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Abstract In Gauss–Bonnet gravity, we analytically inves-
tigate the p-wave superfluid models in five dimensional AdS
soliton and AdS black hole in order to explore the influences
of the higher curvature correction on the holographic super-
fluid phase transition. We observe that the analytical findings
are in good agreement with the numerical computations. Our
results show that the critical chemical potential of the system
increases with the increase of the Gauss–Bonnet parame-
ter in AdS soliton background, while the critical temperature
decreases as the Gauss–Bonnet factor grows if the phase tran-
sition of the system is of the second order in AdS black hole
background, both of which indicate that the higher curvature
correction hinders the formation of the condensation of the
vector operator. Moreover, the critical exponent of the sys-
tem takes the mean-field value 1/2, which is independent of
the Gauss–Bonnet parameter and the spatial component of
the gauge field.

1 Introduction

The emergence of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [1–4], which connects the grav-
ity on asymptotically anti-de Sitter spacetime to the confor-
mal field theory on the (d − 1)-dimensional boundary of
this spacetime, provides a dual description for a strongly
interacting system from the perspective of classical gravity.
Through this correspondence, there is a great progress in
comprehending the dynamics of strongly coupled gauge the-
ories. One of the remarkable applications of the AdS/CFT
duality is the study of high-temperature superconductor in
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condensed matter physics [5]. The core mechanism that is
responsible for the holographic superconductor is the spon-
taneous breaking of U (1) symmetry at the horizon of bulk
black hole, which implies the superconducting phase transi-
tion in the dual CFTs. In the past decade, a variety of holo-
graphic superconductors have attracted considerable atten-
tion and been explored. The holographic superconductor in
the background of the bulk AdS black hole can be used to
model phase transition from normal state to superconducting
state, the critical temperature and critical phenomena were
studied in Refs. [6–11]. By considering the background of
AdS soliton, the holographic models describing the insula-
tor/superconductor transition at zero temperature have been
constructed, and the investigations on the properties of these
superconductors were carried out in Refs. [12–17]. The stud-
ies were also generalized to holographic models of super-
fluid, in which the spatial component of theU (1) gauge field
on the boundary is turned on and it corresponds to the cur-
rent along the same spatial direction, for reviews, see Refs.
[18–23].

Most of the holographic models are built and investigated
based on the Einstein gravity. In order to gain an insight into
the influences of the higher curvature correction on the super-
conductor or superfluid phase transition, we will extend the
investigation to the higher dimensional spacetime in Gauss–
Bonnet (GB) gravity [24]

S = 1

16πG

∫
dd x

√−g

[
R + (d − 1)(d − 2)

L2

+α(Rμνγ δR
μνγ δ − 4RμνR

μν + R2)

]
, (1)

where α is the GB coupling constant with dimension
(length)2. The motivation for this is due to the contradiction
between the Mermin–Wagner theorem that forbids sponta-
neously symmetry breaking at finite temperature in spatial
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dimensions d ≤ 2 on the gauge theory side and the indeed
observation that the superconducting phase transition exists
in the four-dimensional AdS black hole backgrounds [5,25].
It is possible that higher curvature correction should sup-
press condensation based on the suppression of the large
fluctuations in the large N limit. According to the AdS/CFT
dictionary, the higher derivative curvature terms correspond
to the corrections of large N expansion of boundary CFTs
in the strong coupling limit. In this direction, lots of work
studying various holographic superconductors in Einstein–
Gauss–Bonnet gravity have been performed and the effects
of the GB correction on the phase transition have been dis-
covered [26–35]. Recently, Nam studiedd-dimensional holo-
graphic superconductors in the probe limit in the framework
of Einstein–Gauss–Bonnet gravity as well as exponential
nonlinear electrodynamics, and found that the GB correc-
tion makes the formation of condensation harder, and the
superconducting energy gap becomes larger when increas-
ing GB parameter [36]. Ref. [37] numerically investigated
the holographic p-wave superconductors with GB curvature
correction and nonlinear electrodynamics, and further dis-
closed the effect of the GB parameter on the behavior of con-
ductivity. In the literature [38], we studied the holographic
p-wave superfluid model in the background of soliton solu-
tion to Einstein–Maxwell theory. The chemical potential,
as a parameter of the soliton solution, has a critical value
where a second-order transition will be triggered and the
AdS soliton will reach the superconductor (or superfluid)
phase. Also from the analysis of the critical phenomenon, it
was found that the spatial component of theU (1) gauge field
will not bring up the first-order transition. It is of interest
to further consider the holographic p-wave superfluid model
in AdS soliton including higher order curvature correction.
The variation method for the Sturm–Liouville (S–L) eigen-
value problem, which was firstly proposed by Siopsis et al.
[39,40] to analytically study the critical phenomenon in holo-
graphic superconductor model, is generalized to the studies
of various holographic models and proved to be an effective
approach, see Refs. [10,14,15,29,33,41–44]. The analytical
results obtained from the S–L method are in great agreement
with the numerical findings. We will employ the analytical
S–L method to reveal some details of the holographic p-wave
superfluid model in GB AdS soliton and disclose several gen-
eral properties.

On the other hand, a holographic superfluid solution was
constructed based on the AdS black hole background by Her-
zog et al. [19], and they found that the second-order super-
fluid phase transition can change to the first order when the
velocity of the superfluid component increases relative to the
normal component. By coupling a Maxwell-complex vector
field into the AdS black hole, Wu et al. investigated the holo-
graphic p-wave superfluid and detected that the lager mass
of the vector field leads to the larger translating superfluid

velocity from second order to first order, and the Cave of
Winds only exists in the case of five-dimensioned spacetime
[23]. The holographic p-wave superfluid in AdS black hole
background in GB gravity has been studied numerically by
Liu et al. recently [45]. It revealed that the GB parameter will
make it easier for the appearance of translating point from
the second-order transition to the first-order one or for the
emergence of the Cave of Winds. In particular, for the suffi-
ciently large mass of the vector field, the phase transition of
the system is always of the second order. In order to back up
this significant feature by analytical calculation, we use the
S-L method to analytically reproduce the properties of the
holographic p-wave superfluid model in GB AdS black hole
with the large mass of the vector field fixed where the super-
fluid phase transition is of the second order. In our paper, we
will work in the probe limit where the gravitational back-
reaction of the vector fields on the background geometry is
neglected.

