
A Study of Models of Nucleon Structure

Functions

Baishali Saikia

Department of Physics

Gauhati University

This thesis is submitted to

Gauhati University as requirement for the degree of

Doctor of Philosophy

Faculty of Science January 2018







To my loving parents
&

my beloved elder sister L ate Panchali Saikia . . .



Acknowledgements

First of all, I would like to express my deep gratitude to my respected supervisor Prof. Dilip

Kumar Choudhury, Gauhati University, for his invaluable guidance. But for his unstinted

help and continuous encouragement for perfection and hard work, it would not have been

possible for me to complete the thesis within the stipulated time.

I would also like to extend my sincere gratitude to my co-supervisor Dr. Kushal Kalita,

for his valuable suggestions and encouragement in different aspects.

I would also like to convey my sincere gratitude to the Head of the Department

Prof. Madhurjya P Bora, as well as Prof. Ngangkham Nimai Singh and Prof. Anurup Gohain

Barua (former HODs during my research period) for providing me with all the necessary

research facilities.

I am extremely grateful to all the faculty members of the Department, specially to

Prof. Buddhadeb Bhattacharjee, Dr. Kalpana Bora and Dr. Sanjeev Kalita, for their valuable

suggestions and immense encouragement.

I am very much thankful to my friends and seniors, specially to Sashikant bhaiya,

Satyanand bhaiya, Kalyan dada, Dr. Subhankar Roy, Dr. Akbari Jahan, Dr. Nabaratna

Bhagawati, Dr. Chandan Duarah, Dr. Debajyoti Dutta, Dr. Neelakshi N K Borah, Dr.

Tapan Rajbongshi, Dr. Paragjyoti Chutia, Mausumi, Mintu, Tapashi, Luxmi, Jugal, Gayatri,

Kuldeep, Murchana, Ruby, Angana and also Dipjyoti Deka for their unfailing support and

encouragement.

I would like to place on record my sincere gratitude to the University Grand Commission

for providing me the necessary financial support for my research work.

I would also like to place on record my gratitude to the Gauhati University office staff for

their help extended to me in various matters.



x

I would also like to offer my sincere thanks to one and all, who have directly or indirectly

lent their hand in this venture.

Last but not the least, I have no words to express my gratitude to my loving parents for

their unceasing supports, encouragement and attention. Their unfailing appreciation has

given me a strong motivation to carry on with the work diligently.

Above all, I am grateful to the God for granting me good health and well-being to

complete my thesis.



Abstract

The research work of this thesis is “A Study of Models of Nucleon Structure Functions".

In this thesis, we will study several models of structure functions of the proton specially at

small x from the point of view based on the concept of self-similarity [1]. We will introduce

the definition of self-similarity and its application in Unintegrated Parton Distribution Func-

tions (uPDF), Parton Distribution Functions (PDFs) and structure function of proton. The

predictions of the models will be compared with most recent experimental data as well as

other phenomenological and QCD based models. We will also give outlines of the following

topics in chapter 1: (1) QCD evolution equations: Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) and BFKL with the kinematics of Deep Inelastic Scattering (DIS) and

Semi-Inclusive Deep Inelastic Scattering (SIDIS).

(2) Transverse Momentum Dependent Parton Distributions Functions (TMDs) with the

kinematics of DIS and SIDIS and its evolution equation.

(3) Froissart bound and its applicability in DIS.

In chapter 2, we will study the self-similarity based model of proton structure function

suggested in Ref. [1], fitted by H1 and ZEUS data [57, 58] which will be again refitted by

recent HERA data [59] to verify the changes in defining parameters and phenomenological

ranges of validity.

In chapter 3, we will study the limitations of the models described in chapter 2 and

redefine a model which is free from singularity in the entire x-range : 0 < x < 1.

In chapter 4, we will improve the earlier models of chapters 2 and 3 such that they are

singularity free and have got a wider phenomenological ranges of validity.

In chapter 5, we will outline the method of incorporation of Froissart-Martin bound in

the self-similarity based models of proton structure functions discussed in chapter 4.
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In chapter 6, we will calculate the momentum fractions carried by quarks and gluons in

the models described in chapters 2 to 5. We will compare the results with the predictions of

Perturbative QCD, Lattice QCD and Ads/QCD models.

In chapter 7, we will discuss how Transverse Momentum Dependent Parton Distributions

Functions (TMDs) can be introduced in the self-similarity based models of proton structure

functions discussed in chapter 2 and 4.

In Chapter 8, we will outline the change of the structure of the TMDs discussed in chapter

7 if Froissart compatibility is also additionally introduced. We will discuss the difference

between the two in this chapter.

Chapter 9 contains the conclusion of the thesis along with the future outlook of it.
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1
INTRODUCTION

The research work of this thesis is “A Study of Models of Nucleon Structure Functions".

In this thesis we study several models of structure functions of the nucleon specially at

small x from the point of view based on the concept of self-similarity [1]. The predictions

of the models are then compared with most recent experimental data as well as other

phenomenological and QCD based models. We will also study Transverse Momentum

Dependent Parton Distribution Functions (TMDs) in later part of the work.

1.1 Self-similarity and its application

The self-similarity is an inherent property of fractal geometry invented by Benoit Mandelbrot

[2] in 1975. When an object is subdivided into many parts and if the shape of each part is
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equal to the original shape of the object then each small part will be called the self-similar to

the original one.

For self-similar objects, the dimension can be measured by using the formula :

D =
logMD

logM
=

log(number of self-similar objects)
log(magnification factor)

(1.1)

where D is the fractal dimension. For every fractal object, D must be expressed in terms

of fraction. Thus a fractal may have two inherent properties: One that is self-similarity

and the other is dimension that should be in fraction i.e fractal dimension. This is true for

ideal mathematical objects like Koch curve (D=1.26), Sierpinski gasket (D=1.58), Cantor set

(D=0.63) etc.

The definition of dimension can be generalized for the case of non-discrete fractals. In

this generalization, the magnification (scaling) factor is real number z and the number of

self-similar objects is f (z). Taking into account that the dimension may change with scaling,

a local dimension is defined as [1]

D(z) =
∂ log f (z)

∂ logz
(1.2)

For ideal mathematical fractals, D(z) is constant for the whole fractal. If an object have a

fractal structure for a certain region of magnification, then the dimension is approximately

constant, D(z) = D and

f (z) = D. logz+D0 (1.3)

D0 is normalization of f (z), which thus has power law behavior, f (z) ∝ zD.

In general, fractals may have two independent magnification factors, z and y. In this case, the

density function f (z,y) will be [1]

log f (z,y) = Dzy. logz. logy+Dz. logz+Dy. logy+D0 (1.4)
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Dzy represents the dimensional correlation relating the z and y factors. The function f (z,y)

satisfies a power law behavior in z for fixed y and in y for fixed z. In such approach, however,

there is a certain freedom in relating the magnification factors. Using this approach, the

concept of self-similarity can be applied to self-similar Unintegrated Parton Distribution

Function (uPDF) as well as Parton Distribution Functions (PDFs) and Structure Functions

[1].

1.2 self-similar Unintegrated Parton Distribution Functions

(uPDF), Parton Distribution Functions (PDFs) and Struc-

ture Functions

In QCD, parton model deals with Deep Inelastic Scattering (DIS: lN → lX in Fig. 1.1) from

which one can obtain the information about the structure of nucleons (proton and neutron),

basically about the partonic quark-gluon structure of the nucleon or how partons carry

nucleon momentum inside it. The inclusive process like DIS can give only the longitudinal

component of nucleon momentum; the Bjorken x. This kind of momentum information is

enclosed in parton distribution functions (PDFs) qi(x,Q2); which is a function of both x and

Q2, where Q2 is the four momentum transfer square from the initial to the final lepton. This

PDFs give the number density of partons inside the nucleon.

The unintegrated Parton Distribution Function (uPDF) fi(x,Q2) is unintegrated over the

virtual momentum Q2. It is related to the conventional quark density by

qi(x,Q2) =
∫ Q2

0
fi(x,Q2)dQ2 (1.5)

Using Eq. 1.5, one can define the structure function of the nucleon as follows:

F2(x,Q2) = x∑
i

e2
i
(
qi(x,Q2)+ q̄i(x,Q2)

)
(1.6)
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which involves both quarks and anti quarks.

When the proton is probed at very high energy, there will be a high probability of emis-

sions and splittings of gluons which may help in the formation of sea quark densities from the

level of valence quarks. The deeper the proton is probed, the more gluon-gluon interactions

can be observed which leads to the formation of more number of sea quarks densities and

therefore this may follow the self-similarity property. The behavior of unintegrated quark

density w.r.t x and Q2 in log-log scale can be tested and found to have linearity. Hence one

can suggest that the x and Q2 can be treated as the magnification factors.

Next comes the proper choice of magnification factors: they should be positive, non-zero

and have no physical dimension.
Q2

Q2
0

and
1
x

satisfy all these conditions. But based on the

notion that for small x, the partons should show more self-similarity behavior,
1
x

shows it,

which is also inconsistent with Glück-Reya-Vogt (GRV) [3] parameters. To avoid Q2 = 0, the

author then use 1+
Q2

Q2
0

as a reasonable magnification factor but alternate choice of
Q2

Q2
0 +Q2

is also equally possible.

Choosing the 1st choice, the following general form of unintegrated quark density was

suggested by Lastovicka (Eq. 6 of Ref. [1]):

log fi(x,Q2) = D1. log
1
x
. log

(
1+

Q2

Q2
0

)
+D2. log

1
x
+D3. log

(
1+

Q2

Q2
0

)
+Di

0 (1.7)

leading to

fi(x,Q2) = eDi
0

(
1
x

)D1 log
(

1+Q2

Q2
0

) (
1
x

)D2
(

1+
Q2

Q2
0

)D3

(1.8)

Integrating over the virtuality of the quark

qi(x,Q2) =
∫ Q2

0
fi(x,Q2)dQ2 (1.9)
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or

qi(x,Q2) =

eDi
0 Q2

0

(
1
x

)D2

(
1+D3 +D1 log

(
1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (1.10)

In that work, virtuality of the quark (Q2) and not the transverse momentum (k2
t ) was the

integrating variable.

Using Eqn 1.8 in the usual definition of the structure function F2(x,Q2) (Eq. 1.6), one

can get

F2(x,Q2) =
eD0 Q2

0
(1

x

)D2−1(
1+D3 +D1 log

(1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (1.11)

where

eD0 =
n f

∑
i=1

e2
i

(
eDi

0 + eD̄i
0

)
(1.12)

Eq. 1.12 involves both quarks and anti-quarks.

1.2.1 Improvement to take into account the correct dimensionality of

uPDF, PDF and structure function

In Eq. 1.9, the definition of integrated parton distribution functions, there is a dimension

anomaly: the left hand side of the equation is dimensionless while the right hand side has got

the dimension of energy square. To make the integrated PDF (qi(x,Q2)) and unintegrated

PDF ( fi(x,Q2)) dimensionless in Eq.1.9, we will introduce a mass parameter M2(=1 GeV2)

[80] in the equation such that both qi(x,Q2) and fi(x,Q2) becomes dimensionless.
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Therefore, we have redefined uPDF , PDF and structure function as follows:

uPDF

log[M2. fi(x,Q2)] = D1. log
1
x
. log

(
1+

Q2

Q2
0

)
+D2. log

1
x
+D3. log

(
1+

Q2

Q2
0

)
+Di

0 (1.13)

leading to

fi(x,Q2) =
eDi

0

M2

(
1
x

)D1 log
(

1+Q2

Q2
0

) (
1
x

)D2
(

1+
Q2

Q2
0

)D3

(1.14)

Therefore PDF

qi(x,Q2) =

eDi
0 Q2

0

(
1
x

)D2

M2
(

1+D3 +D1 log
(

1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1


(1.15)

and Structure function

F2(x,Q2) =
eD0 Q2

0
(1

x

)D2−1

M2
(
1+D3 +D1 log

(1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (1.16)

1.3 QCD evolution equations

1.3.1 (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equations of Singlet and Non-singlet structure functions

The DGLAP equation [4–6] basically defines the Q2-evolution of the parton distribution

functions, given a PDF at Q2 = Q2
0, one can study how it evolves with the virtuality Q2. The

distribution qi(x, t0) is not obtained from the DGLAP equation. It is non-perturbative in

origin which has different parametrization available in current literature.
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A. DGLAP equation of Non-singlet structure function

The non-singlet flavor dependent contribution is defined as,

FNS
2 (x,Q2) = x∑

i
(qi(x,Q2)− q̄i(x,Q2)) (1.17)

where qi is the density of quark of ith flavor (PDF).

Introducing the variable t = ln
Q2

Λ2 , the DGLAP evolution equation for the non-singlet

structure function at LO can be written as:

∂FNS
2 (x, t)

∂ t
=

A f

t

[
{3+4ln(1− x)}FNS

2 (x, t)+2
∫ 1

x

dz
1− z

{
(1+ z2)FNS

2

(
x
z
, t
)
−2FNS

2 (x, t)
}]

(1.18)

Here, A f =
4

3β0
, β0 = 11− 2

3
N f , N f being the number of flavors and αs(t) =

4π

β0t
.

B. Coupled DGLAP equations for Singlet and gluon structure functions

The DGLAP evolution equations for quark singlet FS
2 (x,Q

2) and gluon G(x,Q2) densities

are as follows:

For quark singlet

∂FS
2 (x, t)
∂ t

−
A f

t

[
{3+4ln(1− x)}FS

2 (x, t)+ IS
1 (x, t)+ IG

1 (x, t)
]
= 0 (1.19)

where,

IS
1 (x, t) = 2

∫ 1

x

dz
1− z

[
(1+ z2)FS

2 (
x
z
, t)−2FS

2 (x, t)
]
, (1.20)

IG
1 (x, t) =

3
2

N f

∫ 1

x
dz [z2 +(1− z)2]G(

x
z
, t), (1.21)

FS
2 (x, t) is the singlet structure function of the proton which can be written as:

FS
2 (x,Q

2) = x∑
i

(
qi(x,Q2)+ q̄i(x,Q2)

)
(1.22)
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The DGLAP evolution equation for the gluon distributions have the standard form in LO:

∂G(x, t)
∂ t

− αs(t)
2π

IG
1 (x, t) = 0 (1.23)

where,

IG
1 (x, t) = 6

{
11
12

−
N f

18
+ ln(1− x)

}
G(x, t)+6

∫ 1

x
dz

zG(x
z , t)−G(x, t)

1− z

+6
∫ 1

x
dz
{

z(1− z)+
(1− z)

z

}
G(

x
z
, t)+

4
3

∫ 1

x
dz

1+(1− z)2

z
FS

2 (
x
z
, t) (1.24)

1.3.2 BFKL equation

The BFKL equation [8–10] is basically derived for the unintegrated gluon distribution

function f (x,k2
t ) where k2

t is the transverse momentum of gluons. It is defined as

f (x,k2
t ) = f (o)(x,k2

t )+ ᾱs(k2
t )
∫ 1

x

dz
z

∫ dk′2t
k′2t

[
f (x

z ,k
′2
t )− f (x

z ,k
2
t )

|k′2t − k2
t |

+
f (x

z ,k
2
t )[

4k′4t + k4
t
]1/2

]
(1.25)

where f (o)(x,k2
t ) is the unintegrated gluon distribution function at k2

t = k2
0 and ᾱs = 3αs/π .

The gluon distribution function f (x,k2
t ) is unintegrated over its transverse momentum kt .

It is related to the conventional gluon density g(x,Q2) by

xg(x,Q2) =
∫ Q2

0
f (x,k2

t )
dk2

t

k2
t

(1.26)

More recent study of transverse momentum parton distribution functions [12] has however,

indicated the refinement of the above relation between unintegrated and integrated version of

PDFs contains both quarks and gluons.

In more recent time, improved evolution equations like GLR [13] and JIMWKL [14]

equations have also been suggested having various degrees of theoretical refinement com-

pared to DGLAP equation. But at the phenomenological level, DGLAP equation appears
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to be more successful both at the HERA and LHC region. However, DGLAP equation has

inherent limitations as it rests on Q2 evolution of integrated parton distribution functions:

many other important aspects of the proton structure function is not revealed by it. PDF is

generally an average of all degrees of freedom except the longitudinal one. Since proton is a

3-dimensional object, other degrees of freedom like its transverse component of momentum

needs to be incorporated in a proper generalization of PDFs.

In recent years, a serious systematic attempt to study the transverse structure of the

proton has been done both theoretically and experimentally. The crucial aspects of this is

looking for observables which are sensitive to the transverse structure of the nucleon. While

the longitudinal part of the nucleon has been well studied in DIS, transverse part needs

experiment of Semi Inclusive Deep Inelastic Scattering (SIDIS: lN → lhX in Fig. 1.1) in

which one observes a hadron at the final stage besides the lepton.

In this case, a hadron resulting from the fragmentation of a scattered quark retains the

original motion of the quark including its transverse motion. The fragmentation function is

defined by Dh/q which gives the number density of hadrons resulting from the hadronization

of the partons with transverse momentum (k′t). Using factorization theorem in QCD [15–18],

the SIDIS differential cross-section can be expressed as :

dσ
l p→lhX = ∑

q
fq/p(x,kt ;Q2)⊗dσ̂

lq→lq ⊗Dh/q(zh,k′t ;Q2) (1.27)

in which the non-perturbative, long-distance physics (contained in fq/p and Dh/q) is convo-

luted with the elementary, short-distance, hard-scattering interaction (dσ̂ lq→lq). The parton

distributions (PDFs) fq/p and fragmentation functions (FFs) Dh/q depend not only on Q2 and

the longitudinal momentum fraction (respectively x and zh) but also on transverse motion

of partons inside the nucleon (kt) and of the final hadron with respect to the fragmentation

parton (k′t). These Transverse Momentum Dependent parton distributions and fragmentation

functions are usually abbreviated as TMDs.
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a) DIS b) SIDIS

Fig. 1.1 DIS vs SIDIS

Experimentally the semi-inclusive deep inelastic scattering (SIDIS) process can in general

be expressed as the following differential cross-section [19]

dσ

dQ2 dx dzh d2Pht
, (1.28)

Here x and Q2 are well known DIS kinematics where

Q2 =−q2 = (k− k′)2 ,

x =
Q2

2P.q

k and k′ are the incoming and scattered lepton momenta respectively as shown in Fig. 1.1

and q = k− k′. P is the four momentum of proton. The other two variables are:

zh =
P.Ph

P.q
= 2x.

P.Ph

Q2
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where Ph is the four momentum of the observed hadron.

Pht = transverse momentum of the detected hadron. Experimental data are mostly processed

in terms of these 4 variables.

The factorization theorems of pQCD have been instrumental in the successful application

of QCD theory to phenomenology. The standard collinear factorization formalism [15] makes

use of “integrated” PDFs and FFs which depend only on a single longitudinal momentum

fraction, while the small momentum components, including the transverse components, are

integrated over in the definitions.

A transverse momentum dependent TMD-factorization [15–18] formalism goes beyond

the standard factorization framework by allowing the PDFs and FFs to depend on intrinsic

transverse momentum in addition to the usual momentum fraction variables. As such,

different sets of approximations are needed in the factorization proofs. The PDFs and FFs in

a TMD-factorization formalism are referred to as TMD PDFs and TMD FFs (they are also

called “unintegrated” or “kt -dependent”) collectively called as “TMDs” as mentioned above.

Specifically, Collins has found the right definition of TMD distinguishing it from uPDF

[21]. The confusion over definition of TMD therefore appears to be solved.

While TMDs can potentially provide a much deeper understanding of QCD and hadron

structure, the theoretical framework of TMD-factorization is much more complicated than

the more standard collinear factorization.

The TMD factorization scheme has been developed by Collins, Soper and Sterman (CSS)

[18, 22, 23] which provides a systematic treatment of pQCD over the full range of transverse

momentum. This is however, beyond the scope of the present work.

