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We introduce a nonperturbative approach to correlation functions of two determinant operators and one
nonprotected single-trace operator in planar N ¼ 4 supersymmetric Yang-Mills theory. Based on the
gauge-string duality, we propose that they correspond to overlaps on the string world sheet between an
integrable boundary state and a state dual to the single-trace operator. We determine the boundary state
using the symmetry and integrability of the dual superstring σ model and write expressions for the
correlators at finite coupling, which we conjecture to be valid for operators of arbitrary size. The proposal is
put to the test at weak coupling.
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Introduction.—To advance our understanding of non-
perturbative dynamics in gauge theories, it is useful to
study simple models with rich enough structures. N ¼ 4
supersymmetric Yang-Mills (SYM) theory in four dimen-
sions is one of the leading candidates for the following
reasons: First it admits the planar large Nc limit, which
makes it amenable to analytical studies. Second it is a
conformal field theory, and all of the correlation functions
can be decomposed into two- and three-point functions.
Third it can be described alternatively in terms of two-
dimensional string world sheets which we can analyze
exactly using integrability. The application of integrability
led to a complete determination of two-point functions of
local operators [1]. It was applied also to the three-point
function [2], but the result is still unsatisfactory since it is
given by a series expansion which one needs to resum.
In this Letter, we present the first fully nonperturbative

result for the three-point function valid for a large class of
operators [3]. Specifically, we study the correlator of two
determinant operators and one nonprotected single-trace
operator. By interpreting this correlator as an overlap on the
string world sheet between a boundary state and a state dual
to the single-trace operator, we write nonperturbative
expressions using the framework of the thermodynamic
Bethe ansatz (TBA) [4].
Setup and basic strategy.—The main subject is the

three-point function of a nonprotected single-trace operator

O and two determinant operators D1;2 ≡ detZða1;2Þ [5]
with

ZðaÞ≡ ð1þ a2ÞΦ1 þ ið1 − a2ÞΦ2 þ 2iaΦ4ffiffiffi
2

p
����

xμ¼
ð0;a;0;0Þ

; ð1Þ

where Φ1;2;4 are real scalar fields in N ¼ 4 SYM theory.
Owing to the superconformal symmetry, its spacetime
dependence is fixed at [2,6]

hD1D2Oð0Þi ¼
�
a1 − a2
a1a2

�
Δ−J

DO; ð2Þ

where DO is the structure constant, while Δ and J are the
conformal dimension and the R charge of O.
The goal of this Letter is to compute DO nonperturba-

tively using the gauge-string duality. As discussed in
Refs. [7–9], the duality maps Eq. (2) to a closed string
in AdS5 × S5, which ends on a geodesic of a D-brane dual
to the determinant operators (see Fig. 1). On the string
world sheet, this corresponds to an overlap between a

D-brane

FIG. 1. The anti–de Sitter (AdS) description of the three-point
function. The thick curve represents a geodesic of the D-brane
dual to the determinant operators, while the wavy line denotes a
closed string dual to the single-trace operator. On the world sheet,
it corresponds to an overlap with a boundary state.
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boundary state hGj and a state dual to O. To evaluate such
an overlap, we first consider a partition function ZðJ; RÞ of
a cylinder world sheet whose ends are capped off by the
boundary states (see Fig. 2). In the limit R → ∞, the
expansion of ZðJ; RÞ in the closed string channel is
dominated by the ground state jΩi,

ZðJ; RÞ ¼
X
ψc

hGjψcie−EψcRhψcjGi

⟶
R→∞ jhGjΩij2e−EΩR: ð3Þ

By contrast, in the open string channel, ZðJ; RÞ can be
viewed as the thermal free energy, and the limit corresponds
to the thermodynamic limit in which the volume of the
space becomes infinite. This allows us to compute hGjΩi
using the TBA. The result for excited states can be obtained
from hGjΩi by analytic continuation [10].
Constraints on boundary states.—To apply the afore-

mentioned strategy, we first determine the boundary state
hGj in the infinite-volume (J → ∞) limit. For this, we
assume that hGj is an integrable boundary state—namely, a
state corresponding to a boundary condition which pre-
serves infinitely many conserved charges [11]. The
assumption is justified a posteriori by agreement with
weak-coupling computations, as we shall see later. For
integrable boundary states, the overlap in the J → ∞ limit
can be factorized into two-particle overlaps

