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Abstract of the Dissertation

Description of Gauge Theory Phenomena from Topological Objects

by

Rasmus Normann Larsen

Doctor of Philosophy

in

Physics

Stony Brook University

August 2017

We explore two of the most interesting phenomena in gauge field the-
ories, confinement and chiral symmetry breaking, using an ensemble of 64
interacting instanton-dyons. Instanton-dyons are components of the finite
temperature instantons with non-trivial Polyakov loop (P 6= 1). Classical
dyon-antidyon interactions are obtained from the streamline approach and
included in the ensemble. The dyon interactions with other dyons and with
the vacuum drive the Polyakov loop towards the confining value P = 0.

There areN
c

(Number of colors) types of dyons. Including fermions create
fermionic zero modes on only one of the dyon types, and corrections to these
zero modes introduce a linear attraction. Changing the boundary conditions
of the fermions, change which types of dyons have the fermionic zero modes.
This a↵ects both confinement and chiral symmetry breaking.

From the interacting ensemble of instanton-dyons we numerically obtain
the temperature dependence of the Polyakov loop in the quenched case (no
fermions) and also the chiral condensates for the case of 2 standard fermions
and for the case of 1 periodic and 1 anti-periodic fermion, all for 2 colors. We
find that as temperature decreases the ensemble tries to maximize the entropy
by making the size of M and L dyons the same. This forces the Polyakov
loop towards the confining value and the densities of the dyons toward the
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same density. This increases the range of the fermionic zero modes, which
together with the increased densities, create a non-zero chiral condensate.
Changing the boundary condition of one of the two fermions to periodic,
restores center symmetry and results in chiral symmetry never being restored.
We thus find that the mechanisms that drive the confinement-deconfinement
and chiral symmetry breaking transitions are di↵erent, but related to each
other through the interactions of the instanton-dyons.
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1 Introduction

Topological objects in euclidean gauge theories are solutions to the equation
of motion. The most well known solutions are the instantons [5] which are 4-
dimensional topological objects in SU(N

c

) theories. The standard approach
of perturbation theory assumes that the only local minima is that of all fields
equal to zero. This is not true when topological objects are present. The
fact that the objects are solutions to the equation of motion, means that one
has to include expansions around these objects also.

The topological charge of the instantons require, according to the Atiyah -
Singer index theorem [6], that the objects should have fermionic zero modes.
This was shown by ’t Hooft [7, 8] for instantons to lead to e↵ective inter-
actions that explicitly break the axial U

A

(1) symmetry, and thus solves the
question of why the ⌘0 is so much heavier than the Goldstone bosons (⇡, K,
⌘). This does not explain the spontaneous breaking of SU

A

(N) chiral sym-
metry. To understand the spontaneous breaking of SU

A

(N) chiral symmetry,
the Interacting Instanton Liquid Model (IILM) was developed in the 90s (See
[9] for a review). The important part in the breaking of SU

A

(N) was a collec-
tive interaction of all the instantons in the ensemble, creating small fermionic
eigenvalues. This picture is supported by lattice works [10, 11], where remov-
ing the smallest eigenvalues, which are much smaller than the typical scale
of the particles, restores both SU

A

(N
f

) and U
A

(1) chiral symmetries.
While instantons give a simple explanation for chiral symmetry break-

ing, i.e. the existence of zero modes, the objects cannot explain the finite
temperature transition of confinement-deconfinement that happens around
200MeV , dependent on the amount of colors and flavors. Confinement can
be seen in di↵erent ways, one is to say that no free quarks are observed,
another is that the Wilson loops obey an area law, while another often used
measure is to look at the expectation value of the Polyakov loop P

P =
1

N
c

tr[L] =
1

N
c

tr(Path[exp(i

I
A4d⌧)]), (1)

which is an order parameter for confinement in the quenched case. While
one could argue that confinement and chiral symmetry breaking are unrelated
and therefore that topological objects might be unrelated to confinement, it
is remarkable how close the temperature of the two transitions are. This
”coincidence” begs for an answer.

1
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Several attempts to explain confinement from topological objects have
been done. For instance in [12, 13] where solitons were used to show how
they can disorder the vacuum such to create a Wilson loop that follows the
area law. Other groups have looked at vortices [14] due to their simple
explanation of the area law of the Wilson loop. It has been shown in [15]
that certain vortices contain zero modes similar to instantons.

For this work, the main focus is on the finite temperature transitions, and
trying to explain both the breaking of chiral symmetry and the confinement-
deconfinement transition. In order to do this I have worked with topological
objects at finite temperature in SU(2) QCD. The first step towards the
needed objects was done by [16] where the finite temperature instanton,
the caloron, was found. This can be seen as an infinite amount of instantons
sitting at a temporal separation of 1/T from each other, such that the solution
becomes periodic in 1/T , which is the standard way of introducing finite
temperature in gauge theories for bosons. The next and more non-trivial step
was done in [17, 18], who introduced a Higgs field into the solution through
the non-zero expectation value of the A4 field. The size of this non-zero A4

field is normally referred to as the holonomy. This solution was based on the
ADHM construction, where an infinite dimension vector is constructed, such
that the field will be self-dual, which therefore at the same time will also be
a solution to the equation of motion. The dimension of the vector is infinite
since one needs the solution to be periodic.

This holonomy field is important, as it makes configurations with Polyakov
loop expectation value di↵erent from one (hP i 6= 1) possible. This is impor-
tant, since as lattice studies has shown[19] the Polyakov loop needs to be
close to zero, for the confined phase. These solutions made it possible to use
the topological objects for any value of P , instead of only P = 1, as only was
possible with the standard calorons.

The work done in [18] showed some surprising features of the caloron with
non-trivial holonomy (i.e. P 6= 1). It was observed that the N

c

(Number
of colors) solution could be described by N

c

positions, thus corresponding to
N

c

individual objects. When far separated from each other, the objects were
shown to behave like they had both an electric and magnetic charge. For this
reason the objects in this work is called instanton-dyons. Another name used
in the literature is ”BPS monopoles” [20], since the solutions are essentially
the same as the monopoles due to a real Higgs potential, which was used
in [21, 22]. This is important since these monopoles have in these papers,
among others, been argued to be responsible for confinement. It is therefore

2
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straightforward to imagine that the instanton-dyons (dyons for short) are
responsible for both confinement through the monopole like behavior, and
chiral symmetry breaking from the zero modes, due to being topological
objects. Whether this is the case, is the main topic in this dissertation.

This idea has been studied in several papers. In [23] they showed how
the dyons can disorder the Wilson loop and thus obtain the expected area
law fallo↵. While interesting, this result was highly dependent on long range
behavior, and is thus not very robust. Another explanation has been found in
supersymmetric theories [20] where the instanton-dyons have been shown to
produce confinement. This though rely on the cancellation of the fermionic
and bosonic determinant, where the GPY potential (the cost in energy to
introduce a non-zero expectation value of A4) disappear, such that even small
densities of dyons can cause confinement.

This work follows the same reasons, though we (me and my advisor Ed-
ward Shuryak), has looked at confinement through the change in holonomy,
and not in the behavior of the Wilson loop. This change in the holonomy
comes about due to the interactions between the dyons with other dyons and
with the vacuum itself. This follows the same ideas as the Instanton Liquid
Model which was done in the 90s[24, 25], though expanded in scope due to
the inclusion of holonomy.

My work done on instanton-dyons has been focused on SU(2), meaning
two color QCD. The results have been published in [1, 2, 3, 4]. For SU(2)
the amount of dyons per caloron is 2. We call the dyons M and L and the
antidyons M̄ and L̄. L dyons are M dyons with holonomy v ! 2⇡T � v
which has been rotated by 2⇡ in time, such that L dyons have anti-periodic
fermionic zero modes, while M dyons have periodic fermionic zero modes.

The reason we work with dyons individually instead of the full caloron is
that the di↵erent densities of M and L dyons are important in driving the
confinement-deconfinement transition.

The dyons have been used in an ensemble in order to find the free energy
of the system, and thus find the most likely configuration of the vacuum.
While A

µ

= 0 has the lowest energy, the increase in possible configura-
tions(entropy) leads to configurations where dyons dominate the vacuum.
To find the specific configuration, we had to understand the interactions of
the dyons first.

The interactions due to the leading order fluctuation around the dyons
and the metric for LM pairs was done in [26] for SU(2). Diakonov also
proposed a more general form for the metric for many M and L dyons in

3



[27]. All of these results are only for dyons or antidyons, where classical
interactions cancel. For interactions between dyons and antidyons, this is not
the case, and no analytic formula exist. This problem was numerically solved
for an instanton and an antiinstantons in [28]. For classical interactions of
the dyons, this was calculated numerically in [1] by me and Edward Shuryak
using the streamline approach, which is the subject in section 4.

These interactions have been fundamental in explaining confinement and
chiral symmetry breaking using an ensemble of dyons, as we will see in section
5, 6 and 7. The fundamental part in these explanations are the increased
density of dyons as the temperature decreases. At high temperatures, the
GPY potential dominate, forcing the Polyakov loop towards the deconfining
value of 1. For low temperatures the excluded volumes forces the Polyakov
loop towards zero, though how this happens depend on the amount of quark
flavors, the representation[29, 30, 31] and the boundary conditions.

The interacting dyon ensemble done in the papers [2, 3, 4] by me and
Edward Shuryak follow the conceptual idea done in [32] of an excluded vol-
ume, though expands the model greatly, by simulating interactions, and by
finding the density of the dyons from the simulation itself, instead of using
data from lattice. Technically the ensemble follows the work done in [33],
but expands the scope to include a description of confinement through the
value of the Polyakov loop and by increasing the amount of configurations
explored many fold.

Inclusion of fermionic interactions in the dyon ensemble was done by
me and Edward Shuryak in [3] through corrections to the fermionic zero
modes. The simulations at massless quarks, results in a linear attraction
between L and L̄ dyons, due to the fermionic determinant being the product
of all eigenvalues. The fermionic interactions and eigenvalue distribution were
calculated by expanding in the set of fermionic zero modes of the dyons.
From the eigenvalue distribution we obtained the chiral condensate which
is the order parameter of chiral symmetry breaking, and is non-zero when
chiral symmetry is broken. At finite volume, at which the simulation was
performed at, one can not extract the chiral condensate from the limit of zero
eigenvalue. The finite volume e↵ect is explained by random matrix theory
[34] and tells us that as the volume increases, a rift between zero and the
eigenvalue distribution closes. Using this we obtained the chiral condensate
as a function of temperature.

We have also explored what happens if one changes the boundary condi-
tions of the fermions. This was inspired by the work done in [35] and later

4



also lattice work in [36]. In terms of dyons, this is interesting since there are
N

c

dyons for one caloron, but only one fermionic zero mode. Which dyon the
zero mode sits on, depends on the boundary condition and the Polyakov loop.
Changes to boundary conditions therefore are expected to change the behav-
ior of both confinement and chiral symmetry breaking. If dyons indeed are
responsible for these phenomena, then the interacting dyon ensemble should
be able to describe this change to the theory. Me and Edward Shuryak did
this in [4] for SU(2) (see section 7), which qualitatively showed similar results
to lattice[36] for SU(3).
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2 Path integral and Topological Objects

We will in this section introduce the objects and structures which we will need
in order to understand how the instanton-dyon ensemble was done. We start
by introducing the path integral at finite temperature in euclidean space,
followed by the basic idea of topological objects/configurations. After that,
the vector and axial part of the Lagrangian density is explained. We then
explain what zero modes are and how they di↵er for bosons and fermions.
Having shown the properties of topological object, we introduce the solution
for instanton-dyons. The instanton-dyons are the main topological objects of
interest in this work. Instanton-dyons appear only at finite temperature when
we require the Polyakov loop to be non-trivial (P 6= 1). The contribution of
one caloron to the path integral is shown. After this, we show the explicit
form of the fermionic dyon zero modes. Last, we explain how the ensemble
of dyons is constructed.

2.1 Path integral in QCD

The main object we want to study is the path integral in euclidean space

Z =

Z
D ̄D DA

µ

exp(�
Z

d4xL( ̄, , A
µ

)). (2)

The Lagrangian density L is given as

L =  ̄(�
µ

D
µ

) +
1

4g2
F a

µ⌫

F a

µ⌫

(3)

F
µ⌫

= @
µ

Aa

⌫

� @
⌫

Aa

µ

+ f
abc

Ab

µ

Ac

⌫

(4)

D
µ

= @
µ

� iAa

µ

⌧
a

, (5)

where f
abc

is the structure constant for SU(N) that tells how the matrices
commute. ⌧

a

are the SU(N) generators.
Finite temperature using the path integral formalism is introduced as

boundary conditions in temporal direction

 (t+ 1/T ) = � (t) (6)

A
µ

(t+ 1/T ) = A
µ

(t). (7)

The path integral therefore becomes

Z =

Z
D ̄D DA

µ

exp(�
I
1/T

dt

Z
d3xL( ̄, , A

µ

)). (8)
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This means that the vibrational modes in the temporal direction has to come
in factors of !

n

= 2⇡n/T for bosons and !
n

= 2⇡n/T + ⇡/T for fermions.
It is observed that L goes to T�4L under the transformation A

µ

!
T�1A

µ

,  ! T�3/2 and x
µ

! Tx
µ

. One can thus remove the obvious
temperature dependence, and only the temperature dependence in the run-
ning coupling constant g remains.

It should be noted, that the running of g is di↵erent when adding fermions.
Another thing, is that introducing a mass term

L
m

= m ̄ , (9)

breaks this transformation, as the mass would have to transform also, which
it can’t due to it being a constant. This also means that as long as the tem-
perature is small compared to the mass, the theory will look like a quenched
theory, i.e. as with no fermions, since the dimensionless mass goes as m/T
and thus grows for smaller temperatures.

2.2 Classical solutions

Topological objects can be found from non-trivial classical solutions to the
equation of motion in euclidean space, which means that they obey

(D
µ

F
µ⌫

)a = 0. (10)

While this is the standard definition, it is rarely the way they are derived. The
simplest solution is the zero temperature solution called an instanton. To find
the instanton solution (we here follow Diakonov’s review [27]) one typically
guess a shape, thus reducing the problem, in case the guess is correct. For
the instanton solution a good guess is

Aa

µ

= ⌘a
µ⌫

x
⌫

(1 +B(x2))/x2, (11)

where ⌘a
µ⌫

is the ’t Hooft symbol defined as

⌘a
ij

= ⌘̄a
ij

= ✏
aij

(12)

⌘a4j = �⌘a
j4 = �⌘̄a4j = ⌘̄a

j4 = ��
aj

. (13)

This simplifies the solution to a one dimensional problem with the solution

Aa

µ

= ⌘a
µ⌫

x
⌫

[1 + tan(ln[x2/p2]/2)]/x2 (14)

= ⌘a
µ⌫

x
⌫

2

[x2 + p2]
. (15)

7



This is seen to be a localized solution. This solution is called a 1 charge
configuration, since if one plugs it into the formula for the topological charge
Q

T

Q
T

=
1

32⇡2

Z
d4xF a

µ⌫

eF a

µ⌫

=
1

64⇡2

Z
d4xF a

µ⌫

✏
µ⌫µ

0
⌫

0F a

µ

0
⌫

0 , (16)

one obtain 1. ✏
µ⌫µ

0
⌫

0 is the Levi-Civita symbol. Plugging the solution into
the bosonic action gives

1

4g2

Z
d4xF a

µ⌫

F a

µ⌫

=
8⇡2

g2
, (17)

which is the classical action of one instanton.
There are several other things to note about the instanton solution. First,

one can move the solution around to any position in space without changing
the action of the solution simply by putting x ! x�x0. One can also rotate
the orientation in color space. This is important when one starts to look at
the instanton contribution to the path integral since such transformations are
special. They corresponds to zero eigenvalues of the bosonic matrix, and are
therefore called zero modes. Another special feature which we will explain
in section 2.4.2, is that topological objects do not only have zero modes in
the bosonic sector, but also one for the fermionic sector.

While one instanton is interesting, one can also construct instanton so-
lutions with k charge. The k-charge instanton in general is a much more
complicated solution, and is thus not constructed from the equation of mo-
tion, but instead under the requirement of the solution being self-dual (+)
or anti-self-dual (-)

F a

µ⌫

= ± eF a

µ⌫

= ±1

2
✏
µ⌫µ

0
⌫

0F a

µ

0
⌫

0 . (18)

The instanton solution is self-dual and the antiinstanton is anti-self-dual.
This shows that the antiinstanton has Q

T

= �1. A solution cannot be self-
dual and anti-self-dual at the same time unless A

µ

= 0. No analytic result
exists (though a really good guess does) for instantons and antiinstantons in
the same configuration. Configurations of an instanton and an antiinstanton
were numerically studied by Verbaarschot [28] as a function of distance. We
will do this for instanton-dyons in section 4.
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2.3 Axial and Vector Symmetry

It is seen that all fermionic terms, excluding the mass term, contains some
type of gamma matrix between  ̄ and  . We can therefore construct a
projection in spin space as [37]

P
R/L

=
1

2
(I ± �5), (19)

where �5 is a combination of gamma matrices that anti-commutes with all
the standard gamma matrices and has (�5)2 = I. The two projections are
referred to as right and left and have the properties

P 2
R/L

= P
R/L

(20)

P
R

P
L

= P
L

P
R

= 0 (21)

I = P
R

+ P
L

. (22)

Using this, one can rewrite the fermionic part of the Lagrangian into

L =  ̄
L

(�
µ

D
µ

) 
L

+  ̄
R

(�
µ

D
µ

) 
R

+m ̄
R

 
L

+m ̄
L

 
R

(23)

 
R

= P
R

 (24)

 
L

= P
L

 . (25)

We thus observe that for massless fermions, there is a symmetry where one
rotate only the left or right hand.

One typically write these transformations in two di↵erent ways. The first
is simply as we see it above as a U

R

(N) times U
L

(N) symmetry. The second
is to combine it into a symmetry where you do the same operation on both
the right and left part, which one denote as vector U

V

(N), and the other
where one does the opposite, which is called axial U

A

(N)

 ! exp(✏
a

I⌧
a

) (26)

 ! exp(✏
a

I�5⌧a) , (27)

where ⌧
a

2 u(N) works on the flavor index and �5 on the spin index of  .
These are simply linear combinations of the right and left handed trans-

formations, but they are useful since the axial gets broken by mass terms, or
mass like terms, while the vector symmetry stays a symmetry.

The axial symmetry is typically called chiral symmetry. If the mass is
small compared to the temperature, chiral symmetry looks like it is restored,
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but actually chiral symmetry is broken at energies much higher than that
of the quark masses. This is one of the important things one study with
topological objects, and is due to fermionic zero modes, who only couples to
either the left or right handed part of the spinor.

Another important thing to note is that we will generally talk about the
breaking of SU

A

(N) and not U
A

(N), the reason for this is that any tiny
number of topological objects destroy the U(1) axial symmetry [7, 8]. This
is also the reason for the ⌘0 meson being more massive than the rest of the
SU(3) pseudo scalar particles, i.e. ⇡, K, ⌘.

2.4 Zero modes

Generally speaking there are two types of zero modes, bosonic and fermionic.
While both are seen as zero eigenvalues of the bosonic and fermionic matrix,
the way one handles them are quite di↵erent.

2.4.1 Bosonic zero modes

When calculating the bosonic contribution to the path integral, one expands
to second order around the soliton solution and performs the Gaussian inte-
gral Z

Da exp(�ab
µ

W bc

µ⌫

ac
⌫

) / 1p
det(W )

. (28)

One therefore wrongly divides by zero if there are any zero modes. There
is a nice and physical interpretation of why this occurs. Zero modes for the
bosonic determinant corresponds to deformations of the solution that does
not change the action. The bosonic zero modes therefore have to be treated
separately from the rest of the eigenvalues. One has to extract the direction
in the space of all possible configuration that corresponds to the zero mode
[9]

dA =
dA

cl

dx
dx. (29)

dA

cl

dx

is typically proportional to
p
S
cl

(The action of the classical configura-
tion). This means that the contribution of the zero mode is proportional to
the space it lives in. This is typically the volume of the physical space, or
the surface of a sphere, for color rotations.
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The contribution of the bosonic determinant therefore takes the form

Z
Da exp(�ab

µ

W bc

µ⌫

ac
⌫

) / 1p
det(W 0)

Z
dNx

p
S
cl

N

(30)

where W 0 is W but with the zero modes removed, and N is the amount of
zero modes.

2.4.2 Fermionic zero modes

The fermionic zero modes are found from the Dirac equation [6]

D/  = D/ ( 
R

, 
L

) = 0. (31)

The Dirac equation can then be written as

D/  
R

⌘ �
µ

D
µ

 
R

= 0 (32)

D̄/  
L

⌘ �̄
µ

D
µ

 
L

= 0, (33)

where �
µ

= (I, i�
i

) and �̄
µ

= (I,�i�
i

). By using another D/ or D̄/ this can
be rewritten as

D̄/ D/  
R

= (D2 +
1

2
�̄
µ⌫

F
µ⌫

) 
R

(34)

D/ D̄/  
L

= (D2 +
1

2
�
µ⌫

F
µ⌫

) 
L

(35)

�
µ⌫

=
1

2
(�

µ

�̄
⌫

� �
⌫

�̄
µ

) (36)

�̄
µ⌫

=
1

2
(�̄

µ

�
⌫

� �̄
⌫

�
µ

). (37)

�̄
µ⌫

is self-dual while �
µ⌫

is anti-self-dual (�̄
µ⌫

and �
µ⌫

corresponds to the ’t
Hooft symbols contracted with the SU(2) generators), so the second term is
zero for �

µ⌫

, if F
µ⌫

is self-dual and same with �̄
µ⌫

and anti-self-dual fields.
Also D2 is definite positive, and therefore does not have a solution that is 0
by itself.

One therefore have that self-dual fields only can have zero modes on the
right part of the fermionic field, and anti-self-dual fields on the left part. We
know a solution should exist due to the Atiyah-Singer index theorem[6].
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2.5 Calorons and Dyons

The generalization of an instanton to finite temperature is called a caloron.
The caloron can be understood as an infinite amount of instantons that sit
separated with a distance of 1/T in the temporal direction, such that the
caloron becomes periodic in temporal direction as is required. The caloron
is therefore not symmetric in all 4 directions.

The caloron maintains the properties of having topological charge of 1
and has also one zero mode in the right or left handed sector, for the caloron
and anticaloron. The standard caloron solution has A4(1) = 0. In order to
relate the caloron to confinement, we need a solution with A4(1) 6= 0. The
reason for this is that confinement, atleast in the quenched case, is related
to center-symmetry breaking through the Polyakov loop

P =
1

N
c

Tr(L(x)) =
1

N
c

tr(Path[exp(i

I
A4d⌧)]), (38)

which is a type of Wilson loop that instead of going in a circle within space
itself, uses that space is periodic in temporal direction and loops around one
time, and thus is still a closed loop. N

c

is the amount of colors. Path stands
for path ordered.

Without fermions the Polyakov loop is an order parameter for confine-
ment. With fermions it is not, but lattice studies still show it to be an
important measurement for confinement, and it is still important that the
configuration gives the correct value for P .

One typically parameterizes L(x) by its eigenvalues as

L = exp(i ⇥ diag(µ1, µ2, .., µN

)), (39)

where we order such that µ
i+1 > µ

i

and µ
i+N

= 2⇡ + µ
i

. A useful quantity
is the di↵erence between two µ0s which we define as v

i

= µ
i+1 � µ

i

. For 2
colors we for instance have

P = cos
⇣v
2

⌘
. (40)

We therefore need a caloron solution with specific values of µ
i

’s. A solution
with these properties was found by P. van Baal and T. Kraan [18], and L.
Lee and C. Lu [17]. We call it the caloron with non-trivial holonomy. The
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solution uses the ADHM construction, where one construct configurations
which are self-dual (or anti-self-dual) using vectors of rank K + 1 that obey

�†v = 0 (41)

v(x)†@
µ

v(x) = A
µ

(x) (42)

Im[�†�] = 0, (43)

where � is defined as

� = (�
k

, B
k,k

0 � xI
k,k

0) (44)

x = x
µ

�
µ

(45)

�
µ

= (I, i�
i

). (46)

�
i

are the Pauli matrices and the entries in �
k

and B
k,k

0 are U(2) matrices.
The caloron with non-trivial holonomy is constructed by requiring the solu-
tion to be periodic up to a phase in the temporal direction, where the phase
decides the value of the Polyakov loop. One therefore has that the rank of
the vector v is infinite, and the caloron with non-trivial holonomy is therefore
found from di↵erential equations. The resulting solutions are very long, but
are well described in [38].

Just like the instanton, the caloron with non-trivial holonomy is found to
be dependent on the size ⇢. The interesting thing about this caloron is that
in case ⇢ is large, then one observes that the caloron splits into N

c

localized
bumps. In the limit ⇢ ! 1, it is found that each of these bumps them
self are a solution to the equation of motion. Also since the caloron was
constructed to be self-dual, then all the bumps will also be self-dual. These
bumps are what we call the instanton-dyons (or dyons for short), and they
lead to the interpretation that the caloron is made up of N

c

dyons.
The dyon itself is a SU(2) construction and can be written as [27]

Aa

4 = ±r̂
a

✓
1

r
� v coth(vr)

◆
(47)

Aa

i

= ✏
aij

r̂
j

✓
1

r
� v

sinh(vr)

◆
, (48)

such that the size of the A4 field approaches the constant v as one gets
further and further away from the core around zero. The ± are for dyons
and antidyons. It is important to note that the distance r is only for the x,
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y and z components. This simple form of the dyon field is in the hedgehog
gauge, whose name comes from the observation that the A4 field points away
from 0 as a hedgehog. We will typically work with the gauge where we have
rotated the A4 field to point in the ⌧3 direction, which introduces a Dirac
string. We show how this is done in section 4.

