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ABSTRACT

We present a very brief review of p-adic, adelic and zeta strings. Details can be found in
cited literature.

1. Introduction

p-Adic string theory emerged in 1987 [1] as a successful application of p-adic
numbers in string theory. The most attractive p-adic strings have been those whose
world sheet is p-adic and all other aspects are described by real or complex num-
bers. Four-point scattering amplitudes of open scalar ordinary and p-adic strings
are connected at the tree level by their product, which is a constant. Similar prod-
uct formula was found for closed scalar strings. These product formulas gave rise
to introduce a notion of adelic strings, which are composed of ordinary and p-adic
strings (see, e.g. [2, 3] for a review). Some other p-adic structures have been also
investigated and p-adic mathematical physics was established (for a recent review
we refer to [4]).

One of the main achievements in p-adic string theory is an effective nonlocal
field description of p-adic scalar strings [5, 6]. The corresponding Lagrangian de-
scribes at the tree-level four-point scattering amplitudes and all higher ones. In the
recent years the Lagrangian approach to p-adic string theory has been significantly
advanced and many aspects of p-adic string dynamics have been considered, com-
pared with dynamics of ordinary strings and applied to nonlocal cosmology (see,
e.g. [7, 8, 9, 10, 11] and references therein).

Adelic approach has been applied to quantum mechanics [12], Feynman path in-
tegral [13], quantum cosmology [14], summation of divergent series [15], and
dynamical systems [16].
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2. On p-Adic Strings
The crossing symmetric Veneziano amplitude for scattering of two ordinary open
scalar strings is

A∞(a, b) = g2
∞

∫
R

|x|a−1
∞ |1 − x|b−1

∞ d∞x

= g2
∞

ζ(1 − a)
ζ(a)

ζ(1 − b)
ζ(b)

ζ(1 − c)
ζ(c)

, (1)

where a = −α(s) = − s
2 − 1, b = −α(t), c = −α(u) with the condition a +

b + c = 1, i.e. s + t + u = −8. In (1), | · |∞ denotes the ordinary absolute
value, R is the field of real numbers, kinematic variables a, b, c ∈ C, and ζ is the
Riemann zeta function. The corresponding Veneziano amplitude for scattering of
two p-adic strings was introduced as p-adic analog of the integral in (1), i.e.

Ap(a, b) = g2
p

∫
Qp

|x|a−1
p |1 − x|b−1

p dpx , (2)

where Qp is the field of p-adic numbers, | · |p is p-adic absolute value and dpx
is the additive Haar measure on Qp (see, e.g. [2, 3] and [17] for basic properties
of p-adic numbers, adeles and their functions). Note that variable x in the inte-
grands is related to the string world-sheet. Thus this kind of p-adic strings differ
from ordinary one by p-adic treatment only of the world-sheet. Namely, in (2),
kinematic variables a, b, c maintain their complex values with the same condition
a + b + c = 1. Integrals in (1) and (2) are examples of Gel’fand-Graev-Tate beta
functions on R and Qp, respectively. Integration in (2) gives

Ap(a, b) = g2
p

1 − pa−1

1 − p−a

1 − pb−1

1 − p−b

1 − pc−1

1 − p−c
, (3)

where p is any prime number.

Scattering amplitude (3) can be obtained from the following Lagrangian of the
effective scalar field ϕ [5, 6]:

Lp =
mD

g2
p

p2

p − 1

[
− 1

2
ϕp−

�
2m2 ϕ +

1
p + 1

ϕp+1
]
, (4)

where � = −∂2
t + ∇2 is the D-dimensional d’Alembertian.

Lagrangian (4) is nonlocal with an infinite number of spacetime derivatives. The
equation of motion for (4) is

p−
�

2m2 ϕ = ϕp , (5)

and its properties have been studied by many authors (see, [9] and references
therein).
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3. On Adelic Strings
Recall the definition of the Riemann zeta function

ζ(s) =
+∞∑
n=1

1
ns

=
∏
p

1
1 − p−s

, s = σ + iτ , σ > 1 , (6)

which has analytic continuation to the entire complex s plane, excluding the point
s = 1, where it has a simple pole with residue 1.

According to (6) one can take product of p-adic string amplitudes (3)

∏
p

Ap(a, b) =
ζ(a)

ζ(1 − a)
ζ(b)

ζ(1 − b)
ζ(c)

ζ(1 − c)

∏
p

g2
p , (7)

that gives a nice simple formula

A∞(a, b)
∏
p

Ap(a, b) = g2
∞

∏
p

g2
p . (8)

Note that product of all p-adic amplitudes in (7) is divergent, but can be made
convergent after an appropriate regularization. To have product of amplitudes (8)
finite it must be finite product of coupling constants, i.e. g2∞

∏
p g2

p = const.

There are three interesting possibilities for g2p: (i) g2
p = 1, (ii) g2

p = p2

p2−1 ,

what gives
∏

p g2
p = ζ(2), (iii) g2

p = |mn |p, where m and n are any two nonzero
integers, and it gives g2∞

∏
p g2

p = |mn |∞
∏

p |mn |p = 1.

