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I. -

It is the aim of this report to sum up some work done recently
about fixed poles in the J plane. These singularities are in general
forbidden by the unitarity condition, if there are no additional compli-
cations in the J plane, like branch points. They have been therefore
rediscovered in the study of processes having linear unitarity only, such
as by definition the first order weak interactions, or in general the
transitions in which external currents appear. These processes are in
particular considered in the current algebra framework, and it is there

that the fixed poles are shown to be of a special interest.

At the same time there has been a clarification of some
aspects of the Gribov-Pomeranchuk phenomenon, in which fixed poles in the
left-hand discontinuity of the partial wave are turned by the unitarity
condition into essential singularities for the complete function. The
Gribov-Pomeranchuk phenomenon is peculiar of the strong processes, li.e.,
the processes in which the unitarity is valid to all the orders. We can
thus distinguish two aspects of the study of the fixed singularities in
the J plane. The first one is the role of the fixed singularities in
the processes in which higher order terms in a weak coupling constant are
neglected and thus quadratic unitarity isnot satisfied « The second one is the
problem of the fixed singularities of the Gribov-Pomeranchuk type, which
may appear also in the strong processes. In Section II, we recall the
features of the fixed poles and the connection between fixed poles and
asymptotic behaviour in the energy of the crossed channel. In Section III,
we discuss the implications of the unitarity. In Section IV, the case in
which the external particles have spin is briefly reviewed. In Sections
V and VI, we discuss respectively the two problems mentioned before, the
role of fixed poles in weak processes and the Gribov-Pomeranchuk pheno-

menone.
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Let us briefly recall the Gribov-Froissart method of
analytic continuation in the angular momentum. We first consider a
process without spin and call A(s,t) the scattering amplitude. We

assume for simplicity the unsubtracted dispersion relations
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The analytic continuation of the partial waves in the J
plane is given by the Gribov-Froissart formula
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We shall call the subscript (+) right signature for even J, wrong
for odd J, and vice versa for (-). We shall use the Mandelstam 1)

version of the Sommerfeld-Watson transform
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?; is the signature factor, :S is the sum of the counter terms which
cancel the contributions of the poles at the half integers coming from

1/cosmmd. We are not interested here in these terms.

f(J,t) defined in (2) is an analytic function in J as long
as the integral converges, except for the poles in J of QJ at the ne-
gative integers. These are the fixed poles in which we are interested.
Of course these poles appear in the integrand and they may be no longer
present in f(J,t), if the integral over the residuum is zero. Moreover
they are in general in conflict with unitarity. However, let us discuss
for the moment the features of these poles, assuming they are present.

Around a negative integer we have
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so that, recalling the asymptotic behaviour QJ(z) > 2791 these fixed
poles, if present, give. a contribution to the asymptotic expansion of

A(V,t) of the form
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We note that, due to the signature factor §' in (3), only the fixed
poles in the right signature give contribution to the asymptotic behaviour.
We see that the contribution of the fixed poles has the form of the terms
of the asymptotic expansion in inverse powers of V' which can be read

from (1)
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Fixed poles in the right signature mean fixed (inverse) powers in the
asymptotic behaviour. Expression (7) comes directly if we consider the
Khuri 2) plane. In that plane, the amplitudes defined by
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have the analytic continuation
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There are no fixed poles coming from the analytic continuation, however,

in the Sommerfeld-Watson transform
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the integrand shows fixed poles at negative integers because of

1/sin tm . The asymptotic contribution of these poles is given by (7).

The fixed poles assure the absence of singularities in the
amplitude when a moving pole approaches a negative integer. This is
rather evident from the opening of the contour in the integration (10)
or in (3). For instance, if a(n) is of the form

. R
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the total contribution of the moving pole plus the fixed pole at n = =1
is given by

(11)



The fixed pole realizes a mechanism of cancellation between
two singularities, which is different from the usual multiplicative

ghost-killer factor.

If there is not a fixed pole, that is
a (m=-1)=0

this means from (9)
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The moving pole comes from the divergence of the integral in
(9), hence let us assume that for v.>1IL, A, ~ (3 e

Then (12) means Kt
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Then (3 = (& +1) and we have the ghost-killer factor.

