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Abstract

The universal Teichmüller space T is the space of quasisymmetric
homeomorphisms of the unit circle S1, normalized modulo Möbius
transformations. It can be realized as an open subset in the complex
Banach space of holomorphic quadratic differentials in the unit disc.
In this paper we propose a method of quantization of T , based on
approach, due to Connes.

The universal Teichmüller space T consists of quasisymmetric homeomor-
phisms of the unit circle S1 (i.e. homeomorphisms of S1, extending to
quasiconformal maps of the unit disc Δ), considered modulo Möbius trans-
formations. This space, introduced by Ahlfors and Bers, plays a key role in
the theory of quasiconformal maps and Riemann surfaces. It has a natural
complex structure, generated by embedding T into the complex Banach
space of holomorphic quadratic differentials in Δ. The space T contains all
classical Teichmüller spaces T (G), where G is a Fuchsian group, as complex
submanifolds. On the other hand, the space S := Diff+(S1)/Möb(S1) of
diffeomorphisms of the circle, normalized modulo Möbius transformations,
may be considered as a ”smooth” part of T .

According to Nag–Sullivan [4], there is a natural action of the group QS(S1)
of quasisymmetric homeomorphisms of S1 on the Sobolev space V :=
H

1/2
0 (S1,R) of half-differentiable functions on S1. Moreover, this action

is symplectic with respect to a natural symplectic form ω on V . By this
action, the universal Teichmüller space T = QS(S1)/Möb(S1) can be iden-
tified with a space of complex structures on V , compatible with ω.
We propose a method of quantization of T , based on approach, due to
Connes. Though the described QS(S1)-action on T cannot be differenti-
ated in classical sense (in particular, there is no Lie algebra, associated
to QS(S1)), we can define a quantized infinitesimal version of this action.
Namely, there is a quantum differential dqh, associated with any quasisym-
metric homeomorphism h ∈ QS(S1). This differential is an integral op-
erator on the Sobolev space V with kernel, given by the finite-difference
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derivative of h. In these terms the quantization of T is given by the quan-
tum algebra of derivations of Fock space F (V, J), generated by quantum
differentials dqh.

1. UNIVERSAL TEICHMÜLLER SPACE

A homeomorphism f : S1 → S1 is called quasisymmetric if it can be
extended to a quasiconformal homeomorphism w of the unit disc Δ. It
means that w has locally integrable derivatives and satisfies the Beltrami
equation

wz̄ = μ(z)wz
for almost all z ∈ Δ. Here, μ ∈ L∞(Δ) is a function with ‖μ‖∞ < 1, called
the Beltrami differential of w.

Orientation-preserving quasisymmetric homeomorphisms of S1 form a group
QS(S1) with respect to composition. Since any orientation-preserving dif-
feomorphism f ∈ Diff+(S1) extends to a diffeomorphism of the closed unit
disc Δ, which is evidently quasiconformal, we have Diff+(S1) ⊂ QS(S1).
The quotient space

T := QS(S1)/Möb(S1) ,

where Möb(S1) denotes the Möbius group of fractional-linear automor-
phisms of the unit disc Δ, restricted to S1, is called the universal Te-
ichmüller space. It can be identified with the space of normalized qua-
sisymmetric homeomorphisms of S1, fixing the points ±1 and −i.
As we have pointed out, there is an inclusion

S := Diff+(S1)/Möb(S1) ↪→ T = QS(S1)/Möb(S1)

of the space S of normalized diffeomorphisms of S1 into the universal Te-
ichmüller space. We consider S as a smooth part of T .
The term ”universal” in the name of the universal Teichmüller space is due
to the fact that T contains all classical Teichmüller spaces T (G), where G
is a Fuchsian group, as complex submanifolds. If a Riemann surface X is
uniformized by the unit disc Δ, so that X = Δ/G, then the corresponding
Techmüller space T (G) may be identified with the quotient

T (G) = QS(S1)G/Möb(S1) ,

where QS(S1)G denotes the subgroup of G-invariant quasisymmetric home-
omorphisms in QS(S1).
We can also define T directly in terms of Beltrami differentials. The space
B(Δ) of all Beltrami differentials in the unit disc Δ can be identified (as
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a set) with the unit ball in the complex Banach space L∞(Δ). Given a
Beltrami differential μ ∈ B(Δ), we can extend it to a Beltrami differen-
tial μ̌ on the extended complex plane C by setting it equal to zero outside
Δ. Then, applying the existence theorem for quasiconformal maps on the
complex plane (cf. [1]), we find a normalized quasiconformal homeomor-
phism wμ, satisfying the Beltrami equation on C with Beltrami differential
μ̌. This homeomorphism is conformal on the exterior Δ− of the closed unit
disc Δ on C and fixes the points ±1,−i. Introduce an equivalence relation
between Beltrami differentials in Δ: two Beltrami differentials μ and ν are
equivalent if wμ|Δ− ≡ wν |Δ− . Then the universal Teichmüller space T can
be identified with the quotient

