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Abstract. We study spatial meson correlation functions consisting of strange quarks, strange
and charm quarks and charm quarks in (2+1)-flavor QCD using the highly improved staggered
quark action. We find that the in-medium modification of the meson correlators decreases with
increasing charm quark content and decreasing size. In particular, we find strong in-medium
modification of φ and Ds meson correlators around the chiral transition temperature Tc, while
J/ψ and ηc correlators show strong in-medium modification only at temperatures of 1.4Tc.

1. Introduction

At high temperatures matter controlled by the strong force undergoes a deconfinement transition
at which the relevant degrees of freedom change from hadrons to quarks and gluons (see e.g.
Refs. [1, 2] for recent reviews). Hadronic correlation functions have been advocated since long as
a tool to learn about the properties of this strong interaction matter [3, 4]. They encode the in-
medium properties of hadrons and their dissolution. Moreover, through the comparison of lattice
results with weak coupling calculations at high temperature [5, 6] they also provide information
on the change from strongly to weakly interacting matter. In particular, the modifications of
meson correlators in the light and strange quark sector reflect the in-medium change of meson
properties and the partial restoration of chiral symmetry. The in-medium modification and
dissolution of heavy quarkonium was suggested as the signal for creating a deconfined medium
in heavy ion collisions by Matsui and Satz [7]. The existence of heavy light-mesons above the
chiral transition temperature has also been proposed to explain the large energy loss and flow
of heavy quarks observed in heavy ion collisions [8].

Spectral functions, defined in terms of the Fourier transform of the real time meson correlation
functions, provide the most straightforward way to describe in-medium meson properties and
their dissolution. Meson states appear as peaks in the corresponding spectral functions with the
peak position equal to the meson mass. The width of the peak corresponds to the in-medium
width of the meson. However, lattice QCD is formulated in Euclidean space time. Temporal
meson correlation functions calculated on the lattice,

G(τ, �p, T ) =

∫
d3xei�p.�x〈JH(τ, �x)JH(0,�0)〉 , (1)
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have a simple relation to the spectral function, σ(ω, �p, T ):

G(τ, �p, T ) =

∫
∞

0
dωσ(ω, �p, T )K(ω, τ), K(ω, τ) =

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (2)

Here JH is a meson operator, typically of the form JH = q̄ΓHq, with ΓH being some combination
of the Dirac matrices that specifies the quantum numbers of the meson. One way to obtain
the spectral function from the above relation is to use the maximum entropy method (MEM)
[9, 10, 11, 12, 13, 14, 15, 16]. The analysis of temporal correlation functions is difficult due
to the limited extent, 1/T , in Euclidean time direction. In the case of heavy quarkonium
correlators, for instance, it turned out that the melting of bound states does not lead to large
changes in the correlation functions [17, 16]. In order to become sensitive to the corresponding
disappearance of a resonance peak in the spectral function high statistical accuracy and the
analysis of the correlation function at a large number of Euclidean time separations is needed.
At fixed temperature T = 1/Nτa, this requires large lattices with temporal extent Nτ and
sufficiently small lattice spacing, a.

On the lattice one can also study spatial meson correlation functions

G(z, T ) =

∫ 1/T

0
dτ

∫
dxdy〈JH(τ, x, y, z)JH(0, 0, 0, 0)〉. (3)

These are related to the spectral functions in a more complicated way that also involves
integration over the spatial momenta,

G(z, T ) =

∫
∞

0

2dω

ω

∫
∞

−∞

dpze
ipzzσ(ω, pz, T ). (4)

On the other hand the spatial separation is not limited by the inverse temperature and the
spatial correlation function can be studied at separations larger than 1/T . Therefore the spatial
correlation functions can be more sensitive to in-medium modifications and/or the dissolution
of mesons. While the relation between spectral functions and spatial meson correlators is more
involved in general, in some limiting cases it becomes simple. At large distances the spatial
correlation functions drop exponentially, G(z, T ) ∼ exp(−Mz/T ), where M is known as the
screening mass. At small enough temperatures when there exists a well-defined mesonic bound
state, the spectral function has the form σ(ω, 0, 0, pz, T ) ∼ δ(ω2 − p2

z − m2
0), and M becomes

equal to the (pole) mass m0 of the meson. On the other hand, at high enough temperatures,
when the mesonic excitations are completely melted, the spatial meson correlation functions
describe the propagation of a free quark-antiquark pair. The screening masses are then given by

