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1 Introduction

The pure spinor formalism has many advantages for computing scattering amplitudes com-
pared to the RNS and the GS formalism. For example, it does not have to deal with world-
sheet spin structures [2, 25], it has manifest Super-Poincaré invariance and incorporate in
a natural way the Ramond sectors. Nevertheless the formalism presents some difficulties,
for example, the normalization of the integration measure in the pure spinors space, the
computational difficulty to solve the integrals in this space and the S matrix unitarity has
not been demostrated yet.

In this paper we will compute the one-loop scattering amplitude in the non-minimal
pure spinor formalism for Type II superstrings and we will show that the overall constant
factor is the same as the one given in [14]. Let’s remember that this factor was also
computed from the unitarity condition [1]. So, showing that the non-minimal pure spinor
formalism predicts the same result as the RNS formalism is a direct test of unitarity.

To compute the scattering amplitude we normalize the integration measure of the pure
spinors space in the same way as the phase space in quantum mechanics is normalized in
the path integral, this is because the pure spinor formalism is a first order formalism.

To compute the integral on pure spinors space we use some tools of algebraic geometry.
We also show that this normalization in the amplitude does not require computing func-
tional determinants at all. This implies that computations using pure spinor formalism are
easier than the ones done in RNS or GS formalism.

This paper is organized as follows. In section 2, the non-minimal pure spinor formalism
will be reviewed and the space time units will be defined. We will normalize the massless
vertex operator of the pure spinors formalism to coincide with the RNS normalization. In



section 3, the 4-point one-loop scattering amplitude will be computed in the NS-NS sector
using the non-minimal pure spinor formalism, up to an integration on pure spinors space.
In the subsection 3.1 we will give a review to the 2™ (z, z) fields contribution and we justify
the normalization of the path integral measures. In the subsection 3.2 we compute the
contribution of the others fields and discuss biefly the modular invariance of the scattering
amplitude. We use some results found in [4, 16, 21, 22] in which the authors showed: 1) the
equivalence between the kinematic factor of the non-minimal pure spinor formalism and the
minimal pure spinors formalism, 2) the equivalence between the kinematic factor of the min-
imal pure spinors formalism and the RNS formalism. At the end of the section we find all
the factors in the 1-loop scattering amplitude, up to an integration over pure spinors space.
In the last section, we will compute the integral on the pure spinors space. This is the most
important section of the paper and we suggest the reader check the appendix beforehand,
in which we apply the tools used to compute the integral in the pure spinors space in lower
dimensions (D = 2n < 10). The aim is to be more familiar with the concepts of algebraic
geometry involved in the computation. In this section we arrive to the following result

/ [AAA[dN e M = 2m) " (a®-12-5)",  aeRt
o(-1)

where O(—1) is the line bundle blow-up at the origin with base space SO(10)/U(5). In
others words, O(—1) is the pure spinors space. Finally, with this result we find the overall
constant factor, which is called Cy [14].

Our future goal is to compute the overall constants factors at tree level, which we call
Cop, and at two loops, called Cy, in the non-minimal pure spinor formalism [31] and to
show that the S-duality constraint (C? = 272CoCs)[14] is a consequence of the identities
for massless four-point kinematic factors [20].

2 Review on the non-minimal pure spinor formalism

We will give a brief review of the non-minimal pure spinor formalism. The idea is to
introduce our own conventions and to normalize the massless vertex operator in the same
way as in the D’Hoker, Phong and Gutperle’s paper [14].

The superstring theory action in the right sector of the non-minimal pure spinor for-
malism [3] is given by

1 _ _ _ _ _
S = / d?z (axmaxm + &' pa0b® — o/ we,ON* — & W*ON, + 0/80‘(97“(1) (2.1)
2ra Jyx,
where we define the space time dimensions of the variables and coupling constant o’ as
follows
"] =1, [&/] =2, [pa]=[wal=[Aa] =[ra] =-1/2, (2.2)
[0°] = [\*] = [@°] = [s*] = 1/2. (2.3)

The OPE’s for the matter variables are easily computed

m o o 2 8 0a
" (z2)zp (w) ~ _5571 In|z — w|*, pa(2)0”(w) ~

(2.4)
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The complex bosonic spinors A* and ), satisfy! the pure spinor constraint
AN = My"A =0, m=0,1,2,...,9 (2.5)
and the fermionic spinor 7, satisfies the constraint
M = 0. (2.6)

Because of the constraints on A%, A\, and 7, their conjugate momenta w,, @® and s are
defined up to a gauge tranformation,

dwa = A (Y™ N (2.7)
00® = A (V"N = b (™1)%, 5% = P (7N, (2.8)

for arbitrary A,,, A,, and ¢,,.
In the U(5) variables the pure spinor constraints takes the following form [3]

1
AT — Zeab“le)\bc)\de =0, abecde=12,...,5 (2.9)
22X\ = 0. (2.10)

where just five equations are linearly independent. In the chart Uy, = {\T # 0} these
equations are solved by [33]

1
M= A =7, A" = gye Cupetge. (2.11)

As the ug, variables parametrize the projective pure spinors space, then it is clear that the
pure spinors space is the total space of the O(—1) bundle over the projective pure spinors
space with blow-up at the origin (v = 0) [7, 10, 11].

In this chart, we can take the gauge w, = @w* = 0 and the parametrization

1 ab

06— %v“buab, Wt =2 , (2.12)

W

y
—+ > 1 _ _ab — Vab
wT = f = —0pu”,  Wap = —, (2.13)
2y ¥

so the pure spinors action takes the form
1 2 3 1 3, ,ab 2= 1 —ab A~
Sps = 7 d“z [ GOy + ivab(?u + B0y + 37 Oty | - (2.14)
With this action it is easy to get the OPE’s

B2y (w) — (z—w)™ L, v®(2)ueg(w) — 5[0252}(2 —w)™, (2.15)
B(2)7(w) — (z —w)™,  Tep(2)a(w) — 5fa5ff](z —w)" L. (2.16)

For the s®, r, fields the procedure is similar.