FABðuÞ≡ hGjXAðuÞXBðūÞijJ→∞; ð4Þ

where the X ’s are magnons in the N ¼ 4 SYM spin
chain, and A ¼ A _A and B ¼ B _B are in the bifundamental
representation of the psuð2j2Þ2 symmetry [12]. The
rapidities u and ū are parity conjugate to each other and
satisfy x�ðūÞ ¼ −x∓ðuÞ, where f�ðuÞ≡ fðu� i=2Þ and

the Zhukovsky variable xðuÞ is defined by xðuÞ≡
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 4g2

p
=2g, with g≡ ffiffiffi

λ
p

=4π and λ being the ’t
Hooft coupling constant.
Boundary Yang-Baxter equation: The integrable boun-

dary state satisfies the so-called boundary Yang-Baxter
equation, which reads (see Fig. 3)

hGjS24S34jX1ðuÞX2ðvÞX3ðv̄ÞX4ðūÞijJ→∞

¼ hGjS13S12jX1ðuÞX2ðvÞX3ðv̄ÞX4ðūÞijJ→∞; ð5Þ

where Skl is the bulk S matrix [12] between Xk and X l.
Watson’s equation: The second constraint is Watson’s

equation, which states that an exchange of particles is
equivalent to a multiplication of the S matrix. Explicitly, it
reads (see Fig. 4)

FABðuÞ ¼ SCD
ABðu; ūÞFCDðūÞ: ð6Þ

Decoupling equation: The last condition is the decou-
pling condition, which is equivalent to the boundary
unitarity in Ref. [11]. It states that a pair of particle-
antiparticle pairs must decouple from the rest of the overlap
(see Fig. 5) and reads

FABðuÞCBB0
FB0C0 ðū2γÞCC0C ¼ δCA; ð7Þ

where C is the charge conjugation matrix [13], and u2γ

is the crossing transformation defined by x�ðu2γÞ ¼
½1=x�ðuÞ�.
Solution: Solving these constraints, the two-particle

overlap is fixed at

FABðuÞ ¼
xþ

x−
u − i

2

u
σBðuÞ
σðu; ūÞ ð−1Þ

j _AjjBjMA;B; ð8Þ

where j•j is the grading of the index • and σðu; vÞ is
the bulk dressing phase [14]. There are two choices for
the matrix part MA;B [15], and we conjecture that the

FIG. 2. The partition function ZðJ; RÞ evaluated in two differ-
ent channels. The left (right) panel denotes the closed- (open-)
string channel of the same partition function. To compute the
overlap hGjΩi, we take the limit where J is finite and R → ∞.

FIG. 3. The boundary Yang-Baxter equation.

FIG. 4. Watson’s equation for the two-particle overlap.

FIG. 5. Decoupling equation for the two-particle overlap.
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three-point function is given by a sum of the two overlaps,
DO ¼ hGz¼ijOi þ hGz¼−ijOi. σBðuÞ is the boundary dress-
ing phase satisfying

σBðūÞ ¼ σBðuÞ; σBðuÞσBðu2γÞ ¼
u2

u2 þ 1
4

: ð9Þ

Asolution is givenbyσBðuÞ¼41þxþx−=1−xþx− ½GðxþÞ=Gðx−Þ�
with

logGðxÞ ¼
I

dz
2πi

logG½gðzþ z−1Þ�
x − z

; ð10Þ

and GðuÞ≡ f½Γð1
2
− iuÞΓð1þ iuÞ�=½Γð1

2
þ iuÞΓð1 − iuÞ�g.

g function for ground state.—We now discuss the
ground-state overlap hGjΩi for finite J. For this, we
consider ZðJ; RÞ in the open string channel (also known
as the mirror channel) and take the limit R → ∞:

ZðJ; RÞ ¼
X
ψo

e−Ẽψo J⃗R→∞N
Z

Dρe−RSeff ½ρ�: ð11Þ

As shown above, in the limit R → ∞, one can replace the
sum over ψo with a path integral of densities ρ.
Bethe equation in the mirror channel: The crucial input

for writing Seff is the boundary asymptotic Bethe equation
(BABA), which constrains the rapidities of magnons.
Schematically, it reads (see Fig. 6)

1 ¼ e2ip̃jRRLðujÞRRðujÞ
Y
k≠j

Sðuj; ukÞSðuj; ūkÞ; ð12Þ

where RLðRÞ is the left or right reflection matrix. The
reflection matrices are related to the infinite-volume over-
lap (8) by ½RL�BAðuÞ ¼ ½RR�BAðūÞ ¼ FACðuγÞCCB, with uγ

being the mirror transformation defined by xþðuγÞ ¼
1=xþðuÞ and x−ðuγÞ ¼ x−ðuÞ. As a result, we find [16]

½RL�B _B
A _A
ðuÞ ¼ u − i

2

u
σBðuγÞ
σðūγ; uγÞS

B _B
A _A
ðūγ; uγÞ; ð13Þ

where S is a single copy of the psuð2j2Þ Smatrix [12]. The
structure ofRL;R allows for the unfolding interpretation; the

BABA (12) can be mapped to an ABA of a closed string
with a single psuð2j2Þ symmetry (see Fig. 6).
TBA equation: Seff can be derived from an ABA

following the standard derivation of the TBA. In the
R → ∞ limit, Eq. (11) can be approximated by the saddle
point δSeff=δρ ¼ 0. Owing to the unfolding structure, the
saddle-point equations coincide with the standard TBA for
the spectrum [17–19] with the identification Ya;sðūÞ ¼
Ya;−sðuÞ. They take a form of logYa;s ¼ φþ

a;s. For instance,
φþ
a;0 reads (the full equations are given in Ref. [20])

φþ
a;0≡−JẼaþ logð1þYb;0Þ�ðKþÞ••b;a

þ logð1þYm;1Þ⋆ðKþÞ⊳•
m−1;aþ logð1þ1=Y2;2Þ⋆̂ðKþÞy•þa

þ logð1þY1;1Þ⋆̂ðKþÞy•−a: ð14Þ

Here we follow the notations in Ref. [21], and ⋆, *, and ⋆̂
denote the convolutions along ½−∞;∞�, [0, ∞], and
½−2g; 2g�, respectively. Kþ is a symmetrized kernel defined
by Kðu; vÞ þ Kðu; v̄Þ, with K being the standard TBA
kernel.
g function: The saddle-point value of Seff gives only the

exponentially decaying piece in Eq. (3), e−EΩR. To read off
the overlap, we need to consider the one-loop fluctuation
around the saddle point and the Oð1Þ normalization factor
N in Eq. (11). Such an analysis has been performed in the
literature [22–26], and the application to our problem leads
to an expression for the ground states, which corresponds
to Bogomol’nyi-Prasad-Sommerfield operators in N ¼ 4
SYM,

hGjΩi ¼ e
P

a

R
∞
0
ðdu=2πÞΘa logð1þYa;0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 − ĜÞ

q
Detð1 − ĜþÞ

: ð15Þ

Here a runs from 1 to ∞ and ΘaðuÞ ¼ i∂u log raðūÞ−
πδðuÞ þ ði=2Þ∂u log S••aaðu; ūÞ, where S••ab is the bound-state
Smatrix, and ra is the bound-state reflection factor given in
Ref. [15]. Det denotes the Fredholm determinant [27],

and Ĝþ is an integral kernel defined by ½Ĝþ�ða;sÞðb;tÞ ðu; vÞ≡
½δφþ

a;sðuÞ=δ logYb;tðvÞ�. Similarly, Ĝ is given by
δφa;sðuÞ=δ logYb;tðvÞ, where φa;s are the “right-hand
sides” of the standard TBA, logYa;s ¼ φa;s, without
identification of Y functions.
Conjecture for SL(2) sector.—We now generalize