Mfree =
√

m2
q1 + (πT )2 +

√
m2

q̄2 + (πT )2 , (5)

where mq1 and mq̄2 are the masses of the quark and anti-quark that form the meson. This form
of the screening mass in the non-interacting limit is a direct consequence of the anti-periodic
boundary conditions in Euclidean time that are needed for the representation of fermions at non-
zero temperature. This leads to the appearance of a smallest non-zero Matsubara frequency, πT ,
in the quark and anti-quark propagators. As the bosonic meson state is dissolved in the non-
interacting limit the screening mass results as the contribution of two independently propagating
fermionic degrees of freedom. Thus the transition between these two limiting values of the
screening mass can be used as an indicator for the thermal modification and eventual dissolution
of mesonic excitations.

In this contribution we study spatial strange-strange, charm-strange and charm-charm meson
correlators and screening masses using the Highly Improved Staggered Quark (HISQ) action [24]
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with a strange quark mass tuned to its physical value and almost physical, degenerate up and
down quark masses. The HISQ action is known to have discretization effect that are smaller
than those observed with all other staggered-type actions currently used in studies of lattice
QCD thermodynamics [25]. Moreover, the HISQ action is well suited to study heavy quarks on
the lattice [24] and turned out to be successful in quantitative studies of charmonium [26] and
D meson properties [27].

2. Lattice setup

We calculate meson correlation functions on gauge configurations generated in (2 + 1)-flavor
QCD using the HISQ action [25]. The strange quark mass ms is adjusted to its physical value
and the light quark masses are fixed at ml = ms/20, corresponding to mπ � 160 MeV and
mK � 504 MeV at zero temperature in the continuum limit [25]. Charm quarks are introduced
as valance quarks and we used the HISQ action with the so-called ε-term for the charm quark [24]
which makes our calculations in the heavy quark sector free of tree-level O((amc)

2) discretization
errors. Our calculations have been performed on lattices of size N3

σ ·Nτ = 483 · 12. We consider
lattice couplings in the range β = 6.664–7.280 which corresponds to temperatures T = 138–
245 MeV. Discretization effects on these lattices and for the range of gauge couplings used by
us are found to be quite small. To study the spatial correlators at higher temperatures we
adopt the fixed-scale approach and perform calculations at β = 7.280 for Nτ = 10, 8, 6, 4 which
corresponds to the temperature range T = 297–743 MeV. In all our calculations the spatial
extent of lattice was four times the temporal extent: Nσ = 4Nτ . The lattice spacing and the
resulting temperature values, T = 1/Nτa, have been determined using results for the kaon decay
constant [25].

In the staggered formulation quarks come in four valence tastes and meson operators are
defined as JH = q̄(ΓD × ΓF )q, ΓD and ΓF being products of Dirac Gamma matrices which
generate spin and taste structures, respectively [28]. In this study we focus only on local meson
operators with ΓD = ΓF = Γ. By using staggered quark fields χ(x) at x = (x, y, z, τ) the
local meson operators can be written in a simple form JH(x) = φ̃(x)χ̄(x)χ(x), where φ̃(x)
is a phase factor depending on the choice of Γ. We calculate only the quark-line connected
part of the meson correlators since the contribution of the disconnected part either vanishes or
is expected to be small in most cases considered in this study (see discussions below). Since
staggered meson correlator couples to two different meson excitations with opposite parity, the
large distance behavior of the lattice correlator can be described by

G(τ) = A2
NO

(
e−M

−
τ + e−M

−
(Nτ−τ)

)
− (−1)τA2

O

(
e−M+τ + e−M+(Nτ−τ)

)
, (6)

where the first (second) term on the right-hand-side characterizes a non-oscillating (oscillating)
contribution governed by a negative (positive) parity state. Taking the square of the amplitudes
ensures their positivity [29]. In Table 1 we summarize the different choices of the phase factor
φ̃ and the meson states they correspond to. We have considered four channels which we denote
as scalar (S), pseudo-scalar (PS), axial vector (AV) and vector (V). The negative parity states
in these channels correspond to different tastes of the same physical meson and will thus have
nearly degenerate masses if lattice spacing is sufficiently small. For instance, in the cc̄ sector
the negative parity states in S and PS channels both correspond to the same ηc state. We will
comment on this in more detail later.