!The X\, spinor is treated as the complex conjugate of the A* spinor.



From the previous definitions of the space-time dimensions of the fields and their OPEs
we can get the following OPE’s [23]

1 1 1
da = Do = — 0900 — At a0°6700°, 1™ = 0™ 4 69700,

4o
2 YT, . V000
da(2)d3(w) ~ =522 (I (w) ~ 22
do(2)f(O(w), z(w)) ~ (2 — w) " Do f(O(w), z(w)),
where 9
_ Y B8
Da aea + 9 Waﬁam’

is the covariant super-derivate on R'?. The supersymmetry generator is

= [d L_m gy L m 0°9700°

o = Z | Pa + J'Yaﬁ T + FO/%IB%%WS
and it satisfies the algebra
2
{das 95} = JVZ};/dZ Om, (o, II™(2)] =0, {qa,dp(2)} = 0. (2.17)
The construction of the b-ghost is such that [3, 29]
{Q,b(2)} =T(2),
where
1 _
Q= /dz ANy + 0% ), T(z) = —aaxmaxm — P00 + W, IS + 0¥, — $¥0r,.

Since @ and T are space time dimensionless so is b, which is given by

A (2T () — Ny (Y700) — J,00% — 1520

b= aaj\a —
§ 0Aa + A0\
N (j\fymnpr)(%/dfymnp_d —+ 24Nman) B %I(TanpT)(E‘de)an
192(A)2 16(AN)?
n %/ (T'Ymnpr) (S"qurr)NmanT

128(AN)4

In order to build the vertex operators we use the following N =1 SYM 6 expansions [22-24]

Aa(2,0) = Zan(y"0)o —3<sfyme>< ") = = B ()0 (077770) - (2.18)

32
An(2,0) = am — (§ym0) — (9%7” 0)Fpq + 15 (9%7”‘19)( €gl) + -+ (2.19)
Wo e, 0) = ¢ - mm"e)“an . 1( O 0 0) + - (220



Here £%(x) = (2/a’)Y?x%e™®*, where [x*] = 1/2 and a,, = e,,¢®®, where [e,,] = 0.
| = —1. The dimensions of the superfields are

e
Frnn = 20),a,) is the curvature and [Ern
[An) =1/2, [An] =0, [W%=-1/2, [Fun=-1,

hence the massless vertex operators have the following dimensions

/ /

V] = \"Aa] = 1, [U) = [06°Aa + Al + SdaW® + T NpnFoa] =1, (2:22)
where U satisfies QU = 0(A\*A,). These vertex operators have the same normalization as
the vertex operators of [14], therefore we can compare the amplitudes in a straight forward
way. For example, the closed superstring massless operator in the NS-NS sector is [14]

V= emen/d22 (0™ + ik - T (02" + ik - p_p™ )T (2.23)

where the dimension of V' is two if the dimension of the polarization vectors is zero.

3 Four point 1-loop massless amplitude

Using the normalization of the previous section we will compute the one loop amplitude
for 4-massless vertex operator in the NS-NS sector. Although the general structure of
this section can be found in the references [16, 22, 23, 27|, we include it to justify the
normalization of the measures and to find the overall constant factor for the amplitude,
which has not been computed.

As non-minimal pure spinor formalism is a critical topological string, then one can use
the bosonic string prescription for computing scattering amplitudes [3, 10]. So the four
points 1-loop massless amplitude is given by

2y (3.1)

A:%#[%d%(MW@MV@ﬁll/@“ﬂm

where My = H/PSL(2,Z) is the fundamental region, u is the Beltrami differential, N is
a regulator, 27 is a fixed point and finally, s is the normalization constant of the massless
vertex operator. Its precise value will not be needed here. The 1/2 factor is needed because
the total group of automorphism on the torus is SL(2,Z) instead of PSL(2,Z) [26, 27]. As
the amplitude is computed using the bosonic string prescription, we must take in account
the normalization of the inner product between the b-ghost and the Beltrami differential
in the same way as in bosonic string theory [27]

(o) = = [ 2 b = 20, (3.2)

s

where pzz = 1/27.



3.1 Review of the 2(z,z) fields contribution

In this subsection we compute the 2™ (z, Z) contribution and justify, in a natural way, the
normalization of the integration measures.

In order to compute the ™ (z, Z) contribution we expand it in terms of a complete set
X1(z,2) of eigenfunctions of the worldsheet Laplacian operator

2) = ZxTXI(ZaZ)a
I
00X1(2,2) = —\2X1(z,2)
/ dQZX[(Z7§)XJ(Z7§) =07J.
g

The bosonic contribution is given by [27]

4
dz™ 1
ki-x I 2 /- .
ettt ) = exp | ——— Nixr-xr — 2ndizy - Jr) +izg - Jo| (3.3
<Zl_[1 > g/\/%?a/ 2770/2(1 ) 0-Jo| (3:3)

1£0
—\ -5 7TC¥I
= (2m)'%619 (Jy) (270 det’00) " exp | = > 2—)\2JI Jr (3.4)
1£0
where
4
JM(z,2) = Zkzmé @ (2, 2) Z‘]I X1(z,2) (3.5)
i=1
Jr = / A%z J™(2,2) X (2, Z). (3.6)
P

g
In particular

JS”:XO/ A2z J™(z, %) = XOZk:
b

g

thus, we have

<H ek > (2m) 10619 (X k) (27%a’det’90) 5eXp |:——Zk -k Z 1(zi, 20) X1 (25, Z)

i#£] I1#0 I

where k = Z?:l k™. The term
/
T
Z VXI(Z% Zi) X1(25, ;)
1#£0 1

is the Green’s function and it satisfies the differential equation

_ E%G(Z w) = ZXI(z,z)XI(w,w) (3.7)
1#£0
= 0P (z —w) - X2 (3.8)



In the torus we have defined the normalization of the Xy mode to be

Xg = (2m) 7, (3.9)
such that
|| X0l = Xg/ d?z =1 (3.10)
Zg

where fzg d?z = 27
With this normalization, the Green’s function for the torus is given by|[25]

/

/
G(z,w,T) = —Oéln|E(z,w)|2 + ZT;T(Z —Z—w+w)?