Eq. (15) to excited states in the SL(2) sector using the
analytic continuation trick [10] following the standard TBA
analysis.
g function for excited states: After the analytic continu-

ation, poles of 1=ð1þ 1=Y1;0Þ cross the integration contour
and modify the overlap (15). As a result, we find that the
structure constant DO is given by

FIG. 6. The BABA and its unfolding interpretation. The
structure of the reflection matrix allows us to map the BABA
to an ABA of a closed chain with a single psuð2j2Þ symmetry.
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DO ¼ −
iJ þ ð−iÞJffiffiffi

J
p e

P
a

R
∞
0
ðdu=2πÞΘa logð1þYa;0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
1≤s≤M

2

u2s þ 1
4

u2s
σ2BðusÞ

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 − Ĝ•Þ

q
Detð1 − Ĝ•þÞ

: ð16Þ

This is the main result of this Letter, which we conjecture to
be valid for any length J and at finite λ. Here the J-
dependent prefactor reflects the fact that the true boundary
state is a sum of two boundary states, as mentioned below
Eq. (8). Ĝ• and Ĝ•þ are given by [28]

Ĝ• · f ¼
XM
k¼1

iK•;X
1;xðuk; uÞ

∂u logY1;0ðukÞ
fðukÞ þ Ĝ · f;

Ĝ•þ · f ¼
XM=2

k¼1

iðKþÞ•;X1;xðuk; uÞ
∂u logY1;0ðukÞ

fðukÞ þ Ĝþ · f: ð17Þ

Here and below, x and X take various indices and symbols
which represent different bound states. The sum in Eq. (17)
come from the poles crossing the contours, and the uk’s are
the magnon rapidities satisfying the parity condition,

uM=2þk ¼ ūk ð1 ≤ k ≤ M=2Þ: ð18Þ

They are the solutions to the exact Bethe equations [17],

ϕðujÞ ¼ 2πi
�
nj þ

1

2

�
; nj ∈ Z; ð19Þ

with

ϕðuÞ≡ −JẼ1 þ
XM
k¼1

log S••11ðu; ukÞ

þ
X
x;X

logð1þ YX;xÞ⋆KX;•
x;1: ð20Þ

Exact Gaudin determinants: The result, Eq. (17), can be
rewritten into a form similar to the so-called Gaudin
determinants. For this, we first split the kernel Ĝ• into
a sum S and an integral I [see Eq. (17)], and rewrite
Detð1 − Ĝ•Þ as Detð1 − S − IÞ ¼ Detð1 − S̃Þ × Detð1 − IÞ
with S̃≡ S=ð1 − IÞ. Similarly, Detð1 − Ĝ•þÞ can be split
into a sum Sþ and an integral Iþ and can be reexpressed as
Detð1 − Ĝ•þÞ ¼ Detð1 − S̃þÞ × Detð1 − IþÞ
with S̃þ ≡ Sþ=ð1 − IþÞ.
Next we consider ∂ukϕðujÞ ðj; k ¼ 1;…;MÞ. The

derivative ∂uk can act on one of the following, pðukÞ,
log S••11, or YX;x, in Eq. (20). We then eliminate ∂ukYX;x by
considering the excited state TBA (see Ref. [17] for the full
set of equations)

logYa;0 ¼ −JẼa þ
XM
k¼1

logS••a;1ðu; ukÞ

þ
X
x;X

logð1þ YX;xÞ⋆KX;•
x;a; ð21Þ

taking a derivative ∂uk of both sides, and solving for
∂ukYX;x. The parity condition (18) is imposed only at the
end of the computation. As a result of these manipulations,
we find that det½∂ukϕðujÞ� ∝ Detð1 − S̃Þ up to some con-
stant of proportionality. The relation shows in particular
that Detð1 − S̃Þ is actually a finite-dimensional determi-
nant, although it was initially defined as the Fredholm
determinant. Details of the rewriting are explained in a toy
example in Ref. [15].
On the other hand, if we first impose the parity condition