In Eq. (6) as well as in Table 1 we assumed that the direction of propagation is the
imaginary time τ . When discussing spatial correlation functions we assume that the direction of
propagation is z. In this case τ in Table 1 and in Eq. (6) should be replaced by z. Furthermore,
Nτ should then also be replaced by Nσ in Eq. (6). We calculate meson propagators using point
sources as well as corner-wall sources, where on a given times slice the source is set to one
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at the origin of each 23 cube and zero elsewhere. The use of corner-wall sources reduces the
contribution of higher excited states and thus allows for a more accurate determination of the
screening masses, especially for the positive parity states.

As stated above, in this study we do not include the contribution from the disconnected
diagrams. In the case of charmonium the contribution of disconnected diagrams is expected to
be small, see e.g. Ref. [30]. For ss̄ mesons disconnected diagrams will cause mixing with the
light quark sector in the isospin zero channel. For vector mesons this mixing is know to be very
small and the φ meson is almost a pure ss̄ state. Thus, neglecting the disconnected diagrams
seems to be justified also in this case. Mixing is however large for iso-singlet pseudo-scalar
mesons and it is certainly important to include the contribution from the disconnected diagrams
when comparing the lattice calculations with the experiment. Alternatively, one can estimate
the mass of the un-mixed pseudo-scalar ss̄ meson using leading order chiral perturbation theory
m2

ηss̄
= 2m2

K − m2
π = (686MeV )2, and use this for comparison with the experiment in the PS

channel. Not much is known about the mixing between the light and strange sectors for iso-scalar
mesons in scalar and axial-vector channels. It is expected that there is strong mixing in the scalar
meson sector as well. The mass of the lowest lying ss̄ scalar meson considered in our calculation
is about 1.12 GeV as shown in Fig. 2 (explained below). It thus is considerably heavier than
the lightest iso-scalar scalar meson f0(980) but lighter than the next-to-lightest iso-scalar scalar
state f0(1370). However, for the axial-vector meson mass we find good agreement between our
calculations and the mass of the f1(1420) meson, suggesting that the mixing between the light
and strange quark sector is likely to be small in this case. At sufficiently high temperatures we
expect that the contribution of disconnected diagrams will become small because of screening
effects of the deconfined phase.

The strange quark mass as function of the gauge coupling β was determined in Ref. [25]. We
also need to determine the charm quark mass mc. For the determination of the charm quark
mass we calculate the masses of J/ψ and ηc mesons for gauge couplings β = 10/g2 in the interval
[6.39, 7.28]. We calculate correlation functions at several trial values of the bare charm quark
mass in the range 10 ≤ mc/ms ≤ 14 using point sources. We then perform linear interpolations
in the charm quark mass of the spin-averaged charmonium mass, 1

4(mηc
+ 3mJ/ψ) and match

them to the physical value. This determines the bare charm quark mass amc and the quark mass
ratio mc/ms for each value of β. Finally we fit the β dependence of amc to a renormalization

Table 1. List of meson operators and corresponding physical states in the strange (ss̄),
strange-charm (sc̄) and charm (cc̄) sectors. The lightest ss̄ pseudo-scalar state is defined as

Mηss̄
=

√
2M2

K − M2
π ∼ 686 MeV which is used to determine the strange quark mass on the

lattice.
−φ̃(x) Γ JPC ss̄ sc̄ cc̄

MS
−

1 γ4γ5 0−+

MS
+ 1 0++ D∗

s0 χc0

MPS
−

(−1)x+y+z γ5 0−+ ηss̄ Ds ηc

MPS
+ γ4 0+− – –

MAV
−

(−1)x, (−1)y γiγ4 1−−

MAV
+ γiγ5 1++ Ds1 χc1

MV
−

(−1)x+z, (−1)y+z γi 1−− φ D∗

s J/ψ
MV

+ γjγk 1+− hc
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Figure 1. The ratio of the non-oscillating (negative parity) part of vector correlator in ss̄
(left), sc̄ (middle) and cc̄ (right) sectors at different temperatures to the corresponding zero
temperature results.

group inspired ansatz,

amLCP
c =

c0f(β) + c2(10/β)f3(β)

1 + d2(10/β)f2(β)
, f(β) =

(
10b0

β

)
−b1/(2b2

0
)

exp(−
β

20b0
), (7)

where b0 and b1 are the coefficients of the QCD beta function. The above formula defines
the line of constant physics for the charm quark mass. From our fit we find c0 = 61.0(1.7),
c2 = 2.76(26) × 105, and d2 = 3.3(3.7) × 102.

