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Abstract

Using Hartree-Fock + BCS approach we analyze the behavior of the neutron
drip line and predict the appearance of stability peninsulas. The conditions and
mechanism for appearance of such peninsulas are analyzed and the properties
of newly predicted stable isotopes are investigated.
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One of the fundamental questions in nuclear physics is what combinations of neu-
trons and protons can build up a stable nucleus. The nuclear landscape called nuclear
chart is shown in Figs. 1, 2, 3. A large number of stable isotopes are still nuclear
“terra incognita”. Moving away from stable nuclei by adding either protons or neu-
trons, one finally reaches the particle drip lines where the nuclear binding ends. Nuclei
beyond the drip lines are unbound with respect to nucleon emission; that is, for those
systems the strong interaction is unable to bind up the constituent nucleons as one
nucleus.

The main objective of my talk is to discuss some interesting new qualitative fea-
tures of the neutron drip line that were predicted in [1, 2, 3, 4], namely, the formation
of stability peninsulas. A relatively recent experiment [5] revealed new squares on the
nuclear chart, which correspond to stable isotopes 40Mg and 42Al. Fig. 1 shows also
comparison with existing theoretical predictions. Interestingly, the Nature chooses
the most optimistic theoretical scenario regarding stability of isotopes at the drip
line. So far the experiment is not capable to detect the entire neutron drip line and,
as can be seen in Fig. 2, it is, probably, very far from that. It is, of course, important
to foresee the experimental setup that would be able to confirm or invalidate present
theoretical predictions.

In our discussion we shall focus on even-even nuclei. A reliable microscopic descrip-
tion of nuclei is obtained with the so-called effective forces between nucleons called
Skyrme forces. Their use has become popular since the seminal papers of Vautherin
and Brink [6], where these forces were successfully used for systematic description of
spherical and deformed nuclei. These forces generally predict very well deformations,
sizes, nuclear densities, nucleon separation energies, etc. Their advantage is a rela-
tively small number of parameters and delta-functions in the interaction terms, which
facilitate the calculation of integrals considerably.

Let us write out an explicit expression of the Skyrme interaction:

Vij = t0(1 + x0Pσ)δ(r) +
1

2
t1(1 + x1Pσ)[k

′2δ(r) + δ(r)k2] + t2(1 + x2Pσ)k
′δ(r)k

+
1

6
t3(1 + x3Pσ)ρ

α(R)δ(r) + iW0[k
′
× δ(r)k](σi + σj), (1)
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Figure 1: Fragment of the nuclear chart. The proton number increases vertically and
the neutron number horizontally. Light squares denote previously observed nuclei.
The neutron drip lines predicted by the FRDM and HFB-8 models are shown by the
solid and dashed lines, respectively. Recently observed drip-line nuclei are indicated
by circles with their year of discovery. The latest discovery also includes 40Mg, 42Al
and 43Al which are highlighted with dark fill, see [5].
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Figure 2: Nuclear chart. Filled area shows experimentally observed nuclei. Black
squares correspond to the neutron drip line calculated with the Hartree–Fock–
Bogoliubov method [7-8]. The arrow indicates typical direction of the calculations,
when one tries to detect the drip line, namely, one increases the neutron number until
the saturation point is reached.
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Figure 3: Formation of peninsulas at the neutron drip line. Black squares indicate
the drip line obtained within HFB approach using SkM* forces. Filled area shows
experimentally known nuclei. Grey squares are nuclei that are predicted stable against
one neutron emission in our calculations using Ska and SkM* forces. One can see
formation of peninsulas at “magic” numbers and “quenched magic” numbers (see
text for details).

where r = ri − rj , R = (ri + rj)/2, k = −i(
−→
∇i −

−→
∇j)/2, k′ = −i(

←−
∇i −

←−
∇j)/2,

Pσ = (1 + σiσj)/2.

One can see that the force is density dependent. The parameters entering the
expression are usually fixed so as to reproduce various bulk nuclear properties as
well as selected properties of certain doubly magic nuclei. Some Skyrme forces are
presented in Table 1. There is no unique set of parameters and this leads to various
versions of the Skyrme force, each of which has its advantages and disadvantages.