There has been also interesting work devoted to parametrizing TMDs by assuming a

parton model picture of TMD-factorization and directly fitting cross section calculations

to experimental data [24–28]. This approach to TMD phenomenology is often called the

generalized parton model (GPM) [29]. Only under this picture, Eq. 1.27 can be understood.

This cross-section is simply a partonic sub-process, folded with TMD PDF and TMD
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FF within the parton model. TMDs fq/p(x,kt) and Dh/q(zh,k′t) have simple probabilistic

interpretations: fq/p(x,kt) for example is the probability density for finding a quark of flavor

q with momentum fraction x and transverse momentum kt inside the proton while Dh/q(zh,k′t)

gives the number density of hadrons resulting from the hadronization of a parton q with

momentum zh and transverse momentum k′t .

In SIDIS, the explicit form of hadronic tensor involving TMD PDF and TMD FF have

got the form [30]

W µν = ∑
f
|H (Q)2|µν ×

∫
dk

t d2k′t fq/p(x,kt)Dh/q(zh,k′t)×δ
(2)(kt +qt − k′t) (1.29)

Here |H (Q)2|µν describes the hard partonic sub-process, γ∗q → q, for scattering off a quark

of flavor q as a function of the hard scale Q. (It also includes any overall factors needed to

make the left side a proper hadronic tensor.) The size of qt is a measure of the non-collinearity

in the process. Eq. 1.29 is closely analogous to the standard collinear factorization theorem

of inclusive processes [31].

In QCD, the TMD PDF and TMD FF have got two more variables: µ, ζ f for TMD PDF

and µ, ζD TMD FF, where µ is the usual renormalization group scaling factor. ζF and ζD

are defined as [30]

ζ f = 2M2
px2e2(yp−ys) (1.30)

and

ζD = 2(M2
H/z2

h)e
2(ys−yh) (1.31)

Here, x and zh are the usual Bjorken scaling and fragmentation variables, Mp is the proton

mass and Mh is the mass of the produced hadron. The rapidities of the proton and produced

hadron are yp and yh respectively.

The evolution of TMD PDF fq/p(x,kt ; µ;ζ f ) and TMD FF Dh/q(x,k′t ; µ;ζD) are governed

by the TMD evolution equations. To obtain their closed universal form is still an intense

field of study. However, in specific models, like covariant parton model [32], TMD evolution
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equation has got the simpler form as follows:

Defining the derivative of the integrated parton distribution function (qi(x,Q2)) as

q′
(
=

dqi(x,Q2)

dx

)
, q(x,Q2)−xq′(x,Q2) = ρq(p,Q2), quark momentum p(x) =

Mx
2

, where

M is the mass of the nucleon, ξ = x

(
1+
(

kt

Mx

)2
)

, p̃(x,kt) =
Mξ

2
, splitting function

P(x) for quark-quark of DGLAP evolution equation and TMD PDF fq/p(x,kt ;Q2), one can

get the exact evolution equation for TMD as below:

d
d lnQ2 fq/p(x,kt ;Q2) =

1
4π p̃2

∫ M/2

p̃

d ṕ
ṕ

P
(

p̃
ṕ

)
ρq(ṕ,Q2) (1.32)

which is an active research field involved.

1.4 Froissart Bound

One of the cornerstones for the present strong interaction physics is the Froissart theorem

[33]. It declares that the total cross sections of any two-hadron scattering cannot grow

with energy faster than (logs)2 where s is the center of mass energy square. Later it

was improved by Martin [34–36]. The original derivation of Froissart [33] is based on

Mandelstam representation and that of Martin [34, 37] is on axiomatic field theory which

could be considered as more general. The approach has led further development of the

subject [38–42] as well as construction of several phenomenological models [43, 44]. it is

therefore more familiar as Froissart-Martin bound.

Precession measurement of proton-proton (pp) cross-section at LHC [45–48] and in

cosmic rays [49] have led the PDG group [50] to fit the data with such log2 s term together

with an additive constant σ ∼ A+B log2 s.

However, to prove the Froissart theorem in QCD, is not yet been fully established.

Recently it was shown by Greynat and Rafael [51] that in the Large-Nc limit of QCD, it

is possible to construct models which a priori show no obstruction for such asymptotic

behaviour of the total ππ cross sections.
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In DIS, it is related to the hadronic structure function F2(x,Q2) where Q2 is the virtuality

and x the longitudinal momentum fraction of quarks. This corresponds to the behavior of

structure function of not rising faster than log2 1
x

.

It is well known that the conventional equations of QCD, like DGLAP [4–6] and BFKL

approaches [7–10], this limit is violated; while in the DGLAP approach, the small-x gluons

grow faster than any power of ln
(

1
x

)
≈ ln

(
s

Q2

)
[52], in the BFKL approach it grows as a

power of
(

1
x

)
[7–11].

However, in recent years, the validity of Froissart Bound for the structure function at

phenomenological level has attracted considerable attention in the study of DIS, mostly due

to the efforts of Block and his collaborators [53].

It was argued in Ref. [55] that as the structure function Fγ p
2 (x,Q2) is essentially the

total cross section for the scattering of an off-shell gauge boson γ∗ on the proton, a strong

interaction process up to the initial and final gauge boson-quark couplings and Froissart

bound makes sense. On this basis, one analytical expression in x and Q2 for the DIS structure

function has been suggested by them which has expected Froissart compatible log2 1
x

behavior

and valid within the range of Q2: 0.85 ≤ Q2 ≤ 1200 GeV2 of the HERA data. Using this

expression as input at Q2
0 = 4.5 GeV2 at DGLAP evolution equation, the validity can be

increased upto 3000 GeV2. The approach has been more recently applied in the Ultra High

Energy (UHE) neutrino interaction, valid upto ultra small x ∼ 10−14 [56] . It is therefore of

interest to study if such Froissart saturation like behavior can be incorporated in any other

proton structure functions as well and can be tested with data.

1.5 Plan of the thesis

In chapter 2, we will study the self-similarity based model of proton structure function

suggested in Ref. [1], fitted by H1 and ZEUS data [57, 58] which will be again refitted by

recent HERA data [59] to verify the changes in defining parameters and phenomenological

ranges of validity.
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In chapter 3, we will study the limitations of the models described in chapter 2 and re-

define a model which is free from singularity in the entire x-range : 0 < x < 1.

In chapter 4, we will improve the earlier models of chapters 2 and 3 such that they are

singularity free and have got a wider phenomenological ranges of validity.

In chapter 5, we will outline the method of incorporation of Froissart-Martin bound in

the self-similarity based models of proton structure functions discussed in chapter 4.

In chapter 6, we will calculate the momentum fractions carried by quarks and gluons in the

models described in chapters 2 to 5. we will compare the results with the predictions of

Perturbative QCD, Lattice QCD and Ads/QCD models.

In chapter 7, we will discuss how Transverse Momentum Dependent Parton Distributions

Functions (TMDs) can be introduced in the self-similarity based models of proton structure

functions discussed in chapter 2 and 4.

In Chapter 8, we will outline the change of the structure of the TMDs discussed in chapter

7 if Froissart compatibility is also additionally introduced. We will discuss the difference

between the two in this chapter.

Chapter 9 will include the summary and future outlook of this thesis.





2
Self-similarity based proton structure

function and its reanalysis at small x

2.1 Introduction

Although renormalization group equation of quantum field theory [62] exhibits self-similarity

[63], it is not yet established rigorously in QCD, the accepted fundamental quantum field

theory of strong interaction. However, because of its wide applicability in other areas of

physics [64–66] including condensed matter physics, its applicability in the study of structure

of the proton is worth pursuing, at least at the phenomenological level. In the middle of

1980’s, the notion of fractals has found its applicability in hadron production process [67–70]

when the self-similar nature of hadron multi-particle production process was suggested.
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Specifically, in 1990, Bjorken [70] highlighted the fractality of parton cascades leading to

the anomalous dimension of phase space.

Relevance of these ideas in the contemporary physics of DIS has been first noted by

Dremin and Levtchenko [71] in early 1990’s, where it was shown that the saturation of

hadron structure function at small x may proceed faster if the highly packed regions of proton

have fractal structures. However, as shown in chapter 1, it was Lastovicka [1] in 2002, who

first suggested the self-similarity as a possible feature of multipartons in the proton specially

in the kinematical region of small Bjorken x, which in later years was pursued in Refs.

[72–82]. Specifically, how quarks and gluons share the momentum fractions of the proton

in self-similar way was studied in [78, 79], large x behavior of parton distribution functions

(PDF) and double parton distribution functions (dPDF) in [80], and Froissart saturation in

[82].

One of the apparent limitations of the phenomenological analysis of Ref. [1] is that it has

a singularity at x0 ∼ 0.019 which is well within the kinematical range 0 ≤ x ≤ 1. However,

such singularity is not a common expectation from any physically viable model of proton

structure function F2(x,Q2).

In the present chapter, we therefore make a re-analysis of the model of Ref. [1] using

the most recent HERA data. To that end, we will use the more recently complied HERA

data [59, 92, 93], instead of analysis of Ref. [1] where as previously reported data were used

Refs. [57, 58]. The difference between the two is however, not significant and still has a

singularity.

In section 2.2, we outline the formalism as well as the results. Section 2.3 is the

conclusion.



2.2 Formalism 19

2.2 Formalism

2.2.1 Parton Distribution function (PDF) based on self-similarity

The self-similarity based model of the proton structure function of Ref. [1] is based on parton

distribution function(PDF) qi(x,Q2). Choosing the magnification factors M1 =

(
1+

Q2

Q2
0

)
and M2 =

(
1
x

)
, the unintegrated Parton Density (uPDF) can be written as [1, 80]

log[M2. fi(x,Q2)] = D1. log
(

1
x

)
. log

(
1+

Q2

Q2
0

)
+D2. log

(
1
x

)
+D3. log

(
1+

Q2

Q2
0

)
+Di

0

(2.1)

where x is the Bjorken variable and Q2 is the renormalization scale and i denotes a quark

flavor. Here D1, D2, D3 are the three flavor independent model parameters while Di
0 is the

only flavor dependent normalization constant. M2(=1 GeV2) [80] is introduced to make

(PDF) qi(x,Q2) as defined below (in Eq. 2.2) dimensionless. We note that in deriving the

model ansatz Eq. (2.1), one has to first generalize the definition of dimension from discrete

to continuous fractals. The proper choice of magnification factors are made on the condition

that they should be positive, non-zero and have no physical dimension. Whereas, in Ref.

[1], choice of
(

1+
Q2

Q2
0

)
is made and an equivalent choice of

(
Q2

0

Q2 +Q2
0

)
is also equally

plausible. So is
(

1
x

)
vs
(

log
1
x

)
. The integrated quark densities (PDF) then can be defined

as

qi(x,Q2) =
∫ Q2

0
fi(x,Q2)dQ2 (2.2)

As a result, the following analytical parametrization of a quark density is obtained by using

Eq. 2.2 [79] :

Model 1

qi(x,Q2) = eDi
0 f (x,Q2) (2.3)
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where

f (x,Q2) =

Q2
0

(
1
x

)D2

M2
(

1+D3 +D1 log
(

1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (2.4)

is flavor independent. Using Eq. 2.3 in the usual definition of the structure function F2(x,Q2),

one can get

F2(x,Q2) = x∑
i

e2
i
(
qi(x,Q2)+ q̄i(x,Q2)

)
(2.5)

or it can be written as

F2(x,Q2) =

eD0 Q2
0

(
1
x

)D2−1

M2
(

1+D3 +D1 log
(

1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (2.6)

which has the power law growth in
(

1
x

)
. log

(
1
x

)
comes only in the denominator. Here

eD0 =
n f

∑
i=1

e2
i

(
eDi

0 + eD̄i
0

)
(2.7)

Eq. 2.5 involves both quarks and anti-quarks. As in Ref. [1] we use the same parametrization

both for quarks and anti-quarks. Assuming the quark and anti-quark have equal normalization

constants, we obtain for a specific flavor

eD0 =
n f

∑
i=1

e2
i

(
2eDi

0

)
(2.8)

It shows that the value of D0 will increase as more and more number of flavors contribute to

the structure function.
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With n f = 3,4 and 5 it reads explicitly as

n f = 3 : eD0 = 2
(

4
9

eD0
u
+

1
9

eD0
d
+

1
9

eD0
s
)

(2.9)

n f = 4 : eD0 = 2
(

4
9

eD0
u
+

1
9

eD0
d
+

1
9

eD0
s
+

4
9

eD0
c
)

(2.10)

n f = 5 : eD0 = 2
(

4
9

eD0
u
+

1
9

eD0
d
+

1
9

eD0
s
+

4
9

eD0
c
+

1
9

eD0
b
)

(2.11)

Since each term of right hand sides of Eqs. 2.9, 2.10, and 2.11 is positive definite, it is clear,

the measured value of D0 increases as n f increases. However, single determined parameter

D0 can not ascertain the individual contribution from various flavors.

From HERA data [57, 58], Eq. 2.6 was fitted in Ref. [1] with

D0 = 0.339±0.145

D1 = 0.073±0.001

D2 = 1.013±0.01

D3 = −1.287±0.01

Q2
0 = 0.062±0.01 GeV2 (2.12)

in the kinematical region,

6.2×10−7 ≤ x ≤ 10−2

0.045 ≤ Q2 ≤ 120 GeV2 (2.13)
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Table 2.1 Results of the fit of F ′′
2 ; Eq.2.14

D′′
0 D′′

1 D′′
2 D′′

3 Q′′2
0 (GeV2) χ2/ndf

0.354±0.02 0.071±0.001 1.032±0.004 -1.314±0.01 0.064±0.0008 0.12

2.2.2 Reanalysis of Lastovicka model

Model 2

The defining equations of the model of Ref. [1] (Eqs. 2.1-2.4 above) do not ascertain the

numerical values and signs of the parameters D j s. These are determined from data [57, 58]

leading to the set of Eq. 2.12 in the kinematic range (Eq. 2.13). Redefining the structure

function as F ′′
2 and the model parameters as D′′

j s i.e. viz

F ′′
2 (x,Q

2) =
eD′′

0 Q′′2
0
(1

x

)D′′
2−1

M2
(
1+D′′

3 +D′′
1 log 1

x

)
(1

x

)D′′
1 log

(
1+ Q2

Q′′2
0

)(
1+

Q2

Q′′2
0

)D′′
3+1

−1

 (2.14)

and refitting Eq. 2.14 by using the compiled HERAPDF1.0 [59] to check the behavior of the

model parameters and obtain a new set of it. However, it makes no significance difference

whether we use Refs. [57, 58] or Ref. [59] in analyzing the model, as it results a negative D3

with the best fit of data compared to Eq. 2.12, if we don’t impose any extra condition on the

model parameters while parametrizing it. The result of the fitting is shown in Table 2.1 with

the χ2 analysis. The total number of F ′′
2 data points are 257. The phenomenological range of

x and Q2 are obtained within:

6.62×10−6 ≤ x ≤ 10−2

0.35 ≤ Q2 ≤ 150 GeV2 (2.15)

In Fig. 2.1, we plot F ′′
2 as a function of x for few representative values of Q2 (Q2= 0.35,

0.65, 2, 3.5, 6.5, 15, 22, 35, 45, 90, 120, 150 GeV2) within the phenomenologically allowed

range of x and Q2. We also show the corresponding available data from Ref. [59].
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Fig. 2.1 Comparison of the structure function F ′′
2 (Eq.2.14) as a function of x in bins of Q2

with measured data of F2 from HERAPDF1.0[59]
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2.3 Summary

In this chapter, we have first made a reanalysis of the self-similarity based model at small x

proposed by Lastovicka [1] using more recent HERA data. The analysis does not make any

big difference with the previous one except the phenomenological range of validity enhance

upto Q2 ≤ 150 GeV2 instead of Q2 ≤ 120 GeV2. The two analyses have singularities at

x0 ∼ 0.019 and x′′0 ∼ 0.012 respectively, even though outside each phenomenological range

of validity. In the next chapter, we therefore explore the possibility of an alternative model

which is singularity free.



3
Singularity free self-similarity based proton

structure function at small x

3.1 Introduction

In chapter 2, we noted that the defining equations of the model of Ref. [1] (Eqs.2.1-2.4 of

chapter 2) do not ascertain the numerical values and signs of the parameters D js. These

are determined from data [57, 58] leading to the set of Eq. 2.12 in the kinematic range

(Eq. 2.13) of chapter 2. However, the phenomenological analyses of models 1 and 2

have one inherent limitation: due to the negative value of D3, Eq. 2.6 and 2.14 develop

singularities at x0 ∽ 0.019 [78, 79] and x′′0 ∼ 0.012 respectively as it satisfies the condition

1+D3 +D1 log
1
x0

= 0, contrary to the expectation of a physically viable form of structure
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function. We therefore explore the possibility of an alternate model which is singularity free

in the entire x-range; 0 < x < 1.

In section 3.2 we outline the essential formalism. We discuss the results in section 3.3.

Section 3.4 contains the summary of the present chapter.

3.2 Formalism

Redefining the model parameters D j s by D′
j s (j=1,2,3) and (PDF) qi(x,Q2) by q′i(x,Q

2) and

also structure function F2(x,Q2) by F ′
2(x,Q

2) in the present analysis, we observe that it can

be made singularity free under the following specific conditions:

Case 1

If D′
1,D

′
3 ≪ D′

2 in Eq. 2.1 then the PDF Eq. 2.3 and the Structure Function Eq. 2.6 will be

of the form:

q′i(x,Q
2) =

eD′i
0 Q2 x−D′

2

M2 (3.1)

F ′
2(x,Q

2) =
eD′

0 Q2 x−D′
2+1

M2 (3.2)

Case 2

In this case D′
1 ≪ D′

2,D
′
3 in Eq. 2.1 then the corresponding expressions for the PDF and

Structure Function in this limit are respectively:

q′i(x,Q
2) =

eD′i
0 Q′2

0 x−D′
2

M2
(
1+D′

3
) ((1+

Q2

Q′2
0

)D′
3+1

−1

)
(3.3)

F ′
2(x,Q

2) =
eD′

0 Q′2
0 x−D′

2+1

M2
(
1+D′

3
) ((

1+
Q2

Q′2
0

)D′
3+1

−1

)
(3.4)
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Case 3

In this case, D′
3 ≪ D′

1,D
′
2 in Eq. 2.1 then the corresponding PDF and the Structure Function

are set in the form:

q′i(x,Q
2) =

eD′i
0 Q2 x−D′

2

M2
(
1+D′

1 log 1
x

)
(1

x

)D′
1 log

(
1+ Q2

Q′2
0

)(
1+

Q2

Q′2
0

)
−1

 (3.5)

F ′
2(x,Q

2) =
eD′

0 Q2 x−D′
2+1

M2
(
1+D′

1 log 1
x

)
(1

x

)D′
1 log

(
1+ Q2

Q′2
0

)(
1+

Q2

Q′2
0

)
−1

 (3.6)

respectively.

Case 4

This is the most general case for the singularity free model of Parton Distribution Function

(PDF) Eq. 2.3 and Structure Function Eq. 2.6 under the condition that D′
1,D

′
2,D

′
3 are positive.

q′i(x,Q
2) =

eD′i
0 Q′2

0
(1

x

)D′
2

M2
(
1+D′

3 +D′
1 log 1

x

)
(1

x

)D′
1 log

(
1+ Q2

Q′2
0

)(
1+

Q2

Q′2
0

)D′
3+1

−1

 (3.7)

and

F ′
2(x,Q

2) =
eD′

0 Q′2
0
(1

x

)D′
2−1

M2
(
1+D′

3 +D′
1 log 1

x

)
(1

x

)D′
1 log

(
1+ Q2

Q′2
0

)(
1+

Q2

Q′2
0

)D′
3+1

−1

 (3.8)

which has the power law growth in
(

1
x

)
. log

(
1
x

)
comes only in the denominator.
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3.3 Results

To determine the parameters of the model
(
D′

0, D′
1, D′

2, D′
3, Q′2

0
)

we use recently compiled

HERA data [59] instead of earlier data [57, 58] used in Ref. [1]. Following this procedure of

Ref. [1], we make χ2-analysis of the data and find the following results.

