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Abstract
Quantum mechanics has achieved unparalleled success as an operational theory, describing a wide
range of experiments to remarkable accuracy. However, the physical foundations on which it rests
remain as puzzling as they were a century ago, and a concise statement of the physical principles
that underlie quantum mechanics is still outstanding. One promising approach holds that these
principles should be formulated in terms of information, since many of the counter-intuitive effects
in quantum theory concern questions such as what one can know about a quantum system and
how the information encoded therein can be processed and distributed between parties. Another
challenging feature of quantum theory is its incompatibility with the other cornerstone of modern
physics, general relativity. In order to reconcile the two, one must identify and retain only the
essential concepts and principles of each theory, and in the case of general relativity, causality has
been identified as such a concept. This raises the question of how our classical understanding
of causality must change when quantum theory is taken into account. In order to address these
questions about information, knowledge and causality, I turn to the framework of causal models.
In classical statistics, causal models explain the relations among a set of variables in terms of
causal influences, which makes them a powerful tool for structuring our knowledge about complex
systems and developing strategies for interacting with them. More importantly, the framework
provides the conceptual underpinnings and mathematical methods for addressing questions about
causation, information and knowledge in a rigorous manner. In this thesis, I develop a version of the
classical causal models framework that is compatible with quantum theory and explore its physical
implications.

A first step is to define quantum versions of fundamental elements such as variables, conditionals
and belief propagation rules. This allows one to consider the question of what one can come to
know about a quantum variable from the point of view of causal modelling. The conditionals
relating quantum variables are found to have a richer structure than their classical counterparts,
which can be exploited for the task of discerning causal relations given limited data – a central
problem in classical causal modelling. The mathematical properties of quantum conditionals also
establish a correspondence between various classes of two-party correlations, such as bound and
distillable entanglement, and the types of causal structures that can give rise to them, which may
become a useful tool for entanglement theory and quantum information processing. In the context
of open quantum systems dynamics, quantum causal models provide a clear physical explanation
of not completely positive maps and, more broadly, of non-Markovian quantum dynamics. Finally,
I consider the possibility of non-classical effects in the way that different causal mechanisms are
combined – that is, non-classical causal structures. For the simple case of two causally ordered
variables, I propose indicators that witness different classes of combinations of causal mechanisms,
including a non-classical mixture, and describe an experiment realizing examples of the different
classes.

As these results illustrate, the framework of quantum causal models provides both greater con-
ceptual clarity and a comprehensive mathematical formalism for studying a diverse set of problems,
ranging from foundational questions to applications in open systems dynamics and the exploration
of non-classical causal structures, which are likely to feature in a future theory of quantum grav-
ity. The material presented in this thesis is intended as a foundation and inspiration for further
applications of quantum causal models.
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Notation, conventions and abbreviations
Classical variables

We use upper-case letters, preferentially X, Y , Z, to represent classical random variables and the
corresponding lower-case letters to denote the values of that variable.

hX cardinality of a classical variable X.
µ (X) = 1

dX
uniform distribution.

δ (x, y) = 1 if x = y, zero otherwise (Kronecker delta distribution for discrete variables).

Hilbert spaces

We use upper-case letters, preferentially A, B, etc. to represent quantum variables. In the case of
a product of Hilbert spaces, subscripts indicate which element of an expression pertains to which
Hilbert space, as in |ψ〉A ⊗ |φ〉B . The ordering of the factor spaces is not fixed, so that |ψ〉A ⊗ |φ〉B
and |φ〉B ⊗ |ψ〉A, for example, represent the same state.
HA Hilbert space of a variable A.
Hd Hilbert space of dimension d.
hA Hilbert space dimension of a quantum variable A.
i ≡
√
−1, the imaginary unit.

Generic maps and operators

ρA may denote a quantum state on A (definition 11) or a generic operator on HA.
L (HA) space of linear operators on HA.
EB|A : L (HA)→ L (HB) linear map between spaces of operators.
χBA operator that is Choi isomorphic to the map EB|A, see eq. (2.15).
τB|A operator that is Jamiołkowski isomorphic to the map EB|A, see eq. (2.16).
Π generic projector, Π2 = Π.

Special maps, operators and states

I identity matrix.
I identity channel; I (ρ) = ρ ∀ρ ∈ L (H).
TA (ρA) = T (ρA) = ρTA transposition (basis-dependent).
TA (ρAB) = ρTA

AB partial transposition with respect to A.
σi with i ∈ {1, 2, 3} Pauli operators on a qubit, see eq. (2.63).
σ0 ≡ I2×2 identity operator on a qubit, see eq. (2.63).
|±i〉 with i ∈ {1, 2, 3} Pauli eigenstates associated with eigenvalues ±1.
{|0〉 , |1〉} = |±3〉 alternate notation.
|±〉 = |±1〉 = 1√

2
(|0〉 ± |1〉) for brevity.

|ψ⊥〉 denotes a vector orthogonal to |ψ〉
|Φ+〉 ≡ 1√

d

∑
j |jj〉 for an orthonormal basis {|j〉}, see eq. (2.14).

Abbreviations

CP completely positive; coCP completely co-positive (definition 14).
POVM positive-operator valued measure (definition 20).
PPT positive (rigorously: positive-semidefinite) under partial transposition.
NPT not positive under partial transposition.
CC common-cause.
CE cause-effect.
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Nomenclature
(in order of appearance)

Belief propagation (classical): eq. (2.4), p. 7.
Bayesian inversion (classical): proposition 4, p. 7.
Causal model (classical), causal structure: definition 6, p. 8.
Path (common-cause, cause-effect): definition 7, p. 9.
Causal parents, children, ancestors and descendants: definition 8, p. 9.
Quantum variable: definition 10, p. 12.
Belief propagation (quantum): eq. (2.13), p. 13.
Choi operator and Jamiołkowski operator: definitions 12 and 13, p. 13.
Quantum conditional: definition 16, p. 15.
Cause-effect and common-cause quantum conditionals: propositions 18 (p. 18) and 25 (p. 22).
Quantum instrument: definition 21, p. 20.
Pre- and post-intervention variables; splitting: proposition 26, p. 23.
Causal model (quantum): proposition 29, p. 28.
Causal map: definition 30, p. 29.
Causal tomography: definition 32, p. 30.
Informational symmetry and observational schemes: definition 33, p. 41.
Quantum observational scheme: example 35, p. 42.
Partial tomography: definition 37, p. 44.
Inference ellipsoid: definition 42, p. 55.
Classification of quantum conditionals:
left- and right-handed: definition 43 (p. 56),
extremal: definition 44 (p. 56),
undecidable: definition 46 (p. 57).
Markov chain: definition 55, p. 66.
Classical common-cause and cause-effect relations: definition 58, p. 71.
Physical mixture of CC and CE: definition 62, p. 75.
Intrinsically quantum physical mixture of CC and CE: definition 65, p. 80.
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1 Introduction
"Why?" is, simply put, the driving question of science. Humans have a deeply ingrained tendency to
attempt to make sense of the complex world they live in by asking why it is the way it is. The first
formal discussion of the problem dates back at least to the classical Greek philosophers. Aristotle,
for example, wrote about the topic in his Physics and Metaphysics, where he divides the possible
answers to the question of "why?" into classes such as efficient causes, which are external agents
who bring about an observed change, and final causes, or purpose. The early concept of causation
often carried strong connotations of responsibility, and indeed the discussion of causation, agency
and free will remains relevant to questions in moral philosophy to this day.

Science, however, began to shift away from causal explanations. Galileo’s Discorsi, for example,
advises us to focus primarily on describing observed phenomena in the form of equations, before
attempting to explain why they occur. The attitude that causal explanations are secondary was
furthered by philosophers like David Hume, who essentially reduced causation to a mere impression
that arises from "constant conjunction" (that is, the fact that two events are always observed
together) [3]. In a similar vein, the mathematician Karl Pearson made seminal contributions to
the discipline of statistics, but at the same time argued that causation should be abandoned as "a
fetish amidst the inscrutable arcana of modern science” [4]. Only in the last decades has causality
resurfaced as both a tool and a topic for rigorous scientific study. The benefits are clear: firstly,
formulating a description of a complex system in terms of causal mechanisms relating its constituent
parts allows one to predict how the system will respond when parts of it are manipulated or replaced,
and extrapolate the effects of changing circumstances. Moreover, by using the predictive power of a
causal model, one can control the system’s behaviour, choosing appropriate actions and policies to
bring about a desired outcome. Neither of these feats can be achieved using just a table of statistical
correlations. These features have made causal reasoning highly successful in a diverse set of other
fields, ranging from econometrics and social policy to epidemiology and computer science. This
prompted the development of a thorough mathematical and conceptual framework of causal models
on which we can now base ourselves [5, 6].

We begin by contrasting some proposed definitions of causality that are relevant to the present
work; then we present the motivation for studying quantum theory from the point of view of causal
models. Section 1.3 presents an outline of the remainder of this thesis.

1.1 Causality (disambiguation)
Over its long history, the term "causality" has acquired many definitions and meanings across the
various disciplines that use it. This section reviews and comments on a few examples that are
relevant to the present work.

The interventionist definition of causation is both intuitive and probably the most useful for
practical applications: X has a causal effect on Y if, when altering X but leaving all else unchanged,
one also sees a change in the value of Y . This immediately provides a canonical way of testing causal
influences experimentally, namely by intervening on the putative cause and tracking whether this
changes the putative effect.

In practice, this method may sometimes be unavailable: it may be impractical, unethical or
outright impossible to manipulate the putative cause. Examples include medical trials, studies of
galaxy formation and the question of whether humanity played a role in global warming. However,
even in these cases, one can still generally define causation in terms of (possibly hypothetical)
interventions – one may merely have to resort to more subtle techniques for detecting it.

More fundamentally, we note that this notion of causation hinges on how one defines and realizes
interventions. For example, one must ensure that an agent’s choice of how to alterX is not influenced
by some unobserved factor that also influences Y , since in that case, seeing changes in Y that

1



correlate with the changes of X would not imply a causal influence of X on Y . But this condition
on what constitutes an intervention in turn invokes a notion of X being "(causally) influenced by
other factors", making the definition circular. This issue and others like it are the subject of an
ongoing debate in philosophy, an introduction to which can be found in [7]. However, for practical
purposes such as causal modelling, one can generally leave these questions aside and simply assume
that there exist agents with sufficient free will to support an interventionist notion of causation.

Deterministic causation, which is sometimes referred to as "causality" or a "cause-and-effect
relation", is the idea that a given configuration of the causes must always entail a particular effect;
in other words, that the effect is completely determined by its causes. This meaning of the term
causality may conflict with quantum theory, since the results of measurements on a quantum system
are conventionally thought not to be predetermined by any cause, but intrinsically probabilistic [8].
(On the other hand, if quantum mechanics does generate outcomes that have no causal ancestors,
this could support a much stronger interventionist notion of causation, since the possibility of an
unobserved common cause is ruled out by hypothesis.) However, the question of whether one can
give a deterministic account of quantum physics – and whether this is necessary or desirable, on
philosophical grounds – lies outside the scope of this thesis. We will focus on a concept of causation
that applies equally to probabilistic theories.

In theories about space-time and gravity, causality normally refers to the principle that
constrains physical objects and information to travel inside the light-cone and thereby limits which
events can influence which others. Whether or not a given event actually affects a second event is
generally of little interest. (Saying that an event influences another of course presumes an underlying
notion of causation, but, for the purpose of discussions about relativity, it is normally sufficient to
use the intuitive, interventionist understanding of the term.)

Figure 1.1: Bell’s notion of local causality for
variables living in a background space-time:
X is independent of Y , conditional on Z. The
axes representing time (t) and one spatial di-
mension (x) are scaled such that light rays
travel at 45◦ angles with them. The resulting
cones shown in the figure are the past light-
cones of the regions Y and X, which consist of
all space-time points that can send light rays
or massive particles to the respective regions.

Bell’s "local causality" is defined in [9] as fol-
lows, with reference to the space-time structure de-
picted in Fig 1.1: "Full specification of what hap-
pens in Z makes events in X irrelevant for predic-
tions about Y in a locally causal theory". This
statement embodies the relativistic constraints on
causal influences, for example by demanding that
X does not have a direct causal influence on Y . For
this reason, the violation of Bell inequalities is of-
ten cited as the textbook example of the tension
between relativity and quantum theory. However,
in order to obtain Bell’s condition from relativistic
causality, one must also assume that causal influ-
ences must be mediated by localized degrees of free-
dom along a continuous path through space-time.
This ensures that there cannot be a common cause
of X and Y in their distant shared past which in-
fluences Y directly, without being mediated by Z.
This idea will appear again in the development of
quantum causal models. Finally, we note that the
definition proposed by Bell refers to a "full specifica-
tion" of what happens in Z and considers what one
can infer conditionally on that information. Both these steps are problematic if Z is a quantum
system, as we will discuss in section 2.2.4.
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The framework of classical causal models implicitly assumes the interventionist notion of
causation; indeed, the defining purpose of the formalism is essentially to predict the effects of
the interventions of free agents. The practical limitations on detecting causal influences using the
interventionist definition can be circumvented using various techniques designed to reveal information
about the causal relations without resorting to interventions.

1.2 The promise of quantum causal models
The motivation for integrating the existing framework of classical causal models with quantum theory
is twofold: firstly, causal models promise to provide a better understanding of the physical principles
on which quantum theory is founded. Beyond that, developing a theory of quantum causality is a
natural step on the way towards a futures theory of quantum gravity.

Although the basic mathematical machinery of quantum mechanics was established almost a cen-
tury ago, the search for the physical principles underlying this branch of physics is still ongoing. By
identifying such principles, we hope to remedy the dissatisfying situation that, as Richard Feynman
put it, "nobody understands quantum mechanics" [10]. More pragmatically speaking, identifying
the central concepts and principles of a theory is an important prerequisite for successfully general-
izing it, while also providing an inspiration for new ways to harness its unique effects for practical
purposes. In the case of quantum theory, it has been suggested – and borne out by a number of
results – that the physical principles should be formulated in terms of information, governing how
information can be transmitted and processed and what one can know and infer about the world
[11, 12, 13, 14, 15, 16, 17]. Causal models are a natural framework for addressing questions about
information processing, knowledge and inference. The process of designing a version of causal models
that can accommodate quantum systems instead of classical variables promises a new perspective
– one that is firmly grounded in operational notions – on the principles that govern knowledge and
information in a quantum world and how they differ from their classical counterparts.

Conversely, generalizing the formalism of causal models to a new type of variable that behaves in
a fundamentally different way, namely quantum variables, may provide new insights and inspiration
for the discipline of causal modelling. For example, the results presented in section 4.1 reveal a new
paradigm for causal discovery, and the challenge of witnessing an intrinsically quantum combination
of causal relations has motivated us to propose a classification of the combinations of causal relations
that can hold between classical variables, including several criteria for detecting the different classes
(sections 5.1 and 5.3).

In addition to gaining a better understanding of quantum theory by itself, one of the biggest
challenges of modern theoretical physics is to reconcile quantum theory with relativity to develop
a unified theory of quantum physics and gravity. The current theory of relativity and quantum
mechanics are incompatible in profound ways: for example, special and general relativity are de-
terministic, whereas quantum mechanics is probabilistic, and the role of time in the two theories
is fundamentally different. The clash is epitomized by Bell inequality violations: the predictions of
quantum mechanics are incompatible with local causality, which is in turn justified by relativistic
constraints on causal influences. In order to reconcile the two theories, we will almost certainly
need to give up familiar elements of both, including, quite possibly, the idea of space-time as a
fundamental concept. Mathematically, it is known that one can reconstruct almost the entire metric
of a space-time manifold (up to a conformal scale factor) given only the underlying structure of
light-cones [18, 19, 20, 21]. This has inspired several compelling approaches to quantum gravity
which consider causal structure to be the fundamental element from which space-time emerges, such
as [22, 23, 24, 25, 26]. On these grounds, quantum causal models could become a cornerstone of a
future theory of quantum gravity.
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1.3 Outline
The remainder of this thesis is organized as follows:

Chapter 2 begins by introducing the mathematical and conceptual framework of classical causal
models. We then lay the mathematical groundwork for quantum causal models, proposing definitions
of variables, conditionals and a belief propagation rule that share the relevant properties of their
classical counterparts. In simple scenarios, such as two variables related only via a shared common
cause, we show that this formalism reproduces the results of conventional quantum mechanics. In
order to describe more general causal relations, we introduce the additional requirement of splitting
quantum variables, which is necessary in order to accommodate a full description of what one
learns about a quantum variable by probing it with a general instrument. With this provision, the
causal relations between quantum variables can be represented by a suitable operator. We discuss
some necessary mathematical properties of such operators and a scheme for characterizing them
experimentally.

Chapter 3 considers what one can come to know about a quantum variable by probing it in
different ways. By studying this question, we hope to gain a new perspective on the fundamental
rules governing information encoded in quantum systems, which underlie many of the puzzling
behaviours typically exhibited by quantum systems. Specifically, we classify probing schemes for
quantum variables according to their usefulness for causal discovery, which is the task of inferring the
causal structure from observed correlations and arguably one of the central applications of classical
causal models. We consider probing schemes that resemble passive observation of a classical variable
in this sense; we term these "observational schemes". We analyse weak measurements, but find that
they do not meet the requirement. However, we show that a rank-one projective measurement
constitutes an observational scheme, if one had no prior information about the variable. We derive
an algebraic characterization of what one can learn by this scheme and consider how one’s powers
of causal discovery change under small deviations from informational symmetry.

Chapter 4 proceeds to study the conditionals that relate two quantum variables; specifically the
implications of how they differ from classical conditional probability distributions. For example,
classical conditionals always take the same mathematical form, regardless of how the variables are
causally related, whereas quantum conditionals must be positive-semidefinite if they describe a
relation via a common cause (CC), but positive under partial transposition (PPT) if they describe
a cause-effect (CE) relation. In the case of qubits, this distinction translates to a series of geometric
criteria in terms of the Bloch sphere representation that allow one to determine the underlying
causal structure. In the context of causal discovery, it powers a new, uniquely quantum tool for
distinguishing causal relations given only data obtained by the aforementioned observational scheme.
Section 4.2 reports on a quantum optics experiment that realizes an unknown probabilistic mixture
of CC and CE relations and uses the theoretical result to estimate the mixing parameter from
observational data.

An equivalent statement of the distinction between CC and CE relations is that maps repres-
enting inferences between variables that are related by a common cause need not be completely
positive. This suggests that the framework of quantum causal models could bring mathematical
and conceptual clarity to the discussion about non-completely positive maps in the context of open
quantum systems, as well as the related phenomenon of non-Markovian quantum dynamics. In a
similar vein, the fact that conditionals describing a cause-effect relation are positive under partial
transposition provides an operational interpretation of PPT and NPT states in terms of the causal
structures that can give rise to them, which may provide a new perspective on problems in quantum
information and entanglement theory. We explore these connections in sections 4.3 and 4.4.

Chapter 5 takes up the possibility that not only the conditionals describing individual causal
mechanisms, but also the ways in which they are combined to form a causal structure is in some
sense non-classical. In an effort to make this statement precise, we consider how one can com-
bine causal mechanisms that realize common-cause and cause-effect relations between two causally
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ordered variables. We begin by proposing a distinction between probabilistic and non-probabilistic
(physical) mixtures, which applies even in the classical case, and note that one can discern the
two using Berkson’s paradox. This statistical effect allows one to induce correlations between two
variables, D and E, by conditioning on their common effect, B, and the strength of the induced
correlations reflects how the mechanisms by which D and E each influence B were combined. We
introduce a quantum version of the Berkson effect and note that it defines a natural third category in
our classification, namely intrinsically quantum physical mixtures of common-cause and cause-effect
relations. Having established these definitions, we propose several indicators that allow one to draw
conclusions about the causal structure given limited experimental data. Finally, we report on a
table-top experiment that realizes an intrinsically quantum physical mixture of common-cause and
cause-effect relations between two photons, as witnessed by the quantum Berkson effect.

Chapter 6 draws conclusions from the findings of the previous chapters and points out promising
directions for further investigation.
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2 A mathematical framework for quantum causal models
This chapter lays the mathematical groundwork on which the remainder of the thesis is built. We
begin by stating some basic properties of classical probability theory and introducing the formalism
of classical causal models. We then propose quantum versions of the basic elements which reproduce
the properties that are relevant for our purposes. The following sections illustrate that these gen-
eralizations behave as intended in simple scenarios involving just two variables, and subsequently
extend them to more general cases.

2.1 Classical foundations
2.1.1 Probability theory

Let us begin by formalizing some familiar definitions and properties. The subsequent proposals of
quantum analogues will build on these definitions.

Definition 1. Let X be a classical random variable that can take values denoted x. A probability
distribution over X, denoted P (X), is a function that assigns to each possible value x a non-negative
real number P (X = x) ≥ 0 such that the sum over all possible values is one,

∑
x P (X = x) = 1.

We use P (X) to denote the function over the set of values {x}, whereas P (X = x) denotes the
value that this function takes for a certain argument. We will use the shorthand∑

X

P (X) ≡
∑
x

P (X = x) , (2.1)

so that the normalization condition in definition 1, for example, can be written
∑
X P (X) = 1.

Operations on probability distributions are to be performed element by element; for example, the
product of two distributions P (X)P (Y ), is a function over ordered pairs of values, {(x, y)}, and
the value of that function for an argument (x, y) is given by P (X = x)P (Y = y).

If one wishes to describe two classical random variables, one can combine their sets of possible val-
ues by Cartesian product and analogously define a joint probability distribution, denoted P (X,Y ),
over the product space. Given a joint distribution over several variables, one can derive marginal
distributions over subsets of variables by summing over the possible values of the variables to be
eliminated: {

P (X) =
∑
Y P (X,Y ) ≡

∑
y P (X,Y = y)

P (Y ) =
∑
X P (X,Y ) ≡

∑
x P (X = x, Y ) .

(2.2)

Relating the joint distribution and the marginals, we define the following property:

Definition 2. Two classical variables X and Y are statistically independent or uncorrelated if their
joint distribution is simply the product of its marginals,

P (X,Y ) = P (X)P (Y ) . (2.3)

The central question in the context of causal models, however, is this: if one finds X to take the
value x, what can one infer about a second variable Y ? The answer is encoded in the conditional
probability distribution:

Definition 3. Let X and Y be two classical random variables that can take values denoted x and
y, respectively. A conditional probability distribution over Y conditional on X, denoted P (Y |X), is
a set of probability distributions over Y indexed by x, which we denote {P (Y |X = x)}. That is, for
each x, the distribution P (Y |X = x) assigns to each possible value y a non-negative real number,
P (Y = y|X = x) ≥ 0, such that the sum over all possible values of y is one,

∑
Y P (Y = y|X = x) =

1.
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Now, given a probability distribution P (X) over a variable X and a conditional P (Y |X) that
encodes what one can infer about Y given X, then what one can deduce about Y is given by the
probability distribution

P (Y ) =
∑
X

P (Y |X)P (X) . (2.4)

This is the rule of belief propagation, also known as Bayesian updating.
One can define a joint distribution over X and Y that combines information about how Y

depends on X, as specified by a conditional P (Y |X), and a given marginal distribution P (X): the
appropriate form is

P (X,Y ) = P (Y |X)P (X) . (2.5)

It is easy to verify that this is in fact a joint probability distribution, and when marginalizing over
Y one recovers ∑

Y

P (X,Y ) =

[∑
Y

P (Y |X)

]
P (X) = P (X) . (2.6)

If one marginalizes over X, expression (2.5) reproduces the belief propagation rule. Conversely, given
a joint distribution P (X,Y ), one may wish to isolate a conditional encoding what one can infer
about Y given certain information about X. Inverting expression (2.5) and substituting P (X) =∑
Y P (X,Y ), one obtains

P (Y |X) =
P (X,Y )

P (X)
=

P (X,Y )∑
Y P (X,Y )

. (2.7)

For those x for which P (X = x) = 0, the conditional probability obtained in this manner is not
defined. However, considering that these x occur with probability zero, the fact that we do not know
what we should infer about Y if we were to observe them is not problematic.

Bayesian inversion. We will see that causal models explicitly encode how each variable depends
on its causal parents (see definitions 6 and 8 below), in the form of conditional probability distribu-
tions over each variable given its parents. However, one may wish to transform this information so
as to permit inferences about any subset of variables given any other subset of variables. Bayesian
inversion is the basic tool for making such transformations.

Proposition 4. Given two classical random variables X, Y distributed according to the marginal
P (X) and the conditional P (Y |X), what one can infer about X given Y is described by the condi-
tional probability distribution

P (X|Y ) =
P (Y |X)P (X)∑
Y P (Y |X)P (X)

. (2.8)

Proof. This follows by switching the roles of X and Y in expression (2.7) and combining it with
expression (2.5).

Note that the Bayesian inverse, P (X|Y ), depends not only on P (Y |X), but also on the mar-
ginal P (X). The marginals P (X) and P (Y ) =

∑
X P (Y |X)P (X) are said to encode our prior

knowledge. When one acquires new information about Y , updating one’s beliefs to some P ′ (Y ) –
and under the central assumption that the causal mechanism relating X and Y remains unchanged
– then what can one infer about X is given by P ′ (X) =

∑
Y P (X|Y )P ′ (Y ). The updated dis-

tributions P ′ (Y ) and P ′ (X) are termed posterior. We note that the terms prior and posterior, as
introduced in this context, refer not to the physical time in the system under study, but rather to
epistemological time: they distinguish what an agent believed before gaining new information about
Y from what she believes after gaining that new information.

The following example illustrates how the conditional P (X|Y ) combines information about the
causal mechanism, encoded in the conditional P (Y |X), with the prior P (X).
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Example 5. Let X and Y be two classical variables that range over the values x ∈ {±1,±2} and
y ∈ {±1}, respectively, and let

P (Y |X) = δ

(
Y,

X

|X|

)
=

{
Y = +1 if X ∈ {+1,+2}
Y = −1 if X ∈ {−1,−2}

. (2.9)

Let us assume at first that we have no prior information about X, which implies the uniform
distribution, P (X) = µ (X) = 1

4 for all x. In this case P (X,Y ) = 1
4δ
(
Y, X|X|

)
, so P (Y ) = 1

2 for
both values of Y , and

P (X|Y ) =
1

2
δ

(
Y,

X

|X|

)
. (2.10)

That is, upon finding Y = +1, one would retrodict X = +1 or X = +2 with equal probability.
Now suppose that we do have non-trivial prior knowledge about X, namely that P̃ (X = ±1) = 1

6 ,

whereas P̃ (X = ±2) = 1
3 . Now P̃ (X,Y ) = 1

6δ
(
Y, X|X|

)
[1 + δ (|X| , 2)], which still makes P (Y ) = 1

2 ,
but

P̃ (X|Y ) =
1

3
δ

(
Y,

X

|X|

)
[1 + δ (|X| , 2)] . (2.11)

Upon finding Y = +1, one must now conclude that X = +1 occurred with probability 1
3 , whereas

X = +2 has probability 2
3 . The prior knowledge (that |X| = 2 is twice as likely as |X| = 1) is

combined with the inference about the sign of X in order to determine the overall P̃ (X|Y ).

2.1.2 The framework of classical causal models

Based on definitions 7.1.1 and 7.1.6 in [5], we will adopt the following definition:

Definition 6. A causal model over a set of classical random variables {Xi} consists of (1) the causal
structure, which is a directed acyclic graph whose nodes represent the Xi and whose edges ("arrows")
represent direct causal influences, and (2) the conditionals: conditional probability distributions that
encode how each Xi depends on those that directly influence it, according to the graph.

Elaborating on this definition, let us begin by specifying what constitutes a variable for the
purpose of classical causal modelling. The variables in a causal model are classical random variables,
which describe degrees of freedom in a physical system. We do not demand that every independent
degree of freedom be represented by a distinct variable in the model; for example, it may simplify
the discussion to summarize the position and momentum of a particle in a single variable in the
model. However, considering that classical causal models describe systems which live in a well-
defined space-time and obey the constraint of relativistic causality, it is generally advantageous to
use distinct variables to represent the degrees of freedom associated with distinct localized regions
of space-time, since this simplifies the description of the pattern of causal influences among the
variables.

More importantly, we note that not every degree of freedom of the underlying physical system will
be represented by a variable in the causal model. The purpose of a causal model is to summarize the
pattern of influences between a selected set of degrees of freedom, which are relevant to a particular
application, in a convenient way, and this implies coarse-graining over all other degrees of freedom.
In the literature, the variables that are represented in the causal model are termed the observed
variables.

The causal structure mentioned in definition 6 encodes a qualitative description of which of these
variables directly influence which others. We stress the requirement of direct influences, in the sense
that they are not mediated by other observed variables. (In general, any causal influence is mediated
by a sequence of unobserved variables, such as the field degrees of freedom at every point along the
trajectory of a photon.)
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In order to discuss the inferences that one can make based on a given causal model, it is useful to
introduce the concept of a path through the causal structure, which is a sequence of nodes (variables)
such that each one allows one to make an inference about the next. An example is given in Fig. 2.1.
Note that it is not necessary that every variable in the sequence causally influence the next.

Definition 7. Let X and Y be two variables that are part of a causal structure G, and consider
an ordered sequence {Zi} of nodes on the graph such that (a) every consecutive pair (Zi, Zi+1) is
connected by an edge in the graph, and (b) the first element is X and the last element is Y . Such
a sequence defines a path connecting X and Y .
If all edges along the path are directed away from X and towards Y , it is termed a cause-effect (CE)
path, with X being the cause and Y , the effect. If there exists a node Zj that is a cause of both X
and Y (that is, such that there is a cause-effect path from Zj to X and a cause-effect path from Zj
to Y ), then the union of the two paths, which connects X and Y , is termed common-cause (CC)
and Zj is a common cause of X and Y .

Based on this, let us furthermore define the following terms:

Definition 8. For two nodes X and Y in a causal structure, if there exists a cause-effect path from
X to Y , with X being the cause, then X is said to be a (causal) ancestor of Y and Y is said to be a
(causal) descendant of X. If there is a single edge directly from X to Y , then X is a (causal) parent
of Y and Y is a (causal) child of X.

Figure 2.1: Example of a causal structure illustrating causal paths and relationships. The ordered
sequence {X,Z1, Z2, Z3, Y } defines a path from X to Y . One can see that Z1 and W are connected
by a cause-effect path, with Z1 being the cause and W , the effect. It follows that Z1 is a parent of
X and an ancestor of W , whereas W is a child of X and a descendant of Z1. On the other hand, X
and Z3 are connected by a common-cause path, with Z2 being a common cause of X and Z3.

The uses of the causal models framework can be broadly grouped into two categories. On the
one hand lies causal discovery, also known as causal inference: the problem of finding a suitable
causal model for describing a many-variable system given statistical data about its constituent
variables, such as a joint probability distribution. There are several tests and criteria for determining
objectively which causal model best explains the data. Notably, a number of them do not require
interventions. We will return to this topic in chapter 4.1. For the purpose of the discussion section
2.2.4, let us explicitly mention one necessary condition (based on definition 1.2.2 and the parental
Markov condition, theorem 1.2.7, in [5]):

Proposition 9. A causal structure G and a probability distribution P over the variables represented
in G are compatible only if, in the probability distribution P , every variable is independent of all its
non-descendants (in G) conditional on its parents.
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The second major application of the causal models framework is, once the causal structure and
the parameters are known, to make various inferences: mathematically speaking, one can derive
conditional probability distributions relating any two subsets of variables, regardless of how they are
causally related. The simplest inferences are based on cause-effect relations, for example the fact
that rain causes the grass to become wet. Based on this causal statement, one can predict that,
if it has rained, then the grass must be wet. Conversely, upon observing the grass to be wet, one
can retrodict that it has likely rained. Inferences can also be made along common-cause paths. For
example, if rain causes both the grass and the driveway to become wet, then finding the driveway to
be wet allows one to infer that the grass will also likely be wet. The framework can also address much
more complex and subtle questions, for instance about the implications of policies that prescribe
interventions under certain conditions or complicated counterfactual claims. In the present work,
however, we will focus on relatively straightforward inferences, and refer the reader to Pearl [5] for
an overview of the alternatives.

Knowing the causal model allows one to construct conditional probability distributions P (Y |X)
for any two variables, which encode what one can infer about Y if one knows that X took a certain
value. The conditionals specified as part of the causal model, which describe inferences about each
variable given its causal parents, are a subset of these. They are special, however, because if X is a
parent of Y , then P (Y |X) also encodes how Y is causally affected if one forces X to take a certain
value. That is, they represent not just statistical inferences, but causal influences. If one has the
power to intervene on the individual variables, then these conditionals are easy to determine. We
will argue in section 2.4.1 that, in the quantum case, conditionals to this type must have particular
mathematical properties not demanded of other conditionals.

2.2 Features to be retained in quantum causal models
This section highlights some principles and features of classical causal models that we would like to
retain in the quantum version:

2.2.1 Interventions by free agents

We will retain the assumption, made in classical causal models, that there exist experimenters with
free will who can choose, for example, how to prepare or measure a quantum system. While philo-
sophy and classical statistics have provided many interesting insights on how one can meaningfully
define and detect causation without relying on this power, we will leave that problem aside and
focus on generalizing the mathematical framework of classical causal models, which describes causal
influences that can in principle be verified by interventions.

2.2.2 Autonomous causal mechanisms

A crucial feature of causal models, though it is often not stated explicitly, is that each conditional
– that is, the mechanism by which each variable is (probabilistically) determined from its parents –
is autonomous. This means that, if one alters one part of the system, for instance suspending the
mechanism that would normally determine a variable X and setting it manually instead, then all
other parts – in particular the mechanisms by which X in turn affects its descendants – remain un-
affected, and our knowledge about them remains valid. In chapter 5, we explore some circumstances
that can prevent one from describing the overall causal relations among a set of quantum variables
as a collection of simple, autonomous mechanisms.

However, as a conservative first step towards fully quantum causal models, we will for now restrict
ourselves to the case wherein the causal structure encoding how the variables influence each other is a
directed acyclic graph and that it is supplemented by autonomous conditionals that specify how each
variable depends on its parents, just as in the classical case. The assumption of a causal structure
that can be represented as a directed acyclic graph is appealing because of the strong expectation
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that causal influences must be mediated by physical systems, whose trajectories through space and
time can be tracked experimentally and which are often strongly localized. A prime example is
a Bell experiment, where we expect causal mechanisms to be mediated by the particles (such as
photons) that are sent out to two parties and subsequently measured. If we dropped the assumption
that causal influences must be mediated by localized carriers, then we would have no reason to
propose causal structures wherein only certain pairs of variables are connected by causal influences,
but should instead allow every variable to depend directly on all other variables that lie in its past
light-cone. Such a model would not be particularly informative.

More importantly, we stress that models with a conventional causal structure can, in fact, capture
interesting effects in quantum causality. For instance, a non-local state on two quantum variables,
which is the resource that powers Bell inequality violations, can be explained by a simple common-
cause structure – if one allows the common cause to be a quantum variable. (If the common cause
is classical, by contrast, it can generate at most classical correlations, that is, a separable state.)
It is therefore a worthwhile first step to simply replace classical random variables with a quantum
analogue. The possibility of more exotic causal structures will be taken up in chapter 5.

2.2.3 Reichenbach’s principle

The principle, stated originally by Reichenbach [27], essentially demands that every correlation be
explained by a causal relation. Without this principle, causal models become meaningless: if we were
to allow correlations without demanding some causal connection, then any pattern of correlations
in a multivariate system could be "explained" by a model that contains no causal links at all.

Let us state this principle in more detail: two variables X and Y can only exhibit correlations
if they are connected by a path1 in the causal structure that supports a chain of inferences from
X to Y . This can be achieved in two2 ways: either by a cause-effect path or by a common-cause
path (definition 7). However, the causal structure is only a qualitative description. The existence
of a path (either cause-effect or common-cause) connecting X and Y is therefore necessary for
explaining correlations between them, but it is not sufficient: one must furthermore demand that
the conditionals associated with each edge along the path satisfy certain conditions. In classical
causal models, one can establish the following sufficient condition: a causal model is said to explain
correlations between X and Y – either by a common cause Z or by a cause-effect path through
Z – if conditioning on Z makes X and Y statistically independent. At this point, the problem of
formulating a quantum version of Reichenbach’s principle ties into a larger issue, which we discuss
next.

2.2.4 Screening

In classical causal models, one can observe the following phenomenon: For a causal chain X → Z →
Y , if one already knows Z, then learning Y provides no new information about X. The same holds
for the fork X ← Z → Y : if one did not know Z, then learning Y would allow one to retrodict
Z, which in turn has new implications for X. But if Z is already known, then Y provides no new
information about X. In both cases, we say that knowing a variable Z can screen off inferences
between X and Y . Formally, if one conditions on Z, then X and Y are statistically independent,
P (X,Y |Z) = P (X|Z)P (Y |Z). The same effect can arise in more complex causal structures, and a

1There may be more than one such path in a given causal structure, which may interfere with each other in
non-trivial ways, but there must exist at least one in order to explain correlations between X and Y .

2We consider the case wherein X and Y are correlated unconditionally on any other variables. If one allows
conditioning on a third variable, Z, then there are other types of paths between X and Y that support a chain of
inferences. The simplest example is if Z is a common effect of X and Y , that is, X → Z ← Y : if one knows both
how X and Y influence Z and one also knows the value that Z took, then learning X allows one to make an inference
about Y .
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general necessary and sufficient condition for when this so-called d-separation occurs is given in [5].
However, for the purpose of this thesis, we will focus on the two simple scenarios discussed above.

Conditional independence plays an important role throughout the framework of causal models:
in the context of Reichenbach’s principle, a common-cause or cause-effect relation that is mediated
by Z is deemed to explain observed correlations between X and Y only if conditioning on Z makes
X and Y statistically independent. By the parental Markov condition (proposition 9), a probability
distribution is only compatible with a given causal structure if every variable is independent of
all its non-descendants conditional on its parents. In the context of causal discovery, a number of
algorithms use observed conditionals independences to rule out potential causal structures. These
facts provide a strong motivation for retaining some form of screening in the framework of quantum
causal models.

The problem lies in generalizing the formal statement in terms of conditional independence –
more specifically, in the act of conditioning on a quantum variable. If Z is a classical variable,
one can unambiguously divide statistical data, such as results from many runs of an experiment,
into subsets according to the values of Z in each run. Each subset defines one element of the
conditional distribution P (X,Y |Z = z). In the case of quantum variables, by contrast, there is no
single, preferred set of mutually exclusive states on which one can condition in this manner. In order
to explore the ways in which one can meaningfully condition on a quantum variable, we now turn
to a discussion of quantum causal models.

2.3 Basic elements of quantum causal models
This section proposes quantum generalizations of basic elements of the causal models framework,
such as conditionals and the belief propagation rule.

2.3.1 Quantum variables

Definition 10. A quantum variable A is a set of degrees of freedom which is associated with a
Hilbert space HA. In a setting where there exists a background space-time, it is convenient to define
each quantum variable as a subset of the degrees of freedom contained in a particular localized region
of space-time.

This definition is designed to reproduce the relevant properties of classical random variables:
they represent a coarse-grained set of degrees of freedom, which are grouped into variables in a way
that (hopefully) puts the causal relations between them in a simple form. In particular, if one studies
physical systems that are conventionally described as spatially localized systems that evolve in time,
such as a register in a quantum circuit, then we will describe them as a series of distinct quantum
variables indexed by time, rather than a single variable that evolves in time. This convention is
common in classical causal modelling, where it is used to ensure that one’s beliefs about a given
variable are static, rather than evolving under some dynamics.

The quantum analogue of a classical probability distribution is straightforward:

Definition 11. Let A be a quantum variable associated with a Hilbert space HA. A quantum state
on A, denoted ρA, is a positive-semidefinite operator on HA, ρA ≥ 0, with unit trace: TrAρA = 1.

We demand that the operator ρA be positive-semidefinite and normalized in order to ensure that
the statistics generated by measurements, in accordance with the usual rules of quantum mechanics
(specifically the Born rule), constitute a valid probability distribution according to definition 1.

Since there is a Hilbert space associated with each quantum variable, it is natural that the
Hilbert space associated with a set of variables is obtained by taking the tensor product of the
individual Hilbert spaces; a generalization of the Cartesian product by which we combine the sets of
possible values of classical random variables. Using the tensor product ensures that we recover the
conventional mathematical structure of the state space in the case where several quantum variables
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are related by a single common cause, that is, where they are prepared in a multipartite quantum
state.

Joint and conditional probability distributions are therefore generalized to linear operators on the
tensor product of Hilbert spaces. We will see that these operators cannot always have the properties
one demands of multipartite quantum states, such as positivity (see section 2.4.1), and if there are
more than two variables involved, for example, then the simple construction we are developing in
this section may not allow for any operator that reproduces the appropriate marginals on all subsets
of variables (see section VII.B of [1]). The modifications required to overcome these difficulties are
developed in section 2.5.

Regardless of the exact properties of the appropriate operators on several variables, one can
establish a prescription for reducing them to the corresponding marginal operators on a subset of
the variables, which reflects our beliefs about that subset if we ignore the remaining variables. The
natural choice is the partial trace, which is well established in conventional quantum mechanics:

ρA = TrBρAB . (2.12)

This finally leads to the following: if probability distributions over several variables are general-
ized to operators on the tensor product Hilbert space and marginalization is achieved by the partial
trace, then we expect the belief propagation rule for two quantum variables to take the form

ρB = TrA
[
τB|A (IB ⊗ ρA)

]
, (2.13)

for some operator τB|A ∈ L (HB ⊗HA) with suitable properties, which we will term a quantum
conditional. A formal definition will be derived in the following section and stated at its end;
definition 16.

2.3.2 The Choi-Jamiołkowski isomorphism and quantum conditionals

A rule for quantum belief propagation, which maps states on a quantum variable A to states on a
second quantum variable, B, is most naturally described as a map EB|A : L (HA) → L (HB). In
order to put it in the desired form of the belief propagation rule, eq. (2.13), one must establish
a correspondence between linear operators on a product Hilbert space, τB|A ∈ L (HB ⊗HA), and
linear maps of the form EB|A : L (HA) → L (HB). This section introduces two dualities between
these spaces, and, based on them, proposes a definition of quantum conditionals.

Let us begin by defining two operators associated with a given map EB|A:

Definition 12. Let EB|A : L (HA) → L (HB) be a positivity-preserving linear map between linear
operators on quantum variables A and B, and let I : L (HA)→ L (HA) denote the identity map on
operators on A. Let {|φj〉}, with j = 1, ...hA ranging up to the dimension hA of HA, be a basis of
the Hilbert space and let ∣∣Φ+

〉
≡ 1√

hA

hA∑
j=1

|φj〉 ⊗ |φj〉 (2.14)

be a symmetric, maximally entangled state between A and an ancilla A′ with the same Hilbert space
dimension. The operator

χBA ≡
(
EB|A′ ⊗ IA

) [∣∣Φ+
〉 〈

Φ+
∣∣
A′A

]
, (2.15)

obtained by applying the map to the ancilla A′, is termed the Choi operator – or Choi state, if it is
positive-semidefinite and trace-one – that corresponds to the map EB|A [28].

Note that the Choi operator associated with a given map EB|A depends on the basis {|φa〉} chosen
to define the symmetric state |Φ+〉. However, in most uses of the Choi operator, the choice of basis
is ultimately irrelevant; and unless required, we will not specify it. A basis-independent alternative
to the Choi operator can be obtained as follows:
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Definition 13. Let EB|A : L (HA) → L (HB) be a positivity-preserving linear map between linear
operators on quantum variables A and B, and let I : L (HA)→ L (HA) denote the identity map on
operators on A. Let hA denote the dimension of the Hilbert space HA, let HA′ be a Hilbert space,
associated with an ancilla A′, of the same dimension, and let {|φj〉} with j = 1, ...hA be a basis of
HA or HA′ . The operator

τB|A ≡
(
EB|A′ ⊗ IA

) hA∑
j,k=1

|φj〉 〈φk|A′ ⊗ |φk〉 〈φj |A

 , (2.16)

obtained by applying the map to the ancilla A′, is termed the Jamiołkowski operator that corresponds
to the map EB|A [29].

The two operators are related by a simple partial transposition on A, denoted TA, and renor-
malization:

τB|A ≡ hATAχBA. (2.17)

We note that the operator in parentheses in (2.16) is not generally positive-semidefinite, and therefore
τB|A is not generally a valid quantum state. However, τB|A has the merit of being independent of
the choice of basis: one can verify that applying unitary rotations that take {|φj〉} to some other
basis

{∣∣φ̄j〉} on both A and A′ leaves τB|A invariant.
The relevance of these two representations of maps EB|A as operators on HB ⊗HA is established

by two closely related but distinct isomorphisms, named after Choi and Jamiołkowski, respectively.
Before we state it, let us establish the following definition for future reference:

Definition 14. A positivity-preserving linear map EB|A : L (HA) → L (HB) is termed completely
positive (CP) if and only if its extension with the identity channel I on an ancilla A′ of arbitrary
dimension, that is, the map EB|A ⊗IA′ , is positivity-preserving. A positivity-preserving map EB|A :
L (HA)→ L (HB) is termed completely co-positive (coCP) if and only if its composition with partial
transposition, EB|A ◦ TA, is completely positive.

Theorem 15. (Choi and Jamiołkowski isomorphisms [28, 29]) Let EB|A : L (HA) → L (HB) be a
positivity-preserving linear map between linear operators on quantum variables A and B. The rep-
resentation of EB|A as an operator χBA ∈ HB⊗HA defined by eq. (2.15) constitutes an isomorphism
between maps L (HA)→ L (HB) and operators on HB⊗HA, termed the Choi isomorphism. The rep-
resentation of EB|A as an operator τB|A ∈ HB⊗HA defined by eq. (2.16) constitutes an isomorphism
of the same type, termed the Jamiołkowski isomorphism.

Moreover, the mathematical properties of the map and the operators are related by the following
necessary and sufficient conditions:

1. EB|A is trace-preserving ⇔ TrBχBA = 1
dA

IA ⇔ TrBτB|A = IA
2. EB|A is completely positive ⇔ χBA ≥ 0 ⇔ TAτB|A ≥ 0
3. EB|A is completely co-positive ⇔ TAχBA ≥ 0 ⇔ τB|A ≥ 0.

Proof. Proof of the isomorphism and the necessary and sufficient condition for complete positivity
is given in the original references. The necessary condition for EB|A to be trace-preserving follows
directly from the definitions of χBA and τB|A; the sufficient condition follows from (2.18) and (2.20)
below.