From (8) it follows that the ordinary Veneziano amplitude, which is a special
function, can be expressed as product of all inverse p-adic counterparts, which
are elementary functions. This is here a consequence of the Gel’fand-Graev-Tate
beta functions and it is not a general property of string scattering amplitudes. In a
general case product of string amplitudes will not be a constant but a function of
kinematical variables.

Note that there is another interpretation of product expression (8) which is related
to scattering amplitude of two adelic strings, but it seems to be incorrect. Namely,
recall that ordinary and p-adic strings have real and p-adic world-sheets, respec-
tively. Then under an adelic string we should understand a string which has an
adelic world-sheet. However, it has not been obtained so far the above scattering
amplitude for two open scalar strings with their adelic world-sheets. Thus, an
adelic string with adelic world-sheet is not well founded. But p-adic strings with
p-adic world-sheet are well defined, and the product of their scattering amplitudes
has a useful meaning. For an approach to adelic strings with adelic ambient space,
see [18].

4. On Zeta Strings
We see that p-adic amplitudes (3) have the same form for every p, and difference
is only in prime number p and coupling constant g2p (when g2

p �= 1). In (7) it is
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presented product of scattering amplitudes for all primes p and result is expressed
through the ratios of the Riemann zeta function. It gives rise to attempt to treat
all p-adic strings together as a whole, which we call zeta strings. To this end, our
intention is to construct an appropriate Lagrangian to describe this p-adic sector. It
is obvious that such Lagrangian should contain Riemann zeta function, which has
d’Alembertian � in its argument. Thus we have to look for possible constructions
of a Lagrangian which contains the Riemann zeta function and has its origin in
p-adic Lagrangian (4). We have found and considered two approaches: additive
and multiplicative.

4.1. Additive approach
Prime number p in (4) can be replaced by any natural number n ≥ 2 and conse-
quences also make sense. Now we want to introduce a Lagrangian which incor-
porates all the above Lagrangians (4), with p replaced by n ∈ N. To this end, we
take the sum of all Lagrangians Ln in the form

L =
+∞∑
n=1

Cn Ln =
+∞∑
n=1

Cn
mD

g2
n

n2

n − 1

[
− 1

2
φn− �

2m2 φ +
1

n + 1
φn+1

]
, (9)

whose explicit realization depends on particular choice of coefficients Cn and
coupling constants gn. To avoid a divergence in 1/(n−1) when n = 1 we take that
Cn/g2

n is proportional to n − 1. Here we consider some cases when coefficients
Cn are proportional to n − 1, while coupling constants gn do not depend on n,
i.e. gn = g. In fact, according to (8), in this case we have g2n = g2 = 1.
Another possibility is that Cn is not proportional to n − 1, but g2

n = n2

n2−1 and

then
∏

p g2
p = ζ(2) = π2

6 , what is consistent with (8). To differ this new field
from a particular p-adic one, we use notation φ instead of ϕ.

We have considered five cases for coefficients Cn in (9): (i) Cn = n−1
n2+h , where

h is a real parameter; (ii) Cn = n2−1
n2 ; (iii) Cn = μ(n) n−1

n2 , and (iv) Cn =
−μ(n) n2−1

n2 , where μ(n) is the Möbius function; and (v) Cn = (−1)n−1 n2−1
n2 .

Case (i) was considered in [19, 20]. Obtained Lagrangian is

Lh =
mD

g2

[
− 1

2
φ ζ

( �
2m2

+ h
)

φ + AC
+∞∑
n=1

n−h

n + 1
φn+1

]
, (10)

where AC denotes analytic continuation.

Case (ii) was investigated in [21] and the corresponding Lagrangian is

L =
mD

g2

[
− 1

2
φ

{
ζ
( �

2m2
− 1

)
+ ζ

( �
2m2

)}
φ +

φ2

1 − φ

]
. (11)

Cases with the Möbius function μ(n) are presented in [22] and [23]. Recall that
the Möbius function is defined for all positive integers and has values 1, 0,−1
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depending on factorization of n into prime numbers p. Its explicit definition is

μ(n) =

⎧⎨
⎩

0, n = p2m ,
(−1)k, n = p1p2 · · · pk, pi �= pj ,
1, n = 1, (k = 0) .

(12)

Möbius function is related to the inverse Riemann zeta function as follows:

1
ζ(s)

=
+∞∑
n=1

μ(n)
ns

, s = σ + iτ, σ > 1 . (13)

The corresponding Lagrangian for Cn = μ(n) n−1
n2 is

L =
mD

g2

[
− 1

2
φ

1

ζ
(

�
2m2

) φ +
∫ φ

0
M(φ) dφ

]
, (14)

where M(φ) =
∑+∞

n=1 μ(n)φn = φ−φ2 −φ3−φ5 +φ6 −φ7 +φ10−φ11 − . . . .