Case 1

We note that D′
2=1 is ruled out since it will make the Structure Function Eq. 3.2 x-independent.

In Table 3.1 we show the results. From the χ2-analysis, it is obtained that the model in case 1

is confined well with data for 0.35 ≤ Q2 ≤ 70 GeV2 and 6.62× 10−6 ≤ x ≤ 0.08. D′
3 and D′

1

are taken to be zero in this limit. Here the number of F ′
2 data points is 222.

Case 2

The parameters D′
0, D′

2, D′
3 and Q′2

0 are determined (given in Table 3.2) in the similar manner

as in case 1 and the range of validity has been obtained as: 0.35 ≤ Q2 ≤ 27 GeV2 and 6.62×

10−6 ≤ x ≤ 0.032. As in case 1, here too D2 = 1 is ruled out since it will make Eq. 3.4

x-independent. The number of F ′
2 data points is 174.

Case 3

Here, parameters are best fitted in the range: 0.35 ≤ Q2 ≤ 15 GeV2 and 6.62× 10−6 ≤ x ≤

0.02 and given in Table 3.3. The number of F ′
2 data points is 146.

Table 3.1 Results of the fit of case 1; Eq. 3.2

D′
0 D′

1 D′
2 D′

3 Q′2
0 (GeV2) χ2/ndf

-4.129±0.332 0 1.226±0.01 0 - 0.81
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Table 3.2 Results of the fit of case 2; Eq. 3.4

D′
0 D′

1 D′
2 D′

3 Q′2
0 (GeV2) χ2/ndf

-6.125±0.444 0 1.214±0.01 0.531±0.01 0.053±0.001 0.80

Table 3.3 Results of the fit of case 3; Eq. 3.6

D′
0 D′

1 D′
2 D′

3 Q′2
0 (GeV2) χ2/ndf

-3.533±0.350 0.411±0.02 0.582±0.003 0 0.035±0.0005 0.80

Case 4

Parameters D′
0, D′

1, D′
2, D′

3 and Q′2
0 are determined and given in Table 3.4 and obtained in a

more restrictive range: 0.85 ≤ Q2 ≤ 10 GeV2 and 2× 10−5 ≤ x ≤0.02. The number of F ′
2

data points is 95.

In Fig. 3.1, we plot F ′
2 (Eq. 3.8) for the case 4 as a function of x for eight representative

values of Q2 (Q2= 1.5, 2.7, 3.5, 6.5, 8.5, 10 GeV2) in the phenomenologically allowed range

0.85 ≤ Q2 ≤ 10 GeV2. We also show the corresponding available data from Ref. [59].

It shows that as the model parameters have additional positivity constraint, the range of

validity shrinks from Q2 = 120 GeV2 to Q2 = 10 GeV2. Thus our analysis indicates that the

phenomenological range of validity of the present version of the model is more restrictive:

0.85 ≤ Q2 ≤ 10 GeV2 and 2×10−5 ≤ x ≤ 0.02 to be compared with Eq. 2.13 of the previous

version of Ref. [1]. Also, the individual χ2 at Q2 = 8.5 and 10 GeV2 is minimum to be

compared with Q2 = 4.5 and 10 GeV2 which is quite larger than that of 10 GeV2. It is same

for Q2 = 1.5 GeV2 too. Basically, our results valid in small area in between Q2 of 8.5 and 10

GeV2. But due to the unavailability of the experimental data points, the difference cant be

shown explicitly.

Table 3.4 Results of the fit of case 4; Eq. 3.8

D′
0 D′

1 D′
2 D′

3 Q′2
0 (GeV2) χ2/ndf

-2.971±0.409 0.065±0.0003 1.021±0.004 0.0003±0.0001 0.20±0.0008 0.20
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Fig. 3.1 Comparison of the structure function F ′
2 of Model 2 as a function of x in bins of Q2

with measured data of F2 from HERAPDF1.0 [59]

We also observe the following features of the model compared to data: at Q2 = 1.5 GeV2

data overshoots the theory. But as Q2 increases, the theoretical curve comes closer to data.

At Q2=10 GeV2, on the other hand, the theory exceeds data. Main reason of this feature is

that the x-slope of the model is less than that of the data. Specifically, due to positive D3, the

growth of the structure function with Q2 becomes faster than a linear growth as can be seen

from Eq. 2.4 i.e. (
1+

Q2

Q′2
0

)(1+D′
3)

≈
(

1+
Q2

Q′2
0

)1.0003

at higher values of Q2 > 1 GeV2 to be compared with

(
1+

Q2

Q2
0

)(1+D3)

≈
(

1+
Q2

Q2
0

)−0.287

of Ref. [1] which is faster than data. This is the major limitation of the present singularity

free version of the model which calls for further improvement.
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3.4 Summary

In this chapter, we have removed the singularities in the models discussed in chapter 2 within

the entire x-range: 0 < x < 1 by putting an extra condition on parameters that it should be

positive definite. But an effort to make a model singularity free reduces its phenomenological

range of validity drastically. Therefore, in the next chapter, we explore alternative ways of

making the model singularity free and not pursue the present singularity free model further.





4
Improved singularity free self-similarity

based models of proton structure function

at small and large x

4.1 Introduction

Let us discuss a possible way of removing the short coming of the models under discussion.

This approach has taken the notion of self-similarity to parametrize Parton Distribution

Function (PDF) and eventually the structure function. However, the variables in which

the supposed fractal scaling of the quark distributions and F2(x,Q2) occur are not known

from the underlying theory. In Ref. [1], the choice of
(

1
x

)
is presumably because of the
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power law form of the quark distributions at small x found in Glück-Reya-Vogt (GRV) [3]

distribution. However, this form is not derived theoretically but rather follows from the

power law distributions in x assumed for the input quark distributions used by the GRV

distribution for the QCD evolution. The choice of
(

1
x

)
as the proper scaling variable is

therefore not established from the underlying theory. Same is true for the magnification

factor M1 =

(
1+

Q2

Q2
0

)
as defined in Eq. 2.1.

4.2 Formalism

4.2.1 Improved version of the self-similarity based models

The magnification factor M1 can be considered as a special case of more general form :

M̂1 =
n

∑
i=−n

αiMi
1 (4.1)

Only in a specific case, where α1 = 1 and all other coefficients cases vanish lead to the

original M1 as defined in Eq. 2.1. If we take this generalization form of Eq. 4.1 and if all the

coefficients αi(i = 0, 1, 2, . . . ,n) vanish then Eq. 4.1 becomes

M̂1 =
n

∑
j=1

B j(
1+ Q2

Q̂2
0

) j (4.2)

where

B j = α− j (4.3)

The defining uPDF therefore can be generalized to

log[M2. f̂i(x,Q2)] = D̂1 log
1
x

logM̂1 + D̂2 log
1
x
+ D̂3 logM̂1 + D̂i

0 (4.4)
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instead of Eq. 2.1, such that it will take the form

f̂i(x,Q2) =
eD̂i

0

M2

(
1
x

)D̂2 (
M̂1
)D̂3+D̂1 log 1

x (4.5)

Taking only the two terms of Eq. 4.2, M̂1 can be written as

M̂1 =
B1(

1+ Q2

Q̂2
0

) +
B2(

1+ Q2

Q̂2
0

)2 (4.6)

and the corresponding uPDF (Eq. 4.5) becomes

f̂i(x,Q2) =
eD̂i

0

M2

(
1
x

)D̂2

 B1(
1+ Q2

Q̂2
0

)


D̂3+D̂1 log 1
x
1+

B2

B1

1(
1+ Q2

Q̂2
0

)


D̂3+D̂1 log 1
x

(4.7)

Assuming the convergence of the polynomials as occurred in Eq. 4.7 we obtain :

Model 3

uPDF

f̂i(x,Q2) =
eD̂i

0

M2

(
1
x

)D̂2

 B1(
1+ Q2

Q̂2
0

)


D̂3+D̂1 log 1
x
1+

B2

B1

(
D̂3 + D̂1 log 1

x

)(
1+ Q2

Q̂2
0

)
 (4.8)
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After integration over Q2, it yields the desired PDF

q̂i(x,Q2) =
eD̂i

0Q̂2
0

M2

(
1
x

)D̂2

(B1)
(D̂3+D̂1 log 1

x )


((

1+ Q2

Q̂2
0

)(1−D̂3−D̂1 log 1
x )−1

)
(
1− D̂3 − D̂1 log 1

x

)

−B2

B1

(1+
Q2

Q̂2
0

)(−D̂3−D̂1 log 1
x )

−1

 (4.9)

Using Eq. 4.9 in Eq. 2.5, the usual definition of structure function, it gives

F̂2(x,Q2) =
eD̂0Q̂2

0
M2

(
1
x

)D̂2−1

(B1)
(D̂3+D̂1 log 1

x )


((

1+ Q2

Q̂2
0

)(1−D̂3−D̂1 log 1
x )−1

)
(
1− D̂3 − D̂1 log 1

x

)

−B2

B1

(1+
Q2

Q̂2
0

)(−D̂3−D̂1 log 1
x )

−1

 (4.10)

with the condition that

D̂3 + D̂1 log
1
x
̸= 1 (4.11)

as the equality will yield a undesired singularity.

The above model of structure function (Model 3) has new 7 independent parameters

B1, B2, D̂0, D̂1, D̂2, D̂3, Q̂2
0 to be fitted from data and compared with the previous models

(Models 1 and 2). It has also power law growth in Q2 as in the models of chapters 2 and 3.
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Model 4

If the model parameters D̂1 and D̂3 satisfy the additional condition

D̂3 + D̂1 log
1
x̂0

= 1 (4.12)

then the resultant uPDF becomes :

f̃i(x,Q2) =
eD̃i

0

M2

(
1
x

)D̃2

 B̃1(
1+ Q2

Q̃2
0

)

1+

B̃2

B̃1

1(
1+ Q2

Q̃2
0

)
 (4.13)

while the integration over Q2 leads to the PDF

q̃i(x,Q2) =
eD̃i

0Q̃2
0

M2

(
1
x

)D̃2

B̃1

log
(

1+
Q2

Q̃2
0

)
− B̃2

B̃1

 1(
1+ Q2

Q̃2
0

) −1


 (4.14)

And the corresponding structure function is

F̃2(x,Q2) =
eD̃0Q̃2

0
M2

(
1
x

)D̃2−1

B̃1

log
(

1+
Q2

Q̃2
0

)
− B̃2

B̃1

 1(
1+ Q2

Q̃2
0

) −1


 (4.15)

which is completely free from singularity except for D̃2 ≥ 1. It has the power law growth in

Q2 in contrast to the Eq. 4.10 which has also power law rise in Q2. However, Eq. 4.10 has a

non-leading correction of the order of
(

1
Q2

)
. Such singularity is, however, consistent with

the usual Regge expectation [85–89]. The model has now got 4 parameters: B̃1, D̃2, Q̃2
0, D̃i

0.
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4.2.2 Extrapolation of the self-similarity based PDF from small x to

large x

The models of uPDFs or PDFs discussed above were basically constructed to test it in the

small x range. It did not take into account the large x behavior [86–90] of the PDF or structure

function

lim
x→1

F2(x,Q2) = 0 (4.16)

which is not unexpected. The important observation which motivated and justified the

use of self-similarity concept was that for x < 0.01; the logarithm of the derivative of the

unintegrated parton distributions log
(

∂ fi(x,Q2)

∂Q2

)
is a linear function of logx (Fig. 2.8.a

of Ref. [1]). The idea of self-similarity is based on the fact that at small x, the behavior of

quark density is driven by gluon emissions and splittings such that the parton distribution

function at small x and those at still smaller x look similar (upto some magnification factor).

In the opposite limit, at large x, there is no physical reason for self-similarity and no

phenomenological justification till date. In other words, extending the approach of large x

means applying the self-similarity concept where it is not expected to work. On the other

hand, as noted in [80], it is not unreasonable to assume that the self-similarity does not

terminate abruptly at x ≈ 0.01, but smoothly vanishes at x = 1, the valence quark limit of

proton with no trace of self-similarity at all.

Therefore, we take this alternative point of view in structure function. We suggest a

simple interpolating model of uPDF/PDF which approaches the self-similar one at x → 0

(Eq. 2.1), and still satisfy Eq. 4.16 at large x, x → 1. A plausible way of achieving it in a

parameter-free way is to make a formal replacement of
(

1
x

)
factor to

(
1
x
−1
)

in Eq. 2.1.

The former one is identified as one of the magnification factors in the self-similar model,

while the later can be so interpreted only for
1
x
≫ 1. In such case, Eq. 2.1 of uPDF will be
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modified to f̄i(x,Q2) defined as

log[M2. f̄i(x,Q2)] = D̄1. log
(

1
x
−1
)
. log

(
1+

Q2

Q̄2
0

)
+ D̄2. log

(
1
x
−1
)

+ D̄3. log
(

1+
Q2

Q̄2
0

)
+ D̄i

0 (4.17)

which leads to a PDF

f̄i(x,Q2) =
eD̄i

0

M2

(
1
x
−1
)D̄2

(
1+

Q2

Q̄2
0

)D̄3+D̄1 log( 1
x−1)

(4.18)

Generalizing the magnification factor M̂1 as in Eq. 4.6 and taking only the two terms and

assuming the convergence of the polynomials occurring in the expression as in Eq. 4.7 we

obtain the generalized uPDF as :

Model 5

uPDF

f̄i(x,Q2) =
eD̄i

0

M2

(
1
x

)D̄2

(1− x)D̄2

 B̄1(
1+ Q2

Q̄2
0

)


D̄3+D̄1 log 1
x+D̄1 log(1−x)

1+
B̄2

B̄1

(
D̄3 + D̄1 log 1

x + D̄1 log(1− x)
)(

1+ Q2

Q̄2
0

)
 (4.19)
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And hence corresponding PDF(q̄i) and structure function(F̄2) will be

q̄i(x,Q2) =
eD̄i

0Q̄2
0

M2

(
1
x

)D̄2

(1− x)D̄2 (B̄1)
(D̄3+D̄1 log 1

x+D̄1 log(1−x))
((

1+ Q2

Q̄2
0

)(1−D̄3−D̄1 log 1
x−D̄1 log(1−x))

−1
)

(
1− D̄3 − D̄1 log 1

x − D̄1 log(1− x)
) − B̄2

B̄1

(1+
Q2

Q̄2
0

)(−D̄3−D̄1 log 1
x−D̄1 log(1−x))

−1




(4.20)

and

F̄2(x,Q2) =
eD̄0Q̄2

0
M2

(
1
x

)D̄2−1

(1− x)D̄2−1 (B̄1)
(D̄3+D̄1 log 1

x+D̄1 log(1−x))
((

1+ Q2

Q̄2
0

)(1−D̄3−D̄1 log 1
x−D̄1 log(1−x))

−1
)

(
1− D̄3 − D̄1 log 1

x − D̄1 log(1− x)
) − B̄2

B̄1

(1+
Q2

Q̄2
0

)(−D̄3−D̄1 log 1
x−D̄1 log(1−x))

−1




(4.21)

which has the power law growth in
(

1
x

)
as well as in Q2.

Model 6

Imposing the condition

D̄3 + D̄1 log
1
x̄0

+ D̄1 log(1− x̄0) = 1 (4.22)

will lead to corresponding uPDF, PDF and structure function as :

uPDF

f̄ ′i (x,Q
2) =

eD̄′i
0

M2

(
1
x

)D̄′
2

(1− x)D̄′
2

 B̄′
1(

1+ Q2

Q′2
0

)

1+

B̄′
2

B̄′
1

1(
1+ Q2

Q̄′2
0

)
 (4.23)
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Corresponding PDF

q̄′i(x,Q
2) =

eD̄′i
0 Q̄′2

0
M2

(
1
x

)D̄′
2

(1− x)D̄′
2 B̄′

1

log
(

1+
Q2

Q̄′2
0

)
−

B̄′
2

B̄′
1

 1(
1+ Q2

Q̄′2
0

) −1


 (4.24)

and corresponding structure function

F̄ ′
2(x,Q

2) =
eD̄′

0Q̄′2
0

M2

(
1
x

)D̄′
2−1

(1− x)D̄′
2 B̄′

1

log
(

1+
Q2

Q̄′2
0

)
−

B̄′
2

B̄′
1

 1(
1+ Q2

Q̄′2
0

) −1




(4.25)

which has the power law growth in Q2 and also a non-leading correction of the order of(
1

Q2

)
.

4.2.3 Comparison of self-similarity PDFs with standard PDFs

We now compare the parametrization of self-similarity PDFs: Eqs. 2.3, 3.7, 4.9, 4.14, 4.20,

and 4.24 with the common behavior of quark and gluon distributions obtained in the standard

parametrization like CTEQ [91]. Setting Q2 = Q2
0 we have from Eqs. 2.3, 3.7, 4.9, 4.14,

4.20, and 4.24

(Model 1)

qi(x,Q2
0) = Ai

1

(
1
x

)D2
((

1
x

)D1 log2

2D3+1 −1

)
(4.26)

which has the power law growth in
(

1
x

)
.

Here

Ai
1 =

eDi
0 Q2

0
M2 l1(x)

(4.27)

and

l1(x) = 1+D3 +D1 log
1
x

(4.28)
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(Model 2)

q′i(x,Q
2
0) = Ai

2

(
1
x

)D′
2
((

1
x

)D′
1 log2

2D′
3+1 −1

)
(4.29)

which has also the power law growth in
(

1
x

)
.

Here

Ai
2 =

eD′i
0 Q′2

0
M2 l2(x)

(4.30)

and

l2(x) = 1+D′
3 +D′

1 log
1
x

(4.31)

(Model 3)

q̂i(x,Q2
0) = Ai

3

(
1
x

)D̂2

W1

(
1
x

)D̂1 log B1
2

+W2

(
1
x

)D̂1 logB1

+W3

(
1
x

)D̂1 log B1
2

log
(

1
x

)
+ W4

(
1
x

)D̂1 logB1

log
(

1
x

) (4.32)

which has the power law growth in
(

1
x

)
with

(
log

1
x

)
term.

Here

Ai
3 =

eD̂i
0 Q̂2

0
M2 l3(x)

(4.33)

and

l3(x) = 1− D̂3 − D̂1 log
1
x

(4.34)

And

W1 = BD̂3
1 21−D̂3 −2−D̂3BD̂3−1

1
(
B2 −B2D̂3

)
(4.35)

W2 = (B2 −B2D̂3)B
D̂3−1
1 −BD̂3

1 (4.36)

W3 = B2D̂12−D̂3BD̂3−1
1 (4.37)

W4 =−B2D̂1BD̂3−1
1 (4.38)
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(Model 4)

q̃i(x,Q2
0) = Ai

4

(
1
x

)D̃2
(

B̃1 log2+
1
2

B̃2

)
(4.39)

which has the power law growth in
(

1
x

)
where

Ai
4 =

eD̃i
0Q̃2

0
M2 (4.40)

(Model 5)

q̄i(x,Q2
0) = Ai

5

(
1
x

)D̄2

(1− x)D̄2

Z1

(
1
x
−1
)D̄1 log B̄1

2

+Z2

(
1
x
−1
)D̄1 log B̄1

+ Z3

(
1
x
−1
)D̄1 log B̄1

2

log
(

1
x
−1
)
+Z4

(
1
x
−1
)D̄1 log B̄1

log
(

1
x
−1
) (4.41)

which has the power law growth in
(

1
x

)
with

(
log

1
x

)
term where

Ai
5 =

eD̄i
0 Q̄2

0
M2 l4(x)

(4.42)

Here

l4(x) = 1− D̄3 − D̄1 log
1
x
− D̄1 log(1− x) (4.43)

And

Z1 = B̄D̄3
1 21−D̄3 −2−D̄3B̄D̄3−1

1 (B̄2 − B̄2D̄3) (4.44)

Z2 = (B̄2 − B̄2D̄3)B̄
D̄3−1
1 − B̄D̄3

1 (4.45)

Z3 = B̄2D̄12−D̄3B̄D̄3−1
1 (4.46)

Z4 =−B̄2D̄1B̄D̄3−1
1 (4.47)
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(Model 6)

q̄′i(x,Q
2
0) = Ai

6

(
1
x

)D̄′
2

(1− x)D̄′
2

(
B̄′

1 log2+
1
2

B̄′
2

)
(4.48)

Eq. 4.48 has the power law growth in
(

1
x

)
where

Ai
6 =

eD̄′i
0 Q̄′2

0
M2 (4.49)

The x-dependence of l1(x) and l2(x) defined above are due to the correlation between two

magnification factors M1 =

(
1+

Q2

Q2
0

)
and M2 =

(
1
x

)
(Eq. 2.1). Similarly x-dependence

of l3(x) and l4(x) are due to the correlation between M2 and M̂1 (Eq. 4.4). In Eqs. 4.39 and

4.48, the extra x-dependence do not occur due to the initial conditions of logarithmic rise

(Eqs. 4.12 and 4.22). If the terms occurring in D1s are assumed to be negligible, then Eq.