This paper is organized as follows. In the next section,
we introduce holographic model of superfluid in GB AdS
soliton background. We focus on the influences of the higher
curvature correction on the critical chemical potential and
the critical phenomena of the system via the S–L method.
We also study the behavior of the spatial component of the
gauge field near the critical point. In Sect. 3, we extend the
analytical study to the p-wave superfluid model in GB AdS
black hole with the large mass of the vector field. We cal-
culate the critical temperature as well as the condensation
of the vector operator to back up the numerical findings and
analyze the behavior of the spatial component of the gauge
field. In Sect. 4, we summarise the general properties of the
holographic p-wave superfluid model in GB gravity with our
main results.

2 Holographic p-wave superfluid model in
Gauss–Bonnet AdS soliton background

Since we will discuss the holographic superfluid dual to the
five-dimensional GB AdS soliton configuration [46], in the
probe limit, we begin with the soliton solution to the action
(1) for d = 5 in the form

ds2 = −r2dt2 + dr2

f (r)
+ f (r) dϕ2 + r2(dx2 + dy2), (2)

where the metric function

f (r) = r2

2α

⎡
⎣1 −

√
1 − 4α

L2

(
1 − r4

s

r4

)⎤
⎦ , (3)

with the tip rs is a conical singularity in this solution, α is the
Gauss–Bonnet coupling constant and L is the AdS radius. In
the asymptotic region (r → ∞), the function f (r) behaves
as
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f (r) ∼ r2

2α

(
1 −

√
1 − 4α

L2

)
, (4)

so we can define the effective asymptotic AdS scale by

L2
e f f = 2α

1 −
√

1 − 4α
L2

, (5)

where the upper bound of the GB parameter α = L2/4
is the so-called Chern–Simons limit [47]. Given the con-
straints of the causality via the holographic correspondence
[48,49], we will take the range −7L2/36 ≤ α ≤ 9L2/100
for the GB coupling constant in the following calculation.
It should be noted that the solution (2) goes back to the
Schwarzschild AdS soliton in the Einstein limit, i.e., α → 0.
In order to remove the singularity at the tip, we impose a
period β = πL2/rs for the coordinate ϕ [46], which is the
same as that of Schwarzschild AdS soliton [50]. This period
remains unchanged as the Gauss–Bonnet parameter varies,
which means that we can fix the period of the spatial coordi-
nate ϕ to discuss the influence of the high order correction on
the holographic model. For simplicity, we will scale L = 1
in the following.

In the GB AdS soliton background, considering a Maxwell
field and a charged complex vector field coupled, we build
the holographic p-wave model of superfluidity via the action

S =
∫

d5x
√−g

(
− 1

4
FμνF

μν − 1

2
ρ†

μνρ
μν

−m2ρ†
μρμ + iqγρμρ†

ν F
μν

)
, (6)

where the tensor ρμν = Dμρν − Dνρμ with the covariant
derivative Dμ = ∇μ − iq Aμ, q and m are the charge and
mass of the vector field ρμ, respectively. In this work the
parameter γ , which is the magnetic moment of the vector
field, will not be considered. In order to take the possibility
of DC supercurrent into account, we adopt the ansatz of the
guage field Aμ as

Aμdx
μ = At (r)dt + Aϕ(r)dϕ, (7)

where both a time component At and a spatial component Aϕ

of the vector potential have been introduced. For the vector
field ρμ, we assume it to be real and take the following ansatz

ρμdx
μ = ρx (r)dx . (8)

Therefore we can get a set of equations of motion for the
holographic p-wave superfluid model

ρ′′
x +

(
1

r
+ f ′

f

)
ρ′
x − 1

f

(
m2 + q2A2

ϕ

f
− q2A2

t

r2

)
ρx = 0,

A′′
t +

(
1

r
+ f ′

f

)
A′
t − 2q2ρ2

x

r2 f
At = 0,

A′′
ϕ + 3

r
A′

ϕ − 2q2ρ2
x

r2 f
Aϕ = 0, (9)

where the prime denotes the derivative with respect to r . The
effective mass of the vector field obtained from the equation
of motion for ρx reads

m2
e f f = m2 + q2A2

ϕ

f
− q2A2

t

r2 . (10)

Evidently, the expression of the effective mass implies that
the p-wave superfluid phase transition depends onm2, At and
Aϕ . The specific results can be deduced from the following
computation.

The boundary conditions at the tip of AdS soliton and
the asymptotic AdS boundary have to be imposed to solve
the nonlinear equations (9). At the tip r → rs , the solutions
behave as

ρx (r) = ρ̃x0 + ρ̃x1(r − rs) + ρ̃x2(r − rs)
2 + · · · ,

At (r) = Ãt0 + Ãt1(r − rs) + Ãt2(r − rs)
2 + · · · ,

Aϕ(r) = Ãϕ1(r − rs) + Ãϕ2(r − rs)
2 + · · · . (11)

At the asymptotic AdS boundary r → ∞, we have the
constraints

ρx (r) = ρx+
r
+ + ρx−

r
− ,

At (r) = μ − ρ

r2 ,

Aϕ(r) = Sϕ − Jϕ
r2 , (12)

where the characteristic exponent 
± = 1 ±
√

1 + m2L2
e f f ,

μ and Sϕ are interpreted as the chemical potential and the
superfluid velocity, while ρ and Jϕ stand for the charge den-
sity and the current in the dual field theory, respectively. The
quantities ρx− and ρx+, according to the AdS/CFT dictio-
nary, correspond to the source and the vacuum expectation
value of the vector operator 〈Ox 〉, respectively. Since we
expect that the condensate appears spontaneously, we con-
centrate on the case of ρx− = 0 and 〈Ox 〉 = ρx+ in our
discussion.