Although the two forms, χAB and τB|A, differ only by a partial transpose and the choice of
normalization, their physical interpretations and mathematical uses are different. Assuming that
EB|A represents a quantum channel realized by some black box, the corresponding Choi operator
can be obtained by starting with the maximally entangled state |Φ+〉 on A and A′ and applying the
black box to A′, as illustrated in Fig. 2.2. (This is precisely the setup used in entanglement-assisted
process tomography, which characterizes an unknown quantum process by performing quantum
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state tomography on the associated Choi operator χBA [30, 31].) In this case, wherein the map
EBA is completely positive and trace-preserving, it follows that the operator χBA must be positive-
semidefinite and trace-one, hence being a valid quantum state. This is why χBA termed the "Choi
state".

Figure 2.2: Operational interpretation of the Choi
state χAB which is isomorphic to the map EB|A:
the circuit inside the dashed box prepares χBA.

In order to discuss the physical interpreta-
tion of the Jamiołkowski operator, let us con-
sider how one can describe the effect of the map
on a generic input ρA ∈ L (HA) in terms of the
representations introduced above: in terms of
the Choi state, we can write

EB|A (ρA) = hATrA [(TAχBA) IB ⊗ ρA](2.18)
= hATrA [χBA · (IB ⊗ TAρA)] ,(2.19)

where one must include (partial) transposition
on A, denoted TA, that is applied either to the
input ρA or to the Choi state itself. (The iden-
tity operator on B, which is formally required
in order for us to multiply τBA and ρA, is often
omitted for brevity.) The Jamiołkowski oper-
ator, on the other hand, is the natural choice3 for writing the effect of the map as

EB|A (ρA) = TrA
[
τB|AIB ⊗ ρA

]
, (2.20)

which bears a close resemblance to belief propagation using a classical conditional probability dis-
tribution, eq. (2.4),

P (B) =
∑
a

P (B|A)P (A) . (2.21)

Furthermore, the map is trace-preserving if and only if the Jamiołkowski operator satisfies
TrBτB|A = IA, in close analogy with the classical normalization requirement for conditional dis-
tributions,

∑
B P (B|A) = 1 ∀a. This motivates us to introduce the following terminology:

Definition 16. A quantum conditional is an operator τB|A that is Jamiołkowski-isomorphic to a
trace-preserving, positivity-preserving linear map EB|A. The fact that EB|A is trace-preserving im-
plies that TrBτB|A = IA. The fact that EB|A is positivity-preserving, but not necessarily completely
positive, implies that τB|A is Hermitian, but not necessarily positive-semidefinite.

The definition of a quantum conditional proposed here was chosen because of its desirable prop-
erties for the purpose of representing inferences between quantum variables, following previous work
in this direction, in particular [32, 1] and references therein. If one pursues a different purpose, then
a different generalization of classical conditional probability distributions may be more appropriate.
For example, Cerf and Adami have proposed a "conditional amplitude operator" that is suitable for
studying quantum conditional entropy [33, 34].

2.3.3 Manipulating quantum conditionals

In order to perform belief propagation, Bayesian inversion, and other manipulations, one must often
multiply and divide conditionals and marginals. While these operations can be defined in a relatively
straightforward manner in classical probability theory, where they simply act element by element,
similar operations on operators pertaining to quantum variables are more subtle. Different quantum

3Eq. (2.20) follows from eq. (2.16), which defines τB|A.

15



generalizations of Bayesian inversion and retrodiction have been proposed, for example in [35, 12].
We will follow the proposal by Leifer and Spekkens [1].

We begin by noting that we may wish to combine operators that act on different Hilbert spaces,
such as ρAB and ρBC . For these cases, we introduce the convention that each operator is extended
as required by taking the tensor product with the identity operator on the complementary Hilbert
space. In the example just mentioned, the extensions are ρAB ⊗ IC and IA ⊗ ρBC . For brevity, the
extra factors of I are often left implicit.

A natural choice of a multiplication operation on operators is provided by the matrix product.
We will see in the following sections that a symmetrized version of the matrix product, termed the
star product [1], can be used as a suitable generalization of multiplication in manipulating quantum
conditionals. Given two linear operators τX and τY , whose Hilbert spaces HX and HY can be
extended to HX ⊗HX̄ = HY ⊗HȲ , let

τX ? τY ≡ (τY ⊗ IȲ )
1
2 (τX ⊗ IX̄) (τY ⊗ IȲ )

1
2 . (2.22)

(The square root of the operators appears because, instead of multiplying with τY either from the
left or from the right, we wish to distribute the factor symmetrically, with τ

1
2

Y on either side.) Note
that this product is neither associative nor commutative. Its extension to more than two operators
is therefore not unique, which makes it complicated to formalize belief propagation involving more
than two quantum variables. However, the chosen form does ensure other convenient properties:

Proposition 17. If τX is a Hermitian operator and τY is positive-semidefinite, then τX ? τY is
also Hermitian. Moreover, if both τX and τY are positive-semidefinite, then τX ? τY is also positive-
semidefinite.

Proof. One can see the first implication by noting that, if τY is positive-semidefinite, then τ
1
2

Y is

well-defined and also Hermitian, and therefore
[
τ

1
2

Y τXτ
1
2

Y

]†
=
(
τ

1
2

Y

)†
(τX)

†
(
τ

1
2

Y

)†
= τ

1
2

Y τXτ
1
2

Y , hence
τX?τY is also Hermitian. For the second part, note that the hypotheses imply that 〈φ| τX⊗IY |φ〉 ≥ 0

for any vector |φ〉 ∈ HXY , and that
(
IX ⊗ τ

1
2

Y

)
|ψ〉 is such a vector for all |ψ〉 ∈ HXY . It follows that

〈ψ| τX ? τY |ψ〉 = 〈φ| τX ⊗ IY |φ〉 ≥ 0 for any ψ ∈ HXY , which implies positive-semidefiniteness.

Division by an operator ρA can be defined analogously as taking the star-product with its pseudo-
inverse, ρ−1

A , that is, the inverse on the support of A.
These operations allow us to combine a conditional τB|A and a marginal quantum state ρA to

form an operator that is analogous to a classical joint probability distribution in the sense that it
encodes both the correlations between the two variables specified by the conditional τB|A and the
marginal ρA:

τB|A ? ρA = ρ
1
2

AτB|Aρ
1
2

A. (2.23)

Note that, since TrBτB|A = IA and the marginal on A is normalized to unit trace, we have
Tr
(
τB|A ? ρA

)
= 1.

On the other hand, given a joint operator ρAB whose marginal we denote ρB = TrAρAB , one
can multiply by the pseudo-inverse ρ−1

B to obtain

ρAB ? ρ
−1
B = ρ

− 1
2

B ρABρ
− 1

2

B = τA|B , (2.24)

which satisfies definition 16 (since TrAτA|B = ρ
− 1

2

B ρBρ
− 1

2

B = IB by design) and therefore constitutes
a quantum conditional. If ρB does not have full rank, the conditional τA|B is only well-defined on
the support of ρB (tensored with HA).
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Combining the two previous steps produces a quantum analogue of Bayesian inversion, introduced
in proposition 4: given a conditional τB|A and a prior quantum state ρA, and denoting ρB =
TrAτB|AρA, one can obtain the conditional τA|B by taking

τA|B =
(
ρ

1
2

A ⊗ ρ
− 1

2

B

)
τB|A

(
ρ

1
2

A ⊗ ρ
− 1

2

B

)
. (2.25)

Note that the prior ρB is positive-semidefinite because the original τB|A represents a positivity-
preserving map. It follows by the same reasoning as above that this τA|B is also a quantum condi-
tional. As in the classical case, τA|B describes how one should update one’s beliefs about A upon
acquiring new information about B: the posterior ρ′A can be obtained from the posterior ρ′B by
the belief propagation rule ρ′A = TrB

[
τA|Bρ

′
B

]
. For future reference, we note that positivity of the

conditional is preserved under Bayesian inversion: if τB|A ≥ 0, then τA|B ≥ 0.

2.3.4 The classical limit

As in conventional quantum mechanics, quantum variables can become effectively classical, in the
sense that they can be described completely using classical probability theory. This limit is reached
when all operators on the associated Hilbert space that appear4 in the problem – states, conditionals,
observables and so forth – are diagonal in a single basis5, sometimes called the preferred basis.
Many of the effects we consider typically quantum, such as coherence terms and the existence of
non-commuting operators, vanish. Density matrices on a h-dimensional Hilbert space are reduced
to vectors of h non-negative numbers that add to one – that is, to probability distributions over a
set of h classical values.

Variables that are effectively classical in this sense can still be combined with non-trivial quantum
variables by the usual tensor product structure and one can define conditionals relating the two types.
Some examples are given in section 2.4.2 below. We will use the labels X and Y preferentially for
classical variables, whereas A and B denote variables that exhibit non-trivial quantum behaviour.
In analogy with classical conditional probability distributions such as P (Y |X), which is defined as
a set of probability distributions P (Y |X = x), we introduce the notation

τA|X=x ≡ 〈x| τA|X |x〉 (2.26)

for the elements of a quantum-classical conditional τA|X associated with distinct values of the classical
variable X, and similarly for other operators over both classical and quantum variables.

2.4 Inferences between two variables connected by a single causal path
This section illustrates how the formalism of quantum conditionals described in the previous section
applies to simple scenarios involving two variables. Standard quantum mechanics provides repres-
entations of causal influences between quantum variables, but the treatment of other inferences is
cumbersome at best. By contrast, the quantum conditionals formalism allows us to express belief
propagation in a unified form regardless of the causal relation (at least in the simple scenarios dis-
cussed below) and therefore treat different causal relations in a more even-handed manner. The
scenarios below were first analysed using quantum conditionals in [1], which also presents a number
of additional applications of the formalism. More general scenarios, which require a physical and
mathematical framework that goes beyond what we have introduced so far, are discussed in the next
sections.

4Note that it is possible for a quantum variable to behave in an effectively classical way due to constraints on how
an experimenter can interact with it, rather than intrinsic properties of the system. For example, one can effectively
reduce a qubit to a classical bit by demanding that it may only be prepared in eigenstates of the Pauli observable σz ,
that one may only measure the observable σz on it, and that any coupling to other systems must be diagonal in the
σz eigenbasis as well.

5The transpose, where required, must also be taken in that basis to avoid ambiguities.
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In this section and much of the rest of the thesis, we are concerned in particular with two simple
causal structures that can hold between two causally ordered variables: either they are only related
as cause and effect (CE) or only via a common cause (CC). In either case, the nodes in the graph
representing the causal structure are connected only by a single path6.

2.4.1 Inferences between cause and effect

If A and B are related as cause and effect, respectively, which is conventionally described by a
completely positive, trace-preserving map EB|A, then a rule of inference from states prepared on A
to states subsequently found on B can be written in a form analogous to classical Bayesian inference,

ρB = EB|A (ρA) = TrA

(
τ ceB|AρA

)
, (2.27)

where τB|A is simply the Jamiołkowski operator isomorphic to EB|A, defined in eq. (2.16):

τ ceB|A ≡ dATA
(
EB|A′ ⊗ IA

) [∣∣Φ+
〉 〈

Φ+
∣∣
A′A

]
. (2.28)

Let us highlight a mathematical property that will play a large role in later chapters:

Proposition 18. If two quantum variables A and B are related as cause and effect by a map EceB|A,
then EceB|A must be trace-preserving and completely positive. Equivalently, the corresponding Jami-
ołkowski operator τ ceB|A is a quantum conditional and furthermore positive under partial transposition
(PPT), i.e. TAτB|A ≥ 0. Conversely, every PPT conditional can be realized as a cause and effect
relation.

Formally, this follows from theorem 15. The physical reason for demanding complete positivity
is that a quantum channel EB|A, which represents a causal influence of a variable on its causal child,
leaves the experimenter free to prepare any input they want, including inputs that are entangled
with an ancilla A′. We demand that the output of the larger channel defined by EB|A ⊗ IA′ (the
tensor product with the identity channel on the ancilla) be a positive-semidefinite operator in all
cases, so as to ensure that it predicts non-negative probabilities for the outcomes of all measurements
one could perform on it. This means that the map EB|A must be completely positive. Cause-effect
conditionals are Jamiołkowski isomorphic to such maps. By the same physical arguments, they must
therefore be PPT.

Using the star product, one can derive a quantum generalization of the joint probability distri-
bution over cause and effect: a Hermitian operator that encodes the same correlations between A
and B as when they are related by the conditional τB|A, but also has the appropriate marginals
on both B and A. Letting ρA denote one’s prior beliefs about the input variable A, the desired
operator takes the form ρ

1
2

Aτ
ce
B|Aρ

1
2

A. We do not term this a joint state because the operator need not
be positive-semidefinite, although it must be PPT, which follows from the fact that the conditional
τ ceB|A is PPT.

As a next step, we will derive from this object a conditional that encode retrodictions: inferences
about a cause given its effect. Using Bayesian inversion, we have the following:

Proposition 19. Let A and B be two quantum variables that are related as cause and effect by
a conditional τB|A and let ρA denote the prior on A. In this case, the prior state on B is ρB =

TrA
[
ρB|AρA

]
. Then inferences from the effect B to the cause A are described by the operator

τA|B =
(
ρ

1
2

A ⊗ ρ
− 1

2

B

)
τB|A

(
ρ

1
2

A ⊗ ρ
− 1

2

B

)
, (2.29)

6If one is interested only in the type of causal relation between A and B, then, following the discussion at the
beginning of section 2.1.2, one can coarse-grain over all other variables, in particular merging them where appropriate.
For example, if A and B have two common causes, G1 and G2, one can combine these into a single variable G and
conclude that A and B are connected by a single (common-cause) path. In order to streamline the discussion, we
will consider these coarse-grained scenarios, which support only one common-cause path and one cause-effect path
between two causally ordered variables.
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which is a quantum conditional and has a positive partial transpose.

The fact that a conditional describing inferences about a cause given its effect is also positive
under partial transposition follows from proposition 18 and the fact that Bayesian inversion preserves
not only positivity, but, by extension, also positivity under partial transposition.

2.4.2 Classical-quantum cause-effect conditionals: preparations and measurements

Taking the classical limit of cause-effect conditionals gives rise to three possibilities: classical-to-
classical, classical-to-quantum and quantum-to-classical conditionals. We will provide physical in-
terpretations for forward-in-time cause-effect conditionals of these forms.

Classical-to-classical. A classical-to-classical conditional in the quantum formalism takes the
form

τY |X =
∑
yx

αyx |y〉 〈y| ⊗ |x〉 〈x| , (2.30)

and the defining properties of cause-effect quantum conditionals (as stated in definition 16 and
proposition 18) imply that {

TXτY |X ≥ 0 ⇔ αyx ≥ 0

TrY τY |X = IX ⇔
∑
y αyx = 1 ∀x.

(2.31)

These are precisely the defining properties of a conditional probability distribution; that is, the
diagonal elements of τY |X define a distribution P (Y |X) over the classical variables.

Preparation of an ensemble of states. A classical-to-quantum conditional can be written as

τB|X =
∑
x

ρxB ⊗ |x〉 〈x| , (2.32)

subject to the requirements {
TXτB|X ≥ 0 ⇔ ρxB ≥ 0

TrBτB|X = IX ⇔ TrBρ
x
B = 1 ∀x.

(2.33)

(There are no explicit coefficients αx; instead, these are absorbed into the operators ρxB .) These
properties characterize physically valid quantum states. A classical-to-quantum cause-effect condi-
tional therefore defines an ensemble of states {ρxB}, indexed by the classical variable X. It can be
interpreted as a preparation procedure that realizes one of a set of possible states depending on a
setting X.

Destructive measurement. A quantum-to-classical conditional takes the form

τY |A =
∑
y

|y〉 〈y| ⊗ τyA, (2.34)

where {
TAτY |A ≥ 0 ⇔ τyA ≥ 0

TrY τY |A = IA ⇔
∑
y τ

y
A = IA.

(2.35)

(Note that TAτ
y
A ≥ 0 if and only if τyA ≥ 0.) It can be interpreted as a measurement on a quantum

variable A which destroys the quantum system and yields different values of a classical variable Y
as outcomes. Indeed, the set of operators {τyA}y fits the definition of how a general destructive
measurement is represented in the conventional framework of quantum mechanics:
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Definition 20. A positive-operator valued measure (POVM) is an indexed set of positive-semidefinite
operators {τyA}y that sum to the identity operator,

∑
y τ

y
A = IA. The individual operators in the set

are termed POVM elements.

The probability of finding an outcome y if A was prepared in a state ρA can be obtained by
the belief propagation rule: we find P (Y = y|ρA) = TrA [τyAρA], recovering the Born rule. To gain
some intuition for POVMs, consider how they can represent a measurement of an observable M ,
which is often introduced as the first example of measurements on quantum systems: in this case,
the possible values y of the outcome variable Y are the eigenvalues of M , and the POVM elements
τyA are projectors onto the associated eigensubspaces.

Non-destructive measurement. Finally, let us introduce a slightly more general cause-effect
conditional relating classical and quantum variables, which we will refer to frequently in the coming
chapters. This conditional takes two inputs, the classical variable X and the quantum variable A,
and generates two outputs, the classical variable Y and the quantum variable B. It takes the form

τY B|XA =
∑
yx

|y〉 〈y| ⊗ |x〉 〈x| ⊗ τxyB|A, (2.36)

subject to the constraints{
TXAτY B|XA ≥ 0 ⇔ TAτ

xy
B|A ≥ 0

TrY BτY B|XA = IXA ⇔ TrB

(∑
y τ

xy
B|A

)
= IA∀x.

(2.37)

The operators τxyB|A are PPT, hence isomorphic to completely positive maps ExyB|A, but one only
obtains a trace-preserving map by summing over all y. For each x, this defines a quantum instrument:

Definition 21. A quantum instrument is a set of completely positive maps EyB|A : L (HA)→ L (HB),
indexed by y, such that

∑
y E

y
B|A is trace-preserving. It can also be represented by the set of

Jamiołkowski-isomorphic operators
{
τyB|A

}
, which must be PPT and satisfy TrB

(∑
y τ

y
B|A

)
= IA.

An indexed set of quantum instruments, such as we have here, represents the most general kind
of measurement: a classical setting X allows one to choose which instrument is realized, then the
instrument takes as input a quantum variable A and produces a classical outcome Y , but also returns
a quantum variable B, which is obtained from A by some transformation ExyB|A that may depend on
both the chosen setting and on the outcome generated by the measurement. The individual ExyB|A
associated with each outcome y need not be trace-preserving for the following reason: the trace of
the resulting operator on B, by design, gives the probability of finding the outcome y, given the
setting x and an input state ρA:

TrB

[
ExyB|A (ρA)

]
= TrBA

[
τY=y,B|X=x,AρA

]
= P (Y = y|X = x, ρA) . (2.38)

The probability of any individual outcome y is generally less than unity (depending on ρA); only
the sum over possible outcomes recovers probability 1.

Example 22. Trivial measurement. If we do not interact with system A or its evolution to B at all,
we gain no information about either – in other words, both the set of possible settings {x} and the
set of possible outcomes {y} are singular, containing only a single element each, which we denote x0

and y0, respectively. The operator τ
x0y0
B|A is therefore by itself a quantum conditional, since it satisfies

TrBτ
x0y0
B|A = TrB

(∑
y τ

xy
B|A

)
= IA. In particular, if we assume that B has the same dimension as A
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and that the free evolution is modelled by the identity channel, definition 2.16 implies

τx0y0
B|A =

hA∑
j,k=1

|φj〉 〈φk|B ⊗ |φk〉 〈φj |A . (2.39)

We note that this instrument preserves all coherence between A and B.

Example 23. Measure and reprepare. Consider an instrument from A to B that is realized by
performing a measurement on A, with setting X and outcome Y , followed by a preparation of the
variable B, which is determined only by the classical variables X and Y . The first step can be
represented by an operator of the form

τY |XA =
∑
yx

|y〉 〈y| ⊗ |x〉 〈x| ⊗ τxyA (2.40)

and a set of POVMs: each setting x defines one POVM {τxyA }y, whose elements are positive-
semidefinite operators indexed by y that add up to the identity operator:{

τxyA ≥ 0∑
y τ

xy
A = IA∀x.

(2.41)

The second step can be modelled as a preparation on B controlled by a two-variable setting, Y X,
which is represented by an operator of the form

τB|Y X =
∑
yx

ρxyB ⊗ |y〉 〈y| ⊗ |x〉 〈x| (2.42)

and an ensemble {ρxyB }xy of positive-semidefinite, trace-one operators indexed by Y and X. One
can combine the two steps just as one would classical conditional probability distributions, using
the fact that X and Y are classical, so that the ordering of operators does not matter, and the fact
that the preparation of B is independent of A, τB|Y XA = τB|Y X , to write

τY B|XA = τB|Y XτY |XA =
∑
yx

|y〉 〈y| ⊗ ρxyB ⊗ τ
xy
A ⊗ |x〉 〈x| . (2.43)

This implies that the operators associated with the overall measure-and-reprepare instrument take
the product form,

τxyB|A = ρxyB ⊗ τ
xy
A . (2.44)

Physically, this implies that the transformation of A into B is not coherence-preserving.

As one can see by these examples, quantum instruments can transform the systems on which
they act in very general ways, and it is sometimes convenient to assume particular, simple forms
for these transformations. One form in particular will be used repeatedly in the coming chapters,
hence we introduce it here. It is cast in the language of conventional quantum mechanics, wherein
an instrument in considered to provide both a specification of a measurement on the original state of
a quantum system and an update rule for predicting the state of the system after the measurement.
It is often assumed that the measurement is realized in such a way that the update rule takes the
following form:

Proposition 24. (von Neumann-Lüders update rule) If a quantum system, initially in a state ρ, is
subjected to a projective measurement and yields an outcome associated with the projector Πy, the
then state of the system after the measurement is

ρ′ =
1

Tr [ρΠy]
ΠyρΠy. (2.45)

(If the projector is rank-one, this reduces to ρ′ = Π.)
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The above are merely examples, illustrating how common elements of the conventional formalism
can be represented as quantum conditionals. Similar methods can be used to obtain the classical
limit of other operators, for instance the common-cause conditionals introduced below.

2.4.3 Inferences along a common-cause path

The relation between two quantum variables that are connected by a common cause is conventionally
represented by a joint state ρAB . One can acquire information about A by performing a POVM
measurement {EyA}y, whose elements are indexed by the classical measurement outcome Y . Upon
finding one value of Y , one can update one’s beliefs about B to the normalized state

ρyB =
1

P (Y = y)
TrA (ρABE

y
A) . (2.46)

This manner of updating one’s beliefs has been studied under the name Einstein-Podolsky-Rosen
(EPR) steering [36, 37].

We wish to recast this rule in a form that resembles the general belief propagation rule more
closely, specifically as

ρB|Y=y = TrA
(
τB|AτA|Y=y

)
, (2.47)

thereby putting this scenario on equal footing with inference along CE paths and allowing us to read
off the appropriate definition of a quantum conditional that describes a common-cause relation. To
this end, note that a conditional τB|A encodes a map from what one knows about A to what one
can infer about B. That is, the input should be a state of belief on A, just as the input into a CE
conditional is a state ρA. The POVM {EyA}, however, is represented in the inference framework as a
conditional of the form τY |A. We therefore use Bayesian inversion to find τA|Y =

∑
y τA|Y=y |y〉 〈y|,

which encodes what one can retrodict about A upon finding a measurement outcome y. We find

τA|Y=y =
1

P (Y = y)
ρ

1
2

AE
y
Aρ

1
2

A, (2.48)

which predictably depends on our prior knowledge ρA. Comparing with eq. (2.47), we identify the
appropriate operator for belief propagation as

τB|A = ρ
− 1

2

A ρABρ
− 1

2

A , (2.49)

as one would have expected using Bayesian inversion7. Note that, if the marginal is maximally
mixed, ρA = 1

hA
IA, then the CC conditional is simply proportional to the joint state ρAB .

Proposition 25. If two quantum variables A and B are related by a common cause that prepares
the bipartite density operator ρAB with marginal ρA = TrBρAB, then the Jamiołkowski operator de-
scribing inferences from A to B is τ ccB|A = ρ

− 1
2

A ρABρ
− 1

2

A , which is a quantum conditional and further-
more positive-semidefinite. The corresponding map EccB|A is therefore trace-preserving and completely
co-positive. Conversely, every positive-semidefinite conditional can be realized in a common-cause
structure.

Proof. Let us first verify that the operator τ ccB|A defined by a CC relation is in fact a quantum
conditional, that is, that the map EccB|A is trace-preserving. This is ensured by construction: since

7The work on EPR steering provides an interesting perspective on the conditional τB|A = ρ
− 1

2
A ρABρ

− 1
2

A : In the
study of steering, the analysis is easier in the cases wherein the marginal ρA is maximally mixed. If this is not the case
for the state ρAB that one is originally given, one can generate a modified state that does have the desired property,
ρ̃AB = 1

dA
ρ
−1/2
A ρABρ

−1/2
A , which is of course proportional to the quantum conditional derived here. In the context

of steering, ρ̃AB is obtained by local filtering: a quantum instrument followed by post-selection on one particular
outcome.
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τ ccB|A is the star product of ρAB with ρ−1
A , it follows that TrBτ ccB|A = IA. Similarly, it is easy to see that

τ ccB|A inherits positivity from the state ρAB . In the special case wherein the marginal ρA = TrBρAB
is the maximally mixed state, the two differ only by a normalization factor: τ ccB|A = dAρAB . Finally,
the properties of the corresponding map follow by theorem 15.

We note that EccB|A need not be completely positive. A quantum channel, which corresponds to a
cause-effect conditional, must be CP in order to ensure consistency (rule out negative probabilities)
because an experimenter can prepare any input for the channel, in particular an entangled state
with an ancilla. The map EccB|A, on the other hand, represents only an inference, and the input into
this particular inference map are retrodictive states of belief about A, τA|Y=y. One can construct
scenarios wherein one can assign a bipartite operator τAA′ that represents a joint retrodictive state
of belief about A and an ancilla A′, which is then input into the inference map EccB|A, yielding

τBA′ =
(
EccB|A ⊗ IA′

)
(τAA′). However, the operator τBA′ is not a conventional joint quantum state,

since it does not represent a preparation on two systems, and it is not required to have the same
mathematical properties. Specifically, it need not be positive-semidefinite, but (as one can show),
it must have a positive partial transpose. For this reason, we do not demand complete positivity of
common-cause inference maps, but rather complete co-positivity.

2.5 General causal relations
While we have so far considered only cases wherein two variables, A and B, are related either purely
as cause and effect or purely by a common cause, in general the mechanisms realizing these two
possibilities can act simultaneously. This scenario serves as a toy model for exploring general causal
relations between any number of quantum variables. In these cases, we will argue that one must split
a quantum variable into two versions of itself in order to meaningfully discuss what one knows about
the variable and its causal relations. Based on this, we will introduce an operator that encodes the
general causal relations among a set of quantum variables and propose a causal model to explain
them.

In our two-variable toy model, we will continue to assume that the variables are causally ordered,
with A preceding B, so that the cause-effect relation has A as the cause of B. The general causal
structure in this case is depicted in Fig. 2.3a. A concrete realization of this general causal relation
is the circuit depicted in Fig. 2.3b: if the gate EB|AE takes the form EB|A ⊗ TrE , transforming the
input A into B, then it realizes a CE relation; if EB|AE = EB|E ⊗TrA, then A and B are related via
E and therefore via the common cause, and in general, one finds a combination of both scenarios.

2.5.1 Splitting quantum variables

We will argue the following:

Proposition 26. In order to describe the general causal relation between a quantum variable A and
other surrounding variables, one must replace A with two distinct variables, denoted C and D, that
are associated with distinct Hilbert spaces, HC and HD, each of the same dimension as HA. The
causal structure is modified as follows: all causal influences acting on A, originating from its causal
parents, are made to act on C, whereas all causal influences of A on its causal children are made
to originate from D. We refer to C and D as pre-intervention and post-intervention versions of A,
respectively.

This splitting and the attendant changes to a generic causal structure are illustrated in Fig. 2.4.
We note that, among the variables in the original causal structure, C has no causal children and D
has no causal parents. This allows an agent to learn about the variable A by measuring C (which
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Figure 2.3: (a,b) The general causal relation between two causally ordered variables, A and B, is a
combination of a CC relation, which is mediated by an ancillary variable E, and a CE relation. It
can be depicted as an abstract causal structure and implemented as a circuit fragment (dashed box).
(c) A complete description of the causal relation requires one to distinguish two versions of A: the
pre-intervention version of A, denoted C, which is purely CC-related to B, and the post-intervention
version of A, denoted D, which is purely CE-related (see proposition 26). (d) The general causal
structure relating A and B can be realized with just two circuit elements: the preparation of a
bipartite state on CE and a gate from DE to B. The input-output functionality of such a circuit is
represented by the causal map, ECB|D (see definition 30).

summarizes the influences of all parents of A) and preparing8 D (thereby probing its effect on all
children of A) without overriding any of the causal mechanisms that relate the original A to the
surrounding variables.

The necessity of associating not one, but two Hilbert spaces with a quantum variable has mani-
fested itself in several contexts, such as the process matrix framework [38] and the analysis of open
quantum systems dynamics [39]. However, the framework of causal models provides a much clearer
physical motivation for this mathematical trick, which is discussed in the remainder of this section.
The arguments are stated for the case of just two variables, but one can see that a similar reasoning
holds for any causal structure surrounding A. In the two-variable case, after splitting, the post-
intervention version of A, D, is related to B purely as cause and effect, whereas the pre-intervention
version of A, C, has a purely common-cause relation to B. In this manner, we return to the simple
case wherein any pair of variables is related only by a single causal path. The causal structure and
corresponding quantum circuit are shown in Fig 2.3c,d.

Linearity of inference rules. Let us begin by noting that, given a general causal relation between
A and B (for example a combination of CC and CE mechanisms, as shown in Fig. 2.3a), there exists
no linear map from a single version of L (HA) to L (HB) that describes inferences from A to B.
The reason is that there are generally two paths by which learning about A allows one to update
one’s beliefs about B. On the one hand, A has a direct causal influence on B, via the CE path, so
that learning about A allows one to make an inference about B. On the other hand, learning about
A allows one to make an inference about E, which in turn allows one to make an inference about
B. If A and B were classical variables, this would not cause any further complications: one could
still define a conditional probability distribution, since each value of A would entail a well-defined
probability distribution over B, P (B|A = a). However, if A and B are quantum variables, the
existence of two paths along which one can make inferences causes an unusual effect. We illustrate
this with an example:

8In general, the instrument chosen by the agent may not be of the measure-and-reprepare type, but allow a non-
trivial causal influence of C on D. However, the important point is that this instrument is chosen by the agent and
that it is not part of the pre-existing causal relations between A and the surrounding variables. For this reason, we
do not include a causal influence of C on D in depictions of the modified causal structure, such as Fig. 2.4.
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Figure 2.4: Splitting a quantum variable A into the pre- and post-intervention versions, C and D:
all incoming causal influences from causal parents of A are transferred to C, whereas all outgoing
causal influences acting on causal children of A now originate from D.

Example 27. In the circuit shown in Fig. 2.3d, suppose that C, D and E are qubits and let
ρCE = |Φ+〉 〈Φ+|, where |Φ+〉 ≡ 1√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) and {|0〉 , |1〉} is the eigenbasis of the

Pauli operator σz. Suppose that we acquire information about A using a projective measurement
that gives an outcome Y = 0 if the state was Π0 ≡ |ψ0〉 〈ψ0|, and Y = 1 for Π1 = |ψ1〉 〈ψ1|, for
some orthogonal pair {|ψ0〉 , |ψ1〉}. Consider first what we can retrodict about C upon leaning Y :
this is encoded in a classical-to-quantum conditional, which takes the form τC|Y =

∑
y ρ

y
C ⊗ |y〉 〈y|,

where the ρyC are quantum states. Considering that the prior ρC = 1
2 IC is maximally mixed, our

retrodictions about C are simply pure states, ρyC = Πy. In order to derive an inference about E, we
construct

τE|C = ρ
− 1

2

C ρCEρ
− 1

2

C =

1∑
j,k=0

|jj〉 〈kk| . (2.50)

Now we use τE|Y = TrCτE|CτC|Y =
∑
y

[
TrCτE|Cρ

y
C

]
⊗ |y〉 〈y| to make inferences about E, finding

ρyE ≡ TrC
[
τE|Cρ

y
C

]
=

1∑
j,k=0

|j〉 〈k|E · 〈k| ρ
y
C |j〉 = ΠT

y . (2.51)

The projector ΠT
y is the transpose of ρyC relative to the basis {|0〉 , |1〉} on which ρCE was defined.

Let us now consider what we can infer aboutD. To this end, suppose that the measurement obeys
the von Neumann-Lüders update rule (proposition 24), so that the state after the measurement is
simply the one corresponding to the outcome: ρyD = Πy. For the purpose of this pedagogical
example, we furthermore take HB to be isomorphic to the product HD ⊗HE and take the the map
from DE to B to be the identity map, I. In this case, we find that the state on B that we infer if
the measurement on A produced outcome y is

ρyB = IB|DE
[
(Πy)D ⊗

(
ΠT
y

)
E

]
= Πy ⊗ΠT

y , (2.52)

which contains two copies (up to transposition) of the state Πy.

The circuit in this example realizes a map that essentially takes a single generic pure state to two
copies of that state (up to transposition of one copy): if the measurement on A yields the outcome
associated with the projector Πy, then the inferred state on B is ρyB = Πy ⊗ΠT

y , for any Πy. This is
highly unconventional for quantum mechanics, but it does not actually constitute a violation of the
no-cloning principle. To see this, recall that the no-cloning theorem is only violated if we construct
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a circuit that takes a quantum system in an unknown state as input and produces two copies of that
state as output. In example 27, by contrast, an agent interacting with the circuit does not have the
power to input a generic state ρA of his choice, but can at most choose on which basis she wishes
to measure A and then passively record which states are found. Equivalently, one may note that
conventional quantum channels, which must obey consistency constraints such as linearity and the
no-cloning theorem, always describe causal influences. By contrast, the map from A to B that is
defined by the procedure in example 27 describes only an inference, and for this reason it is not
subject to the same consistency conditions.

Although non-linearity does not violate any fundamental principles of physics, it is generally an
undesirable property in an inference map. The reason is that convex combinations play a prominent
role in probability theory by representing ignorance. For example, if one acquires information about
A by a measurement that distinguishes among a set of orthogonal states {|ψi〉}i and finds either |ψ0〉
or |ψ1〉, but one is not sure which of the two was obtained, then one would expect the corresponding
state on B to be given by a suitable convex combination of what one would infer upon finding |ψ0〉
and what one would infer upon finding |ψ1〉.

Independent information. A second, stronger reason for not attempting to define an inference
map from L (HA) to L (HB) is that, in the general case, what one learns about the variable A by
interacting with it in some manner cannot be represented by a linear operator on a single copy of
HA. To see this, suppose that one intervenes on A with an instrument

{
EyD|C

}
y
and learns that the

outcome variable Y took some value y, and let ρC be a quantum state encoding any prior information
one may have had about the system. Based on this information, one can make a prediction about
the post-intervention state, which is

ρyD =
1

Tr
[
EyD|C (ρC)

]EyD|C (ρC) , (2.53)

and a retrodiction about the pre-intervention state,

ρyC =
1

Tr
[
EyD|C (ρC)

]ρ 1
2

C

(
TrDτ

y
D|C

)
ρ

1
2

C , (2.54)

where τyD|C denotes the Jamiołkowski representation of EyD|C . Except under special circumstances9,
the two do not coincide. In this case, therefore, one can only describe what one learns from the
instrument with two operators, one on each version of A. For a general instrument, what one learns
about C and D is represented by a general operator on HC ⊗HD, which need not take the form of a
product, ρyC ⊗ ρ

y
D. (For example, in the case of the trivial measurement (example 22), for instance,

we observed that the element τx0y0
D|C does not factorize.)

Characterizing the causal relation to other variables. Distinguishing between C and D
is not only a matter of representing a complete description of the variable A, but also key to
fully characterizing its causal relation to other variables. In the case where A is related to B
by a combination of cause-effect and common-cause mechanisms, distinguishing C and D is the
easiest way to discern these two causal mechanisms. This is well known in classical statistics. The
paradigmatic example is a drug trial, with the variable A encoding whether a patient took the drug
and the variable B representing their recovery. The goal is to verify that A causally influences B and
to rule out the possibility that the observed correlations between A and B are due to an unobserved
common cause. The most straightforward way to verify a causal influence is by an intervention:

9This possibility is further explored in section 3.2.
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one assigns each patient either the drug or a placebo in a way that guarantees its independence of
any potential common causes – that is, at random. The assigned treatment is the post-intervention
version of A, denoted D. The relation between D and B encodes the cause-effect component of the
relation between A and B. At the same time, one could track patients’ intent to take the drug, which
is the pre-intervention version of A, denoted C. The relation of C to B encodes the common-cause
component of the relation between A and B. Splitting A into C and D therefore allows one to give
a full description of the causal relation between A and B.

When splitting is not necessary. The above arguments become moot in cases wherein only one
of the two pieces of information about A is actually relevant for making inferences; in other words,
wherein A has either only parents or only children among the remaining observed variables. (Indeed,
the definitions of C and D in proposition 26 are designed to take advantage of this simplification: the
fact that C has no children among the other variables in the model ensures that only retrodictions
about C are relevant, and conversely for D. If C or D had both parents and children, then they
would again need to be split into two versions, leading to an infinite regress.)

In the example where A is related to a single, causally posterior B, if the relation is common
cause, then only ρC is relevant, whereas if the relation is purely cause-effect, then only ρD is relevant.
In either case, inferences from A to B do take the form of a linear map EB|A : L (HA) → L (HB).
This scenario and its consequences are explored in section 4.1. Similarly, since we assume that A
and B are causally ordered, with A preceding B, we note that B has only causal parents among
the remaining variables. For this reason, the post-intervention version of B is irrelevant for our
purposes, and it is sufficient to consider a single copy of the variable. Without the promise of causal
ordering, we would have to split B as well.

Note that the above arguments implicitly assume that one wants to make some statement in-
volving beliefs about A: what one learns from measurements or preparations, what one can infer
about B given certain information about A, or how to distinguish the different ways in which know-
ledge of A implies knowledge of B. In order to make such statements operationally meaningful, one
must probe A by some instrument, and this is what forces us to split the variable. If one wants
to make statements that do not involve beliefs about A, for instance if A is only an intermediary
variable along a cause-effect path between two other quantum variables, B and F , and one seeks
τB|F , then there is no need to probe A. Formally, one can represent the fact that one does not probe
A by inserting the trivial instrument (that is, the identity channel from example 22) between the
pre- and post-intervention versions and tracing over the associated Hilbert spaces.

2.5.2 General joint and conditional operators and quantum causal models

Splitting a quantum variable A ensures that both of the resulting new variables are accessible to
agents who seek to acquire information about them, in the following sense: Since C has no children
among the variables in the model, an agent can apply a measurement on C without overriding the
existing causal relations in the model, and, based on the outcome, make retrodictions about C.
Similarly, D has no parents in the model, so that an agent can prepare D without modifying the
existing causal relations and make predictions about D based on the preparation setting. Once all
the variables {Ai} in a causal model have been split into {Ci} and {Di}, the fact that all the new
variables are accessible to an agent – either by prediction or by retrodiction – ensures that one can
define joint and conditional operators on more than two variables in an operationally meaningful
manner. We will argue the following:

Proposition 28. Consider a set of quantum variables {Ai} and let C ≡ {Ci} and D ≡ {Di} denote
the sets of pre- and post-intervention versions of the {Ai}, as defined in proposition 26. Then the
causal relations among the {Ai} can be represented as a quantum conditional τC|D ∈ L (HC ⊗HD)
that is positive under partial transposition on the post-intervention variables, TDτC|D ≥ 0.
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To see why this holds, let us consider the necessary mathematical properties of joint and con-
ditional operators on subsets of {Ci, Di}. For this discussion, it is useful to recall that joints and
conditionals are related by the star product, as detailed in section 2.3.3, and that switching between
the two forms leaves properties of positivity and positivity under partial transposition unchanged.

One can distinguish three classes of operators: those that act only on pre-intervention variables
(i.e. a subset of C), those that act only on the post-intervention variables (D) and those that combine
both. An operator over a set of pre-intervention variables can be interpreted as a multipartite
preparation, which can be probed by any measurement of suitable dimension. It is therefore subject
to the same consistency constraints that apply to single-variable quantum states (definition 11) and
two-variable common-cause joint operators (section 2.4.3): that is, it must be positive-semidefinite.
Similarly, an operator over a set of post-intervention variables can be interpreted as part of a
measurement (specifically an unnormalized POVM element, see definition 20), being subject to
the same constraints, which dictate that it must also be positive-semidefinite.

Now consider an operator that acts on both pre- and post-intervention versions of the variables
(for notational simplicity, suppose that it acts on all of C and D). If we cast it in the form of a
conditional, conditioning on D, then it can be interpreted as a quantum channel10: given the inputs
D, which an agent is free to prepare, the conditional specifies the outputs C, which the agent can
then measure. As we have argued before, such a scenario must be represented by a completely
positive map. If we wish to maintain the form of the quantum belief propagation rule, eq. (2.13),
this means that the corresponding conditional must be positive when taking the partial transpose
with respect to the inputs of the channel, i.e. the post-intervention variables D.

Given the conditional τC|D, one can derive various inferential conditionals and joint states over
different subsets of variables using the mathematical tools developed earlier. Among other im-
plications, this resolves a limitation of the star product, pointed out in section 2.3.3: that the
mathematical prescription (2.22) does not necessarily yield a Hermitian operator, or may not even
be uniquely defined, in more general cases such as the three-variable chain. In retrospect, one may
argue that there is no reason why there should exist a generalization of a joint state, that is, an
operator that encodes joint beliefs, in cases such as the three-variable chain. Operationally, learning
about the three variables requires one to probe all of them, in particular the middle one, which
has both a parent and a child among the observed variables and therefore must be split in order to
represent what one has learned. After the splitting, all variables are once again only connected by
single causal paths, in which case the star product causes no problems.

Quantum causal models. Having established how to generalize joint and conditional probability
distributions over a set of quantum variables in an operationally meaningful manner, let us finally
propose the following:

Proposition 29. Consider a set of quantum variables {Ai} and suppose that the causal influences
between them, as determined by interventions, can be represented by a directed acyclic graph. Then
one can describe their relations by a causal model consisting of (1) the causal structure, which is
a directed acyclic graph whose nodes represent the Ai and whose edges ("arrows") represent causal
influences, and (2) the conditionals: quantum cause-effect conditionals that encode how each Ai
depends on its causal parents, which are specified by the graph.

In principle, it is possible that a set of quantum variables exhibit patterns of influences that
cannot be represented as a directed acyclic graph (see [38], for an example). In these cases, our
remarks about splitting still hold, but instead of autonomous causal mechanisms (represented by

10In general, if the events described by the causal model unfold over some period of time [t1, tN ], then different Ci
may become available for measurement at different times and different Di may be required to be prepared at different
times. This is unusual for a quantum channel with inputs {Di} and outputs {Ci}. However, it is always possible to
prepare all Di together before t1 and measure all Ci together after tN , thereby recovering the more familiar setting
of a quantum channel.
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distinct conditionals), one may have to allow an overall map from the {Di} to the {Ci} which cannot
be decomposed into individual maps for each Ci (at least in the simple manner that is familiar from
classical causal modelling). It is an open question how the central ideas of causal modelling can
be applied to such scenarios, but the results presented in chapter 5 of this thesis may provide a
foundation for considering this question.

2.5.3 General causal relations between two causally ordered variables

This final section focuses on special cases of the previous results for the scenario of only two causally
ordered quantum variables, which will be used heavily throughout the remainder of this thesis as a
pedagogical example to illustrates more general effects.

The causal map is an instance of the general conditional introduced in proposition 28 (recalling
that it is not necessary to split B):

Definition 30. Let A and B be two quantum variables, with A causally prior to B and let C
and D denote the two versions of A introduced in proposition 26. A causal map relating A and B
is a completely positive and trace-preserving map ECB|D : L (HD) → L (HC ⊗HB) such that its
marginal factorizes as

TrBECB|D = ρC ⊗ TrD, (2.55)

for some ρC .

In order to provide some intuition for the physical meaning of causal maps, let us consider two
simple examples: If the causal relation between A and B is purely cause-effect, then the causal map
reduces to

EceCB|D = ρC ⊗ EB|D, (2.56)

that is, a quantum channel from D to B combined with the preparation of a fixed state on C. If
the causal relation between A and B is purely common-cause, the causal map prepares a bipartite
state on CB, regardless of the input provided at D:

EccCB|D = ρCB ⊗ TrD. (2.57)

Using this definition, we can state the following:

Theorem 31. Let A and B be two quantum variables, with A causally prior to B and let C and D
denote the two versions of A introduced in proposition 26. Then the causal relation between A and
B can be represented by a causal map ECB|D.

Proof. In order to see that the general relation between two causally ordered quantum variables can
be represented as a causal map, consider a circuit fragment that implements this relation, which is
illustrated in Fig 2.3d: the circuit prepares the pre-intervention version of A, denoted by C, possibly
in a joint state with some ancillary degrees of freedom, which we denote E. The circuit then receives
the post-intervention version of A, denoted by D, and can use both D and E to generate its final
output, B. The functionality of this circuit, which specifies the causal relation between A and B, can
be represented – like any other quantum circuit – by a linear map from the input, D, to the outputs,
C and B, which we denote ECB|D : L (HD)→ L (HC ⊗HB). This map must be completely positive
in order to ensure that, if one prepares D in an entangled state with an ancilla D′ and inputs D
into the circuit while applying the identity channel to D′, then the resulting operator on D′, C and
B is positive-semidefinite.