4.48 has a form similar to the canonical parametrization [86, 88]

qi(x,Q2
0)≈ Ai

0 xAi
1 (1− x)Ai

2 (4.50)

where the superscript i indicates flavor dependence. At small x it reduces to Eq. 4.39.

Let us construct the number of parameters as occurred in standard canonical parametriza-

tion and self-similarity parametrization Eqs. 2.3, 3.7, 4.9, 4.14, 4.20, and 4.24. If n f is the

number of flavors for both quarks and anti quarks then the number of parameters in Eq. 4.50

will be 6n f + 3. The first factor is due to the quark and anti quark flavors and additional

number 3 corresponding to the 3 parameters Aq
0 , Aq

1, and Aq
2 for gluon distributions. In a

self-similar parametrization like Eqs. 4.26-4.48, the exponents of x and B1s and B2s all are

flavor independent. It implies, each flavor does not distinguish quark and anti quark. Thus the

number of parameters in self-similar PDFs for the above models (1-6) are given in Table4.1.

The first brackets in Column 2 of Table 4.1 correspond to number of parameters for quarks,

while the second one, number of parameters for gluon.
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Table 4.1 Number of parameters in self-similar pdf

Models Parameters

1 (n f +4)+(4+1)
2 (n f +4)+(4+1)
3 (n f +6)+(6+1)
4 (n f +4)+(4+1)
5 (n f +6)+(6+1)
6 (n f +4)+(4+1)

The CTEQ [91], more recent HERAPDF1.0 [59], HERAPDF2.0 [92], and Ref. [89]

parametrization have the corresponding forms

q1
i (x,Q

2
0) = Ai

0xAi
1 (1− x)Ai

2 L1(x) (4.51)

q2
i (x,Q

2
0) = AixBi

(1− x)C
i
L2(x) (4.52)

q3
i (x,Q

2
0) = AixBi

(1− x)C
i
L3(x) (4.53)

q4
i (x,Q

2
0) = A fix

a fi (1− x)b fi L4(x) (4.54)

respectively, where

L1(x) = eAi
3x
(

1+ eAi
4x
)Ai

5
(4.55)

L2(x) =
(
1+ ε

√
x+Dx+Ex2) (4.56)

L3(x) =
(
1+Dx+Ex2) (4.57)

L4(x) = F
(
x,
{

c fi
})

(4.58)

Here L4 basically represents an interpolating smooth function which remains finite both

x → 0 and x → 1. In the limit D1s = 0, the terms occurring in D1s (D1,D′
1, D̂1, D̄1) becomes

zero and the Eqs. 4.26, 4.29, 4.32, 4.41 have the similar form to the corresponding standard

parametrization (Eqs. 4.51-4.54).
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4.2.4 Comparison of the structure functions having power law growth

in Q2 and logQ2 with data and determination of the correspond-

ing PDFs

From the above models of structure function (Models 3-6), one can observe that Models

3 and 5 have power law in Q2 but Models 4 and 6 has both power law in Q2 as well as in

logQ2, which are also closer to QCD expectation. Therefore, we choose the Models 4 and 6

for further comparison and study.

Comparison of data of Models 4 and 6 and determination of the model

parameters

In this section, we make a comparison of PDF and structure function of Models 4 and 6 since

only these two have logarithmic rise in Q2 rise in PDF and structure function. Model 6 is the

large x extrapolation of Model 4.

To determine the parameters of Model 4 and Model 6, we have used the compiled HERA

data [59] as used in earlier work (Model 2). We make χ2-analysis of the data and obtain the

phenomenological range of validity of Q2 and x.

For Model 4 the fitted parameters are given in Table 4.2 . The range of validity is found

within

2×10−5 ≤ x ≤ 0.4

1.2 ≤ Q2 ≤ 800 GeV2 (4.59)

The number of data points of F̃2 is 284. Similarly for Model 6 the range of validity is

2×10−5 ≤ x ≤ 0.4

1.2 ≤ Q2 ≤ 1200 GeV2 (4.60)

which is quite large in comparative to earlier works (Models 1 and 2). The fitted parameters

for Model 6 are given in Table 4.3. The number of data points of F̄ ′
2 is 302.
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Table 4.2 Results of the fit of Model 4; Eq. 4.15

D̃0 D̃2 B̃1 B̃2 Q̃2
0 (GeV2) χ2/ndf

0.294±0.009 1.237±0.01 0.438±0.004 0.687±0.02 0.046±0.0004 0.60

Table 4.3 Results of the fit of Model 6; Eq. 4.25

D̄′
0 D̄′

2 B̄′
1 B̄′

2 Q̄′2
0 (GeV2) χ2/ndf

0.335±0.003 1.194±0.0009 0.519±0.006 0.082±0.001 0.056±0.001 0.24

In Figs. 4.1 and 4.2, we plot F̃2 and F̄ ′
2 of Models 4 and 6 respectively as a function of x for

few representative values of Q2 (Model 4: Q2 = 1.2,8.5,15,27,45,60,90,150,300,400,650,800

GeV2 and Model 6: Q2 = 1.2,8.5,15,27,60,90,150,200,500,650,800,1200 GeV2).

The above analysis indicates that a singularity free version of a self-similarity based

model in Proton is possible if proper choice of magnification factor is made. It has allowed a

such wider phenomenological range of validity in Q2 than that of the model of Ref. [1]. It

has also logarithmic rise in virtually Q2 instead of power law.

Graphical representation of PDFs of Models 4 and 6

The given form of PDFs for Models 4 and 6 are:

Model 4 : q̃i(x,Q2) =
eD̃i

0Q̃2
0

M2

(
1
x

)D̃2

B̃1

log
(

1+
Q2

Q̃2
0

)
− B̃2

B̃1

 1(
1+ Q2

Q̃2
0

) −1


 (4.61)

Model 6 : q̄′i(x,Q
2) =

eD̄′i
0 Q̄′2

0
M2

(
1
x

)D̄′
2

(1− x)D̄′
2 B̄′

1

log
(

1+
Q2

Q̄′2
0

)
−

B̄′
2

B̄′
1

 1(
1+ Q2

Q̄′2
0

) −1




(4.62)

with eD̃u
0 = 0.964 = eD̃d

0 and eD̃s
0 = 0.241 = eD̃c

0 for Model 4 and

eD̄′u
0 = 1.004 = eD̄′d

0 and eD̄′s
0 = 0.251 = eD̄′c

0 for Model 6 respectively.

Graphical representation of PDFs of Model 4 and 6 are shown in Figs. 4.3 and 4.4.

As expected both the models have logQ2 rise to be compared with linear rise in Models 1
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Fig. 4.1 Comparison of the structure function F̃2 (Model 4; Eq. 4.15) as a function of x in
bins of Q2 with measured data of F2 from HERAPDF1.0 [59]
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Fig. 4.2 Comparison of structure function F̄ ′
2 (Model 6; Eq. 4.25) as a function of x in bins of

Q2 with measured data of F2 from HERAPDF1.0 [59]



50
Improved singularity free self-similarity based models of proton structure function at small

and large x

and 2. It has also power law rise in
(

1
x

)
which is compatible with Regge based models

[85, 89, 86–88].

4.3 Summary

In chapter 2, we have obtained singularities in structure function within the x-range; 0 < x < 1

which is not physically viable. Therefore in chapter 3, we find a singularity free version of

the model demanding positivity on the model parameters. However, this version has a very

limited Q2 range in validity; Q2 ≤ 10 GeV2. Moreover, all the models of structure functions

have linear growth in Q2. We therefore address, if this approach can yield a singularity

free model of proton structure function with better phenomenological range of validity.

Furthermore, it will be interesting if the model even yield linear growth in logQ2 rather

than linear Q2. To that end, in this chapter, we have generalized the definitions of defining

magnification factors in uPDF occurred in Eq. 2.1 such that it has expected qualitative

features. We have found that in specific case, if the defining parameters satisfy certain

conditions among themselves, linear rise in Q2 with singularity free features unlike in models

1 and 2 emerge (Models 4 and 6).

Assuming that the notion of self-similarity can be smoothly extrapolated into larger x, we

have also obtained a model at large and small x (Model 5) for PDF and structure function. As

in previous case at small x (Model 4), under specific condition amongst its model parameters,

logQ2 rise in the resulting structure function (Model 6) emerges. The extrapolated model

has also been tested with combined HERA data [59] and wider phenomenological range of x

and Q2 has been obtained as expected.
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Fig. 4.3 PDF vs Q2 for two representative values of (a) x = 10−4 and (b) x = 0.4 for Models
4 and 6. Here, M4(u/d) (line) and M6(u/d) (dotted) represents the PDF for u and d quarks for
Models 4 and 6 respectively. Similarly, M4(s/c) (dot-dashed) and M6(s/c) (dashed) represents
the PDF for s and c quarks for Models 4 and 6 respectively.
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Fig. 4.4 PDF vs x for two representative values of (a) Q2 = 10 GeV2 and (b) Q2 = 800 GeV2

for Models 4 and 6. Here, M4(u/d) (line) and M6(u/d) (dotted) represents the PDF for u
and d quarks for Models 4 and 6 respectively. Similarly, M4(s/c) (dot-dashed) and M6(s/c)
(dashed) represents the PDF for s and c quarks for Models 4 and 6 respectively.
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Froissart bound in self-similarity based

models of proton structure function

5.1 Introduction

The physical significance of Froissart bound has already been discussed in chapter 1. In this

chapter, we outline the method of incorporation of this notion in the self-similarity based

proton structure functions discussed in chapter 4.
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5.2 Formalism

5.2.1 Froissart bound in self-similarity based Proton structure func-

tion

The possibility of incorporating Froissart bound in the self-similarity based model of proton

structure function was first attempted in Ref. [82]. It was observed that if the magnification

factor M2 is changed to
(

log
1
x

)
, then it is possible for structure function. However, we

observe that it is true only for PDF but not for structure function.

Below we address this point. Following the method of Ref. [82] for very small x and

large Q2, we can write the PDF as

q́i(x,Q2) =
eD́i

0 Q́2
0
(
log 1

x

)D́2+D́1 log
(

1+Q2

Q́2
0

)
M2
(
1+ D́3 + D́1 log(log1/x)

) (1+
Q2

Q́2
0

)D́3+1

(5.1)

and the corresponding structure function as

F́2(x,Q2) =
eD́0 Q́2

0 x
(
log 1

x

)D́2+D́1 log
(

1+Q2

Q́2
0

)
M2
(
1+ D́3 + D́1 log(log1/x)

) (1+
Q2

Q́2
0

)D́3+1

(5.2)

If an extra condition on the power of
(

log
1
x

)
i.e. D́2 + D́1 log

(
1+ Q2

Q́2
0

)
= 2 is imposed,

then PDF of Eq. 5.1 shows Froissart saturation behavior ∼
(

log
1
x

)2

. But it is not so for the

structure function of Eq. 5.2 due to the additional multiplicative factor x.

If we recast the multiplicative factor x as

x =
(

log
1
x

)A

(5.3)

with

A =
− log 1

x

log
(
log 1

x

) (5.4)
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then the Froissart condition on the structure function of Eq. 5.2 will be

− log 1
x

log
(
log 1

x

) + D́2 + D́1 log

(
1+

Q2

Q́2
0

)
= 2 (5.5)

The first term in LHS of Eq. 5.5 is negative for 0 < x < 1 and independent of the model

parameters. For very small D2,D1 ∼ 0 the condition will be invalid and hence the general

Froissart saturation like behavior in structure function is not possible. Therefore we choose

an alternative way to get a proper Froissart Bound condition.

5.2.2 Froissart bound compatible self-similarity based Proton struc-

ture function with three magnification factors

Case 1

Taking three magnification factors instead of two:

M1 =

(
1+

Q2

Q2
0

)
M2 =

1
x

M3 = log
1
x

(5.6)

one can construct uPDF, PDF and structure function as:

uPDF

log[M2. f̀i(x,Q2)] = D̀1 logM1 logM2 logM3 + D̀2 logM1 logM2 + D̀3 logM2 logM3

+ D̀4 logM1 logM3 + D̀5 logM1 + D̀6 logM2 + D̀7 logM3 + D̀0
i (5.7)



56 Froissart bound in self-similarity based models of proton structure function

leads to

f̀i(x,Q2) = eD̀i
0

(
1
x

)D̀2 log
(

1+Q2

Q̀2
0

)
+D̀6

×
(

log
1
x

)D̀1 log
(

1+Q2

Q̀2
0

)
log1/x+D̀3 log1/x+D̀4 log

(
1+Q2

Q̀2
0

)
+D̀7

(
1+

Q2

Q̀2
0

)D̀5

(5.8)

Using the Eq. 2.2 of chapter 2, one can obtain the corresponding PDF becomes

q̀i(x,Q2) =
eD̀i

0 Q̀2
0 (1/x)D̀6

(
log 1

x

)D̀3 log 1
x+D̀7

M2
(
1+ D̀5 + D̀2 log 1

x +(D̀4 + D̀1 log 1
x ) log log 1

x

)

×

(1/x)
D̀2 log

(
1+Q2

Q̀2
0

)
(log1/x)

log
(

1+Q2

Q̀2
0

)
(D̀4+D̀1 log 1

x )
(

1+
Q2

Q̀2
0

)D̀5+1

−1

 (5.9)

For very small x and large Q2 , the second term of Eq. (5.9) can be neglected, leading to

q̀i(x,Q2) =
eD̀i

0 Q̀2
0 (1/x)

D̀2 log
(

1+Q2

Q̀2
0

)
+D̀6

M2
(
1+ D̀5 + D̀2 log 1

x +(D̀4 + D̀1 log 1
x ) log log 1

x

)

×
(

log
1
x

)D̀7+D̀3 log 1
x+(D̀4+D̀1 log 1

x )×log
(

1+Q2

Q̀2
0

) (
1+

Q2

Q̀2
0

)D̀5+1

(5.10)
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from which one can define structure function as:

F̀2(x,Q2) =
eD̀0 Q̀2

0 (1/x)
D̀2 log

(
1+Q2

Q̀2
0

)
+D̀6−1

M2
(
1+ D̀5 + D̀2 log 1

x +(D̀4 + D̀1 log 1
x ) log log 1

x

)

×
(

log
1
x

)D̀7+D̀3 log 1
x+(D̀4+D̀1 log 1

x )×log
(

1+Q2

Q̀2
0

) (
1+

Q2

Q̀2
0

)D̀5+1

(5.11)

which has total 9 parameters: Q̀2
0 and D̀is with i = 0 to 7.

Eq. 5.11 can show the proper Froissart saturation behavior in the structure function un-

der the following conditions:

(1) D̀2 log

(
1+

Q2

Q̀2
0

)
+ D̀6 = 1

(2) D̀7 + D̀3 log
1
x
+

(
D̀4 + D̀1 log

1
x

)
× log

(
1+

Q2

Q̀2
0

)
= 2 (5.12)

Further if D̀7, D̀3, D̀1 ≪ D̀4, then D̀4 =
2− D̀7

log
(

1+ Q2

Q̀2
0

) , the Froissart compatible structure

function will be

F̀2(x,Q2) =

eD̀0 Q̀2
0
(
log 1

x

)2
(

1+ Q2

Q̀2
0

)D̀5+1

M2
(
1+ D̀5 + D̀2 log 1

x +(D̀4 + D̀1 log 1
x ) log log 1

x

) (5.13)

which reduces the number parameters by 3.
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Fig. 5.1 Comparison of the structure function F̀2 (Eq 5.13; case 1) as a function of x in bins
of Q2 with measured data of F2 from HERAPDF1.0 [59]

Using HERAPDF1.0 [59], Eq. 5.13 is fitted and found its phenomenological ranges of

validity: 1.3×10−4 ≤ x ≤ 0.02 and 6.5 ≤ Q2 ≤ 90 GeV2 with the fitted parameters listed in

Table 5.1. The no. of F̀2 data points is 155.

In Fig. 5.1, we have shown the graphical representation of F̀2 with data for a few

representative values of Q2.
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Table 5.1 Results of the fit of F̀2, Eq.5.13; case 1

D̀0 D̀1 D̀2 D̀4 D̀5 Q̀2
0(GeV2) χ2/ndf

0.1006±0.003 0.028±0.0008 -0.036±0.0001 3.585±0.05 -0.857±0.01 0.060±0.001 0.11

Case 2

The above observation thus generalized to improved self-similarity based models suggested

in chapter 4. Thus we can construct another new set of magnification factors:

M̂1 =
n

∑
j=1

B j(
1+ Q2

Q̂2
0

) j j = 1,2

M2 =
1
x

M3 = log
1
x

(5.14)

from which we can define uPDF, PDF and structure function as follows:

The defining equation of uPDF is

log[M2. f̈i(x,Q2)] = D̈1 logM̂1 logM2 logM3 + D̈2 logM̂1 logM2 + D̈3 logM2 logM3

+ D̈4 logM̂1 logM3 + D̈5 logM̂1 + D̈6 logM2 + D̈7 logM3 + D̈0
i (5.15)

leads to

f̈i(x,Q2) = eD̈i
0 Q̈2

0

(
1
x

)D̈6
(

log
1
x

)D̈3 log 1
x+D̈7

B̈1

 1(
1+ Q2

Q̈2
0

) +
B̈2

B̈1

1(
1+ Q2

Q̈2
0

)2

 (5.16)

and therefore corresponding PDF

q̈i(x,Q2) = eD̈i
0 Q̈2

0 (1/x)D̈6

(
log

1
x

)D̈3 log 1
x+D̈7

B̈1

log
(

1+
Q2

Q̈2
0

)
− B̈2

B̈1

 1(
1+ Q2

Q̈2
0

) −1




(5.17)
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So the structure function will be

F̈2(x,Q2) = eD̈0 Q̈2
0 (1/x)D̈6−1

(
log

1
x

)D̈3 log 1
x+D̈7

× B̈1

log
(

1+
Q2

Q̈2
0

)
− B̈2

B̈1

 1(
1+ Q2

Q̈2
0

) −1


 (5.18)

Putting the extra conditions

(1) D̈6 −1 = 0

(2) D̈3 log
1
x
+ D̈7 = 2 (5.19)

will give the Froissart like behavior in structure function of Eq. 5.18 a new form :

F̈2(x,Q2) = eD̈0 Q̈2
0 log2 (1/x) B̈1

log
(

1+
Q2

Q̈2
0

)
− B̈2

B̈1

 1(
1+ Q2

Q̈2
0

) −1


 (5.20)

Now using the HERAPDF1.0 [59], Eq.5.20 is fitted and obtained its phenomenological

ranges of validity within: 1.3×10−4 ≤ x ≤ 0.02 and 6.5 ≤ Q2 ≤ 60 GeV2 and also obtained

the model parameters which are given in Table 5.2. The no. of F̈2 data points is 153.