/ 2 /
= —gln]E(z,w)]2 + 2 Imw,
2 T

and therefore the final expression for the bosonic contribution is [14, 25]

4
<H s ehi® :> = (2m)10(273)?610) (k) (272a/det’90) -
=1

21/

TG, )1  Fiexp | ~ki - &
1<J

Imz; Imz;
T2

The factors (272a’)~1/2 of the integration measure of (3.3) come from treating the
2™ (z,Z) action in a first order formalism [28]. To see this, let’s take the action

1 - _ .
S = — /d2z (9" pip; + piOz" + p;0x") (3.11)
where the index i,i = 1,...,5, p; and p; are (1,0) and (0,1) forms with conformal weight
(1,0) and (0,1) respectively and g = §.
~ In this first order action we can easily see that the conjugate momenta of the z* and
z' fields are P; := p;/ma’ and P; := p;/ma’ respectively, so the Dirac brackets (DB) are

[Pi(0),27(0")] s = [p;(;),xj(al)} = i6/5(0 — o),
DB
po2 ), = [ w] = lso o

In quantum mechanics, because of the commutator relation [p, x] =i one has the identity

de dp _;,
———t =1, 3.12
V2w 2T (3.12)
and the integration measure on the phase space in the path integral is [27]
dz d
— (3.13)



In the same way, the measure on the phase space in the path integral for the action (3.11) is

H H dP; dF da? da? H H dp; p;  dat dad
e \/ 21\ 2T/ 2\ 2T e 71'0/\/ 2T 7TO/\/ 21\ 27\ 27

H H dp; da’ da?
B 2% i \/271 o/ V22l V22l V2rldl
hence if we compute the integral by p;, p; fields we get (3.3).
We can see that the p™ fields have 10g zero modes in a Riemann surface of genus g
and their normalizations do not affect the answer.
Note that in this first order formalism the number of zero modes of the bosonic fields,
including the pure spinors at the right and left sectors, is equal to zero modes of the

fermionic fields

(3.14)

m m,Aa A @ Aa ~ i e
. w w w, w
bosonic { @ @

10 10g 11 11g 11 11g 11 11g 11 11g

0 Pa 0 Da Ta 8% To 8¢

fermionic .
16 16g 16 169 11 11¢g 11 11g

3.2 Pure spinors and p,, 6% fields contribution

First, we will compute the contribution of the non zero modes to the amplitude and we
will show explicity that in the non-minimal formalism it is not necessary to compute func-
tional determinants.

The action of the pure spinors in a chart is given by [2]

1 S 1
S =— / d?z <567 + §v“b8uab + GOy + 5%@@“”) .
29

2

When the Riemann surface ¥, is the torus, all the elements of the set {,7, 3, B, Ugp, Uap,

ab

v 99} have one zero mode only [25].

The contribution of the non-zero modes is given by

11 / dﬁf /\ dv?b ducdl] [dﬁf dfw A 7] [da?"]

140 a<b, c<d Vi V4 = Vi e<f g<h V Ar? VAm?
—iZA Brvt + 20Puay s + Brr + ~tap1a2?) (3.15)

€xp o 1\PI1vr1 201 Uah T I QUaqu[ .

1#£0

where the {\;} are the eigenvalues of the d operator and we write the measure in the same
way as in the previous section. We can write the argument of the exponential function in
the following form (for example for the (v, 3) fields)

1 - 1
_ = — oyt
exp 5 IE#O M (Bryr + Bryr) | = exp <2WV MV> , (3.16)



where VT = (y1,51), M is the matrix

0A
M = (A 0) , (3.17)

and A is the matrix A := diag()\;). The same happens for the (v*, u.g) fields. Therefore
the non-zero modes contribution of the pure spinors is (det 9)~22.

Although we computed the path integral of the pure spinors in a particular chart and
gauge, the answer is correct because the {7y = 0} = SO(10)/U(5) space has measure zero
with respect to the pure spinors space.

The integration measure for the I*" mode can be written in a covariant way [21, 22]
as follows
( 47T2)—11/2

I
[dw') =

(A1 A1y s A1 )arg (mnp)acaas €170 010 g, A=+ A dw,

(47‘1’2)_11/2

[AA(ATY™ ) A1) as (A1) (’Ymnp)azxas - 11!

€ar-agprpr AT Ao AN
(3.18)

from which we can easily see that [d)\;] and [dw!] have ghost number 8 and -8, respectively.
Taking the wedge product we get

o (4m?)H I I
[dA ] A [dw'] = Td)\;’“ Adwg, A AAAT A dwy,, - (3.19)
In the chart U+++++ = {)\jL 7é 0}
)\a — ()\Jr,)\ab,)\a)’
1
>‘+ =7, >‘ab = YUab , N = _gryeab(:deubcude
and in the gauge w, = 0
Wa = (Wi, w®, wy) a,b=1,2,....5
1
Wy = ﬂ - _vabuab, wab = _vab) Wq = 07
2y v
we have the measure in the form desired
[AA] A [dw'] = (4n®) 7 A dypdul,dBrdog (3.20)

a<b, c<d

For the A\, and @* fields we define the measures [d\!] and [dw;] for the I*" mode in

the following form

_ m ” _ A3 _ _
A1 MY s (A1 s 17y G nsas = )28 e afp A it
NI (47{2)711/2 m n D ati-asp1p11 AN NI
[d)\ ] = 11|5|()\15\[)3 ()\17 )041 ()\Ify )Oé2 ()\Ify )043 (anp)azx%e d)\pl ASE ./\d)\pH?