The dyon configuration is completely constant in time. The time depen-
dence of the caloron therefore comes from the overlap between the di↵erent
dyons, as shown in Fig. 1.

Figure 1: Caloron density for T = 1 and a separation of r
LM

= 0.2 between
the M and L dyon in x direction plotted along t 2 [�0.5, 0.5] and z 2 [�2, 2].

One needs that the distance between the dyons should be small compared
to the temperature, in order to see the time dependence of the caloron. For
SU(2) we have two dyons which we call M and L. We denote the distance
between the two dyons as r

LM

.
The topological charge of a caloron is, just like the instanton, 1. The

sum of topological charges for the M and L dyon therefore has to be 1.
The solution in eq. (47) has Q

T

= ⌫ = v/(2⇡T ). We call ⌫ dimensionless
holonomy. This is the M dyon solution. The L dyon solution have v !
2⇡T � v and is rotated by a phase of 2⇡, such that

⌫ ! 1 � ⌫ ⌘ ⌫̄ (49)

|A4(1)| = v, (50)
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and

⌫ + ⌫̄ = 1. (51)

Away from the core, the configuration in eq. (47) looks like an electric and
magnetic charge of size 1. The 2⇡ gauge rotation for the L dyons changes
the sign of the electric and magnetic color fields, such that M dyons have
(+1,+1) Abelian electric and magnetic charge, while L dyons have (-1,-1).
This also secures that the sum will look like a chargeless configuration. For
the antidyon solutions one pick the opposite sign in (47) compared to the
dyon solution, which results in the same electric charge but opposite magnetic
charge. We call the antidyons for M̄ and L̄. Last, plugging the dyon solutions
into S = 1

4g2

R
d4xF a

µ⌫

F a

µ⌫

gives ⌫8⇡2 for M and M̄ dyons, while it gives ⌫̄8⇡2

for L and L̄ dyons. We summarize the properties in Table 1.

M M̄ L L̄
g2S

cl

/(8⇡2) ⌫ ⌫ 1 � ⌫ 1 � ⌫
Q

T

⌫ �⌫ 1 � ⌫ ⌫ � 1
e 1 1 -1 -1
m 1 -1 -1 1

Table 1: Quantum numbers of the four di↵erent kinds of instanton-dyons for
SU(2) gauge theory. The rows are classical action S

cl

, topological charge Q
T

,
electric charge e and magnetic charge m. The antidyons have a bar over the
letter.

2.5.1 Zero modes of the dyons

The fermionic dyon zero mode is special in the sense that it only exist for
some dyons. This is in sharp contrast to the caloron which always have one
zero mode. To understand the zero mode of the dyon, one first has to define
the boundary condition of the fermions.

 (t+ 1/T ) =  (t) exp(iz). (52)

The standard case is to choose z = ⇡ which results in an anti-periodic bound-
ary condition as is required for fermions. But dyons only have normalizable
zero modes in case that µ

i

< z < µ
i+1 [39, 40, 41]. This means that for the
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case of SU(2), the L dyon will have the zero mode, since µ can maximally be
⇡ in SU(2), such that the M dyon can never have large enough µ in order to
have a normalizable zero mode. On the other hand if z = 0, then only the
M dyon will have a zero mode. This have a large impact on the fermionic
interactions. This is discussed in section 7.

The solution for the zero mode for the dyons was found by T. Sulejman-
pasic and E. Shuryak in [39] by solving

(�
µ

)
↵�

(D
µ

)
AB

 B

�

= 0, (53)

which is the Dirac equation for zero mass and right handed part of the spinor.
The solution was found using the ansatz

� A

�

✏
�↵

= ⌘
A↵

(54)

⌘ = ↵1(r)I + ↵2(r)r̂i�i, (55)

from which it was found that

↵1(r) = c1

 
tanh(rv/2) cosh(r�) � 2� sinh(r�)p

rv sinh(rv)

!
(56)

↵2(r) = c1

 
� coth(rv/2) sinh(r�) + 2� cosh(r�)p

rv sinh(rv)

!
, (57)

where � = zT . It is seen that the behavior for large distances go to

 ⇠ exp(�r(v/2 � �))p
r

, (58)

such that the exponential fall o↵ is dependent on the holonomy and the
boundary condition. This means that the exponential fall o↵ for periodic zero
modes will go as v/2 and will sit on M dyons. L dyons start with holonomy
v̄ = 2⇡T � v which is rotated by a 2⇡ gauge rotation. The fermions gains
a phase of ⇡ from this and the solution therefore becomes antiperiodic and
falls o↵ as v̄/2 = (2⇡T � v)/2. This show that the shape of the zero modes
follow that of the dyon them self, i.e. when the holonomy for M(v) and L(v̄)
dyons become small, the dyons and their zero modes grow in size, but get a
smaller amplitude, due to the normalization constant.
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2.5.2 Dyons and antidyons

While nice analytic equations exist for the cases of only dyons or only an-
tidyons, the actual vacuum that we want to explain is rarely only one or the
other, it is a combination of both dyons and antidyons. This is a much less
trivial case since the previous solutions was only found due to being self-dual
or anti-self-dual. In order to explain the interactions that happen we there-
fore have to numerically calculate the contributions. This was done for the
classical action for instantons by Verbaarschot [28] and is the approach we
follow in section 4, where we put a dyon and an antidyon on a lattice and
find the action of the system as a function of distance between the dyons.

The same is true for the case of the fermionic zero modes. The Atiyah-
Singer index theorem tells that their should be as many fermionic zero modes
as the total topological charge [6]. In case that we have both dyons and
antidyons, the total topological charge can be zero. This is a good thing, since
the determinant of the Dirac operator for massless quarks can be written as
the product of all eigenvalues

det(D/ ) = ⇧
i

�
i

, (59)

which means that configurations with zero modes do not contribute. When
we have both dyons and antidyons, the zero modes are only almost-zero
modes, which create a strong linear like potential between the dyons and
antidyons. This becomes important in section 6 when we start to explain an
ensemble of dyons and antidyons with fermions included.

2.6 Quantum Weight of the caloron

In the end what we want to calculate is the path integral

Z =

Z
D ̄D DA

µ

exp(�S
f

( ̄, , A
µ

) � S
b

(A
µ

)) (60)

=

Z
DA

µ

det(D/ (A
µ

)) exp(�S
b

(A
µ

)). (61)

To obtain the quantum weight, one expands around the classical solution
A

cl,µ

, as A
µ

= a
µ

+ A
cl,µ

[27]

S
b

= S
cl

+
1

g2

Z
d4x(D

µ

F
µ⌫

)bab
µ

+
1

2g2

Z
d4xab

µ

W bc

µ⌫

ac
⌫

+O(a3), (62)
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where the constant S
cl

is the classical action of the soliton one expands around
and the linear term is zero, due to the equation of motion. To second order
we therefore obtain the following result for the bosonic part only

Z
boson

/ exp(�S
cl

)
1p
W

µ⌫

, (63)

which is mostly a formal formula. To actually calculate the result, one has to
extract the zero modes from W

µ⌫

as discussed in section 2.4.1, since it looks
like one divides by 0, but in reality obtains an integral over the entire space,
and therefore will get contributions proportional to the volume. After that is
done, regularization is still needed. The typical approach is to normalize to
the free propagator and normalize that result, to the same result but with a
cuto↵ µ, which gives 4 determinants. Last, one then has to actually calculate
the determinant. All of this was done in [26] for the caloron with non-trivial
holonomy in SU(2), which produced the result

Z
Boson

=

Z
d3z1d

3z2T
6C

✓
8⇡2

g2

◆4

exp(�8⇡2/g2)

✓
1

Tr
LM

◆5/3

⇥ (2⇡ + vv̄r
LM

/T )(vr
LM

+ 1)
4v

3⇡T

�1(v̄r
LM

+ 1)
4v̄

3⇡T

�1 (64)

⇥ exp

✓
�V v2v̄2

12⇡2T
� 2r

LM

⇡T


⇡T (1 � 1p

3
) � v

� 
v̄ � ⇡T (1 � 1p

3
)

�◆
,

where z
i

are the positions of the dyons, r
LM

(sometimes also called r12) is
the distance between the dyons and C is an overall constant. We will use
this formula in the limit r

LM

! 1 such that we can divide the contribution
into one for M dyons and one for L dyons.

For the determinant of the Dirac operator we will need to calculate the
corrections to the zero modes, since we otherwise have a contribution of 0. We
explain this in section 6, when we add fermions to the interacting ensemble.
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2.7 Ensemble of dyons

Following [27] the path integral can then be written as a sum over all contri-
butions to the path integral from all di↵erent amount of dyons

Z = f(V )
X

N

M

,N

L

,N

M̄

,N

L̄

1

(N
M

!), (N
L

!), (N
M̄

!), (N
L̄

!)

⇥ (d
⌫

)NM

+N

M̄ (d
⌫̄

)NL

+N

L̄

Z
dNxJ(x

i

, N
M

, N
L

, N
M̄

, N
L̄

), (65)

where N is the total amount of degrees of freedom coming from bosonic
zero modes. N

i

is the amount of dyons of type i. f(V ) is the contribution
that depends only on the volume. For a constant A4 field, which the dyons
are corrections to, f(V ) = exp(�V 4⇡2

⌫

2
⌫̄

2

3 ) [42] which is called the Gross-
Pisarski-Ya↵e (GPY) potential. d

⌫

is the contribution from the specific M
or M̄ dyons and d

⌫̄

is the contribution from L or L̄ dyons. The factorial
factors is in order to not double count, since for instance two M dyons at
position x

i

and x
j

, are the same as two M dyons at position x
j

and x
i

. We
generally will work with N

M

= N
M̄

and N
L

= N
L̄

. This means that the total
magnetic and topological charge will be zero. The factor J is a correction to
the path integral, which depends on the position of all the dyons. This will
include the classical interactions which we will find in section 4, the metric
where we follow [27], and the corrections to the fermionic zero modes, which
we do in section 6. The integral Z

changed

=
R
dNxJ(x

i

, N
M

, N
L

, N
M̄

, N
L̄

) is
not possible to solve analytically and is therefore solved numerically instead
using the Metropolis algorithm, while the rest, which we will call Z

unchanged

,
is simply constants that depend on volume, holonomy and density of the
dyons. We thus write the total contribution as Z = Z

unchanged

Z
changed

. This
is further explained in section 5.
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3 Programming

The region around 100-1000MeV is extremely rich in physical phenomena
that change behavior with only small changes in temperature, or density of
the specific system. It is this region where the construction of the particles
we know of takes place. From the elegant formulation of quarks and glu-
ons, into a complicated description of Baryons and Mesons. This is a highly
complicated transition, which is not described by standard perturbation the-
ory. In order to explore this region, computer simulations has become an
important tool.

This work has been a combination of numerical and analytic results in
order to better understand the mechanics behind the non-perturbative re-
sults. Computations has been performed using a single graphics card (GTX
980). We will focus in this section on what a graphics card is and how it
has helped obtain the numerical results. We will also talk about the basic
of programming with graphics card, which was done using CUDA, which
require the code to be run on NVIDIA graphics cards. We will also mention
c++ which was the choice of basic code.

3.1 Graphic Processing Unit

The graphics processing unit, or GPU for short, is a processing unit in com-
puters specialized in altering large amount of memory in a short amount of
time. One can think of it as a specialized version of the central processing
unit (CPU), which has to be able to handle a large amount of processes. For
this reason, a GPU is never used by itself, but instead is ordered by the CPU
to perform di↵erent tasks.

The GPU also tend to have its own smaller memory located close to the
GPU. This means that an important part in using the GPU is to make sure
that the memory is ready for use, when a task requires it, or one has to wait
for the memory to be send.

Another keen di↵erence in using the GPU is that the GPU is split into a
lot more small cores, that each processes the task allocated to it. This means
that one has to make sure that the code is highly parallel when using the
GPU. By parallel we mean that di↵erent tasks are not dependent on each
other. A typical example of this is multiplying matrices. If one multiplies
two matrices of size N , then this can be seen as N2 vector products, each
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independent of each other (though some will use the same memory). One
can therefore make each core handle one of the N2 vector products. To get
an idea of how large the matrix should be, for the GPU to be useful, lets use
the example of the GTX 980, which has 2048 cores. One needs to multiply
atleast a 50 times 50 matrix to proper utilize the GPU. Another way to utilize
the GPU is to run 20 di↵erent matrix multiplications of size 10 times 10 at
the same time. Of course not all cores tend to finish at exactly the same
time, so in general, it is better to give more commands, than the amount of
cores of the GPU, since cores that fishing early then can begin on the next
job, which in general creates less downtime, i.e. time where the cores are
waiting without doing anything.

3.2 c++

There are several programming languages that can be used to work with
CUDA, which is the language used to control the GPU in this work. Due
personal preference, this work has been done using c++.

c++ is good for defining and handling di↵erent structures and groups and
is also one of the faster programming languages when it comes to execution
speed. This of course depends on the project at hand, but since the main
computations were done in CUDA on the GPU the important thing for me
was a language which I find easy to use.

c++ besides easy group definitions have the range of standard functions
like while and for that contain loop structures. Other important uses are the
if function that check if a statement is true or not. Another useful property
is the dynamic definitions of functions which can be declared and defined in
di↵erent positions.

c++ also have an easy way to handle dynamic memory which is created
using the new statement. This allows for creating extra memory for specific
tasks when needed.

All of these functions works in almost exactly the same way when working
with the GPU and so for a person used to work with c++, the jump to GPU
programming is not that big. There are of course some small di↵erences,
which is related to calling functions and moving memory which I will discuss
in the next subsection.

One of c++ strengths is also its weakness. While being a high level
programming language, it still allows for strong control of addresses using
pointers. This can make the use of arrays much easier. On the other hand
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this leaves the program vulnerable to memory leaks, where you are changing
data in wrong places. This can sometimes be hard to detect and is something
one has to be careful about.

c++ also require you to make all the definitions for the used variables. I
personally find this to be a positive, since it helps you in knowing what you
are working with, and not passing something stupid to a function, but it is
extra work. One also has to be sure to destroy dynamic memory after one is
finished using it, or you might break the program, run out of memory.

3.3 CUDA

CUDA is a programming language developed by NVIDIA in order to do
computations on the GPU. For this reason it is also restricted to only GPU’s
produced by NVIDIA. CUDA is not a standalone language, but instead adds
some extra commands to already existing languages which makes it possible
to control the CPU and the GPU at the same time. Since I use c++ together
with CUDA, this will be the angle from which I discuss CUDA, but it is also
possible to use Fortran or Python.

I will in this part discuss the most essential di↵erences there exist when
using CUDA. I will do this by giving small examples where I describe what
the code does.

3.3.1 Memory

The biggest di↵erence in my opinion is that GPU’s have their own inde-
pendent memory away from the CPU. This means that if one wants to use
memory from the CPU on the GPU, then one has to allocate space for the
memory in both the CPU and the GPU and then move the memory one way
or the other. The first thing is to allocate the memory in both the CPU and
the GPU which one wants to use

double * V = new double[size];
double * dV;
cudaMalloc(&dV, sizeof(double) * size);

The first line is the standard c++ call to create an array of size ”size” of
the type double. * V means that the array is identified by a pointer called
V, which shows where in the memory the array is located. Second line is
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an undefined pointer, which will be used to point to the GPU memory. The
last line creates the same size memory in the GPU. I follow the naming con-
vention that anything which is on the GPU gets the same name as the CPU
equivalent, but with a d in front. This is because in CUDA the GPU is
referred to as the ”Device”, while the CPU is the ”Host”

When finished with the memory one needs to delete it again using

delete[] V;
cudaFree(dV);

When one wants to move the memory in between the CPU and GPU one
uses one of the following commands

cudaMemcpy(dV, V, sizeof(double) * size, cudaMemcpyHostToDevice);
cudaMemcpy(V, dV, sizeof(double) * size, cudaMemcpyDeviceToHost);

The first line copies from the Host(CPU) to the Device(GPU), while the
second line does the opposite way. Also the pointer which you copy to, is
always the first argument, and the third argument is the size of the moved
object.

When moving memory, the standard is to block everything else until the
memory is moved. In case the program is heavy on movement between the
CPU and GPU one can do asynchronous movement, which means that the
GPU and CPU do calculations while moving the memory. One can still not
use the same memory while moving it, but it can be used to prepare other
parts while doing calculations. This will not be discussed in details.

One can move other things than just simple arrays. For instance classes
in c++ (a construction that can hold several di↵erent types of variables and
functions) can be moved using the same code. While moving the class is
exactly the same, one has to change the code for the functions in the class,
and for functions in general, for them to work on the GPU.

3.3.2 Functions

When making functions in CUDA there are in general 3 di↵erences.
1) Specify where the code will run, CPU or GPU
2) Define the amount of threads used when calling the function
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3) Allocate tasks for each thread
It is part number 3 that is the hardest.

1) When defining where the code will run, one puts host or device
in front of the function name, when defining it, which has two underscores
on each side.

host device void Times(double);

In the above example we want to be able to use the function called ”Times”
on the CPU and the GPU and therefore uses both. This means that we can
also call the function within another function running on the GPU. One can
also use global for similar results.

2) The way to call a function to run on the GPU is done in a standard
c++ way, but with the extra added part in between the name and the argu-
ments, which is enclosed by <<<...>>>.

FunctionName<<<ntreads/(Block size)+1, Block size>>>(Arguments);

where ntreads is the amount of treads one wants to run. A thread is how the
GPU divides up the work. For instance using the Times function to do 1000
multiplications would look like

Times<<<1000/(32)+1, 32>>>(dV);

such that we have atleast 1000 di↵erent treads each doing multiplication.
These treads will then be automatically divided to the di↵erent cores in sizes
of a block. The block size, is a way that the GPU allocates work, and can be
chosen as many di↵erent values. A general rule of thump is that the block
size should be dividable by 32. The block size will a↵ect the time it takes to
run the program, but will not break it. The +1 is to make sure that there
are enough threads for the operation.

3) The last point about using functions on the GPU is to make each thread
do its own task, this means that any function that runs multiple threads will
have the following code in it always

int id = blockIdx.x * blockDim.x + threadIdx.x;
if(id < ntreads){
.....
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}

The first line creates an integer identification number from the block number,
and tread number. This creates a specific value for each of the operations,
such that you can assign di↵erent tasks, dependent on the value of the id.
The second line checks to make sure that the id is within the size of the
amount of operations being done. From the previous case we would create
((1000/32)+1)*32=1024 threads, since 1000/32=31. The if function makes
sure that the 24 extra operations doesn’t do anything. the .... will be the
actual code that should depend on the id, because otherwise it is a bit of
waste running the same code several times. An example of what that code
could be is

dV[id] = dV[id]*5;

This makes the thread with value id obtain the id’th value from dV, multiply
it by 5, and then save it back to the same spot again. It is important that it
is in the same spot, since an operation like

dV[id+1] = dV[id]*5;

would mean that the result would depend on which thread got to the memory
first. The reason is that if the thread with for instance id =5 goes slightly
before the thread with id=6, then it might have changed the value which
the 6th thread will get. This will result in a di↵erent result compared to
if the 6th thread had gone before the 5th thread. Since one cannot control
the order this happens in, then this creates unpredictable results. This is
something one has to avoid, and is generally the problem with parallelizing
code.

Generally any code that runs on the CPU will also work when done on
the GPU, so standard functions like if , for, and sin or exp can all be used
inside the code that runs on the GPU using CUDA. One can also do calls
to classes and functions inside the code that runs on the GPU without any
changes, as long as the function has been specified to run on the GPU also.
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3.4 Programs

While di↵erent versions of the programs exist, and extensions, additions and
changes have been performed over the progression of work, there have funda-
mentally been 2 programs which have been used to make the results presented
in this dissertation. The first one is the ”Gradient Flow” program used in sec-
tion 4 and the second is the ”Interacting ensemble” program used in section
5, 6 and 7. I will below explain the basic construction of the two programs,
and for each program discuss the biggest bottlenecks in computation speed.

3.4.1 Gradient Flow

The gradient flow is a program that takes a SU(2) configuration of gauge
fields and calculate the current of the action � �S

�U

µ

at each point in space,

and then changes all the SU(2) links, with a change ✏ times the current found
for each link.

The program can be broken up into 3 parts. The setup, the gradient flow,
and the read o↵. The first and last part is only done once, and optimization
for proper run time is not important. The setup consist of creating the
configurations one want to use gradient flow on. The way this is done is
explained in section 4. The read o↵ part saves the final configuration to a
file.

The important part of the program, is the part that does the actual
changes to the configuration. This consist of two parts. The first part cal-
culates the current as explained in section 4.2, while the second part applies
the current to each link, by converting the current into an SU(2) matrix, also
shown in section 4.2. This is then repeated a lot of times until the action
is reduced enough. To monitor this progress and in order to understand the
changes, several results are calculated simultaneously at each step. The total
action is used to determine when the simulation should stop.

Since the program consist of a lot of small multiplications of SU(2) ma-
trices, the limiting factor in the program, is how quickly memory can be
transported from the GPU memory to the cores in the GPU doing the actual
work. This problem was tackled in 3 ways.

1) The first way is to minimize the actual memory one has to send, by
rewriting all SU(2) matrices in terms of 1, i⌧1, i⌧2, i⌧3. This cut the amount
of memory movements and calculations one has to do in half.

2) Use some extra time to calculate di↵erent combinations and save them
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locally in each thread. Certain multiplications occur always in certain com-
binations. By identifying these, one can limit the amount of times one has
to fetch new memory. Also writing mathematical objects like trace as the
”1” component of (1, i⌧

i

) also reduces memory fetching.
3) Structure of the array can impact memory fetching time quite a bit.

One of the reasons is that if the structure is such that several cores need
memory adjacent to other cores, a call fetching everything at the same will
automatically be performed, greatly increasing speed. It is therefore impor-
tant to ”play” with which of the coordinates you use first in your definition
of the arrays, and sometimes, transposing an array can increase speed also.

Almost the entire part of the gradient flow runs on the GPU, with a few
things like adding a few numbers to obtain the total action is performed on
the CPU. The only limiting factor is therefore the GPU in the program.

3.4.2 Interacting Ensemble

The interacting ensemble program is mostly about getting as many as pos-
sible di↵erent configurations as possible. The program is therefore about
running as many of the same small programs simultaneously. Each small
program does the following.

Start up) Generate 64 random positions on a S3 sphere using Gaussian
distributions in each of the 4 dimensions, and normalizing length to 1.

Each Cycle) Change 1 position. Calculate the action and compare with
old configuration as exp(��E) to get configurations with weight exp(�E).
Measure at each step the action E of the maintained configuration. Do this
for all particles.

Finish) Write all configurations to a file.
The part that takes the most time in this program is calculating the

eigenvalues, since the metric needs to be only positive eigenvalues. In order to
do this, we followed the technique from [43] since the matrix was symmetric.
The principle is to first tridiagolize the matrix. This means that only values
on the diagonal and next to it is non-zero. This is done by multiplying the
matrix A by the following

A � > (I � uuT )A(I � uuT ) (66)

where u is a vector, such that Det(I � uuT ) = ±1 and doesn’t change the
eigenvalues since (I�uuT )(I�uuT ) = I. The vector u is made out of the row
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(or column, since it is symmetric) you want to change. To make the matrix A
into a tridiagonal form, one skips the values until value A

i,i+1. This ensures
that the left multiplication and right multiplication will not interfere with
each other, and therefore leaves the row and column with zero on all places
for j > i+ 1. u is constructed from A in the following way

u = (0, ...0, A
i,i+1 + L,A

i,i+2, ..., Ai,N

)/
q

L(L+ |A
i,i+1|) (67)

L = |(0, ...0, A
i,i+1, Ai,i+2, ..., Ai,N

)|. (68)

When (1 � uuT ) is applied it puts every entry two away from the diagonal
to zero in one row or column. This therefore has to be repeated for all rows
and columns until the form is tridiagonal (we call the matrix T after this is
done).

The eigenvalues are thereafter obtained in a similar manner, where one
repeatedly apply

T � > (1 � wwT )T (1 � wwT ), (69)

to the now tridiagonal matrix. w is constructed as u but starts instead at the
diagonal. Every time this is applied to all the di↵erent rows, the o↵ diagonal
becomes smaller and smaller, until one decides it is small enough and stops
the calculation, and obtains the eigenvalues on the diagonal. The eigenvalues
will first converge in the lower button, and as they do, the part that converge
is cut of, and calculations proceed on the rest that has not yet converged.

Convergence happens from button to top. By guessing the eigenvalue �
from a 2 ⇥ 2 block at the button, and shifting the matrix by ��I, one can
speed up convergence.

There is also another good use of the same formula. In situations where
the matrix have small entries, numerical precision can be a↵ected by the
standard way of obtaining the determinant by adding lines to make the entries
below the diagonal zero. One uses the formula in eq. (67) but only from one
side, and starting from the diagonal. This improves the determinant a lot,
since the matrix is still made into upper triangular form, but one does this
using the length of the vectors, and does not end up dividing by a small
number. This was important when calculating the overlap of the fermionic
zero modes as explained in section 6, since many of the entries in the matrix
are exponentially suppressed.
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3.4.3 Single and Double precision

It is important to understand the amount of digits one needs to use, i.e.
single or double or even higher precision. This choice can be important since
in case your simulation consist of enough steps, then small rounding errors
can build up. This is important when doing the gradient flow, where the
SU(N) matrices have to obey det(U) = 1. For this type of problem, double
precision was needed. One can of course also decide to normalize the matrices
all the time instead.

On the other hand the Monte-Carlo simulations randomly changes from
step to step, and rounding errors therefore will not a↵ect the answer, and
single precision has been perfectly fine.

