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1 Introduction

The pure spinor formalism has many advantages for computing scattering amplitudes com-

pared to the RNS and the GS formalism. For example, it does not have to deal with world-

sheet spin structures [2, 25], it has manifest Super-Poincaré invariance and incorporate in

a natural way the Ramond sectors. Nevertheless the formalism presents some difficulties,

for example, the normalization of the integration measure in the pure spinors space, the

computational difficulty to solve the integrals in this space and the S matrix unitarity has

not been demostrated yet.

In this paper we will compute the one-loop scattering amplitude in the non-minimal

pure spinor formalism for Type II superstrings and we will show that the overall constant

factor is the same as the one given in [14]. Let’s remember that this factor was also

computed from the unitarity condition [1]. So, showing that the non-minimal pure spinor

formalism predicts the same result as the RNS formalism is a direct test of unitarity.

To compute the scattering amplitude we normalize the integration measure of the pure

spinors space in the same way as the phase space in quantum mechanics is normalized in

the path integral, this is because the pure spinor formalism is a first order formalism.

To compute the integral on pure spinors space we use some tools of algebraic geometry.

We also show that this normalization in the amplitude does not require computing func-

tional determinants at all. This implies that computations using pure spinor formalism are

easier than the ones done in RNS or GS formalism.

This paper is organized as follows. In section 2, the non-minimal pure spinor formalism

will be reviewed and the space time units will be defined. We will normalize the massless

vertex operator of the pure spinors formalism to coincide with the RNS normalization. In
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section 3, the 4-point one-loop scattering amplitude will be computed in the NS-NS sector

using the non-minimal pure spinor formalism, up to an integration on pure spinors space.

In the subsection 3.1 we will give a review to the xm(z, z̄) fields contribution and we justify

the normalization of the path integral measures. In the subsection 3.2 we compute the

contribution of the others fields and discuss biefly the modular invariance of the scattering

amplitude. We use some results found in [4, 16, 21, 22] in which the authors showed: 1) the

equivalence between the kinematic factor of the non-minimal pure spinor formalism and the

minimal pure spinors formalism, 2) the equivalence between the kinematic factor of the min-

imal pure spinors formalism and the RNS formalism. At the end of the section we find all

the factors in the 1-loop scattering amplitude, up to an integration over pure spinors space.

In the last section, we will compute the integral on the pure spinors space. This is the most

important section of the paper and we suggest the reader check the appendix beforehand,

in which we apply the tools used to compute the integral in the pure spinors space in lower

dimensions (D = 2n < 10). The aim is to be more familiar with the concepts of algebraic

geometry involved in the computation. In this section we arrive to the following result
∫

O(−1)
[dλ] ∧ [dλ̄] e−a λλ̄ = (2π)11(a8 · 12 · 5)−1 , a ∈ R

+

where O(−1) is the line bundle blow-up at the origin with base space SO(10)/U(5). In

others words, O(−1) is the pure spinors space. Finally, with this result we find the overall

constant factor, which is called C1 [14].

Our future goal is to compute the overall constants factors at tree level, which we call

C0, and at two loops, called C2, in the non-minimal pure spinor formalism [31] and to

show that the S-duality constraint (C2
1 = 2π2C0C2)[14] is a consequence of the identities

for massless four-point kinematic factors [20].

2 Review on the non-minimal pure spinor formalism

We will give a brief review of the non-minimal pure spinor formalism. The idea is to

introduce our own conventions and to normalize the massless vertex operator in the same

way as in the D’Hoker, Phong and Gutperle’s paper [14].

The superstring theory action in the right sector of the non-minimal pure spinor for-

malism [3] is given by

S =
1

2πα′

∫

Σg

d2z
(

∂xm∂̄xm + α′pα∂̄θ
α − α′ωα∂̄λ

α − α′ω̄α∂̄λ̄α + α′sα∂̄rα
)

(2.1)

where we define the space time dimensions of the variables and coupling constant α′ as

follows

[xm] = 1,
[

α′
]

= 2, [pα] = [ωα] =
[

λ̄α

]

= [rα] = −1/2, (2.2)

[θα] = [λα] = [ω̄α] = [sα] = 1/2. (2.3)

The OPE’s for the matter variables are easily computed

xm(z)xn(w) ∼ −α
′

2
δm
n ln|z − w|2, pα(z)θβ(w) ∼ δβ

α

z − w
. (2.4)

– 2 –
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The complex bosonic spinors λα and λ̄α satisfy1 the pure spinor constraint

λγmλ = λ̄γmλ̄ = 0, m = 0, 1, 2, . . . , 9 (2.5)

and the fermionic spinor rα satisfies the constraint

λ̄γmr = 0. (2.6)

Because of the constraints on λα, λ̄α and rα, their conjugate momenta ωα, ω̄
α and sα are

defined up to a gauge tranformation,

δωα = Λm(γmλ)α (2.7)

δω̄α = Λ̄m(γmλ̄)α − φm(γmr)α, δsα = φm(γmλ̄)α , (2.8)

for arbitrary Λm, Λ̄m and φm.

In the U(5) variables the pure spinor constraints takes the following form [3]

2λ+λa − 1

4
ǫabcdeλbcλde = 0, a, b, c, d, e = 1, 2, . . . , 5 (2.9)

2λbλab = 0. (2.10)

where just five equations are linearly independent. In the chart U+++++ = {λ+ 6= 0} these

equations are solved by [33]

λ+ = γ, λab = γuab, λa =
1

8
γǫabcdeubcude. (2.11)

As the uab variables parametrize the projective pure spinors space, then it is clear that the

pure spinors space is the total space of the O(−1) bundle over the projective pure spinors

space with blow-up at the origin (γ = 0) [7, 10, 11].

In this chart, we can take the gauge ωa = ω̄a = 0 and the parametrization

ω+ = β − 1

2γ
vabuab, ωab =

vab

γ
, (2.12)

ω̄+ = β̄ − 1

2γ̄
v̄abū

ab, ω̄ab =
v̄ab

γ̄
, (2.13)

so the pure spinors action takes the form

SPS =
1

2π

∫

d2z

(

β∂̄γ +
1

2
vab∂̄u

ab + β̄∂̄γ̄ +
1

2
v̄ab∂̄ūab

)

. (2.14)

With this action it is easy to get the OPE’s

β(z)γ(w) → (z − w)−1, vab(z)ucd(w) → δa
[cδ

b
d](z − w)−1, (2.15)

β̄(z)γ̄(w) → (z − w)−1, v̄ab(z)ū
cd(w) → δc

[aδ
d
b](z − w)−1. (2.16)

For the sα, rα fields the procedure is similar.