(3.21)



SO
(47‘(‘2)_11

(AN A [door) =

AL, Adeft A A dA]

Q11

Adwit, (3.22)

as expected.

The contribution of the fields of opposite worldsheet chirality is (det’d)~22. So, the
contribution of the non zero modes of the pure spinors is (det’99)22.

From the action of the p,, 6% fields

1 _
Spy = > /d% P00 (3.23)
we get the anticommutation relation
B 1 — Pa(o) Bt _ 5B .
{Pa(a),ﬂ (0)}DB. {—% 0 (a)}DB §35(0 — o). (3.24)

Therefore, the measure of the phase space in the path integral is [27]
[1T]ar. a¢° = [[[I(2rdpa) d0® =TT ] <\/27poa> <\/27Td9ﬁ) , (3.25)
2,2 af 2,2 af 2,2 af

and the contribution of the non zero modes of p, and 8 fields is given by

1 [lar.yiaoyeso (—% /. d%m‘ea)
ap g

11 / (Vardpar) (vVarad]) exp | 53" Arpest

aBI#0 1#£0
= [det’ (9)]"°,

where p, 1, 0F are Grassmann numbers. As in the previous case, the contribution of the
fields of opposite worldsheet chirality is (det’d)'6. Thus the total contribution of the
fermions p, and 67 is

[det’(9D)]*S.

For the r, and s Grassmann fields we can define the covariant measure in the path
integral for the I*" mode as [22]

I _ (277)11/2 VI myar (YT nyaz (Y1 . p\o3 Qqas 351...3511
[d?“ ] = 11! ()‘ Y ) ()‘ Y ) ()‘ Y ) ('Ymnp) €ay-a561--611 9,1 rl (3'26)
N omyor (Y a2 Y o ago 27 11/2 ato s s
[ds 7] (A1) ()22 (NP2 () 4490 = %6 RPN O,
SO
[dr!][ds/] = (2m)" oL 05" - 9 01 (3.27)

In an analogous way as the previous case we get the contribution from the non-zero modes
(det'8d) " . (3.28)

Finally, the total contribution of the non-zero modes of the (A%, wy, 5\5, P, 8, sP ) fields is
(det’0d) ™ (det’0d) ™ (det'dd)™® (det'0d) " = (det'dd)’ . (3.29)

,10,



3.2.1 Modular invariance

Before to compute the zero mode contribution we discuss briefly the modular invariance.
This subject is important because the zero modes normalization of the vertex operators

and the b-ghost contains modular parameters.
With all the contributions that we have computed up to now, our 4-points 1-loop
amplitude has the form

9,7)105(10) (1) ot 3 4 ,
A:—( m) ( )H/ d27(27'2)51_[/d2z;C H |E (2, z)]” ki'kiexp —ki-k;
Ma k=1

272 (2m20/)” =1

2 /
a Imz; Imzj]
T2

2
(dyP7d) <

N Y —, — A\ —ow—r+s
(3) / [dr][ds][dd] [d6] [dN][dN] [dw] [d@]e— o+ d>W(mw)(mldmdwgdm)

(3.300)

where the subindex “0” means that only the zero modes will be computed.

Is clear that (3.30) is not modular invariant since the scattering amplitude needs a
(72) 7 factor instead of the (72)° factor. The reason for this is that we have not introduced
yet the zero modes normalization of the vertex operators (so as in the ™ (z, z) fields case).
We will show that by introducing it we get the (75)~° factor and the scattering amplitude
will be modular invariant.

On the torus all the fields have one zero mode, so we can do the following expansion
on a complete set of eigenfunctions of the world-sheet operators 9 and 0

90{(2, Z) = 98{A0 + ZH?A[(Z,E), pa(zaz) :ngO + ZPQQ[(Z,E)

1£0 1£0
A%(2,2) = Ajho + D ATA1(2,2), Aal(z,2) = A0Ao + D M As(2,2)
10 10
(“_ja('z’ Z) = @(?QO + Z (‘_J?QI('Z’ Z)’ wa(za 2) = ngO + Z wéQ[(z, Z),
10 10
ra(z,2) = r9ho + Y _rlAL(2,7), s%(2,2) = s+ Y s7(2, 2),
10 10
where
/dQZQ](Z, E)QJ(E, Z) =077
/dQZA[(Z, Z)AJ(Z, Z) =477,
in particular ||Ag||?> = ||Q0]|? = (272)~!. From the previous section we know that only the
term YTDCG Dmnpd) 4y, b-ghost can saturate the d, zero modes. Since our interests

192(AN)2
are the zero modes then we write this term as

of (121 (AO™P1) (@ d®) _ 0! (O™Pr0) (@)

hall ol = _ 3.31
2 (1/27m5)? 192(XoAY)2 2 192(AoAY)2 ( )

To saturate the 11 zero modes of r, we need 107, zero modes. The regulator
e(—A0X? —&ow’ =200 +s0d”) (3.32)

— 11 —



supplies the 107, zero modes plus 1060% zero modes. The 60% zero modes necessary to

saturate the 160% zero modes come from the vertex operator
(AA1dWodW3dWy), (3.33)

so, these 60% zero modes contribute with a factor (273) 2 and the 3d, and \* fields con-
tribute with (275) 2. In this way the factor in the right sector is (272)7°. In the left sector
the analysis is the same, so the total factor is (272)7!? and the amplitude

2m)105010) (1)t /a/\ d’r
e (3) L e T TT s e bt s

i<j=1

VWW%MWWWM@MMJ”“”m@%%%QWMO&MWMM@

(3.34)
is modular invariant.