Unlike the maps representing conventional quantum channels, the causal map is also subject to
a second constraint: because the output C, which is the pre-intervention version of A, is causally
prior to the input D, it is impossible for C to be causally influenced by D. This implies that the
marginal TrBECB|D must factorize, and therefore ECB|D satisfies the definition of a causal map.
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Conversely, any causal map can be realized by a circuit of the form Fig. 2.3d, by choosing the
appropriate circuit elements ρCE and EB|DE . One can see this explicitly as follows: let dA denote
the Hilbert space dimension of C and D, and let E be a quantum variable of the same Hilbert space
dimension. Given the causal map ECB|D, denote ρC ≡ TrB

[
ECB|D

(
1
dA

ID
)]

and take

ρCE = ρ
1
2

C

(∣∣Φ+
〉 〈

Φ+
∣∣
CE

)
ρ

1
2

C . (2.58)

The second component of the circuit, the gate EB|DE , can be specified by its Jamiołkowski operator,
τB|DE , which we choose as follows. Let τCB|D be the Jamiołkowski operator representing the causal
map and consider the operator

τB|CD ≡ TC
(
ρ
− 1

2

C ⊗ IBDτCB|Dρ
− 1

2

C ⊗ IBD
)
. (2.59)

Note that TrBτB|CD = IC⊗ID (because of the defining property (2.55) of causal maps), hence τB|CD
is a quantum conditional, justifying the notation we chose. The partial transpose appearing in its
definition ensures that the conditional τB|CD is PPT with respect to both of the variables on which
we are conditioning, TCDτB|CD ≥ 0. This is the property we expect to see in τB|DE , which is a cause-
effect conditional. Finally, noting that τB|CD is an operator on HB ⊗HC ⊗HD but that formally
HC = HE , consider an operator of the same form acting on HB ⊗HE ⊗HD: take τB|DE = τB|CD,
where we identify the Hilbert spaces of C and E. Using this conditional together with ρCE from
above, it is easy to verify that we recover the conditional that is Jamiołkowski-isomorphic to the
original causal map, ECB|D:

τCB|D = TrE
[
τB|DEρCE

]
. (2.60)

Mathematical objects that are closely related to the causal maps and more general conditionals
defined here have appeared before in the context of alternative formulations of quantum theory and
have been studied by a number of authors, for example under the name of quantum combs [40],
operator tensors [41], process matrices [38] and theM-matrix [39]. However, the interpretation and
implications in terms of causal models and inference have not received much consideration except
in [1], on which the formalism used in this thesis builds.

Causal tomography is a method for characterizing a causal map:

Definition 32. The term causal tomography refers to an experimental procedure and subsequent
analysis that yields a complete characterization of an unknown causal map.

This section details how to obtain an experimental characterization of an unknown causal map
that is provided in the form of a black-box quantum circuit. The analysis builds on the fact that
the space of operators on a Hilbert space, L (H), is a vector space itself. It is equipped with an
inner product, the Hilbert-Schmidt inner product 〈ρ, τ〉 ≡ Tr [ρτ ] ∀ρ, τ ∈ L (H), and admits an
orthonormal basis.

In essence, one can use informationally complete sets of preparations on the input (D) and
measurements on the outputs (C and B) to evaluate the inner product of the unknown Jamiołkowski
operator τCB|D with the elements of bases of the operator space L (HC)⊗L (HB)⊗L (HD), then use
the respective dual bases to reconstruct τCB|D explicitly. Let the set of operators {P s}, indexed by
s, be a basis of the operator space L (HC), and similarly {Qu} for L (HB) and {Rt} for L (HD). Let{
P̄ s
}
denote the basis of L (HC) that is dual to {P s}, that is, such that Tr

[
P sP̄ s

′
]

= δ (s, s′), and

similarly let
{
Q̄u
}
denote the dual of {Qu} and

{
R̄t
}
the dual of {Rt}. In terms of these operators,

one can define the coefficients

Cstu = Tr
[
τCB|DP

s
C ⊗QuB ⊗RtD

]
, (2.61)
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and explicitly reconstruct
τCB|D =

∑
stu

CstuP̄ sC ⊗ Q̄uB ⊗ R̄tD. (2.62)

In the following, we illustrate the abstract paradigm with a concrete example for qubits. In this
case, the extended set of Pauli operators,

σ0 ≡
(

1 0
0 1

)
σ1 ≡

(
0 1
1 0

)
σ2 ≡

(
0 −i
i 0

)
σ3 ≡

(
1 0
0 −1

)
, (2.63)

forms an orthonormal, self-dual11 basis of the space of linear operators. Therefore, if we evaluate
the inner products

Cstu ≡ Tr
[
τCB|Dσ

s
C ⊗ σuB ⊗ σtD

]
(2.64)

for all combinations of s, t, u ∈ {0, 1, 2, 3}, then we simply have

τCB|D =
1

8

3∑
stu=0

CstuσsC ⊗ σuB ⊗ σtD. (2.65)

Note that the Pauli operators with j 6= 0 are traceless, and therefore not valid quantum states that
can be prepared by themselves, nor are they positive-semidefinite, which implies that they cannot
be elements of a POVM. However, one can use pure-state preparations of individual eigenstates of
the non-trivial Pauli operators and projective measurements that distinguish these states. To this
end, let s′, t′, u′ ∈ {1, 2, 3} denote the restriction of s, t, u to the indices corresponding to non-trivial
Pauli observables and let the projector Πs′c denote the eigenstate of σs

′
with eigenvalue12 c, and

similarly Πu′b and Πt′d, with c, b, d ∈ {±1}. This allows us to evaluate

TrCBD

[
τCB|D(Πs′c

C ⊗Πu′b
B ⊗Πt′d

D )
]

= P (cb|ds′t′u′) (2.66)

by finding the probability of obtaining the eigenvalues c and b in measurements of the observables
σs

′

C ⊗σu
′

B , assuming that the input on D was an eigenstate of σt
′
with eigenvalue d. The experiment

is shown schematically in Fig. 2.5. In order to obtain the inner product with the full Pauli operators,
we note that multiplying each projector Πs′c by the associated eigenvalue c and adding them gives∑
c cΠ

s′c = σs
′
for s′ 6= 0. It follows that we can obtain the correlators for s′, t′, u′ ∈ {1, 2, 3} by

taking ∑
c,b,d=±1

cbd P (cb|ds′t′u′) = Tr
[
τCB|Dσ

s′

C ⊗ σu
′

B ⊗ σt
′

D

]
= Cs′t′u′ . (2.67)

We now consider how to obtain the Cstu when one or more indices are zero. Note that if we add
the projectors without multiplying by the respective eigenvalues, we obtain

∑
c Πs′c = σ0 for any

choice of s′ ∈ {1, 2, 3}. It follows that the marginals of P (cb|ds′t′u′) obtained by tracing out one of
the eigenvalues are independent of the choice of the corresponding observable:

∑
d P (cb|ds′t′u′) = 2P (cb|s′u′) ∀t′∑
b P (cb|ds′t′u′) = P (c|ds′t′) ∀u′∑
c P (cb|ds′t′u′) = P (b|dt′u′) ∀s′

and


∑
bd P (cb|ds′t′u′) = 2P (c|s′) ∀u′t′∑
cb P (cb|ds′t′u′) = 1 ∀s′u′t′∑
cd P (cb|ds′t′u′) = 2P (b|u′) ∀s′t′.

(2.68)

11Up to normalization, since Tr
[
σjσj

]
= 2.

12Note that here lower-case c denotes the value of a classical variable, namely an eigenvalue, that is obtained by
a measurement on a quantum variables denoted by capital C, and similarly the eigenvalue d indexes preparations of
the quantum variable D. In most cases we will use different upper-case letters for a quantum and a classical variable,
reserving a lower-case version of the latter for the value that the classical variable takes. However, in the present
section (and several others that build on it), there is little need to distinguish between the classical variable and the
value it takes, which allows us to use the same letter to label the associated quantum variable. We hope that, by
labelling the eigenvalues in such an evocative manner, it will become easier to keep track of which quantum system
they pertain to.
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Figure 2.5: Causal tomography provides a complete characterization of the causal relation between
two causally-ordered quantum variables, A and B. It requires tomographically complete sets of
measurements on C and B, indexed by the settings (choice of observable) s and u and producing
outcomes (eigenvalues) c and b, respectively, and a complete set of preparations on D, indexed by
the choice of observable, t, and eigenvalue, d.

Once one has computed these marginals from the observed distributions, one can directly read off
Cs′0u′ = 2

∑
cb cbP (cb|s′u′)

Cs′t′0 =
∑
cd cdP (c|ds′t′)

C0t′u′ =
∑
bd bdP (b|dt′u′)

and


Cs′00 = 2

∑
c cP (c|s′)

C0t′0 =
∑
d d = 0

C00u′ = 2
∑
b bP (b|u′)

(2.69)

Note that, since C precedes D in time, it cannot depend on D. Hence P (c|ds′t′) = P (c|s′) for all
d and t′, and consequently Cs′0t′ = 0. By a similar reasoning, one can also deduce that the final
coefficient is C000 =

∑
d 1 = 2. This completes the set of required inner products and allows one to

reconstruct τCB|D explicitly using eq. (2.65).
We note that this algebraic reconstruction is mainly intended to prove that experimental data of

the form Cstu contains sufficient information for a reconstruction of τCB|D, and for this reason it is
derived under the assumption of an ideal experiment. In a more realistic setting, the measured values
of the Cstu are generally subject to noise, and consequently a naïve linear inversion as described here
would likely yield unphysical results (such as a causal map ECB|D that is not completely positive
or violates the condition TrBECB|D = ρC ⊗ TrD). Under these circumstances, one can use a more
robust least-squares fit to find the causal map that best fits the data. This technique is detailed in
section 5.4, which describes an experiment involving causal tomography.

In a similar vein, note that the choice of using projective measurements on C and B and pre-
parations of pure states on D only served to simplify the mathematical derivation. In principle, one
can use generic POVM measurement on B and instruments on A (i.e. maps from C to D) or other
experiments, such as joint measurements on C and B, to probe τCB|D. The only requirement for
ensuring a complete characterization of the causal map is that the chosen operators form a spanning
set of L (HC ⊗HB ⊗HD).

Finally, we note that, in the limiting cases of purely cause-effect or purely common-cause re-
lations, causal tomography reduces to conventional tomography of channel and bipartite states,
respectively. In these cases, the causal map factorizes as shown in eqs. (2.56) and (2.57), respect-
ively. Appendix A.1 details how, in these two scenarios, causal tomography yields a characterization
of the channel EB|D and the state ρCB , respectively.
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3 Probing quantum variables
A central application of causal models, and in fact a core task of science in general, is to make
predictions or retrodictions in a network of related variables. To this end, one must first acquire
information about the subset of variables on which one wishes to condition; that is, one must
probe them using some interaction. In a classical world, there is little subtlety to this process: it
is generally possible to simply observe the value of a variable. Moreover, this value constitutes a
complete description of the variable, in the sense that any previous or subsequent observation (until
its state is changed by some transformation) must yield the same information: the variable is found
to take the same value. Classical measurements do not, by default, disturb the variable, in the sense
that the variable both before and after the interaction has the same value, which is merely revealed
by observation.

A quantum variable, by contrast, is not completely described by a single real value, because
there exists a set of observables, each of which produces one value if evaluated, yet which cannot
be evaluated jointly. Measuring one observable can alter the probability distribution over outcomes
in a subsequent measurement of an incompatible observable. This operational fact is often loosely
described by saying that the act of measuring somehow disturbs the quantum system, although the
hypothesis that a quantum system even has underlying states (in the sense of specifications of the
outcomes of all possible measurements) leads to a host of other issues.

This section analyses different ways of probing quantum variables and investigates how they
differ from the straightforward passive observation of classical variables, from the point of view of
causal models. Specifically, we are interested in the implications of different probing schemes for a
paradigmatic problem in causal discovery: a variable A is related to a later variable B either as cause
and effect or via a common cause, and the task is to determine which relation is realized. In the
case of classical variables, passive observation of A is insufficient to answer this question, because it
does not reveal independent information about the pre- and post-intervention versions of A. By this
standard, under what conditions does the act of probing a quantum variable become like classical
passive observation?

A likely candidate for a quantum probing scheme that resembles classical passive observation
are weak measurements, which we analyse in section 3.1. However, a discussion of what makes a
probing scheme resemble passive observation for the purpose of causal discovery (section 3.2) reveals
that weak measurements do not satisfy this condition. Instead, we provide a different example of a
quantum probing scheme that does have the desired property. Implications of this probing scheme
are discussed in the remainder of this chapter. Chapter 4 proceeds by exploring a typically quantum
effect in causal models that persist despite the probing scheme being "effectively classical", in the
sense introduced here.

Characterizing the (causal) relation of a quantum variable A to other variables. Before
we compare different ways of probing a quantum variable A, let us first give a formal description
of how one gains information about A and what constitutes a complete characterization of its
connections to a larger causal network.

We will continue to draw on the example of a simple causal model wherein A is related only to a
single, later variable, B, by the causal structure and circuit depicted in Fig. 2.3. (The generalization
to other causal structures is outlined at the end of this section.) As discussed in sections 2.5.1, in
this scenario one must split A into C and D, as defined in proposition 26. The relation between A
and B is then described by a causal map ECB|D, or equivalently the quantum conditional τCB|D ∈
L (HC ⊗HB ⊗HD). This is essentially the object we wish to characterize.

Following section 2.5.3, this can be achieved by using a set of measurements on B and a set of
instruments from C to D to probe the causal relations. As per definition 21, each instrument used
to probe A is represented by a family of maps from C to D,

{
EsmD|C

}
m
, where we introduce the
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notation S and M for the classical variables encoding the setting and outcome, respectively. The
instrument is equivalently specified by the corresponding Jamiołkowski operators

{
τsmD|C

}
, which

have the properties

TCτ
sm
D|C ≥ 0 TrD

(∑
m

τsmD|C

)
= IC ∀m. (3.1)

Similarly, B can be probed by a POVM, whose outcomes we will denote by Y , represented by a set
of positive operators {τyB}. The statistics generated by these experiments can be written in terms
of the Jamiołkowski operators as

P (ym|s) = Tr
[(
τsmD|C ⊗ τ

y
B

)
τCB|D

]
, (3.2)

which allows us to evaluate the Hilbert-Schmidt inner product of the unknown τCB|D with a family

of operators indexed by S,M and Y . Assuming that the {τyB} span L (HB) and that the
{
τsmD|C

}
span L (HC ⊗HD), this allows us to reconstruct τCB|D.

However, in the present chapter, we focus only on what one learns about the two versions of A
depending on the available instruments

{
τsmD|C

}
. We will assume implicitly that we have access to

a suitable set {τyB} of POVM elements on B and consider only the problem of characterizing the
resulting effective operators on CD,

τ̃yC|D ≡ TrB
(
τyBτCB|D

)
. (3.3)

The notation τ̃yC|D is chosen so as to highlight the fact that these operators are only components
of the full causal map: they are elements of the conditional that one obtains by combining the
conditional τY |B =

∑
y |y〉 〈y| ⊗ τyB (which represents a measurement on B) with τCB|D, which

represents the causal map:

τY C|D = TrB
(
τY |BτCB|D

)
=
∑
y

|y〉 〈y| ⊗ τ̃yC|D. (3.4)

We stress that, although the notations τsmD|C and τ̃yC|D are somewhat similar, they represent differ-

ent physical objects, which are contrasted in Fig. 3.1. The operators
{
τsmD|C

}
represent instruments

that an agent uses to probe the variable A; in other words, an additional circuit element that the
agent plugs into a given circuit. The

{
τsmD|C

}
take C as an input and return D as an output and

encode a causal influence of C on D. The operators τ̃yC|D, on the other hand, summarize the relations
between C and D that are realized by the causal map ECB|D under post-selection on the POVM
elements τyB . They correspond to maps with input D and output C. Considering that D lies in the
causal future of C, we note that these maps encode only inferences, not causal influences.

If we can characterize every τ̃yC|D for a set of τyB that span L (HB), then one can reconstruct the
full causal map. To this end, note that the experimental statistics can be rewritten as the inner
product of the component τ̃yC|D of the causal map with the instrument used to probe A (in the

Jamiołkowski representation),
{
τsmD|C

}
m

:

P (ym|s) = Tr
[
τsmD|C τ̃

y
C|D

]
. (3.5)

We will study how different types of instruments impact one’s ability to characterize a generic
component τ̃yC|D.

In general, the variable of interest, A, may be causally connected to more than just one other
variable. In this case, rather than just measuring B, one may have to range over preparations and
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Figure 3.1: Operators on C and D can represent two different types of objects, which we illustrate
with the circuit elements implementing each type: (left) An instrument

{
τsmD|C

}
m

(specified by a
setting S and yielding an outcome M) can be plugged into the principal circuit in order to probe
it. It encodes a causal influence of C on D. (right) Given a causal map specified by a Jamiołkowski
operator τCB|D, if one post-selects on finding a POVM element τyB in a measurement on B, one
induces a relation between C and D that supports inferences encoded in the (unnormalized) operator
τ̃yC|D = TrB

(
τyBτCB|D

)
. This chapter considers what one can learn about τ̃yC|D using different types

of instruments
{
τmD|C

}
m
.

measurements on a number of other variables in order to characterize the causal relations in the
network completely. However, the object of interest for the present discussion continues to be the
generic component τ̃yC|D ∈ L (HC ⊗HD) that one obtains by tracing the conditional describing the
global causal relations with generic preparations and measurements on all variables aside from A.

3.1 Weak measurements
The fact that one cannot measure a quantum system without affecting its subsequent behaviour in
some way is especially troublesome if one’s goal is to characterize the dynamics of a system over a
period of time. The reason is that measuring the system at any one time will significantly alter its
subsequent states, so that the results of a second measurement at a later time may not necessarily
reflect the natural dynamics of the system itself, but rather the side-effects of the earlier probing.
This conundrum led to the proposal of weak measurements, which minimize the disturbance due to
any single measurement13 by weakly coupling the principal system that one wishes to probe, A, to
an ancilla, N , and subsequently measuring the ancilla. This section explores what one learns about
A, that is, about the two versions of A, C and D, in such a scenario.

For concreteness, we consider the following standard way of realizing a weak measurement,
illustrated in Fig. 3.2. The choice of measurement (setting) is encoded in the classical variable S,
and the outcome is a classical variableM , whereas the ancilla to which the principal system is coupled
is a quantum system N . The dimension of the ancilla, hN , is taken to be the same as that of the
principal system, hA. Let {|m〉}1,...hA

denote some fixed basis of HN and take |ψ0〉 ≡
√

1
hA

∑
m |m〉

to be the initial state of N . Next we specify the coupling between the system and the ancilla. The
setting S specifies a set of orthogonal rank-one projectors Πsa on A that the measurement aims
to distinguish, which correspond to an orthonormal basis {|as〉}a=1,...hA

by Πsa = |as〉 〈as|. The

13However, there may still be cumulative effects due to a series of measurements, or, as we will see, due to post-
selection.
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coupling between A and the ancilla N takes the form

UsNA =
∑
a

Ūm=a
N ⊗Πsa

A , (3.6)

associating a unitary ŪmN on the ancilla to each projector Πsa on A. For each m, the transformation
ŪmN rotates the initial state of the ancilla, |ψ0〉, slightly towards |m〉, so that the subsequent meas-
urement in the |m〉 basis becomes biased towards that outcome. We formalize this as follows: let ε
denote the strength of the coupling and define

f (ε) =

√
1

hA
− hA − 1

h2
A

ε2 − ε

hA
⇔ hAf

2 (ε) + 2f (ε) ε+ ε2 = 1, (3.7)

which ensures that the state vector |φm0 〉 ≡ f (ε)
√
hA |ψ0〉+ε |m〉 is normalized (noting that 〈m|ψ0〉 6=

0). Let {|ψj〉} and
{∣∣φmj 〉}, indexed by j = 0, ...hA−1, be two orthonormal bases of HN that include

the |ψ0〉 and |φm0 〉 defined above. In terms of these parameters, we take

ŪmN ≡
hA−1∑
j=0

∣∣φmj 〉 〈ψj | = [f (ε)
√
hA |ψ0〉+ ε |m〉

]
〈ψ0|+ ... (3.8)

After the coupling, the quantum system N is subjected to a projective measurement that distin-
guishes the basis elements {|m〉}, reducing it to the classical variable M , whose value m reflects
which state was found in the measurement.

Figure 3.2: Standard realization of a weak measurement. The weak measurement apparatus (dashed
box) takes as input a quantum variable C and the classical setting S, and outputs the quantum
variable D and the classical outcome M . Inside the box, an ancilla N is initialized in some fixed
state |ψ〉 and subsequently coupled to the principal system, A. The coupling is weak, in the sense
that it is ε-close to being a product of identity operators on A and N . The setting S controls the
choice of unitary, and, by extension, which measurement is realized on A. After the coupling, the
ancilla N is measured on a preferred basis, yielding the classical outcome M .

Description in conventional quantum mechanics. We wish to derive concise expressions for
what we can deduce about C and D from such a measurement. To this end, let us first analyse the
situation in the conventional framework, whose elements may be more intuitive to the reader. Let
P (m|s) denote the probability of obtaining an outcome m given a setting s. For each pair s,m, one
can assign a quantum state to D, which we denote ρsmD . Both P (m|s) and ρsmD can be obtained
from a single expression that gives the unnormalized state on D after finding a particular outcome
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m in terms of the initial state ρC of the principal system:

P (m|s) ρsmD = TrN
[
|m〉 〈m|N U

s (|ψ0〉 〈ψ0|N ⊗ ρC)Us†
]

(3.9)

= 〈m|NUs|ψ0〉NρC〈ψ0|NUs†|m〉N .
≡ KsmρCK

sm†

Let us introduce a shorthand for the operators

Ksm ≡ 〈m|NUs|ψ0〉N = f (ε)
∑
a

Πsa + εΠsm = f (ε) I + εΠsm (3.10)

associated with a choice of basis s and an outcome m in the weak measurement. In this notation,

P (m|s) ρsmD = KsmρCK
sm†, (3.11)

from which we can isolate the normalized state on D given m,

ρsmD =
1

P (m|s)
KsmρCK

sm† (3.12)

and the probability of obtaining m,

P (m|s) = Tr
[
KsmρCK

sm†] = Tr
[
ρCK

sm†Ksm
]
. (3.13)

This last expression indicates that, if we ignore the state of the principal system after the measure-
ment, D, then the weak measurement specified by s effectively realizes a POVM on C. Its elements,
which we denote τsmC , are given by

τsmC = Ksm†Ksm, (3.14)

indexed by the outcomes m = 1, ...hA. If we discard instead the outcome m, we are effectively
implementing a noisy quantum channel from C to D, which we represent by the map EsD|C . Its
output, given a generic input ρC , is given by

EsD|C (ρC) =
∑
m

P (m|s) ρsmD =
∑
m

KsmρCK
sm†. (3.15)

This form shows that the {Ksm}m=1,...hA
are Kraus operators representing the channel EsD|C .

Description in the framework of quantum conditionals. Although the results obtained in
the previous paragraph are useful descriptions of the measurement, the formal treatment of versions
C and D is rather different, and in particular it is not clear what we can retrodict about C. For this
reason, we will now recast the analysis in the framework of quantum conditionals, which will allow
us to derive not only predictions about D, but also retrodictions about C.

The weak measurement, which describes two quantum variables related as cause and effect along
with associated classical variables, can be represented by an overall conditional

τMD|SC =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ τ
sm
D|C , (3.16)

where, for each setting s, the
{
τsmD|C

}
m

define a quantum instrument, as per definition 21. In terms
of the Kraus operators introduced above, one can show that the Jamiołkowski operators τsmD|C take
the form

τsmD|C =

hA∑
i,j=1

Ksm |i〉 〈j|DK
sm† ⊗ |j〉 〈i|C , (3.17)
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where |i〉 and |j〉 denote elements of an arbitrary14 basis of HA (recalling that HC and HD are both
isomorphic to HA). In other words, each τsmD|C is simply isomorphic to the map

EsmD|C (ρC) ≡ KsmρCK
sm†. (3.18)

From the overall τMD|SC , one can derive what one learns about C and D given the measurement
outcome. Given an initial state ρC , belief propagation yields a conditional of the form

τMD|S = TrC
[
τMD|SCρC

]
=
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗
[
KsmρCK

sm†]
D
. (3.19)

Tracing over the resulting quantum variable D reduces this to

τM |S = TrDτMD|S =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ Tr
[
KsmρCK

sm†] , (3.20)

which simply encodes the classical probability distribution

P (m|s) = Tr
[
KsmρCK

sm†] . (3.21)

On the other hand, conditioning on M gives

τD|MS =
∑
ms

1

P (m|s)
|m〉 〈m|M⊗|s〉 〈s|S⊗

[
KsmρCK

sm†]
D

=
∑
ms

|m〉 〈m|M⊗|s〉 〈s|S⊗ρ
sm
D , (3.22)

which represents the preparation of an ensemble of (normalized) quantum states,

ρsmD =
1

P (m|s)
[
KsmρCK

sm†]
D
. (3.23)

With regards to D, the quantum conditionals framework reproduces the results of the conventional
analysis.

In order to derive a retrodiction about C, let us instead trace out D from τMD|SC , which yields
a conditional of the form

τM |SC = TrDτMD|SC =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ τ
sm
C , (3.24)

which describes a POVM on C whose elements are

τsmC = TrDτ
sm
D|C = Ksm†Ksm. (3.25)

In order to derive inferences about C, we use Bayesian inversion: given a prior ρC ,

τC|SM =
1

P (M |S)
ρ

1
2

CτM |SCρ
1
2

C =
∑
ms

ρsmC ⊗ |s〉 〈s| ⊗ |m〉 〈m| , (3.26)

hence our retrodictions about C take the form

ρsmC =
1

P (m|s)
ρ

1
2

CK
sm†Ksmρ

1
2

C . (3.27)

14Recall from the discussion of eq. (2.16) that the above expression remains unchanged if one changes the choice of
basis.
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What one can learn by a weak measurement. Substituting (3.10) into (3.21), (3.23) and
(3.27), one can obtain expressions for ρsmD , ρsmC and P (m|s) that are exact for all ε. In the limit of
weak measurements (ε� 1), the expressions for what one can infer simplify to15

ρsmD = 1
P (m|s)

[
f2 (ε) ρC + εf (ε) (ΠsmρC + ρCΠsm) +O

(
ε2
)]

ρsmC = 1
P (m|s)

[
f2 (ε) ρC + 2εf (ε) ρ

1
2

CΠsmρ
1
2

C +O
(
ε2
)]

P (m|s) = f2 (ε) + 2εf (ε)Tr [ΠsmρC ] +O
(
ε2
)
.

(3.28)

One can see that the weak measurement does indeed provide information about C, by noting
that the retrodictive state ρsmC contains a non-trivial dependence on the measurement outcome m.
The post-intervention state ρsmD also depends on the indices specifying the measurement, s and m;
this is conventionally interpreted as a disturbance of the system due to the measurement. Note
that ρsmD depends on s and m at the same order in the weak parameter ε as ρsmC . This implies that,
regardless of how weak one makes the measurement, one cannot effectively suppress the disturbance,
because it is always of the same order as the achieved information gain. However, if one’s goal is to
characterize the causal relations of A to both its parents and its children, then one must vary over
operators on both HC and HD. The sm-dependence of ρsmD is therefore no longer a disturbance to
be minimized, but rather an indispensable resource.

Indeed, the form of ρsmD derived above allows one to range over a spanning set of operators on
HD. To see this, recall that the projectors {Πsm} for each s are defined by an orthonormal basis of
HA, hence, if one ranges over suitable combinations of s and m, they span L (HA). On the other
hand, D, being the post-intervention version of A, has by proposition 26 the same Hilbert space
dimension as A, therefore L (HD) is isomorphic to L (HA). Finally, since ρsmD is linear in Πsm, it
follows that the {ρsmD } form a spanning set of the space of operators on D, and by similar arguments
the {ρsmC } span L (HC).

In order to obtain a complete characterization of how A relates to other variables, one must range
over spanning sets of operators on HC and HD independently. However, in the weak measurement
scenario, the information gained about C and D is not independent, but conditioned on the same
two indices, s and m. Consequently, what one learns about C and D from a weak measurement is
not generally a product of the ρsmC and ρsmD derived above. Instead, one can use Bayesian inversion
on eq. (3.16) to find

τCD|SM =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ ρ
sm
CD, (3.29)

where ρsmCD are joint states of belief about C and D conditional on s and m, given by

ρsmDC = ρ
1
2

Cτ
sm
D|Cρ

1
2

C . (3.30)

Substituting expression (3.17) for τsmD|C , one can verify that the marginals of ρsmDC reproduce the
expressions for ρsmD and ρsmC derived above, (3.23) and (3.27).

However, for the purpose of characterizing the causal relation between variable A and other
quantum variables, the Jamiołkowski operator τsmD|C is actually more convenient, because, as detailed
at the beginning of this chapter, its inner product with the component τ̃yC|D can be read off directly
from the experimental statistics,

Tr
[
τsmD|C τ̃

y
C|D

]
= P (ym|s) . (3.31)

15The normalization of the probability distribution P (M |S) can be verified for the general expression, P (m|s) =
f2 (ε) + 2εf (ε)Tr [ΠsmρC ] + ε2Tr [ΠsmρC ]. Summing over m gives

∑
m 1 = dA and

∑
m Tr [ΠsmρC ] = TrρC = 1,

hence
∑
m P (m|s) = df2 (ε) + 2εf (ε) + ε2. Referring back to eq. (3.7), one can see that f (ε) was defined so as to

ensure that this is unity.
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The operator τsmD|C is given by expression (3.17); substituting (3.10) for the Kraus operators and
subsequently taking the weak limit, ε� 1, we have

τsmD|C = f2 (ε)

∑
ij

|i〉 〈j|D ⊗ |j〉 〈i|C

 (3.32)

+εf (ε)

∑
j

|js〉 〈ms|D ⊗ |ms〉 〈js|C


+εf (ε)

∑
j

|ms〉 〈js|D ⊗ |js〉 〈ms|C

+O
(
ε2
)
,

where |js〉 and |ms〉 denote elements of the orthonormal basis on A specified by the setting s, so
that |ms〉 〈ms| = Πsm and consequently Πsm |js〉 = δj,m |js〉. (Note that the first term in the above
expression is written in terms of a basis that is independent of s, since in fact this term takes the
same form in terms of any orthonormal basis of HA.)

The first term of τsmD|C , of order zero in ε, is the conditional representing the identity channel from
C to D, that is, the trivial measurement. When used in expression (3.31), it yields the statistics one
would expect to see if one did not probe A at all,

Tr

∑
ij

|i〉 〈j|D ⊗ |j〉 〈i|C

 τ̃yC|D

 = P0 (ym|s) = P0 (y) ∀m, s. (3.33)

The information extracted by a weak measurement is based on the first-order terms, which contribute
to the statistics P (ym|s) an expression proportional to the inner product

Tr

∑
j

|js〉 〈ms|D ⊗ |ms〉 〈js|C

 τ̃yC|D

+ Tr

∑
j

|ms〉 〈js|D ⊗ |js〉 〈ms|C

 τ̃yC|D

 . (3.34)

In order to extract these terms from the overall P (ym|s), one adds up experimental data obtained
for different m, which yields

∑
m P (ym|s) =

(
f2 (ε) + 2εf

)
Tr

∑
ij

|i〉 〈j|D ⊗ |j〉 〈i|C

 τ̃yC|D

+O
(
ε2
)

(3.35)

=
(
f2 (ε) + 2εf

)
P0 (ym|s)

and subtracts it in order to isolate the terms of interest,

P (ym|s)− f2(ε)
f2(ε)+2εf(ε)

∑
m′ P (ym′|s) = εf (ε)Tr

∑
j

|js〉 〈ms|D ⊗ |ms〉 〈js|C

 τ̃yC|D

 (3.36)

+εf (ε)Tr

∑
j

|ms〉 〈js|D ⊗ |js〉 〈ms|C

 τ̃yC|D

+O
(
ε2
)
.

The physical interpretation of these isolated terms is not straightforward – indeed, the operator
in parentheses in each term, taken by itself, need not even be Hermitian. However, we note that
both the complete expression for τsmD|C and the terms that one isolates in the weak measurement
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paradigm are symmetric under an exchange of C ↔ D. Consequently, inner products of the form
Tr
[
τsmD|C τ̃

y
C|D

]
do not allow one to evaluate any components of τ̃yC|D that are anti-symmetric under

this exchange, since the inner product with these components must vanish. It is therefore impossible
to obtain a complete characterization of τ̃yC|D, and, by extension, of the causal relations between A
and the surrounding variables.

In summary, we stress that weak measurements on a quantum system do not provide a faithful
quantum generalization of passive observation in the sense of causing no disturbance at all. One
can minimize the disturbance in the post-intervention state ρsmD by reducing the coupling strength
ε, but this simultaneously reduces the information gain in ρsmC by the same factor. However, for
the purpose of characterizing the causal relations between A and other variables – both parents
and children –, then the fact that D depends on s and m is in fact a necessary resource. A weak
measurement scheme provides some sm-dependence in ρsmD , but not enough to allow for a complete
characterization of the component τ̃yC|D, which encodes the relation between A, its parents and
children. One can characterize at most the part that is symmetric under the exchange C ↔ D, and
an exact specification of the components that can be characterized is not straightforward, given the
inconvenient form of the instruments

{
τsmD|C

}
m

that one can implement.

3.2 Observational schemes for classical and quantum variables
We have noted in the previous section that measurements which disturb the system are actually
advantageous for characterizing causal relations, because they provide some amount of independence
between the information one obtains about C and D. In the context of causal models, the question
of whether or not a probing scheme disturbs the variable under study is therefore secondary to the
question of how useful the probing scheme is for the purpose of characterizing the causal relations.
This section proposes a classification of probing schemes based on this second criterion. We will
argue that passive observation is but one example of a class we term observational schemes (see
definition 33 below) , and show that other schemes in this class do admit of a quantum version.

In order to allow for a complete characterization of the causal relations of a variable, a probing
scheme must provide some degree of independence between the information acquired about the pre-
and post-intervention versions of the variable. We argued this point in section 2.5.1, illustrating it
with the example of a drug trial in classical statistics, wherein taking a new drug (variable A) is
causally related to the treatment outcome (B) by a combination of an unknown common cause and
a cause-effect relation. In this scenario, one can characterize the causal relation between treatment
and recovery – and, in particular, answer the question of whether it is cause-effect or common-cause
(or some combination of both) – by assigning each patient either the drug or a placebo perfectly at
random. This ensures that the assigned treatment (variable D, the post-intervention version of A)
is not influenced in any way by the patients’ intent to treat (C, the pre-intervention version), and
consequently by any potential common causes. However, perfect randomization is not necessary:
any amount of statistical independence between C and D can be leveraged to characterize how each
of them relates to B, and therefore the causal relation between A and B. It follows that, for the
purpose of causal discovery, the following property is relevant:

Definition 33. A scheme for probing a variable A is termed informationally symmetric or obser-
vational if and only if the retrodictions it yields about the pre-intervention version of A are the
same as the predictions about the post-intervention version of A, for any outcome the probing may
produce. Denoting the two versions of A by C and D, respectively, and the setting and outcome of
the instrument by the classical variables S and M , the condition takes the form

τC|SM = τD|SM . (3.37)

One motivation for studying observational probing schemes for quantum variables is their signi-
ficance for causal discovery, which we take up in more detail in section 4.1. However, we also note
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that observational schemes imply that it is effectively not necessary to split the variable under study.
In the classical case, variables are split simply because, depending on how one probes the variable,
the interaction may change its value. In the case of quantum variables, on the other hand, the need
for splitting is a manifestation of several counter-intuitive features of quantum theory, such as the
fact that one cannot simply assign values to quantum variables.By restricting ourselves to observa-
tional probing schemes on quantum variables, we can effectively suspend this particular feature of
quantum causal models and instead explore other, unrelated quantum phenomena.

Classically, passive observation is one example of an observational scheme, but it is not the only
way to ensure informational symmetry. We illustrate this with an explicit classical example of a
probing scheme that disturbs the variables under observation, yet exhibits informational symmetry.

Example 34. Consider a classical system that has two properties, described by the variables X and
Y . Suppose that the probing scheme is such that measuring the value of one disturbs the system
in the sense that it randomizes the other, so that one’s posterior beliefs about the latter variable
are best represented by the uniform distribution, denoted µ. Let XC , YC denote the versions of the
variables before the measurement, whereas XD, YD denote the versions after the measurement; let
the setting S = {X,Y} encode which variable one chooses to measure and letM encode the outcome.
Now, if one measures the variable X and finds a value x0, one’s prediction of the post-intervention
state is

P (XD, YD|S = X,M = x0) = δ (XD − x0)µ (YD) . (3.38)

The retrodiction about the pre-intervention state, on the other hand, depends on one’s prior inform-
ation, P (YC). Using standard Bayesian inversion, one finds

P (XC , YC |S = X,M = x0) = δ (XC − x0)P (YC) , (3.39)

which is in general different from the predictions about XD and YD. However, in the particular case
wherein one has no prior information, that is, if P (YC) = µ (YC), then

P (XC , YC |S = X,M = x0) = P (XD, YD|S = X,M = x0) (3.40)

(and, by a similar reasoning, the same holds for all other values of S and M), hence the scheme
satisfies the informational symmetry condition.

Unlike passive observation, the above example of an observational probing scheme admits a close
quantum analogue:

Example 35. Let A be a quantum variable which is probed with a non-destructive projective meas-
urement that distinguishes between the rank-one projectors {Πsm}m and obeys the von Neumann-
Lüders update rule (proposition 24). In terms of the pre- and post-intervention versions of A, denoted
C and D, and the classical setting S and outcome M , each s defines an of instruments

{
EsmD|C

}
m

with EsmD|C (·) = Πsm (·) Πsm. Equivalently, the measurement can be described by the conditional
τMD|SC =

∑
ms |m〉 〈m| ⊗ τsmD|C ⊗ |s〉 〈s|, with the individual operators τsmD|C isomorphic to the maps

EsmC|D. Given a prior ρC , the unnormalized post-intervention state associated with values s and m is
P (m|s) ρsmD = EsmD|C (ρC), hence the state on D conditional on the setting s and outcome m is

ρsmD =
1

P (m|s)
ΠsmρCΠsm = Πsm. (3.41)

In order to derive a retrodiction about C, note that τM |SC = TrDτMD|SC =
∑
ms |m〉 〈m|⊗ |s〉 〈s|⊗

Πsm
C , form which one obtains by Bayesian inversion τC|SM =

∑
ms ρ

sm
C ⊗ |m〉 〈m| ⊗ |s〉 〈s|, with

ρsmC =
1

P (m|s)
ρ

1
2

CΠsmρ
1
2

C . (3.42)
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In general, the retrodictive state depends on one’s prior information about the system, ρC , but if
one has no prior information, that is, if ρC = 1

hA
IC , then

ρsmC = Πsm, (3.43)

so that
ρsmC = ρsmD (3.44)

for all s and m, or equivalently τC|SM = τD|SM , and therefore the scheme satisfies the informational
symmetry condition.

Having established that there exists an observational probing scheme for quantum variables,
let us now explore the consequences of informational symmetry in the context of quantum causal
models. To this end, we introduce a slightly modified account of how one probes a quantum variable
A: instead of an instrument described by a conditional

τMD|SC =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ τ
sm
D|C , (3.45)

whose elements τsmD|C represent causal influences of C on D, we represent what we can infer about
C and D given the setting S and the outcome M by a conditional

τCD|SM =
∑
ms

|m〉 〈m|M ⊗ |s〉 〈s|S ⊗ ρ
sm
CD, (3.46)

so as to put C and D on equal footing. The elements ρsmCD are bipartite quantum states. Accordingly,
the functionality of the external circuit that connects A to other variables should be represented as
a conditional τB|CD that takes states of knowledge about D and C to states of knowledge about
B. This operator can be obtained from the Jamiołkowski representation of the causal map by
τB|CD = ρ

− 1
2

C τCB|Dρ
− 1

2

C . In terms of these operators, the statistics once again take the form of an
inner product,

P (y|ms) = Tr
[
(ρsmDC ⊗ τ

y
B) τB|CD

]
. (3.47)

Analogously to the earlier definition of the component τ̃yC|D ≡ TrB
[
τyBτCB|D

]
, we will introduce

a shorthand for the operator on CD that is probed by the {ρsmCD}: let

τ̃yCD ≡ TrB
[
τyBτB|CD

]
= ρ
− 1

2

C τ̃yC|Dρ
− 1

2

C . (3.48)

Recall that the
{
τ̃yC|D

}
are components of the conditional τCB|D, which represents the causal map,

in the sense that characterizing the
{
τ̃yC|D

}
induced by a set {τyB} that span L (HB) is sufficient

to characterize the entire causal map. In the same way, the {τ̃yCD} defined here are components
of the operator τB|CD. They can be obtained by combining τB|CD with the conditional τY |B that
represents the measurement on B, giving

τY |CD = TrB
(
τY |BτB|CD

)
=
∑
y

|y〉 〈y| ⊗ τ̃yCD. (3.49)

In terms of these operators, we have

P (y|ms) = Tr [ρsmDC τ̃
y
CD] , (3.50)

and ranging over a spanning set of operators ρsmCD allows one to characterize the component τ̃yCD of
τB|CD.
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3.3 Partial tomography
This section provides an explicit, algebraic characterization of what one can learn about a qubit A
and its causal relations to other variables by the probing scheme introduced in example 35, which
is an example of an observational scheme.

Theorem 36. Let A be a quantum variable, whose pre- and post-intervention versions we denote C
and D, and suppose that A is probed by the following observational scheme: a projective measurement
obeying the von Neumann-Lüders update rule, under the assumption that the prior ρC is maximally
mixed (see example 35). By this scheme, one can only access a subspace A ⊂ L (HC ⊗HD). If A is
a qubit, then the accessible subspace A is generated by the nine basis elements G+k (k = 1, ...6) and
G7,8,9 from definition 38 below.

Proof. We prove this by explicit construction in the remainder of this section.

Definition 37. Any probing scheme on A that completely characterizes the subspace A is termed
partial tomography.

Let us now prove the claim of theorem 36. If one uses the observational scheme from example
35, then the information one acquires about the pre- and post-intervention versions of A by finding
an outcome m in a measurement with setting s takes the form

ρsmCD = Πsm
C ⊗Πsm

D . (3.51)

We will introduce a self-dual16 basis
{
Gk
}
k
of the space of two-qubit operators such that the elements

G+k (k = 1, ...6) and G7,8,9 can be obtained by linear combinations of the available ρsmCD, while the
remaining elements, G−k (k = 1, ...6) and G0, cannot. Consequently, the statistics

P (y|ms) = Tr [ρsmDC τ̃
y
CD] (3.52)

can reveal the inner product of τ̃yCD with the first subset of basis elements, but not the second. It
follows that the accessible subspace A is generated by the first subset of Gk.

Let us now construct the basis
{
Gk
}
. One conventional choice of basis for the space of two-qubit

operators is formed by products of the extended set of Pauli operators defined in eq. (2.63), but this
is not ideal for the purpose of the present discussion. Instead, we will motivate the following choice:

Definition 38. In terms of the Pauli operators σj (j = 1, 2, 3) and the identity operator, σ0, let{
G±j ≡ σ0 ⊗ σj ± σj ⊗ σ0 [j = 1, 2, 3]

G±(i+j+1) ≡ σi ⊗ σj ± σj ⊗ σi [(i, j) = (1, 2) , (1, 3) , (2, 3)]
(3.53)


G0 ≡ σ0 ⊗ σ0 −

∑
j 6=0 σj ⊗ σj

G7 ≡ σ0 ⊗ σ0 + 1
3

∑
j 6=0 σj ⊗ σj

G8 ≡ σ1 ⊗ σ1 + σ2 ⊗ σ2 − 2σ3 ⊗ σ3

G9 ≡ σ1 ⊗ σ1 − σ2 ⊗ σ2.

(3.54)

The reasons for choosing this basis are as follows. Firstly, note that ρsmCD in expression (3.51) is
manifestly symmetric under the exchange C ↔ D, hence no linear combination of projectors of this
form can generate an operator that is anti-symmetric. For this reason, we introduce{

G±j ≡ σ0 ⊗ σj ± σj ⊗ σ0 [j = 1, 2, 3]

G±(i+j+1) ≡ σi ⊗ σj ± σj ⊗ σi [(i, j) = (1, 2) , (1, 3) , (2, 3)]
(3.55)

16The basis in definition 38 is self-dual up to normalization factors, which we do not include in order to simplify
the notation.
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noting that the six anti-symmetric operators G−k (with k = 1, ...6) lie, by construction, outside A.
The six symmetric operators G+k, on the other hand, can be obtained by linear combinations of
products Πsm

C ⊗Πsm
D : for example,

G+1 =
1

2
(σ0 + σ1)⊗ (σ0 + σ1)− 1

2
(σ0 − σ1)⊗ (σ0 − σ1) , (3.56)

where each term is the product of projectors onto an eigenstate of σ1. It follows that G+k with
k = 1, ...6 are part of a basis of A.

The operators G±k with k = 1, ...6 span 12 dimension of the space of two-qubit operators,
out of 16. The remaining four dimensions are spanned by the products of Paulis {σj ⊗ σj} with
j = 0, 1, 2, 3. However, this is again an inconvenient choice of basis if our goal is to characterize the
subspace spanned by products of the form (3.51), for the following reason: since the measurements
in the quantum observational scheme are sharp, the projectors Πsm are rank-one, viz. pure states.
In the Pauli basis, such a projector takes the form 2Πsm = σ0 + ~v · ~σ, with a Bloch vector ~v that
has unit norm, ~v ·~v = 1. The product of two identical projectors Πsm therefore has an expansion of
the form

4Πsm
C ⊗Πsm

D = σ0 ⊗ σ0 +
∑
i

v2
i σi ⊗ σi +

∑
i6=j

vivjσi ⊗ σj

 , (3.57)

which implies that the inner product

Tr

(Πsm
C ⊗Πsm

D )

σC0 ⊗ σD0 −∑
j 6=0

σCj ⊗ σDj

 = 1− ~v · ~v = 0 (3.58)

is zero. In other words, the accessible subspace A, which is spanned by the products {Πsm
C ⊗Πsm

D },
does not include the operator σC0 ⊗ σD0 −

∑
j 6=0 σ

C
j ⊗ σDj . We take this operator to be G0. Any

other combination of the {σj ⊗ σj} that is orthogonal to G0, however, can be generated by suitable
combinations of the {Πsm

C ⊗Πsm
D }: by adding the products of projectors onto eigenvectors of σj ,

one obtains

(σ0 + σj)⊗ (σ0 + σj) + (σ0 − σj)⊗ (σ0 − σj) = 2 (σ0 ⊗ σ0 + σj ⊗ σj) (3.59)

for j = 1, 2, 3. The combinations Gk with k = 7, 8, 9 therefore lie in the accessible subspace. This
completes the construction of the basis.

3.3.1 Complete characterization of purely CE or CC relations between two qubits

Theorem 39. If two qubits are related either purely as cause and effect or purely by a common
cause, so that their relation can be represented by a one-to-one qubit inference map,

ρB = EB|A (ρA) = TrA
[
τB|AρA

]
, (3.60)

and they are probed by an observational scheme, then the data thus obtained are sufficient to com-
pletely characterize τB|A.