1The λ̄α spinor is treated as the complex conjugate of the λ
α spinor.
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From the previous definitions of the space-time dimensions of the fields and their OPEs

we can get the following OPE’s [23]

dα = pα − 1

α′
γm

αβθ
β∂xm − 1

4α′
γm

αβγm γδθ
βθγ∂θδ, Πm = ∂xm +

1

2
θγm∂θ,

dα(z)dβ(w) ∼ − 2

α′

γm
αβΠm

z − w
, dα(z)Πm(w) ∼

γm
αβ∂θ

β

z − w
,

dα(z)f(θ(w), x(w)) ∼ (z − w)−1Dαf(θ(w), x(w)),

where

Dα =
∂

∂θα
+

1

2
θβγm

αβ∂m,

is the covariant super-derivate on R
10. The supersymmetry generator is

qα =

∫

dz

(

pα +
1

α′
γm

αβθ
β∂xm +

1

12α′
γm

αβγm γδθ
βθγ∂θδ

)

and it satisfies the algebra

{qα, qβ} =
2

α′
γm

αβ

∫

dz ∂xm, [qα,Π
m(z)] = 0, {qα, dβ(z)} = 0. (2.17)

The construction of the b-ghost is such that [3, 29]

{Q, b(z)} = T (z),

where

Q =

∫

dz (λαdα + ω̄αrα), T (z) = − 1

α′
∂xm∂xm − pα∂θ

α + ωα∂λ
α + ω̄α∂λ̄α − sα∂rα.

Since Q and T are space time dimensionless so is b, which is given by

b = sα∂λ̄α +
λ̄α(2Πm(γmd)

α −Nmn(γmn∂θ)α − Jλ∂θ
α − 1

4∂
2θα)

4(λλ̄)

+
(λ̄γmnpr)(α′

2 dγmnpd+ 24NmnΠp)

192(λλ̄)2
−

α′

2 (rγmnpr)(λ̄γ
md)Nnp

16(λλ̄)3

+
α′

2 (rγmnpr)(λ̄γ
pqrr)NmnNqr

128(λλ̄)4
.

In order to build the vertex operators we use the following N = 1 SYM θ expansions [22–24]

Aα(x, θ) =
1

2
am(γmθ)α − 1

3
(ξγmθ)(γ

mθ)α − 1

32
Fmn(γpθ)α(θγmnpθ) + · · · (2.18)

Am(x, θ) = am − (ξγmθ) −
1

8
(θγmγ

pqθ)Fpq +
1

12
(θγmγ

pqθ)(∂pξγqθ) + · · · (2.19)

Wα(x, θ) = ξα − 1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) + · · · (2.20)

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγ

pqθ)∂n]Fpq + · · · . (2.21)
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Here ξα(x) = (2/α′)1/2χαeik·x, where [χα] = 1/2 and am = eme
ik·x, where [em] = 0.

Fmn = 2∂[man] is the curvature and [Fmn] = −1. The dimensions of the superfields are

[Aα] = 1/2, [Am] = 0, [Wα] = −1/2, [Fmn] = −1,

hence the massless vertex operators have the following dimensions

[V ] = [λαAα] = 1, [U ] = [∂θαAα +AmΠm +
α′

2
dαW

α +
α′

4
NmnFmn] = 1 , (2.22)

where U satisfies QU = ∂(λαAα). These vertex operators have the same normalization as

the vertex operators of [14], therefore we can compare the amplitudes in a straight forward

way. For example, the closed superstring massless operator in the NS-NS sector is [14]

V = emēn

∫

d2z (∂xm + ik · ψ+ψ
m
+ )(∂̄xn + ik · ψ−ψ

n
−)eik·x , (2.23)

where the dimension of V is two if the dimension of the polarization vectors is zero.

3 Four point 1-loop massless amplitude

Using the normalization of the previous section we will compute the one loop amplitude

for 4-massless vertex operator in the NS-NS sector. Although the general structure of

this section can be found in the references [16, 22, 23, 27], we include it to justify the

normalization of the measures and to find the overall constant factor for the amplitude,

which has not been computed.

As non-minimal pure spinor formalism is a critical topological string, then one can use

the bosonic string prescription for computing scattering amplitudes [3, 10]. So the four

points 1-loop massless amplitude is given by

A =
1

2
κ4

∫

M1

d2τ 〈
∣

∣

∣N (b, µ) V (z1)

4
∏

i=2

∫

dzi U(zi)
∣

∣

∣

2
〉 , (3.1)

where M1 = H/PSL(2,Z) is the fundamental region, µ is the Beltrami differential, N is

a regulator, z1 is a fixed point and finally, κ is the normalization constant of the massless

vertex operator. Its precise value will not be needed here. The 1/2 factor is needed because

the total group of automorphism on the torus is SL(2,Z) instead of PSL(2,Z) [26, 27]. As

the amplitude is computed using the bosonic string prescription, we must take in account

the normalization of the inner product between the b-ghost and the Beltrami differential

in the same way as in bosonic string theory [27]

(b, µ) =
1

2π

∫

d2z b(z)µz
z̄ =

1

π
b(0), (3.2)

where µz̄z̄ = 1/2τ2.
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3.1 Review of the xm(z, z̄) fields contribution

In this subsection we compute the xm(z, z̄) contribution and justify, in a natural way, the

normalization of the integration measures.

In order to compute the xm(z, z̄) contribution we expand it in terms of a complete set

XI(z, z̄) of eigenfunctions of the worldsheet Laplacian operator

xm(z, z̄) =
∑

I

xm
I XI(z, z̄),

∂∂̄XI(z, z̄) = −λ2
IXI(z, z̄)

∫

Σg

d2z XI(z, z̄)XJ (z, z̄) = δIJ .

The bosonic contribution is given by [27]

〈

4
∏

i=1

: eki·x :

〉

=
∏

Im

∫

dxm
I√

2π2α′
exp



− 1

2πα′

∑

I 6=0

(

λ2
IxI · xI − 2πα′ixI · JI

)

+ ix0 · J0



 (3.3)

= (2π)10δ(10)(J0)
(

2π2α′det′∂∂̄
)−5

exp



−
∑

I 6=0

πα′

2λ2
I

JI · JI



 (3.4)

where

Jm(z, z̄) =

4
∑

i=1

km
i δ

(2)(z, z̄) =
∑

I

Jm
I XI(z, z̄) (3.5)

Jm
I =

∫

Σg

d2z Jm(z, z̄)XI(z, z̄). (3.6)

In particular

Jm
0 = X0

∫

Σg

d2z Jm(z, z̄) = X0

4
∑

i=1

km
i ,

thus, we have

〈

4
∏

i=1

: eki·x :

〉

=(2π)10δ(10)(X0k)
(

2π2α′det′∂∂̄
)−5

exp



−1

2

∑

i6=j

ki · kj

∑

I 6=0

πα′

λ2
I

XI(zi, z̄i)XI(zj , z̄j)





where k =
∑4

i=1 k
m
i . The term

∑

I 6=0

πα′

λ2
I

XI(zi, z̄i)XI(zj , z̄j)

is the Green’s function and it satisfies the differential equation

− 1

πα′
∂∂̄G(z,w) =

∑

I 6=0

XI(z, z̄)XI(w, w̄) (3.7)

= δ(2)(z − w) −X2
0 . (3.8)
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In the torus we have defined the normalization of the X0 mode to be

X2
0 = (2τ2)

−1, (3.9)

such that

||X0||2 = X2
0

∫

Σg

d2z = 1 (3.10)

where
∫

Σg
d2z = 2τ2.

With this normalization, the Green’s function for the torus is given by[25]

G(z,w, τ) = −α
′

2
ln|E(z,w)|2 +

α′π

4τ2
(z − z̄ − w + w̄)2

= −α
′

2
ln|E(z,w)|2 +

2α′π

τ2
Imz Imw,

and therefore the final expression for the bosonic contribution is [14, 25]

〈

4
∏

i=1

: eki·x :

〉

= (2π)10(2τ2)
5δ(10)(k)

(

2π2α′det′∂∂̄
)−5

∏

i<j

|E(zi, zj)|α
′ki·kjexp

[

−ki · kj
2πα′

τ2
Imzi Imzj

]

.