3.2.2 Contribution of the zero modes

Now we are going to compute the zero mode contribution in the NS-NS sector where we
use some of the results given in [21, 22]. This calculation is totally algebraic and easy to
follow due to our choice of the integration measures.

We rewrite the integration measure in the following way

[dXo] = (4r?)~12[dN],  [dw’] = (472) " dw],

[dA] = (4n%)~11/2[d]N], [dwo]::<4w2>-1h@[ @,

[dr%] = (2m)"/?[dr], [dso] = (2m)!"/2[ds],

[dfo] = (2m)'%/?[dg], [dd°] = (2m)'9/%[dd], (3.35)

where the measures [d-] are defined from the previous subsection, for example

m n 1
[d)‘]()‘OV )041 ()‘07 )042 ()‘OVP)aa (anp)cmozs - ﬁealmasplwpnd)‘gl AREENA d)‘8117 (3'36)

and similarly for the others measures. For the rest of this paper the subindex “0” will be
dropped out. In this new notation the scattering amplitude has the form

(2m)19510) (k) [\ ® N
A= o e (y \ 2 / d27'25H/dzz’“H'EZ“ZJ'M

1<j=1

2

exp[ ki kj @ Imzilmzj} {(277)717IC‘2
T2
9 10 5(10) (1) 4 AN 3
P (Y o]

2m% (2m) 7 ()" \ 2/ Iy P
4
H |E(zi,zj)|“/ki'kjexp[ k; - k: 2 Imzzlmz]] {IC{
1<j=1
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where we have defined K to be

= a0 AN AR s sl 5720 LA R D) W),
(3.37)

In order to compute the K factor let’s remember that the measures of r,, and s* are given by

[dr] = m(hm)‘“ (A2 (AP) (i) €ary--agy w1 Oy -~ O
YA MN\AXT (Y A N\O2 (Y @ 40 1a---a S S
[ds] (™) (™) (AP) (i) 4% = eI 3

We rewrite the [ds] measure as

1 1

48] = 5511 oy O s (9D (9 s s €150 P05, -85, (3.39)

Integrating the r,, s* and d, variables in K we get

K = Tiimimr 375 4O ] dalel =) (o) (i () ()

4 B
% (AMmnp D) (AAL (MY W) (A" W3) (AP Wa)).

In [22] the following identity was proven
(Mminp D) (AAD) (W™ Wa) (M W3) (P Wa)) = 40N AAD) (M W2) (A" W) F,

1 o
6041---04551---511‘9 Lo gt

(3.39)
and the IC factor takes the form
B 40 (241115131 . _ e(FAA—aw)
M= s o35 2.3 /[da][dmdmdw][dw] )

(A7) ") (A (rst) 4 €pasar611 67 0N AAN )W) A W) Fp

Since we are interested in the NS-N§ sector, we can use the following result found in [22]

1
AMAHNTWH N WHFE ) = —— K 3.40
<( )( Y )( Y )fmn> 23'2880 0, ( )
where K is the Kinematic factor of [14]
Ky = (61 . 62) [2tu(63 . 64) — 4t(63 . kl)(€4 . /{?2)] -+ perm. (3.41)

But as (3.40) was computed using the normalization ( (AY"0)(Ay"0)(AP0)(0vmnpt) ) = 1,
we can write the following equality for NS-NS sector

Ky

Al myxs2 nyy3\ 4 )

= (AY"0)(AMY"0)(MPO) (Ovmnpb) (3.42)
NS-NS

Now, we can integrate the 8% variable in the K factor

40 (2% - 1115!3!) - (M =aw)
k= 11!11!5!-29.3.526.3.23.2880 /[da][dA”dA”dw][dw]W(M)

(A7) M) A 2 (rst) 4 €pagsrir 007 (AY™0) (A "0) (AP 0) (0 Y Ko

_ “A—ow)
_ %Ka / [AN][dN][de][de]

el

o (3.43)
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4 Integration on pure spinors space

In order to get the full expression of the one loop amplitude we need to compute the integral
on the pure spinors space. It is not a trivial integral. Actually, if we try to solve it in a
straight forward way or using computational methods maybe we could not do it. We will
use some tools of algebraic geometry to solve it and we suggest the reader to read before
the appendix for a better understanding of this section.

Let’s remember that the measures [dA] and [dw] were defined in (3.18) and (3.35)

1 e B
[dw] - 1115! ()‘Vm)oq (Xyn)az (A7p)a3 (7mnp)a4as e o0 611dw51 ARRRNA dw(Sn’
m n 1
[d)‘](A’Y )al ()‘7 )az (A’Yp)as ('Ymnp)a4a5 = 11! Eal---aspl---pnd)‘pl A AdAPH

and the measures [d\] and [dw] were defined in (3.21) and (3.35)
(AN’
11!

1 m n e} e Y Y
= m()q Jan (AY )az()‘Vp)as (anp)amse Lrase plld)\pl ARERA d)‘pn'

[dw]()‘Vm)al ()‘Vn)(m ()"Yp)oc;a (anp)aw% = 6041---0551---511(1@61 AR daﬁ“?

[dA]

With these measures it follows
(A3
11!

[dw] A [d@] = dway Ad@™ A+ Adwg, Ado®™ = (AN dwy Adet A\ dwdwg,

a<b, c<d

where we have taken the gauge w® = w, = 0. Now the integral (3.43) on the w and @
variables is trivial

/ [dw][dw] e = (AX)? / doy Adot A\ dwdoeg o wi @t = 1w g,
a<b, c<d

= (W32,

Integral on pure spinors space. From the above result we can write the integral (3.43)
in the following form

A\ —w@

/ N[N de]de] S5 = m)" / AN (AR)2e~M
= (2m)"! lim 8‘9—; / [dA][dN] e~ (4.1)
Thus the integral of our interest is simply
/ [dAA] A [d] e— o (4.2)
and next we will show that it is equal to
/ (] A [dN] e = 228”);; (4.3)

— 14 —



We can easily see that the measure [dA] A [dA] can be written as

[dA] A [d)N] = md)\“l Addagy Ao AAA A dAg,,
_ Tlﬂﬁaam) Ao NOBON)
ol
=17
where 1 o
Q= W@@(A)\)
is the Kihler form? on the pure spinors space in D = 2n = 10 dimension.

parametrization (2.11) the integration measure on pure spinors space is

Qll
— =7Tdy A\ dug A77dy /\ da.