Proof. Without loss of generality, we can label the variables such that A is causally prior to B.
This implies that it is not necessary to split B, since only the pre-intervention version of B can be
related to A, and consequently the restriction to observational probing on B is irrelevant. Splitting
A into the pre- and post-intervention versions, C and D, the causal relation between A and B is
then completely described by the causal map ECB|D (definition 30).
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Depending on the causal structure, the Jamiołkowski representation of the causal map takes one
of two forms:

τCB|D =

{
ρCB ⊗ ID with TrBρCB = 1

2 IC , if purely CC
1
2 IC ⊗ τB|D with TrBτB|D = ID, if purely CE.

(3.61)

Note that the marginal on C must be maximally mixed in either case, because, as we saw in example
35, this is required in order to ensure informational symmetry. Consequently the Jamiołkowski
operator that we can access takes the form

τB|CD = ρ
− 1

2

C τCB|Dρ
− 1

2

C =

{
τB|C ⊗ ID with τB|C = ρ

− 1
2

C ρCBρ
− 1

2

C = ρCB , if purely CC
IC ⊗ τB|D , if purely CE.

(3.62)

Our goal is to characterize the inference map τB|A, which is given respectively by τB|C or τB|D.
Since we are restricted to an observational scheme on A but not on B, we can evaluate the inner

products of τB|CD with the accessible Gk on CD and generic Pauli observables on B. In a purely
CC scenario, we find

Tr
[
τB|CDG

k
CD ⊗ σlB

]
=


2Tr

[
τB|C

(
σkC ⊗ σlB

)]
for k = +1, 2, 3

0 for k = +4, 5, 6

2Tr
[
τB|C

(
σ0
C ⊗ σlB

)]
for k = 7

0 for k = 8, 9,

(3.63)

where all terms in the Gk that contain a non-trivial Pauli observable (j = 1, 2, 3) on D vanish,
because Tr

[
IDσjD

]
= 2δ (j, 0). Since we can range over all σl (l = 0, 1, 2, 3) on B, this provides

a complete characterization of ρCB = τB|C . Similarly, in the purely CE scenario, any terms with
non-trivial Paulis on C vanish, leaving

Tr
[
τB|CDG

k
CD ⊗ σlB

]
=


2Tr

[
τB|D

(
σlB ⊗ σkD

)]
for k = +1, 2, 3

0 for k = +4, 5, 6

2Tr
[
τB|D

(
σlB ⊗ σ0

D

)]
for k = 7

0 for k = 8, 9,

(3.64)

which also provides a complete characterization of τB|D. In either case, one learns the inference map
τB|A.

3.4 Implications of small deviations from the informational symmetry
condition

This section details how the previous results are modified as one deviates from the informational
symmetry condition, taking as an example the case wherein the measurement on A is still a perfect
rank-one projective measurement that obeys the von Neumann-Lüders update rule, but allowing the
prior ρC to deviate slightly from the maximally mixed state.

One could instead violate informational symmetry by fixing ρC to be maximally mixed, but
allowing a generic POVM measurement. However, this opens to door to generic state update rules,
including, for example, an instrument that performs a measurement, followed by one of a set of
possible unitary rotations, and reports both the outcome of the measurement and which unitary
was realized. With appropriate choices of the measurements and unitaries, such a scheme essentially
allows one to reprepare D independently of C. In the present chapter, however, we are interested
in restrictions to what one can learn about C and D. For this reason, we focus on the effects of a
biased prior ρC in conjunction with perfectly sharp, von Neumann-Lüders-type measurements.
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In this case, one still cannot obtain a complete characterization of the causal map, since the
two pieces of information that one obtains about the pre- and post-intervention versions of A,
respectively, are different17, but not independent, as we will show below. However, one does recover
other physical effects that arise from a violation of informational symmetry (even if C and D do
not become statistically independent): for example, if Alice has a cause-effect relation to Bob and
the pre-intervention state of Alice’s variable is not maximally mixed, then she can signal him by
her choice of measurement. In classical causal modelling, signalling is the paradigmatic example of
a phenomenon that heralds a CE relation. By considering two variables whose causal relation is
either CE or CC, we derive a closely analogous phenomenon that is similarly characteristic of CC
relations.

3.4.1 No full causal tomography

In general, performing a rank-one projective measurement with the Lüders update rule on a state that
is not maximally mixed reveals information about C and D that is different, but not independent:
in terms of the projector Πsm ∈ L (HA) associated with a setting s and outcome m, what one learns
about C and D takes the form

ρsmCD = ρsmC ⊗ ρsmD = ρ
1
2

CΠsm
C ρ

1
2

C ⊗Πsm
D . (3.65)

By ranging over different s and m, one has access to a set of projectors {Πsm} that span L (HA).
However, given the particular form of eq. (3.65), this is not sufficient to make the corresponding
ρsmCD span the space of bipartite operators L (HC ⊗HD) (recalling that HC and HD are isomorphic
to HA). If the variables in question are qubits, we can express the constraints on the accessible
ρsmCD explicitly, as we illustrate in the following, noting that they are closely related to those that
characterize partial tomography.

If the prior ρC of a single qubit is not maximally mixed, it is biased towards one state, which we
take to be the +1 eigenstate of σ3 without loss of generality. Let us write

ρC =
1

2
σ0 +

ε

2
σ3, (3.66)

where ε � 1 parametrizes the deviation from informational symmetry. In this case, the following
linearly independent combinations of Pauli products can be obtained by combining the available
ρsmCD: {

σ1
C ⊗ σ2

D + σ2
C ⊗ σ1

D (3.67)

{
σ0
C ⊗ σiD + 1√

1−ε2σ
i
C ⊗ σ0

D − ε√
1−ε2σ

i
C ⊗ σ3

D

σ3
C ⊗ σiD + 1√

1−ε2σ
i
C ⊗ σ3

D − ε√
1−ε2σ

i
C ⊗ σ0

D

with i = 1, 2 (3.68)


σiC ⊗ σiD + ε√

1−ε2σ
0
C ⊗ σ0

D + ε√
1−ε2σ

3
C ⊗ σ0

D with i = 1, 2

σ3
C ⊗ σ3

D + σ0
C ⊗ σ0

D

σ3
C ⊗ σ0

D + σ0
C ⊗ σ3

D

(3.69)

Note that this subspace has only nine dimensions, as opposed to the 4 × 4 = 16 dimensions that
would become accessible if we could intervene and reprepare D independently of C. In the limit of

17As an aside, we note that the difference between ρsmC and ρsmD in this scenario – that is, the violation of in-
formational symmetry – follows from the non-commutativity of generic operators on quantum systems: for a gen-

eral (not necessarily rank-one) projective measurement obeying the Lüders rule, we have ρsmC = ρ
1
2
CΠsmρ

1
2
C , while

ρsmD = ΠsmρCΠsm. This consequence of the algebraic nature of quantum mechanics had likely not been noted before,
and attempting to interpret it physically may lead to interesting insights.
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the bias ε → 0, this reduces to a spanning set of the accessible subspace from partial tomography,
introduced in the previous section:{

σ1
C ⊗ σ2

D + σ2
C ⊗ σ1

D = G+4 (3.70)

{
σ0
C ⊗ σiD + σiC ⊗ σ0

D = G+1,2

σ3
C ⊗ σiD + σiC ⊗ σ3

D = G+5,6
with i = 1, 2 (3.71)


σiC ⊗ σiD + σ0

C ⊗ σ0
D = G7 + 1

2

(
G8 ±G9

)
with i = 1, 2

σ3
C ⊗ σ3

D + σ0
C ⊗ σ0

D = G7 − 1
3G

8

σ3
C ⊗ σ0

D + σ0
C ⊗ σ3

D = G+3

(3.72)

By relaxing the assumption of a uniform prior ρC , we gain access to a different set of components of
the operator τ̃yCD on HC ⊗HD than those which are accessible under the informational symmetry
assumption, but we are nevertheless constrained to a nine-dimensional subspace of L (HC ⊗HD).

3.4.2 Physical implications of breaking informational symmetry

One important implication of informational symmetry is that, even though there exists a cause-effect
path from A to B, Alice cannot signal Bob by the choice of her measurement (that is to say, by
setting the value of S) alone. (If Alice is allowed to also fix the value of the outcome M , using
post-selection, then she can effectively prepare a pure state of her choosing, Πsm, to send to Bob,
which makes signalling trivial.) Indeed, the setting S doesn’t affect the post-intervention variable D,
which in turn influences B. One can see this by noting first that knowledge of the setting S by itself,
i.e. if one ignores the measurement outcome M , does not allow any inference about pre-intervention
variable, C, because C is causally prior to S but not an ancestor of S. By informational symmetry,
this implies that knowledge of S alone allows no inferences about D either. Mathematically, the
retrodictive states on C conditional on different outcomes m,

ρsmC =
1

P (m|s)

[
ρ

1
2

CΠsmρ
1
2

C

]
, (3.73)

weighted by the probabilities of obtaining each outcome,

P (m|s) = Tr [ΠsmρC ] , (3.74)

give an average that is independent of the choice of setting:∑
m

P (m|s) ρsmC =
∑
m

ρ
1
2

CΠsmρ
1
2

C = ρ
1
2

CIρ
1
2

C = ρC ∀s. (3.75)

If informational symmetry holds, then the weighted average of the states on D, which we denote
simply ρD, is also independent of the measurement setting:

ρD =
∑
m

P (m|s) ρsmD =
∑
m

P (m|s) ρsmC = ρC ∀s. (3.76)

Now suppose that informational symmetry is broken because the prior state ρC is not maximally
mixed. In this case, one must instead explicitly use the expression of the states on D conditional on
sm,

ρsmD = Πsm, (3.77)

which implies that the weighted average state on D takes the form

ρD =
∑
m

Tr [ΠsmρC ] Πsm; (3.78)
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that is, the projection of ρC onto the eigenbasis {Πsm}m specified by the setting s. Notably, if ρC
is not maximally mixed, then ρD depends on s, hence Alice can change the post-intervention state
by her choice of setting alone (without using any post-selection to alter the probabilities with which
different m appear in the mixture). If some later variable B is causally influenced by D, realizing a
CE relation between A and B, then Alice can signal Bob by her choice of measurement setting, in
the sense that the average of states on B,

ρB ≡
∑
m

P (m|s) ρsmB , (3.79)

may depend on s. For example, if the channel from D to B is the identity channel, then

ρB = ρD =
∑
m

Tr [ΠsmρC ] Πsm. (3.80)

One can use this phenomenon to witness a CE relation, assuming one has access to a not-maximally
mixed prior ρC .

A violation of informational symmetry also enables a CC analogue of this phenomenon. Just as
the weighted average of retrodictive states on C is independent of s, the average with equal weights
of the predictive states on D, denoted ρ̄D, is

ρ̄D ≡
∑
m

1

hA
ρsmD =

∑
m

1

hA
Πsm =

1

hA
I ∀s (3.81)

(where hA = hC = hD denotes the dimensionalities of the respective Hilbert spaces). The projective
measurement acts as a probabilistic preparation of D, which, for a given setting s, generates one
out of an ensemble of states {Πsm}m with probabilities P (m|s). If we use post-selection to form a
subset of runs within which each m occurs with equal probability, then the state prepared on D on
average over this subset is 1

hA
I. If informational symmetry holds, then the evenly weighted average

of the states on C is also the maximally mixed state:

ρ̄C ≡
∑
m

1

hA
ρsmC =

∑
m

1

hA
ρsmD =

1

hA
I ∀s. (3.82)

However, if ρC 6= 1
hA

I, breaking informational symmetry, then

ρ̄C =
∑
m

1

hA

1

P (m|s)

[
ρ

1
2

CΠsmρ
1
2

C

]
, (3.83)

which generally depends on s.
If A and B are related by a common cause, we can identify an intermediary (quantum) variable

E that shares a common cause with A (more specifically, with the pre-intervention version of A, C)
and causally influences B. Given the retrodictive conditional τC|SM =

∑
sm ρ

sm
C ⊗ |s〉 〈s| ⊗ |m〉 〈m|

(whose elements ρsmC are given by eq. (3.73)), which exhibits an analogue of signalling, one can
construct a conditional that encodes inferences about E, using τE|SM = TrC

[
τE|CρC|SM

]
. From

there, one can make inferences about B, and those will inherit the S-dependence of the equally
weighted average,

ρ̄B ≡
∑
m

1

hA
ρsmB . (3.84)

In summary, we have established that, if the variable A is probed using an informationally
symmetric scheme, then neither the average ρ̄B , eq. (3.84), nor the weighted average ρB , eq. (3.79),
of the conditionals states produced on B can depend on Alice’s choice of setting, s, regardless of
whether A and B are related as cause and effect or by a common cause. However, suppose that
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informational symmetry is broken by virtue of a bias in the prior ρC . In that case, and only if the
causal relation is CE, the setting s may affect the weighted average ρB , thereby allowing Alice to
signal to Bob. The contrapositive is that only if the causal relation is CC may Alice’s choice of
setting be reflected in the equally weighted average ρ̄B . This second effect has not been explored,
to our knowledge, possibly because one must perform post-selection in order to generate the equally
weighted average. However, it is formally analogous to signalling in the sense that both effects bear
witness to the respective underlying causal structure.

3.4.3 Scaling with the magnitude of the bias in ρC

Let us consider how these two effects scale with the magnitude of the bias in ρC . This is particularly
relevant for experiments like the one described in section 4.2, which aim to discern the causal
structure despite the restriction to an observational scheme: since one cannot guarantee that the
conditions for informational symmetry are met exactly in an experimental implementation, one must
bound how large an effect a certain deviation from informational symmetry can have.

In the case of CE signalling, it is easy to see that the effect is linear in ρC : since

ρD =
∑
m

Tr [ΠsmρC ] Πsm, (3.85)

a small deviation in ρC from the maximally mixed state implies a proportionally small dependence
of
∑
m P (m|s) ρsmD on the setting s. The scaling of the s-dependence in the analogous CC effect,

ρ̄C =
∑
m

1

hA

1

P (m|s)

[
ρ

1
2

CΠsmρ
1
2

C

]
, (3.86)

is less straightforward to derive, since the expression contains not only two separate factors of ρ
1
2

C , but
also the probability P (m|s), which in turn depends on ρC as well. In this case, linear scaling with
the bias in ρC may only hold in the limit of small bias, when one can neglect possible higher-order
terms.

3.4.4 Visual representation for qubits

If the variables under study are qubits, we can represent both signalling and its CC analogue
graphically, as shown in Fig. 3.3. This is based on the fact that any trace-one operator ρ, when
decomposed on the basis formed by the Pauli operators (including σ0 = I), corresponds to a three-
component real vector ~v, with

ρ =
1

2

σ0 +
∑
j

vjσj

 ⇔ vj = Tr [ρσj ] . (3.87)

For pure states, i.e. rank-one operators, ~v · ~v = 1.
For simplicity, we will choose the ẑ-axis of the Bloch sphere such that the Bloch vector represent-

ing the prior ρC takes the form ~q = (0, 0, ε), where ε measures the strength of the bias. We write the
Bloch vector representing the projector Πs,m=+1 associated with a setting s and outcome m = +1 as
~ps, and note that the complementary measurement outcome, m = −1, corresponds to the opposite
Bloch vector, −~ps. In general, Πsm has a Bloch vector m~ps. Let ~csm and ~dsm represent the states
ρsmC and ρsmD , respectively, while we reserve ~d for the Bloch vector of ρD, the weighted average of
states on D that exhibits signalling, and ~c for ρ̄C , the equally weighted average of states on C that
exhibits the analogous s-dependence.

Since the post-intervention state is determined simply by the von Neumann-Lüders rule (24),
independently of the prior ρC , we have

ρsmD = Πsm ⇔ ~dsm = m~ps. (3.88)
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Figure 3.3: Inferences and signalling based on observational probing of a qubit; represented graph-
ically as transformations of the Bloch sphere. The Bloch vectors m~ps (m ∈ {±1}) represents the
states found in a projective measurement, while ~csm and ~dsm represent the inferences about the pre-
and post-intervention versions of the variable, conditional on finding m~ps, respectively. Note that
the post-intervention state is simply the state found in the measurement, ~dsm = m~ps, whereas the
retrodictive pre-intervention state ~csm also depends on prior information, which causes a distortion
of the Bloch sphere, as detailed in eq. (3.90). The figures are based on prior information represented
by the Bloch vector ~q = (0, 0, ε).
The Bloch vector ~d represents the average of the post-intervention states ~dsm associated with op-
posite outcomes, weighted by the probabilities with which these outcomes are found: it is what one
obtains by fixing the basis of the measurement, but ignoring the outcome. The fact that ~d ranges
over a finite region of the Bloch sphere as we vary ~ps shows that this state contains some information
about the choice of basis. If a later variable B is causally influenced by D, one can send signals
to B by choosing different measurement bases. The magnitude of this effect scales with our prior
information about the system: the radius of the sphere in the last panel is ε.
The Bloch vector ~c represents the equally weighted average of the retrodicted states ~csm associated
with opposite outcomes; it is generated by post-selection. The fact that ~c ranges over a finite region
of the Bloch sphere as we vary ~ps shows that this state also contains information about the choice
of basis. If a later variable B shares a common cause with C, one can alter the state at B by
choosing different measurement bases. This effect, too, scales with the parameter quantifying our
prior information, ε.

The retrodictive state on C does not take such a simple form, since it incorporates both inform-
ation about from the measurement (~s) and prior knowledge (~p),

ρsmC =
1

P (m|s)

[
ρ

1
2

CΠsmρ
1
2

C

]
. (3.89)

The Bloch vector ~csm is given by different rules for the two components that are orthogonal and
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collinear to ~q, respectively. Since we chose the axes such that ~q = (0, 0, ε), they simplify to (see
appendix A.2)

csm3 =
1

1 +mεps3
(mps3 + ε) c1,2 =

√
1− ε2

1 +mεps3
mps1,2. (3.90)

The probability of obtaining an outcome associated with a Bloch vector ~ps, given a prior specified
by ~q, is

P (m|s) = Tr [ΠsmρC ] =
1

2
(1 +mεps3) . (3.91)

Now consider the weighted average over states on D that exhibits signalling, ρD, from eq. (3.78).
We have

~d =
∑

m∈{±1}

P (m|s) ~dsm =
1

2
(1 + εps3) ~ps +

1

2
(1− εps3) (−~ps) = (εps3) ~ps. (3.92)

Note that the average over m, ~d, depends only on the axis onto which we project, ~ps, but not on its
orientation, i.e. whether we use ~ps or −~ps. Also note that ~d = ~0 when ~ps⊥~q. In the CC scenario,
we take the equally weighted mixture of states on C, ρ̄C defined in (3.83):

c3 = 1
2

[
ε+ps3
1+εps3

+
ε−ps3
1−εps3

]
= 1

1−(εps3)
2 [− (εps3) ps3 + ε]

c1,2 =
√

1−ε2
2

[
ps1,2

1+εps3
− ps1,2

1−εps3

]
=

√
1−ε2

1−(εps3)
2

[
(εps3) ps1,2

]
.

(3.93)

These expressions, too, are independent of whether we use ~ps or −~ps. Furthermore, note that
c1,2 = ~0 if ~ps⊥~q or ~ps ‖ ~q, and c3 = 0 if ±~ps is the unit vector parallel to ~q, whereas if ~ps⊥~q, then
c3 = ε.

Fig. 3.3 shows that, despite the distortion due to the biased prior, the weighted averages ~d and
~c range over spherical regions inside the Bloch sphere. The radius of these spheres quantifies the
strength of the signalling effects, since it determines how well B can distinguish between different
measurement bases A could have chosen. One can see that both ~d and ~c range over spheres of
radius ε, showing that, at least for qubits, both effects scale linearly with the deviation from the
informational symmetry condition.
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4 Form and function of quantum inference maps
An appealing feature of classical causal models is that all inferences based on them can be rep-
resented by the same class of mathematical object: conditional probability distributions such as
P (B|A), whose only defining property is the normalization,

∑
B P (B|A = a) = 1 ∀a. This form

of the conditionals holds regardless of the causal structure relating A and B – in other words, the
two constituents of the causal model, the structure and the conditionals, are independent. In the
quantum limit, this separation breaks down: depending on the causal relation between A and B,
the quantum inference map EB|A must have different mathematical properties, as discussed in sec-
tion 2.4. This chapter explores the implications of this fact, ranging from applications as a tool for
causal discovery and the analysis of open systems dynamics to more fundamental insights about the
physical significance of PPT operators.

4.1 The quantum advantage for causal discovery
The central question of most causal modelling problems – and, indeed, much of science – can be
cast as some variation of the following: what can one deduce about the causal relations between
a set of variables, given certain observed correlations? Ideally, one can probe the causal relations
with interventions: changing one variable, while leaving all else equal, to test how this affects
other variables. However, interventions may be limited by various factors: ethical considerations
in medical trials, practical limitations, or even fundamental physical impossibility, as is the case in
astronomy. In those cases, one must resort to a more sophisticated analysis of the available statistics,
looking for features of non-interventionist statistics that reflect properties of the underlying causal
structure. One example is conditional independence, as suggested in [42]: if X is a common cause of
Y and Z, then conditioning on X makes the other two statistically independent, i.e. P (Y Z|X) =
P (Y |X)P (Z|X), whereas if Y and Z have some other common cause and X is merely a descendant
of one of them, one will find no such independence in the statistics. These methods have been
successfully applied to a range of problems involving several variables; but the seemingly simple
problem of just two variables defies them, since their statistics exhibit little structure that could
provide clues about the causal relation. Other methods have been proposed that determine the
best-fitting causal explanation by demanding the smallest Kolmogorov complexity, for example, but
these may require additional assumptions about the particular scenario under study [43]. This
section introduces a new criterion for discerning causal relations, which is fundamentally different
from existing techniques in that it exploits the strictly richer structure of correlations that can arise
between quantum variables.

We illustrate this criterion using a task at which most conventional causal discovery methods
fail: given two quantum variables, A and B, we aim to distinguish whether they are related as cause
and effect (CE) or by an unobserved common cause (CC), but under the constraint that one is only
allowed to probe A by an observational scheme. Our scheme does not distinguish whether A causes
B or B causes A; hence, to avoid ambiguity, we assume that the two are causally ordered, with A
referring to the early variable. (There is therefore no need to impose a restriction on how one can
probe B, since the pre-intervention version of B can be correlated with A.)

In a classical world, observational data about two variables takes the form of a joint distribution
P (AB). By the rules of classical statistics, any such probability distribution can also be decomposed
into valid conditionals and marginals of the form

P (A) =
∑
B

P (AB) and P (B|A) =
P (AB)

P (A)
. (4.1)

These distributions parametrize a causal model in which A causally influences B, whereas the joint
distribution P (AB) parametrizes a model wherein A and B share a common cause. Either explan-
ation is equally valid and compatible with the available data.
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If A and B are quantum variables, on the other hand, then an observational scheme – at the
operational level – yields a map from pure states on A (namely the projectors realized in the
measurement) to the generic quantum states subsequently found on B. If the causal relation is either
purely CC or purely CE, or a convex combination of the two, then this map must be linear, positivity-
preserving and trace-preserving, and therefore admit a representation as a quantum conditional18:
a Hermitian operator τB|A such that TrBτB|A = IA, which relates the projectors found on A to the
corresponding states on B by

ρB = TrA
[
τB|A (IB ⊗ΠA)

]
. (4.2)

By ranging over tomographically complete sets of projectors on A and measurements on B, one
can characterize τB|A. If the causal structure is CC, then τB|A is a common-cause conditional, as
introduced in section 2.4.3: in terms of the joint state ρAB prepared by the common cause and its
marginal, ρA = TrBρAB , we have

τ ccB|A = dA

(
ρ
−1/2
A ⊗ IB

)
ρAB

(
ρ
−1/2
A ⊗ IB

)
. (4.3)

By proposition 25, a CC relation implies that τB|A is a positive-semidefinite operator, since it is
closely related to the bipartite state ρAB . If the relation is CE, on the other hand, then it is
most naturally described by a completely positive and trace-preserving map EB|A, which, under
the Jamiołkowski isomorphism, corresponds to a conditional τB|A that is positive under partial
transposition (see section 2.4.1 and in particular proposition 18). Taking the contrapositive, the
mathematical properties of τB|A allow one to draw the following conclusions about the underlying
causal structure:

Theorem 40. Consider a linear, positivity-preserving and trace-preserving map EB|A between two
quantum variables, A and B, and its Jamiołkowski representation, τB|A. If τB|A is not a positive-
semidefinite operator, then A and B cannot be related by a purely CC structure. If τB|A is not
positive under partial transposition (i.e. τB|A is NPT), this rules out a purely CE relation. (A map
that fails to be linear, positivity-preserving and/or trace-preserving cannot be explained by either
causal structure.)

Proof. This follows directly from the above discussion, which draws on propositions 18 and 25.

Note that this constitutes a uniquely quantum criterion for distinguishing the two causal relations,
which becomes ineffective in the classical limit. Indeed, when there exist preferred bases of the
Hilbert spaces HA and HB on which all operators involved in the problem are diagonal, then the
eigenvalues of τB|A are unchanged under partial transposition (since one could perform the partial
transposition in the preferred basis, which leaves τB|A unaltered). In this limit, both CC and CE
structures give rise to τB|A that are both positive-semidefinite and PPT, and therefore provide no
clues about the underlying causal structure.

4.1.1 Geometric and visual representation for qubits

If A and B are qubits, the effect of a quantum channel EB|A is commonly represented by plotting the
image of the Bloch sphere, that is, the set of resulting states ρB = EB|A (ρA) as the inputs ρA range
over the entire surface of the Bloch sphere. (The ρB arising from mixed inputs ρA, which lie in the
interior of the Bloch sphere, follow by linearity. For this reason, the following discussion focuses only
on the surfaces of regions of interest.) If EB|A applies a unitary transformation, the Bloch sphere
is simply rotated; if the channel is noisy, it generally shrinks the Bloch sphere towards the origin,
i.e. the maximally mixed state. Verstraete [44] introduces an analogous representation for steering,

18If the causal relation is not a mere probabilistic mixture, then generally the inference map from A to B, or even
the part of it that is accessible under partial tomography, need not take the simple form EB|A : L (HA) → L (HB),
as discussed in section 2.5.1.
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which can easily be extended to represent inferences along a CC connection, as discussed in section
2.4.3. Indeed, the same representation applies to all one-to-one-qubit maps EB|A that are linear,
positivity-preserving and trace-preserving, with inference maps that arise from either purely CE or
purely CC relations being particular examples.

The geometric and resulting visual representation is based on the following mathematical fact:

Lemma 41. Consider a single-qubit conditional τB|A ∈ L (H2 ⊗H2), which represents a trace-
preserving one-to-one-qubit inference map, and let the positive-semidefinite, trace-one operators ρA
and ρB = TrA

[
τB|AρA

]
be its input and output, respectively. The conditional can be decomposed on

the basis formed by Pauli operators as

1

4
Tr
(
τB|Aσ

i
B ⊗ σ

j
A

)
=

(
1 ~0T

~c T3×3

)
ij

, (4.4)

and the states ρA and ρB can be represented by the three-component Bloch vectors ~a and ~b, respect-
ively: {

aj = 1
2Tr

(
ρAσ

j
A

)
j = 1, 2, 3

bi = 1
2Tr

(
ρBσ

i
B

)
i = 1, 2, 3.

(4.5)

Then the Bloch vectors are related directly by

~b = ~c+ T~a. (4.6)

In geometrical terms, the image of the set of all pure states on A forms an ellipsoid in the Bloch sphere
of B whose centre lies at ~c and whose axes (direction and scaling) are specified by the eigenvectors
and the square roots of the eigenvalues of TTT .

Proof. This is an extension of an unnumbered claim in [45]. Note that Tr
(
τB|Aσ

0
B ⊗ σ

j
A

)
= 0

for j 6= 0 because the quantum conditional τB|A is trace-preserving, i.e. TrBτB|A = σ0
A. The

transformation rule for Bloch vectors, ~b = ~c+T~a, follows from the corresponding rule for operators,
ρB = TrA

[
τB|AρA

]
, using the fact that the Pauli observables form an orthonormal basis of operator

space. The centre of the resulting ellipsoid can be read off directly from the resulting expression; its
axes follow using standard tools of analytic geometry.

If we perform partial tomography, given the promise that the causal relation is either purely
CC or purely CE, as described in section 3.3.1, then the inner products that we can determine give
precisely the non-zero elements of the Pauli basis representation of τB|A, denoted ~c and T . Let us
introduce the following terminology:

Definition 42. The term inference ellipsoid refers to the geometric representation of a single-qubit
conditional introduced in lemma 41. The 3 × 3 real matrix T in the representation of τB|A on the
Pauli basis, eq. (4.4), is termed the correlation matrix, since it arises from correlations between the
Pauli observables σ1,2,3 on the variables A and B.

Note that the geometry of the ellipsoid, which is specified by ~c and TTT , does not encode a
complete description of the inference map: one must also specify which pure-state input on A implies
which state ρB on the ellipsoid. In order to include this information in a visual representation of
EB|A, we assign a unique colour to each pure input: as a function of the Bloch vector ~a, the colour
is specified by the RGB components

R = 1
2 (1 + a1 − a2 − a3)

G = 1
2 (1− a1 + a2 − a3)

B = 1
2 (1− a1 − a2 + a3) .

(4.7)
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This marks the +1 eigenstates of σ1 (~a = (1, 0, 0)) as red, σ2 (~a = (0, 1, 0)) as green and σ3

(~a = (0, 0, 1)) as blue, while their opposites, with eigenvalues −1, are coloured cyan (anti-red),
magenta (anti-green) and yellow (anti-blue), respectively. Some examples of colour-coded ellipsoids
are illustrated in Fig. 4.1. This scheme allows one to visualize, for example, the effect of different
unitary channels: although all unitary transformations map the set of all pure states on A to the full
Bloch sphere of B, different colour distributions reflect how the Bloch sphere is rotated differently
by various unitaries. More importantly, this colour-coding introduces an easy visual distinction
between CC and CE conditionals. To this end, we introduce the following nomenclature:

Definition 43. An inference ellipsoid is termed right-handed if the transformation T of the Bloch
sphere that it represents is proper, i.e. does not involve a reflection: detT > 0. If detT < 0, the
ellipsoid is termed left-handed . If detT = 0, then the ellipsoid is degenerate (disk, line or point)
and does not have well-defined handedness.

Figure 4.1: Visual representation of single-qubit conditionals by their effect on the Bloch sphere: (a)
the identity channel, (b) a noisy channel, (c) a unitary rotation, (d) steering via a bipartite state
(CC relation), specifically the singlet state. The geometry of the inference ellipsoid distinguishes
extremal conditionals (definition 44) from noisy ones, whereas the differences between various unitary
rotations and between extremal CE and extremal CC conditionals are only captured by the colouring
scheme.

The handedness of an ellipsoid is easily identifiable in its coloured representation: Consider
the images of the unit vectors {x̂, ŷ, ẑ}, identified by red, green and blue, respectively. In the
original Bloch sphere, they are mutually orthogonal and form a right-handed triad, in the sense that
(x̂× ŷ) · ẑ > 0. A proper transformation (detT > 0) can distort their magnitudes, but only by non-
negative factors, and the angles between them, but only within the range (0, π). Thus, their images
still form a right-handed triad. On the other hand, the triad of vectors RGB becomes left-handed if
and only if there is a reflection involved, that is, under improper rotations of the Bloch sphere.

4.1.2 Causal relations reflected in the geometric and visual representation

In order to establish what the transformation parameters (~c, T ) and their visual representation as a
coloured ellipsoid reveal about the causal structure, let us consider at first only the implications of
the geometry of the ellipsoid, in two extreme cases. The first arises for the following set of causal
relations:

Definition 44. A CE relation between two qubits is termed extremal if and only if it realized
a unitary transformation. A CC relation between two qubits is termed extremal if and only if it
realizes a pure, entangled state19.

19A necessary and sufficient condition is that the conditional τB|A be pure and maximally entangled. However, for
any pure two-qubit state ρBA that has non-zero entanglement (i.e. which is not a product state), the multiplication

with ρ
− 1

2
A in τB|A = ρ

− 1
2

A ρBAρ
− 1

2
A ensures that the resulting conditional is maximally entangled (see section 2.3.3).
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Theorem 45. Given a single-qubit conditional τB|A, the inference ellipsoid representing τB|A is the
unit sphere if and only if the only causal explanation of τB|A is either an extremal CE relation or
an extremal CC relation.

Proof. See appendix A.3.

On the other hand, it is useful to have a characterization of the following set of inference maps:

Definition 46. Given a quantum conditional τB|A, it is termed undecidable if it can be explained
both by a purely CE relation and by a purely CC relation. If the properties of τB|A rules out at
least one of the explanations, on the other hand, it is termed decidable.

Note that this definition of a decidable conditional does not actually guarantee that it can be
explained by either CC or CE relations in general.

Theorem 47. A single-qubit conditional τB|A is undecidable if and only if the inference ellipsoid
fits inside a tetrahedron which is in turn circumscribed by the Bloch sphere.

Proof. Note that τB|A is compatible with both CC and CE if and only if it is both positive-
semidefinite and PPT, which in the case of qubits is a necessary and sufficient condition for separ-
ability. Furthermore, appendix D of [45] establishes that τB|A is separable if and only if the ellipsoid
fits inside a nested tetrahedron. (The theorem in the reference refers to two-qubit joint states in the
context of steering, but following section 2.4.3, τB|A can be considered a special case thereof.)

The geometric condition is illustrated in Fig. 4.3c. The remaining cases of single-qubit inference
maps, which are decidable but not extremal, require more refined criteria for determining what
causal structure can account for them. We begin by focusing on a subset that admits a simpler
analysis; the general case is discussed afterwards.

Unital single-qubit conditionals. A single-qubit map is termed unital if and only if it leaves the
centre of the Bloch sphere, viz. the maximally mixed state, invariant. By extension, a Jamiołkowski
operator τB|A is termed unital if and only if it is isomorphic to a unital map, which is equivalent to
the mathematical condition TrA

(
τB|AIA

)
= IB . We begin by establishing the following:

Lemma 48. A unital single-qubit conditional τB|A can be represented on the Pauli basis as

1

4
Tr
(
τB|Aσ

i
B ⊗ σ

j
A

)
=

(
1 ~0T

~0 T3×3

)
ij

, (4.8)

with the eigenvalues of the correlation matrix T forming a three-vector ~t. Then τB|A admits a CC
explanation if and only if ~t lies within the tetrahedron with vertices

{(1, 1,−1) , (1,−1, 1) , (−1, 1, 1) , (−1,−1,−1)} , (4.9)

and a CE explanation if and only if it lies within the tetrahedron

{(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)} . (4.10)

Proof. See appendix A.3.

The two regions in ~t-space are illustrated in Fig. 4.2. The tetrahedra introduced here are an
alternative representation of the sets of positive-semidefinite respectively PPT operators on two
qubits, formulated in terms of their Pauli coefficients. (See e.g. section 10.2 of Bengtsson and
Zyczkowski [46].) This rather technical criterion gives rise to a simple condition on the visual
representation of the inference map:
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Theorem 49. Let τB|A be a unital single-qubit conditional and assume that τB|A is decidable. Then
τB|A admits a CE explanation if and only if the colouring of the inference ellipsoid is right-handed,
and a CC explanation if and only if the colouring of the inference ellipsoid is left-handed.

Proof. If τB|A is decidable, its representation in the space of eigenvalues ~t lies outside the intersec-
tion of the two tetrahedra in lemma 48. The remaining conditionals are positive-semidefinite (i.e.
compatible with a CC relation) if and only if they lie in one of four smaller tetrahedra, each of them
contained in an octant such that t1t2t3 = detT < 0. Conversely, they are negative if and only if they
lie in one of four smaller tetrahedra with detT > 0. Definition 43 relates this to the handedness of
the steering ellipsoid.

Figure 4.2: Classification of unital one-to-one qubit conditionals in terms of ~t, the ei-
genvalues of the correlation matrix T : those admitting a CC (CE) explanation form
a tetrahedron with vertices {(1, 1,−1) , (1,−1, 1) , (−1, 1, 1) , (−1,−1,−1)} (red) (respectively
{(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)}, blue). Their intersection, which represents unde-
cidable maps, is an octahedron. Conditionals that admit only a CC (CE) explanation lie in octants
with detT < 0 (detT > 0). (Note that all regions of interest are invariant under reorderings of the
vector ~t, hence there is no need to label the axes.)

Example 50. The conditional

τB|A =


2
3 0 0 1

3
0 1

3 0 0
0 0 1

3 0
1
3 0 0 2

3

 (4.11)

is proportional to the Werner state ρBA = 1
3 |Φ

+〉〈Φ+| + 2
3

I
4 . It reduces the image of the Bloch

sphere to radius 1
3 , so that it fits inside a tetrahedron, as illustrated in Fig. 4.3c, which implies

undecidability (see theorem 47). Indeed, the conditional is separable, i.e. both positive-semidefinite
and PPT, and therefore it can be explained by either causal relations: a CC relation that prepares
the Werner state, or a CE relation that rotates the qubit by π about the y axis of the Bloch sphere
with probability 1

3 and applies complete dephasing in the σ3-eigenbasis (i.e. a non-destructive,
projective measurement of σ3) with probability 2

3 . In both cases, one obtains a left-handed inference
ellipsoid with radius 1

3 .

Non-unital single-qubit conditionals. Now consider a single-qubit conditional τB|A that is
not necessarily unital. Again, one might ask under what conditions such conditionals are positive-
semidefinite (compatible with CC), PPT (compatible with CE) or both (undecidable). In order to
address this question, let us first establish the following useful representation:
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Figure 4.3: Geometric properties of the inference ellipsoid reflect the underlying causal structure:
(a) The full sphere with a right-handed colour distribution is generated by unitary rotations (CE),
specifically the identity channel in the case shown here. (b) The full sphere with left-handed colouring
is generated by maximally entangled states (CC), specifically the singlet state. (c) An ellipsoid that
fits inside a nested tetrahedron, regardless of handedness, can be explained by either causal relation.
The figure shown here represents the Werner state discussed in example 50.

Lemma 51. Given a generic single-qubit conditional τB|A, whose Pauli basis representation is

1

4
Tr
[
τB|Aσ

i
B ⊗ σ

j
A

]
=

(
1 ~0T

~c′ T ′

)
ij

, (4.12)

there exist rotations of the Bloch spheres of A and B, viz. a product of local unitary operations on
HA and HB, that put the Pauli basis decomposition in the form

1

4
Tr
[
(VB ⊗ UA) τB|A (VB ⊗ UA)

†
σiB ⊗ σ

j
A

]
=


1 0 0 0
c1 t1 0 0
c2 0 t2 0
c3 0 0 t3


ij

. (4.13)

The diagonal elements ~t = (t1, t2, t3) are the singular values of the correlation matrix T ′ in the Pauli
representation of the original τB|A.

Proof. See appendix A.3.

Figure 4.4: Inference ellipsoids (a) of a generic single-qubit conditional τB|A and (b) combined with
suitable unitaries to put it in the standard form, introduced in lemma 51. The lengths of the axes
t1, t2, t3 and the magnitude of the offset from the origin, |~c|, remain fixed, but the orientations
generally change. This is effected by the unitary VB , which acts on the output of the inference map:
it rotates the ellipsoid so that its axes align with the axes of B’s Bloch sphere. The unitary on the
input, UA, on the other hand, changes which inputs (represented by certain colours) are mapped to
which points on the ellipsoid. It is chosen such that the axes of the input Bloch sphere, which are
represented visually by the colours red, green and blue, align with the axes of the ellipsoid. Their
separate effects are illustrated in panels (c) and (d), respectively.
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The inference ellipsoids representing τB|A and the suitably rotated (VB ⊗ UA) τB|A (VB ⊗ UA)
†

are illustrated in Fig. 4.4. Note that the position ~c of the centre of the ellipsoid representing
(VB ⊗ UA) τB|A (VB ⊗ UA)

† may be different from ~c′, which now denotes the position of the centre
of the ellipsoid representing τB|A without the unitary transformations. It is furthermore important
to note the following:

Lemma 52. The set of positive-semidefinite bipartite operators is closed under products of unitaries,
as is the set of PPT operators.

Proof. For the first claim, note that unitary transformations, including products of unitaries on two
subsystems, constitute positivity-preserving maps. Then the second claim follows by noting that
TA

(
UAτB|AU

†
A

)
= U∗ATA

(
τB|A

)
UTA , and the complex conjugate U∗A is unitary if and only if UA is

unitary as well: if τB|A is PPT, so that TA
(
τB|A

)
≥ 0, then so is its image under any unitary U∗A,

U∗ATA
(
τB|A

)
UTA = TA

(
UAτB|AU

†
A

)
≥ 0, (4.14)

and consequently UAτB|AU
†
A is also PPT, for any unitary UA.

Since positivity and PPT are unchanged under products of local unitaries, it is sufficient to seek
a criterion in terms of the parameters ~c and ~t of the simplified form of τB|A that was introduced
in lemma 51. Furthermore, the set of all positive-semidefinite operators is related to the set of
all PPT by a simple partial transposition, therefore we will only directly characterize the region
of ~c × ~t-space that corresponds to PPT operators and from there deduce a characterization of the
region that corresponds to positive-semidefinite operators. Ruskai et al. [47] derive necessary and
sufficient conditions for a conditional to be PPT:

Lemma 53. (Corollary 2 in [47], paraphrased) Consider a single-qubit conditional τB|A and suitable
local unitaries VB ⊗ UA that put its Pauli representation in the form

1

4
Tr
[
(VB ⊗ UA) τB|A (VB ⊗ UA)

†
σiB ⊗ σ

j
A

]
=


1 0 0 0
c1 t1 0 0
c2 0 t2 0
c3 0 0 t3


ij

. (4.15)

The conditional τB|A is PPT if and only if
(a)|c3|+ |t3| = 1, c1 = c2 = 0 and t1 = ±t2; or
(b) |c3|+ |t3| < 1, and all of the following hold, where s = ±1 denotes the sign of t3:(t1 + t2)

2 ≤ (1 + t3)
2 − c23 −

(
c21 + c22

) ( 1+t3−s|c3|
1−t3−s|c3|

)
,

(t1 − t2)
2 ≤ (1− t3)

2 − c23 −
(
c21 + c22

) ( 1−t3+s|c3|
1+t3+s|c3|

)
,

(4.16)

[
1−

(
t21 + t22 + t23

)
−
(
c21 + c22 + c23

)]2 ≥ 4
[
t21
(
c21 + t22

)
+ t22

(
c22 + t23

)
+ t23

(
c23 + t21

)
− 2t1t2t3

]
.

(4.17)
(Note that the parameters ~c and ~t must satisfy |ci| + |ti| ≤ 1 for i = 1, 2, 3, since otherwise the
image of |±i〉, viz. the Bloch vector ~a = î, would lie outside the Bloch sphere and therefore not be a
positive-semidefinite operator.)

This characterization of the region of ~c × ~t-space that represents all PPT operators is rather
cumbersome. Consider instead the set of ~t that, for a given ~c, generate PPT conditionals. If ~c is zero
(i.e. in the limit of unital conditionals), this is the blue tetrahedron shown in Fig. 4.2. The effect of
non-trivial ~c is essentially to round the corners of the tetrahedron. (The case of c1 = c2 = 0, c3 > 0
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is discussed and represented graphically in [47], and numerical simulations show a similar form for
generic ~c.)

Let us now characterize the region in ~c × ~t-space that corresponds to the set of all positive-
semidefinite operators. This set is obtained from the set of all PPT operators by partial transposition.
The effect of partial transposition on the parameters ~c and ~t that describe an individual τB|A depends
on the basis chosen to perform the transposition: for example, transposition on B in the eigenbasis
of σ3 leaves σ1

B and σ3
B unchanged, but inverts the sign of σ2

B , so that (c1, c2, c3) → (c1,−c2, c3)
and (t1, t2, t3) → (t1,−t2, t3) (reflection about the 1, 3-plane), whereas transposition on B in the
eigenbasis of σ2 inverts the sign of σ3

B , so that (c1, c2, c3)→ (c1, c2,−c3) and (t1, t2, t3)→ (t1, t2,−t3)
(reflection about the 1, 2-plane). However, the images of a given τB|A under partial transposition in
different bases are related by unitaries on the system on which the transposition acts, and according
to lemma 52, the set of positive-semidefinite operators and the set of PPT operators are both closed
under these operations. Therefore the image under partial transposition of the region of ~c×~t-space
that corresponds to the set of all PPT operators is independent of the basis chosen to realize the
transposition. For simplicity, we chose partial transposition on B in the eigenbasis of σ3, so that
the effect of partial transposition is a reflection about the 1, 3-plane, inverting the signs of c2 and
t2. Note furthermore that the sign of c2 is irrelevant in the conditions of lemma 53. The region of
~t that generate positive-semidefinite conditionals for a given ~c is therefore the reflection about the
1, 3-plane of the region that generates PPT conditionals for the same ~c.

This symmetry allows us to generalize theorem 49, dropping the assumption of unitality:

Theorem 54. Let τB|A be any single-qubit conditional and assume that τB|A is decidable, i.e. the
inference ellipsoid does not fit inside a nested tetrahedron. Then τB|A admits a CE explanation if
and only if the colouring of the inference ellipsoid is right-handed, and a CC explanation if and only
if the ellipsoid is left-handed.

Proof. Proof is provided in appendix A.3.

This almost completes the classification of all single-qubit conditionals in terms of the causal
structures that can account for them: if the inference ellipsoid fits inside a nested tetrahedron, then,
by theorem 47, it can be explained both by a purely CC and by a purely CE relation. If the inference
ellipsoid does not fit inside a nested tetrahedron but has well-defined handedness, then, by theorem
54, it is compatible either with a purely CC relation or with a purely CE relation. What remains to
be classified, then, is the set of inference ellipsoids that violate the nested tetrahedron condition but
do not have well-defined handedness: degenerate ellipsoids which are reduced to disks of sufficiently
large radius. (If the ellipsoid is reduced to a line or a single point, then it automatically satisfies
the nested tetrahedron condition.) By theorem 54, these conditionals can be explained neither by
purely CC relation nor by purely CE relations alone. However, they can be explained by a convex
mixture of the two20.

Note that this no longer holds when one goes beyond the case of linear one-to-one qubit maps:
a full causal map ECB|D, for example, which tracks distinct pre- and post-intervention versions of
A, cannot generally be explained as a probabilistic mixture of purely CC and purely CE relations,
even if A and B are only qubits. This possibility is further explored in chapter 5.