In this system, there are several useful scaling symmetries

r → λr , (t, ϕ, x, y) → 1

λ
(t, ϕ, x, y), q → q,

(ρx , At , Aϕ) → λ(ρx , At , Aϕ), (13)

which lead to the transformation of the relevant quantities

(μ, Sϕ) → λ(μ, Sϕ) , (ρ, Jϕ) → λ3(ρ, Jϕ),

ρx+ → λ
++1ρx+, (14)

where λ is a real positive number. Using the scaling symme-
tries (13) we can assume q = 1 and rs = 1 without losing
the generality in the following numerical calculation.
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2.1 Critical chemical potentials

It was found that [27,51,52], for the AdS soliton, the chem-
ical potential μ of the system has a critical value μc, above
which the solution becomes unstable to develop a hair. It
implies the appearance of the condensation of the vector field
ρx in gravity side and the dual field theory reaches a super-
conductor (or superfluid) phase. For lower chemical poten-
tial μ < μc, the vector condensate vanishes, and the dual
theory is in an insulator phase because in this model the nor-
mal phase is described by an AdS soliton where the system
exhibits a mass gap. The critical chemical potential is a turn-
ing point of the insulator/superconductor phase transitions.
To proceed further, we would like to rewrite the equations of
motion (9) in the new coordinates z = rs/r , so they yield

ρ′′
x +

(
1

z
+ f ′

f

)
ρ′
x

+
[

1

z2 f

(
q At

rs

)2

− 1

z4 f 2

(
q Aϕ

rs

)2

− m2

z4 f

]
ρx = 0,

A′′
t +

(
1

z
+ f ′

f

)
A′
t − 2

z2 f

(
qρx

rs

)2

At = 0,

A′′
ϕ − 1

z
A′

ϕ − 2

z2 f

(
qρx

rs

)2

Aϕ = 0, (15)

where the prime denotes the derivative with respect to z, and
f (z) is denoted by

f = 1

2αz2 [1 −
√

1 − 4α(1 − z4)]. (16)

At the critical chemical potential μc, the vector field ρx is
zero. So the equation of motion for the gauge field component
At turns out to be

A′′
t +

(
1

z
+ f ′

f

)
A′
t = 0. (17)

The above equation can not be solved directly, but consid-
ering the GB factor α is small, we can still get the effective
general solution

At = μ + 1

4
c1

[2
√

α arctan
( √

αz2√−1−α

)
√−1 − α

− ln(1 − z2) + ln(1 + z2)

]
. (18)

In order to keep At finite, we have to fix c1 = 0 in view of
the Neumann-like boundary condition for At at the tip of the
soliton. Thus, it leads to that the physical solution of At is a
constant μ at the phase transition point.

Similarly, the equation of the spatial component Aϕ in
Eq. (15) simplifies to

A′′
ϕ − 1

z
A′

ϕ = 0, (19)

and the solution is

Aϕ = Sϕ(1 − z2), (20)

which fulfills the condition Aϕ(1) = 0 given in Eq. (11).
Now we consider the case that the chemical potential is

away from (but very close to) the critical value μc, the field
equation for the vector field ρx approaches to

ρ′′
x +

(
1

z
+ f ′

f

)
ρ′
x

+
[

1

z2 f

(
qμ

rs

)2

− (1 − z2)2

z4 f 2

(
qSϕ

rs

)2

− m2

z4 f

]
ρx = 0.

(21)

From the boundary condition given in (12), we suppose that
ρx takes the form

ρx (z) ∼ 〈Ox 〉
r

s

z
F(z), (22)

where we have defined a trial function F(z) with the bound-
ary conditions F(0) = 1 and F ′(0) = 0, and 
 = 1 +√

1 + m2L2
e f f . Then, Eq. (21) can be rewritten as

F ′′(z) +
(

2
 + 1

z
+ f ′

f

)
F ′(z)

+
[




z

(



z
+ f ′

f

)
+ 1

z2 f

(
qμ

rs

)2

− (1 − z2)2

z4 f 2

(
qSϕ

rs

)2

− m2

z4 f

]
F(z) = 0. (23)

Here we introduce a new parameter proposed in Ref. [53]

K = qSy
rs

, (24)

which can help to prevent the problem of the divergent behav-
ior for the larger values of the parameter k = Sϕ

μc
that we had

introduced in our previous work [38].
Following the Sturm–Liouville eigenvalue problem, the

equation of motion for F(z) can be converted into a standard
Sturm–Liouville form

(PF ′)′ + P

[
V + W

(
qμ

rs

)2
]
F = 0, (25)

with

P = z2
−1[1 − √
1 − 4α(1 − z4)]