The factors (2π2α′)−1/2 of the integration measure of (3.3) come from treating the

xm(z, z̄) action in a first order formalism [28]. To see this, let’s take the action

S =
1

πα′

∫

d2z (gij̄pipj̄ + pi∂̄x
i + pī∂x

ī) (3.11)

where the index i, ī = 1, . . . , 5, pi and pī are (1,0) and (0,1) forms with conformal weight

(1,0) and (0,1) respectively and gij̄ = δij̄ .

In this first order action we can easily see that the conjugate momenta of the xi and

xī fields are Pi := pi/πα
′ and Pī := pī/πα

′ respectively, so the Dirac brackets (DB) are

[

Pi(σ), xj(σ′)
]

DB
=

[

pi(σ)

πα′
, xj(σ′)

]

DB

= iδj
i δ(σ − σ′),

[

Pī(σ), xj̄(σ′)
]

DB
=

[

pī(σ)

πα′
, xj̄(σ′)

]

DB

= iδj̄
ī
δ(σ − σ′).

In quantum mechanics, because of the commutator relation [p, x] = i one has the identity

∫

dx√
2π

dp√
2π
e−ipx = 1, (3.12)

and the integration measure on the phase space in the path integral is [27]

dx√
2π

dp√
2π
. (3.13)

– 7 –
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In the same way, the measure on the phase space in the path integral for the action (3.11) is

∏

zz̄

∏

i,̄i,j,j̄

dPi√
2π

dPī√
2π

dxj

√
2π

dxj̄

√
2π

=
∏

zz̄

∏

i,̄i,j,j̄

dpi

πα′
√

2π

dpī

πα′
√

2π

dxj

√
2π

dxj̄

√
2π

=
∏

zz̄

∏

i,̄i,j,j̄

dpi√
2π2α′

dpī√
2π2α′

dxj

√
2π2α′

dxj̄

√
2π2α′

,

hence if we compute the integral by pi, pī fields we get (3.3).

We can see that the pm fields have 10g zero modes in a Riemann surface of genus g

and their normalizations do not affect the answer.

Note that in this first order formalism the number of zero modes of the bosonic fields,

including the pure spinors at the right and left sectors, is equal to zero modes of the

fermionic fields

bosonic

{

xm pm λα ωα λ̄α ω̄α λ̂α ω̂α
ˆ̄λ ˆ̄ωα

10 10g 11 11g 11 11g 11 11g 11 11g
(3.14)

fermionic

{

θα pα θ̂α p̂α rα sα r̂α ŝα

16 16g 16 16g 11 11g 11 11g
.

3.2 Pure spinors and pα, θ
α fields contribution

First, we will compute the contribution of the non zero modes to the amplitude and we

will show explicity that in the non-minimal formalism it is not necessary to compute func-

tional determinants.

The action of the pure spinors in a chart is given by [2]

S = − 1

2π

∫

Σg

d2z

(

β∂̄γ +
1

2
vab∂̄uab + β̄∂̄γ̄ +

1

2
v̄ab∂̄ū

ab

)

.

When the Riemann surface Σg is the torus, all the elements of the set {γ, γ̄, β, β̄, uab, ūab,

vab, v̄ab} have one zero mode only [25].

The contribution of the non-zero modes is given by

∏

I 6=0

∫

[dβI ]√
4π2

∧ [dγI ]√
4π2

∧

a<b, c<d

[dvab
I ]√

4π2

[ducd I ]√
4π2

∧ [dβ̄I ]√
4π2

∧ [dγ̄I ]√
4π2

∧

e<f, g<h

[dv̄ef I ]√
4π2

[dūgh
I ]√

4π2

exp



− 1

2π

∑

I 6=0

λI(βIγI +
1

2
vab
I uab I + β̄I γ̄I +

1

2
v̄ab I ū

ab
I )



 (3.15)

where the {λI} are the eigenvalues of the ∂̄ operator and we write the measure in the same

way as in the previous section. We can write the argument of the exponential function in

the following form (for example for the (γ, β) fields)

exp



− 1

2π

∑

I 6=0

λI(βIγI + β̄I γ̄I)



 = exp

(

1

2π
V †M V

)

, (3.16)
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where V T = (γI , β̄I), M is the matrix

M :=

(

0 A

A 0

)

, (3.17)

and A is the matrix A := diag(λI). The same happens for the (vab, ucd) fields. Therefore

the non-zero modes contribution of the pure spinors is (det ∂̄)−22.

Although we computed the path integral of the pure spinors in a particular chart and

gauge, the answer is correct because the {γ = 0} = SO(10)/U(5) space has measure zero

with respect to the pure spinors space.

The integration measure for the Ith mode can be written in a covariant way [21, 22]

as follows

[dωI ] =
(4π2)−11/2

11!5!
(λIγ

m)α1(λIγ
n)α2(λIγ

p)α3(γmnp)α4α5ǫ
α1···α5δ1···δ11dωI

δ1 ∧ · · · ∧ dωI
δ11

[dλI ](λIγ
m)α1(λIγ

n)α2(λIγ
p)α3(γmnp)α4α5 =

(4π2)−11/2

11!
ǫα1···α5ρ1···ρ11dλ

ρ1

I ∧ · · · ∧ dλρ11

I ,

(3.18)

from which we can easily see that [dλI ] and [dωI ] have ghost number 8 and -8, respectively.

Taking the wedge product we get

[dλI ] ∧ [dωI ] =
(4π2)−11

11!
dλα1

I ∧ dωI
α1

∧ · · · ∧ dλα11
I ∧ dωI

α11
. (3.19)

In the chart U+++++ = {λ+ 6= 0}

λα = (λ+, λab, λa) ,

λ+ = γ , λab = γuab , λa = −1

8
γǫabcdeubcude

and in the gauge ωa = 0

ωα = (ω+, ω
ab, ωa) a, b = 1, 2, . . . , 5

ω+ = β − 1

2γ
vabuab , ωab =

1

γ
vab , ωa = 0,

we have the measure in the form desired

[dλI ] ∧ [dωI ] = (4π2)−11
∧

a<b, c<d

dγIdu
I
abdβIdv

cd
I . (3.20)

For the λ̄α and ω̄α fields we define the measures [dλ̄I ] and [dω̄I ] for the Ith mode in

the following form

[dω̄I ](λIγ
m)α1(λIγ

n)α2(λIγ
p)α3(γmnp)α4α5 = (4π2)−11/2 (λI λ̄

I)3

11!
ǫα1···α5δ1···δ11dω̄

δ1
I ∧· · ·∧dω̄δ11

I

[dλ̄I ] =
(4π2)−11/2

11!5!(λI λ̄I)3
(λIγ

m)α1(λIγ
n)α2(λIγ

p)α3(γmnp)α4α5ǫ
α1···α5ρ1···ρ11dλ̄I

ρ1
∧· · ·∧dλ̄I

ρ11
,

(3.21)
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so

[dλ̄I ] ∧ [dω̄I ] =
(4π2)−11

11!
dλ̄I

α1
∧ dω̄α1

I ∧ · · · ∧ dλ̄I
α11

∧ dω̄α11
I , (3.22)

as expected.