We performed calculations of meson correlation functions containing a charm quark
in four different channels corresponding to local meson operators (see above) for β =
6.74, 6.88, 7.03, 7.15, and 7.28 using point and corner-wall sources. We extracted the zero
temperature masses using the ansatz given in Eq. (6) and compared the corresponding results
with the experiment. We find that within estimated errors the meson masses agree with the
experiment. We also find that the difference between meson masses belonging to different taste
multiplets is negligibly small.

3. Temperature dependence of spatial meson correlators

Having determined the charm quark masses we can perform calculations of the finite temperature
ss̄, sc̄ and cc̄ correlation functions in the four different quantum number channels that we have
analyzed also at zero temperature.

We start the discussion of our results at non-zero temperature with the temperature
dependence of meson correlators. As it was pointed out in Ref. [23], contrary to the
temporal correlation functions, spatial correlation functions show visible changes already in
the vicinity of the transition temperature even in the case of charmonium. Since staggered
meson correlators in each channel contain both negative parity (non-oscillating) and positive
parity (oscillating) states, it is important to separate these contributions before studying the
temperature dependence of the correlators. One can then form ratios of these contributions at
different temperatures and the corresponding zero temperature result. If there is no change in
the meson spectral functions, these ratios will be equal to one. As a corollary, deviations of
these ratios from unity indicate some medium modification of the meson spectral functions at
non-zero temperature.

In Fig. 1, we show the ratio of the negative parity part of the vector correlator in ss̄, sc̄ and
cc̄ channels and the corresponding zero temperature result. At zero temperature, these non-
oscillating parts of vector correlators are dominated by φ, D∗

s and J/ψ states, respectively. In the
ss̄ sector, We observe a strong decrease of this ratio starting at T = 149 MeV that becomes larger
in magnitude with increasing temperature. A somewhat smaller but still significant decrease of
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Figure 2. Screening masses for different channels in ss̄ (left), sc̄ (middle) and cc̄ (right) sectors
as function of the temperature. The solid horizontal lines on the left correspond to the zero
temperature meson masses. The dashed line is the free field theory result (see text).

this ratio is also seen in the sc̄ sector. For ratios of charmonium correlators no changes are visible
at the lowest temperature (149 MeV), and even at T = 171 MeV the deviations of this ratio from
unity are quite small. They become significant only at T = 197 MeV. The results shown in Fig. 1
therefore suggest that there is a sequential pattern of the medium modifications of the meson
spectral functions which follows the heavy quark content and the corresponding mass of meson
states. For sc̄ and cc̄ mesons we also studied ratios of finite and zero temperature correlators in
the pseudo-scalar channel and found results that are very similar to those discussed above for
vector mesons. Furthermore, we study the positive parity contributions to the correlators in the
scalar channel and the axial-vector channels for cc̄ mesons. At sufficiently low temperatures these
ratios encode the in-medium properties of χc0 and χc1 states. For spatial separations z > 0.75 fm
these ratios show a temperature dependence that is similar to that of the corresponding ratio in
the vector channel which we have discussed above. The temperature dependence of the ratios
at shorter distances, z < 0.75 fm is significantly stronger than that in the vector and pseudo-
scalar channels, providing some hints for the expected sequential suppression pattern of different
charmonium states. Clearly a more detailed analysis of the spatial correlators is needed to clarify
this issue, which will be discussed in the next section.

4. Large distance behavior of spatial meson correlators and screening masses

We fit the large distance behavior of the spatial correlators using Eq. (6) and extract screening
masses in various channels for ss̄, sc̄ and cc̄ mesons. In our study of PS and V screening masses,
we use point and corner-wall sources. For cc̄ sector the difference between the point and corner-
wall sources is quite small. It typically is around 0.4%, except for the three highest temperature,
where it reaches 3%. Similarly in the sc̄ sector, the difference between point and wall sources is
typically about 1% for all temperatures except the three highest ones, where it is 3%. Larger
differences between point and wall sources are seen in the ss̄ sector, where they reach 3% at
the highest five temperatures, and are about 1% at other temperatures. Therefore, we will use
the results from corner-wall sources when presenting our results on the screening masses in the
PS and V channels. In the S and AV channels screening masses can be reliably extracted only
when using the corner-wall sources. The effects of taste symmetry breaking are only visible
for the negative parity states in PS and S channels at low temperatures, where they are about
1.5%. For temperature above 200 MeV we do not find any statistically significant effect of taste
splitting.