After fixing the parameters, the Skyrme forces are used as ingredient in Hartree–
Fock calculations, where the ground state wave function is written in the form of a
Slater determinant. One also has to introduce a pairing force, which in our case is

Table 1: Parameters of Skyrme forces.

Force t0 t1 t2 t3 W0

MeV fm3 MeV fm5 MeV fm5 MeV fm3+3α MeV fm5

Sly4 -2488.91 486.82 -546.39 13777.0 123.0
Ska -1602.78 570.88 -67.70 8000.0 125.0
SkM* -2645.00 410.00 -135.00 15595.0 130.0

Force x0 x1 x2 x3 α

Sly4 0.834 -0.344 -1.0 1.354 1/6
Ska -.020 0.0 0.0 -0.286 1/3
SkM* 0.090 0.0 0.0 0.0 1/6
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Figure 4: One and two neutron separation energies for the isotones with N=184
calculated with Ska, SkM* forces. Circles correspond to HFB calculations [7, 8]. The
last element, which is stable against one and two neutrons emission, is 244Nd.

treated in the BCS framework with a pairing constant. We use two procedures to
solve Hartree–Fock equations. In the DHF method, which is always used in the case
of deformed nuclei, the Hartree–Fock equations are solved using basis functions of the
deformed harmonic oscillator. Since we focus our attention on the neutron drip line,
one encounters wave functions which correspond to small neutron separation energies,
and therefore are very spatially extended. Clearly, one needs basis functions that
match such exotic behavior. This is done by adjusting the parameters of the harmonic
oscillator on each iteration step. The parameters of the oscillator are chosen in order
to minimize the resulting total energy. This helpful procedure of readjusting basis
functions reduces substantially the required basis dimension as well as the required
number of iterations. In the case of nuclei with spherical symmetry we also employ
the SPH procedure, where the equations after reductions due to symmetry are solved
on a grid.

In the BCS pairing scheme of DHF calculations, we include only bound one particle
states. In spite of ignoring the continuum states this method still provides a good
agreement with the HFB (Hartree–Fock–Bogoliubov) calculations [7, 8], see Fig. 4 for
comparison. In the BCS scheme of the spherical code, we implement the inclusion
of quasibound continuum states which are confined under the centrifugal barrier. To
spot such states one introduces a fictitious “wall” forcing the wave functions to vanish
beyond it. States remaining localized when the wall is being moved at a large distance,
are regarded quasistable and taken into account in the pairing scheme.

The standard theoretical approach in locating the neutron drip line is to take a
stable nucleus with a fixed proton charge Z and increase the number of neutrons N
until the resulting nucleus would be “overloaded” in the sense that it gets rid of extra
neutrons through decay, see Fig. 2. This method, however, implies a simple structure
of the drip line, namely, that every line corresponding to a fixed number of protons on
the nuclear chart crosses the neutron drip line only once. Yet, it might happen that
the drip line has a more complicated structure [1, 2, 3, 4]. In the vicinity of “magic”
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numbers or “quenched magic” numbers the following scenario can take place. At some
point being filled with neutrons the nucleus loses its stability but then after adding
more neutrons the stability is restored. This leads to formation of stability peninsulas
on the nuclear chart, see Fig. 3.

The analysis of the phenomenon of stability restoration through adding neutrons
has been undertaken in [1, 2, 3, 4]. We have considered long isotope rows of the
elements Pb, Zr, Ar, Kr, Rn, Gd, Ba, S, as well as many other elements. Thereby, the
phenomenon of stability restoration through adding neutrons was in focus. Having
found such new isotopes we also investigated their properties like masses, deformation,
root mean square radii, etc.

An important point is also that nuclei forming stability peninsulas are spectrally
bound in the sense that there exists a well-defined ground state wave function which
minimizes the energy functional for such nuclei. At this point they become well-
defined objects and the question about their lifetime is correctly formulated. Even
though for some nuclei it may be energetically favorable to get rid of two or more
neutrons, a large centrifugal barrier of the last filled levels may serve as an indication
that this lifetime would be large. For some nuclei the energetically favorable decay
would be into four or more neutrons that enhances the lifetime considerably (such
decays were not experimentally observed so far).