All these observations can be done equally well for the
Regge plane, there is no essential difference between Khuri and Regge

plane.

3)

Equation (12) is known as a superconvergence condition .
AS we have seen it is the statement that there is not a fixed pole at -1,
We can write other superconvergence conditions stating the absence of

fixed poles at the other negative integers.

So far for the fixed poles in the right signature. The fixed
poles in the wrong signature do not give rise to terms in the asymptotic
‘behaviour. They, however, modify the terms coming from the moving singu-
larities. This happens because when a Regge pole goes through an integer
of the wrong signature éE(J)~O. Then from (3) or (10), we expect, in
absence of fixed pole,a zero for the amplitude. If the fixed pole is pre-
sent, i.e., if f£(J) = (1/3- o)(P /J+m), the residuum of the moving pole
contains B [i( L)/« +Iﬂ , which is finite when « — -m and the signa-

ture is wronge.
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The quadratic unitarity is in conflict with the fixed poles
as long as there are no cuts in the angular momentum plane. The unita-
rity condition is separately valid for both the signatures and in the

region in t in which only the elastic channel is open it reads

t - +‘ * + v, t
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The fixed poles occur for real J also in the region in t relevant
for (13) and then, if there are no cuts in J the right-hand side of
(13) has a double pole if the left-hand side has a single one.

In the models which give rise to a Regge behaviour, the
unitarity condition has the role of a dynamical equation. The input
of such an equation is given by the "potential", that is the Born term
in the crossed channel, whose projection in partial waves can be seen
from (2). If we expand the solution in powers of the coupling constant,
the various terms have a single pole, a double one, and so on, so that (13)
is satisfied. If the input, i.e., the "potential", is not nasty, the sum
of the serie is a moving pole. However, it may also result that the ne-
gative integer is an essential singularity. These possibilities have been
illustrated in a N/D calculation by Jones and Teplitz 4). Another
useful model is the Bethe-Salpeter equation which, in partial waves, is
an integral equation of Fredholm type 5). This equation can be put in a
Hilbert-Schmidt form, i.e., having a symmetric kernel. The kernel con-
tains a QJ function, which has a pole at J = -n. However, for most
approximations, e.g., the ladder approximation of Fig. 1, the residue of

- T

- Figure 1 =

the kernel at the pole is separable, i.e., of the Pinkerle-Goursat

type [éee Eq. (16) belo@ﬂ. The resolvent of the integral equation
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where the CK's have no pole at J = -n for arbitrary values of the
parameters, as can be seen writing explicitly the solution. Then,
applying a reasoning like that of Lee and Sawyer in their Section 5 5),
it follows that the solution of the Bethe-Salpeter equation has no fixed

singularity at J = -n, but only moving poles.

However, for other kernels, for instance those corresponding
to an interaction having a non-vanishing third double spectral function

such as the one represented by the diagram of Fig. 2

Ts

- Figure 2 =~

for which the iterative solution for the Bethe-Salpeter equation gives
the diagram of Fig. 3

> XX . X

- Pigure 3 -~




the residue at the pole is not separable in the sense of Eq. (16). If
we regard /< = 1/J+n as the Fredholm parameter, we know that the so-
lution of Eq. (15), which has a symmetric kernel, has an infinite number
of Fredholm poles, clustering to /L =, i.e.y, to J = -B. The point
J = -n is an accumulation of poles and then it is an essential singula-

rity.

We see that in simple models the fixed pole given by the
"potential" is turned by unitarity into a moving pole, and, in some
case, an essential singularity at the position of the fixed pole of the

input.



IV. -
Let us review very briefly the modifications to the previous
discussions which are necessary when the external particles have spin.

7)

This problem has been studied by Gell-Mann et al. 6), Calogero and Charap N

8)

and more recently by Drechsler o

If :< and M are the difference of the helicities of the
initial and final particles and if AK,« ( V,t) is the scattering ampli-

tude,
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We will discuss below the properties of the function of second kind
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suitably modifying (19) in analogy with (2), and write the

(20)

The asymptotic behaviour of the function eng (z) is
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no one for J>|A| Ssense-sense region
}-m for J=m and I/u[é‘rél K|—1 sense-nonsense region
1 for J=m and -I le:Jf:I |-1 nonsense-nonsense region

[/.7‘—' for J=m and —I ,(lé J< _|/1|_1 " " "

1 for J=m and J<-|A| " " "
J - m

(m 1is an integer).