3.5 The Metropolis Algorithm

When ever one wants to get an average of a measurement, one has to in-
tegrate over the space of all possible configuration. This can be a huge
space that numerically is impossible to handle. A typically way to handle
this problem, which is also how we handled this problem in the ”Interacting
Ensemble” program, is to do importance sampling instead. As the name in-
dicates, one try to sample only the important part of the integral, while only
having small statistics on the part of the integral that does not contribute too
much. We do this using the Metropolis algorithm, which is a type random
sampling. The Metropolis algorithm includes an acceptance of the random
step at each update of the configuration. The way this is done is that we
have a multidimensional integral of the form

< f > =

Z
dNxf(x) exp(�E(x))/

Z
dNx exp(�E(x)), (70)

where we want to use exp(�E(x)) as the probability. Each step in the
sampling consist of changing one (one can also do several) coordinate and
then calculate the di↵erence in E from one configuration to the other (�E).
One then decides to use the new configuration if

rand < exp(��E), (71)

where rand is a random number between 0 and 1. This means that in case
�E is negative, then one always accept the new configuration. After each

29



step one measure f(x), such that the integral is given by

< f > =
1

N

X
i

f
i

, (72)

whereN is the total amount of random steps and f
i

is the i’th measurement of
f(x). In this way one samples the value of f(x) much more rapidly than one
otherwise would have done. The precision of random importance sampling is
much less for small dimension integrals, but the increase in needed iteration
steps does not increase very quickly for higher dimensions, and is therefore
good for this type of problem.

Some problems one has to be careful about when using random impor-
tance sampling is first, that it only works for always positive measurements,
and second, that there can exist di↵erent sectors, separated by areas with
large E. In such cases one might end up sampling only part of the full in-
tegral, since the other part is cut of. One also has to make sure that the
probability to go from x ! y by the random number generator is the same
as for going from y ! x. If not, one will create a bias in the simulation,
that will produce wrong results. Last, a good random number generator is
required.
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4 Classical dyon interactions

In this section we explain how the classical correction to the action of a dyon
and an antidyon was obtained. We start by explaining how to prepare the
state of the two dyons. This is only an initial guess which is fixed when using
the streamline procedure. We then explain how we put the configuration on
the lattice and use the streamline procedure to minimize the action. The
resulting configuration as a function of computer time is shown, and extrap-
olated to the continuum limit and infinite volume limit, where we obtain the
correction to the action as a function of the distance between the dyons. We
also present other measurements, such as the A4 fields in di↵erent directions,
and the flux along the holonomy through di↵erent boxes.

4.1 The setting

4.1.1 Instanton-dyons and their superposition

The configurations we explore are the dyons as explained in section 2.5. In
this subsection we explain how to add two dyon configurations. This is only
an initial guess, which will be corrected by the streamline approach.

Let us just remind that “Higgsing” the SU(2) gauge theory by a nonzero
vacuum expectation value (VEV) of A4 splits three gluons into two massive
and one massless (diagonal) one, according to which the Abelian charges
are defined. In the simplest so called hedgehog gauge, in which the color
direction of the “Higgs” field at large r is directed along the unit radial
vector Am

4 ! vr̂
m

, the solutions are

Aa

4 = ±r̂
a

✓
1

r
� v coth(vr)

◆
Aa

i

= ✏
aij

r̂
j

✓
1

r
� v

sinh(vr)

◆
, (73)

where + corresponds to the M dyon and � corresponds to the M̄ dyon. r is
the length in position space. The L and L̄ dyon are obtained by a replacement
v ! 2⇡T � v and a certain time-dependent gauge change.

Any superpositions of the dyons at nonzero A4 are nontrivial since one
should match at large distances not only in magnitude, but also its direction
in color space. Those can be achieved by the following four-step procedure:
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(i) “combing”, or going to a gauge in which the “Higgs field” A3
4 = v (upper

index is color generator, lower index is the Lorentz one) at large distances is
the same in all directions and for all objects
(ii) performing a time-dependent gauge transformation which removes v com-
pletely
(iii) superimposing the dyons in this gauge
(iv) making reverse time-dependent gauge transformation, reintroducing v.

(i) Description of the “combing” procedure can be found in [27]. The
gauge matrices are rotations which put a radially directed unit vector into
±z direction. It is convenient to write those using spherical coordinates r, ✓,�
instead of Cartesian coordinates x. The plus one is

S+(x) =

0BBB@ cos( ✓2) sin( ✓2)e
�i�

�sin( ✓2)e
i� cos( ✓2)

1CCCA ,

S� is obtained by setting ✓ ! ⇡ � ✓. It should be noted that this choice
of transformation is not unique. The matrix ⌦ = S± is used in the general
gauge transformation of the gauge field

A
µ

=> A0
µ

= ⌦A
µ

⌦† � i(@
µ

⌦)⌦†, (74)

which is expressed in a standard matrix-valued form

A
µ

= Aa

µ

⌧
a

2
, (75)

where Pauli matrices divided by two are the SU(2) generators in standard
normalization.

(ii) The next gauge rotation matrix depends on euclidean time and is

⌦2 = exp(�ix4v
⌧3
2
), (76)

so the derivative term produces �v and cancels the original expectation value.
(iii) The rotated dyon and antidyon are simply added together

A
µ

= Adyon

µ

+ Aantidyon

µ

. (77)

(iv) Now one has to perform a gauge rotation, opposite to that in point
(ii), with ⌦3 = ⌦+

2 . Since these rotations commute, they just cancel each
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(a) (b)

Figure 2: Two extreme positions for the Dirac strings, for the MM̄ pair.

other except for the derivative term which puts back v at infinity. (If one
would not perform steps (ii) and (iv) but would naively do step (iii), the
expectation value of A3

4 would be 2v.)
Superimposing two dyons by such a procedure, a sum of the correctly

combed potentials, is what we call the sum ansatz. Needless to say, it is an
approximate solution only at large separation between the dyons, used only
as the starting point in our studies.

As is well known, a “combed” monopole or dyon possesses the Dirac
string, a singular gauge artifact propagating one unit of magnetic flux from
infinity to the dyon center. By selecting an appropriate gauge one can direct
the Dirac string to an arbitrary direction. Superimposing two dyons with
di↵erent directions of the Dirac string, one gets non-equivalent configurations:
the interference of singular and regular terms make the Dirac strings no longer
invisible or pure gauge artifact. (However, this is cured during the gradient
flow process, as we will discuss below.)

Two extreme selections for the Dirac strings are: (a) a “minimally con-
nected dipole” when it goes along the line connecting two dyon centers; and
(b) a “maximally disconnected” pair, in which two Dirac strings approach
two centers from the opposite directions, see Fig. 2. Under the gradient
flow the former is supposed to reach magnetically trivial configuration, while
the latter relaxes to a (pure gauge) Dirac-string-like state passing the flux
through the system, from minus to plus infinity. The former case appears
to be simpler: but our experience has shown that the type-(b) configuration
generates smaller artifacts, since the Dirac strings interfere less. We will take
the type-(b) configuration as our starting configuration.

The sum ansatz possesses certain artifacts, e.g. the Dirac strings become
visible in the action plot. This is to be expected due to interference of the
singular Dirac string with regular solution for the other dyon. Furthermore,
a correct smooth behavior at the center of each dyon is also violated, as well
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as a left-right symmetry between the dyon and antidyon.
To cure some of the artifacts one may invent certain improved profiles.

For example multiplying the “Higgs” component of the field by the factor

A3
4 ! A3

4

(x � X
M

)2(x � X
M̄

)2

[⇢2 + (x � X
M

)2][⇢2 + (x � X
M̄

)2]
, (78)

which forces the field to vanish at the centers.
However, we observed that the gradient flow procedure eliminates such

artifacts automatically, with results quite independent of the shape of the
starting configuration, so no such improvements are actually needed.

4.1.2 The gradient flow

The “force” driving gradient flow is the current

ja
µ

⌘ � �S

�Aa

µ

|
A=Aansatz = (Dab

v

Gb

vµ

)|
A=Aansatz 6= 0. (79)

For solutions of the YM equation, such as a single dyon, it vanishes at all
points. For dyon-antidyon configurations which we study it is nonzero, show-
ing the direction of the gradient flow towards the reduction of the action.

Introducing the computer time ⌧ we can write the trajectory of the re-
sulting gradient flow according to the equation

dAa

µ

d⌧
= � �S

�Aa

µ

. (80)

4.2 Dyons on the lattice

4.2.1 The gauge fields

On the lattice the representation of the gauge field is given in terms of the
so-called link variables

U
µ

(x) ⌘ Peig
R

x+ê

µ

x

A

µ

(z)dz = eigaAµ

(x+ê

µ

/2) + O(a3), (81)

where a is a lattice spacing, assumed small, and

U�µ

(x) = U †
µ

(x � ê
µ

). (82)
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The simplest gauge invariant quantity we can build using the gauge link
is the plaquette

P
µ⌫

(x) = U
µ

(x)U
⌫

(x+ ê
µ

)U †
µ

(x+ ê
⌫

)U †
⌫

(x) (83)

and with the plaquette we can define a lattice gauge action with the correct
continuum limit: S = 1

4

R
d4xF µ⌫ aF a

µ⌫

S =
2N

g2

X
x

X
µ<⌫

✓
1 � 1

2N
Tr[P

µ⌫

(x) + P †
µ⌫

(x)]

◆
. (84)

To visualize the gauge field it will be useful to plot the action density
using

s(x) =
2N

g2

0B@1 � 1

48N
Tr

264 ±4X
µ,⌫=±1
µ<⌫

(P
µ⌫

(x) + P †
µ⌫

(x))

375
1CA . (85)

Let us now translate eq. (80) into the lattice language.
All the transformations explained in section 6.2 will thus be performed

on the lattice, with the link gauge transformations

U
µ

(x) ! ⌦(x)U
µ

(x)⌦†(x+ ê
µ

). (86)

We still call it a “sum ansatz” although the terms are now multiplied in-
stead. (i) We first comb the matrix U4 by rotating it, such that U4 has no
⌧1 or ⌧2 component. (ii) We do a gauge transformation in time to make the
asymptotic value of U4 equal to the identity matrix I. (iii) We multiply the
two gauged dyon configurations. (iv) We do another gauge transformation to
reintroduce the right value of ⌧3 for the asymptotic value of U4. This leaves
an extra term when we add the two dyons given as the following element of
the temporal gauge transformation

�⌦
t

= exp(iav
⌧3
2
). (87)

The time dependent parts cancel when we reintroduce the asymptotic
value of A4, leaving �⌦t

behind. �⌦
t

is not present in U
i

since the gauge trans-
formation that remove the asymptotic value of A4 is simply ⌦(x)U

i

(x)⌦†(x).
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We therefore end with the SU(2) matrices given by

U4(x) = (88)

S+(x)U1,4(x)S
†
+(x+ ê4)�⌦t

S�(x)U2,4(x)S
†
�(x+ ê4)

U
i

(x) = (89)

S+(x)U1,i(x)S
†
+(x+ ê

i

)S�(x)U2,i(x)S
†
�(x+ ê

i

),

where U1,µ(x) and U2,µ(x) are the links of the M̄ and M dyon given in
equation (73). It should be noted that the gauge transformation S is defined
around the dyon it combs.

All time dependence is canceled, so we decided to work in 3 dimensions
only, since the gradient flow will be the same for all times.

For the MM̄ configuration we comb M with S� and M̄ with S+. The
initial configuration for LL̄ is similar. Here we comb L with S+ and L̄ with
S�. This means that the asymptotic value of A4 becomes negative instead.

Varying the action with an infinitesimal SU(2) rotation
U
µ

(x) ! (I + i⌧
k

✏
k

)U
µ

(x) one finds the standard current expression

J
µ

(x) =
X
⌫

�
P
µ⌫

(x) � P †
µ⌫

(x)
�

(90)

�
X
⌫

�
P
µ⌫

(x � ê
v

) � P †
µ⌫

(x � ê
v

)
�
,

where plaquettes P should be understood as the product of 4 links, always
started from the same point x (as needed for correct gauge covariance) in
the direction µ. All plaquettes that contain U

µ

(x) come with a plus sign and
all plaquettes that contain U †

µ

(x) come with a minus sign. The next step is
a projection onto the SU(2) color generators

J
i,µ

⌘ dtTr[i⌧
i

J
µ

(x)]. (91)

which eliminates possible contribution proportional to the unit matrix.
The matrix used for actual updates of the link variables is calculated as

L
µ

(x) =
q

J2
1,µ + J2

2,µ + J2
3,µ (92)

✓
i,µ

(x) = J
i,µ

/L
µ

(93)

C
µ

(x) = cos(L
µ

)I + i sin(L
µ

)
X
i

✓
i,µ

⌧
i

. (94)
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The multiplication of all links by C
µ

(x)

U
µ

(x) ! C
µ

(x)U
µ

(x), (95)

is our version of one step of the gradient flow. We checked that, with the dou-
ble precision code used, the link matrices remain belonging to SU(2) within
small errors, even after thousands of time steps needed in the calculation.
For small enough d⌧ the action should monotonously decrease, and indeed it
does at all times.

4.2.2 Lattice details

Since MM̄ pairs and LL̄ pairs are time independent (LL̄ pairs are time
independent in the gauge where the Higgs field is �(2⇡T � v)), the lattice
used is three-dimensional with size N3. The fields on it are not periodic. In
order to protect the expectation value of A3

4 during gradient flow, we hold
the sides of our cube constant, i.e. we don’t update the links on the edges of
the lattice.

Most of the calculations are done with 643 cubic lattice. Its size in ab-
solute units is 40/v in each dimension with a = 0.625/v, unless otherwise
specified. This might seem like a rough lattice. While all configurations be-
fore combing have su�ciently small A even at the cores, so that |aA

µ

| ⌧ 1,
after combing large fields aA ⇠ 1 do appear, coming from the Dirac string:
however those are pure gauge and they do not a↵ect the action at the stream-
line part of the process, as we will explain below.

On this setup the discretized analytic solution of one dyon is stable under
gradient flow. Its action is 5% lower than the analytic value of 4⇡v, which is
due to fields outside of our box. The absolute value of electric and magnetic
charge, calculated by the Gauss flux integrals over certain cubes near the box
surface, are both equal to ±1, inside the numerical accuracy of the double
precision code we use.

The 4-d gauge action expressed in terms of the 3-dimensional action is

S =
1

g2

Z 1/T

0

dx4S3 =
S3

g2T
, (96)

which is itself dimension full and scales as S3 ⇠ v: thus the M dyon action
is S ⇠ v/g2T . The actual value of T and the gauge coupling g are irrelevant
for our calculation of S3 since it is just an overall factor in the action S.
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Furthermore, since our classical 3d theory is scale invariant A
µ

! v�1A
µ

and r ! vr, the absolute units of v are unimportant and we can use v = 1.
In other words, all distances are in units of r ⇤ v.

Apart from the action and electric and magnetic charges, we also monitor
the presence of the Dirac strings as the system evolves.

The circulation integrals
H
dx

µ

A
µ

around the Dirac string are calculated,
by adding the phases of subsequent links in the ⌧3-direction, using the inverse
of the parameterization

U
µ

(x) = cos(�)I + i sin(�)
X
i

✓
i,µ

⌧
i

. (97)

We do observe the famous 2⇡ phase circulation at all times of the gradient
flow, indicating that the Dirac string flux through our box remains there.

4.3 Results

4.3.1 Qualitative features of the streamline

Before we present our results in detail, we would like to give a brief overview
of the findings, starting with a reminder of the streamline for the instanton-
antiinstanton case. These configurations, either in quantum mechanical set-
ting [44] or gauge fields [28], have the topological charge zero and a meaning
of tunneling forth and back, with only finite time spent in the second well
(valley). When this time is small, there is no reason for the configuration
itself to be di↵erent from zero (path or gauge fields). So, the end of the
instanton-antiinstanton streamline are the configurations with a small action
S ⇠ 1 which cannot be treated semiclassically.

The case under consideration, with the instanton-dyons, is quite di↵erent.
While two charges, the magnetic and the topological ones, still add to zero
and can annihilate each other, the electric charge remains, which adds to 2.
Our definition of charge is based on the flux through a closed surface, and
the charge density is the divergence of the field. Since the electric charge is
not conserved in this definition, there is no reason that the electric charge
has to be equal to 2 throughout the streamline.

One might think that the process is dominated by the electric charge. We
found it is not the case, and it is the behavior of the magnetic charge which
is most important.
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The gradient flow process was found to proceed via the following stages:
(i) near initiation: starting from an ansatz described above one finds rapid
reduction of the action and disappearance of artifacts related with the Dirac
strings
(ii) relatively slow and universal evolution along the streamline set. The ac-
tion decrease is small but steady. The dyons basically approach each other,
with relatively small deformations: thus the concept of an interaction poten-
tial between them makes sense at this stage
(iii) a metastable state at the streamline’s end: the action remains practically
constant, evolution is very slow and is an internal deformation of the dyons
rather than their further approach
(iv) rapid collapse into perturbative fields, plus some zero action (pure gauge)
remnants

A sample of computer time histories for the total action is shown in Fig.
3. The stage (i) corresponds to near-vertical initial evolution, stage (ii) to
declining universal line, stage (iii) to the horizontal part at the right, followed
by another vertical line of total action collapse to zero (not shown).

Crucially important is the observation that, even at the end of the stream-
line, the action value is not that far from the sum of those of the two sepa-
rated dyons. In other words, the classical interaction potential we found is
in a sense numerically small.

We observe an universality of the streamline: independent on the initial
ansatz and even initial dyon separation we find that our gradient flow pro-
ceeds through essentially the same set of configurations at stages (ii-iv). A
parameter we found most practical for their characterization is simply their
lifetime, duration, in our computer time ⌧ , from a particular configuration
to the final collapse. To emphasize that, in Fig. 3 we have drawn histories
with di↵erent initial but the same final times.

The existence of stage (iii) has not been anticipated. All configurations
corresponding to it have the same action, and, within our accuracy, the
same dyon-antidyon distance. One can perhaps lump all of them into a new
metastable configuration, a dyon-antidyon molecule. (Perhaps those can be
identifiable in the lattice gauge field ensembles.)

For configurations with the initial separation smaller than 4.2/v, we ob-
serve that dyons move away from each other, to the same metastable config-
uration.
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Figure 3: 3d-action S3 for v = 1 as a function of computer time for an initial
separation |r

M

� r
M̄

|v = 0, 2.5, 5, 7.5, 10 between the M and M̄ dyon from
right to left in the graph. The action of two well separated dyons is 23.88 for
the lattice with 643 points.

4.3.2 Parameterization of the M and M̄ Streamline

To define the “interaction potential” between dyons and antidyons we need
two things. First, we need the action S3 as a function of computer time, a
sample of which was already shown in Fig. 3. Second we need to define the
separation between the dyons, and follow it as a function of computer time
over the gradient flow. Locations of the dyons at a specific computer time
is inferred from the two maxima of the action density. We define it in each
configuration by fitting 3 points around each maximum with a second order
polynomial.

A sample of action density distribution is shown in Fig. 4.
Combining the actions and dyon separations we obtain the interaction

potential. We use the configuration that starts with a separation of 10/v
between the dyons to obtain the interaction potential, since it was the con-
figuration that started with the largest separation. The range of separations,
as always in units of 1/v, is from (slightly smaller than) r = 10/v to r = 4.2/v:
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Figure 4: Action density along the z axis in natural units for a separation
|r

M

� r
M̄

|v = 10 between the centers of the two dyons. The configuration
with the maximums furthest from each other is the initial configuration.
At computer time ⌧ = 3000 it has moved further towards the center. At
⌧ = 12000 the configuration has reached the metastable configuration with a
separation between the maximums of 4.2/v. At ⌧ = 13700 the configuration
has collapsed to a single maximum, which continues to shrink until the action
vanishes. Histories shown correspond to those displayed in Fig. 3.

at this last value the configurations collapse to pure gauge with zero action.
To understand the “IR e↵ect” of the finiteness of the box volume, we

performed calculations on 3 di↵erent lattices, 643, 803 and 963, at fixed lattice
spacing va = 40/64 ( as described above for the 643 case). In Fig. 5 we
extrapolate these results to infinite volume using the function

h(r) =

Z
r+5

�r+5

dz

Z
r

�r

dy

Z
r

�r

dx
1

(x2 + y2 + z2)2
, (98)

which is the integral of 1/r4 for a dyon sitting at z = �5, in a box of half
width r. The infinity at the origin was removed since we only needed the
long range behavior. The volume e↵ect is found to be in agreement to the
expectation that the action density falls o↵ as 1/r4.

41



Figure 5: The 3 parameters A, B and C normalized by their value at r = 1
(A1, B1 and C1) as a function of lattice half width r at va = 40/64. We
extrapolate using c+ b [h(r) � h(1)], where h(r) is defined in eq. (98).

In order to understand the “UV e↵ects” of discretization we also make
calculations for 3 di↵erent lattices, 643, 803 and 963, with variable lattice
spacing but the same volume (the same as for the 643 point setting described
in section 4.2.2). In Fig. 6 we extrapolate these results to a = 0 with a
straight line.

Using those results we extrapolated to zero spacing and infinite box, by
assuming that the two e↵ects were independent. The resulting extrapolated
curve is shown in Fig. 7 (upper curve, o↵set), to be compared to the actual
data for the largest box (lower line). The o↵set value is basically the 5% of
the action outside the box mentioned earlier. This curve is our main result.

We use the parameterization of the resulting curve of the type

S3(r) = A

✓
1 � 1

r
+B exp[�Cr]

◆
, (99)

The reason the Coulomb part has no fitted parameter, other than the overall
A, is based on the following analytic argument. Classical interaction is known
to be zero for interactions between two self-dual (or two anti-self-dual) dyons
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Figure 6: The 3 parameters A, B and C normalized by their value at a = 0
(A0, B0 and C0) as a function of the lattice spacing a. We extrapolate the
results to a = 0 with a straight line. C/C0 has been o↵set by �0.01 because
it otherwise completely overlapped A/A0.

due to the so called BPS protection. This means that the correction from the
non-Abelian part has to cancel both electric and magnetic Abelian Coulomb
attractions.

In the case we consider, the interaction of self-dual with anti-self-dual
objects, the electric and magnetic Abelian Coulombs cancel each other, while
the non-Abelian part is expected to change its sign.

We therefore expect the long range behavior for the action S3 to behave
like

S3(r ! 1) = 8⇡v + (m1m2 � e1e2)
4⇡v

rv
, (100)

wherem
i

and e
i

are the magnetic and electric charges of the two dyons and
distance is given as rv to show that all terms are proportional to 4⇡v. The
minus sign in front of the electric part, is due to the non-Abelian contribution.
For the dyon-antidyon interaction we get
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S3(r ! 1) = 8⇡v(1 � 1

rv
). (101)

Since outcome of this argument was found to be in agreement with our
numerical data, inside the errors, we decided not to include an extra param-
eter for the 1/r part. The exponential was found to describe the potential
nicely in the fitted region, while not a↵ecting long range behavior.

The values of the parameters and the errors obtained from the formal fit
(to more than thousand points corresponding to di↵erent separation during
the gradient flow process) are

A = 25.20 ± 0.01, B = 1.13 ± 0.03, C = .607 ± .004 (102)

Note that the value of the parameter A is only by 0.07 (or 0.3%) higher than
the action of two well separated dyons in continuum, S3 = 8⇡ ⇡ 25.13. This
fact confirms that our extrapolations are quite accurate, we did it as a test.
In applications, one should of course use the analytic value of A mentioned.
Note also that B is about 30 standard deviations from zero, ensuring that
an exponential term is absolutely needed.

As a last comment, we want to point out that the curve of the action S3

never becomes completely flat at r = 4.2/v as otherwise expected. On the
other hand, results with starting separations smaller than r = 4.2/v clearly
converges to the same point around r = 4.2/v. This indicates that the
technique is not perfect around this point. This is most likely due to small
changes to the shape of the action density, which were used to determine the
position. These small changes could very well be caused by the collapse we
always saw after enough time had passed.

4.3.3 Details of the Streamline

In this subsection we focus on the properties of the streamline configurations
other than the action. We will subsequently discuss: (i) How does the profile
of the “Higgs field” A3

4 change. (ii) How does the charges change; and (iii)
What happens with the Dirac strings.

4.3.3.1 Higgs Field A3
4 Before we turn to the results, let us remind that

for an individual dyon, and thus for two at large separation, the Higgs Field
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Figure 7: 3d-action S3 of the MM̄ dyon pair vs separation between the dyons
|r

M

� r
M̄

|v for a = 40/64 for 963 points (lower line) and for the extrapolated
fit (upper line). The fit has been o↵set by �S3 = �0.9 so its shape can be
visually compared to the data. The separation of the dyons is defined by
the maxima of the action density. The configuration starts at the separation
of 10/v between the dyons. The plot is terminated after the metastable
configuration. The plot contains 1243 points (1 every 10 computer times)
that makes up the fitted data.

vanishes at the center. At large distances it should be the same value and
direction: on the plots we use a positive one. One might expect that the
same shape will be maintained during the gradient flow on the streamline.

As shown in Fig. 8, this is not the case: the Higgs Field goes through
zero at the centers and gets negative, about �0.5v, in between the dyons.
The upper and lower plots are snapshots for two di↵erent evolution histories,
for an initial separation of r = 5/v, 10/v, which show the same trend.
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Figure 8: Subsequent snapshots of A3
4 along the z axis in natural units for

an initial separation of 5/v (upper) and 10/v (lower) between the center of
the 2 dyons. (upper) The configuration with the smallest field at the sides of
the plotted area is the initial configuration. At computer time ⌧ = 5000 the
minimums have risen slightly, but is overall the same shape. At ⌧ = 9400
the configuration has started collapsing. At ⌧ = 10000 the configuration
has collapsed to one minimum completely. (lower) The configuration with
the smallest field at the sides of the plotted area is the initial configuration.
At computer time ⌧ = 3000 the minimums have moved slightly towards
the middle and the minimums have become smaller. At ⌧ = 10000 the
configuration has reached the stable almost flat area in the action. At ⌧ =
14000 the configuration has collapsed completely to an almost flat region
between the initial positions of the dyons.
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4.3.3.2 The Charges The electric and magnetic charges inside certain
sub-boxes are calculated via the Gauss surface integrals. Total initial charges
for theMM̄ configuration should be 2 for electric charges, and 0 for magnetic
charges.