2
√

α
,

V = 


z

(



z
+ f ′

f

)
− m2

z4 f
− K 2(1 − z2)2

z4 f 2 ,

W = 1

z2 f
. (26)
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Table 1 The critical value of chemical potential �c = qμc/rs of the
holographic p-wave superfluid model obtained by the analytical S–L
method (left column) and numerical calculation (right column) with a

number of superfluid velocity K = qSϕ/rs and the GB coupling con-
stant α = −0.19, 0.0001, 0.09, respectively, for the fixed mass of the
vector field m2L2

e f f = −3/4

α −0.19 0.0001 0.09

K = 0.00 1.62213 1.62201 1.73955 1.73888 1.82124 1.82057

K = 0.25 1.62945 1.62932 1.74546 1.74476 1.82631 1.82580

K = 0.50 1.65115 1.65116 1.76302 1.76374 1.84157 1.84123

K = 0.75 1.68643 1.68667 1.79174 1.79174 1.86661 1.86638

K = 1.00 1.73410 1.73473 1.83088 1.83112 1.90087 1.90090

Table 2 The critical chemical potential �c = qμc/rs obtained by the
analytical S–L method (left column) and numerical computation (right
column) for the holographic p-wave superfluid model for different val-

ues of K . We choose the GB coupling constant α = −0.19, 0.0001,
0.09, respectively, and fix the mass of the vector field by m2L2

e f f = 0

α −0.19 0.0001 0.09

K = 0.00 2.11529 2.11349 2.26711 2.26533 2.37252 2.37071

K = 0.25 2.11986 2.11826 2.27080 2.26890 2.37573 2.37378

K = 0.50 2.13346 2.13211 2.28183 2.28017 2.38533 2.38344

K = 0.75 2.15582 2.15483 2.30000 2.29859 2.40117 2.39955

K = 1.00 2.18578 2.18578 2.32506 2.32377 2.42307 2.42167

Table 3 The critical chemical potential �c = qμc/rs obtained from the S–L method (left column) and numerical calculation (right column) for
the holographic p-wave superfluid model for chosen values of the GB factor α and various of K with the fixed mass m2L2

e f f = 5/4

α −0.19 0.0001 0.09

K = 0.00 2.60126 2.59927 2.78720 2.78503 2.91642 2.91419

K = 0.25 2.60438 2.60258 2.78973 2.78756 2.91862 2.91644

K = 0.50 2.61370 2.61203 2.79729 2.79526 2.92521 2.92306

K = 0.75 2.62910 2.62752 2.80982 2.80797 2.93614 2.93410

K = 1.00 2.65037 2.64939 2.82717 2.82565 2.95131 2.94939

Therefore, we can obtain the minimum eigenvalue of � =
qμ/rs which minimizes the following functional

�2 =
(
qμ

rs

)2

=
∫ 1

0 P(F ′2 − V F2)dz∫ 1
0 PWF2dz

. (27)

To further estimate it, we assume the trial function to be
F(z) = 1 − az2 with a constant a.

In Tables 1, 2 and 3, we present the critical chemical
potential �c = �min , which results from the minimum
eigenvalues of �2, for different values of the GB factor
α and the dimensionless parameter K with the fixed mass
of the vector field m2L2

e f f = −3/4, 0, 5/4, respectively.
As an example, with the chosen K = 0.25 and the fixed
mass m2L2

e f f = −3/4, we get the minimum eigenvalue

�2
min = 2.65512 at a = 0.30832 for α = −0.19, which

gives the critical chemical potential �c = 1.62945. We
can observe that the analytical results derived from the S–L
method are greatly consistent with the numerical computa-
tions. This shows that the S–L method is an effective analyti-

cal approach to investigate the holographic p-wave superfluid
model in Gauss–Bonnet gravity.

From Tables 1, 2 and 3, we see that the critical chemi-
cal potential in our model, as a transition point, depends on
the GB coupling constant α and the superfluid parameter K
for different mass of the vector field. These attractive fea-
tures can also be shown in Figs. 1 and 2, in which we plot
the condensation of the vector operator 〈Ox 〉 = ρx and the
charge density ρ as a function of the chemical potential μ in
the holographic p-wave superfluid model, respectively. The
increase of the GB coupling constant α generally results in
the rise of the critical chemical potential μc for all values
of K with the fixed mass, which means the higher curvature
correction makes the phase transition more difficult to take
place. Also the superfluid velocity is responsible for the con-
densation formation of the vector field in GB gravity. The
spatial component of the gauge field modeling the superfluid
hinders the phase transition, which is shown up phenome-
nally by the fact that the larger superfluid parameter K leads
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Fig. 1 The condensate as a function of the chemical potential for dif-
ferent values of Gauss–Bonnet parameter α with the fixed mass of the
vector field m2L2

e f f = −3/4, 0, 5/4, respectively in the holographic
p-wave superfluid model in AdS soliton. In each panel the five lines

from left to right correspond to increasing superfluid velocity, i.e.,
K = qSϕ/rs = 0 (black), 0.25 (blue), 0.50 (red), 0.75 (orange) and
1.00 (green) respectively. We scale q = 1 and rs = 1 in the numerical
calculation

to the larger critical chemical potential μc with α and the
mass fixed. The similar property holds in the p-wave super-
fluid model in Einstein–Maxwell theory [38].

2.2 Critical phenomena

In this subsection we move on to investigate the conden-
sation of the vector operator and the relation between the
charge density and the chemical potential, which can help
us further understand the properties of the p-wave superfluid
phase transition in GB AdS soliton background.

Near the critical point, i.e., μ → μc, the vector field
ρx approximates to (22), so the equation of motion for At

presents

A′′
t +

(
1

z
+ f ′

f

)
A′
t − 2z2(
−1)

f

(
q〈Ox 〉
r
+1
s

)2

F2At = 0.

(28)

It should be noted that the condensation of the vector oper-
ator 〈Ox 〉 is very small when μ → μc, so we are able to
expand At (z) in 〈Ox 〉 as follow

At (z) ∼ μc + 〈Ox 〉χ(z) + · · · . (29)

We have to impose χ(1) = 0 and χ ′(1) = constant to
recover the boundary condition at the tip. For simplicity, the
following function is introduced

χ(z) = μc
2q2〈Ox 〉
r2(
+1)
s

ξ(z), (30)

then using Eqs. (28) and (29), we can easily arrive at the
equation of motion for ξ(z)

(Qξ ′)′ − z2(
−1)Q

f
F2 = 0, (31)

with

Q(z) = 1 − √
1 − 4α(1 − z4)

2
√

αz
. (32)

Considering the asymptotic behavior of At in Eq. (12) and
expanding ξ(z) near the boundary z = 0, we get

At (z) � μ − ρ

r2
s
z2 � μc

+ 2μc

(
q〈Ox 〉
r
+1
s

)2

[ξ(0) + ξ ′(0)z + 1

2
ξ ′′(0)z2 + · · · ].