In Fig 5.2, we have shown the graphical representation of F̈2 with data for a few represen-

tative values of Q2.

Table 5.2 Results of the fit of F̈2, Eq.5.20; case 2

D̈0 B̈1 B̈2 Q̈2
0(GeV2) χ2/ndf

0.00047±0.0003 0.056±0.002 0.672±0.02 0.022±0.001 0.17
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Fig. 5.2 Comparison of the structure function F̈2 (Eq 5.20; case 2) as a function of x in bins
of Q2 with measured data of F2 from HERAPDF1.0 [59]

Case 3

We now study how far the analytical structure of the model can come closer to the QCD

based model of Block et.al. of Ref. [53]. If the magnification factor M2 is extrapolated to

large x in a parameter free way
1
x
→
(

1
x
−1
)

, one obtains a set of magnification factors
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M̂1 =
n

∑
j=1

B j(
1+ Q2

Q̂2
0

) j j = 1,2

M2 =
1
x
−1

M3 = ln
1
x

(5.21)

One obtains the following uPDF, PDF and structure function:

uPDF

f̆i(x,Q2) =
eD̆i

0

M2 (1/x)D̆6 (1− x)D̆6

(
log

1
x

)D̆3 log 1
x+D̆7

× B̆1

 1(
1+ Q2

Q̆2
0

) +
B̆2

B̆1

1(
1+ Q2

Q̆2
0

)2

 (5.22)

Corresponding PDF

q̆i(x,Q2) = eD̆i
0 Q̆2

0 (1/x)D̆6(1− x)D̆6

(
log

1
x

)D̆3 log( 1
x−1)+D̆7

× B̆1

log

(
1+

Q2

Q̆2
0

)
− B̆2

B̆1

 1(
1+ Q2

Q̆2
0

) −1


 (5.23)

and the structure function

F̆2(x,Q2) = eD̆0 Q̆2
0 (1/x)D̆6−1(1− x)D̆6

(
log

1
x

)D̆3 log( 1
x−1)+D̆7

× B̆1

log

(
1+

Q2

Q̆2
0

)
− B̆2

B̆1

 1(
1+ Q2

Q̆2
0

) −1


 (5.24)
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Putting the extra conditions

(1) D̆6 −1 = 0

(2) D̆3 log
(

1
x
−1
)
+ D̆7 = 2 (5.25)

will give the Froissart like behavior in structure function as:

F̆2(x,Q2) = eD̆0 Q̆2
0 (1−x) log2 1/x × B̆1

log

(
1+

Q2

Q̆2
0

)
− B̆2

B̆1

 1(
1+ Q2

Q̆2
0

) −1


 (5.26)

Using the HERAPDF1.0 [59], Eq.5.26 is fitted and obtained its phenomenological ranges

of validity within: 1.3×10−4 ≤ x ≤ 0.02 and 6.5 ≤ Q2 ≤ 120 GeV2 and also obtained the

model parameters which are given in Table 5.3. The no. of F̆2 data points is 215.

In Fig. 5.3, we have shown the graphical representation of F̆2 with data for a few

representative values of Q2.

Table 5.3 Results of the fit of F̆2, Eq.5.26; case 3

D̆0 B̆1 B̆2 Q̆2
0(GeV2) χ2/ndf

0.006±0.0005 0.032±0.0005 0.309±0.009 0.048±0.001 0.25
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Fig. 5.3 Comparison of the structure function F̆2 (Eq 5.26; case 3) as a function of x in bins
of Q2 with measured data of F2 from HERAPDF1.0 [59]

Case 4

If the third magnification factor is also large-x extrapolated: log
1
x
→ log

(
1
x
−1
)

i.e

M̂1 =
n

∑
j=1

B j(
1+ Q2

Q̂2
0

) j j = 1,2

M2 =
1
x
−1

M3 = log
(

1
x
−1
)

(5.27)
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the corresponding uPDF PDF and structure function becomes:

uPDF

f̆ ′i (x,Q
2) =

eD̆′i
0

M2 (1/x)D̆′
6 (1− x)D̆′

6

(
log

1− x
x

)D̆′
3 log( 1

x−1)+D̆′
7

× B̆′
1

 1(
1+ Q2

Q̆′2
0

) +
B̆′

2

B̆′
1

1(
1+ Q2

Q̆′2
0

)2

 (5.28)

Corresponding PDF

q̆′i(x,Q
2) = eD̆′i

0 Q̆′2
0 (1/x)D̆′

6(1− x)D̆′
6

(
log

1− x
x

)D̆′
3 log( 1

x−1)+D̆′
7

× B̆′
1

log

(
1+

Q2

Q̆′2
0

)
−

B̆′
2

B̆′
1

 1(
1+ Q2

Q̆′2
0

) −1


 (5.29)

and the structure function

F̆ ′
2(x,Q

2) = eD̆′
0 Q̆′2

0 (1/x)D̆′
6−1(1− x)D̆′

6

(
log

1− x
x

)D̆′
3 log( 1

x−1)+D̆′
7

× B̆′
1

log

(
1+

Q2

Q̆′2
0

)
−

B̆′
2

B̆′
1

 1(
1+ Q2

Q̆′2
0

) −1


 (5.30)

Putting the extra conditions

(1) D̆′
6 −1 = 0

(2) D̆′
3 log

(
1
x
−1
)
+ D̆′

7 = 2 (5.31)
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can show the Froissart like behavior in structure as:

F̆ ′
2(x,Q

2) = eD̆′
0 Q̆′2

0 (1− x) log2 1− x
x

B̆′
1

log

(
1+

Q2

Q̆′2
0

)
−

B̆′
2

B̆′
1

 1(
1+ Q2

Q̆′2
0

) −1




(5.32)

to be compared with a more recent phenomenologically successful model suggested by Block,

Durand, Ha and McKay [53]. The model has wide range of phenomenological validity in Q2:

0.11 ≤ Q2 ≤ 1200 GeV2 for small x ≤ xp = 0.11 [84] which has Froissart Saturation like

behavior [33].

The expression for F p
2 (x,Q

2) [53] is:

F p
2 (x,Q

2) = (1− x)
{

Fp

1− xp
+A(Q2) ln

xp(1− x)
x(1− xp)

+B(Q2) ln2 xp(1− x)
x(1− xp)

}
(5.33)

Where,

A(Q2) = a0 +a1 lnQ2 +a2 ln2 Q2

B(Q2) = b0 +b1 lnQ2 +b2 ln2 Q2 (5.34)

and the parameters fitted from deep inelastic scattering data [53] are

x ⩽ xp = 0.11 and Fp = 0.413±0.003 , (5.35)
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a0 = −8.471×10−2 ±2.62×10−3 ,

a1 = 4.190×10−2 ±1.56×10−3 ,

a2 = −3.976×10−3 ±2.13×10−4 ,

b0 = 1.292×10−2 ±3.62×10−4 ,

b1 = 2.473×10−4 ±2.46×10−4 ,

b2 = 1.642×10−3 ±5.52×10−5 . (5.36)

More recently, expression of Eq. 5.33 was used as an input at Q2 = 4.5 GeV2 in DGLAP

evolution equations in LO and obtained a phenomenological Q2-range upto Q2 ≤ 3000 GeV2

using more recent HERA data [59].

One can write the Eq. 5.33 in a more simplified version:

Fp
2 ∼ (1− x)

[
C+a′0 ln

1− x
x

+a′1 lnQ2 ln
1− x

x
+a′2 ln2 Q2 ln

1− x
x

+ b′0 ln2 1− x
x

+b′1 lnQ2 ln2 1− x
x

+b′2 ln2 Q2 ln2 1− x
x

]
(5.37)

where

C =
Fp

1− xp
, a′0 = a0

xp

1− xp
, a′1 = a1

xp

1− xp
, a′2 = a2

xp

1− xp
,

b′0 = b0
xp

1− xp
, b′1 = b1

xp

1− xp
, b′2 = b2

xp

1− xp

A comparison of Eq. 5.32 and 5.37 shows that terms like ln
1− x

x
, ln2 Q2, and ln2 Q2 ln2 1− x

x
are absent in Eq. 5.32 which makes the prediction different.

Table 5.4 Results of the fit of F̆ ′
2, Eq.5.32; case 4

D̆′
0 B̆′

1 B̆′
2 Q̆′2

0 (GeV2) χ2/ndf

0.008±0.001 0.034±0.0008 0.251±0.01 0.057±0.005 0.26
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Fig. 5.4 Comparison of the structure function F̆ ′
2 (Eq. 5.32; case 4) as a function of x in bins

of Q2 with measured data of F2 from HERAPDF1.0 [59]

Using the HERAPDF1.0 [59], Eq. 5.32 is fitted and obtained its phenomenological ranges

of validity within: 1.3×10−4 ≤ x ≤ 0.02 and 6.5 ≤ Q2 ≤ 120 GeV2 with the obtained model

parameters which are given in Table 5.4. The no. of F̆ ′
2 data points is 195.

In Fig. 5.4, we have shown the graphical representation of F̆ ′
2 with data for a few

representative values of Q2.
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5.3 Summary

In this chapter, we have found the Froissart saturated form of structure functions based on

self-similarity with the power law rise in Q2 as well as in logQ2. It needs at least three

magnification factors not two as compared to earlier work in Ref. [82]. The ranges of validity

for four different cases with three magnification factors are:

Eq.5.13 : 1.3×10−4 ≤ x ≤ 0.02 ; 6.5 ≤ Q2 ≤ 90 GeV2

Eq.5.20 : 1.3×10−4 ≤ x ≤ 0.02 ; 6.5 ≤ Q2 ≤ 60 GeV2

Eq.5.26 : 1.3×10−4 ≤ x ≤ 0.02 ; 6.5 ≤ Q2 ≤ 120 GeV2

Eq.5.32 : 1.3×10−4 ≤ x ≤ 0.02 ; 6.5 ≤ Q2 ≤ 120 GeV2

to be compared with

Eq.4.15 : 2×10−5 ≤ x ≤ 0.4 ; 1.2 ≤ Q2 ≤ 800 GeV2

Eq.4.25 : 2×10−5 ≤ x ≤ 0.4 ; 1.2 ≤ Q2 ≤ 1200 GeV2

of chapter 4 which shows the Froissart saturated structure function has smaller validity ranges

as compared to that of structure function having power law growth in Q2 and logQ2.

So our inference is that perhaps the present HERA data has not reached its asymptotic

regime to have a Froissart saturation like behavior if self-similarity is assumed to be a

symmetry of the structure function.





6
Momentum Fractions carried by quarks and

gluons in models of

proton structure functions

6.1 Introduction

How the quarks and gluons share their longitudinal momentum in proton is an important

topic of study by itself. It has been studied in [94–96, 52, 97, 98] within perturbative QCD

and Lattice QCD [99]. It is equally interesting to study the corresponding pattern of such

momentum fractions in other phenomenological models of proton [100–105], available in
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current literature. Since the physics at small x has not yet been understood completely, it is

an worthwhile topic to study phenomenologically.

In chapters 2-5, we have discussed some of such models based on self-similarity. In this

chapter, we will consider self-similarity based models (models 1-4, 7), one QCD based and

Froissart bound compatible model (model 5), one with DGLAP approach (model 6) and one

with Froissart bound compatible based on self-similarity (model 8). Each of the model has

its own phenomenological range of validity, while models 1-3 have power law growth in Q2,

the other model has a logarithmic growth in Q2.

The aim of the present chapter is to calculate the partial momentum fractions of small

x quarks (⟨x̂⟩q) and the corresponding upper bound for small x gluons (⟨x̂⟩g). We will then

compare the predictions of all the models with perturbative QCD, Lattice QCD and Ads/QCD

models.

Since each of the models has phenomenological range of validity only for a limited small

x range, its role in calculating the second moments of parton distributions might be minor.

Still it will be instructive to calculate quantitatively how much it contributes to the total

momentum fractions.

Another aim of this chapter is therefore to compare the models predictions of ⟨x̂⟩q at

fixed Q2 considering a common x-range and compare with theory and experimental data. We

will also study if by any specific model can be preferred over others from this analysis.

Finally, possible role of high x quarks and ultra small x gluons are also discussed to

realize the expected QCD behavior, not included in the small x models under study.

In section 6.2, we outline the models and essential formalism. In section 6.3, we report

the results and discussion. Section 6.4 contains the conclusion.

6.2 Models

The method of construction of self-similarity based models has been already discussed in

chapters 2, 3, 4 and 5. For completeness we will outline six models for the calculation of

momentum fractions carried by quarks and gluons:
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Model 1: Proton structure function based on self-similarity:

We will consider Eq. 2.6 as model 1 from chapter 2:

F2(x,Q2) =
eD0 Q2

0
(1

x

)D2−1

M2
(
1+D3 +D1 log

(1
x

))
(1

x

)D1 log
(

1+Q2

Q2
0

)(
1+

Q2

Q2
0

)D3+1

−1

 (6.1)

with the validity range :

6.2×10−7 ≤ x ≤ 10−2

0.045 ≤ Q2 ≤ 120 GeV2

Model 2: Phenomenological analysis of model 1 with more recent data

From the same chapter i.e chapter 2, we take Eq. 2.14 is for model 2.

F ′′
2 (x,Q

2) =
eD′′

0 Q′′2
0
(1

x

)D′′
2−1

M2
(
1+D′′

3 +D′′
1 log 1

x

)
(1

x

)D′′
1 log

(
1+ Q2

Q′′2
0

)(
1+

Q2

Q′′2
0

)D′′
3+1

−1

 (6.2)

with the validity range :

6.62×10−6 ≤ x ≤ 10−2

0.35 ≤ Q2 ≤ 150 GeV2

Model 3: Singularity free self-similarity based structure function at

small x

Model 3 represents Eq. 3.8 of chapter 3.

F ′
2(x,Q

2) =
eD′

0 Q′2
0
(1

x

)D′
2−1

M2
(
1+D′

3 +D′
1 log 1

x

)
(1

x

)D′
1 log

(
1+ Q2

Q′2
0

)(
1+

Q2

Q′2
0

)D′
3+1

−1

 (6.3)
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with the validity range :

2×10−5 ≤ x ≤ 0.02

0.85 ≤ Q2 ≤ 10 GeV2

Model 4: An improved singularity free self-similarity based model of

proton structure function at small x

Eq. 4.15 is taken from chapter 4 as model 4.

F̃2(x,Q2) =
eD̃0Q̃2

0
M2

(
1
x

)D̃2−1

B̃1

log
(

1+
Q2

Q̃2
0

)
− B̃2

B̃1

 1(
1+ Q2

Q̃2
0

) −1


 (6.4)

with the validity range :

2×10−5 ≤ x ≤ 0.4

1.2 ≤ Q2 ≤ 800 GeV2

Model 5: Froissart bound compatible model of Block, Durand, Ha and

McKay

For model 5, we choose Block et. al model as described in chapter 5; Eq. 5.33

F p
2 (x,Q

2) = (1− x)
{

Fp

1− xp
+A(Q2) ln

xp(1− x)
x(1− xp)

+B(Q2) ln2 xp(1− x)
x(1− xp)

}
(6.5)

Where,

A(Q2) = a0 +a1 lnQ2 +a2 ln2 Q2

B(Q2) = b0 +b1 lnQ2 +b2 ln2 Q2 (6.6)
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with the validity range

x ≤ 0.11

0.11 ≤ Q2 ≤ 1200 GeV2

The numerical values of the model parameters are already given in chapter 5 of Eq. 5.36.

Model 6: The model of structure function based on approximate solu-

tion of DGLAP equation of small x

Model 6 represents the model of structure function based on approximate solution of DGLAP

equation of small x. Here, we will consider the t-evolution of singlet structure function [107]

FS
2 (x, t) = FS

2 (x, t0)
(

t
t0

)
(6.7)

where, t = log
Q2

Λ2 and t0 = log
Q2

0
Λ2 and Λ = 0.22 GeV.

The above Eq. 6.7 is based on small x approximation of DGLAP equation [108] and

obtained their solution with Lagrange method [109].

Using the inputs provided by HERAPDF2.0 [92] at Q2 = Q2
0 = 1.9 GeV2 in the definition

of

FS
2 = ∑

i
x(qi + q̄i) (6.8)

we can get the form of FS
2 (x, t0) as:

FS
2 (x, t0) = 4.07x0.714(1− x)4.84(1+13.4x2)+3.15x0.806(1− x)4.08

+0.105x−0.172(1− x)8.06(1+11.9x)+0.1056x−0.172(1− x)4.88 (6.9)

and use this in Eq. 6.7 for further calculation.
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Model 7: An improved singularity free self-similarity based model of

proton structure function extrapolated to large x

Eq. 4.25 is the model 7, taken from chapter 4.

F̄ ′
2(x,Q

2) =
eD̄′

0Q̄′2
0

M2

(
1
x

)D̄′
2−1

(1− x)D̄′
2 B̄′

1

log
(

1+
Q2

Q̄′2
0

)
−

B̄′
2

B̄′
1

 1(
1+ Q2

Q̄′2
0

) −1




(6.10)

with the validity range :

2×10−5 ≤ x ≤ 0.4

1.2 ≤ Q2 ≤ 1200 GeV2

Model 8 : Froissart Saturated structure function of proton based on

self-similarity

Model 8 is Eq. 5.32 taken from chapter 5, which is more closer to the model of [53].

F̆ ′
2(x,Q

2)= eD̆′
0 Q̆′2

0 (1−x) ln2 1− x
x

B̆′
1

log

(
1+

Q2

Q̆′2
0

)
−

B̆′
2

B̆′
1

 1(
1+ Q2

Q̆′2
0

) −1


 (6.11)

with the validity range:

1.3×10−4 ≤ x ≤ 0.02

6.5 ≤ Q2 ≤ 120 GeV2

6.2.1 Momentum Sum Rule and partial momentum fractions

The momentum sum rule is given as [78, 79, 110]

∫ 1

0
x∑

(
qi(x,Q2)+ q̄i(x,Q2)

)
dx+

∫ 1

0
G(x,Q2) dx = 1 (6.12)
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where

G(x,Q2) = xg(x,Q2) (6.13)

g(x,Q2) is the gluon number density. It can be converted [79] into an inequality if the

information about quarks and gluons is available only in a limited range of x, say xa ≤ x ≤ xb

i.e. ∫ xb

xa

x∑
(
qi(x,Q2)+ q̄i(x,Q2)

)
dx+

∫ xb

xa

G(x,Q2) dx < 1 (6.14)

We have omitted the equality sign in Eq. 6.14 because it will correspond to a nucleon,

populated by small quarks and gluons (parton) only within the range xa < x < xb, which

makes no sense physically. This yields the respective information when the momentum

fractions carried by small x quarks and gluons in xa < x < xb to be

⟨x̂⟩q =
∫ xb

xa

x∑
(
qi(x,Q2)+ q̄i(x,Q2)

)
dx (6.15)

Using Eq. 2.5, we can write

⟨x̂⟩q =

(
N f

∑
i=1

e2
i

)−1 ∫ xb

xa

F2(x,Q2)dx (6.16)

ei is the fractional electric charges of quarks and anti quarks. If we assume their flavored

dependence and take number of flavors N f = 4, we obtain

4

∑
i=1

e2
i =

10
9

(6.17)

for u, d, s and c quarks leading to

⟨x̂⟩q =
9

10

∫ xb

xa

F2(x,Q2)dx (6.18)

Similarly, for N f = 5 i.e. for u, d, s, c and b quarks, we will have
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5

∑
i=1

e2
i =

11
9

(6.19)

and

⟨x̂⟩q =
9

11

∫ xb

xa

F2(x,Q2)dx (6.20)

and

⟨x̂⟩g <
∫ xb

xa

G(x,Q2) dx < 1−⟨x̂⟩q (6.21)

Note that Eq. 2.5 yields only the upper limit of the fractional momentum carried by the

gluons in the regime xa < x < xb.