It is seen from (19) that the integrand of the modified
Gribov-Froissart continuation has singularities, poles or inverse square

roots, at all the nonsense integers, i.e., at all the integers less than

the maximum of |,(| and I/u « We call briefly these singularities

-J=1 . S
A e_ A has simple poles at all negative
and positive integers, except that for J = m integer and -4 <m< 41 -1

"fixed poles". The product e

where it has double poles. If there are no "fixed poles", i.e., the
residue of the singularities of f(J) coming from the singularities of
the e’ in (19) are zero, the integrand in (20) has, apart from the
obvious poles reproducing the development (18), single poles for

8)

poles cancel in pairs. The unitarity condition has the matrix form

-M < d £ M=1. Drechsler has shown that the contributions of these

7P . ~ ) . . 7] o 3 cis
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If we consider a dynamical equation, the "potential" has a singularity of
the type L/JTEEF if J 1is in the sense-nonsense region. The unitarity
condition, requiring a bounded scattering amplitude, turns the singularity
1/ {EZE? into JE:EK The fixed poles of the right signature at J = m

give rise to terms in the asymptotic behaviour going as z".
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If we introduce the amplitude free of kinematical singularity

Y 4 | A
= T K
A/\/u (4 -2)% (1+2)F % (23)

the asymptotic behaviour of the term originated from a fixed pole is -
% (recall m <K'). The fixed poles of the wrong signature, on the
other hand, simply cancel, analogously to the spinless case, the zero of
the signature factor §'(¢x) in the contribution of the moving poles,
leaving a finite result when & goes through an integer. This happens

in particular for the integer values of the wrong signature in the sense-
nonsense region. In the absence of the fixed pole the éorresponding ampli-

tude vanishes.



V.—
We may expect in general fixed poles in a world in which

only linear unitarity is valid.

Let us consider first the transitions excited by external
fields. These are the type of processes studied by current algebra,

9)’10)’”). They can also be seen as first order weak interactions,

Refe.
the currents being coupled to the leptons. As it is well known, current
algebra establishes an equation between a "scattering amplitude" of external
currents on particles and a form factor of another current of the algebra.
To bemore specific, calling T a hadron of spin O for simplicity, if

{il),JSk) are two vector or axial vector currents, let us consider the

scattering amplitude %Mv for the process indicated in Fig. 4.
te) {x)
PX 3
ﬁ(r’:) ,T(PZ)
- Figure 4 -
T is expressed as a matrix element of a retarded commutator of the

Y ;
currents {ﬁl),JSk). It will have the expansion

_—W— = Ei ?L ’4 + -

SV (24)

J([), it

follows the equation, in the hypothesis of non-subtracted dispersion
12)

P = p,+p,- Then, from the equal-time commutator [j(i),J(k):la

relations

Yav TuAtt) = Flo)

(25)

(4
where F(t) is given by <1 IJ/“ | m2 = 1:M P(t).
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The left-hand side of (25) is the term in 1/y  of the
asymptotic expansion in v of A(v,t) [see Eq. (6) of section II],
and we have seen in Section II that it represents the contribution of
a fixed pole in the right signature so that it is now clear that fixed
poles in the right signature are necessary in order to reconcile current
algebra and analyticity properties of the amplitude describing the pro-
cess of Fig. 4. Because of the spin of the currents, the fixed pole
occurs at J = 1, which is the first nonsense point for A (amplitude
of double spin flip). The amplitude A which appears in Eq. (24) is
actually the amplitude free of kinematical singularities and the discus-
sion following Eq. (23) of Section IV is applied with m = 1, A = 2.
In other processes in which the weak interactions are considered only
up to the first order, there may be no necessity of fixed poles, but

there is nothing against them too.