20To see this, consider the representation of the two-dimensional degenerate ellipsoid in terms of the parameters ~c
and ~t, and note that one component of ~t, say t1, is zero. This ellipsoid can be obtained from a convex combination of
two other inference ellipsoids with ~c′ = ~c′′ = ~c and t′2,3 = t′′2,3 = t2,3, but with t′1 = −t′′1 6= 0. If one were to choose∣∣t′1∣∣ too large, these may not be valid inference ellipsoids (they would exceed the unit sphere), but because the original
ellipsoid parametrized by ~c,~t with t1 = 0 is contained inside the unit sphere, there exists some permissible range of
non-zero

∣∣t′1∣∣ that ensures the same. The inference ellipsoids parametrized by ~c′,~t′ and ~c′′,~t′′ also violate the nested
tetrahedron condition, but have well-defined handedness: one left-handed, one right-handed. It follows that one part
of the convex decomposition admits a purely CC explanation, while the other admits a purely CE explanation.
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4.2 Experiment
This section describes a linear optics experiment21 that puts the results of the previous section,
specifically theorem 40, into practice. Going beyond a simple decision problem between purely CC
and purely CE relations, the task here is quantitative: given a promise that the relation between two
qubits is a probabilistic mixture of an unknown quantum channel (CE) and an unknown bipartite
state (CC), we aim to estimate the probability with which each scenario is realized, using only
observational data. Theorem 39 shows that observational data provides a complete characterization
of the linear inference map τB|A, assuming such a map exists, which is the case if we are promised a
probabilistic mixture of CC and CE relations. If one is furthermore promised a mixture of extremal
CE and CC relations, i.e. a unitary channel and a maximally entangled state between two qubits,
this problem admits a unique solution: observational data is sufficient to completely characterize
the unitary, the entangled state and their relative weights. This is shown by an explicitly geometric
construction in appendix A.4.

The probabilistic mixture of CC and CE relations between two qubits is implemented by a
version of the circuit introduced in Fig. 2.3d. Using the notation C and D to distinguish the pre-
and post-intervention versions of qubit A, we can specify the circuit elements as follows: two qubits
are prepared in the maximally entangled state defined in eq. (2.14),

ρCE =
∣∣Φ+

〉 〈
Φ+
∣∣ , (4.18)

and C is measured, after which it is relabelled D. Qubit D is then recombined with E in a two-qubit
gate to obtain B and F : letting IB|D denote the identity channel that transforms D into B (and
similarly for other pairs), let

EBF |DE = (1− q) IB|D ⊗ IF |E + qIB|E ⊗ IF |D. (4.19)

This is followed by a partial trace over the qubit F , effectively defining the gate EB|DE ≡ TrFEBF |DE ,
whose output is B. The probabilistic swap gate EBF |DE is the central element: with probability
1 − q, it routes the input D to B, implementing a CE relation between A and B, whereas with
probability q, it routes E to B, realizing a CC relation between A and B.

The experimental setup is shown in Fig. 4.5. The qubits are encoded in the polarization degree of
freedom of photons. The initial preparation generates pairs in the polarization-entangled state |Φ+〉,
achieved with 98.5% fidelity, by parametric down-conversion. The gate EBF |DE is implemented using
a displaced Sagnac interferometer (chosen for the passive stability it provides), which realizes either
a two-photon identity gate or a swap depending on the phase difference between the clockwise and
counter-clockwise paths. The choice is controlled by a liquid crystal retarder (LCR) which, when
voltage is applied, introduces a phase shift between the paths. (As shown in Fig. 4.5, the LCR itself
extends across both paths, but one can ensure that it affects the two paths differently by inserting
wave-plates, which can address each path separately, at various points in the interferometer.) The
LCR is switched on or off at random at .2s intervals, with a given probability qexp of being switched
on for each interval. On average, this realizes a probabilistic mixture of (1− qexp) identity and qexp
swap. At the end, the two photons that exit the gate, B and F , are detected in coincidence: only
when both detectors click within a window of 3 ns do we conclude that the initial preparation did
in fact produce an entangled pair, and count the run.

The polarization of photons is measured using a polarizing beam-splitter (PBS) in conjunction
with a single-photon detector at the end of the circuit: if the detector clicks, then the photon
passed the PBS and therefore was polarized horizontally at that point. Conversely, if the photon
was vertically polarized, it is sent to a dump and the final detector will not click. By itself, a PBS

21The experiment was designed, realized and analysed in collaboration with M. Agnew, L. Vermeyden, D. Janzing,
R. W. Spekkens and K. J. Resch and a description of it was published in [2] (see statement of contributions in the
front matter).
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Figure 4.5: Experimental setup implementing a probabilistic mixture of CC and CE relations
between two qubits encoded in the polarization of photons. Coloured boxes distinguish functional
components of the setup that correspond to the different elements of the abstract circuit (Fig. 2.3d):
preparation of an entangled state (yellow), measurement of photon A (blue), probabilistic swap gate
(green) and measurement of photon B (yellow). Notation for optical components: half-wave plate
(HWP), quarter-wave plate (QWP), liquid-crystal retarder (LCR), polarizing beam splitter (PBS),
non-polarizing beam splitter (NPBS), periodically poled KTP crystal (ppKTP), avalanche photo
diode (APD).

selectively transmits one of two eigenstates of σz. By combining a PBS with half- and quarter-wave
plates, one can select other polarization states in a similar manner. This paradigm is different from
that of an idealized measurement, which gives different non-null outcomes for both polarizations.
However, assuming that photons are produced at a constant rate, on average, one can compensate
for the difference: running an experiment with a PBS-measurement set to select for each eigenstate
of a given observable for equal periods of time t and counting the number of clicks generated for
each eigenvalue, one obtains the same statistics (on average) as by running an experiment with an
ideal measurement for a single period t and counting how many times the apparatus produces each
output. In order to implement a measurement that leaves the photon in the same state as before
the interaction, as is required for an observational scheme, one must include not only one set of
wave-plates before the PBS, which transforms whatever incoming state |ψ〉 one wishes to select for
to the horizontal state so that the photon can pass the PBS, but also a second set after that PBS,
which transforms all horizontally polarized photons that passed the PBS back to the same state
|ψ〉. Note that this is not an independent repreparation, making it fundamentally different from an
interventionist scheme, and therefore insufficient for full causal tomography.

Data are collected for 36 combinations of measurement settings, ranging over the six Pauli
observable eigenstates in measurements on A and B and counting coincidences during 5s for each
combination of settings. Following the notation introduced in Fig. 2.5, the eigenstate found in the
measurement on A is indexed by the choice of Pauli observable s ∈ {1, 2, 3} and the eigenvalue
c ∈ {±1} and denoted Πs,c, and similarly u ∈ {1, 2, 3} and b ∈ {±1} specify a projector on B. We
denote the count numbers observed for each combination cbsu by P̃ obs (cbsu), noting that they are
proportional to joint probabilities of outcomes cb and settings su, due to the way the measurement
is realized.
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The data can be analysed by a straightforward least-squares fit to a probabilistic mixture of
CC and CE terms. In the model, the CC component is parametrized by the positive-semidefinite,
trace-one operator ρCB , which is simply a joint state. The CE component is parametrized by the
marginal ρC that enters the measurement apparatus together with a PPT conditional τB|D that
describes how B depends on the earlier variable. The probability of realizing a CC structure, which
is what we seek to determine, is encoded in a weight 0 ≤ q ≤ 1. The probability of obtaining a click
for a combination of settings cbsu, according to this model, takes the form

Pmod (cbsu) = qTr
[
Πu,b
B ⊗Πs,c

C ρBC

]
+ (1− q)Tr [Πs,c

C ρC ]Tr
[
Πu,b
B ⊗Πs,c

D τB|D

]
. (4.20)

In order to predict the observed count numbers, we introduce an additional model parameter N ,
which corresponds to the number of entangled pairs generated during the period of data collection
for each combination of wave-plate settings cbsu. This is assumed to be equal for all cbsu, based on
the facts that we collect counts for each cbsu for the same amount of time and that entangled pairs
are generated at an approximately constant rate, when averaged over the relevant time-scale. The
count numbers predicted by the model can therefore be written as

P̃mod (cbsu) = NqTr
[
Πu,b
B ⊗Πs,c

C ρBC

]
+N (1− q)Tr [Πs,c

C ρC ]Tr
[
Πu,b
B ⊗Πs,c

D τB|D

]
(4.21)

and one seeks parameters of the model that minimize the residue

χ2 ≡
∑
cbsu

[
P̃mod (cbsu)− P̃ obs (cbsu)

]
P̃mod (cbsu)

. (4.22)

Note that we do not assume in the model that ρCB is a maximally entangled state, nor that τB|D
represents a unitary transformation. We only made these assumptions in the theoretical analysis of
the scenario in order to show that they ensure a unique solution, but do not expect them to hold
exactly in any realistic description of the experiment.

Since normalization of ρCB , ρC and τB|D can only be enforced in the fit by adding penalty terms
to the target function, it is more efficient to absorb the parameters N and q into ρCB and ρC ,
replacing them by unnormalized operators ρ̃CB ≡ qNρCB and ρ̃C ≡ (1− q)NρC :

P̃mod (cbsu) = Tr
[
Πu,b
B ⊗Πs,c

C ρ̃BC

]
+ Tr [Πs,c

C ρ̃C ]Tr
[
Πu,b
B ⊗Πs,c

D τB|D

]
, (4.23)

in terms of which the relevant parameter q takes the form

q =
Trρ̃CB

Trρ̃CB + Trρ̃C
. (4.24)

A convenient parametrization of positive-semidefinite operators is provided in [48]: for a 4 × 4
operator, define the lower-triangular matrix

J =


j1 0 0 0

j2 + ij3 j4 0 0
j5 + ij6 j7 + ij8 j9 0
j10 + ij11 j12 + ij13 j14 + ij15 j16

 , (4.25)

specified by the 16-component real vector ~j, and take

ρ̃CB = J†J. (4.26)

This form is positive-semidefinite by construction, requiring no further constraints to enforce the
desired property. Furthermore, the trace of the resulting operator is simply

Tr
(
J†J

)
=
∑
i

j2
i =

∣∣∣~j∣∣∣2 . (4.27)
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A similar parametrization can be used for TD
(
τB|D

)
, to ensure that the conditional τB|D itself is

PPT, and for the 2 × 2 matrix ρ̃C , which requires only four real parameters. In order to assess
how well the data fit a model with a fixed probability qtest, we add a suitable penalty term to the
function χ2 to be minimized,

λq


∣∣∣~jCB∣∣∣2∣∣∣~jCB∣∣∣2 +

∣∣∣~jC∣∣∣2 − qtest


2

. (4.28)

The remaining constraint, the normalization requirement on quantum conditionals, TrBτB|D = ID,
is also enforced with a Lagrange multiplier,

λD
∑
ij

∣∣∣(TrBτB|D − ID
)
ij

∣∣∣2 . (4.29)

The values of the multipliers are chosen heuristically so as to make the typical value of the penalty
term similar in magnitude to the residue χ2, since smaller values of λ make the penalty terms
ineffective at enforcing the constraints; whereas larger λ allow the penalty terms to dominate over
the residue χ2, compromising the sensitivity of the fit.

Fig. 4.6 shows the results from 21 experimental runs implementing different probabilities of
common-cause relation, qexp: the data from each run are fitted to the model of a generic probabilistic
mixture, ranging over different values of the CC probability qtest and tracking the quality of the
fit. This reveals a well-defined band of relatively good fits when qtest ≈ qexp, contrasting with
much larger residues χ2 – by several orders of magnitude – when qtest is far from qexp. Our analysis
therefore allows a conclusive inference from experimental data to the probability of CC implemented
in the experiment, proving that it is possible to discern CC from CE relations despite the restriction
to observational data. The black points in Fig. 4.6 mark the qtest that achieved the best fit for each
qexp. Over the 21 runs, the results of this method revealed the implemented qexp with a root-mean-
square deviation of only 0.043, as estimated by a Monte Carlo simulation. (To appreciate how small
this deviation is, recall that the probabilities q are dimensionless quantities in the interval [0, 1].)

Figure 4.6: Experimental results on distinguishing CC and CE using only observational data.
We implement probabilistic mixtures of CC and CE relations, with probability of CC qexp ∈
{0, 0.05, 0.1, ...1.0}, and fit the observational statistics to the model (4.23) while enforcing differ-
ent CC probabilities qtest. The residue χ2 quantifies how much the data conflict with the model.
The well-defined band of relatively good fits around qtest ≈ qexp shows that one can estimate qexp
from observational data. Black points mark the best-fitting qtest for each value of qexp.
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One may note that the residue χ2 when fitting the experimental data to a probabilistic mixture
was generally rather high, considering that the number of free parameters is 5. (Each run yields 6×
6 = 36 count numbers, while the model has 31 independent parameters after enforcing constraints.)
The relatively poor fit can be traced to the implementation of the probabilistic swap: Recall that
the LCR is switched on and off repeatedly while we collect counts for each combination of wave-
plate settings cbsu. It is switched at fixed intervals, 25 times during each collection window, with
probability qexp of being switched on during any one interval. The overall fraction of each collection
window during which the LCR is switched on is therefore not exactly qexp, but rather sampled from
a binomial distribution with 25 samples and mean qexp. This implies that each of the 36 count
numbers is obtained from a probabilistic mixture with generally slightly different fractions of CC
and CE. This explains why the complete dataset for a given qexp produces a surprisingly large χ2

when fitting to a model with a single probability of CC. Despite this background noise, the high
contrast between relatively good fits near qtest ≈ qexp and worse fits when qtest is far from qexp

proves that the uniquely quantum causal inference criterion can distinguish CC from CE clearly and
decisively.

4.3 Causal analysis of open systems dynamics
The techniques described earlier in this chapter, along with the conceptual framework of quantum
causal models, may also prove useful in the study of open quantum systems. Specifically, the causal
perspective suggests a definition of non-Markovianity that extends naturally to quantum systems,
as well as tools for detecting the phenomenon. Quantum causal models also offer a clear physical
interpretation and a suitable mathematical formalism for explaining not completely positive maps,
which are often dismissed as unphysical in the conventional framework, even though they have been
known to arise both in theory and in experiment [49, 50, 51, 52, 53, 54]. Before we turn to the
contributions of quantum causal models, we begin with a brief review of Markovianity and complete
positivity in the conventional framework.

The scenario is the following: a system S evolves while interacting with its environment, E.
Following the general formalism used in this thesis, the labels Si and Ei refer to quantum systems
at individual points in time, specifically the principal system and the environment with which it
interacts, respectively, at various times ti. To each of these quantum variables we can assign a
separate Hilbert space and a static quantum state that encodes our information about the system,
just as a classical variable has a set of possible values and one can express one’s knowledge about
the variable as a probability distribution over this set, with the state or probability distribution for
a given variable generally depending on its causal parents, i.e. the variables of the preceding time
step. The objects of interest are the discrete time series of states on {Si}, for the discussion of
Markovianity, and the maps representing individual time-steps, in particular how S2 depends on S1,
for the discussion of complete positivity.

4.3.1 The Markov condition and complete positivity

We being by considering the definition from classical statistics:

Definition 55. A time sequence of (classical) variables {Si} is termed a Markov chain if each
element is explicitly dependent only on its direct ancestor: P (Si+1|Si, Si−1, ...) = P (Si+1|Si) [55].

A Markov chain is often described as having "no memory" in the sense that its previous history,
{Si−1, Si−2, ...}, provides no additional information for predicting its next step, Si+1, beyond what
is encoded in the current Si. Markov chains are the preferred model for a broad range of classical
phenomena, from chemistry and economics to natural language modelling and game theory. There
have been a number of attempts to generalize this notion to time sequences of quantum states,
which constitute snapshots of the dynamics of a quantum system that interacts with its environ-
ment. The proposals include indicators of non-Markovianity based on effects that cannot occur
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under CP maps, such as increasing distinguishability between two quantum states [56] or increasing
entanglement with an ancilla [57], and formal conditions on the Lindblad master equation (for the
case of continuous-time evolution) [58, 59, 60], among others. However, the definitions that have
been proposed are generally not equivalent, and no single notion of quantum non-Markovianity is
forthcoming [61, 62, 57, 63]

Another common simplifying assumption about the dynamics of open quantum systems, which is
related to the Markov property, is that the map S1 to S2 is completely positive, obeying definition 14.
In physical terms, this ensures that, even when the input into the channel is part of an entangled state
with an ancilla, the resulting output is still a positive-semidefinite operator, so that the probabilities
it predicts for any measurement outcomes are strictly non-negative. A model that predicts negative
probabilities is deemed unphysical, hence all maps representing quantum channels are required to
be completely positive. This assumption plays a large role in the experimental characterization of
unknown quantum channels (quantum process tomography, abbreviated QPT), which is essential for
benchmarking quantum information processing devices. Among other implications, demanding that
the reconstructed map be CP makes the fitting of experimental data more robust [64]. Complete
positivity also makes many analytical manipulations (for example in quantum information theory)
more tractable, since every CP map can be put in the Kraus form [65].

In order to ensure that the map from S1 to S2 is completely positive, one normally assumes
that the initial state of the system, S1, is uncorrelated with any environmental degrees of freedom
E1 that may affect its subsequent evolution [66, 49, 50, 51]. There are also other ways to ensure
complete positivity of the map: for instance, if the correlation time of the environment is much
shorter than the characteristic time-scale of its interaction with the system, so that any correlations
between them decay before causing a significant back-action, or if there is some other mechanism
preventing the record of the system’s initial state that is stored in the environment from affecting
the subsequent evolution and thereby influencing the final state of the system, then one also recovers
CP dynamics22.

In many scenarios of practical relevance, one can ensure that at least one of these sufficient
conditions holds to good approximation. However, in general, there is no reason to assume that a
quantum system is, at any given time, not correlated with its environment, especially if one considers
how challenging it is to isolate quantum systems effectively. Similarly, it is extremely unlikely that all
information stored in the environment either decays sufficiently quickly or is completely irrelevant to
the subsequent evolution of the system due to some other mechanism. Indeed, numerous experiments
in QPT have yielded reconstructed maps that are not quite CP, and in several cases the seemingly
unphysical results can be traced back to initial correlations [53, 54, 52, 68, 69].

A realistic study of general open quantum systems dynamics will therefore require a more robust
framework, including a mathematical formalism and the necessary conceptual underpinnings, for
describing dynamics beyond completely positive maps. Before that, however, we seek a succinct
characterization of the conditions that lead to complete positivity. This characterization takes a
particularly simple form in terms of causal relations and, as we will show, is closely related to a
quantum version of the Markov condition.

4.3.2 The causal perspective on Markovianity and complete positivity

We will argue that the language of causal models provides a concise statement of the conditions that
ensure Markovianity and complete positivity of the map from S1 to S2. To show this, we will begin
by recasting the conventional statement of the Markov condition in terms of causal structure:

22The so-called Markov approximation, which states that the "memory" about the principal system S that is
encoded in its environment decays quickly compared to time-scale of S, is instrumental in deriving the Lindblad form
of the master equation governing the continuous-time evolution of an open quantum system. The Lindblad form, in
turn, ensures that the map relating the states of the principal system at any two times is completely positive. A
pedagogical discussion in given in [67].
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Lemma 56. A causally ordered set of variables {Si} forms a Markov chain if and only if they admit
a causal model wherein each Si is (directly) influenced only by the immediately preceding Si−1.

Proof. Considering that the variables are causally ordered, and assuming that the indices reflect this
order, we know that the joint probability distribution over the set of observed variables {Si} must
factorize as

P ({Si}i) = ΠiP (Si|Si−1, Si−2, ...) , (4.30)

with each variable potentially depending on all the variables that precede it. There are two ways in
which this scenario can violate the conventional statement of the Markov condition (definition 55),
which are illustrated in Fig. 4.7: (a) if the next Si+1 is directly influenced not only by the present
Si, but also by some earlier Si−n (n > 0); and (b) if the {Si} do not admit a faithful causal model at
all, because two or more Si are directly influenced by an external Ej that is not part of the observed
set {Si}. Both instances of non-Markovianity can be traced back to the existence of common causes
between different Si: in one case, the element Si−n of the sequence is a common cause of Si+1 and of
its own immediate successor, Si−n+1; in the other case, the external (unobserved) Ej is a common
cause of two distinct variables, say Si−n and Si. The converse, that a causal structure that is a
purely CE chain implies that the {Si} form a Markov chain, follows directly.

Figure 4.7: Non-Markovianity and not complete positivity in terms of causal structure. Given a time
series of variables {Si}, there are two features in the causal structure that can lead to a violation of
the Markov condition: (a) a variable Si−n acts as a common cause of two later variables, namely its
own child Si−n+1 and a later Si, or (b) an unobserved variable Ej , which is not part of the sequence
{Si}, acts as a common cause of two distinct Si. (c) The interaction between a system S and its
environment E over the course of discrete time steps (denoted by sub-indices) can be represented
by the causal structure shown here. If the causal relation between S1 and S2 is purely CE, then
the map that represents it is CP. However, if there are mechanisms that realize some amount of CC
relation, such as correlations in the initial state of S1 and E1 (due to the common causes S0 and E0)
and a subsequent influence of E1 on S2 (bold), then the map from S1 to S2 may be not completely
positive.

Both of the causal structures that violate the Markov condition can be interpreted as evidence of
memory effects, since they require some external memory – outside the sequence {Si} itself – to store
the information about how the common cause will affect later variables. Once the Markov condition
has been cast in terms of causal structure, the generalization from classical stochastic processes to
quantum dynamics is straightforward: if the {Si} denote a time series of quantum variables, it still
holds that the sequence exhibits non-Markovianity if and only if it cannot be modelled as a chain
of purely CE relations, but exhibits some evidence of CC relations as well.
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The perspective of causal models also offers a much more concise statement of the various effects
involved in violating complete positivity. Fig. 4.7c shows the general relation between S1 and S2

as part of a larger causal structure capturing the ongoing interaction with the environment. One
can see that all the effects that lead to a violation of complete positivity – correlations between
S1 and E1 due to a common cause in their shared past, the persistence of this information in E1

for a sufficiently long time and its back-action on the system at a later time, S2 – together form
a single causal path which connects S1 to S2 via the common causes S0E0 shared by S1 and E1

and the subsequent influence of E1 on S2. In short, if the causal relation between S1 and S2 is
purely CE, then the map is CP. It follows that not completely positive maps and the complications
in conventional QPT schemes arise only if the causal relation between S1 and S2 is not simply CE,
but has a non-trivial CC component as well.

4.3.3 Representation in the quantum causal models framework

The above discussion suggests that a general representation of the relation between the states of
a quantum system at two times, S1 and S2, must capture not only the CE influence, but also the
inference along a possible CC path connecting S1 and S2. It follows that there may not generally
exist an inference map of the form ES2|S1

, as one might have expected. Instead, a full description
of the relation between S1 and S2 requires one to distinguish pre- and post-intervention versions of
S1, which we denote C and D respectively, and takes the form of a causal map ES2C|D.

A formally similar solution to the problem of QPT in the presence of initial correlations was
proposed by Modi [39], who describes the circuit relating S1 to S2 as a map from instruments on
S1 to states on S2. In our notation, instruments for probing S1 are sets of maps

{
ExyD|C

}
y
, indexed

by outcomes y, and a map from such instruments to outputs S2 takes precisely the form of a causal
map, although the physical interpretation is slightly different.

It is also possible to define a map from simple quantum states on S1, rather than instruments
relating C andD, to the corresponding states on S2, if one fixes a so-called assignment map: this map
extends each ρS1

to a particular bipartite state ρS1E1
(such that TrE1

ρS1E1
= ρS1

), which encodes
the initial correlations with the environment and subsequently evolves under the global unitary. This
approach to modelling quantum dynamics in the presence of initial correlations has been explored
in several works [70, 51, 71, 72], but it was recognized from the outset that the assignment maps
that give rise to non-CP maps must violate at least one of a list of reasonable properties, such as
linearity [49]. This undesirable effect likely arises because assignments maps are intended to map
states on S1 to joint states with E1, without taking into account how one came to assign a given
state to S1 in the first place. Since learning about a quantum variable generally disturbs it, in the
operational sense that one comes to assign different beliefs to the pre- and post-intervention versions,
the information about how the variable was probed should not be ignored. The framework of causal
models suggest that we represent the implications of a shared common cause by an inference map
rather than an assignment map and provides a physical, operational interpretation of these maps as
well as compelling grounds for their defining mathematical properties.

To underscore this point, let us explore how the causal description of open system dynamics
circumvents the issue of negative probabilities, which is the reason why not completely positive
maps are forbidden in the conventional framework. Suppose that a purely CE influence of S1 on S2

was described by a positivity-preserving but not completely positive map. In this scenario, negative
probabilities would arise if the input S1 was prepared in a particular23 entangled state with an
ancilla N . However, if S1 is at least partially determined by the common cause it shares with E1,
which is precisely what gives rise to the non-CP map, then one cannot prepare S1 in a state that
is also generically entangled with the ancilla N , and in particular any ρNS1

that would lead to
23It follows from the very definition of complete positivity that for every positivity-preserving but non-CP map
EB|A, there exists an input state ρAN that encodes entanglement with an ancilla N such that

(
EB|A ⊗ IN

)
(ρAN ) is

not a positive-semidefinite operator.
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unphysical predictions. One can see this by noting that a full description of the relevant systems
begins with a tripartite operator ρNS1E1 , which must be a valid quantum state, and follows a global
unitary evolution, ensuring that the result at time t2 is also a valid density operator. This analysis
suggests a different take on the problem of non-CP maps: rather than forbidding all non-CP maps
on the grounds that they produce unphysical outputs when applied to certain input states that
are entangled with an ancilla, one could simply characterize the class of entangled inputs that are
problematic for a given map, bearing in mind that they cannot be realized due to the way in which
the non-CP map arose in the first place [50, 73].

Tests of non-Markovianity based on the quantum causal framework. Since we have
reduced the necessary and sufficient conditions for complete positivity of the map and the applicab-
ility of conventional QPT to simply demanding that the causal relation be purely CE, we can now
use previously developed tools to test when this condition is violated. Some of these tools formally
reduce to known conditions for non-Markovianity and merely provide a physical interpretation for
them. For example, one indicator of not purely CE relations is if there exists a linear map of infer-
ences from S1 to S2 of the simple form ES2|S1

, but the conditional τS2|S1
is NPT. This is equivalent

to saying that finding a non-CP map heralds a violation of circumstances assumed in conventional
QPT. While this fact had been established mathematically, we hope to have provided a clearer
physical account of what circumstances can explain the occurrence of a non-CP map.

However, building on previous chapters of this work, we can also propose new indicators of non-
Markovianity. For example, in general there need not exist a linear map ES2|S1

at all. Evidence
of this can be easily detected, even if one is restricted to an observational scheme, by ranging over
an over-complete basis of projectors on S1 in order to verify whether the mapping to states on S2

is linear. If one has the power to intervene, probing S1 with general instruments, one can pursue
the more high-level strategy of performing full tomography and analysing the resulting causal map
(see chapter 5.3 for some criteria). Unlike the tests mentioned above, which are only sufficient
conditions for ruling out Markovianity, full causal tomography yields a complete characterization
of the inference map from S1 to S2 – including any memory effects due to the environment – and
therefore allows one to determine conclusively whether this step in the dynamics admits a Markovian
model or not.

These tests allow one to characterize the dynamics of an open quantum system without requir-
ing the usual assumptions embodied in QPT, but they do rely on a different assumption: both
observational and interventionist schemes require one to probe S1 without affecting the relevant en-
vironmental degrees of freedom. However, the problem of initial correlations in QPT arises precisely
because one generally cannot prepare (a complete set of states on) S1 without also affecting the
environment E1. In order to make the above results more applicable, one should therefore combine
the insight that general relations between two time-ordered variables must be represented by causal
maps, which distinguish two copies of the early variable, with a detailed model of the instruments
that can be used to probe S1 in a given implementation, including how they affect the environment.
One can then derive what one can learn about the causal map – and consequently deduce about the
causal relation – subject to these constraints, similarly to what we have done for the restriction to
observational probing in 3.3.

4.4 An operational interpretation of PPT states
In the field of quantum information theory and its applications to information processing, many key
questions concern the resource of entanglement: for example, how to verify its presence or absence in
experiments, how to construct new families of entangled states and how to classify different types of
entanglement, for example. Operators that are both positive-semidefinite and positive under partial
transposition – that is, PPT states – play a central role in many of these problems, even though the
exact physical implications of the PPT property are not clear. The framework of quantum causal
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models suggests an interpretation of these states in terms of the causal structures that can give
rise to them; a perspective which is naturally suited to addressing problems in communication and
information processing, as well as deeper questions about entanglement and non-locality in quantum
theory [74].

The most prominent role of PPT states in entanglement theory is the Peres-Horodecki criterion
[75, 76], which establishes that a state of two systems A and B with dimensions dA × dB = 2× 2 or
2× 3 is separable if and only if it is PPT. In higher dimensions, while it is easy to show that every
separable state is PPT, the converse does not hold: there are explicit examples of states that are
PPT but possess non-zero entanglement; see for example [77, 78]. Separable states are therefore a
proper subset of PPT states. PPT can instead be shown to imply zero distillable entanglement [79];
the existing entanglement in such states is termed "bound entanglement" by contrast. Entanglement
distillation is relevant to practical quantum communication tasks because it allows two parties to use
several imperfectly entangled pairs, such as might be distributed over a noisy channel, along with
classical communication, in order to distil a smaller number of maximally entangled pairs, which can
then be used to perform e.g. quantum teleportation with high fidelity [80, 81]. However, it is not
clear whether PPT is a necessary and sufficient condition for ruling out distillable entanglement: it
is an open question whether there exist states that are negative under partial transposition (NPT)
but possess zero distillable entanglement. For a review of progress on this topic, we refer the reader
to section XII.H of [82] and references therein, in particular [83, 84, 85].

One can formulate a necessary and sufficient condition for separability in terms of entanglement
witnesses: a state ρAB is separable if and only if its image under IA ⊗EB′|B is positive-semidefinite
for all positivity-preserving but not completely positive maps EB′|B [76]. Instead of characterizing
the set of separable states directly, one can therefore characterize the set of positivity-preserving
but not CP maps. The study of these maps, in turn, in particular of relevant properties such as
decomposability, again relies heavily on PPT states [86].

Given the interest in operators that are both positive-semidefinite and PPT, it is worthwhile to
consider the implications of these properties in the context of causal models:

Theorem 57. A quantum conditional τB|A ∈ L (HB ⊗HA), which can be interpreted as a Jami-
ołkowski operator representing a trace-preserving inference map from A to B, is both positive-
semidefinite and PPT if and only if it can be explained both by a purely CC and by a purely CE
causal relation.

Proof. This follows directly from propositions 18 and 25.

Before we give an operational interpretation of separable states, let us first introduce the follow-
ing:

Definition 58. The causal relation between two quantum variables A and B is said to be classical
cause-effect if and only if it can be modelled by a directed causal path from one to the other that
is blocked by a classical variable X, e.g. A → X → B. Similarly, the relation is termed classical
common-cause if and only if it can be modelled as A and B sharing a classical variable X as their
(sole) common cause.

Fig. 4.8 illustrates the two scenarios. A classical cause-effect relation can be realized as a meas-
urement on A that yields a (classical) outcome X, followed by a preparation on B that depends on
X. Note how the restriction to a classical variable at one point along the causal path precludes any
quantum coherence between its endpoints: the channel from A to B that describes such a cause-
effect relation is completely decohering. Similarly, if A and B share a classical common cause, then
any inference between them must follow the causal path, which is blocked by the classical variable
X. Consequently, the map EB|A = EB|X ◦ EX|A that represents such inferences is also completely
decohering. It follows that the joint states ρBA that can arise from such a structure cannot exhibit
any entanglement between A and B, but only classical correlations. Building on these observations,
one can reach the following conclusion:
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Figure 4.8: (a) Classical cause-effect and (b) classical common-cause relations arise if two quantum
variables A and B are connected by a single causal path and this path is blocked by a classical
variable X. The canonical example of a classical cause-effect relation is realized by a measure-and-
reprepare channels. A classical common-cause structure is the key assumption in deriving Bell-type
inequalities.

Theorem 59. A quantum conditional τB|A ∈ L (HB ⊗HA), which can be interpreted as a Jami-
ołkowski operator representing a trace-preserving inference map from A to B, is separable if it
can be explained either by a classical common-cause relation or by a classical cause-effect relation.
Moreover, if τB|A is separable, then it can be explained both by a classical common-cause relation
and by a classical cause-effect relation.

Proof. A proof is provided in appendix A.5.

As we pointed out above, purely mathematical considerations are sufficient to establish that
separable states are a strict subset of PPT states. However, considering the causal structures that
can give rise to the various classes of conditionals – positive-semidefinite, PPT, separable – offers
an operational interpretation of the distinctions between them. The three-way relations between
mathematical properties of bipartite operators, their correlations and the causal explanations that
can account for them are summarized in Table 4.1.

state correlations
product uncorrelated

separable (PPT) LOCC preparable
non-separable PPT bound entanglement

NPT* bound entanglement*
NPT distillable entanglement

conditional possible causal explanations
product (Pos and PPT) disconnected
separable (Pos and PPT) classical CC or classical CE

non-separable Pos and PPT quantum CC or quantum CE
Pos and NPT not purely CE, but quantum CC
Neg and PPT not purely CC, but quantum CE

Table 4.1: The mathematical properties of bipartite quantum states have operational implications in
terms of the correlations that the states can exhibit. For the most part, certain mathematical proper-
ties are necessary and sufficient conditions for the corresponding type of correlations, but it remains
an open question whether there exist bound entangled NPT states (*). We study instead what the
mathematical properties of any bipartite Hermitian operator τB|A with TrBτB|A = IA (which makes
it Jamiołkowski isomorphic to trace-preserving inference maps) imply about the causal structures
that can give rise to it. This approach reveals a strict one-to-one mapping between mathematical
properties and operational statements that are directly relevant to tasks in communication and
information processing.
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5 Classical and non-classical causal structures
The previous chapters illustrate how even a simple modification to classical causal models, of re-
placing classical random variables with quantum variables and extending conditional probability
distributions to suitable operators, produces a number of interesting effects. For example, even if
the causal relation between two variables is known to be either purely CE or purely CC, one can
meaningfully ask whether the causal relation in each case is effectively classical, in the sense intro-
duced in section 4.4 (definition 58). If the conditionals relating the two variables do exhibit distinctly
quantum effects, these can be exploited operationally as detailed in sections 4.1 and 4.2. So far,
however, we have maintained the assumption that the overall causal structure, i.e. the qualitative
specification of which variables influence which others, is no different from what one could have in
classical causal models.

Definition 60. The term "classical causal structure" refers to a pattern of causal influences that
constitutes a valid causal structure in the framework of classical causal models; that is, such that
the causal influences between individual variables are represented by the edges of a single directed
graph with no causal cycles.

Giving up this assumption, allowing for more exotic causal structures, constitutes a far more
radical generalization of causal models.

The most fundamental motivation for exploring this possibility is the search for a theory of
quantum gravity, as discussed in section 1.2. Such a future theory must allow one to recover conven-
tional causal models and quantum mechanics as limiting cases, but as we go beyond these cases and
begin to explore novel physical effects, it is only to be expected that causal structure itself becomes
ill-defined and subject to typically quantum effects. It has also been predicted that novel causal
structures would constitute a resource for computation [87], for instance allowing one to distinguish
certain channels perfectly that are otherwise indistinguishable [88]. For the task of determining
whether a set of unitary gates commute or anti-commute, undefined causal structures provide an
exponential advantage in query complexity, as was verified in a recent experiment [89, 90].

A general mathematical representation of how two quantum variables can be related if they are
not constrained to a conventional causal structure is derived by Oreshkov et al. in [38]. The so-called
process matrix introduced in [38] is formally similar to the operator τC|D from proposition 28 and
a more general case of the causal map (definition 30). Oreshkov et al. consider two parties, Alice
and Bob, each of whom receives a quantum system in their laboratory and is allowed to interact
with it according to the rules of standard quantum mechanics before sending the system out again.
Crucially, they do not assume that the relation between the two laboratories is captured by a causal
structure with the properties usually demanded in classical causal models, such as a well-defined
global causal ordering of all variables. In the model of Oreshkov et al., there is no global background
time that would distinguish whether Alice interacts with the system before or after Bob does. This
opens the door to causal cycles and grandfather paradoxes:

Example 61. Suppose that Alice receives a classical bit, observes its value and sends it out again,
unchanged. The bit reaches Bob, who also observes its value but then flips the bit before it leaves
his lab. If the model allows causal cycles, the bit can then once again appear at the incoming port
of Alice’s lab, leading to a logical contradiction: the value that Alice observes the bit to have should
be both the opposite of what Bob observed, since Bob flipped the bit, and the same, since Alice did
not flip the bit before sending it to Bob.

Such paradoxes can arise regardless of whether the carriers of information are classical or quantum
systems. In order to explore more exotic causal structures without risking contradictory predictions,
Oreshkov et al. therefore impose the following requirement on the process matrix: for any experi-
ments that Alice and Bob may choose to perform in their individual labs, the statistics predicted
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by the process matrix must define a valid probability distribution over measurement outcomes, con-
sisting of non-negative real numbers whose sum over all possible outcomes is one. In the case of a
causal cycle, for example, there is always some choice of the actions in the local labs that gives rise
to a grandfather paradox, as described in the example above. In this case one cannot even assign
probabilities to combinations of outcomes observed by Alice and Bob in a self-consistent manner.
The constraint proposed by Oreshkov et al. is therefore sufficient to exclude those causal structures
that inevitably lead to logical contradictions. However, there remain a number of causal structures
that satisfy the consistency constraint and yet could not be accommodated in a (single) classical
causal model, for instance, convex combinations of one term in which A causally precedes B and
another with the opposite ordering.

The constraint on the process matrix implicitly defines a constraint on the causal structures that
can be permitted without risking logical paradoxes. However, it would be preferable to characterize
the space of allowed scenarios directly in terms of causal structures rather than process matrices,
since the causal structure provides a much clearer representation of how information flows between
events and may even be the underlying physical element that gives rise to an emergent space-time. It
is clear that the consistency condition is satisfied by any causal structure that is allowed in classical
causal models. Moreover, the simplest classical causal structures, consisting of just a single causal
influence connecting two variables, constitute a natural building block of more complex patterns of
causal influences. We are therefore concerned with ways in which one can combine individual causal
influences, or, more generally, various causal structures that are (separately) allowed in classical
causal models.

One example of considerable interest involves a combination of opposite causal orderings: one
component has A influencing B, while the other has B influencing A. This scenario provides the
advantages mentioned in the introduction, such as gate discrimination or distinguishing commuting
and anti-commuting unitaries [88, 89, 90]. However, considering that most current theories take it as
an implicit and fundamental assumption that events (such as interacting with a system to prepare or
measure it) take place in a well-defined causal order, realizing a combination of two conflicting causal
orderings would require either post-selection or exotic new physics. It has been suggested that the
desired effect could be achieved by placing a large mass in a superposition of position eigenstates,
which would produce a coherent combination of speeding up and slowing down the proper time at
each location, and consequently a coherent combination of the causal ordering of two events at those
locations [91, 92]. However, maintaining coherence for sufficiently large masses and distances to
produce a noticeable effect presents its own series of challenges.

In this work, we choose instead a different example to explore the hierarchy of possible combin-
ations of causal structures: building on the results described in the previous chapters, we consider
two time-ordered variables, A and B, whose causal relation is generally a combination of CC and
CE. Since both causal structures are compatible with the same global causal order, this example
allows for a straightforward experimental realization, which is discussed in more detail in section 5.4.
Despite this simplifying property, the spectrum of ways of combining CC and CE relations is already
much richer if A and B are quantum variables than if they were classical variables. We derive a
rigorous sufficient condition for witnessing non-classicality in the way the two causal relations are
combined. This kind of insight into what it means - both conceptually and mathematically - to
combine two causal structures in a non-classical manner is expected to carry over to the study of
more exotic combinations.

5.1 Classical ways of combining common-cause and cause-effect relations
The following discussion begins by focusing on the case of classical variables, since they are more
accessible to our intuition. The hierarchy of combinations of CC and CE that can be established in
the classical limit is then applied to the case where A and B are quantum variables, where it admits
a natural extension.
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The simplest combination of CC and CE relations, both mathematically and conceptually, is
arguably a convex or probabilistic mixture. Such a structure arises if the late variable, B, is influ-
enced either directly by A or by the common cause it shares with A: in terms of the conditionals
introduced in 2.3c,

P prob (B|DE) = qP (B|E) + (1− q)P (B|D) , (5.1)

with some weight 0 ≤ q ≤ 1. This can be realized by a causal mechanism with the property that,
in any given run of the experiment, B is influenced either only by D or only by E. A more general
combination of CC and CE arises if P (B|DE) does not take this form, for example

P (B|DE) = δ (B,D ⊕ E) . (5.2)

This cannot be expressed as a probabilistic mixture of B depending on either D or E because B is
determined by a combination of D and E; that is, in any given run of the experiment, both D and
E play a role in determining B.

Definition 62. Any combination of CC and CE that cannot be written as a probabilistic mixture
is termed a physical mixture for contrast.

It is interesting to note that, even in the completely classical limit, the possibilities for combining
two types of causal relation between A and B go beyond mere probabilistic mixtures. In fact,
probabilistic mixtures of CC and CE are often rather contrived. A good example is again the relation
between taking a medication (A) and the patient’s recovery (B), which could be either directly cause
and effect or related via a common cause, such as gender. In this scenario, one normally expects
that the medication and, say, gender-specific hormones interact to determine the odds of recovery
– that is, B depends on a non-trivial combination of its two causes, realizing a physical mixture
of CC and CE relations. One could, however, imagine that there are in fact two different forms of
the disease, which are hard to distinguish at the time of initial diagnosis. One of them responds
only to medication, but not gender-specific hormones, whereas the other form of the disease runs its
course unaffected by the medication, depending only on the patient’s gender. In this case, the odds
of recovery of a newly diagnosed patient, who could suffer from either variety of the disease, will
depend either on whether they receive medication or on their gender. This constitutes a probabilistic
mixture of CC and CE relations between medication and recovery. The existence of non-probabilistic
mixtures of causal relations stands in contrast with the rules governing individual classical variables:
if a classical variable X can take the values x1 or x2, then the only way to combine these two
possibilities is to have a probabilistic mixture, with probabilities {P (X = x1) , P (X = x2)}. Causal
relations, on the other hand, can be combined in a greater variety of ways, even if the variables
are only classical. By extension, the space of possible causal relations between quantum variables
promises an even richer structure.

Berkson’s paradox. One can devise a number of statistical tests to determine whether two vari-
ables A and B are related by a probabilistic mixture of CC and CE or by a physical mixture; some
examples are described in section 5.3 below. The present section focuses on one test that offers both
interesting conceptual underpinnings and a natural generalization that captures quantum coherence.
The test is based on a phenomenon of classical statistics known as Berkson’s paradox, which was first
observed in the analysis of clinical studies [93], but the effect is equally well illustrated by an example
from the academic world, depicted in Fig. 5.1a. Suppose, for simplicity, that the abilities at teaching
and at research within the pool of applicants for a faculty position are statistically independent. At
the same time, if one considers current faculty members, one may find a negative correlation between
teaching and research abilities: good researchers tend to be bad teachers and vice-versa. This was
deemed so counter-intuitive as to be termed a paradox. The explanation lies in the post-selection:
in order to become a faculty member, a candidate must display competitive skills in at least one
area, teaching and/or research. Conversely, knowing that someone was hired as faculty allows one
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to retrodict that they were not incompetent at both teaching and research, thereby inducing neg-
ative correlations between otherwise independent variables. In short, post-selection on a common
effect can induce correlations between its causal parents. In the causal structure considered here,
post-selection on B can induce correlations between its parents D and E.

Figure 5.1: Berkson’s paradox in academia and in an abstract causal structure. (a) We assume that
research ability – and consequently the number of citations – is uncorrelated with teaching ability
in principle. Post-selecting on a common effect, such as getting a faculty position, excludes some
candidates (hatched) and thereby induces correlations. (b) The strength of the induced correlations
between C and D reflects different combinations of causal relations between A and B. In the case of
a probabilistic mixture, post-selection on B has either implications for D (with probability 1− q) or
for C (with probability q), for example eliminating low values of either D or C with the respective
probabilities (lightly hatched, overlapping half-planes in the scatter plot). In the case of a physical
mixture, on the other hand, post-selection on B may have simultaneous implications for D and C,
for example eliminating the quandrant in which both D and C are small.

In order to apply this effect to the classification of causal relations, we recast the phenomenon in
terms of B, D and C, which are the variables accessible in a tomographic characterization. Instead
of two causal parents of B, we now have one parent, D, and one causal sibling, C, which descends
from a second parent of B. By the same mechanism as before, post-selection on B can induce
correlations between C (via E) and D. To continue with the example of an academic hiring process:
the committee might decide that research ability is difficult to gauge directly and instead use the
number of citations, which is a causal child of research ability, but not teaching ability.

Crucially, post-selection on B can only induce correlations between C and D if B is causally
influenced by both D and E, in other words, if the relation between A and B has both CC and
CE elements. For example, if a college bases its hiring decisions solely on teaching ability, then
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the teaching ability of successful candidates will have no correlation with their publication record.
Moreover, the strength of the correlations between C and D induced by post-selection reflects how
the two influences are combined, thereby allowing us to classify combinations of CC and CE relations.

Example 63. To see this heuristically, consider the example of a physical mixture introduced in
eq. (5.2), where B is given deterministically by the binary sum P (B|DE) = δ (B,D ⊕ E), and
assume furthermore that C is also binary and perfectly correlated with E, P (CE) = δ (C,E)µ (C)
where µ (C) denotes the uniform distribution. In this case, post-selecting on B = 0 implies that D =
E, and consequently D = C, therefore inducing perfect correlations. In the case of a probabilistic
mixture, by contrast, knowing B only allows one to make either a non-trivial inference about C (by
means of E) or a non-trivial inference about D, but never about both variables at the same time.
This is sufficient for inducing non-trivial correlations between C and D, but not perfect correlations.

Sections 5.3.3 and 5.3.4 below derive quantitative bounds on the strength of induced correlations
in the general case of probabilistic mixtures.