All our results on screening masses in the ss̄, sc̄ and cc̄ are shown in Fig. 2. The error bars
in the figure indicate the statistical and systematic errors added in quadrature. We expect that
at very high temperature the screening masses are given by Eq. (5). We show the free theory
(leading order perturbative) result as dashed lines in Fig. 2. For this we need to specify the quark
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Figure 3. The difference ΔM(T ) = M(T )−m0 for vector and axial-vector channels in ss̄ (left),
sc̄ (middle) and cc̄ (right) sectors as function of the temperature.

masses. The quark masses depend on the renormalization scale which is not fixed at leading
order. A natural choice of the renormalization scale would be to identify it with the lowest scale
in the problem provided that this lowest scale is still in the perturbative region. In our case
there are two relevant energy scales, the charm quark mass mc, and the thermal scale which
here is taken to be 2πT . For temperatures T > 200 MeV both scales are comparable. Therefore,
we could take the charm quark mass as the renormalization scale and the corresponding value
mc(μ̄ = mc) = 1.275 GeV from PDG [31]. Using the ratio of charm to strange quark mass
mc/ms = 11.85 [32] and the above value, we can determine the value of the strange quark mass
at the same renormalization scale to be ms = 0.108 GeV. This completely specifies our free
theory prediction.

As one can see from Fig. 2, there are three distinct regions: the low temperature region, where
the screening masses are close to the corresponding vacuum masses (solid lines), the intermediate
temperature region, where we see significant changes in the value of the screening masses with
respect to the corresponding vacuum masses, and finally, the high temperature region, where
the screening masses are close to the free theory result (dashed lines). In the high temperature
region, there clearly are no meson bound states anymore. The onset of the high temperature
behavior is different in different sectors. In the ss̄ sector it starts at around T = 210 MeV. In
the sc̄ sector it starts at T = 250 MeV, while in cc̄ sector it starts at T > 300 MeV. As the
temperature increases, we see that the screening masses corresponding to negative parity states
increase monotonically, while the screening masses in the positive parity states first decrease
before starting to rise towards the asymptotic high temperature values. In the intermediate
temperature region the screening masses of opposite parity partners start to approach each
other and we observe a significant rearrangement of the ordering of screening masses in different
channels. At sufficiently high temperatures the PS and S as well as V and AV screening masses
become degenerate. In the ss̄ sector this is evident for T > 220 MeV, while for the two other
sectors it happens at higher temperatures because in these cases the effect of the explicit breaking
of parity by the quark masses is much larger. In the high temperature region the screening masses
in the PS channel are smaller than the screening masses in the V channel. This behavior has
been observed previously in lattice calculations [22] and in calculations using Dyson-Schwinger
equations [33]. It persists to temperatures as high as 800 MeV, see e.g. Ref. [22].

To see in detail the modification of screening masses in the low and intermediate temperature
regions it is convenient to consider the difference between the screening mass and the
corresponding vacuum masses m0 calculated at T = 0

ΔM(T ) = M(T ) − m0 . (8)
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Figure 4. The right panel shows the ratio of the amplitudes of vector spatial meson
correlators calcuated at finite temperature and zero temperature. The left panel shows the
difference between the pseudo-scalar screening mass and the corresponding zero temperature
mass ΔM(T ) = M(T ) − m0 for anti-periodic (filled symbols) and periodic (open symbols)
boundary conditions

It is tempting to interpret this difference as the change in the binding energy of meson states,
however, the relation between the screening mass and the pole mass only holds as long as there
is a well defined bound state. Nonetheless, ΔM could provide some constraints on the change
of the binding energy in the low and intermediate temperature regions. We show our results
for ΔM(T ) for vector and axial-vector ss̄, sc̄ and cc̄ mesons in Fig. 3. The error bars and gray
bands indicate the statistical and systematic errors, respectively. In all cases ΔM increases for
negative parity states and decreases for positive parity states. The absolute value of ΔM is the
largest for ss̄ meson and is the smallest for cc̄ mesons, i.e. it follows the expected sequential
pattern with respect of the heavy quark content. Note, that the absolute size of ΔM is about
the same for negative and positive parity states in the ss̄ sector. In the charm-strange sector
|ΔM | is slightly larger for positive parity state. For charmonium the picture is different, ΔM
remains quite small for T < 200 MeV in the vector channel, while we see large decrease in ΔM
for the axial-vector channel starting around T = 160 MeV. We also inspected the behavior of
ΔM in the scalar and pseudo-scalar channels and found a behavior that is almost identical to
that in the axial-vector and vector channels. Thus, in the charmonium case the temperature
dependence of ΔM provides some hints for sequential suppression: it shows large decrease at
T > 160 MeV for scalar and axial vector channels corresponding to 1P charmonium states (χc0

and χc1) and very little change in the pseudo-scalar and vector channels corresponding to 1S
charmonium states (ηc and J/ψ).