The contribution of the fields of opposite worldsheet chirality is (det′∂)−22. So, the

contribution of the non zero modes of the pure spinors is (det′∂∂̄)−22.

From the action of the pα, θ
α fields

Spθ =
1

2π

∫

d2z pα∂̄θ
α , (3.23)

we get the anticommutation relation

{

Pα(σ), θβ(σ′)
}

DB
:=

{

pα(σ)

2π
, θβ(σ′)

}

DB

= δβ
αδ(σ − σ′). (3.24)

Therefore, the measure of the phase space in the path integral is [27]
∏

z,z̄

∏

αβ

dPα dθβ =
∏

z,z̄

∏

αβ

(2πdpα) dθβ =
∏

z,z̄

∏

αβ

(√
2πdpα

)(√
2πdθβ

)

, (3.25)

and the contribution of the non zero modes of pα and θα fields is given by

∏

α β

∫

[dPα]′[dθβ]′exp

(

− 1

2π

∫

Σg

d2z pα∂̄θ
α

)

=
∏

α β I 6=0

∫

(√
2πdpα I

)(√
2πdθβ

I

)

exp



− 1

2π

∑

I 6=0

λIpα Iθ
α
I





=
[

det′
(

∂̄
)]16

,

where pa I , θ
α
I are Grassmann numbers. As in the previous case, the contribution of the

fields of opposite worldsheet chirality is (det′∂)16. Thus the total contribution of the

fermions pα and θβ is

[det′(∂∂̄)]16.

For the rα and sα Grassmann fields we can define the covariant measure in the path

integral for the Ith mode as [22]

[drI ] =
(2π)11/2

11!5!
(λ̄Iγm)α1(λ̄Iγn)α2(λ̄Iγp)α3(γmnp)

α4α5ǫα1···α5δ1···δ11∂
δ1
rI · · · ∂δ11

rI (3.26)

[dsI ](λ̄
Iγm)α1(λ̄Iγn)α2(λ̄Iγp)α3(γmnp)

α4α5 =
(2π)11/2

11!
ǫα1···α5ρ1···ρ11∂sI

ρ1
· · · ∂sI

ρ11

so

[drI ][dsI ] = (2π)11∂1
rI∂

sI
1 · · · ∂11

rI ∂
sI
11 . (3.27)

In an analogous way as the previous case we get the contribution from the non-zero modes
(

det′∂∂̄
)11

. (3.28)

Finally, the total contribution of the non-zero modes of the (λα, ωα, λ̄β, ω̄
β, rβ, s

β) fields is
(

det′∂∂̄
)−11 (

det′∂∂̄
)−11 (

det′∂∂̄
)16 (

det′∂∂̄
)11

=
(

det′∂∂̄
)5
. (3.29)
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3.2.1 Modular invariance

Before to compute the zero mode contribution we discuss briefly the modular invariance.

This subject is important because the zero modes normalization of the vertex operators

and the b-ghost contains modular parameters.
With all the contributions that we have computed up to now, our 4-points 1-loop

amplitude has the form

A=
(2π)10δ(10)(k)κ4

2π2 (2π2α′)
5

∫

M1

d2τ(2τ2)
5

3
∏

k=1

∫

d2zk

4
∏

i<j=1

|E(zi, zj)|α
′ki·kj exp

[

−ki ·kj
2πα′

τ2
Imzi Imzj

]

∣

∣

∣

∣

∣

(

α′

2

)4∫

[dr][ds][dd][dθ][dλ][dλ̄][dω][dω̄]e(−λλ̄−ω̄ω−rθ+sd) (dγpqrd)

192(λλ̄)2
(λ̄γpqrr)(λA1dW2dW3dW4)

∣

∣

∣

∣

∣

2

0

(3.30)

where the subindex “0” means that only the zero modes will be computed.

Is clear that (3.30) is not modular invariant since the scattering amplitude needs a

(τ2)
−5 factor instead of the (τ2)

5 factor. The reason for this is that we have not introduced

yet the zero modes normalization of the vertex operators (so as in the xm(z, z̄) fields case).

We will show that by introducing it we get the (τ2)
−5 factor and the scattering amplitude

will be modular invariant.

On the torus all the fields have one zero mode, so we can do the following expansion

on a complete set of eigenfunctions of the world-sheet operators ∂̄ and ∂

θα(z, z̄) = θα
0 Λ0 +

∑

I 6=0

θα
I ΛI(z, z̄), pα(z, z̄) = p0

αΩ0 +
∑

I 6=0

pI
αΩI(z, z̄)

λα(z, z̄) = λα
0 Λ0 +

∑

I 6=0

λα
I ΛI(z, z̄), λ̄α(z, z̄) = λ̄0

αΛ0 +
∑

I 6=0

λ̄I
αΛI(z, z̄)

ω̄α(z, z̄) = ω̄α
0 Ω0 +

∑

I 6=0

ω̄α
I ΩI(z, z̄), ωα(z, z̄) = ω0

αΩ0 +
∑

I 6=0

ωI
αΩI(z, z̄),

rα(z, z̄) = r0αΛ0 +
∑

I 6=0

rI
αΛI(z, z̄), sα(z, z̄) = sα

0 Ω0 +
∑

I 6=0

sα
I ΩI(z, z̄),

where
∫

d2zΩI(z, z̄)Ω̄J(z̄, z) = δIJ

∫

d2zΛI(z, z̄)Λ̄J (z̄, z) = δIJ ,

in particular ||Λ0||2 = ||Ω0||2 = (2τ2)
−1. From the previous section we know that only the

term
(λ̄γmnpr)(α′

2
dγmnpd)

192(λλ̄)2
of the b-ghost can saturate the dα zero modes. Since our interests

are the zero modes then we write this term as

α′

2

(1/2τ2)
2

(1/2τ2)2
(λ̄0γmnpr0)(d0γmnpd

0)

192(λ0λ̄0)2
=
α′

2

(λ̄0γmnpr0)(d0γmnpd
0)

192(λ0λ̄0)2
. (3.31)

To saturate the 11 zero modes of rα we need 10rα zero modes. The regulator

e(−λ0λ̄0−ω̄0ω0−r0θ0+s0d0) (3.32)
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supplies the 10rα zero modes plus 10θα zero modes. The 6θα zero modes necessary to

saturate the 16θα zero modes come from the vertex operator

(λA1dW2dW3dW4), (3.33)

so, these 6θα zero modes contribute with a factor (2τ2)
−3 and the 3dα and λα fields con-

tribute with (2τ2)
−2. In this way the factor in the right sector is (2τ2)

−5. In the left sector
the analysis is the same, so the total factor is (2τ2)

−10 and the amplitude

A=
(2π)10δ(10)(k)κ4

2π2 (2π)
10

(α′)
5

(

α′

2

)8∫

M1

d2τ

(τ2)5

3
∏

k=1

∫

d2zk

4
∏

i<j=1

|E(zi, zj)|α
′ki·kj exp

[

−ki · kj
2πα′

τ2
Imzi Imzj

]

∣

∣

∣

∣

∣

∫

[dr][ds][dd][dθ][dλ][dλ̄][dω][dω̄]e(−λλ̄−ω̄ω−rθ+sd) (dγpqrd)

192(λλ̄)2
(λ̄γpqrr)(λA1dW2dW3dW4)

∣

∣

∣

∣

∣

2

0

(3.34)

is modular invariant.