In terms of structure function, the momentum sum rule inequality is

∫ xb

xa

{
aF2(x,Q2)+G(x,Q2)

}
dx < 1 (6.22)

where a =
eD̃0

eD0
is Q2-independent parameter, determined from data [111], a = 3.1418 [78],

using the fractionally charged quarks.

We note that the structure function defined in Eq. 2.5 and used subsequently in our

calculation is only a singlet nature, the valence-quark being assumed to be negligible at small

x.

6.3 Results and Discussion

6.3.1 Numerical results of self-similarity based models with linear rise

in Q2: Models 1, 2, 3

We take recourse to numerical method i.e. we evaluate ⟨x̂⟩q numerically by using Eq. 6.16

for a few representative values of Q2 (GeV2). For comparison we choose a particular range

of x: xa ⩽ x ⩽ xb i.e. 6.2×10−7 ≤ x ≤ 10−2 as in Ref. [1]. The choice is made because it

will be suitable for all the models (models 1-4).
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Table 6.1 Results of ⟨x̂⟩q for N f = 4 of Model 1, 2 and 3 for different Q2

Q2 ⟨x̂⟩q ⟨x̂⟩q ⟨x̂⟩q
(GeV2) (Model 1) (Model 2) (Model 3)

Q2 = Q2
0 6.063×10−4 2.008×10−3 1.232×10−3

2 3.740×10−3 4.021×10−3 3.539×10−3

6 5.328×10−3 5.593×10−3 1.455×10−2

10 6.179×10−3 6.377×10−3 2.833×10−2

60 9.791×10−3 9.714×10−3 -
80 1.050×10−2 1.033×10−2 -
120 1.152×10−2 1.123×10−2 -
150 - 1.172×10−2 -

In Table 6.1, column 2, 3 and 4 represents the numerical values of ⟨x̂⟩q for models 1, 2

and 3 taking N f = 4. Here, ⟨x̂⟩q is recorded up to 150 GeV2, the maximum phenomenological

limit for model 2. From the same Table, we observe that the ⟨x̂⟩q in model 3 is much more

than that of model 1 and 2 within its valid range Q2 ⩽ 10 GeV2. However, the models 1 and

2 have nearly equal ⟨x̂⟩q.

6.3.2 Numerical results of self-similarity based model with linear rise

in logQ2: Model 4

In Table 6.2, we have recorded the numerical results of ⟨x̂⟩q of model 4 in column 2 upto its

valid range: Q2 = 800 GeV2, considering number of flavor N f = 4 within the same range

of x as that of used in earlier calculation (Table 6.1). One can see the pattern of ⟨x̂⟩q is

increasing with increasing Q2 as that of models 1, 2 and 3 above. In column 3, we have put

the corresponding results of upper limit of ⟨x̂⟩g and this is decreasing with increasing Q2.

As an illustration for model 4, the ratio of ⟨x̂⟩g vs ⟨x̂⟩q are nearly equal to 120, 100 and 91

for Q2= 60, 300 and 800 GeV2 respectively, far above unity. It indicates that the ⟨x̂⟩q will

never exceed the corresponding upper bound of ⟨x̂⟩g within their phenomenological ranges

of validity where the models make sense.



80
Momentum Fractions carried by quarks and gluons in models of

proton structure functions

æ
æ
æ
æ
ææ
æ
æ
æ

æ
æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ìì
ì
ìì
ìì
ì ì

ì ì ì ì ì ì ì ì ì ì

0 20 40 60 80 100 120
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Q2HGeV
2
L

X
x�
\ q

Fig. 6.1 ⟨x̂⟩q vs Q2 (GeV2) for n f = 4 of Model 2 (dots), Model 3 (squares) and Model 4
(diamonds) respectively.

6.3.3 Comparison of models 2, 3 and 4:

In Fig. 6.1, we have shown the pattern of ⟨x̂⟩q for the models 2, 3 and 4 graphically. The

faster linear growth in model 3 can be prominently seen from Fig. 6.1.

6.3.4 Numerical results of models 5 and 6

In Table 6.3, we have recorded the numerical values of ⟨x̂⟩q as well as the upper limit of ⟨x̂⟩g

(using Eq. 6.21) for Q2 upto 1200 GeV2 for models 5 and 6. For comparison, the Q2-range is

taken as that of Ref. [53] : 0.85 ≤ Q2 ≤ 1200 GeV2 for both the models and also the x-range

Table 6.2 Results of ⟨x̂⟩q and upper limit of ⟨x̂⟩g for N f = 4 of Model 4 for different Q2

Q2 (GeV2) ⟨x̂⟩q ⟨x̂⟩g

Q2 = Q2
0 4.563×10−3 9.954×10−1

10 6.574×10−3 9.934×10−1

60 8.288×10−3 9.917×10−1

80 8.591×10−3 9.914×10−1

150 9.161×10−3 9.908×10−1

300 9.812×10−3 9.901×10−1

500 1.031×10−2 9.896×10−1

800 1.076×10−2 9.892×10−1
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Table 6.3 Results of ⟨x̂⟩q and upper limit of ⟨x̂⟩g for N f = 4 of Model 5 and 6 for different Q2

Q2 ⟨x̂⟩q ⟨x̂⟩g ⟨x̂⟩q ⟨x̂⟩g
(GeV2) (Model 5) (Model 5) (Model 6) (Model 6)

0.85 2.051×10−3 9.979×10−1 1.553×10−2 9.844×10−1

10 5.882×10−3 9.941×10−1 4.873×10−2 9.512×10−1

80 9.114×10−3 9.908×10−1 7.673×10−2 9.232×10−1

150 1.009×10−2 9.899×10−1 8.520×10−2 9.148×10−1

500 1.196×10−2 9.880×10−1 1.014×10−1 8.986×10−1

1200 1.367×10−2 9.863×10−1 1.162×10−1 8.838×10−1

is xa ⩽ x ⩽ xb, where xa= 6.2×10−7, the lower limit of x taken from Ref. [1] and xb = 0.11,

the extreme limit of x from Ref. [53]. The calculation is done for N f = 4. Column 2 and 4

represents the numerical values of ⟨x̂⟩q while column 3 and 5 is for the upper limit of ⟨x̂⟩g of

models 5 and 6 respectively. From Table 6.3, at Q2= 500 GeV2 the ratio of ⟨x̂⟩g vs ⟨x̂⟩q of

model 5 is 82 and that of for 1200 GeV2 of model 6 is 72 which are again far above unity. A

comparison of models 5 and 6 indicates that at any Q2 under study, ⟨x̂⟩q of model 5 remains

around
( 1

10

)th
of model 6.

It indicates that within the experimental range of validity of each model, upper limit of

⟨x̂⟩g allowed by the momentum sum rule far exceeds the corresponding value of ⟨x̂⟩q. As

noted earlier that the possibility of ⟨x̂⟩q exceeding the upper bound of ⟨x̂⟩g cannot be realized

in the phenomenological ranges of validity of these two models as well.

6.3.5 Comparison of models having linear growth in logQ2 : Models 4,

5 and 6

In Fig. 6.2, we compare the pattern of ⟨x̂⟩q for models 4, 5 and 6 by taking Q2 upto 800

GeV2. We observe, all the three pattern of ⟨x̂⟩q increase on increasing Q2. But the growth for

model 6 is larger than that of models 4 and 5. However, the growth can be made closer to

models 4 and 5 by decreasing the exponent of
(

t
t0

)
of Eq. 6.7) as has been noted in Refs.

[107, 112] by obtaining more generalized solution of small x DGLAP equation [108] using
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Fig. 6.2 ⟨x̂⟩q vs Q2 (GeV2) for n f = 4 of Model 4 (dots), Model 5 (squares) and Model 6

with
(

t
t0

)
(diamonds) and Model 6

′
with

(
t
t0

)0.2

(triangles) respectively.

the Lagrange method [109]. An evolution of the form of ∼
(

t
t0

)0.2

which makes the model

closer to models 4 and 5 is shown in the same Fig. 6.2. Here after this will be defined as

model 6
′
.

A common feature of all the models (1-8) is that the ⟨x̂⟩q increases with Q2 while ⟨x̂⟩g

decreases. However, the upper bound of ⟨x̂⟩g is always far above the corresponding value

of ⟨x̂⟩q within the phenomenological range of validity of each model as noted earlier. In

models 1-3, the rise is faster than that of models 4, 5 and 6 as due to the power law growth in

structure function with Q2 of the three models.

6.3.6 Momentum fraction calculation in Froissart bound compatible

Proton structure function (model 8) and its comparison with mod-

els 5 and 7

Here, we will compare the models 5, 7 and 8 within the Q2-range taken as 4.5 ⩽ Q2 ⩽ 120

GeV2 which is common for the three models to obtain the values of ⟨x̂⟩q within the x-range:
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(diamonds) respectively.

6.62×10−7 ⩽ x ⩽ 0.02. Note that while the model 7 has got power law growth in
1
x

, models

5 and 8 have slower growth of log2 1
x

.

In Table 6.4, we have listed the values of ⟨x̂⟩q for the models 7 and 8 and shown their

pattern w.r.t Q2 in Fig. 6.3. From the Fig. 6.3, we can observe that model 7 and 8 has the

faster rise than the model 5. Results of model 5 are taken from Table 6.3 column 2.

So from the above analysis, we can conclude that in all the models of small x partons,

partial momentum fraction carried by quarks ⟨x̂⟩q rises with Q2 in various degrees. However,

invariably fall short of allow upper limit of corresponding upper bound partial momentum

fractions of gluons ⟨x̂⟩g.

Table 6.4 Results of ⟨x̂⟩q for N f = 4 of models 7 and 8 for different Q2

Q2 ⟨x̂⟩q ⟨x̂⟩q
(GeV2) (model 7) (model 8)

4 8.500×10−3 1.008×10−2

6 9.270×10−3 1.045×10−2

10 1.023×10−2 1.089×10−2

60 1.367×10−2 1.251×10−2

80 1.050×10−2 1.276×10−2

100 1.467×10−2 1.294×10−2

120 1.501×10−2 1.311×10−2
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The above feature of the analysis appears to be in apparent conflict with the QCD

expectation that the total momentum fractions of quarks in a Proton should decrease with

Q2 while that of gluons should increase. However, in a subsequence subsection 6.3.8, we

will indicate this feature is not incompatible with QCD, by considering the dominance of sea

quarks at small x and valence quarks at large x together with a faster rise of gluon at ultra

small x compared with sea quarks.

6.3.7 Comparison with perturbative QCD, Lattice QCD and Ads/QCD

models

The predictions of perturbative QCD are:

lim
Q2→∞

⟨x⟩q =
3N f

2Ng +3N f
, (6.23)

lim
Q2→∞

⟨x⟩g =
2Ng

2Ng +3N f
, (6.24)

Here, N f and Ng represent the number of active flavors and number of gluons respectively.

For SU(3)c, Ng = 8. For N f = 5, Eqs. 6.23 and 6.24 yield ⟨x⟩g =
1
2
(
⟨x⟩q + ⟨x⟩g

)
: 50 % of the

momentum of proton is carried by gluons, as noted in [95] and claimed to be experimentally

tested in [111].

In Ref. [97], it has alternative asymptotic prediction:

lim
Q2→∞

⟨x⟩q =
6N f

Ng +6N f
, (6.25)

lim
Q2→∞

⟨x⟩g =
Ng

Ng +6N f
, (6.26)

Where Eqs. 6.23 and 6.24 imply that except for N f = 6, ⟨x⟩q < ⟨x⟩g. Specifically, for N f =5,

Eqs. 6.23-6.24 yield ⟨x⟩g =
1
2
(
⟨x⟩q + ⟨x⟩g

)
and Eqs. 6.25-6.26 give ⟨x⟩g =

1
5
(
⟨x⟩q + ⟨x⟩g

)
.
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In the above equations, ⟨x⟩q and ⟨x⟩g denote the momentum fractions carried by quarks and

gluons respectively for the entire x-range .

The difference between Eqs. 6.23-6.24 and Eqs. 6.25-6.26 is attributed in Ref. [97] to

the proper gauge invariant definition of gluon momentum density; its definition in earlier

works [94–96, 52] includes a quark - gluon interaction term and hence resulted in an inflated

value of gluon momentum fraction in proton.

However, later Ji [98] refutes the claim of Chen et al [97], underlying the correctness of

the QCD prediction, Eqs. 6.23-6.24 [94–96, 52].

However, none of the Refs. [94–96, 52, 97, 98] specifically states about the behavior of

partial momentum fractions ⟨x̂⟩q and ⟨x̂⟩g, relevant for phenomenological study in limited

small x regimes and finite Q2, as in the present analysis.

This is also true for Lattice QCD and Ads/QCD models. With this limitation in mind, we

outline the prediction of Lattice QCD [99] as well as Ads/QCD [114] models.

In Lattice QCD, its predictions for total momentum fractions for individual flavor are

⟨x⟩u = 34%, ⟨x⟩d = 16%, ⟨x⟩s = 4% leading to total ⟨x⟩q = 54%. The lattice analysis also

yields ⟨x⟩g = 36%, while remaining 10% proton momentum fraction remained unaccounted.

The analysis was carried out at momentum scale µ2 = 4 GeV2. Thus, the analysis does not

yet rule out the possibility of ⟨x⟩q that exceeds ⟨x⟩g at low momentum scale of lattice QCD,

where perturbative QCD is not applicable.

Ads/QCD [114–116] based models of proton structure function on the other hand predicts

that the proton momentum fraction carried by valence quarks decreases with Q2 consistence

with perturbative QCD [112, 107] and is reported in Table 6.5.

Table 6.5 Proton momentum fraction carried by valence quarks ⟨x̂⟩qv with Q2. Table is taken
from Ref. [114] for the Ads/QCD model

Q2 GeV2 0.2 0.6 1.0 7.0 10 20

⟨x⟩qv 0.60 0.48 0.45 0.38[0.55] 0.37 0.35
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Table 6.6 ⟨x̂⟩q of various models at a fixed Q2 (= 7 GeV2) and the same x-range

Models 2 5 6 7 8

⟨x̂⟩q 5.826×10−3 5.328×10−3 2.671×10−3 5.487×10−3 6.830×10−3

Table 6.7 ⟨x⟩q of Lattice QCD (= 4 GeV2) and Ads/QCD, ZEUS data (= 7 GeV2)

Models Lattice QCD Ads/QCD ZEUS data

⟨x⟩q 0.54 0.38 0.55

For comparison, we note that the recent ZEUS data [117] yields the momentum fraction

due to valence quarks at Q2 = 7 GeV2 to be ⟨x⟩q ≈ 0.55, which is also included in Table 6.5.

We therefore finally compare our predictions of partial momentum fractions of quarks ⟨x̂⟩q

of models 2, 5, 7 and 8 with the predictions of total momentum fractions carried by quarks

⟨x⟩q in Lattice QCD and Ads/QCD at Q2 = 7 GeV2 and x-range: 6.62×10−6 ≤ x ≤ 10−2

within which each model has got its validity. In Table 6.6 results are given for ⟨x̂⟩q. We note

that the model predictions of Lattice QCD is at 4 GeV2 and not at 7 GeV2. In Table 6.7 we

show the results of Lattice QCD and Ads/QCD together with ZEUS data.

A comparison of Table 6.6 with that of 6.7 indicates that the partial momentum fractions

of small x quarks calculated in all the models are only a very small fraction of the predicted

total momentum fraction in Lattice QCD, Ads/QCD or data which is however not unexpected.

The range of small x is merely 6.62× 10−6 ≤ x ≤ 10−2 to be compared with 0 < x < 1.

Therefore it is not possible to infer which model is closer to theory. However, in general

a phenomenological model with a larger applicability range should be preferred, unless

that comes at the price of making unjustified assumption of the model itself. In this sense,

model 5 (x ≤ 0.11 and 0.11 ≤ Q2 ≤ 1200 GeV2) should be preferred followed by model 7

(2×10−5 ≤ x ≤ 0.4 and 1.2 ≤ Q2 ≤ 1200 GeV2). For the models 5 and 7, the momentum

fractions carried by the small x quarks at Q2 = 7 GeV2 carries merely 0.2% of the total

momentum of proton and 0.1% of the experimentally determined valence quarks momentum

fraction.
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6.3.8 Possible role of ultra small x gluons and large x partons

As noted above, the partial momentum fraction of quarks discussed above is a very small

fractions of the total momentum fractions of proton.

For completeness, we therefore discuss the plausible role of valence quarks and ultra

small x gluons to account for the remaining part of momentum fraction of proton.

It is to be noted that the rise of partial momentum fraction of small x quarks with Q2

(specifically, the logarithmic rise with Q2 in models 4, 5 and 6) can be accommodated

within the overall predictions of total momentum fractions as predicted in perturbative QCD

[94–96, 52]. At large x (x ⩾ 0.2), valence quarks dominate with the fall of structure function

as F p
2 (x,Q

2)∼ 1
tn where n > 0 [112, 107] while at small x, (x ⩽ 0.2) sea quarks dominate

and the rise is power law in F p
2 (x,Q

2)∼ tm, where m > 0 [112, 107]. As a result, the parton

momentum fraction carried by dominantly sea quarks at small x is expected to rise while

the corresponding momentum fraction carried by dominantly valence quarks at large x is

expected to fall. However, as the corresponding rise in Q2 for the gluons is faster [118, 81]

xG(x) = k(t)σ Fs
2 (x,Q

2); k ≥ 0,σ ≥ 0 (6.27)

than the quarks, the total gluon momentum will rise faster than the quarks.

We also recall the well known result that the behavior of quarks and gluons at very small

and large x limit are [89] :

when x → 0 , for small x [85]

x fi(x,Q2)−→ xa fi(Q
2) (6.28)

for gluon

x fg(x,Q2)−→ xa fg(Q
2) (6.29)

and for large x, when x → 1 [90]

x fi(x,Q2)−→ (1− x)b fi(Q
2) (6.30)
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also for gluon

x fg(x,Q2)−→ (1− x)b fg(Q
2) (6.31)

Here a fg is -ve and others are +ve.

At intermediate x scale, one generally uses an interpolating function as polynomial [92]

in x ∼ ∑
n
j=0 A jx j.

Taking into account all these aspects, it is therefore reasonable to realize the expected

QCD behavior. The analysis, done in the present chapter only yields a phenomenological

evidence that the partial momentum fractions carried by sea quarks increase with Q2 but the

rise is not inconsistent with QCD expectation that the total momentum fraction carried by

quarks (valence quarks) will fall while that of gluons will rise.

6.4 Summary

In this chapter, we have made analysis of small x partial momentum fraction carried by

quark ⟨x̂⟩q and gluon ⟨x̂⟩g in nine alternative phenomenological models of proton structure

function valid in limited small x regions: xa ⩽ x ⩽ xb; the limits being determined by phe-

nomenological range of validity in each model. Since the physics of small x is not completely

understood at this point, we have considered both self-similarity based as well as QCD based

models. We find that while the self-similarity based models with linear rise in Q2 has limited

phenomenological ranges of validity, an improved version with liner rise in logQ2 has an

wider phenomenological range. We have also considered phenomenological models with

Froissart saturation as well. We then compare the partial momentum fractions in all the small

x models and compare with perturbative QCD, Lattice QCD and Ads/QCD.

Our analysis shows that small x quarks under study contribute merely 0.2% of the total

momentum fractions of the proton and plays a minor role in accounting for the predicted

and experimentally observed feature of second moments quark distributions. Therefore it
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is not possible to find which of the models is closest to the theory. However, if the range

of phenomenological validity is taken as the only criteria for choice of a phenomenological

model, the model 5 with leading log2 Q2 and log2 1
x

behavior is the most favorable one

followed by the model 7 with logQ2 and power law growth in
(

1
x

)





7
Self-similarity based Transverse

Momentum Dependent Parton Distribution

Functions

7.1 Introduction

The physical significance of Transverse Momentum Dependent Parton Distribution Functions

(TMD) is outlined in chapter 1 of this thesis. In this chapter, we discuss how this aspects of

the proton structure function can be introduced in the self-similarity based models of proton

structure functions discussed in chapter 4.
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7.2 Formalism

7.2.1 Ansatz of TMD in the self-similarity based models and theoreti-

cal limitations

The simplest way to introduce TMD in the self-similarity based model is suggested in Refs.