When Cn = −μ(n) n2−1
n2 then the Lagrangian is

L =
mD

g2

{1
2

φ
[ 1

ζ
(

�
2m2 − 1

) +
1

ζ
(

�
2m2

)]
φ − φ2 F (φ)

}
, (15)

where F (φ) =
∑+∞

n=1 μ(n)φn−1 = 1 − φ − φ2 − φ4 + ....

The case (v) with Cn = (−1)n−1 n2−1
n2 was introduced recently in [24]. This

choice of coefficients Cn is similar to the above case (ii) and distinction is in the
sign (−1)n−1. Recall that

+∞∑
n=1

(−1)n−1 1
ns

= (1 − 21−s) ζ(s), s = σ + iτ , σ > 0 , (16)

which has analytic continuation to the entire complex s plane without singulari-
ties. At point s = 1, one has lims→1(1−21−s) ζ(s) =

∑+∞
n=1(−1)n−1 1

n = log 2.
Applying (16) to (9) and using analytic continuation one obtains

L = − mD

g2

[ 1
2

φ
{ (

1 − 22− �
2m2

)
ζ
( �

2m2
− 1

)

+
(
1 − 21− �

2m2

)
ζ
( �

2m2

)}
φ − φ2

1 + φ

]
. (17)
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Some new Lagrangians can be easily constructed starting from the following ex-
pressions for the Riemann zeta function related to important functions in number
theory (see, e.g. [25]):

ζ(s − 1)
ζ(s)

=
∞∑

n=1

ϕ(n)
ns

, s = σ + iτ, σ > 2 , (18)

ζ(s)
ζ(2s)

=
∞∑

n=1

|μ(n)|
ns

, s = σ + iτ, σ > 1 , (19)

ζ(2s)
ζ(s)

=
∞∑

n=1

λ(n)
ns

, s = σ + iτ, σ > 1 , (20)

where ϕ(n), μ(n) and λ(n) are Euler’s phi function, Möbius and Liouville func-
tion, respectively. Recall that ϕ(n) is equal to the number of positive numbers
less than n (and equal to n) that are coprime to n. The Liouville function is
λ(n) = (−1)Ω(n), where

Ω(n) =
{

0, n = 1 ,
k, n = p1p2 · · · pk ,

(21)

i.e. Ω(n) is the number of prime factors of n, counted with their multiplicity.

4.2. Multiplicative approach

In the multiplicative approach the Riemann zeta function emerges through its
product form (6). Our starting point is again p-adic Lagrangian (4) with g2p =
g2 = 1. It is useful to rewrite (4), first in the form,

Lp =
mD

g2

p2

p2 − 1

{
− 1

2
ϕ

[
p−

�
2m2 +1 + p−

�
2m2

]
ϕ + ϕp+1

}
(22)

and then, after addition and substraction of ϕ2, as

Lp =
mD

g2

p2

p2 − 1

{1
2

ϕ
[(

1 − p−
�

2m2 +1
)

+
(
1 − p−

�
2m2

)]
ϕ

− ϕ2
(
1 − ϕp−1

)}
. (23)

Taking products

∏
p

1
1 − p−2

,
∏
p

(1 − p−
�

2m2 +1) ,
∏
p

(1 − p−
�

2m2 ) ,
∏
p

(1 − ϕp−1) (24)
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in (23) at the relevant places one obtains Lagrangian

L =
mD

g2
ζ(2)

{1
2

φ
[ 1

ζ
(

�
2m2 − 1

) +
1

ζ
(

�
2m2

)]
φ − φ2 Φ(φ)

}
, (25)

where Φ(φ) =
∏

p

(
1 − φp−1

)
= 1 − φ − φ2 + φ3 − φ4 + .... It is worth noting

that from Lagrangian (25) one can easily reproduce its p-adic ingredient (23). It is
obvious that Lagrangian (25) is similar to this one in (15). These two Lagrangians
describe the same field theory in the week field approximation. Lagrangian (25)
was introduced and considered in [23].

5. Concluding remarks
In the previous sections we have presented only some Lagrangians which are can-
didates for description of the p-adic sector of open scalar strings, which we call
open scalar zeta string. They contain the Riemann zeta function and they are also
starting points for interesting examples of what we call zeta scalar field theory.
The corresponding potentials, which are V (φ) = −L(� = 0), and equations
of motions are considered in cited references. All these zeta field theory models
contain tachyons.

One of the most interesting of the above Lagrangians is presented in (17). Unlike
other Lagrangians, this one has no singularity with respect to the d’Alembertian
� and it enables to apply easier its pseudodifferential treatment. This analyticity
of the Lagrangian should be also useful in its application to nonlocal cosmology,
which uses linearization procedure (see, e.g. [26] and references therein).

We would like also to point out Lagrangians (15) and (25), since they are mutu-
ally very similar. These Lagrangians describe the same model at the weak field
approximation, although they are constructed using rather different approaches.

An interesting approach towards foundation of a field theory and cosmology based
on the Riemann zeta function was proposed in [27].
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