3.2.2 Contribution of the zero modes

Now we are going to compute the zero mode contribution in the NS-NS sector where we

use some of the results given in [21, 22]. This calculation is totally algebraic and easy to

follow due to our choice of the integration measures.

We rewrite the integration measure in the following way

[dλ0] = (4π2)−11/2[dλ], [dω0] = (4π2)−11/2[dω],
[

dλ̄0
]

= (4π2)−11/2[dλ̄], [dω̄0] = (4π2)−11/2[dω̄],
[

dr0
]

= (2π)11/2[dr], [ds0] = (2π)11/2[ds],

[dθ0] = (2π)16/2[dθ], [dd0] = (2π)16/2[dd], (3.35)

where the measures [d·] are defined from the previous subsection, for example

[dλ](λ0γ
m)α1(λ0γ

n)α2(λ0γ
p)α3(γmnp)α4α5 =

1

11!
ǫα1···α5ρ1···ρ11dλ

ρ1
0 ∧ · · · ∧ dλρ11

0 , (3.36)

and similarly for the others measures. For the rest of this paper the subindex “0” will be

dropped out. In this new notation the scattering amplitude has the form

A =
(2π)10δ(10)(k)κ4

2π2 (2π)10 (α′)5

(

α′

2

)8 ∫

M1

d2τ (τ2)
−5

3
∏

k=1

∫

d2zk

4
∏

i<j=1

|E(zi, zj)|α
′ki·kj

exp

[

−ki · kj
2πα′

τ2
Imzi Imzj

]

∣

∣(2π)−17K
∣

∣

2

=
(2π)10δ(10)(k)κ4

2π2 (2π)44 (α′)5

(

α′

2

)8 ∫

M1

d2τ (τ2)
−5

3
∏

k=1

∫

d2zk

4
∏

i<j=1

|E(zi, zj)|α
′ki·kjexp

[

−ki · kj
2πα′

τ2
Imzi Imzj

]

∣

∣K
∣

∣

2
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where we have defined K to be

K=

∫

[dr][ds][dd][dθ][dλ][dλ̄][dω][dω̄]e(−λλ̄−ω̄ω−rθ+sd) (dγpqrd)

192(λλ̄)2
(λ̄γpqrD)(λA1dW2dW3dW4).

(3.37)

In order to compute the K factor let’s remember that the measures of rα and sα are given by

[dr] =
1

11!5!
(λ̄γm)α1(λ̄γn)α2(λ̄γp)α3(γmnp)

α4α5ǫα1···α5δ1···δ11∂
δ1
r · · · ∂δ11

r

[ds](λ̄γm)α1(λ̄γn)α2(λ̄γp)α3(γmnp)
α4α5 =

1

11!
ǫα1···α5ρ1···ρ11∂s

ρ1
· · · ∂s

ρ11
.

We rewrite the [ds] measure as

[ds] =
1

26 · 11!5!
1

(λλ̄)3
(λγr)α1(λγ

s)α2(λγ
q)α3(γrsq)α4α5ǫ

α1···α5ρ1···ρ11∂s
ρ1
· · · ∂s

ρ11
. (3.38)

Integrating the rα, s
α and dα variables in K we get

K =
1

11!11!5! · 29 · 3 · 5

∫

[dθ][dλ][dλ̄][dω][dω̄]e(−λλ̄−ω̄ω)(λ̄γr)α1(λ̄γs)α2(λ̄γt)α3(γrst)
α4α5

ǫα1···α5δ1···δ11θ
δ1 · · · θδ11 (24 · 11!5!3!)

26 · 3(λλ̄)5
(λ̄γmnpD)(λA1(λγ

mW2)(λγ
nW3)(λγ

pW4)).

In [22] the following identity was proven

(λ̄γmnpD)((λA1)(λγ
mW2)(λγ

nW3)(λγ
pW4)) = 40(λλ̄)(λA1)(λγmW 2)(λγnW 3)F4

mn,

(3.39)

and the K factor takes the form

K =
40

11!11!5! · 29 · 3 · 5
(24 · 11!5!3!)

26 · 3

∫

[dθ][dλ][dλ̄][dω][dω̄]
e(−λλ̄−ω̄ω)

(λλ̄)5

(λ̄γr)α1(λ̄γs)α2(λ̄γt)α3(γrst)
α4α5ǫα1···α5δ1···δ11θ

δ1· · · θδ11(λλ̄)(λA1)(λγmW 2)(λγnW 3)F4
mn.

Since we are interested in the NS-NS sector, we can use the following result found in [22]

〈

(λA1)(λγmW 2)(λγnW 3)F4
mn

〉

=
1

23 · 2880K0, (3.40)

where K0 is the Kinematic factor of [14]

K0 = (e1 · e2) [2tu(e3 · e4) − 4t(e3 · k1)(e4 · k2)] + perm. (3.41)

But as (3.40) was computed using the normalization 〈 (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) 〉 = 1,

we can write the following equality for NS-NS sector

(λA1)(λγmW 2)(λγnW 3)F4
mn

∣

∣

∣

∣

∣

NS-NS

= (λγmθ)(λγnθ)(λγpθ)(θγmnpθ)
K0

23 · 2880 . (3.42)

Now, we can integrate the θα variable in the K factor

K =
40

11!11!5! · 29 · 3 · 5
(24 · 11!5!3!)

26 · 3 · 23 · 2880

∫

[dθ][dλ][dλ̄][dω][dω̄]
e(−λλ̄−ω̄ω)

(λλ̄)5
(λλ̄)

(λ̄γr)α1(λ̄γs)α2(λ̄γt)α3(γrst)
α4α5ǫα1···α5δ1···δ11θ

δ1 · · ·θδ11(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)K0

=
5

24 · 3K0

∫

[dλ][dλ̄][dω][dω̄]
e(−λλ̄−ω̄ω)

(λλ̄)
. (3.43)
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4 Integration on pure spinors space

In order to get the full expression of the one loop amplitude we need to compute the integral

on the pure spinors space. It is not a trivial integral. Actually, if we try to solve it in a

straight forward way or using computational methods maybe we could not do it. We will

use some tools of algebraic geometry to solve it and we suggest the reader to read before

the appendix for a better understanding of this section.

Let’s remember that the measures [dλ] and [dω] were defined in (3.18) and (3.35)

[dω] =
1

11!5!
(λγm)α1(λγ

n)α2(λγ
p)α3(γmnp)α4α5ǫ

α1···α5δ1···δ11dωδ1 ∧ · · · ∧ dωδ11 ,

[dλ](λγm)α1(λγ
n)α2(λγ

p)α3(γmnp)α4α5 =
1

11!
ǫα1···α5ρ1···ρ11dλ

ρ1 ∧ · · · ∧ dλρ11

and the measures [dλ̄] and [dω̄] were defined in (3.21) and (3.35)

[dω̄](λγm)α1(λγ
n)α2(λγ

p)α3(γmnp)α4α5 =
(λλ̄)3

11!
ǫα1···α5δ1···δ11dω̄

δ1 ∧ · · · ∧ dω̄δ11 ,

[dλ̄] =
1

11!5!(λλ̄)3
(λγm)α1(λγ

n)α2(λγ
p)α3(γmnp)α4α5ǫ

α1···α5ρ1···ρ11dλ̄ρ1 ∧ · · · ∧ dλ̄ρ11 .