(33)
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Fig. 2 The charge density as a function of the chemical potential for
different values of Gauss–Bonnet parameter α with the fixed mass of the
vector field m2L2

e f f = −3/4, 0, 5/4, respectively in the holographic p-
wave superfluid model in AdS soliton. In each panel the five lines from

left to right correspond to increasing superfluid velocity, i.e., K = 0
(black), 0.25 (blue), 0.50 (red), 0.75 (orange) and 1.00 (green) respec-
tively. We scale q = 1 and rs = 1 in the numerical calculation

Equating the coefficients of the z0 term in both sides of the
above equation, we have the relation

q〈Ox 〉
r
+1 = 1

[2μcξ(0)] 1
2

(μ − μc)
1
2 , (34)

with

ξ(0) = c2 −
∫ 1

0

1

Q(z)

[
c3 +

∫ z

1
x2
−1F2(x)dx

]
dz, (35)

where the integration constants c2 and c3 can be determined
by the boundary condition of χ(z). Concretely, we take the
case of K = 0.25 andm2L2

e f f = 5/4 as an example, Eq. (34)

gives 〈Ox 〉 ≈ 1.98909(μ − μc)
1/2 for α = −0.19, which is

consistent with the numerical result shown in Fig. 1. We can
find that near the critical point, for various values of the GB
coupling constant α, the order parameter 〈Ox 〉 always yields

〈Ox 〉 ∼ (μ − μc)
1/2, (36)

which reveals that in the GB AdS soliton background, the
phase transition of the holographic p-wave superfluid model

represents the second-order phase transition, with the crit-
ical exponent of system taking the mean-field value 1/2.
Moreover, both the GB coupling constant α and the spatial
component of the gauge field do not have any effect on the
second-order phase transition. Figure 1 illustrates that there
is a second-order phase transition when the chemical poten-
tial μ arrives at the critical value μc, and the AdS soliton
reaches the superconductor (or superfluid) phase for larger
μ, which confirms the above analytical conclusion. Also we
note that for the vanishing superfluid velocity, the situation
is the same as the one discussed in Ref. [29].

On the other hand, from the coefficients of the z2 term in
Eq. (33), we know that the dependence of the charge density
ρ on the chemical potential μ reads

ρ

r2
s

= −
(
q〈Ox 〉
r
+1
s

)2

μcξ
′′(0). (37)

From the integration of both sides of Eq. (31) and the fact
that ξ ′(0) = 0 revealed by the comparison of the coefficients
of the z1 term in Eq. (33), we have
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ξ ′′(0) =
[

ξ ′(z)
z

] ∣∣∣∣
z→0

= − 2
√

α

1 − √
1 − 4α

∫ 1

0

z2(
−1)Q

f
F2dz. (38)

Then, inserting the above equation into Eq. (37), we attain
ρ

r2
s

= �(α, K ,m)(μ − μc), (39)

where �(α, K ,m) is given by

�(α, K ,m) =
√

α

(1 − √
1 − 4α)ξ(0)

∫ 1

0

z2(
−1)QF2

f
dz.

(40)

The charge density ρ for the holographic p-wave superfluid
depends on the GB factor α, the parameter K and the mass
of the vector field m2 via function �, and it is proportional
to (μ − μc). As an example, for the case of K = 0.25 and
m2L2

e f f = 5/4, from Eq. (39) we have ρ = 1.01646(μ−μc)

with α = 0.0001. The relation between the charge density
and the chemical potential ρ ∼ (μ − μc) derived from the
analytical method backs up the numerical results shown in
Fig. 2.

2.3 Aϕ in holographic p-wave superfluid

Let us remind that the vector field approximates to ρx ∼
〈Ox 〉
r

+
s

z
+F(z) near the critical point, so the equation of

motion for the spatial component Aϕ of the vector poten-
tial can be rewritten as

A′′
ϕ − 1

z
A′

ϕ − 2z2(
−1)

f

(
q〈Ox 〉
r
+1
s

)2

F2Aϕ = 0, (41)

where F(z) obeys F(0) = 1 and F ′(0) = 1. Similarly to the
procedure in the preceding subsection, as μ → μc, Aϕ can
be expanded in small 〈Ox 〉 as

Aϕ(z) ∼ Sϕ(1 − z2) + 〈Ox 〉w(z) + · · · . (42)

From Eqs. (41) and (42), we easily find that the introduced
function w(z) satisfies the following equation:

w′′ − 1

z
w′ = Sϕ

q2〈Ox 〉
r2(
+1)
s

z2(
−1) 2(1 − z2)F2

f
. (43)

We can expand w(z) close to the boundary z = 0 as

w(z) = w(0) + w′(0)z + 1

2
w′′(0)z2 + · · · . (44)

Substituting the above expansion into Eq. (42), and compar-
ing with the boundary condition (12) for Aϕ , from the z2

term, we can deduce that the superfluid current reads

Jϕ
r2
s

= Sϕ + Sϕ

(
q〈Ox 〉
r
+1
s

)2 ∫ 1

0
z2(
−1) (1 − z2)F2

f
dz. (45)

This expression shows that, in soliton background, GB cou-
pling constant α does not directly affect the current but
through μc(α) due to the relation 〈Ox 〉 ∼ (μ − μc)

1/2.

Eventually the behavior of Aϕ near the critical point can
be described as

Aϕ = Sϕ(1 − z2)

− Sϕ

(
q〈Ox 〉
r
+1
s

)2

z2
∫ 1

0
x2(
−1) (1 − x2)F2

f
dx, (46)

which matches the behavior of Aϕ in Eq. (20) at the critical
chemical potential μc.