Calculating induced correlations. For a formal derivation of the induced correlations between
C and D, consider first the simpler problem, of quantifying the induced correlations between two
causal parents, D and E. The relationship between D, E and their common effect B is in prin-
ciple specified by the conditional P (B|DE). In order to assess the correlations between D and E
conditional on B, encoded in the Bayesian inverse

P (DE|B) =
P (B|DE)P (DE)

P (B)
, (5.3)

one must also specify a prior distribution P (DE), which may affect the correlations encoded in the
resulting P (DE|B). As an extreme example of the impact of the prior on P (DE|B), suppose that
the prior over D and E is a product of delta distributions, P (DE) = δ (d, 0) δ (e, 0). Generally,
P (DE|B) will be zero for all (d, e) except the support of P (DE) (i.e. those values for which
P (DE) 6= 0), which in this case implies that P (DE|B) = δ (d, 0) δ (e, 0): D and E are statistically
independent when we condition on B. Any correlations that could have been induced by the post-
selection on B are hidden due to the poor choice of priors. On the other hand, if the prior P (DE)
already contains correlations between D and E, then the post-selected distribution P (DE|B) can
contain the same correlations even ifB is completely independent ofD and E – the correlations in this
case are not induced by the act of post-selection. In order to avoid these issues and isolate precisely
the correlations that are due to post-selection, we will assume that we have no prior information
about D and E, assigning the uniform prior, P (DE) = µ (D)µ (E). That is, for the purpose of
testing whether post-selection on B induces correlations, we consider specifically the distribution

P (DE|B) =
P (B|DE)µ (D)µ (E)

P (B)
, (5.4)

where the marginal on B is obtained under the assumption of uniform priors,

P (B) =
∑
DE

P (B|DE)µ (D)µ (E) . (5.5)

The induced correlations between D and C, a causal parent and a causal sibling, follow ana-
logously: in principle, the causal mechanisms relating C, D and B are represented by the joint
distribution P (CE), which encodes how C and E are correlated due to their common cause, and
the conditional P (B|DE), which encodes how D and E influence B. Since E is not observed, we
combine them to obtain

P (CB|D) =
∑
E

P (CE)P (B|DE) . (5.6)
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For the same reasons as before, we assign24 a uniform prior toD, obtaining P (CBD) = P (CB|D)µ (D)
and its marginal P (B) =

∑
CD P (CBD), and use the conditional

P b (CD) ≡ P (CD|B = b) =
P (C,B = b|D)µ (D)

P (B = b)
(5.7)

to evaluate induced correlations.
For future reference, let us also establish the following property: the marginal on D of the

three-variable joint distribution P (CBD) = P (CB|D)µ (D) is uniform by design,∑
CB

P (CB|D)µ (D) = µ (D) , (5.8)

but the same is generally not true once we condition on B = b:∑
C

P b (CD) =
∑
C

P (CB = b|D)µ (D)

P (B = b)
6= µ (D) (generally). (5.9)

As an intuitive example, suppose that the conditional P (CB|D) simply sets B equal to D while
C is sampled according to a uniform distribution, P (CB|D) = µ (C) δ (B,D). The joint distribu-
tion P (CBD) encodes perfect correlations between D and B, and post-selecting on B = b leaves∑
C P

b (CD) = δ (D, b). That is, knowing that B = b, one can retrodict that D = b with certainty.
We illustrate the calculations for assessing Berkson-type induced correlations with the following

example:

Example 64. Let us analyse the physical mixture scenario introduced in example 63 in terms of
induced correlations between C and D: we find

P (CB|D) = δ (B,D ⊕ C)µ (C) , (5.10)

so that the post-selected distribution becomes

P b (CD) = δ (C,D ⊕ b)µ (D) , (5.11)

which implies perfect positive correlations if B = 0, and perfect negative correlations if B = 1. Now
consider a probabilistic mixture of B being either set equal to E or to D,

P (B|DE) = qδ (B,E) + (1− q) δ (B,D) , (5.12)

while C is again perfectly correlated with E, P (CE) = δ (C,E)µ (C). (Assume for simplicity that
all variables range over the same set of values, with cardinality d.) This implies

P (CB|D) = qδ (B,C)µ (C) + (1− q) δ (B,D)µ (C) , (5.13)

and, assuming a uniform prior on D,

P (CBD) = qδ (B,C)µ (C)µ (D) + (1− q) δ (B,D)µ (C)µ (D) . (5.14)

In this case, the marginal over B is also uniform,
∑
CD P (CBD) = µ (B), and the conditional

distribution becomes

P b (CD) = qδ (b, C)µ (D) + (1− q)µ (C) δ (b,D) . (5.15)

Any instance of D 6= b implies that C = b, and similarly any instance of C 6= b implies that D = b.
This provides some measure of negative correlation in the induced state. However, it is also possible
to find C = b = D (which occurs with probability 1/h), hence the induced state does not encode
perfect (negative) correlations.

24If the probing scheme used on A realizes perfectly randomized preparations of D, then it yields directly the joint
distribution P (CBD) = P (CB|D)µ (D) generated by a uniform prior on D. But even if the randomization is not
perfect, one can determine the conditional P (CB|D) from experimental data and from there compute the desired
joint state.
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Once the induced probability distribution has been obtained, one can quantify the correlations
between C and D that it encodes and draw conclusions about the causal structure. This step
is further developed in section 5.3. Before that, however, we will introduce a quantum version
of Berkson’s paradox, which, as we will see, admits a closely related analysis, but with broader
implications.

5.2 The quantum Berkson effect
If A and B are quantum variables, they also exhibit a Berkson effect: if one distinguishes two
copies of A, denoted C and D, with C having a purely CC relation to B while D is purely CE-
related, then post-selection on B can induce correlations between C and D, and the strength of
the induced correlations heralds how the structure combines CC and CE relations. In the case of
quantum variables, it is not clear what it means to post-select on B directly, but for the purpose of
observing induced correlations and using them to classify causal structures, it is sufficient to post-
select on the outcome of a measurement performed on B instead. Similarly, correlations between two
quantum variables C and D manifest themselves, at an operational level, as correlations between the
outcomes of measurements on C (i.e. which element of a given POVM is obtained) and the settings of
preparation procedures on D (i.e. which one of an ensemble of states is prepared). The correlations
observed when measuring different POVMs and preparing elements of different ensembles can be
summarized in a single operator, and by repeating the experiment many times (always post-selecting
on a particular measurement outcome at B, in our case) and ranging over informationally complete
sets of preparations on D and measurements on C, one can reconstruct this operator.

Formally, the circuit relating C, D and B is represented by the Choi state χCBD that is iso-
morphic to the causal map ECB|D. It is analogous to the classical joint distribution P (CBD) =
P (CB|D)µ (D) obtained under the assumption of a uniform prior on D: indeed, the marginal of
the Choi state is

TrCBχCBD =
1

hD
ID, (5.16)

since ECB|D is a trace-preserving map. Now consider a POVM measurement
{
M b
}
b
on B, whose

outcome probabilities can be obtained as P (b) = Tr
[
M b
BχCBD

]
. This is the probability of finding

the outcome b in the measurement on B assuming that the circuit’s input at D was the maximally
mixed state. Post-selecting on this outcome singles out a component of the Choi state,

χbCD =
1

P (b)
TrB

[
M b
BχCBD

]
. (5.17)

This is by design a positive-semidefinite operator with unit trace – a valid quantum state, analogous
to the probability distribution P b (CD). By the Choi isomorphism, this corresponds to a completely
positive map EbC|D : L (HD) → L (HC). We stress that the map from D to C is unlike most maps
encountered in standard quantum mechanics in that its input, D, lies in the causal future of its
output, C, hence D cannot causally influence C. Instead, EbC|D represents only an inference: given
that one prepared a certain state on D, and knowing that the common effect B was found to be in
a certain state, one can retrodict what state one would have found on C.

For completeness, we note that, as in the classical case, the marginal of χbCD on D is generally
not the maximally mixed state:

TrCχ
b
CD =

1

P (b)
TrCB

[
M b
BχCBD

]
6= 1

hD
ID (generally). (5.18)

The map EbC|D that is isomorphic to χbCD is therefore not necessarily trace-preserving. This is
reasonable, since EbC|D is derived from the causal map ECB|D by post-selection. To see how EbC|D can
fail to be trace-preserving, consider a purely CE relation between two qubits, encoded in the Choi
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state χCBD = ρC⊗|Φ+〉 〈Φ+|BD, and the effects of post-selecting on finding the state |0〉 on B. The
outcome b occurs with probability P (b) = 1

2 , and the induced Choi state is χbCD = ρC ⊗ |0〉 〈0|D,
whose marginal on D is manifestly not uniform. Intuitively, if we input the state |1〉 on D in this
scenario, the state on B on which we are conditioning, |0〉, will not occur.

Like any quantum state, χbCD can encode varying degrees of correlation between C and D,
and correlations above a certain threshold rule out a mere probabilistic combination of CC and
CE relations between A and B. Section 5.3.4 below establishes an upper bound on the mutual
information between C and D that can be achieved by a probabilistic mixture. Crucially, however,
a quantum state χbCD can also encode correlations that are strictly stronger than in any classical
probability distribution: if C and D become entangled under post-selection on a measurement
outcome on B, this bears witness to an unusual way of combining CC and CE relations:

Definition 65. If two variables are related by a combination of a CC mechanism and a CE mech-
anism, and the two mechanisms are combined in a way that cannot be accounted for classically, then
the causal relation between the variables is termed an intrinsically quantum physical mixture of CC
and CE.

Physically, entanglement in the Choi state χbCD means that the associated inference map EbC|D
is not entanglement-breaking, that is, it preserves some coherence. In other words, for a given input
state prepared on D, the corresponding output state one should expect to find on C (under post-
selection on a certain measurement outcome on B) cannot be obtained by applying a measurement
on D and taking the appropriately weighted convex combination of a set of states on C.

Example 66. An intrinsically quantum physical mixture of CC and CE relations between two
qubits. We do not give the causal map explicitly, since it is rather cumbersome, but instead specify
the circuit elements that can be used to realize it. The example is a generalization of the probabilistic
mixture of a maximally entangled state (CC) and a unitary channel (CE) between A and B given
in section 4.2, which used the probabilistic swap gate,

EBF |DE = (1− q) IB|D ⊗ IF |E + qIB|E ⊗ IF |D, (5.19)

followed by a partial trace over qubit F . As a natural generalization, consider a gate that combines
two-qubit identity and swap operations coherently:

EBF |DE (ρDE) = UBF |DEρDEU
†
BF |DE (5.20)

with the two-qubit unitary

UBF |DE = cos
θ

2
IB|D ⊗ IF |E + i sin

θ

2
IB|E ⊗ IF|D, (5.21)

known as the partial swap. As in section 4.2, the initial state prepared on C and E is the maximally
entangled state defined in eq. (2.14),

ρCE =
∣∣Φ+

〉 〈
Φ+
∣∣ , (5.22)

and the partial swap gate is followed by a partial trace over F .

The partial swap in this circuit allows Berkson-type induced correlations to arise: by post-
selecting on finding the state |0〉 on B, one induces the state

χbCD =
1

2
|00〉 〈00|+ 1

2

[
cos

θ

2
|01〉 − i sin

θ

2
|10〉

] [
cos

θ

2
〈01|+ i sin

θ

2
〈10|

]
. (5.23)

Note that one does not obtain a pure state; when tracing over the second output qubit, F , purity
is lost. However, the resulting mixed state is still entangled for any θ 6= 0, π, thereby witnessing
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the non-classical combination of CC and CE. One can also see that B is influenced by both inputs,
D and E, simultaneously and in fact coherently with one another, in the sense that the output B
depends on coherence terms between D and E in the joint input state: for example, if one inputs
either |Ψ+〉DE or |Ψ−〉DE , the resulting outputs on B are different.

To avoid confusion, let us recall a distinction introduced in Fig. 3.1: we stress that post-selection
on B induces a map with input D and output C, which represents inferences. It is derived from the
circuit inside the dashed box in Fig. 3.1b, which connects the quantum variables A and B and is
therefore the object of interest for the purpose of our discussion. By contrast, a map with input C
and output D is normally part of an instrument that is plugged into the unknown circuit in order
to probe its functionality, depicted in Fig. 3.1a. The latter map may also exhibit correlations and
entanglement in the Choi state, for example if the experimenter chooses to use an instrument such
that the map from C to D is a unitary transformation. However, for the purpose of classifying
the causal relations realized by the circuit in the dashed box, we focus solely on the circuit itself,
viz. the causal map ECB|D and the various EbC|D induced by post-selection, independently of the
instruments used to probe it. The distinction is illustrated by a simple example: if the variable D is
trivial (Hilbert space dimension 1), then the object of interest to the present discussion is the state
ρC which is prepared by the circuit, not the POVM on C with which some agent probes this state.

5.3 Indicators of different combinations of CC and CE
Causal tomography provides a complete specification of the relation between two causally-ordered
quantum variables, in the form of the causal map. With the causal map in hand, one can in
principle compute how far it is, by some suitable metric, from the closest map of a particular form,
such as a classical physical or probabilistic mixture. However, between the full tomography and
the optimization (bearing in mind that the set of all causal maps that can be expressed as classical
physical mixtures, for example, may not admit a straightforward parametrization), this procedure
is highly inefficient if one only wants to determine, with some reasonable confidence, whether a
given circuit has a particular causal structure. This section introduces several tests and quantitative
indicators of causal structure that are more efficient than a full tomographic reconstruction.

For comparison, consider first a simple brute-force approach: a least-squares fit of experimental
statistics (from informationally complete sets of preparations and measurements) to a model with
the desired causal relation. This method is effective if one wants to compare the likelihood of several
models of the same form, such as probabilistic mixtures of CC and CE elements with different mixing
parameters, as in section 4.2. However, if the goal is to compare models of slightly different forms,
for instance a probabilistic mixture and an intrinsically quantum physical mixture, then it becomes
more challenging to compare the quality of the fit. In order to obtain reliable quantitative results,
one must tally the number of free parameters in the different types of models and estimate the
effects of the most likely sources of noise. Even then, collecting informationally complete statistics
and fitting them to various alternative models is relatively expensive in terms of experimental and
computational resources.

A slightly more efficient solution is to collect complete tomographic data, but reconstruct only one
best-fitting causal map ECB|D, without imposing any constraints on the underlying causal structure.
The causal structure can then be assessed by computing suitable indicators from ECB|D. In order to
reduce the quantity of data to be collected in the first place, one can instead resort to an observational
scheme. As discussed in section 4.2, this can be sufficient for ruling out purely CC and purely CE
relations or for determining the probability of CC under the assumption that one is presented with
a probabilistic mixture. Observational data can also provide evidence that the relation between A
and B is not a mere probabilistic mixture of CC and CE: since both CC and CE imply that there
exists a linear map from the states on A, found by an observational scheme, to states on B, any
non-linearity in such a map implies a combination of CC and CE that is not a probabilistic mixture.
Note that, in order to detect this effect, one must range over an over-complete basis of L (HA). Once
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the non-linearity has been characterized, it may be possible to derive quantitative indicators of the
causal relation in terms of it. This avenue is not explored here.

In the following sections, we introduce several indicators of causal relations, some of which have
been applied successfully in the experiment detailed in section 5.4: indicators that can be computed
given a complete reconstruction of the causal map, witnesses that require only a small set of count
numbers to be evaluated and can rule out probabilistic mixtures, and two indicators of classical and
intrinsically quantum physical mixtures which are based on the Berkson effect and only require data
about one or two post-selected states. For simplicity, part of the discussion is restricted to qubits.

5.3.1 Indicators based on the full causal map

Once we have collected complete tomographic data, questions about the causal structure can be
answered by finding the best-fitting causal map without imposing any constraints on its form and
then computing indicators from it. For example, given the Choi state χCBD, one may compute the
(quantum) mutual information between B and C and between B and D in the respective marginals.
Non-zero mutual information implies that there is a non-trivial causal connection: a CC relation in
the case of B and C, and a CE influence in the case of B and D. Moreover, if B and C both have
Hilbert space dimensions h but the mutual information between C and B is greater than log h bits,
this shows that the CC relation between C and B is not effectively classical (per definition 58), and
similarly for the CE path from D to B. However, many CC or CE relations that are not effectively
classical in the sense of definition 58 do not reveal this fact with large mutual information.

Instead, we propose the following construction:

Definition 67. Given a causal map ECB|D that describes the general causal relation between two
causally-ordered quantum variables, let τCB|D denote its Jamiołkowski representation and let ρC ≡
TrBDτCB|D. Based on the operator

τB|CD ≡ ρ
− 1

2

C τCB|Dρ
− 1

2

C (5.24)

we define the following indicators of non-classical CC or CE relations, respectively:{
ucc ≡ −λmin

(
TCDτB|CD

)
uce ≡ −λmin

(
τB|CD

)
,

(5.25)

where λmin denotes the smallest eigenvalue of a Hermitian operator.

The operator τB|CD is Jamiołkowski isomorphic to a map of inferences from CD to B obtained
by Bayesian inversion of the original causal map, and we use this operator instead of the more
straightforward τCB|D in order to put C and D on an equal footing, as inputs into the inference
map. For the purpose of the following discussion, we note the following: since the causal map ECB|D
is completely positive, it holds that TDτCB|D ≥ 0, and consequently TDτB|CD ≥ 0; that is, τB|CD is
positive under partial transposition on the CE input, D.

By design, the indicators defined in eq. (5.25) reflect the underlying causal relations: If the
causal structure is purely CC, then the Jamiołkowski operator factorizes as τB|CD = τB|C ⊗ ID,
and consequently partial transposition on D leaves the spectrum of eigenvalues unchanged, hence
τB|CD ≥ 0 and therefore uce ≤ 0. It follows that uce > 0 bears witness to a non-trivial CE
component. However, even if the causal structure is purely CE, so that τB|CD = IC ⊗ τB|D, it is
not necessarily the case that uce > 0. Indeed, if D and B have a classical cause-effect relation,
this implies (by theorem 59) that τB|D is separable, hence both PPT and positive-semidefinite, so
τB|D ≥ 0, from which it follows that uce ≤ 0. The indicator uce defined above therefore witnesses a
CE relation that is non-trivial and non-classical. Note that uce > 0 does not guarantee a purely CE
relation; it only rules out the possibility that the relation is purely CC or classical CE. Similarly,
ucc > 0 heralds a non-trivial, non-classical CC relation.
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Bounds on (uce, ucc). Any causal map ECB|D can be reduced in this way to a point in a two-
dimensional diagram of (uce, ucc), and finding the point in the region uce > 0 heralds a non-trivial,
non-classical CE relation, while the half-plane ucc > 0 implies a non-trivial, non-classical CC relation.
Beyond these two simple cases, there are other points and regions of the (uce, ucc)-plane that imply
simple conclusions about the causal relation, as shown in Fig. 5.2. The interpretation of the values
of (uce, ucc) is based on several bounds which we establish in the following:
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Figure 5.2: Representation of causal relations between two qubits by the witnesses ucc and uce
defined in (5.25). Black captions identify regions associated with certain causal structures: the first
quadrant is formed by combinations of non-classical CC and CE relations, whereas the shaded area
on the lower right (uce > 0, ucc ≤ 0) heralds a non-classical CE influence, and vice versa for the
upper left. For points in the lower left quadrant, one can rule out neither CC nor CE explanations.
Blue points identify special cases of interest: ECB|D = 1

2 IC ⊗ IB|D realizes the identity channel
from D to B and ECB|D = |Φ+〉 〈Φ+|CB ⊗ TrD prepares a maximally entangled state between C
and B. Both are noiseless, maximally non-classical and purely CE and purely CC, respectively.
Finally, ECB|D = 1

4 IC ⊗ IB ⊗TrD implies neither a CC nor a CE connection, but rather total causal
disconnection.
Probabilistic mixtures of CC and CE maps must remain below the dashed straight line by theorem 69,
but numerical simulations show that in fact they only reach the concave curve eq. (5.29). All points
beyond this curve must be due to physical mixtures of non-classical CC and CE. The upper limit
on (uce, ucc) for any causal map is the convex curve eq. (5.30), which is reached by the intrinsically
quantum physical mixture from example 66.

Theorem 68. The witnesses defined in eq.(5.25) are lower-bounded by

uce, ucc ≥ −
1

hB
, (5.26)

where hB is the dimension of the Hilbert space of variable B. These lower bounds are unique in the
following sense: if either of them is saturated, then so is the other, and the inference map is uniquely
determined to be

τB|CD =
1

hB
IB ⊗ ICD, (5.27)
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whereby C and D provide no information about B at all.

Proof is provided in appendix A.6.

Theorem 69. If τB|CD represents a non-trivial probabilistic mixture of CC and CE relations (ex-
cluding purely CC or CE relations), then the pair (uce, ucc) lies in the half-plane delimited by

uce + ucc <
hA
2
. (5.28)

By the contrapositive, larger values of the sum herald a physical mixture.

Proof is again provided in appendix A.6. Using numerical simulations to test which values of
(uce, ucc) can be reached by randomly chosen probabilistic mixtures, one finds that, at least in the
case of qubits, this bound is not saturated: all points (uce, ucc) generated by probabilistic mixtures
of random unitaries and maximally entangled states lie within a strictly smaller region, and noise
in either component is only expected to reduce uce and ucc. Rather than derive an expression for
the boundary of this region analytically, we note that the appropriate curve in (uce, ucc) is likely to
be generated by probabilistic mixtures of extremal cause-effect and common-cause relations, such as
the identity channel and the |Φ+〉 state. Probabilistic mixtures of this particular pair trace out the
curve

uce + ucc + 2uceucc ≤ 1, (5.29)

and numerical results confirm that this in indeed a tight bound on the region of (uce, ucc) that can
be reached by probabilistic mixtures.

By contrast, an intrinsically quantum physical mixture of the identity channel and |Φ+〉, as
introduced in example 66, traces out the curve

3u2
ce + 3u2

cc − 2uceucc + 2uce + 2ucc ≤ 5, (5.30)

which puts it strictly above the bound for probabilistic mixtures. For the same reason as before,
one would expect this curve to form the boundary of the region of (uce, ucc) that can be reached
by quantum physical mixtures, and consequently by any causal map. Numerical tests suggests
that, at least for qubits, this is indeed the case, though an analytical proof is still outstanding. A
physical mixture of classical CC and CE conditionals, meanwhile, will not violate even the bound of
theorem 69, since effectively classical relations between C and B and between D and B imply that
uce, ucc ≤ 0.

5.3.2 Witness of physical mixture based on observational data

This section introduces an operator VCBD whose expectation value25 for the Jamiołkowski operator
τCB|D,

〈V 〉τ ≡ Tr
[
VCBDτCB|D

]
, (5.31)

can be evaluated using only observational data, and with the property that a non-zero expectation
value rules out a probabilistic mixture of CC and CE. The derivation of a family of witnesses with
this property relies on simple algebraic arguments, but it holds only under the assumption that
the marginal on C is the maximally mixed state, ρC = 1

2 IC . That is, a non-zero result rules out
Jamiołkowski operators of the form

τ̃CB|D = qρCB ⊗ ID + (1− q) 1

2
IC ⊗ τB|D, (5.32)

25The expression for 〈V 〉τ given in the text is not strictly an expectation value, since the Jamiołkowski op-
erator τCB|D is not generally a valid quantum state. However, the same quantity can also be expressed as
〈V 〉τ = Tr [TD (2VCBD)χCBD], that is, the expectation value of the observable TD (2VCBD) in the Choi state
χCBD, which is a valid quantum state that encodes the same information as the causal map ECB|D or the operator
τCB|D.
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where ρCB is a quantum state with TrBρCB = 1
2 IC and τB|D is a CE conditional, which implies

TrBτB|D = ID. If one wants to rule out generic probabilistic mixtures, which do not exhibit this
symmetry between C and D, one must resort to the more general witness introduced in the next
section.

Based on section 3.3, we know that the restriction to an observational scheme on A implies that
one can only determine inner products of the form

Tr
[
(MB ⊗ VCD) · τCB|D

]
, (5.33)

where M can be any observable on B, but VCD remains constrained to the accessible subspace A,
which is generated by products of identical operators, Πs,c

C ⊗ Πs,c
D . Equivalently, any VCD that can

be evaluated by an observational scheme must be a linear combination of the Gk with k = 1, ...9
introduced in definition 38, which we reproduce here for reference:

G+j ≡ σ0 ⊗ σj + σj ⊗ σ0 [j = 1, 2, 3]

G+(i+j+1) ≡ σi ⊗ σj + σj ⊗ σi [(i, j) = (1, 2) , (1, 3) , (2, 3)] .

G7 = σ0 ⊗ σ0 + 1
3

∑
j 6=0 σj ⊗ σj

G8 = σ1 ⊗ σ1 + σ2 ⊗ σ2 − 2σ3 ⊗ σ3

G9 = σ1 ⊗ σ1 − σ2 ⊗ σ2.

(5.34)

We will show the following:

Claim 70. One can design a witness VCBD with the desired properties – accessible by an observational
scheme and such that Tr

[
VCBD τ̃CB|D

]
is zero for probabilistic mixtures of the form (5.32) – by

taking VCBD = MB ⊗ VCD, where M can be any observable on B and VCD is a linear combination
of the basis elements Gk with k ∈ {4, 5, 6, 8, 9} above.

Proof. The requirement that VCD be accessible using observational data can be met by design if
we explicitly define VCBD as a linear combination of the accessible Gk. At the same time, we want
to ensure that Tr

[
(MB ⊗ VCD) τ̃CB|D

]
= 0 for any τ̃CB|D of the form (5.32). To this end, note

that, if the causal relation is a probabilistic mixture of the form (5.32), then the inner product for
k ∈ {4, 5, 6} is

Tr
[
MB ⊗G4,5,6τ̃CB|D

]
= 0, (5.35)

as one can see be substituting

Tr
[
MB ⊗G4,5,6τ̃CB|D

]
= Tr

[
MB ⊗

(
σCi ⊗ σDj + σCj ⊗ σDi

)
·
(
qρCB ⊗ ID + (1− q) 1

2
IC ⊗ τB|D

)]
= 0

(5.36)
and noting that τ̃CB|D contains one identity operator in each term. Similarly, for k ∈ {8, 9}, we
have

Tr
[
MB ⊗G8,9τ̃CB|D

]
= 0, (5.37)

since, for j ∈ {1, 2, 3}

Tr

[
MB ⊗

(
σCj ⊗ σDj

)
· TD

(
qρCB ⊗ ID + (1− q) 1

2
IC ⊗ τB|D

)]
= 0. (5.38)

Therefore, if any of these five inner products are non-zero, then the causal relation is not a mixture of
the form (5.32). Meanwhile, the other four inner products, Tr

[
MB ⊗Gk τ̃CB|D

]
with k ∈ {1, 2, 3, 7},

are not necessarily zero even for probabilistic mixtures, and therefore cannot serve as witnesses. It
follows that any linear combination of Gk with k ∈ {4, 5, 6, 8, 9}, tensored with any observable on
B, serves as a witness with the desired properties.
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Example 71. As an explicit example of an operator VCD that requires only four different projectors
on C, consider the following:

ṼCD = + |ψψ〉 〈ψψ| − |ψ⊥ψ⊥〉 〈ψ⊥ψ⊥| (5.39)
+ |φφ〉 〈φφ| − |φ⊥φ⊥〉 〈φ⊥φ⊥| ,

for any two orthogonal bases {|ψ〉 , |ψ⊥〉} and {|φ〉 , |φ⊥〉}. By design, ṼCD lies in the subspace
spanned by products of the form Πs,c

C ⊗ Πs,c
D , hence it can be evaluated using an observational

scheme. Furthermore, one can show that its inner product with Gk, k = 1, 2, 3, 7 is zero, i.e. it is
generated only by Gk with k ∈ {4, 5, 6, 8, 9}, and consequently a non-zero expectation value does
rule out a probabilistic mixture of the form (5.32). To see this, note that

Tr [(|ψψ〉 〈ψψ| − |ψ⊥ψ⊥〉 〈ψ⊥ψ⊥|) (σ0 ⊗ σj)] = 〈ψ|σj |ψ〉 − 〈ψ⊥|σj |ψ⊥〉 = 0 (j 6= 0), (5.40)

and similarly for σj ⊗ σ0, which implies that

Tr
[
ṼCDG

k
]

= 0 (k = 1, 2, 3). (5.41)

Similarly, letting ~v denote the Bloch vector of the (pure) state |ψ〉 〈ψ| = 1
2 (σ0 + ~v · ~σ), one finds

Tr

|ψψ〉 〈ψψ|
σ0 ⊗ σ0 +

1

3

∑
j 6=0

σj ⊗ σj

 = 1 +
1

3
~v · ~v =

4

3
∀ |ψ〉 , (5.42)

so that the contributions from the four terms in ṼCD cancel and one recovers

Tr
[
ṼCDG

7
]

= 0. (5.43)

Example 72. As a second example, which is a special case of the more general witness introduced
in the next section, one can take VCD = σi⊗ σj with i 6= j both non-zero. By furthermore choosing
the observable on B to be σk 6=0, the third non-trivial Pauli (i 6= k 6= j), the relevant expectation
value takes the simple form

〈V 〉τ = Tr
[(
σCi ⊗ σDj ⊗ σBk

)
τCB|D

]
≡W0. (5.44)

If this is non-zero, one can exclude a probabilistic mixture with maximally mixed marginals on C.

5.3.3 Witness of physical mixture based on the Berkson effect

This section introduces a witness W , in the broader sense of a function computed from an inform-
ationally incomplete subset of experimental statistics, such that W 6= 0 rules out a probabilistic
mixture of CC and CE relations between two qubits,

τprobCB|D = qρCB ⊗ ID + (1− q)ρC ⊗ τB|D, (5.45)

with a generic marginal ρC = TrBρCB on C. (Note that the two terms must have identical marginals
on C due to the structure of the circuit in Fig. 2.3d: if the causal relation is CE, then the gate must
take the form EB|DE = EB|D⊗TrE , so that ρC = TrEρCE . On the other hand, if the causal relation
is CC, the gate must be EB|DE = EB|E⊗TrD, hence the circuit produces ρCB =

(
IC ⊗ EB|E

)
(ρCE),

which also leads to TrBρCE = TrEρCE = ρC .)
The experimental data from which the witness is computed is obtained by measuring fixed Pauli

observables σs and σu on C and B, respectively, with outcomes c, b ∈ {±1} , while preparing D in
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eigenstates of a fixed σt that are indexed by the corresponding eigenvalues, d ∈ {±1}. (Each choice
of s, t, u gives rise to a different witness of this family.) Conditional on the eigenvalue d that was
chosen for the preparation on D, one finds

P (cb|d) = Tr
[
τCB|DΠs,c

C ⊗Πu,b
B ⊗Πt,d

D

]
. (5.46)

The witness is intended to capture Berkson-type induced correlations. To this end, following (5.7),
we assume a uniform prior, i.e. that the eigenvalues d = ±1 are chosen with uniform probability,
P (d) = 1

2 . This gives rise to a joint distribution

P (cdb) =
1

2
Tr
[
τCB|DΠs,c

C ⊗Πu,b
B ⊗Πt,d

D

]
, (5.47)

from which one can derive P (cd|b), the post-selected distribution. As a measure of the induced
correlations, consider the covariance,

cov (c, d) ≡ 〈cd〉 − 〈c〉 〈d〉

=
∑
cd

cdP (cd)−

[∑
cd

cP (cd)

][∑
cd

dP (cd)

]
, (5.48)

associated with a generic probability distribution over c, d. In our particular case, since the variables
are binary and take the values ±1, one can show26 that the expression simplifies to

cov (c, d) = 4 [P (++)P (−−)− P (+−)P (−+)] . (5.49)

If c and d follow a conditional distribution induced by post-selection on b, the covariance becomes

cov (c, d|b) = 4 [P (+ + |b)P (−− |b)− P (+− |b)P (−+ |b)] . (5.50)

Note that cov (c, d|b) need not be zero for probabilistic mixtures, since any combination of CC and
CE can induce some measure of correlation under post-selection (as illustrated by the examples in
section 5.1). Instead, we define the witness to be a suitably weighted difference of the covariances
induced by b = ±1:

W ≡ 2
∑
b

bP (b)2cov(cd|b). (5.51)

= 8
∑
b=±1

b [P (+ + b)P (−− b)− P (+− b)P (−+ b)] . (5.52)

One can show that this expression is zero for any probabilistic mixture, i.e. any conditional of the
form (5.45). The proof is rather technical and is relegated to appendix A.7. The normalization
factor 8 is introduced so that the maximal value of W is +1. This maximum is achieved when
b = +1 implies perfect (positive) correlation and b = −1 implies perfect anti-correlation. Unlike
conventional entanglement witnesses, which are positive for separable states (the "boring" case) and
herald entanglement by turning negative, the witness introduced here is exactly zero for probabilistic
mixtures, whereas both strictly positive and strictly negative values of W herald a physical mixture.

Simpler form in a limiting case. In the limit where the marginals over CB and DB are both
uniform, we will show that the witness W reduces to a special case of the algebraically motivated
witnesses that was introduced in eq. (5.44) in the previous section:

26In order to see this, it is helpful to multiply the first term in the definition of Cov (c, d) by the resolution of
identity 1 =

∑
cd P (cd).
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Claim 73. If TrDτCB|D = ICB and TrCτCB|D = IBD, then the witness W reduces to

W =
∑
cdb

cdbP (cdb) = Tr
[(
σsC ⊗ σuB ⊗ σtD

)
· τCB|D

]
= W0. (5.53)

Proof. In terms of the observed statistics P (cdb), the hypothesis of uniform marginals takes the
form

P (cb) ≡
∑
d

P (cdb) =
1

4
∀c, b, (5.54)

P (db) ≡
∑
c

P (cdb) =
1

4
∀d, b, (5.55)

This ensure that each outcome b is equally probable, P (b) = 1
2 , and therefore the conditional

distributions also satisfy

P (c|b) ≡
∑
d

P (cd|b) =
1

2
∀c, b (5.56)

P (d|b) ≡
∑
c

P (cd|b) =
1

2
∀d, b (5.57)

Therefore the conditional distribution P (cd|b) has uniform marginals on c and d. The expectation
values 〈c〉 and 〈d〉 are zero, so that the covariance (5.48) simplifies to

cov(c, d) = 〈cd〉 =
∑
cd

cdP (cd), (5.58)

and therefore

W = 2
∑
b

bP (b)2
∑
cd

cdP (cd|b) (5.59)

=
∑
cdb

cdbP (cdb) = W0 (5.60)

In this sense, the witness W is a generalization of the simple product of Paulis that defines W0,
and which is easily seen to be zero for probabilistic mixtures if ρC = 1

2 IC .

Example 74. Application of the witness W to the intrinsically quantum physical combination of
CC and CE using the partial swap unitary. Consider the causal relation introduced in example 66,
setting θ = π

4 to generate an equal mixture of CC and CE:

ρCE =
∣∣Φ+

〉 〈
Φ+
∣∣ (5.61)

UBF |DE =
1√
2
IB|D ⊗ IF |E +

i√
2
IB|E ⊗ IF |D, (5.62)

and measurements of σ1 on C, σ3 on B and preparations of σ2-eigenstates on D. The experimental
statistics take the form

P (cdb) =
1

2
Tr
[
TrE

(
ρCEτB|DE

)
Π1,c
C ⊗Π3,b

B ⊗Π2,d
D

]
(5.63)

=
1

2
· 1

8
+

1

2
· 1

4
[δ (b,−1) δ (c, d) + δ (b,+1) (1− δ (c, d))] ,
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that is, with probability 1
2 , the eigenvalues cbd are entirely uncorrelated with each other, but with

the remaining probability 1
2 , it holds that b = −1 if and only if c = d, whereas b = +1 if and only

if c 6= d. The second term reproduces exactly the example of a classical physical mixture discussed
in section 5.1. Even with the admixture of an entirely uncorrelated distribution, the covariance
cov (c, d|b) under post-selection is still

cov (c, d|b = ±1) = ∓1

2
, (5.64)

hence the witness takes the value
W = −1

2
. (5.65)

The fact that this is non-zero rules out any probabilistic mixture of the form (5.45).

5.3.4 Bounds on induced mutual information for probabilistic mixtures

This section derives a quantitative criterion for ruling out probabilistic mixtures based on Berkson-
type induced correlations, namely a tight upper bound on the quantum mutual information I (C : D)
in the post-selected state χbCD introduced in eq. (5.17). The main part of the derivation is given
in terms of classical variables and proceeds by first deriving a bound on the mutual information
between the two causal parents, D and E, conditional on B. A bound on the mutual information
between C and D then follows directly by noting that any correlations between C and D must be
mediated by E, hence I (C : D) ≤ I (E : D) (with equality when C and E are perfectly correlated).
The extension to truly quantum variables, i.e. beyond the classical limit, is discussed at the end of
this section.

For reference, we define the mutual information of two quantum variables:

Definition 75. Given a quantum state on two variables, ρDE , let S denote the von Neumann
entropy and let S (DE) ≡ S (ρDE), S (D) ≡ S (TrEρDE) and S (E) ≡ S (TrDρDE). Then the
quantum mutual information between D and E is

I (D : E) ≡ S (D) + S (E)− S (DE) . (5.66)

Note that, in the limit where ρDE is effectively classical, as discussed in section 2.3.4, and
reduces to a joint probability distribution over two classical variables D and E, the quantum mutual
information reduces to the classical (Shannon) mutual information. We will begin by considering
this limit.

The task, now, is to upper-bound the mutual information I (D : E) in the state induced by
post-selecting on B = b, when the relation between D, E and B is a probabilistic mixture,

P (B|DE) = qPE (B|E) + (1− q)PD (B|D) . (5.67)

We introduce subscripts to distinguish the conditionals that form the mixture, PE (B|E) and
PD (B|D), from conditionals of the same form that one can construct by combining the overall
P (B|DE) with suitable marginals, such as

P (B|E) ≡
∑
D

P (B|DE)P (D) = qPE (B|E) + (1− q)
∑
D

PD (B|D)P (D) 6= PE (B|E) . (5.68)

In keeping with the previous discussion of the Berkson effect, in particular eq. (5.4), we will take
priors on D and E that are uniform distributions over all possible values of D and E, respectively.
The post-selected distribution then inherits the probabilistic form,

P (DE|B) = pbµ (D)PE (E|B) + (1− pb)PD (D|B)µ (E) (5.69)

89



where we introduce the shorthand

PD (D|B) = PD (B|D)µ (D) /

[∑
D

PD (B|D)µ (D)

]
, (5.70)

PE (E|B) = PE (B|E)µ (E) /

[∑
E

PE (B|E)µ (E)

]
, (5.71)

pb =

[
q
∑
E

PE (B|E)µ (E)

]
/

[
q
∑
E

PE (B|E)µ (E) + (1− q)
∑
D

PD (B|D)µ (D)

]
. (5.72)

(The Bayesian inverse PD (D|B) encodes what one can retrodict about D given B in the scenario
where B only depends on D by the conditional PD (B|D), rather than depending on both D and E
by the probabilistically mixed P (B|DE), and similarly for PE (E|B).)

One can see that I (D : E) is at most one bit, regardless of the cardinality of the variables
themselves; that is, when B is already known, learningD provides at most one bit of new information
about E. To show this, we introduce a classical, binary switch variable S that determines, in each
run, whether B is influenced by D or by E. The conditional distribution then takes the form

P (DE|BS) = δ (S, 0)µ (D)PE (E|B) + δ (S, 1)PD (D|B)µ (E) . (5.73)

Note that, once S is known, D and E become statistically independent despite post-selection on
B: either D follows the uniform distribution and E can be inferred from B by PE (E|B), or E is
uniformly distributed and D follows PD (D|B). Using D to infer E therefore involves two distinct
steps: first one uses D to infer S (exploiting the difference between the distributions µ (D) and
PD (D|B) that arise for different values of S), and then one can determine whether E follows the
distribution µ (E) or PE (E|B) from the value of S. Crucially, after the first step, the entire new
information that one has acquired is compressed in a single bit, S. Due to this bottleneck in the
process of inference, learning D cannot provide more than one bit of new information about E,
under the assumption that B is known. Note that this argument holds in the same form if D and E
are quantum variables: even though they could in general exhibit non-classical correlations, negative
mutual information etc., the constraints in this particular situation imply that any inference from
D to E is entirely mediated by the classical switch variable S, and therefore limited to one classical
bit of information.

A more stringent upper bound on the induced mutual information, especially for variables with
low cardinality, can be derived analytically. The argument is briefly outlined here, with a detailed
derivation given in appendix A.8. Firstly, the mutual information I (D : E) in eq. (5.69) is maximized
when PD (D|B) and PE (E|B) are sharply peaked, producing one particular value with certainty.
Intuitively, this makes it easiest to distinguish PD (D|B) from µ (D), thereby learning the value of
the switch variable, and maximizes what one can subsequently deduce about E. Formally, it follows
from the convexity of the mutual information I (D : E) as a function of the conditional P (D|E),
for a fixed marginal P (E), and vice-versa. In order to determine the overall maximum of I (D : E),
we must also find the optimal mixing weight pb. In general, this depends on the cardinality of D
and E, but if both variables take an equal number of values h, then the highest mutual information
is achieved when pb = 1

2 . This is a matter of symmetry between D and E, but also follows from
the observation that one can learn the most about the switch variable, i.e. whether B is influenced
by D or by E, if it is previously completely unknown. This completely determines the distribution
P (DE|B) that maximizes the mutual information, and allows us to explicitly compute the maximal
induced mutual information for a probabilistic mixture, which leads to the following result:

Theorem 76. Given two classical variables D and E of equal cardinality, h, which produce a
common effect B by a probabilistically mixed conditional,

P (B|DE) = qPE (B|E) + (1− q)PD (B|D) , (5.74)
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the mutual information in the distribution P (DE|B) induced by post-selection on any given value
of B (assuming uniform priors on D and E) is tightly upper-bounded by

Iprob (D : E) ≤
(

1 +
1

h

)
+ log2 h−

(
1 +

1

h

)
log2 (h+ 1) . (5.75)

Therefore induced mutual information in excess of this bound heralds a physical mixture, i.e. a
conditional P (B|DE) that cannot be decomposed as a probabilistic mixture of the form above.

It is interesting to note that the heuristic bound that we derived above, which allows at most
one bit of mutual information, can only be saturated in the limit of infinitely large h. If D and E
have small cardinality, then the quantitative bound is much more stringent. For binary variables,
for example, it is 5

2 −
3
2 log2 3 ≈ .12 bits. By contrast, the maximal mutual information induced by

post-selection if there are no constraints on the causal structure is simply log h.
If D and E are quantum instead of classical variables, their state under post-selection on some

measurement outcome on B can be written

ρbDE = pb ID ⊗ ρbE + (1− pb) ρbD ⊗ IE , (5.76)

where ρbD and ρbE generally depend on the choice of measurement and outcome. As before, the
prior over D and E used to derive the induced state is uniform, i.e. the maximally mixed states.
This implies that there is in fact only one non-trivial density operator on each HD and HE in
the problem, and consequently there exists a preferred basis of Hilbert space in which all density
operators of interest are diagonal. By using this basis to evaluate von Neumann entropies, the
problem is reduced to the classical case and all previous results carry over, including the tight upper
bound on I (D : E) as a function of the dimension of the Hilbert spaces, h = dimHD = dimHE .

5.3.5 Indicator of intrinsically quantum physical mixture

In order to detect an intrinsically quantum combination of CC and CE relations between two vari-
ables, it is sufficient to characterize the Choi state χbCD induced by post-selection on a single POVM
element M b on B, defined in eq. (5.17), and test whether it contains any form of non-classical cor-
relations. (We stress that the converse is not true: post-selecting on any one POVM element on B
and finding a state that is only classically correlated does not imply that the CC and CE mechan-
isms were combined in an incoherent manner.) That is, one collects statistics from measurements
on C and preparations on D that range over tomographically complete sets, but only for a single
POVM element on B, uses these statistics to reconstruct the map EbC|D and applies standard tests of
correlation to the associated Choi state. This is much more efficient in terms of both experimental
and computational resources than a full tomographic reconstruction of the causal map ECB|D, and
focuses directly on the classification of the causal relation.

One possible indicator of non-classical correlations in the induced state, extending the ideas from
the previous section, is if the mutual information exceeds the classical bound: if two variables with
Hilbert space dimension h are only classically correlated, their mutual information is at most log h.
However, this is a relatively strong criterion for verifying a non-classical combination of CC and
CE. Two qubits connected by a partial swap (example 66), for instance, only achieves a mutual
information of at most 3 − 3

2 log2 3 ≈ 0.62 bits (when θ = π
2 ), which is well within the classical

bounds. A more sensitive test is based on the negativity, a standard measure of entanglement,
evaluated on the induced Choi state:

N
(
χbCD

)
≡ 1

2

[
Tr
∣∣TDχbCD∣∣− 1

]
. (5.77)

As pointed out above, a non-classical combination of CC and CE relations does not necessarily
manifest itself in the Choi state induced by post-selecting on a given POVM element. However,
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one can reduce the number of measurements on B for which one must test χbCD by noting the fol-
lowing: any useful measure of non-classical correlations, such as entanglement, must not increase
when taking convex combinations of states, since these can be achieved by local operations and clas-
sical communication (LOCC). At the same time, generic POVM elements can be obtained by taking
convex combinations of rank-one projective measurements, also known as sharp measurements. Con-
sequently, in order to rule out non-classical correlations in the induced states χbCD for all POVM
measurements on B, it is sufficient to exclude them for all sharp measurements. However, testing
only with projectors onto, say, the six Pauli eigenstates, which may be more easily accessible than
more general measurements in a given experimental architecture, is generally not sufficient. Indeed,
one can construct pathological examples of causal maps that only produce non-zero negativity in
χbCD under post-selection on a single pure state on B. This shows that it is in general necessary
to test all sharp measurements in order to determine whether any of them induce non-classical
correlations.

A strictly stronger signature of non-classical correlations in χbCD is the violation of a Bell-type
inequality. Recall that entanglement in a bipartite state means that the measurement statistics it
generates cannot be explained by a state of the form

∑
j P (J = j) ρjC ⊗ ρ

j
D, with quantum systems

C and D of a given dimension. Such a state could be prepared by selecting a classical setting
J according to some probability distribution, broadcasting it to the two parties and having them
prepare their quantum systems according to the classical setting. A Bell-inequality violation, on the
other hand, rules out any explanation in terms of a classical hidden variable being broadcast to the
two parties and influencing their measurement statistics, without making any assumptions about the
dimension of the systems or whether they are even described by quantum mechanics. In this sense,
Bell-inequality violations allow one to draw explicit conclusions about the kinds of causal model that
can account for the observed correlations. However, such violations are strictly harder to generate
than entanglement: while it is easy to see that every state that violates a Bell inequality must be
entangled and the converse holds for pure states, there exist explicit examples of mixed entangled
states that do not violate any Bell-type inequality [94]. In particular, the induced states χbCD that
arise when A and B are both qubits are apparently too mixed to violate any Bell inequalities (see
example below), though it may be possible to construct such scenarios in higher dimensions.

