation of the vector fields. LV, kin is the kinetic term for vector mesons.
The chiral symmetry breaking part

Lch−sym.break =
F 2
π

4
Tr (χU † + χ†U) (5)

arises due to non-vanishing quark masses mu = 1.5− 4 MeV, md = 4− 8 MeV, ms = 80− 130 MeV in QCD
and quark condensate

〈0|q̄q|0〉 ≈ (−240± 10 MeV)3 (at scale µ = 1 GeV)

where the vacuum is assumed SU(3)f symmetric, i.e. 〈0|q̄q|0〉 = 〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉.
The condensate value gives typical scale parameter in QCD

−〈0|q̄q|0〉1/3 ≈ ΛQCD = 200− 300 MeV

which rules the energy dependence of the running coupling constant

αs(Q) =
2π

( 11
3 Nc − 2

3Nf ) ln(Q/ΛQCD)
, (6)

where Nf (Nc) is the number of “active” quark flavors (quark colors).
Pion and kaon masses squared are proportional to quark masses and the condensate value, and the quantity

χ is

χ = − 2

F 2
π

diag(mu,md,ms)〈0|q̄q|0〉
SU(2)f

= diag(m2
π,m

2
π, 2m

2
K −m2

π).

Expansion of Lagrangian in powers of meson momenta (or derivatives of meson fields) gives interactions
with even number of pseudoscalar mesons

LγΦΦ = ıeBµTr(Q[∂µΦ,Φ]),

LγγΦΦ = −e
2

2
BµBµTr

(
[Φ, Q]2

)
,

LγV = e
FV√

2
FµνTr(VµνQ), (vector−meson dominance)

LV ΦΦ = ı

√
2GV
F 2
π

Tr(Vµν∂
µΦ∂νΦ).

These interactions conserve “normality” quantum number

N = Parity × (−1)spin.

The coupling constants FV and GV can be found from experimental widths of decays Γ(ρ → e+e−) and
Γ(ρ → ππ), respectively. It will be further convenient to use other constants, g and f , related to FV and GV .
Using the data from [1] we obtain

FV = 156.35 MeV, GV = 65.65 MeV,

f ≡ mρ

FV
= 4.966, g ≡ GVmρ

F 2
π

= 5.965.
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Anomalous meson-meson and meson-photon interactions. Interactions of this type are not de-
scribed by Lagrangians (4) and (5). They are proportional to Levi-Chivita tensor εµναβ , couple odd number of
pseudoscalar mesons and do not conserve “normality” N .

Lagrangian of Wess, Zumino and Witten [9, 10] describes interactions of photons with pseudoscalar mesons

LWZW = L(1)
WZW + L(2)

WZW , (7)

L(1)
WZW = − eNc

48π2
εµναβBµTr

(
Q
[
(∂νU)(∂αU

+)(∂βU)U+

−(∂νU
+)(∂αU)(∂βU

+)U
])
,

L(2)
WZW =

ıe2Nc
24π2

εµναβ(∂µBν)Bα

×Tr
(
Q2(∂βU)U+ +Q2U+(∂βU)

−1

2
QUQ(∂βU

+) +
1

2
QU+Q(∂βU)

)
.

The lowest-order WZW interaction is

LγΦΦΦ = − ı
√

2eNc
12π2F 3

π

εµναβBµTr
(
Q∂νΦ∂αΦ∂βΦ

)
, (8)

LγγΦ = −
√

2e2Nc
8π2Fπ

εµναβ∂µBν∂αBβTr
(
Q2Φ

)
. (9)

The latter in particular describes well-known π0γγ interaction and π0 → γγ decay

Lπ0γγ = − e2Nc
24π2Fπ

εµναβ∂µBν∂αBβπ
0.

ChPT also predicts anomalous interactions of vector mesons with pseudoscalar mesons [11]

LV V Φ = −
√

2σV
Fπ

εµναβTr(∂µVν{Φ, ∂αVβ}), (10)

LV γΦ = −4
√

2ehV
Fπ

εµναβ∂µBνTr(Vα{∂βΦ, Q}), (11)

LV ΦΦΦ = −2i
√

2θV
F 3
π

εµναβTr(Vµ ∂νΦ ∂αΦ ∂βΦ) (12)

with free parameters σV , hV , θV (see Table 3).
An extension of WZW anomaly for vector and axial-vector mesons was suggested by Kaymakcalan, Rajeev,

Schechter, Ko and Rudaz [12]

LV ΦΦΦ =
ıg

4π2F 3
π

εµναβTr(Vµ ∂νΦ ∂αΦ ∂βΦ),

LV V Φ =
3g2

8
√

2π2Fπ
εµναβTr(∂µVν∂αVβΦ)

with g = 5.96 taken from ρ→ ππ decay and EM field is included by the substitution

Vµ → Vµ +

√
2e

g
QBµ

As a result one obtains an effective V γΦ interaction

LV γΦ = − 3eg

4π2Fπ
εµναβ∂µBνTr(QVα∂βΦ).