3 Holographic p-wave superfluid model in
Gauss–Bonnet AdS black hole

The holographic p-wave model of superfluidity in AdS soli-
ton background is used to describe a system at zero temper-
ature. In this section we employ the S–L method to analyt-
ically investigate the holographic p-wave superfluid model
with a certain temperature. For this purpose, our attention
is concentrated on the Maxwell complex vector field model
with the the same action of matter as Eq. (6), and taking into
account the background of five-dimensional AdS black hole
in the GB gravity

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2 + dz2), (47)

where f (r) = r2

2α

[
1 −

√
1 − 4α

L2

(
1 − r4+

r4

)]
, in units in

which the AdS radius is unity, i.e., L = 1. The Hawking
temperature of the black hole is related to the horizon radius
r+ as TBH = r+

π
. We suppose that the gauge field has the

form A = At (r)dt + Ay(r)dy and the vector field presents
ρμdxμ = ρx (r)dx . Then we have the field equations

ρ′′
x +

(
f ′

f
+ 1

r

)
ρ′
x +

(
q2A2

t

f 2 − q2A2
y

r2 f
− m2

f

)
ρx = 0,

A′′
t + 3

r
A′
t − 2q2ρ2

x

r2 f
At = 0,

A′′
y +

(
f ′

f
+ 1

r

)
A′
y − 2q2ρ2

x

r2 f
Ay = 0, (48)

where the prime denotes the derivative with respect to r .
Imposing the regularity conditions at the horizon r = r+,

we have

At (r+) = 0, ρ′
x (r+)

= 1

f ′(r+)

[
q2A2

y(r+)

r2+
+ m2

]
ρx (r+),

A′
y = 2q2ρ2

x (r+)

r2+ f ′(r+)
Ay(r+). (49)

It should be noted that At is vanish at r = r+, which is in
strong contrast to the case in AdS soliton where time compo-
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nent At (rs) of the the vector potential is a nonzero constant at
the tip. On the boundary regime where r → ∞, the asymp-
totic solutions of the matter fields are the same as the ones
given in Eq. (12) by replacing Aϕ , Sϕ and Jϕ with Ay , Sy
and Jy , respectively. Also, as mentioned in the previous sec-
tion, we focus on the dual operator 〈Ox 〉 = ρx+ and set the
boundary condition ρx− = 0.

There are still some useful scaling symmetries for the met-
ric, bulk matter fields and the equations of the motion, they
yield

r → λr , (t, x, y, z) → 1

λ
(t, x, y, z),

q → q, (ρx , At , Ay) → λ(ρx , At , Ay), (50)

which also give the related transformation of the physical
quantities

(T, μ, Sy) → λ(T, μ, Sy) , (ρ, Jy) → λ3(ρ, Jy) ,

ρx+ → λ
++1ρx+ . (51)

The scaling symmetries enable us to fix q = 1 and r+ = 1
when performing numerical calculations and checking the
analytical expressions in this section.

It will be convenient to rewrite the equations of motion of
the fields in z = r+/r -coordinates as

ρ′′
x +

(
f ′

f
+ 1

z

)
ρ′
x

+
[

1

z4 f 2

(
q At

r+

)2

− 1

z2 f

(
q Ay

r+

)2

− m2

z4 f

]
ρx = 0,

A′′
t − 1

z
A′
t − 2q2ρ2

x

r2+z2 f
At = 0,

A′′
y +

(
f ′

f
+ 1

z

)
A′
y − 2q2ρ2

x

r2+z2 f
Ay = 0, (52)

where now the prime denotes the derivative with respect to
z, and f (z) is the same as the one defined in Eq. (16).

Before going further, we would like to give a comment.
For the holographic p-wave model of superfluidity in the
background of AdS black hole, the transition between the
superfluid and the normal phase will switch from the sec-
ond order to the first order in the large value of the super-
fluid velocity. Particularly, the phase transition of the system
always belongs to the second order either when the superfluid
velocity is small or the mass of the vector field is sufficiently
large. To facilitate our analytical discussion, in this section
we consider the later situation, and in the following computa-
tion we fix the large mass of the vector field by m2L2

e f f = 3
where the superfluid phase transition is of the second order.

3.1 Critical temperature for p-wave superfluid

When T ≥ Tc, the vector field nearly vanishes, i.e., ρx → 0,
so the field equation for At reduces to

A′′
t − 1

z
A′
t = 0. (53)

The general solution for the above equation reads At = c1 +
c2z2, with the boundary condition At (1) = 0. Then we arrive
at

At � λr+
q

(1 − z2), (54)

where we have set λ = qμ
r+c

with r+c stands for the horizon
radius for the black hole at the critical temperature Tc.

Likewise, above the critical point the spatial component
Ay satisfies the following equation

A′′
y +

(
f ′

f
+ 1

z

)
A′
y = 0. (55)

For small GB factor α, we readily get the physical solutions
Ay = Sy from the Neumann-like boundary condition.