If one wants to further minimize the number of preparations and measurements required to
detect entanglement in χbCD – especially if one knows the expected form of χbCD – one can also
adapt existing results on entanglement witnesses for bipartite states. This is essentially a problem
in Bayesian inference between quantum variables: in the conventional setting for entanglement
witnesses, one is given a state ρCD prepared by an unknown circuit and seeks a POVM, that is, a
conditional of the form WY |XCD, which produces a classical outcome Y given a setting X, such that
the resulting statistics Tr

[
WY=y|X=x,CDρCD

]
= P (Y = y|X = x) bear witness to entanglement

between C and D. In our case, C is prepared by the circuit fragment inside the dashed box in
Fig. 2.3d, but D is an input that is sent back into that circuit after being probed, and their relation
is encoded in the map EbC|D that is Choi isomorphic to the state χbCD. Accordingly, the operator W
for this scenario must represent a set of quantum instruments from C to D, with classical setting
X and outcome Y : it takes the form WY D|XC . Given an entanglement witness WY |XCD, one can
derive the corresponding set of instruments, which form the conditionalWY D|XC . The details of the
translation are a lengthy exercise in Bayesian inversion, but since they do not add any new insights
to the present discussion, we do not reproduce them here.

Example 77. Induced quantum mutual information and negativity for the intrinsically quantum
physical combination of CC and CE introduced in example 66. Under post-selection on finding the
state |0〉 on B, that scenario gives rise to the induced Choi operator

χbCD =
1

2
|00〉 〈00|+ 1

2

[
cos

θ

2
|01〉 − i sin

θ

2
|10〉

] [
cos

θ

2
〈01|+ i sin

θ

2
〈10|

]
. (5.78)

The quantum mutual information in this state is less than 1 bit for all θ, which is not sufficient to
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witness non-classicality, nor does the state violate any Bell inequality. The reason in both cases is
the admixture of |00〉: if not for this term, χbCD would be pure and maximally entangled, with a full
2 bits of mutual information and a maximal Bell-inequality violation. (The mixedness arises because
we choose A and B to have the same dimensionality: this implies that hDhE = h2

B , and consequently
any gate from DE to B must also produce an ancillary output, F , with hF = hB , which is traced
out, incurring a loss of information and therefore purity.) For this reason, both mutual information
and Bell inequality violations are generally not promising as sufficiently sensitive tests of intrinsically
quantum mixtures of causal relations between two variables of equal dimension. Negativity, on the
other hand, can detect the non-classicality in this case despite the mixedness of χbCD:

N
(
χbCD

)
=

1

4

[√
1 + sin2 θ − 1

]
, (5.79)

which is non-zero for all but the extremes θ = 0, π.

5.4 Experiment
The following section describes a quantum optics experiment27 that realizes an intrinsically quantum
combination of CC and CE relations between two qubits, as well as classical physical and probabilistic
mixtures of CC and CE for contrast, and demonstrates how the indicators introduced in the previous
section herald different types of causal relations. The experiment proceeds much as described in
section 4.2: the abstract structure of the circuit that relates A and B is as shown in Fig. 2.3d,
preparing an initial bipartite state

ρCE =
∣∣Φ+

〉 〈
Φ+
∣∣ (5.80)

followed by different choices of the two-qubit gate EBF |DE (after which F is traced out), which
imply different causal relations between A and B. The qubits are encoded in the polarization of
photons, which is measured using polarizing beam-splitters combined with wave-plates so as to only
transmit one eigenstate and dump the photon if it is in the orthogonal state. Here we do not restrict
ourselves to observational probing of A, but allow independent measurements on C and preparations
on D. We observe the correlations between these and the outcomes of measurements on B. All three
range over the six eigenstates of Pauli observables. The choices of Pauli observable are denoted by
s, t, u ∈ {1, 2, 3} for C, D and B, respectively, and the resulting eigenvalues by c, d, b ∈ {±1}, as
shown in Fig. 2.5. The experimental setup is shown in Fig. 5.3.

The central element is the partial swap gate, introduced in eq. (5.21):

UBF |DE = cos
θ

2
IB|D ⊗ IF |E + i sin

θ

2
IB|E ⊗ IF|D. (5.81)

The term incorporating IB|D realizes a CE path from D to B, whereas the term incorporating IB|E
realizes a CC connection between C and B, since E is prepared in a maximally entangled state with
C. In the partial swap unitary, the two terms are combined in a manner which is, as various indicators
will show, distinctly non-classical. The experimental implementation follows C̆ernoch et al. [95]: an
interferometer is modified such that two indistinguishable photons arriving simultaneously along
different paths will only exit along different paths, and therefore be able to produce a coincidence
count in the subsequent detection, if (a) their polarization state lies in the triplet subspace and both
follow one particular path through the interferometer, or (b) their polarization state is the singlet
and they follow different paths through the interferometer. By adding a phase shift of θ2 in one path,
one can introduce a phase difference −θ between the triplet and singlet subspaces of polarization
states. Recalling that the projectors onto these subspaces can be expressed as 1

2 (I± S), where
I = IB|D⊗ IF |E and S = IB|E⊗ IF |D denote the two-qubit identity and swap gates, respectively, one

27The experiment was designed, realized and analysed in collaboration with J.-P. MacLean, R. W. Spekkens and
K. J. Resch (see statement of contributions in the front matter).
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Figure 5.3: Experimental setup implementing an intrinsically quantum combination of CC and CE
relations between the polarization degrees of freedom of two photons. (a) Coloured boxes distinguish
functional components of the setup that correspond to the different elements of the abstract circuit
(Fig. 2.3d): preparation of an entangled state (yellow), measurement of photon A (grey), partial swap
gate combined with dephasing (green) and measurement of photon B (grey). (b) Experimental setup.
Notation for optical components: Bismuth-Borate (BiBO), β-Barium-Borate (BBO), half-wave plate
(HWP), quarter-wave plate (QWP), liquid-crystal retarder (LCR), polarizing beam splitter (PBS),
non-polarizing beam splitter (NPBS), avalanche photo diode (APD).

finds that the unitary implemented by the interferometer is indeed the partial swap (up to a global
phase),

1

2
(I + S) + e−iθ 1

2
(I− S) = e−iθ/2

[
e+iθ/2 + e−iθ/2

2
IB|D ⊗ IF |E +

e+iθ/2 − e−iθ/2

2
IB|E ⊗ IF |D

]
.

(5.82)
In order to explore the transition from intrinsically quantum to effectively classical causal rela-

tions, we combine the partial swap with dephasing noise of variable intensity on D, E, B and F .
(Note that dephasing on F becomes irrelevant when we subsequently trace out that variable, and the
experimental realization does not apply dephasing on F in order to simplify the setup. However, in
order to make the present derivation more even-handed, we consider dephasing on all four variables.)
Let

∆p,n̂ (ρ) ≡
(

1− p

2

)
ρ+

p

2
(n̂ · ~σ) ρ (n̂ · ~σ) (5.83)

denote the channel that, with probability p, applies dephasing on the eigenbasis of n̂ · ~σ, defined by
the unit vector n̂. If p = 0, it reduces to the identity channel; if p = 1, the effect is that of a (non-
destructive) projective measurement of n̂ · ~σ, which destroys coherences, leaving only probabilistic
mixtures of the two eigenstates of n̂ · ~σ. Total dephasing (p = 1) effectively reduces the qubit to a
classical bit specifying which of the two eigenstates is realized. When a gate EBF |DE is combined with
total dephasing on both inputs and outputs, it can be effectively described as a classical conditional
relating the eigenvalues d, e, b and f , which, in the case of qubits, we take to be d, e, b, f ∈ {±1}.
That is, the map defined by

ẼBF |DE (ρDE) ≡
(
∆B

1,n̂B
⊗∆F

1,n̂F

)
◦ EBF |DE ◦

(
∆D

1,n̂D
⊗∆E

1,n̂E

)
(ρDE) (5.84)
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takes the form

ẼBF |DE (ρDE) =
∑

bfde∈{±1}

|bn̂B
〉 〈bn̂B

| ⊗ |fn̂F
〉 〈fn̂F

|P (bf |de) 〈dn̂D
| 〈en̂E

| ρDE |dn̂D
〉 |en̂E

〉 , (5.85)

where |bn̂B
〉 denotes an eigenstate of n̂B · ~σ with eigenvalue b, and similarly for F , D and E, and

P (bf |de) is a conditional probability distribution. For example, the effect of the partial swap unitary
in the ẑ · ~σ = σ3 eigenbasis is 

U |00〉 = |00〉
U |01〉 = cos θ2 |01〉+ i sin θ

2 |10〉
U |10〉 = i sin θ

2 |01〉+ cos θ2 |10〉
U |11〉 = |11〉 .

(5.86)

By combining the associated gate with total dephasing in the eigenbasis of σ3 on D, E, B and F , one
obtains a map ẼBF |DE that eliminates all coherences between eigenstates of σ3; making, for example,
ẼBF |DE (|01〉 〈01|) = cos2 θ

2 |01〉 〈01| + sin2 θ
2 |10〉 〈10|. It can be effectively described by specifying

only the conditional probability distribution over eigenvalues of σ3 found on the four qubits,
P (bf |de = ++) = δ (bf,++)

P (bf |de = +−) = cos2 θ
2 δ (bf,+−) + sin2 θ

2 δ (bf,−+)

P (bf |de = −+) = sin2 θ
2 δ (bf,+−) + cos2 θ

2 δ (bf,−+)

P (bf |de = −−) = δ (bf,−−) .

(5.87)

If we subsequently trace out qubit F , the conditional probability distribution takes the simple form

P (b|de) = cos2 θ

2
δ (b, d) + sin2 θ

2
δ (b, e) , (5.88)

which is manifestly a probabilistic mixture of B depending either only on D or only on E. Since the
outcomes c and e of σ3-measurements on C and E are perfectly correlated, we furthermore expect

P (cd|b) = cos2 θ

2
δ (b, d) + sin2 θ

2
δ (b, c) . (5.89)

Consequently, the causal relation between qubits A and B in this scenario can be described as a
probabilistic mixture of CE and CC, and because of the total dephasing, it is also effectively classical.

In order to implement a causal relation that is effectively classical but a physical mixture, we
combine the partial swap with total dephasing on different bases. The construction of this example
builds on the definition of the witness of physical mixture given in eq. (5.52). Recall that, for the
partial swap alone, without any dephasing, we have W 6= 0, which rules out a probabilistic mixture
(as shown in the example at the end of section 5.3.3). Notably, the witness is defined in terms of
the outcomes of measurements of fixed (Pauli) observables, namely, σ1 on C, σ2 on D and σ3 on B,
and therefore its value will remain unchanged if one adds dephasing on the respective eigenbases.
Furthermore, the particular state prepared on CE in this experiment takes a particular form in the
eigenbasis of σ1,

1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) , (5.90)

and in fact on the eigenbasis of any n̂ · ~σ with n̂ = cos ηx̂+ sin ηẑ. This ensures that dephasing on
any such eigenbasis at C generates the same state on CE as if the same dephasing had been applied
on E: for the case of n̂ = x̂,(

∆1,x̂
C ⊗ IE

) 1

2
(|++〉+ |−−〉) (〈++|+ 〈++|) =

(
IC ⊗∆1,x̂

E

) 1

2
(|++〉+ |−−〉) (〈++|+ 〈++|) ,

(5.91)
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Figure 5.4: Choi states χbCD induced by post-selection on the |0〉-state on B from experiments
aiming to implement (a) a classical probabilistic mixture, (b) a classical physical mixture, and
(c) an intrinsically quantum physical mixture; specifically the standard examples of each category
introduced in the text, with θ = π

2 . The top (bottom) panels show real (imaginary) components;
blue (red) represents positive (negative) values. Panels (a) and (b) are shown in the eigenbases of
σC3 ⊗ σD3 and σC1 ⊗ σD2 , respectively, which diagonalize the operators we aim to implement, in order
to highlight their effectively classical nature. The diagonal matrix elements reduce to the elements of
the effective classical probability distributions derived in eqs. (5.89) and (5.94), respectively. Panel
(c) is close to the expected state induced by an intrinsically quantum combination, eq. (5.23) with
θ = π

2 , and is manifestly non-classical (indeed, its negativity is N = 0.083± 0.003).

and similarly for generic n̂ = cos ηx̂+ sin ηẑ instead of x̂. (From the equality for total dephasing one
can easily derive a similar equality for any probability of dephasing p.) In summary, by combining
the partial swap unitary with total dephasing on the eigenbasis of σ2 on D, σ3 on B and σ1 on
E, while keeping ρCE = |Φ+〉 〈Φ+|, one implements a causal map that produces W = − 1

2 , and
therefore cannot be explained as a mere probabilistic mixture of CC and CE. At the same time, all
variables are effectively classical: by tracing over F in eq. (5.85) (and substituting n̂B = ẑ, n̂D = ŷ
and n̂E = x̂), we find that the map from DE to B takes the form

EB|DE (ρDE) =
∑

bde∈{±1}

|bẑ〉 〈bẑ|P (b|de) 〈dŷ| 〈ex̂| ρDE |dŷ〉 |ex̂〉 , (5.92)

and the classical eigenvalues that specify the states of E, D and B are related by

P (b|de) =
1

2
µ (b) +

1

2
δ (b,−de) . (5.93)

One can see that, despite the admixture of the uniform distribution over b (due to the information
loss incurred when tracing out F ), the conditional P (b|de) makes b depend on a combination of
d and e, and therefore represents a non-trivial physical mixture of CC and CE. By extension, the
overall causal map ECB|D is also effectively classical, and its effects are completely specified by a
classical conditional probability distribution relating the eigenvalues c, d and b, which takes the form

P (cd|b) =
1

2
µ (c)µ (d) +

1

2
δ (c,−d) . (5.94)

The experiment focuses on these three standard examples of combinations of CC and CE: pure
partial swap (intrinsically quantum physical mixture), partial swap with total dephasing in the
eigenbases of σ1 on C, σ2 onD and σ3 on B (classical physical) and partial swap with total dephasing
in the σ3 eigenbasis on C, D and B (classical probabilistic mixture). The experimental data collected
in each scenario, denoted P̃ obs (cdbstu), is the set of count numbers obtained for combinations of
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a) b) c)

Figure 5.5: Measures of induced correlation for a family of causal relations: (a) theory, (b) exper-
iment, (c) cross-section of contour plot at dashed line, θ = 97.4◦. The witness W 6= 0 heralds a
physical mixture without distinguishing classical from quantum, while the negativity N > 0 attests
to an intrinsically quantum physical mixture. The partial swap parameter θ introduced in eq. (5.21)
interpolates between purely CE (θ = 0) and purely CC (θ = π) relations, ranging over intrinsically
quantum combinations. The dephasing probability p controls the transition to the classical limit; as
it reaches p = 0.3, all evidence of non-classical behaviour is lost.

settings s, t, u and eigenvalues c, b, d. As one ranges over six Pauli eigenstates on each qubit, this
produces 63 = 216 count numbers. They are more than sufficient for reconstructing the full causal
map by a least-squares fit, similar to the fitting described in section 4.2: the model takes the form

P̃mod (cdbstu) = NTr
[
Πs,c
C ⊗Πu,b

B ⊗Πt,d
D τCB|D

]
, (5.95)

where we assume that each combination cdbstu is tested with an equal number of entangled pairs
N . The least-squares fit minimizes the residue

χ2 ≡
∑
cdbstu

[
P̃mod (cdbstu)− P̃ obs (cdbstu)

]
P̃mod (cdbstu)

, (5.96)

subject to the constraints that TDτCB|D must be positive-semidefinite, which can be ensured by
parametrizing it following [48], and that marginalizing over B gives rise to a map that traces out D
and prepares a fixed state on C, which can be enforced with a penalty term of the form

λ
∑
ij

∣∣∣(TrBτCB|D − TrBDτCB|D ⊗ ID
)
ij

∣∣∣2 . (5.97)

Once the experimental causal map has been reconstructed, one can quantify how close it is to the in-
tended target by computing the fidelity between the reconstructed and intended Choi states, χCBD.
By this measure, the experiment realized the classical probabilistic mixture with (98.1± 0.2) % fi-
delity, the classical physical mixture with (98.06± 0.08) % fidelity and the intrinsically quantum
physical mixture with (93.7± 0.3) % fidelity, with uncertainties estimated by a Monte Carlo simu-
lation that added Poisson noise to the observed count numbers.
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The indicators W and N introduced above are evaluated from different subsets of this data.
Fixing s = 1, t = 2, u = 3 and using the shorthand P̃ obs (cdb) ≡ P̃ obs (cdb, s = 1, t = 2, u = 3), we
evaluate

W = 8
∑
b=±1

b
[
P̃ obs(+ + b)P̃ obs(−− b)− P̃ obs(+− b)P̃ obs(−+ b)

]
/

(∑
cdb

P̃ obs (cdb)

)2

. (5.98)

In order to assess the negativity N induced by post-selecting on the state |0〉 on B, we fix instead
u = 3, b = +1 and fit the resulting 36 count numbers P̃ obs (cdst) ≡ P̃ obs (cd, b = +1, st, u = 3) to a
model of the form

P̃mod (cdst) = NTr
[
Πs,c
C ⊗Π3,+

B ⊗Πt,d
D τCB|D

]
(5.99)

where TDτ bC|D is once again a positive-semidefinite operator. Note that we do not enforce any other
constraints; in particular, one should not assume that the marginal on the input variable TrCτ bC|D is
the identity operator because the map EbC|D induced by post-selection need not be trace-preserving.
The best-fitting induced Choi states χbCD ≡ 1

2TDτ
b
C|D for the three scenarios are shown in Fig. 5.4.

The induced states from the experiments targeting classical probabilistic and physical mixtures are,
to good approximation, diagonal in the preferred bases, and their diagonal matrix elements reproduce
the expected joint probability distributions eqs. (5.89) and (5.94), respectively. In the experiment
that targeted an intrinsically quantum physical mixture, we find that χbCD shows a clear signature
of entanglement, with negativity N = 0.083 ± 0.003. This shows that we successfully realized
an intrinsically quantum physical mixture of common-cause and cause-effect relations between two
variables.

Finally, we track the witness of physical mixture W and the signature of non-classical combin-
ations N for a two-parameter family of causal relations, with the partial swap parameter ranging
from θ = 0 (identity channel, purely CE) to π (maximally entangled state |Φ+〉, purely CC) and
adding dephasing with probability p ranging from 0 to 1, on the bases defined by n̂C = x̂, n̂D = ŷ,
n̂B = ẑ. The results are shown in Fig. 5.5 for the interval p ≤ 0.3, since above this value all evidence
of non-classical behaviour is lost and the data do not exhibit any noteworthy features. Due to the
choice of dephasing bases, the witness W is unaffected by the dephasing; it attests to a physical
mixture of CC and CE for all values of the parameters except for the extremes θ = 0, π, as expected.
The indicator of intrinsically quantum physical mixture N , on the other hand, is reduced to zero as
the dephasing probability reaches p = 0.3. (This does not imply that all data beyond this point can
be explained by a classical physical mixture, since N > 0 is only a sufficient condition for detecting
an intrinsically quantum physical mixture, but it is consistent with this hypothesis. We have only
given an explicit effectively classical model in the limit p = 1.) For all values of p below 0.3, however,
the non-zero values of N verify that we have indeed realized an intrinsically quantum combination
of CC and CE relations between the two qubits.
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6 Conclusions and outlook

6.1 Quantum variables on simple causal structures
The first goal of this thesis was to investigate the principles that govern information and knowledge
in the quantum sphere – specifically from the point of view of causal models – and to pin down how
they differ from their classical counterparts, in hopes of gaining a deeper understanding of quantum
theory. For this purpose, we replaced classical random variables by a quantum generalization,
but considered only simple causal structures of the same types allowed in classical causal models:
two variables related either as cause and effect or by a common cause, or at most a combination
of one mechanism of each type. In this setting, one can define generalizations of joint probability
distributions, belief propagation and Bayesian inversion, to name a few, that reproduce the desirable
properties of their classical counterparts. Many elements of the conventional formalism of quantum
mechanics, such as preparations and different types of measurement, can be represented as part of
this unified framework.

This approach provides a new perspective on the fundamental question of what one can know
and learn about a quantum system, considering that any attempt to gain information about the
system tends to alter its subsequent behaviour. The framework of causal models accommodates
this fact by splitting each quantum variable A into two versions, C and D – one before, the other
after the intervention –, and providing distinct analyses of what one learns about each of them. The
necessity of distinguishing two versions of A becomes apparent if one considers the map of inferences
from A to a second variable, B, related by a combination of common-cause and cause-effect: this
map can exhibit explicit interference28 between the inferences based on C and D.

When splitting a quantum variable A, one must modify the causal structure so as to ensure that
C has no causal children and D has no causal parents among the remaining variables. This leaves
both versions accessible for an agent to acquire information about them (using measurements on C
and preparations on D) and therefore provides an operationally meaningful way to consider "what
an agent knows about the variable". Based upon this, one can generalize joint and conditional
probability distributions to operators over any number of quantum variables.

In most applications of quantum measurements, the disturbance that inevitably accompanies
them is treated as a kind of noise, which obscures the information that one seeks to extract from
the system. In the context of causal models, however, the fact that measuring a quantum variable
does not simply reveal a single, fixed piece of information about it turns out to be a useful resource:
it allows for a difference between what one learns about C and D, which is essential in obtaining
complete information about the variable A and its relation to other variables. This situation is
somewhat reminiscent of the cases of the no-cloning theorem and the fundamentally probabilistic
nature of quantum mechanics: once viewed as constraints that hamper one’s abilities, they were
later recognized as powerful resources that provide secure communication and strong randomness29,
respectively. (As an aside, we note that this strong randomness provided by quantum mechanics
may in turn simplify our understanding of causality, since it resolves the philosophical problem of
free will that limits the interventionist definition of causation.) The insight that the violation of
informational symmetry can be a useful resource provides both motivation and a new context for
further study of quantum measurements, focusing on the origin and implications of informational
asymmetry.

Another long-standing puzzle is that the quantum state, despite being the optimal operational
characterization of a quantum variable, does not provide a complete description of that variable
– unlike the value of a classical variable, which specifies it completely. In classical causal models,
knowing the value of one variable can make two others statistically independent, depending on the

28That is, the probability amplitudes predicted by each piece of information alone are not combined by simple
addition or convex combination.

29There is ongoing debate in computer science and philosophy about whether it is possible to even verify true
randomness. However, by any testable standard, quantum mechanics can provide very strong randomness.

99



causal structure relating them. This screening of inferences plays an important role throughout
the framework. In quantum causal models, the fact that one cannot give a complete description
of a quantum variable manifests itself as a breakdown of this screening. In some cases, the issue
can be resolved by splitting the variable in question, such as A in the chain F → A → B, where
the pre-intervention version of A is only related to F and the post-intervention version only to B.
However, the same approach does not work for common-cause relations, such as F ← A → B,
because the degrees of freedom related to F and B are not separated by the distinction between pre-
and post-intervention versions. More research is needed to determine whether one can recover the
notion of conditional independence in the case of a quantum common cause – either by modifying
the splitting prescription or by some other approach – or whether the failure of screening in this
scenario reflects a more fundamental effect than in the cause-effect chain.

Finally, let us address the question of whether the indeterminacy in a quantum state is merely
a matter of ignorance of the agent studying the system (epistemic) or an intrinsic feature of some
underlying reality (ontic), or some non-trivial combination of the two. While it is not clear how this
difference would manifest itself in a quantum causal model, the causal framework does make a very
clear distinction between a closely related pair of concepts, namely inference and influence. One
can identify epistemic states are those that can be updated by inference, whereas ontic states only
change in response to a (causal) influence. With further development, the framework of quantum
causal models is therefore a promising tool for gaining some insight into the nature of the quantum
state.

6.2 Quantum conditionals
Going beyond the effects that essentially concern just a single variable, we also considered the
properties of conditionals that relate quantum variables. One of the most striking observations
in this context is that quantum conditionals have different mathematical forms depending on the
underlying the causal structure. This contrasts with classical conditionals, which are independent
of the causal structure. As a pedagogical example of these different forms, consider an inference
map between two variables related as cause and effect: this map must be completely positive, since
one is free to input any state, including one that is entangled with an ancilla. If the two variables
have a common cause, on the other hand, then the map must be completely co-positive. The partial
transposition that differentiates common-cause from cause-effect conditionals can be traced back
to the intrinsic asymmetry of the causal arrow, which distinguishes parents from children and the
pre-intervention version from the post-intervention version of a variable. Indeed, in the case of a
general causal model, whose variables can be split into a set C of pre-intervention versions and a set
D of post-intervention versions, the conditional τC|D must be positive under partial transposition on
the set of post-intervention variables, D.

Positivity under partial transposition is the simplest consistency condition imposed on a con-
ditional relating several quantum variables, but it is not the only one. This is illustrated by the
case of two time-ordered variables, A and B: in this case, we also demand that the marginal of the
conditional factorize, τBC|D = ρC ⊗ ID, because the input, D, is causally posterior to the output,
C. Similar constraints will apply to more general conditionals in order to prevent causal cycles. A
second type of constraint applies if two variables, B1 and B2, share a common cause A: in this case,
the conditionals by which each Bi depends on A are subject to a monogamy-type constraint, which
prevents them from both obtaining perfect copies of A. More exotic types of constraints may exist,
and the task of completely characterizing the set of quantum conditionals that are compatible with
a given causal structure remains for future work. It ties into the study of how certain signatures in
the joint statistics can reflect properties of the underlying causal structure, which is an active topic
in classical causal modelling.

The role of partial transposition in causal models provides an operational interpretation of the
class of PPT states. We have shown that the classes of separable states, non-separable PPT states,
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NPT states and PPT negative operators can be characterized exactly in terms of the classes of causal
structures from which they can arise. At the same time, the mathematical properties of states
have implications for the correlations that these states can exhibit, such as bound or distillable
entanglement, which play a central role in quantum communication. Our result therefore allows
us identify classes of correlations with the classes of causal structures that can give rise to them,
providing a natural representation for communication problems that involve several parties signalling
each other through pre-defined channels. In particular, by analysing whether a quantum cause-effect
structure can give rise to bound entanglement, one could settle the open question of whether there
exist bound entangled NPT states.

Aside from these more theoretical implications, the fact that quantum conditionals witness the
underlying causal structure can be exploited for causal discovery. To make this claim rigorous, we
began by exploring what one can learn about the versions C and D by different ways of probing the
quantum variable, and in particular how this compares to classical passive observation. Although
passive observation itself does not admit an exact quantum analogue, we defined a class of probing
schemes that are like passive observation in the way that is relevant for causal inference; namely, in
that they reveal the same information about C and D. This class of so-called observational schemes
does extend to quantum variables, and we show that, for a particular probing scheme in this class,
one can characterize not the entire operator space L (HC ⊗HD), but only a subspace. Notably,
this information is sufficient to distinguish whether the variable is related to a second, later one as
cause and effect or via an unobserved common cause. Classically, observational probing schemes
cannot distinguish the causal structure in this case. The effect we have found is therefore uniquely
quantum, and it adds a new paradigm to the toolbox of causal discovery.

The observation that not all quantum conditionals must correspond to CP maps promises a
better understanding of how such maps can arise in the dynamics of open quantum systems, as well
as the closely related phenomenon of quantum non-Markovianity. An analysis in terms of causal
structure reveals that violations of complete positivity and Markovianity can both be traced to
common-cause relations. Indeed, we know that common-cause relations are represented by maps
that are completely co-positive, but not necessarily completely positive. This explains why CP maps
alone are inappropriate for such scenarios, requiring cumbersome extensions or breaking down in
contradiction altogether. The formalism of quantum conditionals (and causal maps in particular)
offers a more appropriate representation of the relation between the states of a system at different
times under non-Markovian dynamics, along with the corresponding physical interpretation.

By extension, one can use several tests derived within our formalism to detect and quantify
violations of Markovianity. However, in order to design tests that can be applied in a realistic setting,
one should not assume that one can apply even an observational probing scheme on the principal
system alone, since the fact that it is hard to measure or prepare the principal system without also
affecting the environment lies at the root of the entire problem. Instead, one should combine the
insights and mathematical formalism of quantum causal models with a detailed description of the
instruments that can be used to probe S1 in a given implementation, including how they affect the
environment. One can then derive what one can learn about the causal map – and consequently
deduce about the causal relation – subject to those constraints, similarly to what we have done for
the restriction to observational probing in section 3.3.

6.3 Causal structure in a quantum world
The more ambitious goal in studying quantum causal models is to understand the possible modific-
ations to the causal structure that arise when one takes into account quantum theory. By contrast,
note that the previous section considered only the implications of non-classical features of the con-
ditionals, which encode how each variable depends on its parents within a given causal structure.
For example, in conventional quantum mechanics, quantum channels that preserve entanglement
allow the input (cause) to affect the output (effect) in a way that cannot be simulated by a classical
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channel. Non-classical features of the causal structure, however, are a different class of effects.
As mentioned earlier, the general causal relations among a set of quantum variables can be

summarized in the form of a single overall conditional τC|D. But, although this is a complete
characterization of the causal relations, it does not encode the causal structure in a particularly
accessible way. The appeal of causal models – both their philosophical elegance and their usefulness
for practical applications – stems from their modularity; the fact that they decompose a network of
causal relations into individual, autonomous mechanisms. In the context of classical causal models,
this motivation gave rise to the entire field of causal discovery, tasked with analysing observed joint
probability distributions in order to determine which combinations of causal mechanisms can explain
them. The problem of causal discovery on a set of quantum variables can certainly benefit from
the classical techniques, but it will most likely also face uniquely quantum features of the causal
structure which cannot be analysed using existing techniques.

In order to study such features, we pursue a bottom-up approach and consider how certain
elementary components that form the causal structure can be combined in non-classical ways. It is
not yet clear what one should consider as elementary components for this purpose: whether it should
be causal mechanisms (giving one variable in terms of its parents), different paths that connect two
variables within a single larger classical causal structure, or even distinct causal structures that are
considered incompatible in the classical framework, such as A → B and B → A. In theory, one
should use the extremal elements of the space of causal relations between sets of quantum variables
(in the sense that suitable combinations of them can generate all other elements), but since we are
only beginning to explore the mathematical structure of this space, it is not clear what its extremal
elements are. As a first example, we therefore consider a scenario wherein two possible definitions
coincide: in the case of two causally ordered variables, there are two distinct causal relations – purely
common-cause and purely cause-effect –, which are also realized by different causal mechanisms. We
consider combinations of these two causal relations.

Before turning to the classification of quantum combinations of causal relations, we first consider
the same scenario with classical variables. Specifically, we contrast the space of causal relations
between classical variables with the space of states of a single classical variable: the latter is the
space of probability distributions, whose extremal elements are delta distributions, while all other
elements are probabilistic mixtures thereof. The space of causal relations between two classical
variables, by contrast, was found to include other possibilities beyond probabilistic mixtures of
purely common-cause and purely cause-effect. That is, scenarios with different causal relations can
be combined in more general ways than states of knowledge about a single variable. In the case of
quantum variables, the space of states of a single variable includes both probabilistic mixtures and
coherent superpositions of a given set of basis states. By extension, we expect that scenarios with
different causal relations between quantum variables can be combined in an even richer set of ways.

A central result of chapter 5 is that one can realize a non-classical combination of common-cause
and cause-effect without requiring exotic physics, post-selection or other assumptions. (We do use
post-selection to assess the Berkson-type induced correlations and thereby witness the intrinsically
quantum causal relation, but not to realize it in the first place.) We proved this by providing an
explicit example and realizing it in a tabletop quantum optics experiment.

However, while we have proposed a sufficient condition for detecting one type of non-classical
combination of causal relations, a comprehensive definition of this phenomenon is still being de-
veloped. As one considers more variables, which support a larger and more diverse set of causal
relations, the ways in which these can be combined will quickly become more complex, as it is the
case, for example, in multipartite entanglement. Indeed, the theory of non-classical causal structure
is expected to be at least somewhat related to the theory of entanglement, since both ultimately
manifest themselves in (non-classical) correlations. As with entanglement, exploring the ways in
which these more general causal structures can be non-classical is likely to be a gradual process, but
it promises to reveal both a rich mathematical structure and physical implications that we cannot
yet foresee.
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A Appendix

A.1 Limiting cases of causal tomography
This appendix shows how causal tomography reduces to conventional tomography of quantum pro-
cesses and bipartite states in the limiting cases where the causal relation between A and B is either
purely cause-effect or purely common-cause. For concreteness, we continue with the example of
qubits discussed in the main text, but the generalization to higher-dimensional variables is straight-
forward.

If the causal relation is purely cause-effect, the Jamiołkowski operator representing the causal
map takes the form

τ ceCB|D = ρC ⊗ τB|D, (A.1)

hence the probability distribution relating settings and outcomes in the experiment factorizes as

TrCBD

[
τ ceCB|D(Πs′c

C ⊗Πu′b
B ⊗Πt′d

D )
]

= Tr
[
ρCΠs′c

C

]
Tr
[
τB|D

(
Πu′b
B ⊗Πt′d

D

)]
= P (c|s′)P (b|dt′u′) .

(A.2)
One can isolate the correlations that characterize the channel from D to B by marginalizing over

c, that is, by considering only the coefficients C0tu from the construction above: substituting τ ceCB|D,
we find for t′, u′ ∈ {1, 2, 3}

C0t′u′ =
∑
c=±1

P (c|s′)
∑

b,d=±1

bd P (b|dt′u′) = Tr
[
τB|D

(
σu

′

B ⊗ σt
′

D

)]
, (A.3)

whereas the coefficients C0tu with t = 0 and/or u = 0 take the form

C00u′ =
∑
c=±1

P (c|s′)
∑

b,d=±1

b P (b|dt′u′) = Tr
[
τB|D

(
σu

′

B ⊗ σ0
D

)]
(A.4)

C0t′0 =
∑
c=±1

P (c|s′)
∑

b,d=±1

d P (b|dt′u′) = Tr
[
τB|D

(
σ0
B ⊗ σt

′

D

)]
=
∑
d

d = 0 (A.5)

C000 =
∑
c=±1

P (c|s′)
∑

b,d=±1

P (b|dt′u′) = Tr
[
τB|D

(
σ0
B ⊗ σ0

D

)]
=
∑
d

1 = 2. (A.6)

Using these coefficients, one can explicitly reconstruct

τB|D =
1

4

3∑
tu=0

C0tuσuB ⊗ σtD. (A.7)

Similarly, marginalizing over b and d yields the data to reconstruct the marginal state ρC : we have

Cs′00 =
∑
c=±1

cP (c|s′)
∑

b,d=±1

P (b|dt′u′) = 2Tr
[
ρCσ

s′

C

]
(A.8)

and C000 = 2, as established above, so that

ρC =
1

4

3∑
s=0

Cs00σ
s
C . (A.9)

If, on the other hand, the causal relation is purely common-cause, then the Jamiołkowski operator
representing the causal map takes the form

τ ccCB|D = ρCB ⊗ ID, (A.10)
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hence the probability distribution relating settings and outcomes in the experiment factorizes as

TrCBD

[
τ ceCB|D(Πs′c

C ⊗Πu′b
B ⊗Πt′d

D )
]

= Tr
[
ρCB

(
Πs′c
C ⊗Πu′b

B

)]
Tr
[
Πt′d
D

]
= P (cb|s′u′) . (A.11)

One can see that the coefficients with t′ ∈ {1, 2, 3} must be zero, Cst′u = 0, because the marginal
of τ ccCB|D on D is the identity operator. The coefficients with t = 0 encode the state ρCB : for
s′, u′ ∈ {1, 2, 3}

Cs′0u′ =
∑

c,b,d=±1

P (cb|s′u′) = 2Tr
[
ρCB

(
σs

′

C ⊗ σu
′

B

)]
, (A.12)

whereas the coefficients Cs0u with s = 0 and/or u = 0 take the form

C00u′ =
∑

c,b,d=±1

b P (cb|s′u′) = 2Tr
[
ρCB

(
σ0
C ⊗ σu

′

B

)]
(A.13)

Cs′00 =
∑

c,b,d=±1

c P (cb|s′u′) = 2Tr
[
ρCB

(
σs

′

C ⊗ σ0
B

)]
(A.14)

C000 =
∑

c,b,d=±1

P (cb|s′u′) = 2Tr
[
ρCB

(
σ0
C ⊗ σ0

B

)]
= 2. (A.15)

We can therefore reconstruct

ρCB =
1

8

3∑
su=0

Cs0uσsC ⊗ σuB . (A.16)

A.2 Bloch sphere representation of prediction and retrodiction
Consider a single qubit that is subjected to a projective measurement. What can one retrodict about
the pre-intervention variable, C, if the prior ρC is not maximally mixed? For brevity, we fix the
setting s and let Πm denote the projector associated with the measurement outcome m ∈ {±1}. In
this case, the retrodictive state takes the form

ρmC =
1

P (m)

[
ρ

1
2

CΠmρ
1
2

C

]
. (A.17)

We seek to express this in terms of Bloch vectors, which are related to operators by the rule

ρ =
1

2

σ0 +
∑
j

vjσj

 ⇔ vj = Tr [ρσj ] . (A.18)

For simplicity, we will choose the ẑ-axis of the Bloch sphere such that the Bloch vector repres-
enting the prior ρC takes the form ~q = (0, 0, ε), where ε measures the strength of the bias. This
implies that ρC is diagonal in the eigenbasis of σ3, and we can write explicitly

ρ
1
2

C =

 √
1+ε

2 0

0
√

1−ε
2

 . (A.19)

Let ~p = (p1, p2, p3) denote the Bloch vector representing Π+1, noting that the complementary
outcome, m = −1, is therefore represented by the Bloch vector −~p. Using expression (A.18), we
have

Πm =
1

2

(
1 +mp3 mp1 − imp2

mp1 + imp2 1−mp3

)
. (A.20)
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Multiplying the matrices, one can show that
Tr
[
σ0ρ

1
2

CΠmρ
1
2

C

]
= 1

2 (1 +mp3ε)

Tr
[
σ1,2ρ

1
2

CΠmρ
1
2

C

]
=
√

1−ε2
2 mp1,2

Tr
[
σ3ρ

1
2

CΠmρ
1
2

C

]
= 1

2 (mp3 + ε) ,

(A.21)

as well as
P (m) = Tr

[
σ0ρ

1
2

CΠmρ
1
2

C

]
= Tr [ΠmρC ] =

1

2
(1 +mp3ε) . (A.22)

Renormalizing the inner products with σ1,2,3 by P (m), we find the elements of the Bloch vector ~cm
that represents the retrodictive state ρmC :c1,2 = Tr

[
σ1,2

1
P (m)ρ

1
2

CΠmρ
1
2

C

]
=

√
1−ε2

(1+mp3ε)
mp1,2

c3 = Tr
[
σ3

1
P (m)ρ

1
2

CΠmρ
1
2

C

]
= (mp3+ε)

(1+mp3ε)
.

(A.23)

A.3 Geometric interpretation of single-qubit inference maps
Theorem. (45 in the main text) Given a single-qubit conditional τB|A, the inference ellipsoid rep-
resenting τB|A is the unit sphere if and only if the only causal explanation of τB|A is either an
extremal CE relation or an extremal CC relation.

Proof. (⇐) If a quantum channel applies a unitary transformation, then every pure input state
results in a pure output. In terms of the Bloch sphere, this implies that the image of the set of all
pure states is the unit sphere. Similarly, if ρBA is a pure, entangled two-qubit state, then it can be
written in the Schmidt form as

∑
i=0,1 αi |ai〉 |bi〉, with two non-zero coefficients αi, for some pair

of orthonormal bases {|ai〉}i of HA and {|bi〉}i of HB . The conditional τB|A = ρ
− 1

2

A ρBAρ
− 1

2

A has the
Schmidt form

∑
i=0,1

1√
2
|ai〉 |bi〉, and consequently finding any pure state cos θ |a0〉+eiφ sin θ |a1〉 on

A implies an equally pure state cos θ |b0〉+ e−iφ sin θ |b1〉 on B. It follows that the inference ellipsoid
is again a unit sphere.

(⇒) By applying suitable unitaries on A and B before and after a given conditional τB|A, one
can diagonalize the matrix T in the effective conditional,

1

4
Tr
[
(VB ⊗ UA) τB|A (VB ⊗ UA)

†
σiB ⊗ σ

j
A

]
=


1 0 0 0
c1 t1 0 0
c2 0 t2 0
c3 0 0 t3


ij

, (A.24)

and furthermore enforce that both t1 ≥ 0 (by applying π rotations about the z axis of the Bloch
sphere, inverting the signs of both c1, t1 and c2, t2, if necessary) and t3 ≥ 0 (with a π rotation about
the x axis, which inverts both c2, t2 and c3, t3). Since both the set of unitary channels and the set of
pure maximally entangled states are closed under local unitaries, the analysis can be cast in terms
of the diagonalized and suitably rotated (VB ⊗ UA) τB|A (VB ⊗ UA)

†. If the inference ellipsoid is a
unit sphere, its centre lies at the origin, ~c = ~0, and the scale factors of the axes are t1 = t3 = +1 and
t2 = ±1. This leaves two alternatives: ~t = (1, 1, 1), which corresponds to the identity channel, and
~t = (1,−1, 1), which gives (by explicit reconstruction) τB|A = |Φ+〉 〈Φ+|. The causal explanation of
the original τB|A can be recovered by applying the inverse unitaries on A and B, which yields generic
unitary transformations (if τB|A was the identity channel) and generic pure, maximally entangled
states (if τB|A was |Φ+〉). If a common-cause conditional τB|A is pure and maximally entangled, then

the joint state ρBA = ρ
1
2

AτB|Aρ
1
2

A, where the marginal ρA can be any positive-semidefinite, trace-one
operator, is pure and (not necessarily maximally) entangled.
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We prove lemma 51 from the main text before lemma 48, since the proof of the latter contains
steps that closely resemble the former.

Lemma. (51 in the main text) Given a generic single-qubit conditional τB|A, whose Pauli basis
representation is

1

4
Tr
[
τB|Aσ

i
B ⊗ σ

j
A

]
=

(
1 ~0T

~c′ T

)
ij

, (A.25)

there exist rotations of the Bloch spheres of A and B, viz. a product of local unitary operations on
HA and HB, that put the Pauli basis decomposition in the form

1

4
Tr
[
(VB ⊗ UA) τB|A (VB ⊗ UA)

†
σiB ⊗ σ

j
A

]
=


1 0 0 0
c1 t1 0 0
c2 0 t2 0
c3 0 0 t3


ij

. (A.26)

The diagonal elements ~t = (t1, t2, t3) are the eigenvalues of the correlation matrix T in the Pauli
representation of τB|A.

Proof. Let us first establish that every unitary V on a single-qubit Hilbert space HB realizes a
rotation in the Pauli-basis representation of L (HB) that involves only the non-trivial Pauli operators.
To see this, consider the effect of a unitary V on a generic Hilbert space vector: denoting vi ≡ Tr (σiρ)
for a generic initial state ρ and v′k = Tr

[
σk
(
V ρV †

)]
, the two are related by

v′k = Tr

[
σkV

(
1

2

3∑
i=0

viσi

)
V †

]
=

3∑
i=0

1

2
Tr
[
σkV σiV

†] vi ≡ 3∑
i=0

V Pki vi. (A.27)

Note that the elements of V P are real and that they satisfy

3∑
i=1

V Pki
(
V P
)T
il

=
1

2

3∑
i=0

Tr
[
σkV σiV

†] 1

2
Tr
[
V †σlV σi

]
=

1

2
Tr
[
σkV

(
V †σlV

)
V †
]

=
1

2
Tr [σkIσlI] = δkl,

(A.28)
characterizing a rotation in Pauli space, and furthermore

V Pk0 =
1

2
Tr
[
σkV V

†] = δk0 = V P0k, (A.29)

that is, the rotation only involves the non-trivial Pauli operators. Conversely, one can see that every
rotation in the subspace of L (HB) spanned by {σk} with k = 1, 2, 3 is a linear map that takes pure
states (positive-semidefinite, rank-one, trace-one operators) to other pure states, and can be realized
by a unitary.

Now, in the Pauli basis representation of τB|A,

1

4
Tr
[
τB|Aσ

i
B ⊗ σ

j
A

]
=

(
1 ~0T

~c′ T3×3

)
ij

, (A.30)

the real matrix T can be made diagonal by multiplying on the left and right with suitable real
rotations V P and UP , which only have a non-trivial effect on the basis elements indexed by i, j 6= 0,(

1 ~0T

~0 V̄ P3×3

)(
1 ~0T

~c′ T3×3

)(
1 ~0T

~0 ŪP3×3

)
=

(
1 ~0T

~c diag~t

)
. (A.31)
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That is, there exist matrices with the properties V Pk0 = V P0k = δk0 = UPk0 = UP0k and

3∑
i=1

V Pki
(
V P
)T
il

= δkl =

3∑
j=1

(
UP
)T
kj
UPjl , (A.32)

such that
3∑

i,j=1

V Pki

(
TrτB|AσiB ⊗ σ

j
A

)
UPjl = tkδkl (k, l = 1, 2, 3) . (A.33)

Note that V P acts only on the Pauli representation of the factor space L (HB), whereas UP acts only
on the Pauli representation of the factor space L (HA). They are therefore equivalent to particular
unitary rotations on the underlying Hilbert spaces, according to the identification

ρ′BA ≡
∑
kl

σkB

 3∑
i,j=0

V Pki

(
TrρBAσiB ⊗ σ

j
A

)
UPjl

σlA = (VB ⊗ UA) ρBA (VB ⊗ UA)
† ∀ρBA ∈ L (HB ⊗HA) .