With these measures it follows

[dω] ∧ [dω̄] =
(λλ̄)3

11!
dωα1 ∧ dω̄α1 ∧ · · · ∧ dωα1 ∧ dω̄α1 = (λλ̄)3dω+ ∧ dω̄+

∧

a<b, c<d

dωabdω̄cd,

where we have taken the gauge ωa = ω̄a = 0. Now the integral (3.43) on the ω and ω̄

variables is trivial
∫

[dω][dω̄] e−ωω̄ = (λλ̄)3
∫

dω+ ∧ dω̄+
∧

a<b, c<d

dωabdω̄cd e
−ω+ω̄+− 1

2
ωabω̄ab

= (λλ̄)3(2π)11.

Integral on pure spinors space. From the above result we can write the integral (3.43)

in the following form

∫

[dλ][dλ̄][dω][dω̄]
e−λλ̄−ωω̄

λλ̄
= (2π)11

∫

[dλ][dλ̄] (λλ̄)2e−λλ̄

= (2π)11 lim
a→1

∂2

∂a2

∫

[dλ][dλ̄] e−aλλ̄. (4.1)

Thus the integral of our interest is simply

∫

[dλ] ∧ [dλ̄] e−aλλ̄ (4.2)

and next we will show that it is equal to

∫

[dλ] ∧ [dλ̄] e−aλλ̄ =
(2π)11

a8 · 60 . (4.3)
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We can easily see that the measure [dλ] ∧ [dλ̄] can be written as

[dλ] ∧ [dλ̄] =
1

11!(λλ̄)3
dλα1 ∧ dλ̄α1 ∧ · · · ∧ dλα11 ∧ dλ̄α11

=
1

11!(λλ̄)3
∂∂̄(λλ̄) ∧ · · · ∧ ∂∂̄(λλ̄)

=
Ω11

11!
,

where

Ω =
1

(λλ̄)3/11
∂∂̄(λλ̄)

is the Kähler form2 on the pure spinors space in D = 2n = 10 dimension. In the

parametrization (2.11) the integration measure on pure spinors space is

Ω11

11!
= γ7dγ

∧

a<b

duab ∧ γ̄7dγ̄
∧

c<d

dūcd. (4.4)

The Kähler form of the pure spinors space in any dimension is given by

ΩD=2n =
1

(λλ̄)
dimCPS−c1

dimCPS

∂∂̄(λλ̄), (4.5)

where c1 = 2n− 2 is the first Chern class of the tangent bundle over SO(2n)/U(n) [5] and

dimCPS = n(n−1)
2 + 1 is the complex dimension of the pure spinors space.

Writing (4.2) in the coordinates (2.11) we get

∫

[dλ][dλ̄]e−aλλ̄ =

∫

(γγ̄)7dγ∧dγ̄
∧

a<b,c<d

duabdū
cde

−aγγ̄
“

1+ 1
2
uabū

ab+ 1
82

ǫabcdeǫafghiubcudeūfgūhi
”

.

(4.6)

The γ, γ̄ variables can be integrated easily

∫

(γγ̄)7dγ ∧ dγ̄ e−bγγ̄ = − ∂7

∂b7

∫

dγ ∧ dγ̄ e−bγγ̄ = (2π) · 7! · 1

b8
, (4.7)

where

b := a

(

1 +
1

2
uabū

ab +
1

82
ǫabcdeǫafghiubcudeū

fgūhi

)

, (4.8)

so (4.2) has now the form

∫

[dλ] ∧ [dλ̄] e−aλλ̄ =
(2π) · 7!
a8

∫

SO(10)/U(5)
α , (4.9)

where

α :=

∧

a<b, c<d duabdū
cd

(1 + 1
2uabūab + 1

82 ǫabcdeǫafghiubcudeūfgūhi)8
(4.10)

2Easily we can see that (λλ̄) is a scalar function (global) on the pure spinors space.
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is a global form on SO(10)/U(5), therefore it belongs to the H20
DR(SO(10)/U(5)) de-Rham

cohomology group [7, 8]. Note that the number 8 is the first Chern class of the tangent

bundle over SO(10)/U(5).

The α-form can be written as

α =
ω10

10!
, (4.11)

where

ω = −∂∂̄ ln(λλ̄) (4.12)

and λ and λ̄ are projective pure spinors, in others words

λλ̄ = 1 +
1

2
uabū

ab +
1

82
ǫabcdeǫafghiubcudeū

fgūhi, (4.13)

where {uab} is a complex parametrization on SO(10)/U(5). The 2-form ω is the Kähler

form, so ln (λλ̄) is the Kähler potential [7]. From the identity

∂∂̄ =
1

2
d(∂ − ∂̄)

we can see that dω = 0 is closed, therefore SO(10)/U(5) is a Kähler manifold.

From the algebraic geometry point of view, the projective pure spinors space in d =

2n = 10 is a variety (manifold) on the projective space CP 15, then its Kälher form is the

pullback of the Kähler form of CP 15 given by [7, 9]

ω = f∗Ω, (4.14)

where Ω is the Fubini-Study [7] metric of CP 15 and

f : SO(10)/U(5) → CP 15 (4.15)

is the corresponding map. It is given locally on the chart U = {λ+ 6= 0} by the following

five holomorphic homogeneous polynomials [2, 33]

2λ+λa − 1

4
ǫabcdeλbcλde = 0, a = 1, . . . , 5. (4.16)

As SO(10)/U(5) is a closed manifold on CP 15, then it belongs to the H20(CP
15) = Z

homology group [34], so the projective pure spinors space is proportional to the
[

CP 10
]

homology class because CP 10 is the generator of the H20(CP
15) homology group [32, 34].

The proportionality factor is called the “ degree” of a variety and it is a integer number

since H20(CP
15) = Z. The degree of projective pure spinors is given by

degree(SO(10)/U(5)) = #(SO(10)/U(5) · CP 5), (4.17)

where #(SO(10)/U(5) ·CP 5) are the intersection numbers between SO(10)/U(5) and CP 5

inside CP 15, hence the previous integral can be written as

∫

SO(10)/U(5)

ω10

10!
= degree(SO(10)/U(5))

∫

CP 10

Ω10

10!