We further study charge locations using di↵erent sized boxes. These sub-
boxes are all centered around the origin, with one dyon at z = 2.5/v and
one dyon at z = �2.5/v. Total widths of the sub-boxes used are 38.75/v,
28.75/v, 18.75/v and 8.75/v, while the width of the entire box used is 40/v.
Time evolution of the electric charge inside all sub-boxes is shown in Fig.
9. We observe that all charges are very stable for about 10000 time steps
of the gradient flow, though we do see a small decrease in the total electric
charge, after which the electric charge quickly goes down for all boxes. This
happens at the same time as the action starts to drop as well. The fact that
the smallest box shows zero sharply, while the largest sub-box still contains
about half of the charge 5000 time steps later, suggests that the electric
charge moves out of the box gradually.

Figure 9: Electric charge for v = 1 as a function of computer time for an
initial separation |r

M

� r
M̄

|v = 5 between the dyons. The electric charge
inside sub-boxes of width 38.75/v, 28.75/v, 18.75/v and 8.75/v, centered at
the origin.
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Since the total magnetic charge is zero, we cut each of the boxes described
above in half in the xy-plane, through the origin. That meant that only one
dyon would be inside the sub-box. The time evolution of the magnetic charge
inside the largest half-sub-box is shown in Fig. 10. The magnetic charge is
very stable and close to 1, but collapses to 0. The moment is the same as
that for the action collapse. We thus conclude that the magnetic structure
is crucially important for the preservation of the individual solitons.

Figure 10: Magnetic charge for v = 1 as a function of computer time for an
initial separation |r

M

� r
M̄

|v = 5 between the dyons. The magnetic charge
is found from a sub-box that goes from the middle of our lattice in z (the
dyons are separated along the z-axis) and to the edge, while filling up the
entire part of the x and y-axis. The drop happens at the same time as the
drop in action.

4.3.3.3 The Dirac Strings We now look at the Dirac strings. While
those are gauge transformation artifacts, we still wonder whether the mag-
netic flux they carry is there or not, through the gradient flow process. To
observe the Dirac string we evaluate the phase of the spatial square loopH
dx

µ

A
µ

/(2⇡) winding around a string as explained in section 4.2. We plot
the space of the spatial loop along the z-axis for an initial configuration of
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r = 5/v in Fig. 11 taken at the beginning (upper plot) and at the end of the
process (lower plot), with loops of di↵erent size.

Figure 11: The phase from the strings divided by 2⇡ for a M and M̄ dyon
at an initial separation |r

M

� r
M̄

|v = 5 along the z axis in natural units.
(upper) Taken at the beginning of the simulation and (lower) taken at the
end of the simulation. The line is for a square loop with the sides of one link,
the dashed is for 5 links and the dotdashed is for 21 links.

For the smallest (square) loop used the phase takes a value close to 0 in
between the two strings: there is no string there. Increasing the size of the
loop, the phase gets closer and closer to 2⇡, as expected. The pictures are
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very similar, and so the conclusion is that Dirac strings hardly change during
the gradient flow process.

4.3.4 LL̄ pairs

The LL̄ pair has been studied in the gauge where the L dyons are constant
in time. The overall result is the same as for the MM̄ case and we therefore
only point out the di↵erence.

While the L and L̄ dyons are time dependent in the gauge where hA3
4i = v,

we can still explore the configuration in the time independent gauge before
the time dependent gauge transformation is done. In the time independent
gauge the Higgs field points in the negative direction with a value of 2⇡T �v.
To put hA3

4i = v we need to do a time dependent gauge transformation, but
this should not a↵ect the results.

Since nothing di↵erent from the MM̄ pairs happens for the charge and
action we won’t show those graphs. More interesting is the Higgs field which
after a time dependent gauge transformation looks like in Fig. 12 for initial
configuration (upper) and for the configuration after the rapid drop in the
action (lower).
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Figure 12: A3
4 for the LL̄ dyon pair along the separation of the two dyons

(z-axis), in natural units, at the beginning (upper) and end (lower) of the
simulation for an initial separation of |r

L

�r
L̄

|v = 5. The dyons had 2⇡T�v =
1 and the time dependent gauge transformation has been performed to make
the Higgs field at infinity equal to 1.

It is seen how the valleys are now instead a mountain for the L and L̄
dyons, since we have gauged the results such that hA3

4i = 1. After gauging
back to the gauge where hA3

4i = v, we find that A3
4 have gained a time depen-

dent core. This time dependent core comes from the ⌧1 and ⌧2 component of
A4 which have become non-zero around the origin as shown in Fig. 13. The
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A3
4 component which is the mountain shown in Fig. 12 (lower), stays time

independent.

Figure 13: A1
4 and A2

4 along the separation of the L and L̄ dyon (z-axis) for
an initial separation of |r

L

� r
L̄

|v = 5, at the end of simulation, before the
extra time dependent gauge transformation has been done.

When one do the time dependent gauge transformation, the time de-
pendence that A4 do gain is only for the ⌧1 and ⌧2 component of A4, since
exp(i⇡Tx4⌧3)⌧(1,2) = ⌧(1,2) exp(�i⇡Tx4⌧3). This means that the gauge trans-
formation that puts hA3

4i = v will mix the ⌧1 and ⌧2 component of A4 with a
time dependent phase.
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5 Ensemble of Instanton-Dyons

In this section we build an ensemble of instanton-dyons. We first show a toy
model of an excluded volume model. The factors in the toy model partition
function are similar to our final goal of an interacting ensemble, and gives
therefore a nice idea of the expected behavior. We then explain the inter-
actions which we will use in the interacting ensemble. The main property
we want to numerically find is the free energy. This will be done by find-
ing the expectation value of the action for di↵erent values of the coupling
constant, which will be integrated up to the free energy. We explore the
free energy density for a variety of di↵erent values of the holonomy, coupling
constant, densities of dyons and cuto↵ mass. By finding the configuration
with the smallest free energy density, we find the dominating configuration,
and therefore the behavior that dominates the vacuum. This is the main
result for this section, and will be presented as a function of coupling con-
stant/temperature. Mainly the Polyakov loop and the density of the dyons
are interesting.

5.1 An excluded volume model

To understand the main physics involved and the qualitative behavior of
the ensemble, including the confinement phase transition, we start with a
discussion of a simplified model in which the only interaction is the repulsive
core, making the volume occupied by each particle unavailable to others. It
is similar in spirit to that proposed by Shuryak and Sulejmanpasic [32], but
is somewhat closer technically to the simulations to follow.

We work with dimensionless quantities, defining the 3-volume as Ṽ3 =
T 3V3, the density n

i

= N

i

Ṽ3
, and the free energy density as F

T Ṽ3
= f . More

information on units and notations can be found in section 5.5.
The e↵ect of the excluded volume is accounted for in a very schematic

way, by cutting o↵ the partition function when the amount of available vol-
ume vanishes. The volume of the M and L dyons scale as 1/⌫3 and 1/⌫̄3

respectively, with ⌫̄ = 1� ⌫. We thus define the partition function as a sum
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limited from above by some “close packing” condition

Z =
Ṽ3/(Ṽ0)<M/⌫

3+L/⌫̄

3X
M,L

exp

✓
�Ṽ3

4⇡2

3
⌫2⌫̄2

◆
(103)

⇥


1

M !L!
(Ṽ3d⌫)

M(Ṽ3d⌫̄)
L

�2
d
⌫

= ⇤⌫8⌫/3S2 exp(�S⌫) (104)

S =
8⇡2

g2
. (105)

Without the upper limit, the free energy density log(Z)/Ṽ3 is dominated by
the maximum �4⇡2

3 ⌫
2⌫̄2 + 2(d

⌫

+ d
⌫̄

), the perturbative Gross-Pisarski-Ya↵e
(GPY) potential plus the contribution of the noninteracting dyons. In this
non-interacting limit, the parameter d

⌫

, the semiclassical dyon amplitude,
coincides with their density. The parameter S is in fact the classical action
of the caloron, or L+M system. The square comes from assuming the same
amount of dyons and antidyons.

In the confining phase, ⌫ = ⌫̄ = 1/2, all dyons have the same sizes, and
it is easy to introduce the excluded volume, for N dyons via

Ṽ N

3 ! Ṽ3

⇣
Ṽ3 � V

excluded

)...(Ṽ3 � (N � 1)V
excluded

⌘
.

However, in general L,M dyons have di↵erent sizes, the analogous expression
becomes cumbersome. Experimenting with those, we observe that similar
results are obtained by simply cutting out the sum at “closed packing”, when
there is no volume left, Ṽ3 < Ṽ0(M/⌫3 + L/⌫̄3). where Ṽ0 is the excluded
volume normalized for a dyon at ⌫ = 1.

Using Sterlings formula n! ⇡ p
2⇡n

�
n

e

�
n

for a large volume, we rewrite
the sum as

Z ⇡
Ṽ3/(Ṽ0)<M/⌫

3+L/⌫̄

3X
M,L

exp


� Ṽ3

✓
4⇡2

3
⌫2⌫̄2

�2n
M

ln


d
⌫

e

n
M

�
� 2n

L

ln


d
⌫̄

e

n
L

�◆�
. (106)

The free energy given by F (⌫) = �T logZ depends on ⌫, located in the
cuto↵, in the dyon parameter d

⌫

, and in the GPY potential V
GPY

. If domi-
nant, the GPY term would select trivial holonomy ⌫ = 0 or ⌫̄ = 0, so to push
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for a nontrivial ⌫ ⇠ 1/2 needed for confinement, the dyon densities should
be large enough.

The expression (106) is put into Mathematica and the maximum is found,
for large enough volume, say V = 900. One finds a sharp peak in N dis-
tribution, defining the density. Finding the maximum as we vary ⌫, we get
f(⌫) = �logZ/Ṽ3 plotted in Fig. 14. At smaller g (larger action S and
higher temperature T ) the dyons are more suppressed and the free energy
density f has a minimum at smaller ⌫. For increasing coupling g (decreasing
S and T ), the minimum shifts from zero, eventually to its confining value
⌫ = 1/2. For twice larger excluded volume the density may get too small to
have confinement with physically meaningful negative f .

A more familiar plot is obtained if, instead of plotting ⌫ one plots the av-
erage Polyakov loop < P >= cos(⇡⌫), versus S, see Fig. 15. The parameter
S grows monotonously with T and thus can be mapped to it (see details in
section 5.5). So, in this model the Polyakov loop continuously goes to 0, the
confinement regime, at some critical S

c

, slightly smaller than 6.
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3

packing” condition

Z =

Ṽ3/(Ṽ0)<M/�3+L/�̄3X
M,L

exp

✓
� ˜V3

4�2

3

�2�̄2

◆
(2)

⇥
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M !L!

(

˜V3d�)

M
(

˜V3d�̄)

L

�2

d� = ��8�/3S2
exp(�S�) (3)

S =

8�2

g2
. (4)

Without the upper limit, the free energy density is sim-

ply log(Z)/ ˜V3 ! � 4�2

3 �2�̄2
+2(d� +d�̄), the perturbative

Gross-Pisarski-Ya�e (GPY) potential plus the contribu-

tion of the noninteracting dyons. In this non-interacting

limit, the parameter d� – the semiclassical dyon ampli-

tude – coincides with their density. The parameter S is

in fact the classical action of the caloron, or L + M sys-

tem. The square comes from assuming the same amount

of dyons and antidyons.

In the confining phase, � = �̄ = 1/2, all dyons have

the same sizes, and it is easy to introduce the excluded

volume, for N dyons via

˜V N
3 ! ˜V3

⇣
˜V3 � Vexcluded)...( ˜V3 � (N � 1)Vexcluded

⌘
.

However, in general L, M dyons have di�erent sizes, the

analogous expression becomes cumbersome. Experiment-

ing with those, we observe that similar results are ob-

tained by simply cutting out the sum at “closed packing”,

when there is no volume left,

˜V3 < ˜V0(M/�3
+ L/�̄3

).

where

˜V0 is the excluded volume normalized for a dyon

at � = 1.

Using Sterlings formula n! ⇡ p
2�n

�
n
e

�n
for a large

volume, we rewrite the sum as

Z =

Ṽ3/(Ṽ0)<M/�3+L/�̄3X
M,L

exp


� ˜V3

✓
4�2

3

�2�̄2

�2nM ln


d�e
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�
� 2nL ln


d�̄e

nL

� ◆�
. (5)

The free energy given by F (�) = �T logZ depends on

�, located in the cuto�, in the dyon parameter d� , and

in the GPY potential VGPY . If dominant, the GPY term

would select trivial holonomy � = 0 or �̄ = 0, so to push

for a nontrivial � ⇠ 1/2 needed for confinement, the dyon

densities should be large enough.

The expression (5) is put into Mathematica and the

maximum is found, for large enough volume, say V =

900. One finds a sharp peak in N distribution, defining

the density. Finding the maximum as we vary �, we get

f(�) = �logZ/ ˜V3 plotted in Fig. 1 . At smaller g (larger

S and higher T ) the dyons are more suppressed and the

free energy density f has a minimum at smaller �. For

increasing coupling g (decreasing S and T ), the minimum

shifts from zero, eventually to its confining value � = 1/2.
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FIG. 1: (Color online). Free energy density f as function of
holonomy �, for � = 0.5 and Ṽ0 = 0.3, for upper and Ṽ0 = 0.6
for the lower plot. Three curves correspond to g = 4, 3.5, 3,
bottom to top, in the upper figure and g = 4, 3.5, 3.25 in the
bottom one. It is seen how the maximum as a function of g
goes further and further towards the confining value of 1/2 as
g goes up, and S and T go down.

For twice larger excluded volume the density may get too

small to have confinement with physically meaningful –

negative – f .

A more familiar plot is obtained if, instead of plot-

ting � one plots the average Polyakov loop < P >=

cos(��), versus S, see Fig. 2. The parameter S grows

monotonously with T and thus can be mapped to it (see

details in A). So, in this model the Polyakov loop con-

tinuously goes to 0 – the confinement regime – at some

critical Sc, slightly smaller than 6.

In Fig. 3 we show the densities of di�erent type (M
and L) dyons, di�erent at above the deconfinement tran-

sition. Direct evidences for nM > nL in the deconfined

phase have been found on the lattice. We will see sim-

ilar plots from of numerical simulations below: those of

course would include the dyon interactions.

III. THE INSTANTON-DYON INTERACTIONS

The leading order classical dyon-antidyon interaction,

recently studied in our previous paper [15] are the central

new element of this paper. We use a slightly di�erent

Figure 14: Free energy density f as function of holonomy ⌫, for ⇤ = 0.5 and
Ṽ0 = 0.3, for upper and Ṽ0 = 0.6 for the lower plot. Three curves correspond
to g = 4, 3.5, 3, bottom to top, in the upper figure and g = 4, 3.5, 3.25 in the
bottom one. It is seen how the maximum as a function of g goes further and
further towards the confining value of 1/2 as g goes up, and action S and
temperature T go down.
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FIG. 2: (Color online). Polyakov loop P as a function of
action parameter S for � = 0.5 and Ṽ0 = 0.3.
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FIG. 3: (Color online). Densities n
i

of i = M or i = L dyons
as a function of the action parameter S, for � = 0.5 and
Ṽ0 = 0.3. Note that the two densities are di�erent at S > 6.

parameterization of it

�SDD̄ = �2

8�2�

g2
(

1

x
� 1.632e�0.704x

)

x = 2��rT, (6)

for distances larger than x > 4, the repulsive core size.

At distance x = 4 the streamline terminates a metastable

configuration, followed by annihilation of the magnetic

charges.

If dyons are put at smaller distances, they repel till

distance 4, before annihilation. Those configurations

were not yet studied in detail, and thus our potential

for x < 4 constitutes a reasonable guess. Below distance

x0 = r0T (2��) the potential is described by

�SDD̄ =

�V0

1 + exp [�(x � x0)]
, (7)

referred to as a “core”. Its scale by � is due to general

scaling behavior of the dyon sizes.

Let us also remind the long-distance behavior of the

potentials. Selfdual soliton interacting with antiselfdual

one have abelian electric and magnetic forces canceling

each other. Another long-range interaction comes via A4

and the non-linearity of the field strength tensor. Its

coe�cient is fixed in another channel, L+M (calorons)

where both electric and magnetic Abelian e�ects are at-

tractive, and yet the total interaction is zero due to PBS

protection

VLM = (e1e2 + m1m2 � 2h1h2)
4�

g2

1

r
= 0. (8)

Returning to M ¯L, L ¯M channel, one expect the non-

Abelian term simply to change sign. This conclusion that

has been checked by us numerically, see latest version of

[15].

The volume element of the metric in the space of collec-

tive variables is used in the form of the so called Diakonov

determinant

p
g = detG (9)

G = �mn�ij(4��m � 2

X
k �=i

1

T |xi,m � xk,m| (10)

+2

X
k

1

T |xi,m � xk,p �=m| )

+2�mn
1

T |xi,m � xj,n| � 2�m �=n
1

T |xi,m � xj,n| ,

where xi,m denote the position of the i’th dyon of type m.

This form is an interpolation of the exact metric between

a M and L dyon, true at any distance, with the metric of

the two dyons of same type at large distances. We intro-

duce a cuto� on the separation via r !
p

r2
+ cutoff2

,

such that for one pair of dyons of same type, the diagonal

goes to 0 for � = 0.5, instead of minus infinity. We use

the same metric for the antidyons also.

When the density of M and L dyons are di�erent,

the total electric charge is nonzero. We therefore reg-

ularize all the Coulombic terms by certain screening

r ! reMDrT
, referred to as the Debye mass. With this

the interaction is given by

�SDD̄ =

8�2�

g2

✓
(e1e2 � 2h1h2)

1

x
+ m1m2

1

x

◆
e�MDrT

x = 2��rT, (11)

for r larger than the core of size x0/(2��T ) for all com-

binations except between dyons and their antidyon. For

the dyon antidyon potential we have

�SDD̄ = �2

8�2�

g2
(

1

x
� 1.632e�0.704x

)e�MDrT

x = 2��rT. (12)

We include the core for both dyon antidyon interactions,

but also for dyon dyon interactions due to the lack of a

repulsion, which otherwise destroys the simulation. We

hope that such an interaction can be found due to cor-

rections to the metric between dyons of the same type.

�SDD̄ =

�V0

1 + exp [�T (x � x0)]
(13)

x = 2��rT.

Figure 15: Polyakov loop P as a function of action parameter S for ⇤ = 0.5
and Ṽ0 = 0.3.
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FIG. 2: (Color online). Polyakov loop P as a function of
action parameter S for � = 0.5 and Ṽ0 = 0.3.
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FIG. 3: (Color online). Densities n
i

of i = M or i = L dyons
as a function of the action parameter S, for � = 0.5 and
Ṽ0 = 0.3. Note that the two densities are di�erent at S > 6.

parameterization of it

�SDD̄ = �2

8�2�

g2
(

1

x
� 1.632e�0.704x

)

x = 2��rT, (6)

for distances larger than x > 4, the repulsive core size.

At distance x = 4 the streamline terminates a metastable

configuration, followed by annihilation of the magnetic

charges.

If dyons are put at smaller distances, they repel till

distance 4, before annihilation. Those configurations

were not yet studied in detail, and thus our potential

for x < 4 constitutes a reasonable guess. Below distance

x0 = r0T (2��) the potential is described by

�SDD̄ =

�V0

1 + exp [�(x � x0)]
, (7)

referred to as a “core”. Its scale by � is due to general

scaling behavior of the dyon sizes.

Let us also remind the long-distance behavior of the

potentials. Selfdual soliton interacting with antiselfdual

one have abelian electric and magnetic forces canceling

each other. Another long-range interaction comes via A4

and the non-linearity of the field strength tensor. Its

coe�cient is fixed in another channel, L+M (calorons)

where both electric and magnetic Abelian e�ects are at-

tractive, and yet the total interaction is zero due to PBS

protection

VLM = (e1e2 + m1m2 � 2h1h2)
4�

g2

1

r
= 0. (8)

Returning to M ¯L, L ¯M channel, one expect the non-

Abelian term simply to change sign. This conclusion that

has been checked by us numerically, see latest version of

[15].

The volume element of the metric in the space of collec-

tive variables is used in the form of the so called Diakonov

determinant

p
g = detG (9)

G = �mn�ij(4��m � 2

X
k �=i

1

T |xi,m � xk,m| (10)

+2

X
k

1

T |xi,m � xk,p �=m| )

+2�mn
1

T |xi,m � xj,n| � 2�m �=n
1

T |xi,m � xj,n| ,

where xi,m denote the position of the i’th dyon of type m.

This form is an interpolation of the exact metric between

a M and L dyon, true at any distance, with the metric of

the two dyons of same type at large distances. We intro-

duce a cuto� on the separation via r !
p

r2
+ cutoff2

,

such that for one pair of dyons of same type, the diagonal

goes to 0 for � = 0.5, instead of minus infinity. We use

the same metric for the antidyons also.

When the density of M and L dyons are di�erent,

the total electric charge is nonzero. We therefore reg-

ularize all the Coulombic terms by certain screening

r ! reMDrT
, referred to as the Debye mass. With this

the interaction is given by

�SDD̄ =

8�2�

g2

✓
(e1e2 � 2h1h2)

1

x
+ m1m2

1

x

◆
e�MDrT

x = 2��rT, (11)

for r larger than the core of size x0/(2��T ) for all com-

binations except between dyons and their antidyon. For

the dyon antidyon potential we have

�SDD̄ = �2

8�2�

g2
(

1

x
� 1.632e�0.704x

)e�MDrT

x = 2��rT. (12)

We include the core for both dyon antidyon interactions,

but also for dyon dyon interactions due to the lack of a

repulsion, which otherwise destroys the simulation. We

hope that such an interaction can be found due to cor-

rections to the metric between dyons of the same type.

�SDD̄ =

�V0

1 + exp [�T (x � x0)]
(13)

x = 2��rT.

Figure 16: Densities n
i

of i = M or i = L dyons as a function of the action
parameter S, for ⇤ = 0.5 and Ṽ0 = 0.3. Note that the two densities are
di↵erent at S > 6.

In Fig. 16 we show the densities of di↵erent type (M and L) dyons,
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di↵erent above the deconfinement transition.

5.2 The instanton-dyon interactions

The leading order classical dyon-antidyon interactions, studied in previous
section 4 are the central new element in this section. We use a slightly
di↵erent parameterization of it

�S
DD̄

= �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)

x = 2⇡⌫rT, (107)

since this parameterization fit on a couple of points below the metastable
configuration at x = 4.2. This was needed since cutting o↵ the potential with
a hard-core at 4.2 excludes a too large volume. We instead will introduce a
hard core at x0 = 2 which is approximately the distance where configurations
are immediately pushed out of. It should be noted that the specific value is
chosen by us, and should be considered a parameter in the model.

If dyons are put at smaller distances, they repel till distance 4.2, before
annihilation. Those configurations were not yet studied in detail, and thus
our potential for x < 4.2 constitutes a reasonable guess. Below distance
x0 = r0T (2⇡⌫) the potential is described by

�S
DD

=
⌫V0

1 + exp [�(x � x0)]
, (108)

referred to as a “core”. Its scale by ⌫ is due to general scaling behavior of
the dyon sizes.

Let us also remind the long-distance behavior of the potentials. Self-dual
soliton interacting with anti-self-dual one have Abelian electric and magnetic
forces canceling each other. Another long-range interaction comes via A4 and
the non-linearity of the field strength tensor. Its coe�cient is fixed in another
channel, L+M (calorons) where both electric and magnetic Abelian e↵ects
are attractive, and yet the total interaction is zero due to PBS protection

V
LM

= (e1e2 +m1m2 � 2h1h2)
4⇡

g2
1

r
= 0. (109)

Returning to ML̄,LM̄ channel, one expect the non-Abelian term simply to
change sign as explained in section 4.3.2. We therefore have that h

i

= e
i

.
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The volume element of the metric in the space of collective variables is
used in the form of the so called Diakonov determinant [27]

p
g = detG (110)

G = �
mn

�
ij

(4⇡⌫
m

� 2
X
k 6=i

1

T |x
i,m

� x
k,m

| (111)

+2
X
k

1

T |x
i,m

� x
k,p 6=m

|)

+2�
mn

1

T |x
i,m

� x
j,n

| � 2�
m 6=n

1

T |x
i,m

� x
j,n

| ,

where x
i,m

denote the position of the i’th dyon of type m. This form is
an interpolation of the exact metric between a M and L dyon, true at any
distance, with the metric of the two dyons of same type at large distances.
We introduce a cuto↵ on the separation via r ! p

r2 + cutoff 2, such that
for one pair of dyons of same type, the diagonal goes to 0 for ⌫ = 0.5, instead
of minus infinity. We use the same metric for the antidyons also.

When the density of M and L dyons are di↵erent, the total electric charge
is nonzero. We therefore regularize all the Coulombic terms and the Diakonov
determinant by certain screening r ! reMD

rT , referred to as the Debye mass.
With this the interaction is given by

�S
DD̄

=
8⇡2⌫

g2

✓
�e1e2

1

x
+m1m2

1

x

◆
e�M

D

rT

x = 2⇡⌫rT, (112)

for r larger than the core of size x0/(2⇡⌫T ) for all combinations except be-
tween dyons and their antidyon. See Table 2 for the charges. For the dyon
antidyon potential we use

�S
DD̄

= �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�M

D

rT

x = 2⇡⌫rT. (113)

We include the core for both dyon antidyon interactions, but also for dyon
dyon interactions due to the lack of a repulsion, which otherwise destroys
the simulation (LL, MM , L̄L̄, M̄M̄ , LL̄ and MM̄). We hope that such an
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interaction can be found due to corrections to the metric between dyons of
the same type.