Now we calculate the kaon form factors which in the present model are

FK+(s) = 1−
∑

V=ρ,ω,φ

gV K+K−

fV (s)
AV (s), (13)

FK0(s) = −
∑

V=ρ,ω,φ

gV K0K̄0

fV (s)
AV (s), (14)

AV (s) ≡ s

s−m2
V −ΠV (s)

,
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Table 3. Values of parameters σV , hV , θV for vector mesons

Coupling constants hV θV σV

“ideal” values [12] 3g

32
√

2π2
= 0.040 g

8
√

2π2
= 0.054 3g2

32π2 = 0.34

fixed by experiment 0.039 0.0011 0.33
Nambu-Jona-Lasinio
model [11]

0.040 0.053 0.33
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ρ ρ
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ω ω
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−
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Figure 1. Loops included in self-energy of vector
mesons.
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Figure 2. Loop corrections for photon-vector-
meson vertex

where ΠV (s) is self-energy operator of vector meson V = ρ, ω, φ.
The correct normalization conditions at q2 = 0

FK+(0) = 1, FK0(0) = 0 (15)

are fulfilled due to gauge invariance of the theory.
Self-energy operators. Dressed (“exact”, or full) propagator of vector particles includes self-energy

operators ΠV (s) which account for intermediate states, such as π+π−, ωπ0, KK̄, ωπ0 → π0K+K− for ρ
meson, etc. The dominant contributions are (see Fig. 1)

Πρ = Πρ(π0ω)ρ + Πρ(ππ)ρ,

Πω = Πω(π0ρ)ω + Πω(KK)ω + 2Πω(3π,πρ)ω,

Πφ = Πφ(KK)φ,

Imaginary part of self-energy gives rise to energy-dependent widths of vector mesons

ΓV (s) = −m−1
V ImΠV (s)

One can find the imaginary parts of self-energy by applying the Cutkosky rules. To restrict fast growth of the
partial widths with s we have to introduce a cut-off form factors (for details see [13]).

Electromagnetic vertex modification. Vertex corrections (see Fig. 2) are related to self-energy correc-
tions, for example

Im Πγ(π0ω)ρ(s) =

√
2e hV
σV

Im Πρ(π0ω)ρ(s). (16)

Modified (or exact) EM vertex satisfies equation

1

fV (s)
=

1

f
(0)
V

− ı

e s

∑

c

ImΠγ(c)V (s) (17)
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Figure 3. Real and imaginary parts of modified γ − V vertex.
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Figure 4. Electromagnetic form factor of K+ (K−).

and at s = m2
V (on the mass shell) describe the leptonic decay widths of vector mesons

∣∣fV (s = m2
V )
∣∣2 =

4

3
πα2 mV

Γ(V → e+e−)
.

This, together with information from “Particle Data Group” compilation [1] allows one to find the “bare”
couplings

f (0)
ρ = 5.026, f (0)

ω = 17.060, f
(0)
φ = −13.382

and then obtain real and imaginary parts of the momentum-dependent couplings fV (s) for arbitrary s (see
Fig. 3).

Fig. 4 schematically illustrates the model for the form factors including self-energy and EM vertex loop
corrections.

Higher vector resonances. Contribution from higher resonances ρ′ = ρ(1450), ω′ = ω(1420) and
φ′ = φ(1680) is

∆FK+(s) = −
∑

V ′=ρ′,ω′,φ′

gV ′K+K−

fV ′(s)
AV ′(s), (18)

∆FK0(s) = −
∑

V ′=ρ′,ω′,φ′

gV ′K0K̄0

fV ′(s)
AV ′(s). (19)

We assume SU(3)f for ratios of the strong and EM couplings for “primed” resonances

gρ′K+K−

fρ′
:
gω′K+K−

fω′
:
gφ′K+K−

fφ′
=

1

2
:

1

6
:

1

3
,

gρ′K0K̄0

fρ′
:
gω′K0K̄0

fω′
:
gφ′K0K̄0

fφ′
= −1

2
:

1

6
:

1

3

and use the known branching ratios from [1], then obtain

gρ′K+K−/fρ′ = −0.063, gω′K+K−/fω′ = −0.021,

gφ′K+K−/fφ′ = −0.036.

High q2 behavior of form factors. On the basis of quark counting rule in perturbative QCD (Lepage,
Brodsky, Farrar and Jackson [14])

FK+(s)→ A

s
at s→ −∞, A = −16πF 2

παs(s). (20)
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Figure 5. Charged kaon form factor in the time-like region s ≥ 4m2
K±. Data: diamonds (open) are from [15],

triangles – from [16].
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Figure 6. Neutral kaon form factor in the time-like region s ≥ 4m2
K0. Data (boxes) are from [17].