The fixed poles in the right signature reassume all the
effects of the S channel, strong interaction resonances and so on.
If we want to take into account higher order terms in the weak coupling
constant, so that quadratic unitarity is satisfied, the fixed poles will
move from their position. However, we expect that they remain in the
neighbourhood of the fixed position, as long as the coupling constant
is small. It will then be possible to approximate their contribution
to the asymptotic behaviour in V by terms having an inverse power
behaviour. These ideas can be applied for instance in the pion photo-

production.
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VIQ -

13) have found that the left-

hand discontinuity in t of the partial wave amplitude fJ(t) has fixed

In 1962, Gribov and Pomeranchuk

poles at the negative integers (in the spinless case). These fixed poles

only occur in the wrong signature. They consider the discontinuity in ¢t

of
6
C‘F‘S ({: _44“1)'3

which is given for t< 0 Dby .
e
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(26)

fsu is the third double spectral function. ZSCP% is given by an
integral over a finite region and can be continued analytically for
all J. From Eq. (26), we see that K&(f-g has poles at even negative
integers for the (-) signature, at odd negative integers for the (+)

signature, so that the poles are at the wrong signature.

We may verify that the terms of the asymptotic expansion
(6) of Section II, which come from the fixed poles at the right signa-

ture have no left-hand discontinuity in 1t

-t-us

A.AM/U‘: J x™ fs (%, bt x—t)dx +

(¥}

4 'KMZ /t ‘S.;
+ (41««’~—3~f)Mf5u("“1‘3*f/ﬁ)ijrO (27)
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The residuum of the fixed pole of Zﬁ‘fJ is given by an
integral over a fixed t line in the region of definition of the jzsu~
function. The parameter t can be varied in order to pick up a line in
a region of definition of .fsu to which only some reduced diagrams can
contribute (for instance for scaliar particles only the diagram of Fig. 2).
Sometimes the 5’5u function can be calculated in that region and it is
found that the residuum of /N§  is different from zero.

Iif ZS?’J has a pole, fJ cannot be regular, and Gribov and
Pomeranchuk have shown that in absence of cuts in the J plane, it follows
from unitarity that there is an essential singularity. The same point is
now a pole on the left-hand side of the unitarity condition (13) and a
double pole on the right-hand side and so on, to all orders of a pertur-
bative expansion. We have seen in Section III how the essential singula-

rity occurs in the Bethe-Salpeter equation.

The essential singularity contributes to the asymptotic
behaviour (even if it is at the wrong signature). The external spin
moves the singularity to the first nonsense value of J, which may be
positive. Paradoxically, the Froissart bound could be violated. The
other possibility, mentioned by Gribov and Pomeranchuk, is the presence
of cuts in the angular momentum plane. In order to reconcile the fixed

pole of £ which cannot be cancelled because Zﬂ‘fj has the pole,

y
with the eiastic unitarity the cut has to cover the point J = -1 (for
the,spinless case) when t is over the elastic threshold. Moreover, as
a consequence of the cut, the kinematical factor ¢ in the elastic
unitarity (13) must be replaced by a function of J which vanishes at

the negative integers 4). Mandelstam 14)

has found in a model cuts in
the J plane, which at least satisfy the first condition. They come

from diagrams of the form

tE —

L w o N WA _'
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- Figure 5 -
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where the internal ladders are supposed to give rise to a moving Regge

pole whose trajectory contains as a bound state the external particle.

If « (t) is the trajectory we have said, the position of
the cut is o (t) = 2 X (t/4m?)-1, showing the correct behaviour. The
moving cut in J can be seen by mapping as a cut in the t plane.

The branch point comes out from the four particles cut.

Even if the cut can eliminate the essential singularity, the
fixed pole is still there. However, it does not give directly a contri-
bution to the asymptotic tehaviour, but only modifies the form of the

15)

contribution of the moving pole sy as seen at the end of Sections II
and IV.

In particular the presence of a fixed pole in the wrong signa-
ture destroys the simplicity of the explanation of the dip in 7 -p
charge exchange which was interpreted as due to a nonsense value in the

wrong signature of the Regge trajectory. Of course, one can say in this

case that there is an experimental evidence of the smallness of the
residuum of the fixed pole and then of the strength of the third double

spectral function.

As a last point, we mention the possibility of allowing fixed
poles of all kinds, whenever the unitarity condition is shielded by moving
cuts, which are the mapping in t of the cuts in the J plane. In par-
tidular, Oehme 16) has proposed the interpretation of the Pomeranéhon as a

fixed pole.

I want to thank Professor Amati for discussions and commentse.
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