�S
DD

=
⌫V0

1 + exp [�T (x � x0)]
(114)

x = 2⇡⌫rT.

M M̄ L L̄
g2S

cl

/(8⇡2) ⌫ ⌫ 1 � ⌫ 1 � ⌫
Q

T

⌫ �⌫ 1 � ⌫ ⌫ � 1
e 1 1 -1 -1
m 1 -1 -1 1

Table 2: (Same as Table 1) Quantum numbers of the four di↵erent kinds
of instanton-dyons for SU(2) gauge theory. The rows are classical action
S
cl

, topological charge Q
T

, electric charge e and magnetic charge m. The
antidyons have a bar over the letter.

5.3 The setup

Like in [33], instead of the usual toroidal box with periodic boundary condi-
tions in all coordinates, our simulations have been done on a S3 sphere (in
four dimensions), to simplify treatment of the long range Coulombic forces.
In this pilot study we fix the total number of dyons to 64. We do not use
supercomputers or clusters, relying instead on multiple cores of a standard
GPU of one standard computer.

The radius of the sphere together with the ratio of M dyons to L dyons
have been used to change their density.

Iteration of the system is defined as a loop in which each dyon has had
its position changed and the new action has then been accepted with the
probability of exp(��S) via the Metropolis algorithm. The typical number
of iterations for equilibration is 400 and productive runs after equilibration
are typically 1600 iterations.

In order to get the free energy we also use a standard method. One can
di↵erentiate with respect to an auxiliary parameter � introduced in front of
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the action and get

e�F (�)/T =

Z
Dx exp(��S(x)) (115)

@F

@�
= T hSi. (116)

Since the free energy at � = 0 is known analytically, one can integrate up
to get the free energy at � = 1. When we do this we of course need to be
careful about regions with a quick change in the action.

For the calculation of detG it has been observed by Bruckmann et al
[45] that it only makes sense if all eigenvalues are positive. It was observed
[45] that, for randomly placed dyons this is typically not the case, unless
density is very low. In [46] this issue has been discussed further, with a
conclusion that the Diakonov determinant can remain positive definite at
higher densities needed, but only provided certain correlations in the dyon
locations are enforced. We have therefore used the Householder QR algorithm
together with tri-diagolization of the matrix G [43] to find the eigenvalues.
We also redefine the potential as follows:

If all eigenvalues are positive

V
D

= � log[Det(G)] : V
D

< V
max

(117)

V
D

= V
max

: V
D

> V
max

(118)

and for one or more negative eigenvalues

V
D

= V
max

. (119)

The excluded volume from the regions of negative eigenvalues are there, yet
at the same time we do not create a region where the configuration can be
trapped inside the region of negative eigenvalues. Excluded volume induces
strong variation of the free energy at small �: so we found it necessary to
integrate the free energy up to � = 0.1 finely with 10 points. From � = 0.1
to � = 1 we use 9 points. V

max

= 100 was used.
In the simulation, all interactions are assumed to have Yukawa-like large

distance behavior with certain Debye screening mass M
D

. Since our “box
size” can be defined as the distance between poles of our sphere, ⇡ ⇤r. In the
smallest box we have a box size of about 4 units. The smallest Debye mass
employed is, in the same units, 2. Thus the exponential tails are e�M

D

r = e�8,
and all long range artifacts are well suppressed.
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That finite volume e↵ects are not important was tested on a few configura-
tions as shown in Fig. 17, since it is not possible to do it for all configurations
due to the computational power needed. We find that the configurations do
indeed give the same results for double the volume in the area of interest,
and only at densities higher than explored in this dissertation do we see a
di↵erence. The di↵erence at higher densities is due to the sharpened behav-
ior of hS(�)i, and should be fixed in case one want to do higher total number
of dyons, by increasing the density of points in the integration to obtain the
free energy F.

5

IV. THE SETUP

Like in [17], instead of the usual toroidal box with peri-

odic boundary conditions in all coordinates, our simula-

tions have been done on a S3
sphere (in four dimensions),

to simplify treatment of the long range Coulombic forces.

In this pilot study we fix the total number of dyons to

64. We do not use supercomputers or clusters, relying

instead on multiple cores of standard GPU’s of one stan-

dard computer.

The radius of the sphere together with the ratio of M

dyons to L dyons have been used to change their density.

Iteration of the system is defined as a loop in which

each dyon has had its position changed and the new

action has then been accepted with the probability of

exp(��S) via the Metropolis algorithm. The typical

number of iterations, for equilibration is 400 and produc-

tive runs after equilibration are typically 1600 iterations.

In order to get the free energy we also use a standard

method. One can di�erentiate with respect to an aux-

iliary parameter � introduced in front of the action and

get

e�F (�)/T
=

Z
Dx exp(��S(x)) (14)

�F

��
= T hSi. (15)

Since the free energy at � = 0 is known analytically, one

can integrate up to get the free energy at � = 1. When

we do this we of course need to be careful about regions

with a quick change in the action.

For the calculation of det G it has been observed by

Bruckmann et al [18] that it only make sense if all eigen-

values are positive. It was observed [18] that, for ran-

domly placed dyons this is typically not the case, unless

density is very low. In [16] this issue has been discussed

further, with a conclusion that the Diakonov determinant

can remain positive definite at higher densities needed,

but only provided certain correlations in the dyon loca-

tions are enforced. We have therefore used the House-

holder QR algorithm together with tri-diagolization of

the matrix G [19] to find the eigenvalues. We also rede-

fine the potential as follows:

If all eigenvalues are positive

VD = � log[Det(G)] : VD < Vmax (16)

VD = Vmax : VD > Vmax (17)

and for one or more negative eigenvalues

VD = Vmax. (18)

The excluded volume from the regions of negative eigen-

values are there, yet at the same time we do not create

a region where the configuration can be trapped inside

the region of negative eigenvalues. Excluded volume in-

duces strong variation of the free energy at small �: so

we found it necessary to integrate the free energy up to
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FIG. 4: (Color online). Free Energy density f as a function of
density n for N

Total

= 64 (sphere) and N
Total

= 128 (square)
at � = 0.5 and N

M

= N
L

.

� = 0.1 finely with 10 points. From � = 0.1 to � = 1 we

use 9 points. Vmax = 100 was used.

In the simulation, all interactions are assumed to have

Yukawa-like large distance behavior with certain Debye

screening mass MD. Since our “box size” can be defined

as the distance between poles of our sphere, � ⇤ r. In the

smallest box we have a box size of about 4 units. The

smallest Debye mass employed is, in the same units, 2.

Thus the exponential tails are e�MDr
= e�8

, and all IR

artifacts are well suppressed.

This was tested on a few configurations as shown in

Fig. 4, since it is not possible to do it for all configura-

tions due to the computational power needed. We find

that the configurations do indeed give the same results

for double the volume in the area of interest, and only

at densities higher than explored in this paper do we see

a di�erence. The di�erence at higher densities is due

to the sharpened behavior of < S(�) >, and should be

fixed in case one want to do larger volumes, by increasing

the density of points in the integration to obtain the free

energy F.

V. THE DYON BACK REACTION:
HOLONOMY POTENTIAL

Lattice gauge simulations had shown how the peak of

the holonomy distribution shifts to its confining value at

T < Tc. The corresponding e�ective potential V (�, T )

has been numerically studies and parameterized, used in

various models such as the so called Polyakov-Nambu-

Jona-Lasinio model (PNJL).

Now our task is to derive this potential, stemming from

the back reaction of the instanton-dyons. We add the

perturbative GPY potential VGPY eq. (A2) to the dyon

free energy obtained from our simulations and determine

the total free energy of the system (obviously, assuming

that there are no other relevant non-perturbative contri-

butions). The dyon-induced partition function is further

Figure 17: Free Energy density f as a function of density n for N
Total

=
64 (sphere) and N

Total

= 128 (square) at ⌫ = 0.5, M
D

= 2, S = 6 and
n = n

M

= n
L

. Volume e↵ects are seen to not be important in the region of
interest around n = 0.3 and di↵erence is expected to come from the sharper
shape of hS(�)i in the case of N

Total

= 128, which require a higher amount
of points to obtain the free energy F.

5.4 The dyon weights in the partition function

To obtain the contribution of the dyons to the partition function we start
from the KvBLL caloron partition function [26] as shown in eq. (64), though
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without the linear term in the exponential

Z
KvBLL

=

Z
d3z1d

3z2T
6C

✓
8⇡2

g2

◆✓
e
� 8⇡

2

g

2

◆✓
1

Tr12

◆ 5
3

⇥ (2⇡ + 4⇡2⌫⌫̄Tr12)(2⇡⌫Tr12 + 1)
8⌫

3 �1

⇥ (2⇡⌫̄Tr12 + 1)
8⌫̄

3 �1 exp(�V3T
34⇡

2

3
⌫2⌫̄2). (120)

Taking the limit to very dilute situation we find that all powers of Tr12 not
in the exponential cancel, and we end with

Z
KvBLL

=

Z
d3z1d

3z2T
6C

✓
8⇡2

g2

◆✓
e
� 8⇡

2

g

2

◆
⇥ (2⇡⌫)

8⌫

3 (2⇡⌫̄)
8⌫̄

3
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The term in the exponential is the Gross-Pisarski-Ya↵e (GPY) holonomy
potential. The Diakonov determinant, which we have included, is seen to
return to a product of the holonomies in the dilute limit

lim
Tr12!1

detG =
Y
i

4⇡⌫
i

. (122)

By comparison we see that we have to take equation (121) and divide by
equation (122) in order to get the correct weight for our partition function.
We thus end up with the partition function for a M and L dyon given by
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We redefine the constant ⇤ so the equation is easier to work with

Z
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5.5 Units and holonomy

The main physical quantity of the problem is the temperature T : it defines
the magnitude of the A3

4 = 2⇡⌫T (holonomy), the physical size of the dyons
and every other dimensional parameter of the problem. Yet, precisely because
of its omnipresence in the theory, one can (excluding temperature corrections
to the coupling constant) cancel all powers of T . At this level, our theory
has only dimensionless input parameters. Most of them, the dimensionless
dyon densities, holonomy and the the Debye screening mass, will be defined
selfconsistently, from the minimum of the free energy. The remaining input
will be the instanton action parameter S, used in many plots in the text.

Standard euclidean formulation of the gauge theory at finite temperature
T introduces periodic (Matsubara) time ⌧ defined on a circle with a period
equal to the inverse temperature 1/T . The exponential of the gauge invariant
integral over this circle, known as the Polyakov line

P =
1

N
c

Tr


Path

✓
exp[i

I
A3

4(�
3/2)d⌧ ]

◆�
, (125)

is gauge invariant due to periodicity. Here �3 is the 3rd Pauli matrix.
As a function of temperature its expectation value hP i changes from 1 at

high T to (near) zero at the deconfinement temperature T
c

. In SU(2) gauge
theory which we will discuss, hP i = cos(⌫⇡), and the holonomy parameter (or
just holonomy, for short) ⌫ changes from 0 to 1/2. What remains unknown
is the physical origin of this potential.

Perturbatively, the e↵ect of the holonomy is the appearance of nonzero
masses of quarks and (non-diagonal) gluons, and the corresponding Gross-
Pisarski-Ya↵e holonomy potential [42]

V
GPY

(⌫)

T 4V3
=

(2⇡)2⌫2⌫̄2

3
, (126)

where V3 is the 3-volume of the box and

⌫̄ = 1 � ⌫ (127)

is “dual holonomy”. We proceed in the text to use dimensionless units for
volume Ṽ3 = T 3V3, densities nM

= N

M

Ṽ3
, n

L

= N

L

Ṽ3
, distances rT = x and free

energy density F

T Ṽ3
= f . Potential V

GPY

has a minimum at trivial holonomy
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⌫ = 0 and a maximum at confining holonomy ⌫ = 1/2, thus disfavoring
confinement.

In the next approximation the so called quantum loop e↵ects are incorpo-
rated. As is well known, they lead to a running coupling constant. Thus the
action parameter (and all others, of course) become a function of the basic
physical scale given by the temperature T . For example, recalling classical
instanton action and the asymptotic freedom formula

S(T ) =
8⇡2

g2(T )
= b · ln

✓
T

⇤

◆
, b =

11

3
N

c

, (128)

with the power given by the one-loop beta function. If so, the semiclassical
factors defining the caloron density now depend on T , basically as a power

n
calorons

(T )

T 4
⇠ e�S ⇠

✓
⇤

T

◆
b

. (129)

Since the caloron density has been measured on the lattice at di↵erent T ,
one can test this expression against the lattice data. In fact it does work,
see Fig. 1 of Ref. [32], which confirms that the topological solitons remain
semiclassical at the temperatures we discuss.

The value of the parameter ⇤ in the expression for S above is chosen such
that T = 1 at the critical temperature.

5.6 The dyon back reaction: holonomy potential

Lattice gauge simulations had shown how the peak of the holonomy distri-
bution shifts to its confining value at T < T

c

. The corresponding e↵ective
potential V (⌫, T ) has been numerically studied and parameterized, used in
various models such as the so called Polyakov-Nambu-Jona-Lasinio model
(PNJL).

Now our task is to derive this potential, stemming from the back reaction
of the instanton-dyons. We add the perturbative GPY potential V

GPY

eq.
(126) to the dyon free energy obtained from our simulations and determine
the total free energy of the system (obviously, assuming that there are no
other relevant non-perturbative contributions). The dyon-induced partition
function is further split into two factors: one containing all factors which
depend on parameters unchanged in the simulations, and the second one
related to dyons’s collective variables.

Z = Z
unchanged

Z
changed

. (130)
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The weight for one caloron (L+M pair) was explicitly calculated in [26]: at
zero holonomy it agrees with the instanton result by ’t Hooft. Part of the
answer is the factor coming from the metric volume element

p
g in the space

of L,M collective variables. Later Diakonov [27] combined this result with
the previously known answer for the metric of two monopoles of the same
kind (e.g. M,M pair) into an elegant expression for any number of L,M
dyons now called Diakonov determinant detG.

Taking the dilute limit r12 ! 1 in both cases, both formulas reduce to
the same r12 dependence and one finds that the caloron weight from [26]
needs to be divided by the factor (4⇡⌫)(4⇡⌫̄) (see section 5.4)

Z
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3
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Note that at the trivial holonomy ⌫ ! 0 limit, Z
unchanged

is ⇠ 1/⌫: it is to
be canceled by the diagonal part of det(G).

We need to do the simulation for di↵erent amount of M and L dyons. As
discussed in section 2.7, we divide the weight into a M part and a L part,
and sum over all number of particles

Z
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=
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where we use that the amount of dyons and antidyons are the same. We

66



simplify this as
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Z
changed

is the interactions explained in section 5.2 and thus also depends
on the number of particles

Z
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=
1

Ṽ 2(N
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M

)
3
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)/Ṽ3, (134)

normalized such that Z
changed

= 1 for no interactions included. Dyon 2-point
interactions �D

DD

is a sum over all classical corrections for the di↵erent
dyon to dyon combinations
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. (135)

Combining Z
changed

with Z
unchanged

we get in the limit Ṽ3 ! 1
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For Ṽ3 ! 1 the partition function is completely dominated by the max-
imum of the exponent. In this limit, finding the free energy corresponds to
finding the minimum of
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Note that as the dyon density increases, it changes its shape, producing
a non-trivial minimum at ⌫ 6= 0. Furthermore, at high density this minimum
moves to ⌫ = 1/2, the confining value.
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5.7 Self Consistency

The partition function we simulate depends on several parameters, changed
from one simulation set to another. Those include (i) the number of the
dyons N

M

, N
L

; (ii) the radius of the S3 sphere r; (iii) the action parameter
S; (iv) the value of the holonomy ⌫, (v) the value of the Debye mass M

D

; (vi)
the auxiliary factor �, which is then integrated over as explained in section
5.3. 6

split into two factors: one containing all factors which de-

pend on parameters unchanged in the simulations, and

the second one related to dyons’s collective variables.

Z = ZunchangedZchanged. (19)

The weight for one caloron (L + M pair) was explicitly

calculated in [20]: at zero holonomy it agrees with the

instanton result by ’t Hooft. Part of the answer is the

factor coming from the metric volume element

p
g in the

space of L, M collective variables. Later Diakonov [12]

combined this result with the previously known answer

for the metric of two monopoles of the same kind (e.g.

M, M pair) into an elegant expression for any number of

L, M dyons now called Diakonov determinant det G.

Taking the dilute limit r12 ! 1 in both cases both

formulas reduce to the same r12 dependence and one finds

that the caloron weight from [20] needs to be divided by

the factor (4��)(4��̄) (see appendix C)
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Note that at the trivial holonomy � ! 0 limit, Zunchanged

is ⇠ 1/�: it is to be canceled by the diagonal part of the

det(G) in the second part.

We need to do the simulation for di�erent amount of

M and L dyons. We divide the weight into a M part and

a L part, and sum over all number of particles
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where we use that the amount of dyons and antidyons is

the same. We simplify this as
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Zchanged is the interactions explained in section III and

thus also depends on the number of particles

Zchanged =

1

˜V 2(NL+NM )
3

Z
D3x det(G) exp(��DDD̄(x))

�f ⌘ � log(Zchanged)/ ˜V3, (23)
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FIG. 5: (Color online). Free Energy density f as a function of
� at S = 6, M

D

= 2 and N
M

= N
L

= 16. The di�erent curves
corresponds to di�erent densities. • n = 0.53, ⌅ n = 0.37,
⌥ n = 0.27, N n = 0.20, H n = 0.15, � n = 0.12. Not all
densities are shown.

normalized such that Zchanged = 1 for no interactions

included. Combining Zchanged with Zunchanged we get in

the limit

˜V3 ! 1
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For

˜V3 ! 1 the partition function is completely domi-

nated by the maximum of the exponent. Finding the free

energy corresponds to finding the minimum of
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Note that as the dyon density increases, it changes

its shape, producing a non-trivial minimum at � 6= 0.

Furthermore, at high density this minimum moves to � =

1/2, the confining value.

VI. SELF CONSISTENCY

The partition function we simulate depends on several

parameters, changed from one simulation set to another.

Those include (i) the number of the dyons NM , NL; (ii)

the radius of the S3
sphere r; (iii) the action parameter

S; (iv) the value of the holonomy �, (v) the value of the

Debye mass MD; (vi) the auxiliary factor �, which is then

integrated over as explained in section IV.

In principle, the aim of our study is to obtain the de-

pendence of the free energy on all of those parameters (i-

v). While the practical cost of the simulations restricts

Figure 18: Free Energy density f as a function of ⌫ at S = 6, M
D

= 2 and
N

M

= N
L

= 16. The di↵erent curves corresponds to di↵erent densities. •
n = 0.53, ⌅ n = 0.37, ⌥ n = 0.27, N n = 0.20, H n = 0.15, � n = 0.12. Not
all densities are shown.

In principle, the aim of our study is to obtain the dependence of the
free energy on all of those parameters (i-v). While the practical cost of
the simulations restricts the number of points one can study, we still had
generated more than hundred thousand runs and multiple plots. However,
most of it neither can nor should be included. Since our physics goal is to
understand the back reaction of the dyon ensemble on the holonomy, we
study the range of holonomies, from ⌫ = 0 to ⌫ = 1/2, and only then locate
its minimum. As for the Debye mass, we will find it from the potential and
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then show only the “selfconsistent” input set.
What we actually need to describe at the end is not the free energy

in the whole multi-dimensional space of all parameters, but the location
of the free energy minima. The resulting set should be of co-dimension 1,
since the original physical setting of the problem, the gauge theory at finite
temperature, has only one input parameter, T .

Using the definition of the Debye mass g

2

4⇡2
@

2
f

@

2
⌫

= M2
D

for fixed density we
get the configurations response to changing the holonomy which is the Debye
mass. We require that the used value for the Debye mass is the same as the
one found from the derivative of f , or atleast not more than 0.4 below the
used value.

The results shows that as the Debye mass goes towards zero around the
phase transition. The only configuration that is consistent with this is that
of equal M and L dyons.

5.8 The physical results

We now show only the results which fulfill the self-consistency requirement.
Without fermions the results are symmetric in ⌫ ! 1 � ⌫ and we therefore
only show for ⌫  1/2. We have included the Diakonov determinant, though
its impact is not too great due to the not so small Debye mass which has
been calculated using 3 points. The results here are shown for a wall of
x0 = 2, which was chosen in order to have a large enough density of dyons to
overcome the purturbative potential, without completely making the GPY
potential irrelevant. We used ⇤ = 1.5 to obtain a phase shift around S = 6.
Action is related to temperature as explained in section 5.5. This should of
course be fitted to numerical data, but the present data on dyons does not
have a high enough e�ciency of detection to do this. The action goes up to
S = 13, beyond this value the number of L dyons become too close to 1, and
we would need a higher total of dyons to proceed.

Due to the repulsive Coulomb term between dyons and antidyons of dif-
ferent type, the free energy preferred to have a large Debye mass due to
cutting o↵ this repulsion. This meant that when the free energy spectrum as
a function of holonomy for a fixed density becomes flat, the small Debye mass
created a rise in energy. This resulted in a small jump in holonomy, since
the configurations with holonomy ⌫ = 0.5 but with slightly higher density
than the flat ones, would end up with a smaller free energy. As a result we
do not get a completely smooth transition, though that is hidden by the size
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of the errors as seen in Fig. 19 and it also means that at S = 6 the Debye
mass never goes completely to zero, as shown in Fig. 20, and the density
goes slightly more up also as shown in Fig. 21. 7

the number of points one can study, we still had gen-

erated more than hundred thousand runs and multiple

plots. However, most of it neither can nor should be

included in the paper. Since our physics goal is to un-

derstand the back reaction of the dyon ensemble on the

holonomy, we study the range of holonomies, from � = 0

to � = 1/2, and only then locate its minimum. As for

the Debye mass, we will find it from the potential and

then show only the “selfconsistent” input set.

What we actually need to describe at the end is not

the free energy in the whole multi-dimensional space of

all parameters, but the location of the free energy min-

ima. The resulting set should be of co-dimension 1, since

the original physical setting of the problem – the gauge

theory at finite temperature – has only one input param-

eter, T .

Using the definition of the Debye mass
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changing the holonomy which is the Debye mass. We

require that the used value for the Debye mass is the

same as the one found from the derivative of F , or atleast

not more than 0.4 below the used value.

The results shows that as the Debye mass goes towards

zero around the phase transition the only configuration

that is consistent with this is that of equal M and L
dyons.

VII. THE PHYSICAL RESULTS

We now show only the results which fulfill the self-

consistency requirement. Without fermions the results

are symmetric in � ! 1 � � and are therefore only for

�  1/2. We have included the Diakonov determinant,

though its impact is not too great due to the not so small

Debye mass which has been calculated using 3 points.

The results here are shown for a wall of x0 = 2, which was

chosen in order to have a large enough density of dyons to

overcome the purturbative potential, without completely

making the GPY potential irrelevant. We used � = 1.5
to obtain a phase shift around S = 6. Action is related

to temperature as explained in appendix A. This should

of course be fitted to numerical data, but the present

data on dyons does not have a high enough e�ciency

of detection to do this. The action goes up to S = 13,

beyond this value the number of L dyons become too

close to 1, and we would need a higher total of dyons to

proceed.

Due to the repulsive Coulomb term between dyons and

antidyons of di�erent type, the free energy preferred to

have a large Debye mass due to cutting o� this repul-

sion. This meant that when the free energy spectrum

as a function of holonomy for a fixed density becomes

flat, the small Debye mass created a rise in energy. This

resulted in a small jump in holonomy, since the configura-

tions with holonomy � = 0.5 but with slightly higher den-

sity than the flat ones, would end up with a smaller free

energy. As a result we do not get a completely smooth
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transition, though that is hidden by the size of the errors

as seen in Figure 6 and it also means that at S = 6 the

Debye mass never goes completely to zero, as shown in

Figure 7, and the density goes slightly more up also as

shown in Fig. 8.

Figure 19: Self-consistent value of the holonomy ⌫ (upper plot) and Polyakov
line (lower plot) as a function of action S (lower scales), which is related to
T/T

c

(upper scales). The error bars are estimates based on the fluctuations
of the numerical data.
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the number of points one can study, we still had gen-

erated more than hundred thousand runs and multiple

plots. However, most of it neither can nor should be

included in the paper. Since our physics goal is to un-

derstand the back reaction of the dyon ensemble on the

holonomy, we study the range of holonomies, from � = 0

to � = 1/2, and only then locate its minimum. As for

the Debye mass, we will find it from the potential and

then show only the “selfconsistent” input set.

What we actually need to describe at the end is not

the free energy in the whole multi-dimensional space of

all parameters, but the location of the free energy min-

ima. The resulting set should be of co-dimension 1, since

the original physical setting of the problem – the gauge

theory at finite temperature – has only one input param-

eter, T .
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changing the holonomy which is the Debye mass. We

require that the used value for the Debye mass is the

same as the one found from the derivative of F , or atleast

not more than 0.4 below the used value.

The results shows that as the Debye mass goes towards

zero around the phase transition the only configuration

that is consistent with this is that of equal M and L
dyons.

VII. THE PHYSICAL RESULTS

We now show only the results which fulfill the self-

consistency requirement. Without fermions the results

are symmetric in � ! 1 � � and are therefore only for

�  1/2. We have included the Diakonov determinant,

though its impact is not too great due to the not so small

Debye mass which has been calculated using 3 points.

The results here are shown for a wall of x0 = 2, which was

chosen in order to have a large enough density of dyons to

overcome the purturbative potential, without completely

making the GPY potential irrelevant. We used � = 1.5
to obtain a phase shift around S = 6. Action is related

to temperature as explained in appendix A. This should

of course be fitted to numerical data, but the present

data on dyons does not have a high enough e�ciency

of detection to do this. The action goes up to S = 13,

beyond this value the number of L dyons become too

close to 1, and we would need a higher total of dyons to

proceed.