(18) and compute the derivatives ∂ukϕðujÞ, we find that
det½∂ukϕðujÞ� ðj; k ¼ 1;…;M=2Þ is now proportional to

Detð1 − S̃þÞ. Upon taking the ratio, the constants of
proportionality cancel out and we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Detð1 − S̃Þ
q
Detð1 − S̃þÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½∂ukϕðujÞ�

p
det½∂ukϕ

þðujÞ�
; ð22Þ

where ϕþ denotes that we are imposing the parity condition
before computing derivatives. These determinants can be
viewed as the finite-volume version of the Gaudin deter-
minants for the norm of the spin chain. They also resemble
the finite-volume one-point functions in the sin(h)-Gordon
model [29–31].
Using this rewrite, we obtain an alternative representa-

tion for the Fredholm determinants in Eq. (16),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 − Ĝ•Þ

q
Detð1 − Ĝ•þÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½∂ukϕðujÞ�

p
det½∂ukϕ

þðujÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 − ĨÞ

q
Detð1 − ĨþÞ

: ð23Þ

Asymptotic formula: Using the representation (23), one
can take the asymptotic limit of Eq. (16), in which the size
of the operator becomes large, J ≫ 1. In this limit, the
middle-node Y functions are exponentially suppressed,
Ya;0 → 0, and one can show that both

e
P

a

R
∞
0
ðdu=2πÞΘa logð1þYa;0Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1 − ĨÞ

q
Detð1 − ĨþÞ

tend to unity. We thus obtain the following expression for
the structure constant in the asymptotic limit:

Dasym
O ¼ −

iJ þ ð−iÞJffiffiffi
J

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
1≤s≤M

2

u2s þ 1
4

u2s
σ2BðusÞ

vuut

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½∂ukϕðujÞ�

p
det½∂ukϕ

þðujÞ�
: ð24Þ
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Note that the determinants on the second line are the
standard Gaudin-like determinants since all of the finite-
size corrections can be dropped. For a generalization of
Eq. (24) to operators outside the SL(2) sector, see Ref. [20].
A similar formula was found at weak coupling for the
defect one-point functions [32,33].
Weak-coupling test.—To test formula (24), we computed

the four-point function of D1;2 and two 200 operators O200

up to Oðλ2Þ. We then performed the operator product
expansion to read off the conformal data of the spin-S
twist-2 operators OS. The details are given in Ref. [20].
The results of the computation are summarized in

Table I. We compared them against the integrability
prediction (24) and observed a perfect match. This is quite
a nontrivial test of our formalism since the results contain
the transcendental number ζ3 and include the contributions
from the boundary dressing phase σBðuÞ. Further tests at
weak and strong couplings are provided in Eq. [20].
We also found that the structure constants exhibit a

simple large spin behavior up to two loops,

log

�
DOS

DOS
jtree level

�
¼ f1 log S0 þ f2 þOð1=S0Þ; ð25Þ

with log S0 ≡ log Sþ γE, where γE is the Euler-Mascheroni
constant, and

f1 ¼ −4g2 log 2þ 8g4
�
ζ2 log 2þ

9

2
ζ3

�
þOðg6Þ;

f2 ¼ −2g2ζ2 þ 8g4
�
4

5
ðζ2Þ2 þ

3

2
ζ3 log 2

�
þOðg6Þ: ð26Þ

Conclusion.—In this Letter, we applied the TBA for-
malism to write a nonperturbative expression for the
structure constant of two determinant operators and a
single-trace operator in an SL(2) sector of arbitrary size.
Our result could provide a foundation for future develop-
ments, such as the reformulation in terms of the quantum
spectral curve [34], as was the case with the TBA for the
spectrum. It would also be worth trying to extract various
interesting physics from our formula. We also hope that our
approach gives useful insight into the three-point functions
of single-trace operators [2].
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