Thus, for T slightly below the critical value, the equation
of motion for ρx presents

ρ′′
x +

(
f ′

f
+ 1

z

)
ρ′
x

+
[

(1 − z2)2

z4 f 2 λ2 − 1

z2 f

(
qSy
r+

)2

− m2

z4 f

]
ρx = 0. (56)

Considering the asymptotic behavior of ρx near the boundary
z → 0, we can write the approximate expression

ρx (z) ∼ 〈Ox 〉
r
+

z
F(z), (57)

where the conformal dimension of the vector operator 
 =
1 +

√
1 + m2L2

e f f . In order to further improve the agree-

ment with the numerical results, we assume that F(z) =
1−az2 +bz3 which is slightly different from the one in pre-
vious section, and it has to fulfill the constraints F(0) = 1
and F ′(0) = 0. Eventually, by substituting Eq. (57) into
Eq. (56), we attain the euqation of motion for F(z) in a stan-
dard Sturm–Liouville form

(PF ′)′ + P(U + λ2R)F = 0, (58)

with

U = 


z

(



z
+ f ′

f

)
− m2

z4 f
− K 2

z2 f
, R = (1 − z2)2

z4 f
, (59)

where P has been defined in Eq. (26) and K = qSy
r+ . In the

light of the Sturm–Liouville eigenvalue problem, the mini-

mum eigenvalue of the parameterλ2 = q2μ2

r2+c
can be estimated

from the variation of the following expression

λ2 =
∫ 1

0 P(F ′2 −UF2)dz∫ 1
0 PRF2dz

. (60)
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Table 4 The critical temperature Tc/qμ of the holographic p-wave
superfluid model obtained by the analytical S–L method (left column)
and by numerical calculation (right column), with different values of

the superfluid velocity K = qSy/r+ and the GB coupling constant
α = −0.19, 0.0001, 0.09, respectively, for the fixed mass m2L2

e f f = 3

α −0.19 0.0001 0.09

K = 0.00 0.05707 0.05736 0.04973 0.04977 0.04516 0.04532

K = 0.25 0.05693 0.05722 0.04946 0.04967 0.04507 0.04523

K = 0.50 0.05651 0.05680 0.04914 0.04935 0.04480 0.04496

K = 0.75 0.05583 0.05613 0.04862 0.04897 0.04437 0.04453

K = 1.00 0.05493 0.05525 0.04793 0.04815 0.04379 0.04396

The parameter λmin = qμ
r+c

gives the value of horizon radius
r+. Since the analysis is valid close to the transition point
Tc ∼ TBH , using the definition of the Hawking temperature
TBH of the black hole, we can compute the critical temper-
ature of the superconductor by the following relation

Tc
qμ

= 1

πλmin
. (61)

As an example, for the case of K = 0.25 and m2L2
e f f = 3,

with the help of Eq. (61) we have the critical temperature
Tc = 0.04507 at a = 2.46232 and b = 1.58561 correspond-
ing to α = 0.09, and Tc = 0.05693 at a = 2.55498 and
b = 1.66813 corresponding to α = −0.19. In Table 4, we
exhibit the typical values of the critical temperature Tc which
depends on the GB coupling constant α and the superfluid
parameter K for the case of the fixed mass of the vector
field m2L2

e f f = 3. We can clearly see that the critical tem-
perature Tc diminishes as the GB parameter α increases for
various of K . That is to say, the higher curvature correction
will make the condensation of the vector operator harder to
be formed. In addition, for the same strength of the curvature
correction, the critical temperature Tc decreases when the
superfluid velocity K becomes bigger, which backs up the
numerical findings in Ref. [45]. Furthermore, the comparison
with the numerical findings indicates that the consistency of
our analytical results derived from the S–L method with the
ones from numerical calculation is impressive.

3.2 Condensation values

In this subsection, we aim to investigate the critical phenom-
ena of the p-wave superfluid model in AdS black hole and
figure out the correlation between the condensation operator
and the GB coupling constant. For T below but not far from
the critical one Tc, we can expand the time component At of
the gauge field in small vector operator 〈Ox 〉
q At (z)

r+
= λc(1 − z2) + 〈Ox 〉κ(z) + · · · , (62)

with the boundary conditions κ(1) = 0 resulting from
At (1) = 0 at the horizon. We redefine κ(z) by a new function

ς(z) as

κ(z) = q2〈Ox 〉
r2(
+1)
+

ς(z), (63)

so near the critical temperature, we easily get the equation of
motion for ς(z)
(

ς ′

z

)′
= 2λz2
−3(1 − z2)

f
F2. (64)

Near the boundary z = 0, from the asymptotic behavior of At

and the expansion ς(z) = ς(0) + ς ′(0)z + 1
2ς ′′(0)z2 + · · · ,

Eq. (62) can be rewritten as

q At

r+
= λ(1 − z2) ≈ λc(1 − z2)

+ q2〈Ox 〉2

r2(
+1)
+

[
ς(0) + ς ′(0)z + 1

2
ς ′′(0)z2 + · · ·

]
.

(65)

Comparing the coefficients multiplying z0, z1 and z2 in both
sides of the above formula, respectively, we have

λ = λc + 〈Ox 〉ς(0),

λ = λc − 1

2
〈Ox 〉ς ′′(0),

ς ′(0) = 0. (66)

Obviously, there is a relation ς(0) = −ς ′′(0)/2 to make the
above equations ture. Therefore, for the further calculation
we need the value of ς ′′(0). On the other hand, we observe
that the third part of Eq. (66) is consistent with the following
relation by making integration of both sides of Eq. (64)

ς ′′(0) =
[
ς ′(z)
z

] ∣∣∣∣
z→0

= −
∫ 1

0

2λz2
−3(1 − z2)

f
F2dz.