Due to the repulsive Coulomb term between dyons and

antidyons of di�erent type, the free energy preferred to

have a large Debye mass due to cutting o� this repul-

sion. This meant that when the free energy spectrum

as a function of holonomy for a fixed density becomes

flat, the small Debye mass created a rise in energy. This

resulted in a small jump in holonomy, since the configura-

tions with holonomy � = 0.5 but with slightly higher den-

sity than the flat ones, would end up with a smaller free

energy. As a result we do not get a completely smooth
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P

FIG. 6: Self-consistent value of the holonomy � (upper plot)
and Polyakov line (lower plot) as a function of action S (lower
scales), which is related to T/T

c

(upper scales). The error bars
are estimates based on the fluctuations of the numerical data.
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FIG. 7: (Color online). Self-consistent value of the Debye
Mass M

D

as a function of action S (lower scale) which is
related to T/T

c

(upper scale). The error bars are estimates
based on the fluctuations of the numerical data. Points rep-
resent lattice data from [21] as a function of T/T

c

.

transition, though that is hidden by the size of the errors

as seen in Figure 6 and it also means that at S = 6 the

Debye mass never goes completely to zero, as shown in

Figure 7, and the density goes slightly more up also as

shown in Fig. 8.

Figure 20: Self-consistent value of the Debye MassM
D

as a function of action
S (lower scale) which is related to T/T

c

(upper scale). The error bars are
estimates based on the fluctuations of the numerical data. Points represent
lattice data from [47] as a function of T/T

c

.
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(lower line). The error bars are estimates based on the density
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FIG. 9: (Color online). Self-consistent value of the Free en-
ergy density f as a function of action S (lower scale) which is
related to T/T

c

(upper scale).

When we are in the confined region we observe the

free energy for a fixed density as a single minimum in

the middle at � = 0.5. As the action S increases, the

density of dyons decrease and it becomes more favorable

to have some bigger, but lighter dyons, thus shifting the

minimum away from the confining value of the Polyakov

loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.

This, at the same time, makes the lighter M dyons more

abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-

tions behaves as a liquid with a cuto� at small range.

We show the case for S = 6 in Fig. 11 for MM and

ML. Note the correlation function CMM vanishes at

small distances due to the core. The other correlation

function CML for ML, displays attraction even at small

distances, tripling the density at r = 0. The integrated

number of particles in the region in which the correlation

function CML(r) > 1 is 0.50 particles, while for CMM it

P

f

FIG. 10: (Color online). (Not-self-consistent in holonomy �)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.

C
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FIG. 11: (Color online). Correlation function C
ij

for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
to the core.

corresponds to 0.34 particles: thus the di�erence is not

that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-

scribe how the deconfinement phase transition happens.

We were reaching for a self-consistent description of the

system, in which all parameters being at the values cor-

n
M

n
L

Figure 21: Density n of M and L dyons as a function of action S (lower
scale) which is related to T/T

c

(upper scale) for M dyons(higher line) and
L dyons (lower line). The error bars are estimates based on the density of
points and the fluctuations of the numerical data.
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dyons) as a function of action S (lower scale) which is related
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(upper scale) for M dyons(higher line) and L dyons
(lower line). The error bars are estimates based on the density
of points and the fluctuations of the numerical data.
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When we are in the confined region we observe the

free energy for a fixed density as a single minimum in

the middle at � = 0.5. As the action S increases, the

density of dyons decrease and it becomes more favorable

to have some bigger, but lighter dyons, thus shifting the

minimum away from the confining value of the Polyakov

loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.

This, at the same time, makes the lighter M dyons more

abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-

tions behaves as a liquid with a cuto� at small range.

We show the case for S = 6 in Fig. 11 for MM and

ML. Note the correlation function CMM vanishes at

small distances due to the core. The other correlation

function CML for ML, displays attraction even at small

distances, tripling the density at r = 0. The integrated

number of particles in the region in which the correlation

function CML(r) > 1 is 0.50 particles, while for CMM it
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FIG. 10: (Color online). (Not-self-consistent in holonomy �)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.
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FIG. 11: (Color online). Correlation function C
ij

for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
to the core.

corresponds to 0.34 particles: thus the di�erence is not

that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-

scribe how the deconfinement phase transition happens.

We were reaching for a self-consistent description of the

system, in which all parameters being at the values cor-

Figure 22: Self-consistent value of the free energy density f as a function of
action S (lower scale) which is related to T/T

c

(upper scale).

When we are in the confined region we observe the free energy for a fixed
density as a single minimum in the middle at ⌫ = 0.5. As the action S
increases, the density of dyons decrease and it becomes more favorable to
have some bigger, but lighter dyons, thus shifting the minimum away from
the confining value of the Polyakov loop, P = 0, as can be seen in Fig. 23
for S = 6, 7, 9. This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

73



8

S

T/T
c

n

FIG. 8: (Color online). Density n (of an individual kind of
dyons) as a function of action S (lower scale) which is related
to T/T

c

(upper scale) for M dyons(higher line) and L dyons
(lower line). The error bars are estimates based on the density
of points and the fluctuations of the numerical data.

S

T/T
c

f

FIG. 9: (Color online). Self-consistent value of the Free en-
ergy density f as a function of action S (lower scale) which is
related to T/T

c

(upper scale).

When we are in the confined region we observe the

free energy for a fixed density as a single minimum in

the middle at � = 0.5. As the action S increases, the

density of dyons decrease and it becomes more favorable

to have some bigger, but lighter dyons, thus shifting the

minimum away from the confining value of the Polyakov

loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.

This, at the same time, makes the lighter M dyons more

abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-

tions behaves as a liquid with a cuto� at small range.

We show the case for S = 6 in Fig. 11 for MM and

ML. Note the correlation function CMM vanishes at

small distances due to the core. The other correlation

function CML for ML, displays attraction even at small

distances, tripling the density at r = 0. The integrated

number of particles in the region in which the correlation

function CML(r) > 1 is 0.50 particles, while for CMM it
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FIG. 10: (Color online). (Not-self-consistent in holonomy �)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.
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FIG. 11: (Color online). Correlation function C
ij

for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
to the core.

corresponds to 0.34 particles: thus the di�erence is not

that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-

scribe how the deconfinement phase transition happens.

We were reaching for a self-consistent description of the

system, in which all parameters being at the values cor-

Figure 23: (Not-self-consistent in holonomy ⌫) free energy density f , here
shown as a function of the value of the holonomy (in form of the Polyakov
loop P ) at S = 6, 7, 9. The lower the action the lower the minimum of the
free energy.

Due to the size of the Debye mass, the correlation functions behaves
as a liquid with a cuto↵ at small range. We show the case for S = 6 in
Fig. 24 for MM and ML. Note the correlation function C

MM

vanishes
at small distances due to the core. The other correlation function C

ML

for ML, displays attraction even at small distances, tripling the density at
r = 0. For S = 6, the integrated number of particles in the region in
which the correlation function C

ML

(r) > 1 is 0.50 particles, while for C
MM

it corresponds to 0.34 particles: thus the di↵erence is not that large.
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(lower line). The error bars are estimates based on the density
of points and the fluctuations of the numerical data.
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FIG. 9: (Color online). Self-consistent value of the Free en-
ergy density f as a function of action S (lower scale) which is
related to T/T

c

(upper scale).

When we are in the confined region we observe the

free energy for a fixed density as a single minimum in

the middle at � = 0.5. As the action S increases, the

density of dyons decrease and it becomes more favorable

to have some bigger, but lighter dyons, thus shifting the

minimum away from the confining value of the Polyakov

loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.

This, at the same time, makes the lighter M dyons more

abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-

tions behaves as a liquid with a cuto� at small range.

We show the case for S = 6 in Fig. 11 for MM and

ML. Note the correlation function CMM vanishes at

small distances due to the core. The other correlation

function CML for ML, displays attraction even at small

distances, tripling the density at r = 0. The integrated

number of particles in the region in which the correlation

function CML(r) > 1 is 0.50 particles, while for CMM it
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FIG. 10: (Color online). (Not-self-consistent in holonomy �)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ij

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

C
ij

FIG. 11: (Color online). Correlation function C
ij

for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
to the core.

corresponds to 0.34 particles: thus the di�erence is not

that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-

scribe how the deconfinement phase transition happens.

We were reaching for a self-consistent description of the

system, in which all parameters being at the values cor-

Figure 24: Correlation function C
ij

for MM and ML for S = 6 (upper) and
S = 9 (lower). In the MM case the correlation function vanishes at small
distances due to the core.

5.9 Possible improvements

In this round of simulations we have been able to describe how the decon-
finement phase transition happens. We were reaching for a self-consistent
description of the system, in which all parameters are at the values corre-
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sponding to the free energy minima.
Yet the self-consistency of the calculation remains in a way incomplete.

In this subsection we make one more step towards it, but, as we will soon
see, further ones may perhaps be needed.

We started this work with an idealized classical solution minimizing clas-
sical Yang-Mills action, the BPS solution, with zero holonomy potential.
Quantum fluctuations in one-loop order generates the GPY potential. Fur-
thermore, our ensemble of many dyons also contribute, resulting in a po-
tential displaying confinement. The calculated Debye mass is of the right
magnitude.

One may now wonder how the presence of the holonomy potential a↵ects
the dyon solution itself. Let us add a (simplified) potential

V
M

D

=
M2

D

2

✓
v � 1

2
Tr(⌧3U4)

◆2

(138)

and look for the action minimum. For technical reasons, instead of solving
nonlinear di↵erential equations, we minimized the action using the gradient
flow for a single dyon on the lattice. The resulting action as a function of
the Debye mass is shown in Fig. 25 and the shape of the solutions in Fig.
26. One can see, that the role of a nonzero Debye mass is to suppress the
tails of the fields. This, in turn, somewhat increases the action.
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FIG. 12: Action S3 of a single dyon as a function of Debye
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responding to the free energy minima.

Yet the self-consistency of the calculation remains in a

way incomplete. In this section we make one more step

towards it, but, as we will soon see, further ones may

perhaps be needed.

We start this work with an idealized classical solution

minimizing classical Yang-Mills action, the BPS soliton,

with zero holonomy potential. Quantum fluctuations in

one-loop order generates the GPY potential. Further-

more, our ensemble of many dyons also contribute, re-

sulting in a potential displaying confinement. The calcu-

lated Debye mass is of the right magnitude.

One may now wonder how the presence of the holon-

omy potential a�ects the dyon solution itself. Let us add

a (simplified) potential

VMD =

M2
D

2

(v � Tr(�3U4))
2

(26)

and look for the action minimum. For technical rea-

sons, instead of solving nonlinear di�erential equations,

we minimized the action using the gradient flow for a sin-

gle dyon on the lattice. The resulting action as a function

of the Debye mass is shown in Fig. 12 and the shape of

the solutions in Fig. 13. One can see, that the role of a

nonzero Debye mass is to suppress the tails of the fields.

This, in turn, somewhat increases the action.

To illustrate the e�ect of the increased dyon action

on the ensemble, consider an example. For the confined

holonomy � = 0.5 at Tc with MD = 2.2 we get an action

of 35 per dyon, compared to 28 for MD = 0. As a result

the free density of dyons becomes 1.7 times smaller.

Further improvements may be done including higher

order quantum corrections. We have just demonstrated

that the action and size of a dyon are modified by the

holonomy potential. Obviously, other ingredients, such

as the zero mode metric and the nonzero mode determi-

nant, are modified as well. In principle, it is known how

to approach this problem: since our configurations are al-

ready defined on the lattice, one can switch in quantum

fluctuations, following standard lattice definition. A vari-

ant of the lambda-trick can produce the value of quantum

rv

A3
4

FIG. 13: (Color online). Higgs field A3
4 of a single dyon, along

the z-axis, through the center of the dyon for di�erent Debye
masses. From top to button: M

D

/v = 0, M
D

/v = 0.45 and
M

D

/v = 1.41.

corrections to the deformed non-BPS dyons as well. At

this point this calculation is not yet done.

The reason we mention it here is related with the fol-

lowing comment. For the pure holonomy, in the bulk,

the field strengths and thus classical action are zero. The

GPY potential is non-zero result of a one loop calcula-

tion [2]. Two-loop correction has been calculated recently

[22] and the result is proportional to the first order re-

sult, with the factor 1 � 5/S + ..., where S = 8�2/g2
.

One finds therefore that for the values of the parameter

S ⇠ 6 � 10 we work with, this two-loop correction is not

small: so the holonomy itself is not classical, it is subject

to strong quantum fluctuations.

Two-loop and three-loop corrections to instants are

only calculated so far in quantum mechanical models, and

similar calculations for gauge theory instants and dyons

are of interest. We do not expect those to be as large as

for the holonomy potential: in quantum mechanics it is

of the type 1 � 1/S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it

should be possible to understand confinement (as well

as chiral symmetry breaking) via statistical mechanics in

terms of collective coordinates of certain topological soli-

tons goes back to 1970’s. Four decades later we now are

able to calculate the contribution of the topology to the

holonomy potential and explain why its minimum shifts

to the confining value at T < Tc.

In particular, by identifying classical interaction be-

tween instanton-dyons [15] and including them in direct

Monte-Carlo simulation of the ensemble, together with

one-loop e�ects in the measure, we calculated the free

energy as a function of all parameters of the model, such

as the value of the holonomy, dyon densities, and the De-

bye mass. We then proceed to one-parameter set of its

minimum, corresponding to dependence on the only left

variable, the temperature. The results display the de-

Figure 25: Action S3 of a single dyon as a function of Debye mass over
holonomy M

D

/v in the potential described by eq. (138) normalized by the
action S0 for M

D

= 0.
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responding to the free energy minima.

Yet the self-consistency of the calculation remains in a

way incomplete. In this section we make one more step

towards it, but, as we will soon see, further ones may

perhaps be needed.

We start this work with an idealized classical solution

minimizing classical Yang-Mills action, the BPS soliton,

with zero holonomy potential. Quantum fluctuations in

one-loop order generates the GPY potential. Further-

more, our ensemble of many dyons also contribute, re-

sulting in a potential displaying confinement. The calcu-

lated Debye mass is of the right magnitude.

One may now wonder how the presence of the holon-

omy potential a�ects the dyon solution itself. Let us add

a (simplified) potential

VMD =

M2
D

2

(v � Tr(�3U4))
2

(26)

and look for the action minimum. For technical rea-

sons, instead of solving nonlinear di�erential equations,

we minimized the action using the gradient flow for a sin-

gle dyon on the lattice. The resulting action as a function

of the Debye mass is shown in Fig. 12 and the shape of

the solutions in Fig. 13. One can see, that the role of a

nonzero Debye mass is to suppress the tails of the fields.

This, in turn, somewhat increases the action.

To illustrate the e�ect of the increased dyon action

on the ensemble, consider an example. For the confined

holonomy � = 0.5 at Tc with MD = 2.2 we get an action

of 35 per dyon, compared to 28 for MD = 0. As a result

the free density of dyons becomes 1.7 times smaller.

Further improvements may be done including higher

order quantum corrections. We have just demonstrated

that the action and size of a dyon are modified by the

holonomy potential. Obviously, other ingredients, such

as the zero mode metric and the nonzero mode determi-

nant, are modified as well. In principle, it is known how

to approach this problem: since our configurations are al-

ready defined on the lattice, one can switch in quantum

fluctuations, following standard lattice definition. A vari-

ant of the lambda-trick can produce the value of quantum
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the z-axis, through the center of the dyon for di�erent Debye
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/v = 0.45 and
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/v = 1.41.

corrections to the deformed non-BPS dyons as well. At

this point this calculation is not yet done.

The reason we mention it here is related with the fol-

lowing comment. For the pure holonomy, in the bulk,

the field strengths and thus classical action are zero. The

GPY potential is non-zero result of a one loop calcula-

tion [2]. Two-loop correction has been calculated recently

[22] and the result is proportional to the first order re-

sult, with the factor 1 � 5/S + ..., where S = 8�2/g2
.

One finds therefore that for the values of the parameter

S ⇠ 6 � 10 we work with, this two-loop correction is not

small: so the holonomy itself is not classical, it is subject

to strong quantum fluctuations.

Two-loop and three-loop corrections to instants are

only calculated so far in quantum mechanical models, and

similar calculations for gauge theory instants and dyons

are of interest. We do not expect those to be as large as

for the holonomy potential: in quantum mechanics it is

of the type 1 � 1/S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it

should be possible to understand confinement (as well

as chiral symmetry breaking) via statistical mechanics in

terms of collective coordinates of certain topological soli-

tons goes back to 1970’s. Four decades later we now are

able to calculate the contribution of the topology to the

holonomy potential and explain why its minimum shifts

to the confining value at T < Tc.

In particular, by identifying classical interaction be-

tween instanton-dyons [15] and including them in direct

Monte-Carlo simulation of the ensemble, together with

one-loop e�ects in the measure, we calculated the free

energy as a function of all parameters of the model, such

as the value of the holonomy, dyon densities, and the De-

bye mass. We then proceed to one-parameter set of its

minimum, corresponding to dependence on the only left

variable, the temperature. The results display the de-

Figure 26: Higgs field A3
4 of a single dyon, along the z-axis, through the center

of the dyon for di↵erent Debye masses. From top to button: M
D

/v = 0,
M

D

/v = 0.45 and M
D

/v = 1.41.

To illustrate the e↵ect of the increased dyon action on the ensemble,
consider an example. For the confined holonomy ⌫ = 0.5 at T

c

with M
D

= 3
we get an action of 32 per dyon, compared to 25 for M

D

= 0. As a result
the free density of dyons becomes 2.3 times smaller.

Further improvements may be done including higher order quantum cor-
rections. We have just demonstrated that the action and size of a dyon are
modified by the holonomy potential. Obviously, other ingredients, such as
the zero mode metric and the nonzero mode determinant, are modified as
well.

Another important observation is the following. For the pure holonomy,
in the bulk, the field strengths and thus classical action are zero. The GPY
potential is non-zero as a result of a one loop calculation [42]. Two-loop
correction has been calculated recently [48] and the result is proportional to
the first order result, with the factor 1 � 5/S + ..., where S = 8⇡2/g2. One
finds therefore that for the values of the parameter S ⇠ 6�10 we work with,
this two-loop correction is not small: so the holonomy itself is not classical,
it is subject to strong quantum fluctuations.
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Two-loop and three-loop corrections to instantons are only calculated so
far in quantum mechanical models, and similar calculations for gauge theory
instantons and dyons are of interest. We do not expect those to be as large
as for the holonomy potential: in quantum mechanics it is of the type 1�1/S
instead.
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6 Dyons and Fermions

In this section we focus on including fermions in the fundamental represen-
tation into the ensemble of interacting dyons.

The instanton-dyons have a certain number of zero modes prescribed by
the topological index theorem. Topology ensures that any smooth defor-
mation of the objects themselves does not shift fermionic eigenvalues from
zero. The fermions will be included through the corrections to fermionic zero
modes dude to overlap between self-dual and anti-self-dual sectors, which
break the zero modes and create a zero mode zone (ZMZ), when the ensem-
ble is dense enough. The main physical phenomenon associated with ZMZ is
the spontaneous breaking of the SU(N

f

) chiral symmetry, “chiral breaking”
for short. For an ensemble of instantons, this phenomenon has been studied
in great detail in the 1980s and 1990s, for a review see [9].

Physical (antiperiodic in time direction) fermions have zero modes on
the L dyons. The zero modes produce the simplest e↵ect of the dynamical
fermions, binding of the L̄L dyon pairs into “molecules”, studied by Shuryak
and Sulejmanpasic [39]. The first numerical simulations with fermions were
done by Faccioli and Shuryak [33], who studied 1, 2 and 4 flavor theory with
the SU(2) color: they found chiral symmetry breaking in the first two cases,
but the last one, N

f

= 4 appeared marginal. Many technical aspects in this
section follows their setting.

We follow the idea in these paper in order to obtain the chiral condensate
from the eigenvalue distribution of the zero mode zone. Since the simulations
were done at finite volume, there are finite volume e↵ects on the eigenvalue
distributions that a↵ect the chiral condensate, which we have to understand.
We obtain the shape of the zero mode zone and finite volume e↵ects from
random matrix theory, which enable us to extract the chiral condensate from
the volume scaling behavior of the zero mode zone. Similar to previous
section, we then find the dominating free energy, which give the Polyakov
loop and density of dyons and now also the chiral condensate as a function
of coupling constant/temperature.

This section is structured as follows: in section 6.1 we describe the physics
of the fermionic zero modes and the technical tool, the hopping matrix, used
to evaluate the fermionic determinant. We then explain the general setting of
the interactions in section 6.2. After that we show how the chiral condensate
is obtained from the eigenvalue distribution in section 6.3 and the mass gap
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is discussed in section 6.3.3. The data sets used and how they were analyzed
are explained in section 6.4. We end with the physical results in section 6.5,
where we show, among others, the Polyakov loop and the chiral condensate’s
dependence on temperature.

6.1 The Zero Mode Zone

The main approximation made by us, similar to what was done in the in-
stanton ensemble, is that the set of all fermionic states is translated to the
subspace spanned by zero modes.

In this subspace, the determinant of the Dirac operator can be viewed as
a sum of closed fermionic loops with “hopping amplitudes” between dyons
and antidyons. Since sectors that are self-dual or anti-self-dual have its eigen-
values protected, then the overlap of L and L dyons or L̄ and L̄ dyons have
to be zero. The resulting form of the “hopping matrix” is

T̂ ⌘
✓

0 T
ij

�T
ji

0

◆
. (139)

Each of the entries in T
ij

is a “hopping amplitude” for a fermion between
the i-th L-dyon and the j-th L̄-antidyon. The diagonal matrix elements are
zero, and therefore a single or many infinitely-separated dyons will have zero
determinant and “veto” such configurations. However, nonzero non-diagonal
hopping matrix elements make the determinant nonzero.

We define the individual hopping amplitude as the matrix element of the
Dirac operator between di↵erent zero mode eigenfunctions

T
ij

= < i|D/ |j >, (140)

where i and j are zero modes belonging to i-th L and j-th L̄ dyons. If the
gauge field in the Dirac operator is a sum of two dyons, using the equations
of motion for both zero modes, one can reduce the covariant derivative to
the ordinary derivative.

Including a mass term, changes the hopping matrix by a constantm times
the identity matrix.

Compared to section 5, the only addition to the partition function used
in this section, is the determinant of the Dirac operator for N

f

flavors, ap-
proximated by the determinant of the hopping matrix⇣

det(T̂)
⌘
N

f

. (141)
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Basically, det(T̂) can be seen as a set of loop diagrams, connecting all L-
dyons and antidyons of the ensemble. It can either be dominated by short
loops, including small number (2,..) dyons, to be referred to as a “molecular
regime”, or by very long loops, including finite fraction of the ensemble (“col-
lectivized regime”). The former has unbroken and the latter broken chiral
symmetry. It is the purpose of our simulations to determine, as a function
of the dyon density, the weights of such short and long loops.

6.1.1 The hopping amplitudes

We follow [39] and use a simple interpolation formula

T
ij

= c
e�v̄r/2p
1 + v̄r/2

, (142)

where v̄ = 2⇡T � v. Based on a change of variable it has been found that
the constant c should depend on holonomy as v̄ which gives

T
ij

= v̄c0
e�v̄r/2p
1 + v̄r/2

. (143)

Of course there are many other ways one can choose T
ij

such that it in
the large r limit on a log scale goes as v̄/2. We therefore tried to obtain the
shape and constant c0 from doing first order perturbation theory.

By doing a first order correction, it was found that the factor c was
dependent on the orientation of the Dirac string, since it was not fixed. The
overlap without any of the gauge transformations explained in section 4 was
therefore used to understand the shape. The integral done wasZ

d3x (r2) (r1)(
H(r1)

2
+K(r1)), (144)

where H and K are the part of A4 and A
i

respectively that only depends
on distance and not direction, as shown in [39].  (r) is the amplitude of the
zero mode solution in [39]. The shape found to correspond very well to the
integral was

T
ij

= v̄c0 exp
⇣
�
p
11.2 + (v̄r/2)2

⌘
. (145)

We will therefore also look into what kind of e↵ect this choice of T
ij

has.
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We compare the two choices in Fig. 27.
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Eq. (145)

Eq. (142)

Figure 27: The matrix element of the hopping matrix, as � log(T
ij

) versus
the distance, in units of v̄. The two di↵erent curves corresponds to eq. (142)
and (145), respectively.

6.2 The general setting

The setup is almost the same as in section 5, with the di↵erence being the
inclusion of the fermionic determinant in the zero modes approximation. This
factor creates an additional fermion-induced interaction between the L type
dyons.

The dimensionless holonomy ⌫ = v/(2⇡T ) is related to the expectation
value of the Polyakov loop through the (SU(2)) relation

P = cos(⇡⌫). (146)
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We seek to minimize the free energy

f =
4⇡2

3
⌫2⌫̄2 � 2n

M

ln


d
⌫

e

n
M

�
� 2n

L

ln


d
⌫̄

e

n
L

�
+�f, (147)

where the first term is the perturbative Gross-Pisarski-Ya↵e-Weiss holonomy
potential, the next terms contain semiclassical independent dyon contribu-
tions, with

d
⌫

= ⇤

✓
8⇡2

g2

◆2

e
� ⌫8⇡

2

g

2 ⌫
8⌫

3 �1/(4⇡) (148)

and �f ⌘ � log(Z
changed

)/Ṽ3 is defined via the partition function studied
numerically

Z
changed

=
1

Ṽ 2(N
L

+N

M

)
3

Z
D3x det(G) exp(��D

DD

(x))

⇥
Y
i

�
N

f

i

. (149)

The last factor is the fermionic determinant, now written as the product of
all eigenvalues of the hopping matrix T̂.