11!
a<b c<d
The Kéhler form of the pure spinors space in any dimension is given by

1 _
QD:Q” = dimgPS—cy 83()\)\)7

(AX) TmcPs

In the

(4.4)

(4.5)

where ¢; = 2n — 2 is the first Chern class of the tangent bundle over SO(2n)/U(n) [5] and

dimcPS = % + 1 is the complex dimension of the pure spinors space.
Writing (4.2) in the coordinates (2.11) we get

- 3 o~ 1 —ab_ 1 _abcde . —fghi
/[d)\][d)\]e_‘v‘)‘ :/(71)7d7/\d7 /\ duabdl_fde a77(1+2uabu tgz€ €afghilbcUdet’ 91 ) ‘

a<b,c<d

The ~, 4 variables can be integrated easily
7

_ b 0 I 1
/(77)7d7/\d76 bwz—ﬁ/dw/\dwe bW:(Zﬂ')-?!-b—g,

where

1 1 )
biza (1 + §u“baab + @Eadeeeafghiubcudeaf ga’”) ,

0 (4.2) has now the form

_ N |
/ A A [dX] oMt = 2T T / o,
a SO(10)/U(5)

—ed
/\a<b¢K&1duabduc
= — i —
(1 + Suapu® + gretedec, s opiupetgeu/ 9 )8

where

2Easily we can see that (A)) is a scalar function (global) on the pure spinors space.

,15,
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is a global form on SO(10)/U(5), therefore it belongs to the H2A,(SO(10)/U(5)) de-Rham
cohomology group [7, 8]. Note that the number 8 is the first Chern class of the tangent
bundle over SO(10)/U(5).

The a-form can be written as

where
w = —00 In(A\) (4.12)
and X\ and \ are projective pure spinors, in others words
Y 1 —ab 1 abede —fg-hi
AMN=1+ 5 Uabl + € €afghilbctde’ U™, (4.13)

where {ug,} is a complex parametrization on SO(10)/U(5). The 2-form w is the Kéhler
form, so In (A)) is the Kihler potential [7]. From the identity

00 = %d(a —d)

we can see that dw = 0 is closed, therefore SO(10)/U(5) is a Kahler manifold.

From the algebraic geometry point of view, the projective pure spinors space in d =
2n = 10 is a variety (manifold) on the projective space CP'5, then its Kilher form is the
pullback of the Kihler form of CP'® given by [7, 9]

w= f*Q, (4.14)
where ) is the Fubini-Study [7] metric of CP' and
f:80(10)/U(5) — CPY (4.15)

is the corresponding map. It is given locally on the chart U = {\T # 0} by the following
five holomorphic homogeneous polynomials [2, 33]

1
AT — Ze“bcdeAbcAde =0, a=1,...,5. (4.16)

As SO(10)/U(5) is a closed manifold on CP', then it belongs to the Hog(CPY¥) = Z
homology group [34], so the projective pure spinors space is proportional to the [(CPlO]
homology class because CPX is the generator of the Hog(CP') homology group [32, 34].
The proportionality factor is called the *“ degree” of a variety and it is a integer number
since Hoo(CP'®) = Z. The degree of projective pure spinors is given by

degree(SO(10)/U(5)) = #(SO(10)/U(5) - CP®), (4.17)
where 7 (SO(10)/U(5) - CP®) are the intersection numbers between SO(10)/U(5) and CP°

inside CP'5, hence the previous integral can be written as

/ Y _ degree(SO(10)/U(5)) / ¢ (4.18)
S (C

O(lO)/U(5) 10' P10 1—0'

cp10
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Remember that the pure spinors space is identified with the total space of the line bundle
O(—1); which is the inverse of the line bundle £ = O(1) [7, 11]. The first Chern class ¢;(£)
of £ is simply the pullback of the hyperplane class H [7, 8|

c(L) = f"H (4.19)

and the degree of the projective pure spinors space is given by

/ (L)1 = degree(SO(10)/U(5)) /
SO(10)/U(5)

HIO‘
(CPlO

CPp10

c 10
= degree(SO(10)/U(5)) /((:Plo %

= degree(SO(10)/U(5)), (4.20)
where f(c P10 c10(TCPY) is the Euler characteristic of CP!’. We will compute this degree

using the pure spinors character at zero level. The Riemann-Roch formula gives us an

expression for the pure spinors character at level zero [5]
1
S
so(0)/u(s) 1 —tea(8)
where T'd(T(SO(10)/U(5))) is the Todd genus

Td(T(SO(10)/U(5))), (4.21)

1
Td(T(SO(10)/U(5))) =1+ 501(T(SO(10)/U(5)) +o (4.22)
Expanding Z10(t) near to t = 1 or near to e = 1 — t = 0, the most singular term is [11]
1
— / e (L)', (4.23)
€ SO(10)/U(5)

The pure spinors character can also be computed with the reducibility method, in this case

the result is [5, 12]
1+ 5t +5t2 + 3

Again, expanding near € = 0 we get that the most singular term is
12
e (4.25)
Comparing both results we conclude that the projective pure spinors degree is
degree(SO(10)/U(5)) = / e (L) =12, (4.26)
SO(10)/U(5)
Therefore we have solved in a easy way the integral (4.2)
< v (@2m)-7 *Q)10
/ [d)\] A [d)\] efa)\)\ — ( 77)8 / (f ')
o(-1) a so(o)/us) 10!
N (18 . 10' cplo cpto
~(emttom2
a® - 10!
(27‘1’)11
= 560" (4.27)
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Actually, we can compute (4.2) for any dimension using the Kéhler form (4.5) (see appendix)