The amplitudes ANO and AO appearing in Eq. (6) are related to the wave function of meson
states in the zero temperature limit. In the case of point sources and mesons consisting of
heavy quarks they are proportional to the wave function at the origin and the derivative of
the wave function at origin. Therefore, if we are interested in melting of meson states at high
temperature it is worth to study the temperature dependence of this amplitudes. In Fig. 4 we
show the ratios of the amplitude ANO for the spatial meson correlators in the vector channel to
the corresponding zero temperature result. If meson states exist in the medium with little or no
modifications this ratio should be close to one. For the strange and strange-charm mesons we
see that there are deviations of this ratio from one already at relatively low temperatures and
these deviations are increasing with increasing temperature. For charmonium the ratio of the
amplitude to the zero temperature amplitude is very close to one up to temperature of about 170
MeV, and slowly increases above that temperature. Only at temperatures above 200 MeV the
deviations of this ratio from unity are similar to the ones observed in strange and strange-charm
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sectors in the transition region. This suggests that melting of the J/ψ happens for T > 200
MeV.

Finally, let us discuss the dependence of charmonium screening masses on the temporal
boundary conditions. So far we used anti-periodic boundary conditions for valence charm quarks,
i.e. we considered them to be in thermal equilibrium. In heavy ion experiments charm quarks
are most likely not in thermal equilibrium due to their large mass and large relaxation times.
The existence of charmonium bound state in the medium with a certain temperature does not
depend on whether the charm quarks are thermalized or not. If the temperature is not too
high one can use NRQCD to study heavy quark bound state. In this approach no boundary
conditions are imposed on the heavy quark [34] but the sequential suppression pattern has been
observed. Thus, if charmonium state exists in the medium the spatial correlation function and
screening masses should be insensitive to the temporal boundary conditions. It was pointed
out in Ref. [23] if bound states are melted meson screening masses will be very sensitive to the
temporal boundary conditions. Asymptotically the quadratic difference of the screening masses
calculated with anti-periodic and periodic boundary conditions will approach (2πT )2 [23]. In
Fig. 4 we show the charmonium screening masses in the pseudo-scalar channel calculated using
anti-periodic and periodic boundary conditions. There is very little sensitivity to the boundary
conditions for T < 170 MeV. Above that temperature we see clear sensitivity of the pseudo-scalar
screening mass to the boundary conditions, which becomes quite large for T > 200 MeV possibly
indicating dissolution of the ηc state at these temperatures. The results in the vector channel are
very similar. We also see sensitivity to the boundary conditions in the scalar and axial-vector
charmonium screening masses. But due to large errors in the corresponding screening masses it
is more difficult to quantify this sensitivity.

5. Conclusions

We studied spatial meson correlation functions at non-zero temperature for ss̄, sc̄ and cc̄ mesons
with the aim to find out at what temperatures these mesons dissolve. We studied the spatial
correlation functions in different ways: comparing them directly to the zero temperature results,
studying their large distance behavior and extracting the corresponding screening masses and
amplitudes, as well as studying the sensitivity to the temporal boundary conditions. We see
that the size of medium effects in the spatial correlators and screening masses in different sectors
follows a sequential pattern that corresponds to the heavy quark content. We find, however,
that both ss̄ and charm strange mesons are effected by the medium already at relatively low
temperatures and dissolve at temperature close to the transition temperature. Contrary, the 1S
charmonium states (J/ψ and ηc) do not seem to be affected by the medium up to temperatures
of about 170 MeV and most likely dissolve at temperatures somewhat higher than 200 MeV. The
correlators and the screening masses corresponding to 1P charmonium (χc) states show larger
temperature dependence than the ones corresponding to 1S states. In particular, the screening
masses corresponding to 1P charmonium states show large temperature dependence just above
the transition temperature. Thus, we see some hints of the expected charmonium suppression
from our study of spatial correlation functions.
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