We just remind the expressions here without too many comments.

G = �
mn

�
ij

(4⇡⌫
m

� 2
X
k 6=i

e�M

D

T |x
i,m

�x

k,m

|

T |x
i,m

� x
k,m

| (150)

+2
X
k

e�M

D

T |x
i,m

�x

k,p6=m

|

T |x
i,m

� x
k,p 6=m

| )

+2�
mn

e�M

D

T |x
i,m

�x

j,n

|

T |x
i,m

� x
j,n

| � 2�
m 6=n

e�M

D

T |x
i,m

�x

j,n

|

T |x
i,m

� x
j,n

| .

Dyon 2-point interactions �D
DD

is a sum over all classical corrections for
the di↵erent dyon to dyon combinations

�D
DD

=
X
j>i

�S
D

i

D

j

, (151)
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where �S
D

i

D

j

is the correction to the action between dyon i and dyon j. If
the two dyons are a dyon and its antidyon, we have for distances larger than
x0

�S
DD̄

= �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�M

D

rT

x = 2⇡⌫rT. (152)

For the rest of the combinations we have

�S
DD

=
8⇡2⌫

g2

✓
�e1e2

1

x
+m1m2

1

x

◆
e�M

D

rT

x = 2⇡⌫rT, (153)

where the charge is given by Table 3. For distances smaller than x0 we have
a core between dyon pairs of the types LL, MM , L̄L̄, M̄M̄ , LL̄ and MM̄

�S
DD

=
⌫V0

1 + exp [�T (x � x0)]

x = 2⇡⌫rT, (154)

where x0 is the size of the dyons core. We work with x0 = 2. It is important
to note that for M type dyons one has to use ⌫ and for L type dyons one has
to use ⌫̄ = 1 � ⌫.

M M̄ L L̄
g2S

cl

/(8⇡2) ⌫ ⌫ 1 � ⌫ 1 � ⌫
Q

T

⌫ �⌫ 1 � ⌫ ⌫ � 1
e 1 1 -1 -1
m 1 -1 -1 1

Table 3: (Same as Table 1) Quantum numbers of the four di↵erent kinds
of instanton-dyons for SU(2) gauge theory. The rows are classical action
S
cl

, topological charge Q
T

, electric charge e and magnetic charge m. The
antidyons have a bar over the letter.
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6.3 Eigenvalue distributions and the chiral condensate

The Banks-Casher relation tells us that in the infinite volume limit, the chiral
condensate for massless fermions is proportional to the density of eigenvalues
at zero value

| <  ̄ > | = ⇡⇢(�)
�!0,m!0,V!1. (155)

For any system with a finite volume, the typical size of small eigenvalues is
of size 1/V and the density will always be 0 at � = 0 and m = 0. We see this
behavior in our ensemble as seen for zero mass in Fig. 28 and 29. We also find
that a finite mass, as in Fig. 30 and 31, has the e↵ect of allowing eigenvalues
around zero, and if the mass is large enough, smooth the maximum of the
eigenvalue distribution into the region around � = 0.

To understand finite volume e↵ects on the distribution, one may study
those using chiral random matrix theory, for review see [34]. In principle,
using expressions obtained in this framework one can recover the value of the
chiral condensate in the infinite volume case.

Figure 28: Eigenvalue distribution for n
M

= n
L

= 0.47, N
F

= 2 massless
fermions at S = 7.
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Figure 29: Eigenvalue distribution for n
M

= n
L

= 0.08, N
F

= 2 massless
fermions at S = 7.

Figure 30: Fermionic eigenvalue distribution for n
M

= n
L

= 0.47, N
F

= 2,
m = 0.01 at S = 7.
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Figure 31: Fermionic eigenvalue distribution for n
M

= n
L

= 0.08, N
F

= 2,
m = 0.01 at S = 7.

We will be determining the chiral condensate by two di↵erent methods:
(i) The first one is based on the part of the eigenvalue distributions with

the smallest �. It requires an understanding of the finite volume e↵ects on
the distribution. This understanding we obtain from analytic random matrix
results. We explain this approach in section 6.3.1.

Vanishing of the condensate is used to define the ensemble parameters
corresponding to chiral symmetry breaking transition, T

 ̄ 

.
The second strategy (ii) we will use, is based on the determination of the

so called gap width in the distribution, near � = 0: we will refer to it as T
gap

.
This approach is explained in section 6.3.3.

Ideally, both critical temperatures should coincide, defining the temper-
ature of chiral symmetry breaking T

�

.

6.3.1 The finite size e↵ects

To understand finite volume e↵ects we performed simulations for 64 and
128 dyons, at the same density. (The volume of the sphere with 128 dyons
being 2 times larger than the sphere of the 64 ones.) The quark mass in
both simulations were set to zero. An example of the resulting eigenvalue
distributions are shown in Fig. 32.
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Figure 32: The points are the eigenvalue distribution for 64 (blue circles)
and 128 (red squares) dyons at S = 8 and density of dyons n

M

= 0.33,
n
L

= 0.20, N
F

= 2. The curves are the fit with eq. (156) with ⌃2,64 =
1.30±0.06 and ⌃2,128 = 1.28±0.06 and the scaling as ⌃1,64 = 0.79±0.05 and
⌃1,128 = 0.51 ± 0.04 for these two cases, respectively. The lower purple line
is the di↵erence between the two fits. Eq. (157) gives ⌃ = 0.38± 0.13, while
the maximum of the di↵erence between the two curves gives ⌃ = 0.3 after
normalizing the di↵erence with the volume (note: This approach of using the
maximum of the di↵erence between the two volumes, has not been used to
analyze the data, but is simple used here to visualize the e↵ect).

We fit the distribution of the eigenvalues with the form taken from random-
matrix theory [34] for SU(2) gauge group for massless fermions given by

⇢(x) = V ⌃2[
x

2
(J2(x)

2 � J1(x)J3(x))

+
1

2
J2(x)(1 �

Z
x

0

dtJ2(t))], (156)

where x = �V ⌃1 and J
n

are the Bessel functions. Both the scaling factor
V ⌃1 and the overall factor V ⌃2 should be proportional to the value of the
chiral condensate ⌃. In the limit V ! 1 the formula gives ⇢(0) / V ⌃2 as
required.
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Ideally, the parameter values for two di↵erent volumes should agree.
When the fits for di↵erent volumes were done, we found that the values
for parameter ⌃2 agree very well indeed. (This is related to the fact that the
height of the distributions at the r.h.s. of Fig. 32 do agree.)

Note that the main di↵erence between the two distributions is a shift to
the left for bigger volume. This is expected in larger volume clusters of a
condensate inside which quark propagation gets larger, and the eigenvalues
smaller. The formula from random matrix theory, prescribes a particular
“mesoscopic” scaling with the volume. However, the fit by this formula
produces values of ⌃1 which are not the same. This indicates that, at least
our smaller volume, is not yet in the range in which the expected large volume
scaling applies.

The physics behind this behavior is as follows: there are basically two
components of the ensemble, generating two di↵erent dependencies on the
volume. As we already mentioned in the introduction, there is collectivized
dyons, producing the condensate, and dyon-antidyon pairs. The former com-
ponent produces eigenvalue distribution shifting with the volume, while the
latter contribution is volume-independent .

The existence of two components lead us to construct a value of ⌃ out of
all four parameters of the fit given by

⌃ = ⌃2(2⌃
128
1 /⌃64

1 � 1). (157)

In the case of only almost zero modes, from the collectivized dyons, dou-
bling the volume should double V ⌃1. In the opposite case of only dyon-
antidyon pairs, V ⌃1 should be unchanged. As can be seen in Fig. 32 the
situation is sometimes in between the two extremes. The expression (157) is
an interpolation between the two regimes. This resulting value of ⌃ will be
used in the plots to follow, such as showing the temperature dependence of
the condensate. We show ⌃2, 2⌃128

1 /⌃64
1 � 1 and ⌃ for the results in section

6.5.1 in Fig. 33.
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Figure 33: ⌃2 (blue circle), 2⌃128
1 /⌃64

1 �1 (red square) and ⌃ (purple triangle)
as a function of input action S = 8⇡2/g2 for the results in section 6.5.1.
It is observed how the rise in ⌃2 and 2⌃128

1 /⌃64
1 � 1 are correlated, while,

2⌃128
1 /⌃64

1 � 1 goes to zero for higher S while ⌃2 does not. Condensates are
scaled by 0.5.

As the density increases, it is seen how the scaling becomes closer and
closer to that of the volume, as expected from eq. (156), such that the limit
to infinite volume gives the chiral condensate as ⇢(0).

6.3.2 The e↵ect of the quark mass

Nonzero quark mass moderates the distribution of the smaller eigenvalues.
Furthermore, for � < m the fermions are e↵ectively decoupled, and thus the
distributions should be the same as for a quenched (no dynamical quarks)
theory. The latter is known to produce a singularity at � ! 0 observed in
the instanton liquid simulations and on the lattice already in the mid-1990s.

Our simulations with the mass 0.01 produce eigenvalue distributions shown
in Fig. 30 and 31. Note that, in contrast to the zero mass case, one finds
a peak near zero eigenvalue. Eigenvalues outside of the range of the mass,
� > m behave as in the massless case, as can be seen by comparing to Fig.
28 and 29. In the range of � = m, the distribution is smoothed due to the
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singularity at � ! 0. The same behavior is seen on the lattice [49], even
when a gap appears.

6.3.3 Gaps of the eigenvalue distribution

At high temperatures, or very dilute dyon ensembles in our model, the chi-
ral symmetry remains unbroken. As it has been shown in multiple lattice
simulations, in this case the Dirac eigenvalue distribution develops a finite
gap, between � = 0 and the point where the eigenvalue distribution starts
to rise. Vanishing of this gap therefore provides another way of observing
the location of chiral symmetry breaking. Not to confuse it with the critical
temperature obtained from the other method, we call this temperature T

gap

.
The procedure used is explained by an example shown in Fig. 34: we fit

the distribution by a straight line, and use its intersection with the x-axis as
the measure for the gap.

The fact that a gap appears, means that the lowest excitations are not
massless.

Figure 34: The eigenvalue distribution for 64 dyons at S = 7.5, ⌫ = 0.434,
N

F

= 2, n
M

= 0.43 and n
L

= 0.22. A straight line has been fitted through
point 3 to 6 from the left. The gap size is defined as the cross point with the
x-axis.
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6.4 Data and analysis

The setting has already been explained above. An “update cycle” is defined
as a sequence of Metropolis updates of all coordinates of all dyons. Each
“run” consisted of 4000 such “update cycles”, out of which the typical ther-
mal relaxation time was of the order of 500 cycles. The “useful data” selected
were the mean action values collected for the last 1000 cycles.

The free energy of the model, depending on its parameters, is determined
from the integrated expectation value of the action < S(�) >, following a
standard approach

e�F (�) =

Z
Dxe��S (158)

F (1) =

Z 1

0

< S(�) > d�+ F (0). (159)

An example of the � dependence of < S(�) > is illustrated in Fig. 35. The
quick descent in the expectation value of the action at small � required more
measurement points in the range � = 0..0.1. We therefore had a step size of
1/90 until � = 0.1, while for larger lambda the step size is increased to 0.1.
These values, shown in the upper two rows of Table 4, constitute 19 runs.

The next three rows of Table 4 correspond to three parameters of the
model used for free energy minimization. (Those are the value of the holon-
omy ⌫, the radius of the system defining the total dyon density and the
number of M dyons N

M

.) This three-dimensional space was explored sys-
tematically, in a lattice form defined by min and max values and a step
defined in the Table. This was done for all values of the two remaining “in-
put parameters”, the Debye massM

d

and classical action S. This gives 67200
di↵erent combinations.
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Min Max Step size
� 0 0.1 1/90
� 0.1 1.0 0.1
⌫ 0.175 0.525 0.025
r 1.05 2.00 0.05
N

M

16 26 2
M

d

3 6 1
S 5 9.5 0.5

Table 4: The input parameters used for the final run.

Figure 35: A typical example of the expectation values of the action < S >
obtained from the simulation as a function of �. Contribution to the free
energy from the overall constant F (0) is not included.

6.4.1 Data Analysis

After the integration over lambda is done, the values of the free energy for
each combination of parameters are determined. The main part of the data
analysis is the fit, defining dependence of the free energy in the 3-dimensional
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space (of two dyon densities and holonomy) near its minimum. We therefore
fit this set of data with a 3-dimensional parabola

f = (w � w0)M(w � w0) + f0, (160)

which has 10 variables. w and w0 are 3D vectors with w containing the
variables holonomy ⌫, radius r, and number of M dyonsN

M

and w0 describing
the correction to the point that were the minimum. M is a 3 times 3 matrix
with M = MT containing the coe�cients for the fit.

This expression was fitted to free energy values of 53 = 125 points from
a cube, containing 5 points around the minimum in each direction. The
resulting values of the 10 parameters fitted are used as follows:(i) w0 and
its uncertainties give the values of densities and holonomy at the minimum,
plotted as results below; (ii) the diagonal component of M in the holonomy
direction was converted into the value of the Debye mass M

d

. An addi-
tional requirement of the procedure, to make the ensemble approximately
self-consistent, is that the Debye mass from the fit should be within ±0.5 of
the used input Debye mass value.

To obtain the chiral properties, such as the Dirac eigenvalue distribu-
tions and its dependence on dyon number and volume, we only used the
“dominant” configurations for each action S, defined as follows. Since N

M

is always an integer, we use the value closest to that obtained from the fit.
The eigenvalue distributions are then analyzed as explained in section 6.3.

6.5 Physical Results

We use two paramaterizations of the hopping matrix element. We perform
simulations with both sets. The parameterizations themselves are explained
in section 6.1.1. The physical results are, respectively, split up into two
subsections, one for each choice of T

ij

. Since the overall constant c0 is un-
known, values of c0 have been chosen, such that the transition happens around
S = 7.5. We are actively trying to obtain c0 from numerical simulations.
While the di↵erent T

ij

’s behave similar for large distances, the behavior is
di↵erent around zero. This also means that the constant c0 can be di↵erent
in the two cases. For these results c0 was chosen such that the density of L
dyons didn’t become too small, while having a smooth Polyakov loop that
went to zero in the range of S = 5 � 10.

The plots below have two scales, on their bottom and top. The former
one shows the “instanton action” parameter S, one of the major parameters

95



of the model controlling the diluteness of the ensemble. We also indicate at
the top the corresponding temperature, relative to the critical temperature
T
c

, chosen as S = 7.5. It should be noted that this is a choice, and is done in
order to set a scale. The real input is the action S or the coupling constant
g. The temperature is found from the running coupling constant.

S(T ) =
8⇡2

g2(T )
= b · ln

✓
T

⇤

◆
, b =

11

3
N

c

� 2

3
N

F

. (161)

This top temperature scale is approximate and should only be used for qual-
itative comparison to other models and lattice data.

6.5.1 Parameterization A for T
ij

The results in this subsection are for

T
ij

= v̄c0 exp
⇣
�
p
11.2 + (v̄r/2)2

⌘
. (162)

Minimizing the free energy gives the dominating parameters for a specific
action S or Temperature T. This is done for ⇤ = 4 and �Log(c0) = �2.60.
This gives the holonomy, the density Fig. 36, and Debye mass Fig. 39. The
dominating configurations have been analyzed using the methods described in
section 6.3 in order to obtain the chiral condensate, which is shown together
with the Polyakov loop in Fig. 37 and is also compared to the gap in Fig.
38.

We observe a smooth transition towards zero expectation value of the
Polyakov loop P as temperature decreases. We also observe a non-zero value
of the chiral condensate as temperature decreases. This is a more abrupt
change, though in some way still smooth. Its inflection point (change of
curvature) is found around S = 7.5, though the transition happens between
S = 6.5 � 8. Below S = 7 the results fluctuate around a constant.

The chiral symmetry breaking can also be observed through the shrinking
of the gap around zero as shown together with the chiral condensate in Fig.
38. Again, thinking of the inflection points of the two curves, we conclude
from it that the critical temperature for the chiral condensate and the gap
do coincide within errors, at the same S = 6.5 � 8 point.

Confinement and chiral symmetry are therefore di↵erent phenomena, but
are both triggered by the increase in the density of dyons.
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Figure 36: Parameterization A: The density of the M (blue circles) and L
(red squares) dyons as a function of action S = 8⇡2/g2 or temperature T/T

c

.
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Figure 37: Parameterization A: The Polyakov loop P (blue circles) and the
chiral condensate ⌃ (red squares) as a function of action S = 8⇡2/g2 or tem-
perature T/T

c

. A clear rise is seen around S = 7.5 for the chiral condensate.
⌃ is scaled by 0.08. The black constant line corresponds to the upper limit
of ⌃ under the assumption that the entire eigenvalue distribution belongs to
the almost zero mode zone, i.e. the maximum of ⌃2.
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Figure 38: Parameterization A: The gap scaled up 15 times (blue circles)
and the chiral condensate ⌃ (red squares) as a function of action S = 8⇡2/g2

or temperature T/T
c

. A clear rise/fall is seen around S = 7 � 7.5. We get
a critical temperature from S = 6.5 � 8 for the condensate and S = 6.5 � 8
for the gap. ⌃ is scaled by 0.08. The black constant line is defined in the
caption of Fig. 37.

The Debye mass, Fig. 39, as compared to some lattice results [50], is seen
to be around 66% too large. Newer lattice results [51] though show that the
Debye mass might be larger than our obtained value.
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Figure 39: Parameterization A: Debye mass M
d

as a function of action S =
8⇡2/g2 or temperature T/T

c

.

6.5.2 Parameterization B for T
ij

The results in this subsection are for

T
ij

= v̄c0
e�v̄r/2p
1 + v̄r/2

, (163)

with � log(c0) = �0.388 and ⇤ = 3.2.
Just as for the other choice of T

ij

discussed in the previous subsection,
we obtain the parameters of density, Fig. 40, holonomy (Polyakov loop Fig.
41), and Debye mass, Fig. 43, as a function of temperature by minimizing
the free energy. The chiral condensate Fig. 41 and 42, and gap width Fig.
42, have been obtained from configurations with the parameters obtained by
minimizing the free energy. The main di↵erence between the two choices of
T
ij

comes from the behavior around r = 0. The almost exponential behavior
as shown in eq. (163), means that L dyons become more likely at high
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densities. The other thing is that it is harder to make the di↵erent elements in
T
ij

of similar size, which results in a scaling behavior of the chiral condensate
that only becomes around 37% ± 10% of the volume, and not 100% as with
parameterization A. This does not mean that the chiral condensate which
we show in Fig. 41 does not exist, but it does mean that we need a larger
volume in this case to obtain a cleaner result. It also means that the overlap
between almost zero modes and dyon-antidyon pairs was larger.

Figure 40: Parameterization B: The density of the M (blue circles) and L
(red squares) dyons as a function of action S = 8⇡2/g2 or temperature T/T

c

.
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Figure 41: Parameterization B: The Polyakov loop P (blue circles) and the
chiral condensate ⌃ (red squares) as a function of action S = 8⇡2/g2 or
temperature T/T

c

. ⌃ is scaled by 0.1. The black constant line is defined in
the caption of Fig. 37.
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Figure 42: Parameterization B: The gap scaled up 20 times (blue circles)
and the chiral condensate ⌃ (red squares) as a function of action S = 8⇡2/g2

or temperature T/T
c

. A fall is seen around S = 7 for the gap, while it goes
close to zero around S = 5 � 6.5. At S = 5 � 6 the chiral condensate starts
to consistently become di↵erent from zero. It should be noted in this case
that 2⌃128

1 /⌃64
1 �1 never becomes larger than 37%±10%. ⌃ is scaled by 0.1.

The black constant line is defined in the caption of Fig. 37.
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Figure 43: Parameterization B: Debye mass M
d

as a function of action S =
8⇡2/g2 or temperature T/T

c

.
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7 Dyons and Boundary conditions

In this section we explore the e↵ect of changing the boundary conditions of
the fermions. We look at the Z2 fermions in the standard representation
in SU(2) where one fermion flavor is anti-periodic and one fermion flavor is
periodic. This changes the behavior of the zero modes of the dyons. We now
have that each of the dyons have one zero mode, but with di↵erent flavors.
This restores center symmetry and changes the behavior of the ensemble
dramatically. The main results are again the Polyakov loop, the chiral con-
densate and the dyon densities as a function of coupling constant. We now
have two chiral condensates, one for each flavor. We see that each of the
chiral condensates behave as a one flavor chiral condensate, in both volume
dependence and shape of the zero mode zone of fermionic eigenvalues.

7.1 ZNc-symmetric QCD and the instanton-dyons

Let us start this section by reminding that in the framework of the original
instanton model most of the phenomena caused by changing the boundary
conditions, would be impossible to explain. The number of zero modes of the
instanton is prescribed by the topological index theorem and is independent
on the periodicity condition.

On the other hand, after it has been recognized that instantons has to be
split into instanton-dyons, the situations changes dramatically. Quarks with
di↵erent boundary angles can be coupled to di↵erent types of dyons. Dialing
di↵erent values of those angles, one can see the consequences from which it
will eventually be possible to understand the dynamical role of those objects.

The “Z
N

c

-symmetric QCD” proposed by Kouna et al does indeed have
outstandingly simple symmetry properties in the instanton-dyon model: each
quark flavor has zero modes with a di↵erent type of instanton-dyon. This
means that each quark flavor has its own “dyon plasma” with which it inter-
acts. In this model the number of colors and flavors must match, N

f

= N
c

,
so the number of quark and dyon types match as well.

Furthermore, in the low T , near and below T
deconf

the holonomy values
tends to the symmetric “confining” value, at which all types of the dyons
obtain the same action. This fact indeed made the model Z

N

c

-symmetric.
In the opposite limit of high T , the holonomy moves to a trivial value,

and the actions of di↵erent dyons become distinct. This implies that each
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quark flavor has its own “dyon plasma” with distinct densities, leading to
flavor-dependent transition temperatures T

�

.
One more qualitative idea is related to the values of the holonomy at ⌫ = z

for  (t + 1/T ) =  (t) exp(2⇡zi). Those are values at which the zero modes
jump from one kind of dyon to the next. This happens by “delocalization” of
the zero mode, which means that at such particular holonomy values the zero
modes become long-range. Since in this case the “hopping” matrix elements,
describing quark-induced dyon-dyon interactions, get enhanced, one may also
expect that the chiral condensate is e↵ectively strengthened.

7.2 The setting of the simulations

Let us remind the setting used in our simulations with instanton-dyons. Cer-
tain number of them, 64 or 128, are placed on the 3-dimensional sphere. Its
radius thus control the density. Standard Metropolis algorithm is used to nu-
merically simulate the distribution defined by classical and one-loop partition
function. We study the simplest non-Abelian theory with two colors N

c

= 2,
which has a single holonomy parameter ⌫ 2 [0, 1]. Free energy is calculated
and the adjustable parameters of the model, the value of the holonomy ⌫ and
densities of M and L type dyons, are placed at the minimum.

In this section we work with one periodic flavor and one anti-periodic
flavor, such that each dyon couple to a di↵erent flavor of quarks as explained
in section 2.5.1. The partition function is therefore Z2 symmetric, under
⌫ $ ⌫̄ = 1 � ⌫ and M $ L replacement. A distinct symmetric phase has
minimal free energy at the symmetric point ⌫ = 1/2 , and equal number of
L,M dyons. Asymmetric phase has free energy with two minima, away from
the center ⌫ = 1/2: by default the spontaneous breaking of Z2 is assumed to
happen to smaller values of ⌫, so that at high T it goes to zero.

Following section 6 we use the following parameterization of the overlap
between zero modes

T
ij

= v
k

c0 exp
⇣
�
p
11.2 + (v

k

r/2)2
⌘
, (164)

where v
k

is v = 2⇡⌫T for M dyons, and v
k

is v̄ = 2⇡⌫̄T = 2⇡(1 � ⌫)T for
L dyons, due to the shape of the zero modes, as seen in section 2.5.1. The
three constants in the model is the same as previous section and is: x0 = 2
for the dimensionless size of the core. ⇤ = 4 for the overall constant and
� log(c0) = �2.6 for the constant on T

ij

.
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The only change in the interactions, compared to section 6, is in the
fermionic determinant for which we do the following change⇣

det(T̂(x
L

, x
L̄

, ⌫̄)
⌘2

!
⇣
det(T̂(x

L

, x
L̄

, ⌫̄)
⌘⇣

det(T̂(x
M

, x
M̄

, ⌫)
⌘
, (165)

where x
i

are the positions of all i dyons.
The simulation has been done using standard Metropolis algorithm. An

update of all N = 64 or 128 dyons corresponds to one cycle. Each run
consists of 3000 cycles. Free energy is measured by the standard trick in eq.
(115), involving integration over the interaction parameter from zero to one.
The simulation was done on a S3 circle, its volume is V = 2⇡2r3: we use r
in some places below.

The input “action parameter” S defines the instanton-dyon amplitude,
and literally corresponds to the sum of the L andM dyon actions in semiclas-
sical amplitude. In one loop approximation it is related to the temperature
T by the asymptotic freedom relation

S = (
11N

c

3
� 2N

f

3
)log(

T

⇤
T

). (166)

In section 5 and 6 we approximately related the constant ⇤
T

to the phase
transition temperature T

c

: we do not do it in this section because there is no
single phase transition in the theory we study now.

The varied parameters of the model include (1) The holonomy ⌫ which
is related to the Polyakov loop as P = cos(⇡⌫) and (2,3) The densities of M
and L dyons n

M

, n
L

. After the free energy is found for each run, the values
of these parameters, corresponding to its minimum, are fitted and used.

Other parameters include (4) The Debye mass, which is used to describe
the fallo↵ of the fields: its value is kept “self consistent” by a procedure
explained in section 5.7. Finally we mention (5) the auxiliary interaction
variable which is then integrated in order to obtain the free energy F .