/ (AN A [df\]e*a“ B (27r)cl(TCPn(n71)/2) 1 (T Qa,)! 1 (T(CPn(nfl)/Q)
0(71) N acl(TQ2n) Cc1 (TCP’II(TI*l)/Q)[ c1 (TQQn)

-degree(Qay,)

where ¢;(T'Qa,) = 2n — 2 is the first Chern class of the tangent bundle over projective

pure spinors space Qg, = SO(2n)/U(n), ¢ (TCP™"D/2) = (n(n — 1) + 2)/2 is the first
Chern class of the tangent bundle over projective space CP™"~1)/2 and degree(Qay,) is the
degree of the projective pure spinors space

[Q2,] = degree(Qay,)[CP 7172, (4.28)
With this result, we finally have that the 4-points scattering amplitude is
10 £(10) 1 o\ ! 37 d*r 2 - "ki-k
A= (2m)"0 E)———— || = HZKK/ — /dz Bz, z;)|* Rt
( ) ( )277T2 (0/)5 <2> 0440 M, (7.2)5 ]}_[1 k H ‘ ( ])’

i<j=1

2ma’

exp |—k; - k; ImziImzj] (4.29)

T2
This answer is in perfect agreement with the result found by D’hoker, Phong and Gutperle
in [14] up to a («//2)8 factor. Is easy to see that this factor is needed in order to have the
right space-time dimensions [30]. Hence the amplitude found in [14] by D’hoker, Phong
and Gutperle missed this term.
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A Pure spinors in lower dimensions and partition function

The aim of studying pure spinors in lower dimensions (D = 2n < 10) is to have a better
feeling of some algebraic properties of the pure spinors space. At the end of the appendix we
make some remarks and give a nice geometric interpretation of the character of pure spinors.

We know that in D = 4,6,8 the projective pure spinors space are CP!, CP3 and a
quadric variety embedded in CP7, respectively.

CP' and CP? are the trivial cases because in D = 4,6 the pure spinors don’t have
any constraints and the pure spinors space is the simple blow-up of the origin [9] (the pure
spinors space is the total space of the line bundle O(—1)). In these cases the Kélher form
of the pure spinors space is simply

Q= 00(\N), (A1)
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where we have used the general formula (4.5)

_ dimg PS—cq

Qpsn = (AX) G0 PS5 9AN)
and the notation

A\ =
A\ =

Yy (1 + 22), for D=4, (A.2)
¥y(1 + 2Z +uu +vv), for D=6, (A.3)
where {z} parametrize CP', {z, u, v} parametrize CP3, {7} is the fiber and c; is the first
Chern class of projective pure spinors space. From [5] we can see that in D = 4,6 the first
Chern class of the tangent bundle over the projective pure spinors space is

¢ (TCPY) =
c1(TCP?)

2,
4 (A.4)

and it has the same value of the complex dimension of the pure spinors space (dimcP.S).
The integration measures for the pure spinors space in D = 4,6 are given by

QQ
gzw/\d) for D =4, (A.5)
0t
Z:w/\@ for D=6, (A.6)
where
w=ydyAdz for D=4 (A.7)
w="dyAdzAduAdv for D=6 (A.8)

are the holomorphic top forms, which agree with the ones of [11]. To compute (A.4) is very
easy from the following exact sequence of bundles (the Euler sequence)[7, 9]

0— C— H®OD) _, Cpr — 0, (A.9)

where C is a trivial bundle, H is the hyperplane class and TCP" is the tangent bundle on
CP™. This sequence implies that

H®H) —TCcPr @ C. (A.10)
Therefore, the total Chern class of the tangent bundle on CP" is
¢(TCP") = (1 + H)"*! (A.11)

where we have denoted the first Chern class of the hyperplane bundle H with the same
letter H. Now it is clear that ¢ (TCP™) = (n+ 1)H and that ¢, (TCP") = (n+ 1)H". As
the Euler characteristic of a complex manifold M of complex dimension n is [7]

xX(M) = /M en(TM) (A.12)
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then we have that

H" =1, (A.13)
cpr

which was used in (4.20) and (4.27). Let’s apply the previous results to the pure spinors
space in D = 4.
We know that the integration measure on the pure spinors space in D = 4 is
QQ

57 = Ay Ady Adz Adz. (A.14)

Let’s integrate the function exp{—aA\}, with a € R,

/ [AN] A [dA] e M = — / vy dy A dy Adz A dze @r1(1+22)
O(-1) C2

s

2
= — | ———=dzAdz A.15
a?i /C (14 22)? =hds ( )

We can see that g, = 2/(1+2%)? is the metric of S? with radius 1 on a chart homeomorphic
to C. The area of a sphere with radius R is 47mR?, so the integral (A.15) is 472 /a?.
Nevertheless we want to show how to compute the integral (A.15) using simple topological
properties of the projective pure spinors space (S2). Let’s remember that the first Chern
class of a complex manifold M is given by the expression

c1(TM) = %aé In det(g;7), (A.16)

so, in our example we have
2 dzAdz

T8%) = ——~"—— A7

allS) = st 20 (A.17)

Note that the number 2 on the numerator, which comes of the exponent of (1 + 22)?, is
simply the first Chern class of the tangent bundle with respect to the hyperplane bundle

H (c1(TS?) = 2H),? hence
1 dzAdz

" 2mi (1+ 2%2)?
on the chart. Now, using (A.13) we can easily compute (A.15)

- Y 27 dz ANdz 472 472
/0(1)[d)\] AdAe - a? 27T/<c 2mi(1+22)>  a? /(CP1 2 A1)

(A.18)

as expected.
We can get the same result (A.13) from the partition function, for example, computing
the partition function for O(—1) over CP" in the zero level with the reducibility method [13]

we have
1

Expanding around to ¢ = 1 — ¢t = 0 the most singular term is
1
s (A.21)

3This is the same argument by which the number 8 is in the 20-form (4.10).
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and by comparing with the Riemann-Roch formula (4.21) we get (A.13).