T = B(Δ)/ ∼

of the space B(Δ) of Beltrami differentials modulo introduced equivalence
relation.
We introduce a complex structure on T , using its embedding into the space
of quadratic differentials. Namely, given an arbitrary point [μ] of T , rep-
resented by a Beltrami differential μ ∈ B(Δ), we associate with it the
Schwarz derivative S(wμ|Δ−) of the conformal map wμ|Δ− . Due to invari-
ance of Schwarzian under Möbius transformations, the image of μ under
this map depends only on the class [μ] of μ in T , and defines a holomorphic
quadratic differential in Δ−. (The latter fact follows from the transforma-
tion properties of Beltrami differentials, prescribed by the Beltrami equa-
tion.) Composing the defined map with a fractional-linear biholomorphism
of Δ− onto Δ, we obtain an embedding

Ψ : T −→ B2(Δ) , [μ] �−→ ψ(μ) ,

associating with a point [μ] of the universal Teichmüller space T a holo-
morphic quadratic differential ψ(μ) in Δ.
The space B2(Δ) of holomorphic quadratic differentials in Δ is a complex
Banach space with respect to the natural hyperbolic norm, given by

‖ψ‖2 := sup
z∈Δ

(1 − |z|2)2|ψ(z)|

for a quadratic differential ψ.
The constructed map Ψ : T → B2(Δ), called Bers embedding, is a home-
omorphism of T onto an open bounded connected contractible subset in
B2(Δ) (cf. [3]).
Using the constructed embedding, we can introduce a complex structure
on the universal Teichmüller space T by pulling it back from the complex
Banach space B2(Δ). It provides T with the structure of a complex Banach
manifold. The composition of the natural projection

B(Δ) −→ T = B(Δ)/ ∼
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with the constructed map Ψ defines a holomorphic map

F : B(Δ) −→ B2(Δ)

of complex Banach manifolds.

2. SOBOLEV SPACE OF HALF-DIFFERENTIABLE FUNC-
TIONS

The Sobolev space of half-differentiable functions on S1 is a Hilbert space
V := H

1/2
0 (S1,R), consisting of functions f ∈ L2(S1,R) with zero average

over the circle, having generalized derivatives of order 1/2 in L2(S1,R). In
terms of Fourier series, a function f ∈ L2(S1,R) with Fourier series

f(z) =
∑
k �=0

fkz
k , fk = f̄−k , z = eiθ ,

belongs to H1/2
0 (S1,R) if and only if it has a finite Sobolev norm of order

1/2:
‖f‖2

1/2 =
∑
k �=0

|k||fk|2 = 2
∑
k>0

k|fk|2 <∞ .

The space V can be provided with a natural symplectic structure, given by
a 2-form ω : V ×V → R, defined in terms of Fourier coefficients of ξ, η ∈ V
by

ω(ξ, η) = 2Im
∑
k>0

kξkη̄k .

It has also a complex structure J , given in terms of Fourier decompositions
by

ξ(z) =
∑
k �=0

ξkz
k �−→ (Jξ)(z) = −i

∑
k>0

ξkz
k + i

∑
k<0

ξkz
k .

This complex structure is compatible with symplectic form ω and, in par-
ticular, defines a Kähler metric on V . In other words, V is a Kähler Hilbert
space.
The complex structure operator J determines a decomposition of the com-
plexified vector space V C into the direct sum

V C = W+ ⊕W− = W ⊕W ,

where W± is the (∓i)-eigenspace of J ∈ EndV C. The subspaces W± are
isotropic with respect to symplectic form ω and the splitting V C = W+⊕W−
is an orthogonal direct sum with respect to the Kähler metric.
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With any orientation-preserving homeomorphism f of S1 we can associate
an operator Tf : L2(S1,R) → L2(S1,R), given by change of variable:

Tf (ξ) := ξ ◦ f − 1
2π

∫ 2π

0
ξ (f(θ)) dθ .

According to Nag-Sullivan [4], the operator Tf acts on V , i.e. Tf : V → V ,
if and only if f ∈ QS(S1). Moreover, for any f ∈ QS(S1) the operator
Tf acts on V by symplectic transformations, preserving the form ω. Its
complex-linear extension to V C preserves the holomorphic subspace W if
and only if f ∈ Möb(S1), and in this case Tf is a unitary operator on W .
It follows that quasisymmetric homeomorphisms act on the Sobolev space
V by bounded symplectic operators. Hence, we have an embedding

T = QS(S1)/Möb(S1) −→ Sp(V )/U(W ) ,

where Sp(V ) denotes the symplectic group of V and U(W ) is a unitary
group of W . The space Sp(V )/U(W ) can be identified with the space of
complex structures on V , compatible with ω.