In searching for extensions of the neutron drip line limits we proceeded in the
standard way adding as many neutrons to the nucleus as possible. Having found
an unstable nucleus we did not stop and added more neutrons to see whether the
stability can be restored. Gradually, the general picture became clear. One can see in
Fig. 3 that stability peninsulas are formed at neutron “magic” numbers or “quenched
magic” numbers like in the case of 40O (N = 32) or 74S (N = 58), which correspond
to the filled subshells 1f7/2 and 2d5/2 respectively. The stability peninsulas extend
vertically along the Z axis in the direction of diminishing Z. Fig. 4 shows how the
stability peninsula corresponding to N = 184 (a closed shell) extends in Z. This
can be seen from one and two neutron separation energies of the isotones. Let us
also remark that recent calculations confirm the existence of stability peninsula at
N = 258, see [9].

In our approach we try different versions of the Skyrme force. Let us stress that
just by definition for nuclei at the neutron drip line one expects small one and two
neutron separation energies. So it would be rather naive to expect that the drip line
calculated with effective forces would exactly match the real one. Even for different
forces the difference between separation energies is of order of 0.1 MeV. This is why
it is important to check the results with various versions of the Skyrme force. It turns
out that the neutron numbers where the stability peninsulas appear, are the same for
all forces, only the edges of these peninsulas and the degree to which they are extended
depend on the specific version of the force. In view of this striking invariance with
respect to the choice of the Skyrme force, we claim that such peninsulas constitute
a general qualitative feature of the neutron drip line! Again, let us stress that the
nucleon distributions are spherical for nuclei lying on stability peninsulas. This results
from the fact that the shells are completely filled at magic numbers. Fig. 5 (top)
shows the first isotope 40O that was predicted to form a stability peninsula [1]. It
also has a spherically symmetric distribution of nucleons.

The mechanism working behind the formation of stability peninsulas, is usually
the same in all cases. When one adds neutrons to an unstable nucleus the totally
filled subshell immerses from the continuum to the states with negative energy. For
example, in Fig. 5 (bottom) we show how this happens in the case of Radon isotopes.
The shell effects are the key to the understanding of these phenomena. Below we list
some of the isotopes from the stability peninsulas and the subshells responsible for
the stability enhancement:

• 1f7/2
40O;



110 K. A. Gridnev et al.

S
n

(M
e
V
)

Z

0

0

5

0

55

55 1510 15

5 1510

10

V
(r

)
(M

e
V
)

V
(r

)
(M

e
V
)

V
(r

)
(M

e
V
)

Ska

r (fm) r (fm)

r (fm)

Figure 5: Top: One neutron separation energies of Oxygen isotopes and a fragment of
the neutron drip line near 40O. The exotic isotope 40O is stable against one neutron
emission and forms a peninsula at the drip line. It has a spherical density distribution.
Bottom: the mechanism of stability restoration. In the case of Rn isotopes adding
neutrons affects the effective HF potential in such a way that one particle states with
high angular momentum are immersed from continuum into the bound spectrum. In
the case of magic numbers this leads to stability enhancement. Dashed line show
unfilled levels in HF+BCS calculations with Ska forces.

• 2d5/2
76Ar, 74S;

• 1h11/2
110Ni, 108Fe;

• 1i13/2
174Cd, 172Pd, 170Ru, 168Mo, 166Zr;

• 1k15/2
256Hf, 254Yb, 252Er, 250Dy, 248Gd, 246Sm, 244Nd, 242Ce, 240Ba.
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Figure 6: Proton and neutron density distributions for the isotones with N = 184
(top) and N = 258 (bottom). The calculations are performed with SkM* forces.
These are closed shells and the distributions possess spherical symmetry. One can see
the enormous spatial extension (halo formation) for a large number of neutrons.

Let us also mention that the wave functions near the drip line produce very spa-
tially extended neutron densities, see Fig. 6. Here one can speak of a large halo
formation. To illustrate this we shall compare proton and neutron root mean square
radii, which we denote Rp and Rn respectively. For nuclei in the stability valley one
has normally Rn − Rp ≃ 0.1−0.2 fm. For 40O we obtain Rn − Rp ≃ 1.29 fm and
Rn/Rp ≃ 1.44. For 248Gd we get Rn − Rp ≃ 0.77 fm and Rn/Rp ≃ 1.14. For 240Ba
we obtain Rn −Rp ≃ 0.94 fm and Rn/Rp ≃ 1.17.
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