The organization of the numerical sets were done as follows. An initial
survey found the areas of interest, corresponding to minima of the free energy
and most important variations of the results. Then the final set of simulations
has been performed: its parameters are summarized in the Table 5. In total
1170000 individual runs were done for the final set of data, from which the
plots were made.

The main part of the data analysis consists of finding the minima of the
free energy and getting the Debye mass self consistent. To do the former
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Min Max Step size
� 0 0.1 1/90
� 0.1 1.0 0.1
⌫ 0.05 0.55 0.025
r 1.2 1.8 0.05
N

M

3 18 2
M

d

1 3.5 0.5
S 5 9.5 0.5

Table 5: The input parameters used for the final set of simulations. The
step sizes given are some standard ones: yet some areas were given extra
attention. For example around N

M

= 4 where the step size was 1.

we fit data sets for the free energy near its minima with a 2-dimensional
parabola

f = (w � w0)M(w � w0) + f0, (167)

which has 6 variables. w and w0 are 2D vectors with w containing the
variables holonomy ⌫ and radius r and w0 describing the position of the
minimum. M is a 2 times 2 matrix with M = MT containing the coe�cients
for the fit.

The fit was done on free energy values of 52 = 25 points from a square,
containing 5 points around the minimum. The 6 parameters from the fit
are used as follows:(i) w0 and its uncertainties give the values of densities
and holonomy at the minimum, plotted as results below; (ii) the diagonal
component of M in the holonomy direction was converted into the value of
the Debye mass M

d

. An additional requirement of the procedure, to make
the ensemble approximately self-consistent, is that the Debye mass from the
fit should be within ±0.25 of the used input Debye mass value.

To obtain the chiral properties, such as the Dirac eigenvalue distributions
and its dependence on the amount of dyons and volume, we only used the
“dominant” configurations for each action S.

The results reported below, compare new results, for Z2-symmetric QCD
explained above, to the “old” ones, from section 6.5.1, for N

c

= N
f

= 2 QCD
with antiperiodic fundamental quarks.
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7.3 The holonomy potential and confinement
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Figure 44: Free energy density as a function of the holonomy parameter
⌫. The upper plot is for the Z2-symmetric model and lower plot is for the
model in which all quarks are anti-periodic. Di↵erent curves are for di↵erent
dyon densities. The densities are (0.47, •), (0.37,⌅), (0.30,⌥), (0.24,N),
(0.20,H), (0.16, �), (0.14,⇤), (0.12,}), (0.10,M). Not all densities are shown.
In both cases the action parameter is S = 8.5, and both dyon types are
equally represented n

M

= n
L

. Note the dramatic di↵erence of the holonomy
potentials for these two cases: the Z2 potential is symmetric (for equal dyon
densities), while the periodic quarks produce an asymmetric minimum, and
thus slide smoothly towards smaller holonomies (to the left) as the dyon
density decreases.
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The free energy density obtained from the simulations are shown in Fig.
44 as a function of the holonomy value. Both for standard (lower plot) and
Z2-symmetric QCD (upper plot). At high density of the dyons one finds a
symmetric minimum for the Z2-symmetric model. As the density decreases,
one finds behavior very di↵erent from both that of the quenched case (no
quarks) with two minima or in standard QCD, with broken center symmetry.

While symmetry remains intact, with the decreasing density (larger S)
the minima of the potential become very flat and wide. (A slight appearance
of the minima can be seen for the smallest density which is not nearly as
strong as in the quenched case). We interpret this as an appearance of a large
domain of “mixed phase”, a coexistence of many di↵erent configurations with
di↵erent properties and di↵erent ⌫, but degenerate free energy. The confining
minimum in the middle is also found to be dominant for much larger range
of densities.

Translating the location of the minimum to the mean Polyakov line, we
plot the results in Fig. 45. It shows that while the two models under con-
sideration have very similar behavior at high densities of the dyons (smaller
S or the left side of the plot), in the Z2-symmetric model there appears a
strong jump in P , from about 0.2 to 0.6. Note that the intermediate point
with large error bar should be interpreted not as an uncertainty of the value,
as the usual error bar, but rather as reflection of the fact that in the ensemble
the intermediate values of P are all feasible, due to flatness of the holonomy
potential. In other words, this point is rather a vertical part of the curve,
indicative of strong first-order transition. This conclusion is consistent with
lattice studies in [36] for SU(3), in which the authors show some hysteresis
curve for P , with a similar strong jump.
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Figure 45: The mean Polyakov loop P as a function of action parameter
S = 8⇡2/g2, for Z2-symmetric model (red squares), compared to that for the
N

c

= N
f

= 2 QCD with the usual anti-periodic quarks (blue circles).

The densities of the dyons in both models are shown in Fig. 46. The
upper plot for the Z2-symmetric model display a very symmetric confining
phase at the l.h.s. of the plot (small S, dense ensembles) complemented
by very asymmetric composition of the ensemble at the r.h.s. The usual
QCD-like model with N

c

= N
f

= 2 in the plot below shows that the L � M
symmetry never holds, due to only L-dyons coupling to the zero modes, while
the overall dependence on S is much less significant.
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Figure 46: (upper) Densities of L dyons (red squares) and M dyons (blue
circles), as a function of action parameter S = 8⇡2/g2, for the Z2-symmetric
model. (lower) the same for the usual QCD-like model with N

c

= N
f

= 2
and anti-periodic quarks.

Lastly, the Debye mass, defined via the second derivatives of the e↵ective
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potential at the minimum, has been determined and plotted in Fig. 47, again
for both models. For the Z2-symmetric model its values are significantly
lower than for the QCD-like model. Smaller mass indicate flatter potential
and stronger fluctuations.
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Figure 47: Debye Mass M
d

as a function of action parameter S = 8⇡2/g2, for
the Z2-symmetric model (red squares) and the usual QCD-like model with
N

c

= N
f

= 2 (blue circles).

7.4 Chiral symmetry breaking

As we already explained above, the main feature of the Z
N

c

-symmetric model
with N

f

= N
c

, is that it distributes all types of quarks evenly, so that each
type of dyon possesses zero modes with one quark flavor. This is in contrast
to the usual QCD, in which all quarks are antiperiodic and thus all have zero
modes only with twisted L-type dyons.

The simplest examples considered in this section are two N
c

= N
f

= 2
theories, the Z2-symmetric model and the two color QCD. In the former case
the partition function includes two independent fermionic determinants, one
for M and one for L dyons, with a single quark species each. In the latter,
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one has a square (two-species) of the determinant of hopping matrix over the
L-dyons only.

Here we remind well known facts about chiral symmetry breaking in such
cases, and the consequences for such determinants. Theories with a single
quark flavor have only a single U

A

(1) symmetry, broken explicitly by the
fermionic e↵ective action. Indeed, it includes terms  ̄

L

 
R

or  ̄
R

 
L

directly
coupling components with opposite chiralities. So, there are no chiral symme-
tries to break, and condensates are always nonzero, proportional to density
of the topological objects.

The case with two or more flavors is di↵erent: There is the SU(N
f

) flavor
symmetry, which can be either broken or not, depending on the strength of
the 2N

f

-quark e↵ective interaction.
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Figure 48: The Dirac eigenvalue distribution ⇢(�) for ensembles of 64 (Blue
triangle) and 128 (Red square) dyons, for the Z2-symmetric model at S = 6.
The upper plot shows the region of smaller eigenvalues, in which one can see
the finite volume “dip”, of a width which scales approximately as 1/V4 as
expected. The lower plot shows the same data sets, but in a wider range of
eigenvalues: it displays the “inverse cusp” shape of the distribution discussed
in section 7.4.1.
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7.4.1 Dirac eigenvalue distribution

Di↵erences in chiral breaking mechanisms in these two models, indicated
above, also manifest themselves in the Dirac eigenvalue distribution.

For SU(N
f

) flavors with N
f

� 2 a general Stern-Smilga theorem [52]
states that the eigenvalue distribution at small � has the so called “cusp”
singularity

⇢(�) =
⌃

⇡

✓
1 +

|�|⌃(N2
f

� 4)

32⇡N
f

F 4
c

+ ...

◆
. (168)

For N
f

> 2 the coe�cient is positive, this is known as “direct cusp”,
and was also observed, both on the lattice and in the instanton models. In
the particular case N

f

= 2 this cusp is absent: this fact can be traced to
the absence of symmetric dabc structure constant in the case of SU(2) group.
Indeed, both the calculations done in the instanton liquid framework (for
examples and references see [9]) and in section 6 of the N

f

= 2 theory had
produced “flat” eigenvalue distribution

⇢
N

f

=2(�) ⇠ const. (169)

In the N
f

= 1 case the distribution have a singularity at � = 0 of the form
of the “inverse cusp”, ⇠ �|�|. The Stern-Smilga derivation does not apply,
but the theorem has been rederived for general N

f

using partially quenched
chiral perturbation theory in [53].

Our results for the Z
N

c

-QCD under consideration shown in Fig. 48 also
show the “inverse cusp” with linear behavior of ⇢(�). (We use this fact to
extrapolate ⇢(�) to � ! 0 and to extract the value of the quark condensate
and the value of the coupling constant F

c

.) In the other model, the N
c

=
N

f

= 2 QCD, such “inverse cusp” is absent, see section 6.
So far our discussion assumed an infinite volume limit, in which case the

Dirac eigenvalue spectrum extends till � = 0. However, it is well known that
any finite-size systems, with 4-volume V4, have the smallest eigenvalues of the
order O(1/V4). This creates the so called “finite size dip”, in the eigenvalue
distribution, also clearly visible in Fig. 48(upper). One can see that doubling
of the volume, from 64 to 128 dyons at the same density, reduces the width
of this dip roughly by a factor two, as expected.
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As the holonomy jumps away from its confining value 0.5, the dyon den-
sities become di↵erent. Unlike the fundamental quarks, where the holonomy
goes down, the densities of L dyons become larger than that of M dyons.
The total density goes down, but the reduction in M dyons leaves space for
a few more L dyons. This means that on one hand the density is larger for L
dyons, and the zero mode density is therefore higher. On the other hand, the
factor in the exponential in T

ij

(eq. (164)) is ⌫̄ = 1�⌫ for L dyons, and ⌫ for
M dyons. This means that as ⌫ becomes smaller, the e↵ective density of the
zero modes associated with L dyons become smaller, while the zero modes
associated with M dyons get an increased e↵ective density. It is therefore
the interplay between these two e↵ects, that control which of the condensates
are largest. This results in what we show in Fig. 49, where the M dyon con-
densate appears to be slightly larger than the L dyon condensate, and both
condensates decrease slightly in accordance with the total density of dyons.
It is also observed that each gas of zero modes e↵ectively works as a N

f

= 1
ensemble, with non-vanishing condensates even at the lowest densities we
studied 1 (the r.h.s. of the plot). The standard model, N

c

= N
f

= 2 QCD,
has a condensate shown by black triangles: it clearly has chiral symmetry
restoration: At S > 8 we detected no presence of a condensate.

1
It should be noted that the chiral condensate is harder to study, as the amount of

dyons in the simulation becomes small, which happens for M dyons when there is a large

asymmetry in the density. This explains the larger error bars for one of the condensates

and why we stopped our studies at those particular parameters.
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Figure 49: Chiral condensates ⌃
i

generated by u quarks interacting with L
dyons (red squares) and d quarks interacting with M dyons (blue circles) as a
function of action S = 8⇡2/g2, for the Z2-symmetric model. For comparison
we also show the results from section 6.5.1 for the usual QCD-like model
with N

c

= N
f

= 2 (black triangles).

The coupling constant F
c

(Fig. 50), obtained from the slope of the
eigenvalue distribution and Smilga-Stern theorem (168), is nearly density-
independent: it changes by a factor of around 1.5 from S = 5 to S = 9.5.
This is consistent with the behavior of the quark condensates, and similarly
indicate that in the Z2 model the chiral symmetry does not show tendency
to be restored.
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Figure 50: Coupling constant F
c

from eq. (168) for the M dyon ensemble
(blue circle) and the L dyon ensemble (red square) as a function of action
S = 8⇡2/g2, for the Z2-symmetric model.
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8 Conclusion

We have made an interacting ensemble of instanton-dyons for two colors and
up to two quark flavors. In order to do the simulation, we first found the
classical interactions for dyons with antidyons, a result that has no analytic
solution. We used the streamline approach, where a dyon and an antidyon is
placed a distance away from each other on a lattice, and then ”cooled” such
that the configuration flows towards smaller action. This showed that the
dyon-antidyon classical interaction has a minimum around the size where the
cores overlap, while quickly repelling away from each other when overlapping
strongly. The long range was also seen to change as one over distance 1/r
when the dyons were far from each other. As r ! 1 the action approached
that of two individual dyons. Due to the scale invariance of this setup, the
solution was done for one specific holonomy (Polyakov loop), which then can
be scaled for any value needed.

This result was important for the interacting instanton-dyon ensemble,
where we attempted to explain the confinement-deconfinement transition. In
the interacting instanton-dyon ensemble we used Monte-Carlo sampling for
64 interacting dyons, in order to obtain the free energy density as a function
of temperature. From the free energy density we found the most likely value
of the Polyakov loop P and dyon densities, also as a function of temperature.

The first ensemble was done for the quenched case (no fermions). It was
seen that the repulsive core that scaled with the holonomy forced the M
and L type dyons toward the same size and density, due to the symmetry
n
M

$ n
L

and ⌫ $ ⌫̄ = 1 � ⌫, which is center symmetry for SU(2). For
low densities the dyon interactions are not important and the dominating
configuration comes mostly from minimizing the GPY potential (the energy
cost of including a non-zero expectation value of A4). At high densities(low
temperature) the increased contribution to the free energy from the entropy
was maximized by ⌫ = 0.5 (P = 0), thus causing confinement.

The next step was to include fermions. This was done with N
f

= 2 flavors
and N

c

= 2 colors. The fermions was included through the fermionic zero
mode interactions, which come from corrections to the fermionic eigenvalues,
since the vacuum is not self-dual or anti-self-dual. From the corrections we
also obtained the low energy eigenvalues, which was used to find the chiral
condensate, the order parameter for chiral symmetry breaking. To obtain
the chiral condensate we used results from random matrix theory [34], which
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gave us finite volume e↵ects.
The interacting ensemble showed us the reason why confinement and

chiral symmetry breaking happens around the same temperature. As tem-
perature decreases, the action of the dyons decrease. This increases the dyon
density, which forces the Polyakov loop towards zero and the holonomy of L
dyons ⌫̄ from 1 towards 0.5. This increases the range of the fermionic zero
modes, since the fermionic zero modes fall o↵ as exp(�⌫̄r/2). The decreased
value of the Polyakov loop therefore greatly increases the e↵ective density of
the zero modes, which becomes large enough for a non-zero chiral conden-
sate. One can therefore say that confinement enhances the phenomena that
create chiral symmetry breaking.

Last, we looked at the boundary conditions of the fermions. Lattice
results have shown that this can dramatically change the confinement and
chiral symmetry transitions. If dyons truly are responsible for these phenom-
ena, then the ensemble of dyons should be able to describe this change. In
terms of dyons, the fermionic boundary conditions dictate which dyon has
the zero mode. We decided to work with the case of Z2-fermions, which have
one periodic and one antiperiodic fermion, such that the M dyons had one
flavor of zero modes and L dyons the other flavor of zero modes. We found
that the confinement transition was an abrupt transition due to the restora-
tion of center symmetry, which standard fermions break, but is restored for
Z

N

-fermions. The two chiral condensates, one for each flavor of fermions,
stayed non-zero for all temperatures by balancing the densities with their
respective holonomies ⌫ and ⌫̄. Similar results was found on the lattice in
[36] for SU(3).

Dyons therefore give a good physical interpretation of these phenomena.
It should though be mentioned that this does not mean that everything is
known, as the precision in the model is still not too high, making more
precise quantities impossible to extract. First step towards a more precise
model has been done in my new paper with Edward Shuryak [54]. In this
paper we explored correlation functions from a random ensemble of dyons.
We here saw how corrections to the fermionic zero modes from L dyons
overlapping with M dyons are important. A future study of the interacting
instanton-dyon ensemble should therefore also include this e↵ect.

121



References

[1] R. Larsen and E. Shuryak, Nucl. Phys. A 950, 110 (2016)
doi:10.1016/j.nuclphysa.2016.03.013 [arXiv:1408.6563 [hep-ph]].

[2] R. Larsen and E. Shuryak, Phys. Rev. D 92, no. 9, 094022 (2015)
doi:10.1103/PhysRevD.92.094022 [arXiv:1504.03341 [hep-ph]].

[3] R. Larsen and E. Shuryak, Phys. Rev. D 93, no. 5, 054029 (2016)
doi:10.1103/PhysRevD.93.054029 [arXiv:1511.02237 [hep-ph]].

[4] R. Larsen and E. Shuryak, Phys. Rev. D 94, no. 9, 094009 (2016)
doi:10.1103/PhysRevD.94.094009 [arXiv:1605.07474 [hep-ph]].

[5] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Phys.
Lett. 59B, 85 (1975). doi:10.1016/0370-2693(75)90163-X

[6] S. Vandoren and P. van Nieuwenhuizen, arXiv:0802.1862 [hep-th].

[7] G. ’t Hooft, Phys. Rev. D 14, 3432 (1976) Erratum: [Phys. Rev.
D 18, 2199 (1978)]. doi:10.1103/PhysRevD.18.2199.3, 10.1103/Phys-
RevD.14.3432

[8] G. ’t Hooft, Phys. Rept. 142, 357 (1986). doi:10.1016/0370-
1573(86)90117-1

[9] T. Schfer and E. V. Shuryak, Rev. Mod. Phys. 70, 323 (1998)
doi:10.1103/RevModPhys.70.323 [hep-ph/9610451].

[10] M. Denissenya, L. Y. Glozman and C. B. Lang, Phys. Rev. D 91, no. 3,
034505 (2015) doi:10.1103/PhysRevD.91.034505 [arXiv:1410.8751 [hep-
lat]].

[11] M. Denissenya, L. Y. Glozman and C. B. Lang, Phys. Rev. D 89, no. 7,
077502 (2014) doi:10.1103/PhysRevD.89.077502 [arXiv:1402.1887 [hep-
lat]].

[12] M. Wagner, Phys. Rev. D 75, 016004 (2007)
doi:10.1103/PhysRevD.75.016004 [hep-ph/0608090].

[13] F. Lenz, J. W. Negele and M. Thies, Annals Phys. 323, 1536 (2008)
doi:10.1016/j.aop.2007.11.009 [arXiv:0708.1687 [hep-ph]].

122



[14] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003) doi:10.1016/S0146-
6410(03)90012-3 [hep-lat/0301023].

[15] R. Hllwieser, M. Faber, T. Schweigler and U. M. Heller, PoS LATTICE
2013, 505 (2014) [arXiv:1410.2333 [hep-lat]].

[16] B. J. Harrington and H. K. Shepard, Phys. Rev. D 17, 2122 (1978).
doi:10.1103/PhysRevD.17.2122

[17] K. M. Lee and C. h. Lu, Phys. Rev. D 58, 025011 (1998)
doi:10.1103/PhysRevD.58.025011 [hep-th/9802108].

[18] T. C. Kraan and P. van Baal, Phys. Lett. B 435, 389 (1998)
doi:10.1016/S0370-2693(98)00799-0 [hep-th/9806034].

[19] P. M. Lo, J. Phys. Conf. Ser. 503, 012034 (2014). doi:10.1088/1742-
6596/503/1/012034

[20] E. Poppitz, T. Schfer and M. nsal, JHEP 1303, 087 (2013)
doi:10.1007/JHEP03(2013)087 [arXiv:1212.1238 [hep-th]].

[21] Y. Nambu, Phys. Rev. D 10, 4262 (1974); S. Mandelstam, Phys.Rep. .
23C, 145 (1976);

[22] A. M. Polyakov, Nucl. Phys. B 120, 429 (1977). doi:10.1016/0550-
3213(77)90086-4

[23] P. Gerhold, E.-M. Ilgenfritz and M. Muller-Preussker, Nucl. Phys. B
760, 1 (2007) doi:10.1016/j.nuclphysb.2006.10.003 [hep-ph/0607315].

[24] T. Schfer and E. V. Shuryak, Phys. Rev. D 53, 6522 (1996)
doi:10.1103/PhysRevD.53.6522 [hep-ph/9509337].

[25] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. B 341, 1 (1990).
doi:10.1016/0550-3213(90)90260-K

[26] D. Diakonov, N. Gromov, V. Petrov and S. Slizovskiy, Phys. Rev. D 70,
036003 (2004) doi:10.1103/PhysRevD.70.036003 [hep-th/0404042].

[27] D. Diakonov, Nucl. Phys. Proc. Suppl. 195, 5 (2009)
doi:10.1016/j.nuclphysbps.2009.10.010 [arXiv:0906.2456 [hep-ph]].

123



[28] J. J. M. Verbaarschot, Nucl. Phys. B 362, 33 (1991) Erratum:
[Nucl. Phys. B 386, 236 (1992)]. doi:10.1016/0550-3213(92)90182-B,
10.1016/0550-3213(91)90554-B

[29] J. B. Kogut, Phys. Lett. B 187, 347 (1987). doi:10.1016/0370-
2693(87)91107-5

[30] F. Karsch and M. Lutgemeier, Nucl. Phys. B 550, 449 (1999)
doi:10.1016/S0550-3213(99)00129-7 [hep-lat/9812023].

[31] G. Cossu, M. D’Elia, A. Di Giacomo, G. Lacagnina and C. Pica,
Phys. Rev. D 77, 074506 (2008) doi:10.1103/PhysRevD.77.074506
[arXiv:0802.1795 [hep-lat]].

[32] E. Shuryak and T. Sulejmanpasic, Phys. Lett. B 726, 257 (2013)
doi:10.1016/j.physletb.2013.08.014 [arXiv:1305.0796 [hep-ph]].

[33] P. Faccioli and E. Shuryak, Phys. Rev. D 87, no. 7, 074009 (2013)
doi:10.1103/PhysRevD.87.074009 [arXiv:1301.2523 [hep-ph]].

[34] J. J. M. Verbaarschot, arXiv:0910.4134 [hep-th].

[35] C. Gattringer, M. Gockeler, P. E. L. Rakow, A. Schafer, W. Soldner and
T. Wettig, Nucl. Phys. Proc. Suppl. 106, 492 (2002) doi:10.1016/S0920-
5632(01)01757-1 [hep-lat/0110182].

[36] T. Misumi, T. Iritani and E. Itou, PoS LATTICE 2015, 152 (2016)
[arXiv:1510.07227 [hep-lat]].

[37] Michael E. Peskin, Daniel V. Schroeder, An Introduction To Quantum
Field Theory, Westview Press, 1995

[38] T. C. Kraan and P. van Baal, Nucl. Phys. B 533, 627 (1998)
doi:10.1016/S0550-3213(98)00590-2 [hep-th/9805168].

[39] E. Shuryak and T. Sulejmanpasic, Phys. Rev. D 86, 036001 (2012)
doi:10.1103/PhysRevD.86.036001 [arXiv:1201.5624 [hep-ph]].

[40] M. N. Chernodub, T. C. Kraan and P. van Baal, Nucl. Phys. Proc. Suppl.
83, 556 (2000) doi:10.1016/S0920-5632(00)91737-7 [hep-lat/9907001].

124



[41] F. Bruckmann, D. Nogradi and P. van Baal, Nucl. Phys. B 666, 197
(2003) doi:10.1016/S0550-3213(03)00531-5 [hep-th/0305063].

[42] D. J. Gross, R. D. Pisarski and L. G. Ya↵e, Rev. Mod. Phys. 53, 43
(1981). doi:10.1103/RevModPhys.53.43

[43] A. Cosnuau, ScienceDirect 10.1016/j.procs.2014.05.072

[44] E. V. Shuryak, Nucl. Phys. B 302, 621 (1988). doi:10.1016/0550-
3213(88)90191-5

[45] F. Bruckmann, S. Dinter, E. M. Ilgenfritz, M. Muller-
Preussker and M. Wagner, Phys. Rev. D 79, 116007 (2009)
doi:10.1103/PhysRevD.79.116007 [arXiv:0903.3075 [hep-ph]].

[46] Y. Liu, E. Shuryak and I. Zahed, Phys. Rev. D 92, no. 8, 085006 (2015)
doi:10.1103/PhysRevD.92.085006 [arXiv:1503.03058 [hep-ph]].

[47] V. G. Bornyakov and V. K. Mitrjushkin, Phys. Rev. D 84, 094503 (2011)
doi:10.1103/PhysRevD.84.094503 [arXiv:1011.4790 [hep-lat]].

[48] A. Dumitru, Y. Guo and C. P. Korthals Altes, Phys. Rev. D 89, no. 1,
016009 (2014) doi:10.1103/PhysRevD.89.016009 [arXiv:1305.6846 [hep-
ph]].

[49] V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S. Sharma, Phys.
Rev. D 91, no. 9, 094504 (2015) doi:10.1103/PhysRevD.91.094504
[arXiv:1502.06190 [hep-lat]].

[50] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005)
doi:10.1103/PhysRevD.71.114510 [hep-lat/0503017].

[51] S. Borsnyi, Z. Fodor, S. D. Katz, A. Psztor, K. K. Szab and
C. Trk, JHEP 1504, 138 (2015) doi:10.1007/JHEP04(2015)138
[arXiv:1501.02173 [hep-lat]].

[52] A. V. Smilga and J. Stern, Phys. Lett. B 318, 531 (1993).
doi:10.1016/0370-2693(93)91551-W

[53] J. C. Osborn, D. Toublan and J. J. M. Verbaarschot, Nucl. Phys. B 540,
317 (1999) doi:10.1016/S0550-3213(98)00716-0 [hep-th/9806110].

[54] R. Larsen and E. Shuryak, arXiv:1705.04707 [hep-ph].

125