(67)

In virtue of Eqs. (61), (66) and (67), the correlation between
the condensation value of the vector operator 〈Ox 〉 and the
temperature is given by

q〈Ox 〉 = T
+1
c ϒ

√
1 − T

Tc
, (68)

123



Eur. Phys. J. C           (2020) 80:247 Page 11 of 13   247 

0.19

0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200

1400

T

T0

Ox

T04

0.0001

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400

T

T0

Ox

T04

0.09

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400

T

T0

Ox

T04

Fig. 3 The condensate as a function of the temperature for differ-
ent values of GB parameter α with the fixed mass of the vector field
m2L2

e f f = 3 in the holographic p-wave superfluid model in AdS black
hole. In each panel the five lines from top to bottom correspond to

increasing superfluid velocity, i.e., K = qSy/r+ = 0 (black), 0.25
(blue), 0.50 (red), 0.75 (orange) and 1.00 (green), respectively. We
scale q = 1 and r+ = 1 in the numerical calculation

where we have set

ϒ = π
+1
[∫ 1

0

1 − z2

f
z2
−3F2dz

]−1/2

. (69)

To concretely detect the condensation operator of p-wave
superfluid model with respect to T in GB AdS black hole
with large mass of the vector field by numerical shoot-
ing method, we focus on the case of the mass fixed by
m2L2

e f f = 3. In Fig. 3, we plot the condensate of the vector
operator as a function of temperature for several values of
the superfluid velocity K = qSy/r+ with the fixed GB fac-
tor α = −0.19, 0.0001, 0.09, respectively. We remark that
in each panel, the curves for different K are similar. In other
words, although the coefficent ϒ is different, near the crit-
ical point Tc, the condensation operator 〈Ox 〉 always takes
the form

〈Ox 〉 ∼ (1 − T/Tc)
1/2, (70)

which implies that the phase transition of the holographic
p-wave superfluid model belongs to the second order and the
critical exponent of the system takes the mean-field value
1/2 for the case of the fixed mass m2L2

e f f = 3 in AdS black
hole background. This result is independent of the GB cou-
pling constant α. Moreover, we see that for the fixed value of
the superfluid velocity K , the critical temperature decreases
when the GB factor α grows. Again, it states that the higher
curvature correction makes the condensation of the vector
operator harder to occur.

3.3 Ay in holographic p-wave superfluid in AdS black hole

Having in mind that the vector field ρx (z) = 〈Ox 〉
r
+

z
F(z)

when T tends to Tc. The spatial component Ay(z) satisfies
the equation of motion in the form

A′′
y +

(
1

z
+ f ′

f

)
A′
y − 2z2(
−1)

f

(
q〈Ox 〉
r
+1+

)2

F2Ay = 0. (71)

Near the critical point, Ay takes the approximation

Ay ∼ Sy + 〈Ox 〉τ(z) + · · · . (72)

Inserting Eq. (72) into Eq. (71), the equation of motion for
τ(z) is given by

(Qτ ′)′ = Sy
q2〈Ox 〉
r2(
+1)
+

2z2(
−1)Q

f
F2, (73)

where Q(z) has been introduced in Eq. (32). As we processed
in the preceding subsection, the expansion of τ(z) near z = 0
presents

τ(z) = τ(0) + τ ′(0)z + 1

2
τ ′′(0)z2 + · · · . (74)

Substituting the expansion into Eq. (72) and comparing the
coefficient of the z1 term with the one in the asymptotic
behavior of Ay on the boundary, we have τ ′(0) → 0. By
virtue of this condition and integrating both sides of Eq. (73),
the following relation is satisfied

τ ′′(0) = τ ′(z)
z

∣∣∣∣
z→0

= −Sy
q2〈Ox 〉
r2(
+1)
+

2
√

α

1 − √
1 − 4α

∫ 1

0

2z2(
−1)Q

f
F2dz.

(75)

Consequently, we get

Ay = Sy − Sy

×
(
q〈Ox 〉
r
+1+

)2
2
√

α

1 − √
1 − 4α

z2
∫ 1

0

z2(
−1)Q

f
F2dz,

(76)

where the term multiplying z2 stands for the superfluid cur-
rent. In view of the dependence of 〈Ox 〉 on the temperature,
from Eq. (70), we can easily find that the current Jy depends
on the GB coupling constant α indirectly via Tc(α), and there
is a linear relation between the current and temperature, i.e.,
Jy ∝ (1 − T

Tc
).
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4 Conclusions

In this paper, we have analytically investigated the gen-
eral properties of holographic p-wave model of superfluid
in Gauss–Bonnet gravity by employing the Sturm–Liouville
eigenvalue problem. We performed our analysis in the back-
ground of AdS soliton as well as AdS black hole in the probe
limit and deduced the dependence of the critical chemical
potential and the critical temperature on the GB coupling
constant α, which are verified by numerical calculation and
in good agreement with the numerical findings. Our results
have shown that: for the case in AdS soliton with differ-
ent mass of the vector field, the critical chemical potential
increases with the increase of the GB coupling constant α,
while for the case in AdS black hole with the larger mass of
vector field, the critical temperature decreases for the larger
GB factor. Both of the observations reveal the fact that the
higher curvature correction hinders the formation of the con-
densation of the vector operator in holographic p-wave super-
fluid models. On the other hand, based on the S–L method,
we attain the condensation of the vector operator and the
charge density with respect to the chemical potential in soli-
ton case, the relation between the condensation value and
temperature in black hole case and the behavior of the spa-
tial component of the gauge field near the phase transition
point for the p-wave superfluid model. In the AdS soliton
background, the superfluid phase transition is always of the
second order and the critical exponent of the condensation
operator takes the mean-field value 1/2, which cannot be
affected by the GB coupling constant α. Especially, we ana-
lytically demonstrate that, for the p-wave superfluid model
in AdS black hole, when the mass of the vector field is suf-
ficiently large, the phase transition always belongs to the
second order for different values of superfluid velocity, that
is to say, the spatial component of the gauge field modeling
the superfluid cannot bring up the first-order phase transition.
And this conclusion is independent of the GB parameter. We
also carry out a numerical study of the condensation of the
vector operator by using the shooting method. All the ana-
lytical results obtained from the S–L method are perfectly
consistent with the numerical computation in holographic p-
wave model of superfluid in GB gravity. Since in this paper
we have only considered the probe limit, where the backre-
action of matter fields on the metric background is neglected,
it is worthy to extend the investigation to the Gauss–Bonnet
holographic superfluid model away from the probe limit and
take the backreaction into account. It would also be of inter-
est to study other characteristics of these systems like the
behavior of conductivity or optical features.
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