∣

∣

∣

∣

∣

CP 10

. (4.18)
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Remember that the pure spinors space is identified with the total space of the line bundle

O(−1); which is the inverse of the line bundle L = O(1) [7, 11]. The first Chern class c1(L)

of L is simply the pullback of the hyperplane class H [7, 8]

c1(L) = f∗H (4.19)

and the degree of the projective pure spinors space is given by
∫

SO(10)/U(5)
c1(L)10 = degree(SO(10)/U(5))

∫

CP 10

H10
∣

∣

∣

CP 10

= degree(SO(10)/U(5))

∫

CP 10

c10(TCP 10)

11

= degree(SO(10)/U(5)), (4.20)

where
∫

CP 10 c10(TCP 10) is the Euler characteristic of CP 10. We will compute this degree

using the pure spinors character at zero level. The Riemann-Roch formula gives us an

expression for the pure spinors character at level zero [5]

Z10(t) =

∫

SO(10)/U(5)

1

1 − te−c1(L)
Td(T (SO(10)/U(5))), (4.21)

where Td(T (SO(10)/U(5))) is the Todd genus

Td(T (SO(10)/U(5))) = 1 +
1

2
c1(T (SO(10)/U(5)) + · · · . (4.22)

Expanding Z10(t) near to t = 1 or near to ǫ = 1 − t = 0, the most singular term is [11]

1

ǫ11

∫

SO(10)/U(5)
c1(L)10. (4.23)

The pure spinors character can also be computed with the reducibility method, in this case

the result is [5, 12]

Z10(t) =
1 + 5t+ 5t2 + t3

(1 − t)11
. (4.24)

Again, expanding near ǫ = 0 we get that the most singular term is

12

ǫ11
. (4.25)

Comparing both results we conclude that the projective pure spinors degree is

degree(SO(10)/U(5)) =

∫

SO(10)/U(5)
c1(L)10 = 12. (4.26)

Therefore we have solved in a easy way the integral (4.2)
∫

O(−1)
[dλ] ∧ [dλ̄] e−aλλ̄ =

(2π) · 7!
a8

∫

SO(10)/U(5)

(f∗Ω)10

10!

=
(2π) · 7! · 12
a8 · 10! ·

∫

CP 10

Ω10
∣

∣

CP 10

=
(2π)11 · 7! · 12

a8 · 10!
=

(2π)11

a8 · 60 . (4.27)
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Actually, we can compute (4.2) for any dimension using the Kähler form (4.5) (see appendix)

∫

O(−1)

[dλ] ∧ [dλ̄]e−aλλ̄ =
(2π)c1(TCP n(n−1)/2)

ac1(TQ2n)
· c1(TQ2n)!

c1(TCPn(n−1)/2)!
· c1(TCPn(n−1)/2)

c1(TQ2n)
·degree(Q2n)

where c1(TQ2n) = 2n − 2 is the first Chern class of the tangent bundle over projective

pure spinors space Q2n ≡ SO(2n)/U(n), c1(TCPn(n−1)/2) = (n(n − 1) + 2)/2 is the first

Chern class of the tangent bundle over projective space CPn(n−1)/2 and degree(Q2n) is the

degree of the projective pure spinors space

[Q2n] = degree(Q2n)[CPn(n−1)/2]. (4.28)

With this result, we finally have that the 4-points scattering amplitude is

A = (2π)10δ(10)(k)
1

27π2 (α′)5

[

(

α′

2

)2

κ

]4

K0K0

∫

M1

d2τ

(τ2)5

3
∏

k=1

∫

d2zk

4
∏

i<j=1

|E(zi, zj)|α
′ki·kj

exp

[

−ki · kj
2πα′

τ2
ImziImzj

]

(4.29)

This answer is in perfect agreement with the result found by D’hoker, Phong and Gutperle

in [14] up to a (α′/2)8 factor. Is easy to see that this factor is needed in order to have the

right space-time dimensions [30]. Hence the amplitude found in [14] by D’hoker, Phong

and Gutperle missed this term.
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A Pure spinors in lower dimensions and partition function

The aim of studying pure spinors in lower dimensions (D = 2n < 10) is to have a better

feeling of some algebraic properties of the pure spinors space. At the end of the appendix we

make some remarks and give a nice geometric interpretation of the character of pure spinors.

We know that in D = 4, 6, 8 the projective pure spinors space are CP 1, CP 3 and a

quadric variety embedded in CP 7, respectively.

CP 1 and CP 3 are the trivial cases because in D = 4, 6 the pure spinors don’t have

any constraints and the pure spinors space is the simple blow-up of the origin [9] (the pure

spinors space is the total space of the line bundle O(−1)). In these cases the Kälher form

of the pure spinors space is simply

Ω = ∂∂̄(λλ̄), (A.1)
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where we have used the general formula (4.5)

ΩD=2n = (λλ̄)
−

dimC PS−c1
dimC PS ∂∂̄(λλ̄)

and the notation

λλ̄ = γγ̄(1 + zz̄), for D = 4 , (A.2)

λλ̄ = γγ̄(1 + zz̄ + uū+ vv̄), for D = 6 , (A.3)

where {z} parametrize CP 1, {z, u, v} parametrize CP 3, {γ} is the fiber and c1 is the first

Chern class of projective pure spinors space. From [5] we can see that in D = 4, 6 the first

Chern class of the tangent bundle over the projective pure spinors space is

c1(TCP 1) = 2,

c1(TCP 3) = 4 (A.4)

and it has the same value of the complex dimension of the pure spinors space (dimCPS).

The integration measures for the pure spinors space in D = 4, 6 are given by

Ω2

2!
= ω ∧ ω̄ for D = 4 , (A.5)

Ω4

4!
= ω ∧ ω̄ for D = 6 , (A.6)

where

ω = γ dγ ∧ dz for D = 4 (A.7)

ω = γ3 dγ ∧ dz ∧ du ∧ dv for D = 6 (A.8)

are the holomorphic top forms, which agree with the ones of [11]. To compute (A.4) is very

easy from the following exact sequence of bundles (the Euler sequence)[7, 9]

0 −→ C −→ H⊕(n+1) −→ TCPn −→ 0 , (A.9)

where C is a trivial bundle, H is the hyperplane class and TCPn is the tangent bundle on

CPn. This sequence implies that

H⊕(n+1) = TCPn ⊕ C. (A.10)

Therefore, the total Chern class of the tangent bundle on CPn is

c(TCPn) = (1 +H)n+1 (A.11)

where we have denoted the first Chern class of the hyperplane bundle H with the same

letter H. Now it is clear that c1(TCPn) = (n+ 1)H and that cn(TCPn) = (n+ 1)Hn. As

the Euler characteristic of a complex manifold M of complex dimension n is [7]

χ(M) =

∫

M
cn(TM) , (A.12)
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then we have that ∫

CP n

Hn = 1, (A.13)

which was used in (4.20) and (4.27). Let’s apply the previous results to the pure spinors

space in D = 4.

We know that the integration measure on the pure spinors space in D = 4 is

Ω2

2!
= −γγ̄ dγ ∧ dγ̄ ∧ dz ∧ dz̄. (A.14)

Let’s integrate the function exp{−aλλ̄}, with a ∈ R
+,

∫

O(−1)
[dλ] ∧ [dλ̄] e−aλλ̄ = −

∫

C2

γγ̄ dγ ∧ dγ̄ ∧ dz ∧ dz̄ e−aγγ̄(1+zz̄)

=
π

a2i

∫

C

2

(1 + zz̄)2
dz ∧ dz̄. (A.15)

We can see that gzz̄ = 2/(1+zz̄)2 is the metric of S2 with radius 1 on a chart homeomorphic

to C. The area of a sphere with radius R is 4πR2, so the integral (A.15) is 4π2/a2.

Nevertheless we want to show how to compute the integral (A.15) using simple topological

properties of the projective pure spinors space (S2). Let’s remember that the first Chern

class of a complex manifold M is given by the expression

c1(TM) =
i

2π
∂∂̄ ln det(gij̄), (A.16)

so, in our example we have

c1(TS
2) =

2

2πi

dz ∧ dz̄

(1 + zz̄)2
. (A.17)

Note that the number 2 on the numerator, which comes of the exponent of (1 + zz̄)2, is

simply the first Chern class of the tangent bundle with respect to the hyperplane bundle

H (c1(TS
2) = 2H),3 hence

H =
1

2πi

dz ∧ dz̄

(1 + zz̄)2
(A.18)

on the chart. Now, using (A.13) we can easily compute (A.15)
∫

O(−1)
[dλ] ∧ [dλ̄] e−aλλ̄ =

2π

a2
2π

∫

C

dz ∧ dz̄

2πi(1 + zz̄)2
=

4π2

a2

∫

CP 1

H =
4π2

a2
, (A.19)

as expected.