[80, 82] by redefining the magnification factor
(

1+
Q2

Q2
0

)
by
(

1+
k2

t

k2
0

)
and is given as

log fi(x,k2
t )=D1. log

1
x
. log

(
1+

k2
t

k2
0

)
+D2. log

1
x
+D3. log

(
1+

k2
t

k2
0

)
+Di

0− logM2 (7.1)

instead of Eq. 2.1 of chapter 2. Here, k2
t is the square of the intrinsic transverse momentum of

the parton which has corresponding x as the longitudinal fraction. The parameters D1, D2, D3

are determined from Deep Inelastic HERA data as earlier. Redefining the PDF of Eq. 2.2 of

chapter 2 to be

qi(x,Q2) =
∫ |kt |2<Q2

0
dk2

t fi(x,k2
t ) (7.2)

with the cut off |kt |2 < Q2, one can obtain the identical expression for integrated PDF and

structure function (Eqs. 2.3-2.5). The unintegrated Parton Distribution Function (uPDF)

fi(x,Q2) is now redefined as TMD: fi(x,k2
t ). Thus this minimal extension of the approach to

transverse structure of Proton keeps the results of the previous form of parton distribution

and structure function unchanged.

Clearly, this can be done only in a model frame as in Refs. [120–123]. But it could be of

interest to explore this approach to study kt dependence TMD fi(x,k2
t ) only in the specific x

region where the approach works and where the parameters have been fitted. However, Eq.

7.1 has deep theoretical limitation at the level of quantum field theory as noted by Collins

[12].
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Further, it has been found in recent years that the DIS experiment is not sufficient to

obtain full transverse structure of the nucleon. Additional information is obtained from

Semi Inclusive DIS (SIDIS) [123] where one observes a hadron in the final stage. In this

case, the hadron, which results from the fragmentation of a scattered quark, remembers the

original motion of the quark, including its transverse motion and offers such new information

through parton fragmentation process. Such process is described by a fragmentation function

Di(zh,Pht ;Q2), which is analogous to the uPDF fi(x,kt ;Q2) discussed earlier. Here, zh and

Pht are the longitudinal momentum fraction and transverse momentum of the final hadron h

with respect to the fragmenting parton. The present model, however, has not accommodated

the fragmentation function.

With this theoretical limitation, let us now discuss the graphical representation of TMDs

in the model. First, we take the kt-dependent version of the Lastovicka model using the

previous and new data and compare their relative pattern with x and k2
t .

Using Eq. 2.1, the TMD of the two versions of Lastovicka Model are:

Model 1 : fi(x,k2
t ) =

eDi
0

M2

(
1
x

)D2+D1 log
(

1+ k2
t

k2
0

)(
1+

k2
t

k2
0

)D3

(7.3)

Model 2 : f ′′i (x,k
2
t ) =

eD′′i
0

M2

(
1
x

)D′′
2+D′′

1 log
(

1+ k2
t

k′′20

)(
1+

k2
t

k′′20

)D′′
3

(7.4)

We take the mean value of the parameters D1, D2, D3 from Eq. 2.12 and that of D′′
1, D′′

2, D′′
3

from Table 2.1 respectively. Here, for simplicity, Q2
0 values represent k2

0s-values. Tables 7.1

and 7.2 give the mean values of the parameters for the models 1 and 2 respectively.

Table 7.1 Mean values taken from Eq. 2.12 for the parameters of model 1

D0 D1 D2 D3 k2
0(GeV2)

0.339 0.073 1.013 -1.287 0.062
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Table 7.2 Mean values taken from Table 2.1 for the parameters of model 2

D′′
0 D′′

1 D′′
2 D′′

3 k′′20 (GeV2)

0.354 0.071 1.032 -1.314 0.064

As an illustration, we use Eq. 2.8 with N f = 4 and assume u, d, s and c are in the ratio

eDu
0 : eDd

0 : eDs
0 : eDc

0

4 : 4 : 1 : 1 (7.5)

for definiteness. This gives eD0
u
= 1.008 = eD0

d
and eD0

s
= 0.252 = eD0

c
. Similarly

eD′′
0

u
= 1.024 = eD′′

0
d

and eD′′
0

s
= 0.256 = eD′′

0
c
.

In Fig. 7.1, TMD vs k2
t is shown using Eqs.7.3 and 7.4 for representative values of

(i) x = 10−4 and (ii) x = 0.01 setting M2 = 1 GeV2 and

(i) k2
t = 0.01 GeV2 and (ii) k2

t = 0.25 GeV2

considering the x-range: 10−4 ⩽ x ⩽ 0.01 and k2
t -range: 0.01⩽ k2

t ⩽ 0.25 GeV2 for conve-

nient.

The present graphical analysis of TMDs (Figs. 7.1-7.2) is a comparison of both the

versions of self-similar models of proton structure function. The steep rise of TMD at

small x is due to their growth as power law in
(

1
x

)
as evidence from Eqs. 7.3 and 7.4.

From Fig. 7.1, it can be seen, both the TMDs decrease in both the versions with increasing k2
t .

In several TMD models [125–127], x and k2
t are parameters in factorisable form:

fi(x,k2
t ;Q2) = qi(x,Q2)h(k2

t ) (7.6)
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Fig. 7.1 TMD vs k2
t for two representative values of (a) x = 10−4 and (b) x = 0.01 for Models

1 and 2. Here, M1(u/d) (line) and M2(u/d) (dotted) represents the TMD for u and d quarks for
Models 1 and 2 respectively. Similarly, M1(s/c) (dot-dashed) and M2(s/c) (dashed) represents
the TMD for s and c quarks for Models 1 and 2 respectively.
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Fig. 7.2 TMD vs x for two representative values of (a) k2
t = 0.01 GeV2 and (b) k2

t = 0.25
GeV2 for Models 1 and 2. Here, M1(u/d) (line) and M2(u/d) (dotted) represents the TMD for
u and d quarks for Models 1 and 2 respectively. Similarly, M1(s/c) (dot-dashed) and M2(s/c)
(dashed) represents the TMD for s and c quarks for Models 1 and 2 respectively.
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where h(k2
t ) is the Gaussian of the form of

h(k2
t ) =

1
⟨k2

t ⟩
e
− k2

t
⟨k2

t ⟩ (7.7)

with normalization constant ∫
h(k2

t )dk2
t = 1 (7.8)

We note, the assumed factorisable parametrization of TMD in x and k2
t does not correspond

to the k2
t -factorization theorem [16–18, 128–130, 30, 21, 131, 132] which implies integration

over k2
t of the product of the Gaussian function and fi(x,k2

t ;Q2). In this case, the result

of the integration does not depend on k2
t but depends on both < k2

t > and Q2. Eq. 7.6 is

only a convenient form of parametrization of TMDs and doesn’t contradict the form of k2
t

factorization theorem.

Such factorization property of TMD is not present in the Models 1 and 2 (Eqs. 7.3-7.4)

nor the Gaussian form (Eq. 7.7) [123]. In this sense, the present models are close to the

corresponding non-factorisable models of Refs. [122, 133–136]. Only in the absence of

correlation term D1 (Eq. 2.1) such factorization property emerges. Specifically, in a model of

Ref. [122], it has been shown that this factorization assumption breaks down if one imposes

the correct Lorentz structure in the parton model. In this factorisable limit, the k2
t dependent

functional form of TMD (Eqs. 7.3-7.4) are given by

hi(k2
t ) =

1
M2

(
1+

k2
t

k2
0

)D3

(7.9)

and

h′′i (k
2
t ) =

1
M2

(
1+

k2
t

k′′20

)D′′
3

(7.10)

respectively (which are not Gaussian) in contrast to a Gaussian function (Eq. 7.7).
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Fig. 7.3 Gaussian TMD vs k2
t for h(k2

t ) (line) Eq. 7.7, hi(k2
t ) (dotted) (Model 1), and h′′i (k

2
t )

(dashed) (Model 2) respectively.

In Fig. 7.3, we compare the Gaussian TMD Eq. 7.7 with the model TMDs (Eqs. 7.9-7.10)

in the absence of the correlation term, taking ⟨k2
t ⟩= 0.25 GeV2 from the Ref. [123] which is

used in Eq. 7.7. We note that here the k2
t -dependence is flavor independent. The qualitative

feature of Fig. 7.3 is identical to that of Fig. 7.1.

7.2.2 TMD ansatz for models having power law growth in logQ2

Let us now discuss the TMDs corresponding to models 4 and 6 of chapter 4. The TMD

ansatz for the PDFs of Model 4 and 6 will be:

Model 4

TMD

log f̂i(x,k2
t ) = D̂1 log

1
x

logM̂1 + D̂2 log
1
x
+ D̂3 logM̂1 + D̂i

0 − logM2 (7.11)

with

M̂1 =
B1(

1+ k2
t

k̂2
0

) +
B2(

1+ k2
t

k̂2
0

)2 (7.12)
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leads to

f̂i(x,k2
t ) =

eD̂i
0

M2

(
1
x

)D̂2

 B1(
1+ k2

t
k̂2

0

)


D̂3+D̂1 log 1
x
1+

B2

B1

1(
1+ k2

t
k̂2

0

)


D̂3+D̂1 log 1
x

(7.13)

Assuming the convergence of the polynomials as occurred in Eq. 7.13 we obtain

f̂i(x,k2
t ) =

eD̂i
0

M2

(
1
x

)D̂2

 B1(
1+ k2

t
k̂2

0

)


D̂3+D̂1 log 1
x
1+

B2

B1

(
D̂3 + D̂1 log 1

x

)(
1+ k2

t
k̂2

0

)
 (7.14)

If the parameters D̂3 and D̂1 satisfy the additional condition at

D̂3 + D̂1 log
1
x̂0

= 1 (7.15)

then the resultant TMD will be

f̃i(x,k2
t ) =

eD̃i
0

M2

(
1
x

)D̃2

 B̃1(
1+ k2

t
k̃2

0

)

1+

B̃2

B̃1

1(
1+ k2

t
k̃2

0

)
 (7.16)

Model 6

To get the larger x behavior in PDF as well as structure function, magnification factor
(

1
x

)
is changed to →

(
1
x
−1
)

and so the TMD becomes

log f̄i(x,k2
t ) = D̄1. log

(
1
x
−1
)
. log

(
1+

k2
t

k̄2
0

)
+ D̄2. log

(
1
x
−1
)

+ D̄3. log
(

1+
k2

t

k̄2
0

)
+ D̄i

0 − logM2 (7.17)
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Table 7.3 Mean values taken from Table 4.2 for the parameters of model 4

D̃0 D̃2 B̃1 B̃2 k̃2
0 (GeV2)

0.294 1.237 0.438 0.687 0.046

and hence

f̄i(x,k2
t ) =

eD̄i
0

M2

(
1
x

)D̄2

(1− x)D̄2

 B̄1(
1+ k2

t
k̄2

0

)


D̄3+D̄1 log 1
x+D̄1 log(1−x)

1+
B̄2

B̄1

(
D̄3 + D̄1 log 1

x + D̄1 log(1− x)
)(

1+ k2
t

k̄2
0

)
 (7.18)

Imposing the condition

D̄3 + D̄1 log
1
x̄0

+ D̄1 log(1− x̄0) = 1 (7.19)

will lead to corresponding TMD

f̄ ′i (x,k
2
t ) =

eD̄′i
0

M2

(
1
x

)D̄′
2

(1− x)D̄′
2

 B̄′
1(

1+ k2
t

k′20

)

1+

B̄′
2

B̄′
1

1(
1+ k2

t
k̄′20

)
 (7.20)

7.2.3 Graphical representation of TMDs for models having power law

growth in logQ2

To compare the TMDs for Models 4 and 6, we will use Eq. 7.16 for Model 4 with eD̃u
0 =

0.964 = eD̃d
0 and Eq. 7.20 for model 6 with eD̃s

0 = 0.241 = eD̃c
0 with eD̄′u

0 = 1.004 = eD̄′d
0 and

eD̄′s
0 = 0.251 = eD̄′c

0 .

The mean values of the parameters for their respective models can be taken from Tables

4.2 and 4.3 and given in Tables 7.3 and 7.4.
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Table 7.4 Mean values taken from Table 4.3 for the parameters of model 6

D̄′
0 D̄′

2 B̄′
1 B̄′

2 k̄′20 (GeV2)

0.335 1.194 0.519 0.082 0.056

Graphical representation of TMDs of Model 4 and 6 are given in Figs. 7.4 and 7.5

within the ranges of x: 10−4 ⩽ x ⩽ 0.01 and k2
t : 0.01⩽ k2

t ⩽ 0.25 GeV2 for convenient. It

shows both the form of TMDs have got desired k2
t fall without the burden of singularities as

expected. The steep rise of TMDs at small x is due to their growth as power law in
(

1
x

)
as

evidence from Eqs. 7.16 and 7.20

In this case, the models 4 and 6 have got inbuilt factorization in x and k2
t unlike in

the previous case (Models 1 and 2) where TMDs are not factorisable in x and k2
t . The

k2
t -dependent functional form of TMD (Eqs. 7.16-7.20) are given by :

h̃i =
1

M2

 B̃1(
1+ k2

t
k̃2

0

)

1+

B̃2

B̃1

1(
1+ k2

t
k̃2

0

)
 (7.21)

and

h̄i =
1

M2

 B̄′
1(

1+ k2
t

k̄′20

)

1+

B̄′
2

B̄′
1

1(
1+ k2

t
k̄′20

)
 (7.22)

which will be compared with the standard Gaussian h(k2
t ) (Eq. 7.7) in Fig. 7.6.

The above analysis shows whereas the self-similarity based TMDs are in general not

factorisable in x and k2
t , the additional constraints resulting in models 4 and 6 indicate such

factorization property.

7.3 Summary

In this chapter, the self-similarity based model of proton structure function as suggested in

Ref. [1] and introduced in chapter 2, is then extended to take into account the transverse

structure of the proton by making simple plausible assumptions about defining Transverse
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Fig. 7.4 TMD vs k2
t for two representative values of (a) x = 10−4 and (b) x = 0.4 for Models

4 and 6. Here, M4(u/d) (line) and M6(u/d) (dotted) represents the TMD for u and d quarks for
Models 4 and 6 respectively. Similarly, M4(s/c) (dot-dashed) and M6(s/c) (dashed) represents
the TMD for s and c quarks for Models 4 and 6 respectively.
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Fig. 7.5 TMD vs x for two representative values of (a) k2
t = 0.01 GeV2 and (b) k2

t = 0.25
GeV2 for Models 4 and 6. Here, M4(u/d) (line) and M6(u/d) (dotted) represents the TMD for
u and d quarks for Models 4 and 6 respectively. Similarly, M4(s/c) (dot-dashed) and M6(s/c)
(dashed) represents the TMD for s and b quarks for Models 4 and 6 respectively.
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Fig. 7.6 Gaussian TMD vs k2
t for h(k2

t ) (line) Eq. 7.7, h̃i(k2
t ) (dotted) (Model 4), and h̄′i(k
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t )

(dashed) (Model 6) respectively.

Momentum Dependent Parton Distribution (TMD). The model ansatzs for TMD however,

have general theoretical limitations which are explicitly discussed. Similarities of such model

ansatzs for TMD are also compared with several phenomenological models available in

current literature. We then obtain graphical representation of TMDs w.r.t. x and k2
t which

have expected kt-behavior. The TMDs are in general non-factorisable in x and k2
t . However,

in the models having power law rise in logQ2 have factorisable property which are similar to

a few models, available in the literature.

In this chapter, we however cannot study the TMDs in the entire x-range as the model

parameters have phenomenological validity only in the limited ranges of x as discussed in

chapters from 2 to 4.



8
Froissart bound and Transverse Momentum

Dependent Parton Distribution Functions

8.1 Introduction

The Froissart bound is an interesting aspects of strong interaction and has recently being

discussed in the context of the proton structure function by various authors. Self-similarity

with Froissart compatibility is also reported in Ref. [82].

In this chapter, we outline the change of the structure of the TMDs discussed in chapter 7

if Froissart compatibility is also additionally introduced. We discuss the difference between

the two in this chapter.
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8.2 Formalism

8.2.1 Ansatz of TMD in the models with three magnification factors

Let us now discuss the TMDs corresponding to the cases (case 1-4) with three magnification

factors discussed in chapter 5.

Case 1

Taking three magnification factors instead of two:

M1 =

(
1+

k2
t

k2
0

)
M2 =

1
x

M3 = log
1
x

(8.1)

one can construct the TMD as

log[M2. f̀i(x,k2
t )] = D̀1 logM1 logM2 logM3 + D̀2 logM1 logM2 + D̀3 logM2 logM3

+ D̀4 logM1 logM3 + D̀5 logM1 + D̀6 logM2 + D̀7 logM3 + D̀0
i (8.2)

or

f̀i(x,k2
t ) =

eD̀i
0

M2

(
1
x

)D̀2 log
(

1+ k2
t

k̀2
0

)
+D̀6

×
(

log
1
x

)D̀1 log
(

1+ k2
t

k̀2
0

)
log 1

x+D̀3 log1/x+D̀4 log
(

1+ k2
t

k̀2
0

)
+D̀7

(
1+

k2
t

k̀2
0

)D̀5

(8.3)
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Eq. 8.3 can show the proper Froissart bound like behavior in TMD under the following

conditions:

(1) D̀2 log

(
1+

k2
t

k̀2
0

)
+ D̀6 = 0

(2) D̀7 + D̀3 log
1
x
+

(
D̀4 + D̀1 log

1
x

)
× log

(
1+

k2
t

k̀2
0

)
= 2 (8.4)

Further, if D̀7, D̀3, D̀1 ≪ D̀4, then D̀4 =
2− D̀7

log
(

1+ k2
t

k̀2
0

) , the Froissart Bound compatible

TMD will be

f̀i(x,k2
t ) =

eD̀i
0

M2

(
log

1
x

)2
(

1+
k2

t

k̀2
0

)D̀5

(8.5)

Case 2

The above observation is thus generalized to improved self-similarity based models suggested

in chapter 5. Therefore, we can construct another new set of magnification factors:

M̂1 =
n

∑
j=1

B j(
1+ k2

t
k̂2

0

) j j = 1,2

M2 =
1
x

M3 = log
1
x

(8.6)

which can define TMD as follows:

log[M2. f̈i(x,k2
t )] = D̈1 logM̂1 logM2 logM3 + D̈2 logM̂1 logM2 + D̈3 logM2 logM3

+ D̈4 logM̂1 logM3 + D̈5 logM̂1 + D̈6 logM2 + D̈7 logM3 + D̈0
i (8.7)
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Or

f̈i(x,k2
t ) =

eD̈i
0

M2

(
1
x

)D̈6
(

log
1
x

)D̈3 log 1
x+D̈7

B̈1

 1(
1+ k2

t
k̈2

0

) +
B̈2

B̈1

1(
1+ k2

t
k̈2

0

)2

 (8.8)

Putting the extra conditions

(1) D̈6 = 0

(2) D̈3 log
1
x
+ D̈7 = 2 (8.9)

will give the Froissart like behavior in TMD as:

f̈i(x,k2
t ) =

eD̈i
0

M2

(
log

1
x

)2

B̈1

 1(
1+ k2

t
k̈2

0

) +
B̈2

B̈1

1(
1+ k2

t
k̈2

0

)2

 (8.10)

Case 3

If the magnification factor M2 is extrapolated to large x in a parameter free way
1
x
→
(

1
x
−1
)