In the present model we obtain at s→ −∞

FK+(s)→ B +
A′

s
, (21)

B = 1−
∑

V=ρ,ω,φ

gV K+K−

fV
−

∑

V ′=ρ′,ω′,φ′

gV ′K+K−

fV ′

,

A′ = −
∑

V=ρ,ω,φ

gV K+K−m2
V

fV
−

∑

V ′=ρ′,ω′,φ′

gV ′K+K−m2
V ′

fV ′

.

For the correct asymptotic behavior the constant B should be zero. Contribution from ρ, ω, φ with gV K+K−/fV
taken from experiment does not lead to B = 0. If we add the higher resonances ρ′, ω′, φ′ and choose negative
relative sign of couplings gV ′K+K−/fV ′ with respect to gV K+K−/fV , then B ≈ 0 and asymptotic behavior of
the form factors is improved.

3 Comparison with experiment

In this section we present results for the charged and neutral kaons. Figs. 5 and 6 show FF in the time-like
region, while Fig. 7 shows FF in the space-like region.
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Figure 10. Hadronic contributions to
muon AMM.
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Figure 11. Typical diagrams contributing to muon AMM.

4 KK̄ production and anomalous magnetic moment of muon

If gµ is gyromagnetic ratio defined through the relation between magnetic moment and spin of the muon

~M = gµ
e

2mµ
~s, (22)

and aµ ≡ gµ/2 − 1 is a measure of AMM, then KK̄ contribution to aµ can be determined via the dispersion
integral (Brodsky and de Rafael [20]) which follows from analyticity of the photon polarization operator:

ahad,KK̄µ =
α2

3π2

∫ ∞

4m2
K

W (s)R(s)
ds

s
, (23)

W (s) =

∫ 1

0

x2(1− x)
x2 + (1− x)s/m2

µ

dx,

where mµ is muon mass and R(s) is ratio of cross sections

R(s) =
σ(e+e− → KK̄)

σ(e+e− → µ+µ−)
=

(1− 4m2
K

s )3/2

4(1 + 2
m2

µ

s )(1− 4m2
µ

s )1/2
|FK(s)|2.

The calculated values are presented in Table 4 together with the inaccuracy caused by uncertainty in the
model parameters. The value (34.70± 1.01)× 10−10 is close (within 1.5%) to results from e+e− annihilation by
CMD-2 and SND Collaborations in Novosibirsk [21].

Note that KK̄ channels contribute about 5% of the hadronic contributions to AMM (Fig. 10).
The total AMM in the Standard Model includes various contributions (see Fig. 11) and is equal to [22]

atheorµ = aQEDµ + aweakµ + aγ by γ
µ + ahad, LOµ + ahad, HOµ , (24)

where

aQEDµ = (11658471.81± 1.45 loops ± 0.08α)× 10−10,

aweakµ = (15.4± 0.1had ± 0.2Higgs, 3 loops)× 10−10,

aγ by γµ = (8± 4)× 10−10,

ahad, LOµ = (690.9± 3.9exp + 1.9rad + 0.7QCD)× 10−10,

ahad, HOµ = (−9.79± 0.09exp + 0.03rad)× 10−10.

The difference between the most precise experimental value (g − 2 Collaboration, experiment E821, BNL,
Brookhaven) and the theoretical value is (in units 10−10)

aexpµ − atheorµ = (11659208.0± 6.3)− (11659176.3± 6) = 31.7± 8.7
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Table 4. Contribution of KK̄−channels to muon AMM ahad,KK̄µ

channel K+K− K0K̄0 total KK̄

ahad,KK̄µ , 10−10 19.06± 0.57 15.64± 0.44 34.70± 1.01

The discrepancy is only about 3 × 10−6 of the experimental value. Nevertheless it is more than 3 “standard
deviations” σ and is therefore important. Whether this indicates new physics beyond the Standard Model
remains to be studied further. There are other possible contributions which may add to the theoretical value,
and from the experimental side there is a puzzling discrepancy between results from e+e− → π+π− and τ−decay
τ− → π−π0ντ .

New experiment E969 is scheduled at BNL [23] aiming to reduce experimental error in muon AMM from
6.3× 10−10 to 2.5× 10−10.

5 Conclusions

1. A model for electromagnetic form factors of the K−mesons in the time-like (s ≥ 4m2
K) and space-like (s < 0)

regions of the photon momentum is developed up to O(p4) [13].
2. Agreement with experiments on e+e− → KK̄ annihilation at

√
s = 1 − 1.75 GeV is obtained without

fitting parameters. Deviations from the data at
√
s > 2 GeV are probably related to higher resonances ρ(1700)

and ω(1650).
3. Form factor agrees with the data in the space-like region at −q2 < 0.16 GeV2. Results from Jefferson

Laboratory at large momentum transfer −q2 ∼ 3 GeV2 [6] which are coming soon may help to test further the
model.

4. Contribution of KK̄ channels to anomalous magnetic moment of the muon is found to be:

ahad,K
+K−

µ + ahad,K
0K̄0

µ = (34.70± 1.01)× 10−10

which agrees with e+e− annihilation results from Novosibirsk.
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