3. QUANTIZATION OF T
We shall use the following definition of quantization, due to Connes [2].
Suppose that the algebra of observables A is an associative involutive alge-
bra of functions, provided with an exterior differential d. Its quantization
is a representation π of A in a Hilbert space H, sending the differential df
of a function f ∈ A into the commutator [S, π(f)] of the operator π(f) with
a self-adjoint symmetry operator S with S2 = I. The differential here is
understood in the sense of non-commutative geometry, i.e. as a linear map
d : A → Ω1(A), satisfying the Leibnitz rule (cf. [2]). In other words, the
quantization is a representation of the algebra Der(A) of derivations of A
in the Lie algebra EndH. (Recall that a derivation of an algebra A is a
linear map: A → A, satisfying the Leibnitz rule. Derivations of an algebra
A form a Lie algebra, since the commutator of two derivations is again a
derivation.)
If the algebra of observables A contains non-smooth functions, the differ-
ential df of a non-smooth observable f ∈ A is not defined in the classical
sense, but its quantum analogue dqf , given by

dqf := [S, π(f)] ,

may still have sense, as it is demonstrated by the following example.

Denote by A the algebra L∞(S1,C) of bounded functions on the circle
S1. Any function f ∈ A defines a bounded multiplication operator in the
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Hilbert space H = L2(S1,C):

Mf : h ∈ H �−→ fh ∈ H .

The operator S is given by the Hilbert transform S : L2(S1,C) → L2(S1,C):

(Sf)(eiϕ) =
1
2π
V.P.

∫ 2π

0
K(ϕ,ψ)f(eiψ)dψ ,

where the integral is taken in the principal value sense, and K(ϕ,ψ) is the
Hilbert kernel

K(ϕ,ψ) = 1 − i cot
ϕ− ψ

2
.

The differential df of a general observable f ∈ A is not defined in the
classical sense, but its quantum analogue

dqf := [S,Mf ]

is defined as an operator in H.
We apply these ideas to the quantization of T . To simplify the formulas,
we switch from the unit circle S1 to the real line R, replacing the Sobolev
space V = H

1/2
0 (S1,R) by its counter-part VR := H1/2(R,R) ≡ H1/2(R)

on the real line. The operator S is given again by the Hilbert transform

(Sf)(s) =
1
πi

V.P.
∫

f(t)
s− t

dt , f ∈ L2(R) .

The quantum differential dqf = [S,Mf ] of a function f ∈ L∞(R) is an
operator on L2(R), given by

dqf(h) =
1
πi

∫
k(s, t)h(t) dt (1)

with the kernel, equal to

k(s, t) =
f(s)− f(t)

s− t
, s, t ∈ R .

Note that the quasiclassical limit of this operator, defined by taking the
value of the kernel on the diagonal (i.e. by taking the limit for s → t),
coincides with the multiplication operator h �→ f ′h, so the quantization
reduces in this case to the replacement of derivative by its finite-difference
analogue.
In section 2. we have defined a natural action of quasisymmetric homeo-
morphisms on VR. This action does not admit the differentiation, so there
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is no Lie algebra, associated to QS(R). In other words, there is no clas-
sical algebra of observables, associated to VR. The situation is similar to
that, considered in the example, and, as in example, we can still define a
corresponding quantum object.
For that we extend the QS(R)-action on VR to symmetry operators by
setting

Sh := h ◦ S ◦ h−1 (2)

for h ∈ QS(R). The quantized infinitesimal version of (2) is given by the
integral operator dqh : VR → VR, defined by (1). We can extend this
operator to the Fock space F (W ) by defining it first on the basis elements
of F (W ) by Leibnitz rule, and then extending by linearity to all finite
elements of F (W ). The completion of this operator yields an unbounded
operator dqh on F (W ). Note that this defines a quantum counter-part of
the algebra of observables, which itself is not defined. However, we can
identify it with the quantum derivation algebra, generated by extended
operators dqh with h ∈ QS(R).
Summing up, the Connes quantization of the universal Teichmüller space T
is performed in two stages. The ”first quantization” consists of defining a
quantized infinitesimal version of the QS(R)-action on symmetry operators.
More precisely, we consider the QS(R)-action (2) on symmetry operators,
as an action on T , identified with a space of compatible complex structures
on VR. Its quantized infinitesimal version is given by quantum differentials
dqh = [S,Mh]. The ”second quantization” is performed by the extension of
quantum differentials dqh to the Fock space F (W ). The extended operators
dqh with h ∈ QS(R) generate the corresponding quantum derivation algebra
on F (W ).

Acknowledgements

While preparing this paper, the author was partly supported by the RFBR
grants 06-02-04012, 08-01-00014, by the program of Support of Scientific
Schools (grant NSH-3224.2008.1), and by the Scientific Program of RAS
”Nonlinear Dynamics”.

References

[1] L.Ahlfors, Lectures on Quaiconformal Mappings, Van Nostrand,
Princeton, 1966.

[2] A.Connes, Geométrie Non Commutative, Intereditions, Paris, 1990.
[3] O.Lehto, Univalent Functions and Teichmüller Spaces, Springer Ver-

lag, Berlin, 1987.
[4] S.Nag, D.Sullivan, Teichmüller theory and the universal period map-

ping via quantum calculus and the H1/2 space on the circle, Osaka J.
Math. 32(1995), 1-34.