(A.34)

Lemma. (48 in the main text) A unital single-qubit conditional τB|A can be represented on the Pauli
basis as

1

4
Tr
(
τB|Aσ

i
B ⊗ σ

j
A

)
=

(
1 ~0T

~0 T3×3

)
ij

, (A.35)

with the eigenvalues of the matrix of correlations T forming a three-vector ~t. Then τB|A admits a
CC explanation if and only if ~t lies within the tetrahedron with vertices

{(1, 1,−1) , (1,−1, 1) , (−1, 1, 1) , (−1,−1,−1)} , (A.36)

and a CE explanation if and only if it lies within the tetrahedron

{(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)} . (A.37)

Proof. The fact that τB|A is unital implies that, in terms of the Pauli form,(
1 ~0T

~c T3×3

)(
1
~0

)
=

(
1
~0

)
, (A.38)

i.e. the marginal on B is also maximally mixed and the ellipsoid is centred at the origin, ~c = ~0. Using
the same approach as in lemma 51 proved above, the Pauli form in this case can be diagonalized
completely, (

1 ~0T

~0 V P3×3

)(
1 ~0T

~0 T3×3

)(
1 ~0T

~0 UP3×3

)
=


1 0 0 0
0 t1 0 0
0 0 t2 0
0 0 0 t3

 . (A.39)

Furthermore, following lemma 52, the product of local local unitaries VB ⊗ UA does not change
whether a given bipartite state is positive-semidefinite or PPT. That is, τB|A is positive-semidefinite
(PPT) if and only if the Pauli-diagonal form

τ̃B|A = (UA ⊗ VB) τB|A (UA ⊗ VB)
†

= σ0
B ⊗ σ0

A +

3∑
k=1

tkσ
k
B ⊗ σkA (A.40)

is positive-semidefinite (PPT).
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The eigenvalues of τ̃B|A can be found explicitly, and the condition of positivity becomes
+t1 + t2 − t3 ≥ −1

+t1 − t2 + t3 ≥ −1

−t1 + t2 + t3 ≥ −1

−t1 − t2 − t3 ≥ −1.

(A.41)

The four inequalities are simultaneously satisfied if and only if ~t lies within the tetrahedron with
vertices{(1, 1,−1) , (1,−1, 1) , (−1, 1, 1) , (−1,−1,−1)}, which is therefore a necessary and sufficient
condition for τ̃B|A ≥ 0, and consequently τB|A ≥ 0, which admits a common-cause explanation.
Analogously, a cause-effect explanation is possible if and only if TAτ̃B|A ≥ 0, which holds if and only
if 

+t1 + t2 − t3 ≥ −1

+t1 − t2 + t3 ≥ −1

−t1 + t2 + t3 ≥ −1

−t1 − t2 − t3 ≥ −1,

(A.42)

i.e., if and only if ~t lies within the tetrahedron with vertices {(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)}.

Theorem. (54 in the main text) Let τB|A be any single-qubit conditional and assume that τB|A is
decidable, i.e. the inference ellipsoid does not fit inside a nested tetrahedron. Then τB|A admits
a CE explanation if and only if the colouring of the inference ellipsoid is right-handed, and a CC
explanation if and only if the ellipsoid is left-handed.

Proof. Using lemma 51, the generic single-qubit quantum conditional τB|A can be represented (up
to local unitaries) by the parameters ~c,~t; and by lemma 52, local unitary transformation leave
the properties of being positive-semidefinite or positive under partial transposition unchanged. We
will show that, if τB|A is positive-semidefinite and lies in an octant with t1t2t3 > 0, then it is
also PPT, and consequently undecidable. Similarly, any PPT conditional with t1t2t3 < 0 is also
positive-semidefinite, and therefore undecidable. By the contrapositive, if a single-qubit conditional
is known to be decidable, then it is PPT if and only if t1t2t3 > 0 and positive-semidefinite if and
only if t1t2t3 < 0. This, by definition 43, corresponds to left- and right-handedness, respectively.

Let us now show that any conditional τB|A that is positive-semidefinite and has t1t2t3 > 0 is also
PPT. (The case of PPT operators with t1t2t3 < 0 follows by symmetry.) The conditional τB|A is
represented (up to local unitaries) by the parameters ~c and ~t, and we can use suitable unitaries to
enforce that t1, t2, t3 > 0. (For example, a rotation about the x-axis of the Bloch sphere of A by an
angle π inverts the signs of t2 and t3.) Since τB|A is positive-semidefinite, it follows that its partial
transpose TAτB|A is PPT. If the partial transposition is realized on the eigenbasis of σ3

A, inverting
the sign of σ2

A, then TAτB|A is represented by the parameters ~c′ = ~c and ~t′ = (t1,−t2, t3). These
parameters ~c′ and ~t′ satisfy the conditions of theorem 53, which we rewrite in terms of the ci and ti
that represent the original τB|A (with slight simplifications due to the fact that t3 > 0) as

H1. |c3|+ |t3| = 1, c1 = c2 = 0 and t1 = ±t2; or
H2. |c3|+ |t3| < 1, and all of the following hold:
1.

(t1 − t2)
2 ≤ (1 + t3)

2 − c23 −
(
c21 + c22

)(1 + t3 − |c3|
1− t3 − |c3|

)
≡ f+ (t3,~c) , (A.43)

2.
(t1 + t2)

2 ≤ (1− t3)
2 − c23 −

(
c21 + c22

)(1− t3 + |c3|
1 + t3 + |c3|

)
≡ f− (t3,~c) , (A.44)
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3.

[
1−

(
t21 + t22 + t23

)
−
(
c21 + c22 + c23

)]2 ≥ 4
[
t21
(
c21 + t22

)
+ t22

(
c22 + t23

)
+ t23

(
c23 + t21

)
+ 2t1t2t3

]
.

(A.45)
The thesis we aim to prove is that τB|A is also PPT, that is, the parameters ~c and ~t themselves
satisfy the conditions of theorem 53 (again simplified using the fact that t3 > 0),

T1. |c3|+ |t3| = 1, c1 = c2 = 0 and t1 = ±t2; or
T2. |c3|+ |t3| < 1, and all of the following hold:
1.

(t1 + t2)
2 ≤ (1 + t3)

2 − c23 −
(
c21 + c22

)(1 + t3 − |c3|
1− t3 − |c3|

)
= f+ (t3,~c) , (A.46)

2.
(t1 − t2)

2 ≤ (1− t3)
2 − c23 −

(
c21 + c22

)(1− t3 + |c3|
1 + t3 + |c3|

)
= f− (t3,~c) , (A.47)

3.

[
1−

(
t21 + t22 + t23

)
−
(
c21 + c22 + c23

)]2 ≥ 4
[
t21
(
c21 + t22

)
+ t22

(
c22 + t23

)
+ t23

(
c23 + t21

)
− 2t1t2t3

]
.

(A.48)
Note that the only difference between the hypotheses that follow from τB|A being positive-semidefinite
and the theses that ensure that τB|A is PPT is a sign change in t2, which reflects the partial trans-
position. We will show how the hypothesis H1-H3 imply the theses T1-T3.

If ~c and ~t satisfy the hypothesis H1, then the thesis T1 also holds, and τB|A is PPT. Now suppose
that ~c and ~t satisfy H2 instead. One can see that hypothesis H2.3 implies thesis T2.3, by noting
that the left-hand sides are equal and using the fact that t1t2t3 > 0 to show that the right-hand
sides satisfy

t21
(
c21 + t22

)
+ t22

(
c22 + t23

)
+ t23

(
c23 + t21

)
+ 2t1t2t3 ≥ t21

(
c21 + t22

)
+ t22

(
c22 + t23

)
+ t23

(
c23 + t21

)
− 2t1t2t3.

(A.49)
Along similar lines, the fact that t1, t2 > 0 implies that

(t1 − t2)
2
< (t1 + t2)

2
, (A.50)

and therefore hypothesis H2.2 ensures that thesis T2.2 holds.
Finally, one can show hypothesis H2.2 also implies thesis T2.1, using the fact that f− (t3,~c) <

f+ (t3,~c). Indeed, consider

f+ (t3,~c)− f− (t3,~c) = 4t3 −
(
c21 + c22

)(1 + t3 − |c3|
1− t3 − |c3|

− 1− t3 + |c3|
1 + t3 + |c3|

)
(A.51)

= 4t3 −
(
c21 + c22

) [
(1 + t3)

2 − (1− t3)
2
]
/ (1 + t3 + |c3|) (1− t3 − |c3|)

=
4t3

1− (t3 + |c3|)2

[
1− (t3 + |c3|)2 −

(
c21 + c22

)]
.

Recall that we chose unitaries that ensure t3 > 0 and note that |c3|+ |t3| < 1 follows from hypothesis
H2, so the first factor is positive. In order to evaluate the sign of the second factor, we use the fact
that the map EB|A that is isomorphic to τB|A is positivity-preserving, hence the inference ellipsoid
that represents it does not exceed the Bloch sphere. In particular its north and south poles (the
images of the eigenstates of σz, viz. the Bloch vectors (0, 0,±1)) have Bloch vectors whose norm
does not exceed one,

(c1 + 0t1)
2

+ (c2 + 0t2)
2

+ (c3 ± 1t3)
2 ≤ 1, (A.52)
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hence
1− (t3 ± |c3|)2 −

(
c21 + c22

)
≥ 0. (A.53)

It follows that f− (t3,~c) < f+ (t3,~c), so that hypothesis H2.2 implies thesis T2.1.
In summary, if τB|A has t1t2t3 > 0 and is positive-semidefinite, then the parameter ~c and ~t satisfy

either hypothesis H1 or the hypotheses H2.1, H2.2 and H2.3. In either case, we have shown that
τB|A must then also satisfy either thesis T1 or the theses T2.1, T2.2 and T2.3, which together imply
that τB|A is also PPT, and therefore undecidable. Together with the reasoning outlined in the first
paragraph, this completes the proof30.

A.4 Complete characterization using observational data given a promise
This section demonstrates that an observational scheme sometimes allows a complete solution of the
task of causal discovery. More specifically, we show the following:

Theorem 78. If one is promised that two qubits are related by a probabilistic mixture of a CE
mechanism that realizes a unitary and a CC mechanism that realizes a pure entangled state, then
observational probing is sufficient to completely characterize the unitary, the entangled state and
their relative weights, up to a sign ambiguity in the general case.

Proof. We showed in section 3.3.1 that, if the causal relation between two qubits, A and B, is either
purely CC or purely CE, so that the inferences one can make from A about B can be represented
by a linear one-to-one qubit map EB|A : L (HA) → L (HB), then observational data is sufficient to
completely characterize the inference map EB|A. Notably, the prescription for extracting the Pauli
basis coefficients of the conditional τB|A from experimental data is the same in both cases. It follows
that, if we are promised a probabilistic mixture of purely CC and purely CE relations, the inferences
from A to B can still be represented by a single-qubit conditional, which we denote τmixB|A , and this
conditional can be reconstructed from partial tomography data in the same way as described in
section 3.3.1. In the case of a probabilistic mixture, the conditional thus obtained can be further
decomposed as

τmixB|A = qτCCB|A + (1− q) τCEB|A, (A.54)

where τCCB|A and τCEB|A are single-qubit quantum conditionals that arise from purely CC and purely CE
relations, respectively. In our scenario, we are furthermore promised that τCEB|A represents a unitary
transformation, and that τCCB|A encodes inferences between two qubits that were prepared in a pure,
entangled state ρBA – in short, that both conditionals are extremal. We will show that, one τmixB|A
has been characterized by partial tomography, its decomposition into a convex combination of an
extremal CC conditional and an extremal CE conditional is unique, up to one sign.

We will consider this problem in terms of the geometric representation of conditionals, introduced
in lemma 41. As we established in theorem 45, the inference ellipsoid that represents an extremal
conditional is the full Bloch sphere, with centre ~c = ~0 at the origin and unit radius. The correlation
matrix TCE that encodes the effect of τCEB|A on the Bloch sphere,

1

4
Tr
(
τCEB|Aσ

i
B ⊗ σ

j
A

)
= TCEij i, j = 1, 2, 3, (A.55)

is a proper rotation, with singular values ±1 and detT > 0 (right-handed), whereas the correlation
matrix TCC representing the common-cause component is an improper rotation, with singular values
±1 but detT < 0 (left-handed).

Before turning to a probabilistic mixture of generic extremal CE and CC conditionals, consider
how the two are related. Specifically, note that a generic proper rotation of R3, namely TCE , can

30Morgh.
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be transformed into a generic improper rotation, TCC , by combining it with two other steps: first
reflection through the origin, which we denote by F , followed by rotation about some particular axis
n̂ by some particular angle. We write the angle as π + γ (with no expectation that γ be small), so
that the rotation can be decomposed into Rn̂,π followed by Rn̂,γ . Thus

TCC = Rn̂,γRn̂,πFT
CE . (A.56)

The effects of each step of this transformation on the surface of the unit sphere are illustrated in
Fig. A.1, where we compare the image of each point (represented by a colour) under TCE alone
to the images of the same point under FTCE , Rn̂,πFTCE and Rn̂,γRn̂,πFT

CE = TCC . Once we
add the reflection, the image of each point under FTCE is diametrically opposed to its image under
TCE alone. Now for the rotations about n̂: if the image of a point under TCE lies at ±n̂, then its
image under FTCE will lie at ∓n̂ and consequently remain there under the rotation; diametrically
opposite to the image under TCE alone. Meanwhile, if the image of a point under TCE lies in the
plane orthogonal to n̂, then if we add reflection followed by a π rotation, we recover the same image
– the two coincide. Once we include the final rotation by γ, the images of the unit sphere under
TCE and TCC will be separated by an angle γ in the plane orthogonal to n̂, while the images under
TCE that lie at ±n̂ are diametrically opposed to the images of the same points under TCC .

Figure A.1: Relation between a generic proper rotation TCE and a generic improper rotation TCC :
one can obtain one from the other by combining with a reflection through the origin (F ) followed by a
rotation about a specific axis n̂ by π, then further by an angle γ. The coloured spheres represent the
image of the unit sphere under (a) TCE alone, (b) the reflected FTCE , (c) reflection and π rotation,
Rn̂,πFT

CE , and (d) Rn̂,γRn̂,πFTCE = TCC . Special relations hold between the images along ±n̂
and in the plane orthogonal to it (highlighted in the figure). Comparing panels (a) and (d), note
how the images of a given point (denoted by the same colour) under TCE and TCC are diametrically
opposite if they lie along n̂, and separated by an angle γ if they lie in the plane orthogonal to n̂.

Now consider a probabilistic mixture of the two extremal cases: we will show how the geometric
properties of its inference ellipsoid arise from, and consequently reflect, the components TCE , TCC
and the weight q. By linearity, it is associated to a correlation matrix

Tmix ≡ (1− q)TCE + qTCC . (A.57)

The image of the Bloch sphere under such a combination is shown in Fig. A.2. It must still be
an ellipsoid, since Tmix is an affine transformation. Furthermore, it inherits the symmetry under
rotation about n̂. Therefore it has one semi-axis (eigenvector of Tmix

(
Tmix

)T ) along n̂, and a
degenerate pair orthogonal to it. The length of the semi-axis (square root of eigenvalue) along n̂
is |1− 2q|, because the images under TCE and TCC along this direction are diametrically opposed.
When q = 1

2 , this implies that the ellipsoid reduces to a disk. For q < 1
2 , the contribution from the

process dominates, so detTmix > 0, while detTmix < 0 heralds q > 1
2 . The length r of the other

two semi-axes, in the plane orthogonal to n̂, can be obtained using the geometrical construction in
Fig. A.3, which yields the implicit expression

sin2 γ

2
=

1− r2

4 (q − q2)
. (A.58)
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The images of points under Tmix that lie in this plane are rotated from the corresponding images
under TCE by an angle γ′, in the same direction (same sign) as γ above, and with magnitude given
by

2r cos γ′ = 12 + r2 −
[
2q sin

γ

2

]2
. (A.59)

Figure A.2: Bloch sphere representation of a probabilistic mixture of a unitary process and a
pure, entangled state. Mixtures of the two extremes (shown for probability of common-cause
q = 0.00, 0.25, 0.65, 1.00, from left to right) produce ellipsoids that are flattened in the direction n̂
(thick arrow) to a height 2 |1− 2q| , and rotationally symmetric in the plane orthogonal to n̂, with
radius r. (a) A mixture of the identity channel and the state |Φ+〉, as realized in the experiment
described in section 4.2, corresponds to the axis n̂ pointing along ŷ , and a radius in the plane
orthogonal to n̂ of r = 1 throughout the transition. (b) Mixing the identity channel with a generic
pure, entangled state produces intermediate ellipsoids with n̂ pointing in a generic direction and
radius r ≤ 1.

Given a characterization of an ellipsoid that arose from such a convex combination (specific-
ally the directions and lengths of its axes), it is straightforward to extract the direction ±n̂, the
probability q and the angle γ. Note that there remains some ambiguity, because the available data
only specify the magnitude of the angle γ and the direction of n̂, but not its orientation. The two
are related in that a simultaneous sign change of γ and n̂ has no net effect. This leaves us free to
set γ > 0 by convention, with the only remaining ambiguity being the orientation of n̂. (In the
pathological case that all three semi-axes have the same length, one finds that γ = 0, which implies
that the image of TCC is diametrically opposed to that of TCE for all inputs, and there is no need
to single out a direction n̂. The probability q can still be read off normally.)

Given those parameters, the following steps then allow one to explicitly reconstruct TCE from
Tmix: (1) scaling by 1/(1− 2q) in the direction of n̂ and 1/r in the perpendicular plane, which, as
a matrix operation, we denote by S⊥n̂,1/rSn̂,1/(1−2q); and (2) rotation about n̂ by −γ′, Rn̂,−γ′ . In
all, we have

TCE = Rn̂,−γ′S⊥n̂,1/rSn̂,1/(1−2q)T
mix. (A.60)

Similarly, the common-cause contribution can be found via

TCC = Rn̂,−γ+γ′S⊥n̂,1/rSn̂,1/(2q−1)T
mix. (A.61)
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Figure A.3: Geometric construction for characterizing a probabilistic mixture of a unitary process
and a pure, maximally entangled state. In the plane orthogonal to n̂ , the image of a given input
Bloch vector ~v under Tmix lies on the chord connecting the images under TCE and TCC . Its
distance from the centre, which gives the radius r , is related to the angle γ spanned by the chord
and the probability p of common cause in the mixture.

Note that the two choices of ±n̂ give rise to different reconstructed TCC and TCE , but they are
related by simple rotations about the n̂ axis by fixed angles.

The ambiguity is removed when γ = 0, which is the case in the experiment described in section
4.2, mixing the identity channel and the state |Φ+〉. But even if this ambiguity persists, given a
probabilistic mixture of any unitary process and any entangled pure bipartite state, we can uniquely
determine the mixing probability q as well as the angle γ and the direction of n̂ up to an inversion
about the origin.

A.5 Causal interpretation of separable operators
Theorem. (59 in the main text) A quantum conditional τB|A ∈ L (HB ⊗HA), which can be inter-
preted as a Jamiołkowski operator representing a trace-preserving inference map from A to B, is sep-
arable if it can be explained either by a classical common-cause relation or by a classical cause-effect
relation. Moreover, if τB|A is separable, then it can be explained both by a classical common-cause
relation and by a classical cause-effect relation.

Proof. (⇒) Assume that there is a classical variableX that screens off A from B; the causal structure
being either A→ X → B or A← X → B. Let us show that the resulting conditionals are separable.

In the CE case, both τB|X and τX|A are CE conditionals between a classical and a quantum
variable, so they can be written

τB|X =
∑
x

ρxB ⊗ |x〉〈x| τX|A =
∑
x

|x〉〈x| ⊗ τxA; (A.62)

satisfying {
TXτB|X ≥ 0 ⇒ ρxB ≥ 0 ∀x
TAτX|A ≥ 0 ⇒ τxA ≥ 0 ∀x

(A.63)

and {
TrBτB|X = IX ⇒ TrBρxB = 1 ∀x
TrXτX|A = IA ⇒

∑
x τ

x
A = IA.

(A.64)

Consequently,
τB|A = TrXτB|XτX|A =

∑
x

ρxB ⊗ τxA, (A.65)
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the conditional can be written as a sum of products of terms, each of which is positive-semidefinite,
and satisfying the normalization requirement for conditionals, TrBτB|A =

∑
x τ

x
A = IA. It is therefore

a separable quantum conditional.
If A and B are related by a classical common cause, their joint state can be written

ρAB = TrXτA|XτB|XρX , (A.66)

with τA|X =
∑
x ρ

x
A ⊗ |x〉〈x| satisfying ρxA ≥ 0 and TrAρxA = 1, and similarly for τB|X . (Note how

the conditional τAB|X factorizes, since they are independent variables which merely share a causal
parent.) It follows that

ρAB =
∑
x

ρxA ⊗ ρxB , (A.67)

with each factor positive-semidefinite and normalized, forming again a separable state. The separ-
ability of the conditional

τB|A = ρ
−1/2
A ρABρ

−1/2
A (A.68)

follows.
(⇐) We will show that any separable conditional τB|A admits causal explanations as specified

above by explicitly constructing suitable causal models. The hypotheses guarantee that the condi-
tional takes the form

τB|A =
∑
x

ρxB ⊗ τxA, (A.69)

with terms that are positive-semidefinite, ρxB , τ
x
A ≥ 0, and satisfy the normalization requirement for

conditionals,
TrBτB|A =

∑
x

(TrBρ
x
B) τxA = IA. (A.70)

We can choose the normalization constants of the ρxB and τxA such that

TrBρxB = 1 ⇒
∑
x

τxA = IA. (A.71)

Then one can define
τB|X =

∑
x

ρxB ⊗ |x〉〈x| τX|A =
∑
x

|x〉〈x| ⊗ τxA, (A.72)

both of which are PPT and normalized to TrBτB|X = IX , TrXτX|A = IA, and therefore CE condi-
tionals. They characterize a causal model with a CE relation between A and B that is screened off
by the classical X, A→ X → B, which reproduces the original conditional τB|A.

In order to construct a causal model that gives rise to the given τB|A and in which A and B are
related by a classical common cause X, A ← X → B, we take τB|X to be the same constructed
above, but modify the half that involves A. Since a CC model is naturally specified by a conditional
of the form τA|X , we take the conditional τX|A constructed above,

τX|A =
∑
x

|x〉〈x| ⊗ τxA, (A.73)

and use Bayesian inversion. This requires us to also specify a marginal ρA, but since our only goal
is to construct some causal model that is compatible with the τX|A that we derived from τB|A, we
can take ρA to be any positive-semidefinite, trace-one operator. From ρA and τX|A we compute

P (x) = Tr
[
ρ

1
2

A (|x〉〈x| ⊗ τxA) ρ
1
2

A

]
= Tr [τxAρA] , (A.74)
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and
τA|X =

∑
x

1

P (x)
ρ

1
2

A (|x〉〈x| ⊗ τxA) ρ
1
2

A ≡
∑
x

|x〉〈x| ⊗ ρ̃xA, (A.75)

where we define
ρ̃xA =

1

Tr (τxAρA)
ρ

1
2

Aτ
x
Aρ

1
2

A. (A.76)

The elements ρ̃xA are by construction positive-semidefinite and trace-one, viz. valid quantum states,
making τA|X a valid CE conditional. We have thereby shown that there exist conditionals τB|X ,
τA|X and a classical prior P (x) that parametrize a model with the causal structure A ← X → B
and explain the given conditional τB|A.

A.6 Bounds on eigenvalues of partial transposes
Lemma 79. Consider a convex combination of Hermitian operators,

M = (p)M1 + (1− p)M2. (A.77)

The eigenvalues of M are bounded by the convex combinations of the eigenvalues of the two terms:{
λmin (M) ≥ pλmin (M1) + (1− p)λmin (M2) ,

λmax (M) ≤ pλmax (M1) + (1− p)λmax (M2) .
(A.78)

Proof. Eq. (3) in [96], noting that scalar factors multiplying a matrix simply multiply all its eigen-
values.

Lemma 80. Given a Hermitian operator ρAB on a product Hilbert space HA⊗HB, the eigenvalues
of its partial transpose with respect to one system31 are bounded by

TrρAB ≥ λ (TBρAB) ≥ −1

2
TrρAB . (A.79)

Proof. following Rana [97]: Let pi denote the eigenvalues of ρAB . Since ρAB is Hermitian, the pi are
real, but we stress that they need not be positive, since we do not demand positivity of ρAB . There
is a constraint

∑
i pi = TrρAB (with the right-hand side usually equal to some integer, depending

on convention). Furthermore, the Hermiticity of ρAB ensures that its eigenvectors |ψi〉 ∈ HA ⊗HB
can be chosen orthonormal. Subject to these constraints, we can decompose

ρAB =
∑
i

pi|ψi〉〈ψi|. (A.80)

The following holds for each |ψi〉, but for brevity we omit the index i: since |ψ〉 is a pure state on
HA ⊗HB , it admits a Schmidt decomposition,

|ψ〉 =
∑
j

cj |ajbj〉. (A.81)

{|aj〉} and {|bj〉} can be chosen to be orthonormal bases of HA and HB , respectively. The only con-
straint is that they must be eigenbases of the reduced states ρA = TrB |ψ〉 〈ψ| and ρB = TrA |ψ〉 〈ψ|,
but this leaves the freedom to choose the phases of the basis elements, thereby making the coefficients

31The division into factor spaces depends on with respect to which degrees of freedom we want to take the partial
transpose; it is not related to the variables used in the rest of the document.
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cj ≡ 〈ajbj |ψ〉 real and positive without loss of generality. Their absolute values are determined by
the eigenvalues of ρA and ρB , and must satisfy∑

j

c2j = 1; cj ≥ 0. (A.82)

The partial transpose of a pure state |ψ〉 can be written in terms of its Schmidt form (recalling that
we made cj ∈ R) as

TB |ψ〉〈ψ| =
∑
jk

cjck|ajbk〉〈akbj |. (A.83)

Rana points out that it is easy to show that the eigenvectors of this matrix are |ajbj〉 and |ajbk〉 ±
|akbj〉, with eigenvalues c2j and ±cjck. Since we chose cj ≥ 0, only the eigenvalues with an explicit
minus sign can be negative. Their maximal absolute value is 1/2, due to the constraint

∑
j c

2
j = 1.

It follows that λmin (TB |ψi〉〈ψi|) ≥ − 1
2 for each term in the eigendecomposition of ρAB . Similarly,

the largest eigenvalue is bounded by λmax (TB |ψi〉〈ψi|) ≤ 1, which is saturated if one cj = 1 and all
others are zero.
The eigenvalues of the partial transpose of ρAB , which we denote λi (TBρAB), can now be bounded
using lemma 79, recalling that TBρAB as well as all TB |ψi〉〈ψi| are Hermitian. Their smallest
eigenvalues satisfy the inequality

λmin (TBρAB) ≥
∑
i

piλmin (TB |ψi〉〈ψi|) ≥ −
1

2
TrρAB , (A.84)

and similarly
λmax (TBρAB) ≤ TrρAB . (A.85)

Lemma 81. Given a Hermitian operator ρAB on a product Hilbert space HA⊗HB, the eigenvalues
of its partial transpose with respect to one system saturate the lower bound,

λmin (TBρAB) = −1

2
TrρAB , (A.86)

if and only if ρAB is pure, with Schmidt rank two and Schmidt coefficients
{

1√
2
, 1√

2
, 0, ...

}
(additional

zeros depending on the dimension dA).

Proof. Following the proof of the (non-strict) inequality (lemma 80), one can establish conditions for
each of the inequalities in the derivation to be saturated, thereby ensuring that the final inequality
is also saturated: (a) All32 eigenvectors |ψi〉 of ρAB must saturate λmin (TB |ψi〉〈ψi|) ≥ −hA

2 , which

occurs if and only if the Schmidt coefficients of the eigenvector |ψi〉 are
{

1√
2
, 1√

2
, 0, ...

}
(extra zeros

for dimensions dA > 2). (b) The smallest eigenvalues, λmin (TB |ψi〉〈ψi|) = −hA

2 , must be associated
with the same eigenvector for all i. Note that the explicit form of a partially transposed matrix
depends on the basis in which the partial transpose is taken, and therefore so do its eigenvectors
(even though its spectrum does not). We therefore demand that the eigenvectors associated with
the smallest eigenvalues of TB |ψi〉〈ψi| be the same for all i when the partial transpose is taken in
the same basis.

The next step is to prove that ρAB cannot have two or more distinct eigenvectors with non-zero
probability. To prove this by contradiction, let us assume that two such vectors exist, denoting

32It is understood implicitly that these conditions must hold only for those eigenvectors associated with non-zero
probabilities pi.
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them |ψ0〉 and |ψ1〉. Let us write the Schmidt bases of |ψ0〉 on both HA and HB as {|0〉, |1〉, ...}.
(Although we use the same notation for the bases of HA and HB that put |ψ0〉 in the Schmidt form,
there need not be any particular relation between the two bases.) The Schmidt bases of |ψ1〉 on HA
and HB , respectively, may be obtained from the previous ones by unitary transformations: there
exist unitaries U , V such that{

{|u0〉, |u1〉, |u2〉, ...} ≡ U {|0〉, |1〉, |2〉, ...}
{|v0〉, |v1〉, |v2〉, ...} ≡ V {|0〉, |1〉, |2〉, ...}

(A.87)

give the appropriate bases for writing, by condition (a),{
|ψ0〉 = 1√

2
(|00〉+ |11〉)

|ψ1〉 = 1√
2

(|u0v0〉+ |u1v1〉) .
(A.88)

Since the partial transpose must be taken with respect to the same basis on both |ψi〉〈ψi| in
order for us to compare them, let us express |ψ1〉 in the {|0〉, |1〉, |2〉, ...}-bases of HA and HB . In
terms of the components of the unitaries U , V ,

|ψ1〉 =
1√
2

(
hA−1∑
i=0

|i〉AUi0

)hA−1∑
j=0

|j〉BV T0j

+
1√
2

(
hA−1∑
i=0

|i〉AUi1

)hA−1∑
j=0

|j〉BV T1j

(A.89)
=

1√
2

hA−1∑
j=0

[
hA−1∑
i=0

|i〉
(
Ui0V

T
0j + Ui1V

T
1j

)]
A

|j〉B

=
1√
2

hA−1∑
j=0

|wj〉A|j〉B ,

where we introduce an effective transformation on A alone,

|wj〉 ≡
hA−1∑
i=0

|i〉
(
Ui0V

T
0j + Ui1V

T
1j

)
= UΠ01V

T |j〉. (A.90)

Note that this is not a unitary, because of the projection onto the subspace {|0〉, |1〉} between V T
and U . The |wj〉 need not be orthogonal (we only have 〈wj |wk〉 = 〈j|V ∗Π01V

T |k〉, with |j〉, |k〉
orthonormal) and may have norm less than unity (though not greater, since 〈j|V ∗Π01V

T |j〉 ≤
〈j|V ∗V T |j〉 = 1).

In terms of this new basis, the partial transpose TB |ψ1〉〈ψ1| with respect to the {|0〉, |1〉, |2〉, ...}-
basis of B takes a simple form:

TB |ψ1〉〈ψ1| =
1

2

∑
jk

|wjk〉〈wkj|. (A.91)

The eigenvector of TB |ψ0〉〈ψ0| associated with the smallest eigenvalue is simply (see proof of lemma
80)

|m〉 =
1√
2

(|01〉 − |10〉) . (A.92)

We demand that this also be an eigenvector of TB |ψ1〉〈ψ1| eigenvalue − 1
2 , that is,∑

jk

|wjk〉〈wkj|

 (|01〉 − |10〉) =
∑
k

(|w1k〉〈wk|0〉 − |w0k〉〈wk|1〉) = − (|01〉 − |10〉) . (A.93)
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Projecting onto 〈01| and 〈10|, we find the necessary conditions{
〈0|w1〉〈w1|0〉 − 〈0|w0〉〈w1|1〉 = −1

〈1|w1〉〈w0|0〉 − 〈1|w0〉〈w0|1〉 = +1.
(A.94)

On the other hand, we demand that the two eigenvectors of ρAB , |ψ0〉 and |ψ1〉, be orthogonal:

〈ψ0|ψ1〉 =
1

2
(〈0|w0〉+ 〈1|w1〉) = 0, (A.95)

that is,
〈1|w1〉 = −〈0|w0〉. (A.96)

Let us simplify the expressions by introducing the following notation:{
|w0〉 = α|0〉+ β|1〉
|w1〉 = γ|0〉+ δ|1〉.

(A.97)

The constraints on the 〈j|wk〉 become 
δ = −α
γγ∗ − αδ∗ = −1

δα∗ − ββ∗ = +1,

(A.98)

which is impossible to satisfy. Therefore, no second eigenvector of ρAB satisfying all the requirements
can exist, and ρAB must be pure, of the form

ρAB =
1

2
(|00〉+ |11〉) (〈00|+ 〈11|) (A.99)

in some choice of local bases.

Theorem. (68 in the main text) The witnesses defined in eq.(5.25) are lower-bounded by

uce, ucc ≥ −
1

hB
, (A.100)

where hB is the dimension of the Hilbert space of variable B. These lower bounds are unique in the
following sense: if either of them is saturated, then so is the other, and the inference map is uniquely
determined to be

τB|CD =
1

hB
IB ⊗ ICD, (A.101)

whereby C and D provide no information about B at all.

Proof. Let us first prove the general lower bound on uce, using hB , hC and h to denote the dimensions
of the respective Hilbert spaces. The law of total probability,

TrBτB|CD = ICD, (A.102)

imposes the normalization of the conditional

Tr
(
τB|CD

)
= TrICD = hChD. (A.103)

(Note that the trace is independent of the basis, hence we can evaluate it on a product basis, such
that partial transposition with respect to C and/or D does not affect the diagonal elements, and
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consequently the trace. Thus Tr
(
TCDτB|CD

)
= hChD as well.) On the other hand, the trace is can

be related to the eigenvalues λmin ≤ λi ≤ λmax of τB|CD by

Tr
(
τB|CD

)
=

hBhChD∑
i=1

λi
(
τB|CD

)
≥ (hBhChD)λmin

(
τB|CD

)
. (A.104)

Consequently

λmin
(
τB|CD

)
≤ 1

hB
⇔ uce ≥ −

1

hB
, (A.105)

and analogously for TCDτB|CD and ucc.
Now assume that uce saturates this lower bound, which implies that λmin

(
τB|CD

)
= 1

hB
. This

implies an upper bound for the largest eigenvalue:

hChD ≥ (hBhChD − 1) · 1

hB
+ λmax

(
τB|CD

)
⇒ 1

hB
≥ λmax

(
τB|CD

)
. (A.106)

That is, all eigenvalues λi must be between

1

hB
≤ λmin ≤ λi ≤ λmax ≤

1

hB
⇒ λi

(
τB|CD

)
=

1

hB
∀i. (A.107)

It follows that the conditional is proportional to the identity,

τB|CD =
1

hB
IBCD, (A.108)

which represents a “channel” that always outputs a maximally mixed state, destroying all inform-
ation. As a consequence, ucc = − 1

hB
as well. The converse, starting with ucc = − 1

hB
, follows

analogously.

Theorem. (69 in the main text) If τB|CD represents a non-trivial probabilistic mixture of CC and
CE relations (excluding purely CC or CE relations), then the pair (uce, ucc) lies in the half-plane
delimited by

uce + ucc <
hA
2
. (A.109)

By the contrapositive, larger values of the sum herald a physical mixture.

Non-strict inequality.

Proof. We begin by proving the non-strict inequality

uce + ucc ≤
hA
2
. (A.110)

Based on this proof, we will then rule out equality.
For a probabilistic mixture,

τB|CD = (p) τB|C ⊗ ID + (1− p) τB|D ⊗ IC , (A.111)

we can use lemma 79 to write

−λmin
(
τB|CD

)
≤ −pλmin

(
τB|C

)
− (1− p)λmin

(
τB|D

)
; (A.112)

noting that the spectrum of a tensor product M ⊗ I is identical to that of M , up to multiplicity.
Furthermore, the purely CC Jamiołkowski operator τB|C is positive-semidefinite, so that

−λmin
(
τB|C

)
≤ 0. (A.113)
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This allows us to modify the above bound to a weaker, but simpler form,

−λmin
(
τB|CD

)
≤ − (1− p)λmin

(
τB|D

)
. (A.114)

For the remaining term, it holds that (a) TDτB|D is Hermitian, and (b) Tr
(
TDτB|D

)
= TrID =

dim (HD) = dim (HA) ≡ hA, so lemma 80 guarantees that

−λmin
(
τB|D

)
≤ hA

2
. (A.115)

Thus the parameter that witnesses a CE influence is upper-bounded by

−λmin
(
τB|CD

)
= uce ≤ (1− p) hA

2
, (A.116)

and a similar derivation for TCDτB|CD leads to

−λmin
(
TCDτB|CD

)
= ucc ≤ p

hA
2
. (A.117)

Combining the two,

uce + ucc ≤
hA
2
. (A.118)

Saturating the bound.

Proof. We will now show that the inequality holds strictly, i.e. the bound can not be saturated. To
that end, we list necessary (and sometimes sufficient) conditions for saturating all the inequalities
involved in the derivation above, and show that they lead to a contradiction.

In order to have uce + ucc = hA

2 , it is necessary and sufficient that both ucc = hA

2 p and uce =
hA

2 (1− p). The conditions for those two are of the same form, in terms of TCDτB|CD and τB|CD,
respectively. Let us consider the conditions for uce = hA

2 (1− p) explicitly:

1. In order to saturate

−λmin
(
τB|CD

)
≤ −pλmin

(
τB|C ⊗ ID

)
− (1− p)λmin

(
τB|D ⊗ IC

)
, (A.119)

it is necessary and sufficient that both summands, τB|C ⊗ ID and τB|D ⊗ IC , share (at least)
one eigenvector, and that it be associated with the smallest eigenvalue of each33.

2. The smallest eigenvalue of the CC term τB|C must not be negative, but equal to zero, otherwise
the inequality is no longer saturated when the term is dropped.

3. The CE term, on the other hand, must saturate

−λmin
(
τB|D

)
≤ 1

2
dim (D) =

hA
2
. (A.120)

Condition 3 is addressed by lemma 81 (identifying the elements A, B and ρAB in the lemma with
B, D and TDτB|D): it is necessary and sufficient that TDτB|D be pure, with Schmidt coefficients{

1√
2
, 1√

2
, 0, ...

}
. By a similar reasoning, the conditions that ensure ucc = hA

2 p, which are cast in

33This necessary condition is included for completeness; it is not used in the proof. One may be able to derive
stronger statements by including it.
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terms of TCDτB|CD, imply that τB|C must also be a pure state, with the same Schmidt coefficients.
We may have to choose a different basis from the one that puts TDτB|D in a simple form, but one
can find local bases that give τB|C = |Φ+〉〈Φ+|. Then it is easy to show that the eigenvalues of τB|C
are ±1, which contradicts condition 2 above.

Consequently, there are no conditionals τB|C , τB|D such that a probabilistic mixture of them
saturates the bound uce + ucc ≤ hA

2 at any point, except at the extremes p = 0, 1. (In those cases,
−pλmin

(
τB|C

)
≤ 0 is saturated thanks to the factor p = 0, so that condition 2 becomes unnecessary,

and analogously for p = 1.)

A.7 Proof that W = 0 for probabilistic mixtures
This section shows that the witness W introduced in section 5.3.3 is zero for any probabilistic
mixture. Specifically, we show the following:

Theorem 82. Consider a probabilistic mixture of CC and CE relations between two qubits, with
Choi state

τprobCBD = qρCB ⊗
1

2
ID + (1− q)ρC ⊗ τBD, (A.121)

where ρC = TrBρCB. The witness is defined in terms of measurements of fixed Pauli observables
on C and B and equiprobable preparations of eigenstates of a fixed Pauli observable on D, which
generate statistics

P (cdb) =
2

2
Tr
[
TD (τCBD) Πs,c

C ⊗Πu,b
B ⊗Πt,d

D

]
, (A.122)

as
W = 8

∑
b=±1

b [P (+ + b)P (−− b)− P (+− b)P (−+ b)] . (A.123)

For this probabilistic mixture, the witness is zero.

Proof. We begin by noting several mathematical properties of probabilistic mixtures that will be
useful in the subsequent proof. The first term represents the common-cause scenario, wherein we
prepare a bipartite state ρCB and trace out D; hence the marginal on D of the Choi state is the
completely mixed state. The state ρCB is obtained from the initial state ρCE by a completely
positive, trace-preserving (CPTP) map acting on E, hence the marginal on C is unchanged: ρC =
TrEρCE . The second term corresponds to a cause-effect scenario, in which case the marginal state
on C is simply the marginal of the initial bipartite state ρCE . Meanwhile, τB|D is the Choi state
corresponding to a CPTP map from D to B, hence its marginal on D is again the completely mixed
state. In summary, the marginals of the two terms on C and D, respectively, are equal:

TrBρCB = TrEρCE = ρC , (A.124)

TrBτBD =
1

2
ID. (A.125)

It follows from these equalities that C and D become independent if we ignore B:

TrB

[
τprobCBD

]
= ρC ⊗

1

2
ID. (A.126)

The experimental statistics inherit these properties: letting µD(d) ≡ 1
2 ∀d = ±1 denote the

uniform probability distribution, we have

P (cdb) = qPCB(cb)µD(d) + (1− q)PC(c)PBD(bd). (A.127)
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The marginal distributions over c and d in both terms are identical:∑
b

PCB(cb) = PC(c), (A.128)∑
b

PBD(bd) = µD(d), (A.129)

and, if we ignore b, then c and d become independent:∑
b

P (cdb) = [q + (1− q)]PC(c)µD(d). (A.130)

Now we can show that W is zero for any probabilistic mixture of common-cause and cause-effect
relations. Recall that, since b only takes two values, the marginal independence (A.130)∑

b

P (cdb) = PC(c)µD(d) =
1

2
PC(c) (A.131)

implies that

P (cd,−) =
PC(c)

2
− P (cd,+). (A.132)

This allows us to rewrite the b = −1 term in eq. (A.123) as

P (++,−)P (−−,−)− P (+−,−)P (−+,−)

= −PC(+)

2
P (−−,+)− PC(−)

2
P (++,+)

+
PC(+)

2
P (−+,+) +

PC(−)

2
P (+−,+)

+ [P (++,+)P (−−,+)− P (+−,+)P (−+,+)],

(A.133)

hence the witness reduces to

W = 4[+PC(−)P (++,+)− PC(−)P (+−,+)

− PC(+)P (−+,+) + PC(+)P (−−,+)]
(A.134)

= 4
∑
cd

cd [1− PC(c)]P (cd,+) (A.135)

Our core hypothesis implies that P (cd,+) is a convex combination of two terms, each a product of
distributions over c and d. Substituting eq. (A.127) and distributing the sums,

W = 4q

[∑
c

c [1− PC(c)]PCB(c,+)

][∑
d

dµD(d)

]

+ 4(1− q)

[∑
c

c [1− PC(c)]PC(c)

][∑
d

PBD(d,+)

]
.

(A.136)

In the first term, we have the average over d = ±1 under the uniform distribution, which is zero. In
the second term, the sum over c gives PC(+)PC(−)− PC(−)PC(+) = 0. Thus

W = 0 (A.137)

for any probabilistic mixture of the form (A.121).
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A.8 Tight upper bound on the induced mutual information for a prob-
abilistic mixture

This section provides a rigorous proof of the upper bound (5.75) on the mutual information between
two causal parents, D and E, induced by post-selection on their common effect, B, if B depends
probabilistically either on D or on E. The conditional distribution P (DE|B) is derived in the main
text as eq. (5.69); this appendix focuses solely on finding the maximal mutual information for a
distribution of this form, which is achieved by explicit construction.

Theorem 83. If two classical variables D and E of equal cardinality, h, follow the distribution

P (DE) = pµ (D)PE (E) + (1− p)PD (D)µ (E) (A.138)

with µ denoting the uniform distribution and generic distributions PE (E) and PD (D), then their
mutual information satisfies the tight upper bound

Iprob (D : E) ≤
(

1 +
1

h

)
+ log2 h−

(
1 +

1

h

)
log2 (h+ 1) . (A.139)

Proof. In general, the parameters PD (D|B), PE (E|B) and pb in (5.69) depend on the value of B
on which one post-selects. However, since the following derivation relies only on the abstract form
of P (DE|B), the explicit dependence is suppressed for brevity, reducing the expression to

P (DE) = pµ (D)PE (E) + (1− p)PD (D)µ (E) . (A.140)

We will first show that the mutual information is maximized when PD (D) and PE (E) are
deterministic, in the sense that they produce one particular value with certainty. To this end,
consider the mutual information of two variables as a functional of two arguments: the marginal
distribution over one variable, which in our case is

P (E) = pPE(E) + (1− p)µ (E) , (A.141)

and the conditional over the other given the first,

P (D|E) =
pPE(E)

pPE(E) + (1− p)µ (E)
µ (D) +

(1− p)µ (E)

pPE(E) + (1− p)µ (E)
PD(D). (A.142)

Considered as a functional, the mutual information is convex downward with respect to the second
argument (see e.g. [98], theorem 2.7.4); that is, for any

Pλ (D|E) ≡ λP 0 (D|E) + (1− λ)P 1 (D|E) , λ ∈ [0, 1] (A.143)

and fixed marginal P (E), it holds that

I (D : E)
[
P (E) , Pλ (D|E)

]
≤ λI (D : E)

[
P (E) , P 0 (D|E)

]
+ (1− λ) I (D : E)

[
P (E) , P 1 (D|E)

]
.

(A.144)
In particular, if we fix P (E), and therefore the fractions in the expression for P (D|E) above, but
take a convex combination

PλD (D) = λP 0
D (D) + (1− λ)P 1

D (D) , (A.145)

then the resulting P (D|E) will be a convex combination with weight λ as well, and the upper bound
on the mutual information follows. Thus, for fixed PE (E) and p, the largest mutual information
is achieved when the distribution PD (D) is extremal, i.e. produces one value with certainty. By
symmetry, PE (E) must also be extremal. Since the problem is invariant under relabelling the values
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of D and E, we can assume without loss of generality that PD and PE each produce the first outcome
with certainty.

Thus, the maximal mutual information between D and E for a distribution constrained to the
form (A.140) is achieved by the distributions

PD (D) = {1, 0, 0, ...} = PE (E) (A.146)

(with a varying number of zeros depending on hD and h), that is,

P (DE) =


p
hD

+ 1−p
hE

1−p
hE

1−p
hE

...
p
hD

0 0 ...
p
hD

0 0 ...
...

...
...

 , (A.147)

where each row corresponds to a value of D and each column to a value of E. Under the simplifying
assumption that D and E range over an equal number of values, hD = hE = h, symmetry suggests
that the mutual information is maximal when p = 1

2 . Indeed, it is straightforward to calculate the
mutual information of the above distribution explicitly and, if hD = hE = h, show that it is maximal
for p = 1

2 , in which case (assuming the entropy is calculated base 2)

Imaxprob (D : E) ≡
(

1 +
1

h

)
+ log2 h−

(
1 +

1

h

)
log2 (h+ 1) . (A.148)

This is a tight upper bound for the mutual information achievable within the given constraints.
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