Now we discuss some aspects of intersection theory. It is clear that in CP™ we have a
set {CP™} with m < n which is embedded it. It is easy to see that these CP"’s intersect
transversally of a point [7], i.e

#(CP™.-CP"™) =1, m<n. (A.22)
As the homology groups of CP™ are [34]
HQZ((CPH) :Z, ’L':1,2,...,’I’L (A23)

then by (A.22) we can take the homology generators to be the [CP?] classes. With this,
we define the degree of a closed variety V of complex dimension m by

degree(V) = #(V .CP"™™). (A.24)

This is a topological number because it depends only on the homology class.

Now we compute the degree for projective pure spinors in D = 8.The projective pure
spinors space in D = 8 (Qg) is a hypersurface in CP7. It is given in terms of homogeneous
coordinates {)\+, A12, A\13, A4, a3,
a4, A4, 1234} on CP7 as the zero locus of [33]

AT 1234 — A12A34 + A3 dag — AazAig = 0. (A.25)

Since degree(Qg) is the number of points where Qg and CP! are intersected, if we take
CP! as the locus A2 = A\j3 = Aig = Xa3 = Aoy = 34 = 0, the degree(Qg) will be the
number of solutions of the homogeneous polynomial

AT A1234 = 0. (A.26)

The solutions of this polynomial are the points [1,0,0,0,0,0,0,0] and [0,0,0,0,0,0,0, 1],
therefore

degree(Qg) = 2. (A.27)

Using the partition function we get the same answer, i.e, the partition function for O(—1)

over Qg is given by [13]

Zou(t) = (11:37 . (A.28)

Expanding near to e = 1 — ¢t = 0, the most singular term of Zg,(¢) is
2
— (A.29)

€’

so, by comparing with the Riemann-Roch formula (4.21) we get

/ c1(L)® =2. (A.30)
Qs
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Actually this result was expected, since Qg is a hypersurface given by a homogeneous
polynomial of degree 2, then the first Chern class of the divisor [Qg] is

c1([Qs]) = 2H, (A.31)

which is Poincaré dual to Qg [7, 8]. So
/ cl(ﬁ)ﬁz/ (f*H)® = HO A ¢y ([Qg]) =2 H™ =2. (A.32)
(oF Qg CcP7 CcP7

where f : Qg — CP7 is the embeding.
We now have a geometric interpretation to the result found in [5]. In [5] it was shown

that the partition function of pure spinors can be written as a rational function®

P(t)

Q)

where P(t) and Q(t) are polynomials. In D = 2n the Q(t) polynomial has the form [5, 12]

Zo1(t) = (A.33)

Q(t) = (1 — t)dimePsS, (A.34)

In [5] it was also shown that Zp(_1)(t) can be written as an infinite product (ghost — ghost)

Zon(t) = T =) (A.35)
n=1

The N, coefficients contain the information about the Virasoro central charge, ghost num-
ber anomaly, etc

1
5 Cvir = > N, (A.36)
Qghost = ZnNn (A37)

From (A.33) and (A.35) we have

—~ B
) SURO BIOEAES SUEND S M) S o)
n n n g=1 ’ n
(A.38)

where {B,} are the Bernoulli numbers. Replacing (A.34) in the previous expression we get

dimCPSm . dimcPS 2

In(1 — e*)4mePS — (dimc PS) In(—z) + 5 o SEPP (A.39)
Without loss of generality we can suppose that
P =y+ae” +be* +ce® 4. (A.40)

4We are only interested in the zero level.
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SO

—InP(e’) = —-InP(1) =0y InP(x)|p=1 2+ - - (A.A41)
B O0pP(x)|g=1
= l(ytatbtet...) 2FEEEICH L A 3)
ytat+btc+---
(A.44)

and therefore we have
1

SCvir = Zn:Nn = dim¢ P9, (A.45)
(ghost = Z nN,, = dimcPS — 2% , (A.46)
InP(1) = — Zln In(degreeQsy,), Qo :=S0(2n)/U(n).  (A.47)

From the Riemann-Roch formula (4.21) and by expanding (A.33) with (A.34) near to
e =1—1t=0it is clear than degree(Qa,) = P(1).
We know that aghest is the first Chern class of T'Qy,, and that the degree(Qay,) gives
the homology class
[Qan] = degree(Qs, )[CPM /2] (A.48)

in others words, the degree(Qa,) gives us the Poincaré dual class of Qy,. Noting that the
homology class of Qs,, is an integer number times the homology class of CP™"~1)/2 we can
interpret dimgPS = 14 n(n —1)/2 as the first Chern class of TCP™™~1/2, Thus we have

e (TCPrn=1/2) ZNN, (A.49)

c1(T Q) Z nN,, (A.50)

-1
degree(Qa,) = exp(—Zln(n)Nn) = (HnN"> . (A.51)

With these geometric interpretation we get a geometric constraint on the coefficients
of the P(t) polynomial

degree(Qan) {c1 (TCPM ™ V/2) — (T Qon)} = 28, P(x)] 1. (A.52)

We can also rewrite the integration measure of the pure spinors space (4.5) as

ey (ep™n=1/2) ¢ (10y,) —20z P(2)|p=1

Qp_oy = ()\)\) cq(Tepn(n=1)/2) aa()\j\) _ ()\5\)degree(an)cl(T(CP"("_l)/Q)65()\5\) ’
(A.53)
where we interpret the term {c;(TCP™" D/2) — ¢/(T'Qs,)} as a topological deviation
and find a relationship between the integration measure and the character of the pure
spinors space.
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