,

one obtains a set of magnification factors

M̂1 =
n

∑
j=1

B j(
1+ k2

t
k̂2

0

) j j = 1,2

M2 =

(
1
x
−1
)

M3 = log
1
x

(8.11)
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Therefore TMD will be:

f̆i(x,k2
t ) =

eD̆i
0

M2

(
1
x

)D̆6

(1− x)D̆6

(
log

1
x

)D̆3 log 1
x+D̆7

× B̆1

 1(
1+ k2

t
k̆2

0

) +
B̆2

B̆1

1(
1+ k2

t
k̆2

0

)2

 (8.12)

Putting the extra conditions

(1) D̆6 = 0

(2) D̆3 log
(

1
x
−1
)
+ D̆7 = 2 (8.13)

will give the Froissart like behavior in TMD as:

f̆i(x,k2
t ) =

eD̆i
0

M2

(
log

1
x

)2

B̆1

 1(
1+ k2

t
k̆2

0

) +
B̆2

B̆1

1(
1+ k2

t
k̆2

0

)2

 (8.14)

Case 4

If the third magnification factor is also extrapolated to large-x: log
1
x
→ log

(
1
x
−1
)

i.e

M̂1 =
n

∑
j=1

B j(
1+ k2

t
k̂2

0

) j j = 1,2

M2 =

(
1
x
−1
)

M3 = log
(

1
x
−1
)

(8.15)
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then TMD will be of the form :

f̆ ′i (x,k
2
t ) =

eD̆′i
0

M2

(
1
x

)D̆′
6

(1− x)D̆′
6

(
log

1− x
x

)D̆′
3 log( 1

x−1)+D̆′
7

× B̆′
1

 1(
1+ k2

t
k′20

) +
B̆′

2

B̆′
1

1(
1+ k2

t
k̆′20

)2

 (8.16)

Putting the extra conditions

(1) D̆′
6 = 0

(2) D̆′
3 log

(
1
x
−1
)
+ D̆′

7 = 2 (8.17)

can show the Froissart like behavior in TMD as:

f̆ ′i (x,k
2
t ) =

eD̆′i
0

M2

(
log

1− x
x

)2

B̆′
1

 1(
1+ k2

t
k̆′20

) +
B̆′

2

B̆′
1

1(
1+ k2

t
k̆′20

)2

 (8.18)

8.3 Results

8.3.1 Graphical representation of TMDs for models having three mag-

nification factors

Here, we will consider the Eqs. 8.5 , 8.10, 8.14 and 8.18 for the graphical analysis of TMDs

w.r.t x and k2
t . For definiteness, we have calculated eDi

0s for each case in the similar way as

done in chapter 7. This gives for

case 1: eD̀u
0 = 0.904 = eD̀d

0 and eD̀s
0 = 0.226 = eD̀c

0

case 2: eD̈u
0 = 0.818 = eD̈d

0 and eD̈s
0 = 0.204 = eD̈c

0

case 3: eD̆u
0 = 1.008 = eD̆d

0 and eD̆s
0 = 0.252 = eD̆c

0
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Table 8.1 Mean values of the parameters of f̀i, Eq. 8.5; case 1

D̀0 D̀1 D̀2 D̀4 D̀5 k̀2
0(GeV2)

0.1006 0.028 -0.036 3.585 -0.857 0.060

Table 8.2 Mean values of the parameters of f̈i, Eq. 8.10; case 2

D̈0 B̈1 B̈2 k̈2
0(GeV2)

0.00047 0.056 0.672 0.022

case 4: eD̆′u
0 = 1.008 = eD̆′d

0 and eD̆′s
0 = 0.252 = eD̆′c

0

Also we have taken the mean values of the parameters of Eq. 8.5 i.e D̀5 and k̀2
0 from

Table 5.1; parameters B̈1, B̈2 and k̈2
0 of Eq. 8.10 from Table 5.2 ; parameters B̆1, B̆2 and k̆2

0 of

Eq. 8.14 from Table 5.3 and parameters B̆′
1, B̆′

2 and k̆′20 of Eq. 8.18 from Table 5.4. Mean

values for the respective cases are given in Tables 8.1-8.4.

In Figs. 8.1 and 8.2, we have shown TMDs vs x and TMDs vs k2
t respectively. From

both the figures, we can see: TMDs have got the desired k2
t fall. Also the present graphical

analysis of TMDs indicates that TMDs at small x is smaller than that of Figs. 7.1-7.2 and 7.4

and 7.5 of chapter 7, due to the absence of the factor having power law growth in
(

1
x

)
.

The k2
t dependent functional form of TMDs (Eqs. 8.5, 8.10 and 8.18) are given by :

h̀i =
1

M2

(
1+

k2
t

k̀2
0

)D̀5

(8.19)

Table 8.3 Mean values of the parameters of f̆i, Eq. 8.14; case 3

D̆0 B̆1 B̆2 k̆2
0(GeV2)

0.006 0.032 0.309 0.048
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Table 8.4 Mean values of the parameters of f̆ ′i , Eq. 8.18; case 4

D̆′
0 B̆′

1 B̆′
2 k̆′20 (GeV2)

0.008 0.034 0.251 0.057

case 1

case 2

case 3

case 4
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Fig. 8.1 TMD vs x for two representative values of (a) k2
t = 0.01 GeV2 and (b) k2

t = 0.25
GeV2 for cases 1-4 taking only u and d quarks contributions.
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case 1

case 2

case 3

case 4
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Fig. 8.2 TMD vs k2
t for two representative values of (a) x = 10−4 and (b) x = 0.01 for cases

1-4 taking only u and d quarks contributions.



114 Froissart bound and Transverse Momentum Dependent Parton Distribution Functions
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Fig. 8.3 Gaussian TMD vs k2
t for h(k2

t ) (dot dashed) Eq. 7.7 of chapter 7, case 1 (dotted),
and case 2 (dashed) and case 4 (line) respectively.

ḧi =
1

M2 B̈1

 1(
1+ k2

t
k̈2

0

) +
B̈2

B̈1

1(
1+ k2

t
k̈2

0

)2

 (8.20)

h̆′i =
1

M2 B̆′
1

 1(
1+ k2

t
k̆′20

) +
B̆′

2

B̆′
1

1(
1+ k2

t
k̆′20

)2

 (8.21)

which will be compared with the standard Gaussian h(k2
t ) (Eq. 7.7 of chapter 7) in Fig. 8.3.
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8.4 Summary

In this chapter, we have obtained the proper Froissart bound condition in Transverse Momen-

tum Dependent Parton Distribution Functions (TMD) based on self-similarity with the sets

in three magnification factors. In the previous chapter, we have already discussed TMDs

with two magnification factors. In both the chapters, we have shown the k2
t -fall in TMDs

w.r.t. x and k2
t where one can observe that TMDs with the power law in

(
1
x

)
in chapter 7

dominates the Froissart bound compatible TMDs with the power law in
(

log
1
x

)
.

As discussed in the earlier chapter 7, the information of TMDs in the entire x-range;

0 < x < 1 can not be obtained in this approach as the model parameters are fitted only in a

limited x-range which may be called the inherent limitation of the approach when studying

the Transverse structure of the proton.





9
Conclusion and future outlook of this thesis

In this work, we have studied the structure of proton at small x by constructing the proton

structure functions based on self-similarity.

In Chapter 1, we have introduced the definition of self-similarity and its application in

Unintegrated Parton Distribution Functions (uPDF), Parton Distribution Functions (PDFs)

and structure function of proton. We have also given outlines of the following topics in this

chapter:

(1) QCD evolution equations: DGLAP and BFKL with the kinematics of DIS and SIDIS.

(2) Transverse Momentum Dependent Parton Distributions Functions (TMD) with the

kinematics of DIS and SIDIS and its evolution equation.
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(3) Froissart bound and its applicability in DIS.

In Chapter 2, we have introduced the model of proton structure function suggested by

Lastovicka and its phenomenological ranges of validity in x and Q2. which was fitted by

HERA data [57, 58]. We have refitted the model with recently complied HERA data [59] and

found the phenomenological ranges of validity nearly equal to the earlier ones. The analysis

does not make any big difference with the previous one except the phenomenological range

of validity enhance upto Q2 ≤ 150 GeV2 instead of Q2 ≤ 120 GeV2. Both the two models

have got singularities at x0 ∼ 0.019 and x′′0 ∼ 0.012 respectively, even though each one is

outside its phenomenological range of validity.

In Chapter 3, we have removed the singularities in the models discussed in chapter 2

within the entire x-range: 0 < x < 1 by putting an extra condition on model parameters that

it should be positive definite. But an effort to make a model singularity free reduces its

phenomenological range of validity drastically; Q2 ≤ 10 GeV2.

In Chapter 4, we have therefore improved the earlier versions of proton structure function

by generalizing the definitions of defining magnification factors in uPDF such that it has

power law rise in logQ2, closer to QCD. We have found that if the defining parameters

satisfy certain conditions among themselves, linear rise in Q2 and singularity free in structure

functions in models of chapter 2 and 3 can be avoided.

In Chapter 5, we have incorporated the Froissart saturation bound in the self-similarity

based models of proton structure functions discussed in chapter 4. Our analysis indicates that

a self-similarity based model of proton structure function with power law growth in
1
x

has a

wider phenomenological range of validity than one with a Froissart bound compatible slower

log2 1
x

growth suggesting that asymptotic energy scale is not yet been reached at HERA

regime.
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In chapter 6, we have calculated the momentum fractions carried by quarks and gluons

in the models described in chapters 2 to 5. we have also compared the results with the

predictions of Perturbative QCD, Lattice QCD and Ads/QCD models.

In Chapter 7, we outline how Transverse Momentum Dependent Parton Distribution

Functions (TMDs) can be introduced in the self-similarity based models of proton structure

functions discussed in chapters 2 and 4. Limitations of this approach are also discussed.

In Chapter 8, we have studied how the imposition of Froissart bound on uPDF changes

the corresponding TMDs form. We have also shown the k2
t -fall in TMDs w.r.t. x and k2

t . The

difference between the power law rise in
(

1
x

)
in TMDs as discussed in chapter 7 and that of

in
(

log
1
x

)2

discussed in this chapter has been studied.

Let us end this section with the theoretical limitation of the present work.

Although fractality in hadron-hadron and electron-positron interactions has been well estab-

lished experimentally [69] , self-similarity itself is not a general property of QCD and is not

yet established, either theoretically or experimentally. In this work, we have merely used the

notion of self-similarity to parametrize PDFs as a generalization of the method suggested

in Ref. [1] and have shown that under specific conditions among the defining parameters,

logarithmic rise in Q2 of structure function is achievable even in such an approach and

has wider phenomenological range of validity in x and Q2. However, the model based on

fractal inspired parametrization of PDFs are not comparable to QCD. Modern analyses

of PDFs in perturbative QCD are carried out upto Next-to-Next-to-leading order (NNLO)

[137, 138] with and without Froissart saturation using standard QCD evolution equation and

corresponding calculable splitting functions in several orders of strong coupling constant and

compare with QCD predictions. Instead, the present work is carried out only at the level of

a parton model. In this way, the models merely parametrize the input parton distributions

and their evolution in a self-similarity based compact form, which contains both perturbative
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and non-perturbative aspects of a formal theory, valid in a finite x−Q2 range of data. It

presumably implies that while self-similarity has not yet been proved to be a general feature

of strong interactions, under specific conditions, experimental data can be interpreted with

this notion as has been shown in the present chapter. To prove it from the first principle is the

future course of the present approach.
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A
Momentum fractions carried by quarks and

gluons in analytical approach and its

limitation

A.1 Analytical Expression of ⟨x̂⟩q and its limitations:

The analytical expression of ⟨x̂⟩q is given as (Eq.(23) of Ref. [79]) which is corresponding to

model 1 of chapter 2:

⟨x̂⟩q =
eD̃0Q2

0
D1M2 e
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where the integrals I1 and I2 are expressible in terms of infinite series

Ii =
� eµiz

z
dz = log |z|+

∞

∑
n=1

µn
i zn

n.n!
, i = 1,2 (A.2)

where

z =
1+D3

D1
+ log

1
x

(A.3)

and

µ1 = D1 log
�

1+
Q2

Q2
0

�
+D2 −1 (A.4)

µ2 = D2 −1 (A.5)

In Ref. [79], only the 1st term of the infinite series is taken into account without taking into

account the convergence property and their Q2-dependence. Below, we address to this point.

A.1.1 Q2-dependence of the convergence of the infinite series:

The integral I1 is Q2-dependent while I2 is not, as can be seen from Eq. A.4 and A.5 above.

Convergent condition between nth and (n-1)th term of the infinite series is

µ(n−1)
i .z(n−1)

(n−1).(n−1)!
≫ µn

i .z
n

n.n!
; i = 1,2 (A.6)

leading to

z ≪ n2

(n−1)
.
1
µ

(A.7)

It can be explicitly seen that if one includes more and more terms in the infinite series I1, the

convergent condition shifts to higher values of Q2. As an illustration, the relative convergence

taking respectively the ratios of the 3rd vs 2nd term, 4th vs 3rd term, 5th vs 4th, 6th vs 5th

term results in the inequalities as
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Table A.1 Values of ⟨x̂⟩q with higher order terms in I1 and I2 for different Q2

Q2(GeV2) ⟨x̂⟩q (n=1) ⟨x̂⟩q (n=2) ⟨x̂⟩q (n=3) ⟨x̂⟩q (n=4) ⟨x̂⟩q (n=5)

Q2 = Q2
0 3.7×10−2 −1.63×10−1 5.07×10−1 -1.164 2.170

10 2.781×10−1 -9.52×10−1 2.527 -4.950 8.107
20 3.163×10−1 -1.037 2.694 -5.169 8.360
40 3.582×10−1 -1.112 2.830 -5.329 8.5330
60 3.750×10−1 -1.150 2.897 -5.399 8.6050
80 3.911×10−1 -1.176 2.939 -5.455 8.660
100 4.037×10−1 -1.194 2.969 -5.467 8.672

log
�

1+
Q2

Q2
0

�
≪ 15.384 (A.8)

≪ 45.454 (A.9)

≪ 52.631 (A.10)

≪ 58.823 (A.11)

These inequalities saturates at 2.9×105, 3.4×1018, 4.4×1021, 2.1×1024 GeV2 respectively,

which are far above the experimentally accessible HERA range 3×104 GeV2 [59]. However,

it is the slow convergence of the two infinite series which makes the result highly unstable.

In column 2 of Table A.1, we record the result of Ref. [79] taking only one term of the

infinite series. In the same table, we now show the corresponding results taking 2, 3, 4, 5

terms of the two infinite series. In column 3, all ⟨x̂⟩q are negative. From column 4, it is seen,

saturation occurs below Q2=10 GeV2 and in column 5, again all ⟨x̂⟩q are negative while in

column 6, saturation occurs even below Q2 = Q2
0 GeV2.

A.1.2 Semi-analytical and Numerical result:

As a consequences of the limitation of the analytical method, we take recourse to semi

analytical method i.e. we evaluate I1 and I2 numerically. Here, I2 is Q2-independent and is

obtained as 8.249×10−3
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Table A.2 Values of ⟨x̂⟩q with I1 and ⟨x̂⟩g for different Q2 using semi-analytical method

Q2(GeV2) I1 ⟨x̂⟩q ⟨x̂⟩g

Q2 = Q2
0 1.0762×10−2 1.941×10−4 9.998×10−1

10 6.026×10−2 4.020×10−3 9.959×10−1

20 7.975×10−2 5.527×10−3 9.944×10−1

40 1.059×10−1 7.549×10−3 9.924×10−1

80 1.407×10−1 1.023×10−2 9.897×10−1

120 1.669×10−1 1.226×10−2 9.877×10−1

5.62×104 3.0558 2.355×10−1 7.645×10−1

3.61×105 9.223 7.123×10−1 2.877×10−1

6×106 12.870 ∼ 1 ∼ 0

In Table A.2, we record the numerical values of I1 together the values of ⟨x̂⟩q. From

above, it is seen I1 and I2, the two infinite series are positive definite and hence ⟨x̂⟩q and ⟨x̂⟩g

also. Column 3 represents the ⟨x̂⟩q and column 4 represents the upper limit of ⟨x̂⟩g. ⟨x̂⟩q

saturates at Q2 = 6× 105GeV2. It is interesting to compare the corresponding saturation

scale Q2 = 5.43× 106 GeV2 of the 1st term of the infinite series of Ref. [79] which is of

course found to be unstable.

In Table A.3, we record the numerical values ⟨x̂⟩q and ⟨x̂⟩g of model of Ref. [1] for a few

representative values of Q2 using Eq. A.12 and A.13

⟨x̂⟩q =
� xb

xa

aF2(x,Q2)dx (A.12)

⟨x̂⟩g = 1−⟨x̂⟩q (A.13)

instead of Eq. A.1.

From Tables A.2 and A.3, we observe that in the present model, as Q2 increases, ⟨x̂⟩q too

increases while ⟨x̂⟩g decreases. However, unlike QCD, the model can not be extrapolated

beyond Q2
s =3.9×106 GeV2, its saturation limit.
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Table A.3 Numerical values of ⟨x̂⟩q and ⟨x̂⟩g for different Q2

Q2(GeV2) ⟨x̂⟩q ⟨x̂⟩g

Q2 = Q2
0 2.114×10−3 9.978×10−1

10 2.158×10−2 9.784×10−1

20 2.595×10−2 9.740×10−1

40 3.094×10−2 9.690×10−1

60 3.426×10−2 9.657×10−1

80 3.662×10−2 9.633×10−1

120 4.038×10−2 9.596×10−1

580 5.831×10−2 9.416×10−1

3.9×106 ∼ 1 ∼ 0

A.1.3 Comparison with standard QCD asymptotic:

We note that in Refs. [94, 98], the asymptotic QCD predictions of ⟨x⟩q and ⟨x⟩g are:

lim
Q2→∞

⟨x⟩q =
3Nf

2Ng +3Nf
, (A.14)

lim
Q2→∞

⟨x⟩g =
2Ng

2ng +3Nf
, (A.15)

Here, n f and ng represent the number of active flavors and number of gluons respectively.

for SU(3)c, ng = 8. In Ref. [97], it has alternative asymptotic prediction:

lim
Q2→∞

⟨x⟩q =
6Nf

Ng +6Nf
, (A.16)

lim
Q2→∞

⟨x⟩g =
Ng

Ng +6Nf
, (A.17)

While Eqs. A.14 and A.15 implies that except for Nf = 6, ⟨x⟩q < ⟨x⟩g. Eqs. A.16 and A.17

indicates the opposite asymptotic feature ⟨x⟩q > ⟨x⟩g. In the above Eqs. A.14-A.17, ⟨x⟩q and

⟨x⟩g denotes the momentum fractions carried by quarks and gluons respectively for entire

x-range 0 < x < 1

However, still it will be interesting to calculate the momentum scale Q2 for model 1, at

which the model prediction of partial momentum fractions carried by quarks ⟨x̂⟩q coincides
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Table A.4 Values of momentum scale Q2 of the model corresponds to flavored dependent
asymptotic QCD predictions of ⟨x⟩q

n f ⟨x⟩q Q2(GeV2)

3 Ref[1,2] 9/25 3.8×105

4 Ref[1,2] 3/7 5.5×105

5 Ref[1,2] 15/31 7.5×105

6 Ref[1,2] 9/17 9.3×106

3 Ref[3] 9/13 1.76×106

4 Ref[3] 3/4 2.13×106

5 Ref[3] 15/19 2.37×106

6 Ref[3] 9/11 2.56×106

with the corresponding asymptotically predicted momentum fractions ⟨x⟩q in standard QCD.

This is shown in Table A.4.

Table A.4 shows the results of asymptotic values of ⟨x⟩q. As an illustration, asymptotic

value of ⟨x⟩q= 15/19 of Ref. [97] is achieved for ⟨x̂⟩q at Q2=2.37×106 GeV2.
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