We can get the same result (A.13) from the partition function, for example, computing

the partition function for O(−1) over CPn in the zero level with the reducibility method [13]

we have

ZO(−1)(t) =
1

(1 − t)n+1
. (A.20)

Expanding around to ǫ = 1 − t = 0 the most singular term is

1

ǫn+1
, (A.21)

3This is the same argument by which the number 8 is in the 20-form (4.10).
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and by comparing with the Riemann-Roch formula (4.21) we get (A.13).

Now we discuss some aspects of intersection theory. It is clear that in CPn we have a

set {CPm} with m ≤ n which is embedded it. It is easy to see that these CPm’s intersect

transversally of a point [7], i.e

#(CPm · CPn−m) = 1 , m ≤ n. (A.22)

As the homology groups of CPn are [34]

H2i(CP
n) = Z , i = 1, 2, . . . , n (A.23)

then by (A.22) we can take the homology generators to be the [CP i] classes. With this,

we define the degree of a closed variety V of complex dimension m by

degree(V ) = #(V · CPn−m). (A.24)

This is a topological number because it depends only on the homology class.

Now we compute the degree for projective pure spinors in D = 8.The projective pure

spinors space in D = 8 (Q8) is a hypersurface in CP 7. It is given in terms of homogeneous

coordinates {λ+, λ12, λ13, λ14, λ23,

λ24, λ34, λ1234} on CP 7 as the zero locus of [33]

λ+λ1234 − λ12λ34 + λ13λ24 − λ23λ14 = 0. (A.25)

Since degree(Q8) is the number of points where Q8 and CP 1 are intersected, if we take

CP 1 as the locus λ12 = λ13 = λ14 = λ23 = λ24 = λ34 = 0, the degree(Q8) will be the

number of solutions of the homogeneous polynomial

λ+λ1234 = 0. (A.26)

The solutions of this polynomial are the points [1, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 0, 0, 1],

therefore

degree(Q8) = 2. (A.27)

Using the partition function we get the same answer, i.e, the partition function for O(−1)

over Q8 is given by [13]

ZQ8(t) =
1 + t

(1 − t)7
. (A.28)

Expanding near to ǫ = 1 − t = 0, the most singular term of ZQ8(t) is

2

ǫ7
, (A.29)

so, by comparing with the Riemann-Roch formula (4.21) we get

∫

Q8

c1(L)6 = 2. (A.30)
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Actually this result was expected, since Q8 is a hypersurface given by a homogeneous

polynomial of degree 2, then the first Chern class of the divisor [Q8] is

c1([Q8]) = 2H, (A.31)

which is Poincaré dual to Q8 [7, 8]. So

∫

Q8

c1(L)6 =

∫

Q8

(f∗H)6 =

∫

CP 7

H6 ∧ c1([Q8]) = 2

∫

CP 7

H7 = 2. (A.32)

where f : Q8 → CP 7 is the embeding.

We now have a geometric interpretation to the result found in [5]. In [5] it was shown

that the partition function of pure spinors can be written as a rational function4

ZO(−1)(t) =
P (t)

Q(t)
, (A.33)

where P (t) and Q(t) are polynomials. In D = 2n the Q(t) polynomial has the form [5, 12]

Q(t) = (1 − t)dimCPS . (A.34)

In [5] it was also shown that ZO(−1)(t) can be written as an infinite product (ghost−ghost)

ZO(−1)(t) =
∞
∏

n=1

(1 − tn)−Nn . (A.35)

The Nn coefficients contain the information about the Virasoro central charge, ghost num-

ber anomaly, etc

1

2
cvir =

∑

n

Nn , (A.36)

aghost =
∑

n

nNn. (A.37)

From (A.33) and (A.35) we have

ln(−x)
∑

n

Nn+
∑

n

ln(n)Nn+
x

2

∑

n

nNn+
∞
∑

g=1

B2g

2g(2g)!
x2g
∑

n

n2gNn =− lnP (ex)+lnQ(ex),

(A.38)

where {Bg} are the Bernoulli numbers. Replacing (A.34) in the previous expression we get

ln(1 − ex)dimCPS = (dimCPS) ln(−x) +
dimCPS

2
x+

dimCPS

24
x2 + · · · . (A.39)

Without loss of generality we can suppose that

P (ex) = y + a ex + b e2x + c e3x + · · · , (A.40)

4We are only interested in the zero level.
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so

− lnP (ex) = − lnP (1) − ∂x lnP (x)|x=1 x+ · · · (A.41)

= − lnP (1) − ∂xP (x)|x=1

P (1)
x+ · · · (A.42)

= − ln(y + a+ b+ c+ · · · ) − a+ 2 b+ 3 c+ · · ·
y + a+ b+ c+ · · ·x+ · · · (A.43)

(A.44)

and therefore we have

1

2
cvir =

∑

n

Nn = dimCPS , (A.45)

aghost =
∑

n

nNn = dimCPS − 2
∂xP (x)|x=1

P (1)
, (A.46)

lnP (1) = −
∑

n

ln(n)Nn = ln(degreeQ2n), Q2n := SO(2n)/U(n). (A.47)

From the Riemann-Roch formula (4.21) and by expanding (A.33) with (A.34) near to

ǫ = 1 − t = 0 it is clear than degree(Q2n) = P (1).

We know that aghost is the first Chern class of TQ2n and that the degree(Q2n) gives

the homology class

[Q2n] = degree(Q2n)[CPn(n−1)/2] , (A.48)

in others words, the degree(Q2n) gives us the Poincaré dual class of Q2n. Noting that the

homology class of Q2n is an integer number times the homology class of CPn(n−1)/2, we can

interpret dimCPS = 1 +n(n− 1)/2 as the first Chern class of TCPn(n−1)/2. Thus we have

c1(TCPn(n−1)/2) =
∑

n

Nn , (A.49)

c1(TQ2n) =
∑

n

nNn , (A.50)

degree(Q2n) = exp(−
∑

n

ln(n)Nn) =

(

∏

n

nNn

)−1

. (A.51)

With these geometric interpretation we get a geometric constraint on the coefficients

of the P (t) polynomial

degree(Q2n) {c1(TCPn(n−1)/2) − c1(TQ2n)} = 2 ∂xP (x)|x=1. (A.52)

We can also rewrite the integration measure of the pure spinors space (4.5) as

ΩD=2n = (λλ̄)
−

c1(TCPn(n−1)/2)−c1(TQ2n)

c1(TCPn(n−1)/2) ∂∂̄(λλ̄) = (λλ̄)
−2 ∂xP (x)|x=1

degree(Q2n)c1(TCPn(n−1)/2)∂∂̄(λλ̄) ,

(A.53)

where we interpret the term {c1(TCPn(n−1)/2) − c1(TQ2n)} as a topological deviation

and find a relationship between the integration measure and the character of the pure

spinors space.
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