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Preface





A quantum theory of gravity is one of the greatest mysteries of modern physics. One
of the several approaches to find it is the Loop Quantum Gravity framework, within
which the Spin-Foam models provide a path integral picture of quantisation.

In this thesis we study four aspects of Spin-Foam models.
Firstly we address and answer the question of the class of 2-complex, that ensure that

Spin-Foam models are compatible with the kinematic sector of Loop Quantum Gravity.
While researching this issue, we developed a framework of diagrammatic representation of
spin-foams, called Operator Spin-network Diagrams (OSDs). The OSDs allow to express
a spin-foam as a collection of graphs, connected by certain relations. Each graph captures
the local structure of one of spin-foam vertices, i.e. nodes of a graph correspond to edges
and links of a graph correspond to faces incident to a vertex. The relations between
graphs in OSDs represent the way, in which edges and faces connect vertices. We have
proven, that for each OSD there is an unambiguous way to construct a 2-complex with
cells labelled by a spin-foam coloring, so that one can calculate the spin-foam transition
amplitude. We developed a procedure to glue OSDs along their boundary, being an
equivalent of composing quantum processes. Moreover we characterised all possible OSDs
in terms of gluing of basic diagrams representing zero or one interaction vertex each. We
claim, that the appropriate class of 2-complexes for Spin-Foam models is given by all the
2-complexes that can be obtained out of one of OSDs. The chapter 3 presents this part
of our results.

Our second aim was to apply OSDs to find a solution of so called boundary problem:
given certain initial and final states of Loop Quantum Gravity we want to find all spin-
foams which have these states as boundary. As our answer we provide an algorithm
that finds a series of all OSDs with a given fixed boundary. The series is ordered by
the number of internal edges of the corresponding spin-foam. We test our algorithm by
applying it to (recently introduced) Dipole Cosmology model. We find all diagrams, that
contribute to Dipole Cosmology amplitude, which have the minimal number of internal
edges. Moreover, we studied the contribution to transition amplitude coming from the
diagrams we found. In order to do this we adopted the techniques developed for spin-
foams based on 2-complexes and obtained simple rules (similar to Feynman Rules of QFT)
to read the components of the amplitude out of an OSD. Our study of the transition
amplitudes of Dipole Cosmology diagrams led us to conclusion, that all the diagrams
except from one gives amplitudes that are exponentially suppressed in the semiclassical
limit, thus their presence does not spoil the result of authors of Dipole Cosmology model.
The chapter 4 presents these results.

The third issue addressed in this thesis were the divergent amplitudes in Spin-Foam
models. We focused on one of the sources of divergences, which are bubbles in spin-foam
2-complexes (i.e. subcomplexes forming closed surfaces). Within the framework of 2-
complexes it is relatively hard to find the bubble part of a spin-foam. Thanks to OSDs
we found a procedure that unambiguously identifies the bubble subdiagram. Moreover
we introduced a notion of the rank of bubble, counting the number of elementary bubbles
that the considered bubble consist of, and we presented a method to calculate it for each
given OSD. We present a study of several possible simple cases of diagrams containing
bubbles, that illustrate our algorithms. These results are presented in chapter 5.

The fourth question we posed and answered within this thesis is related to detailed
study of one particular case of a spin-foam bubble, called melonic bubble. The melonic
bubble is in a fact spin-foam analogue of self-energy renormalization in Quantum Field
Theory. Recent research led to a conclusion, that in the first order the self-energy cor-
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rection is proportional to some operator T, however the operator T was not known. We
studied this operator in semiclassical limit. After some elaborate calculations we found
the exact form of the leading order of T: for fixed spin labels it is proportional to the
identity operator, with the proportionality constant dependent on the spin labels. The
calculations can are presented in chapter 6.

The presentation of our result is preceded by two chapters of introduction. First, in
chapter 1, we recall the main ideas of Loop Quantum Gravity and Spin-Foam models.
Then, in chapter 3, we provide a detailed presentation of each question addressed in the
further part of the thesis, together with a brief statement of each result. The thesis is con-
cluded in chapter 7, where we listed some directions of further research, that are opened
by our results, or that still need to be done. To make the thesis selfcontained we followed
the main text by two appendices: in Appendix A we provide an overview of mathematical
notions, that we use in the main text, concerning graphs, CW-complexes, differential geo-
metry and harmonic analysis on SU(2) and SL(2,C) groups. In Appendix B we present
some proofs of non standard theorems, that although being technically complicated, are
not of great physical relevance.
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Part I

Introduction





Chapter 1

General introduction to Loop
Quantum Gravity and Spin-Foams

All the research presented in this thesis was done in Loop Quantum Gravity framework
and Spin-foam models. This chapter provides a brief introduction to main points of these
approaches.

Loop Quantum Gravity provides tools to describe the configuration space of General
Relativity in such a way, that is relatively easy to translate into a quantum language. It
bases on an assumption, that the gravitational field is the geometry of the space itself (in
contrary to the approaches, where the gravitational field lives on a manifold with some
background metric structure), and thus it gives a quantum descriptions of geometrical
notions, such as area or volume. Loop Quantum Gravity is a framework of canonical
quantisation, thus it provides a Hilbert space of quantum states over the configura-
tion space of General Relativity together with an evolution operator - the Hamiltonian
constraint. There are attempts to incorporate matter fields to Loop Quantum Gravity
framework ([1], chapter 12) and to construct Dirac observable for its states (for example
[2, 3]), however, since these problems are not related to this thesis, we do not explain
them in this introduction. The issues related to the subject of the thesis are presented
in section §1.1.

Spin-foam models give a formalism to calculate transition amplitudes for theories
of dynamical connections. They are based on a concept of discretisation of the path
integral formula. The discretisation leads to operators acting on states, that can be
interpreted as kinematic states of Loop Quantum Gravity. An appropriate choice of
interaction amplitude makes Spin-foam models a discretised version of a theory with the
action equivalent to the action of Loop Quantum Gravity - thus the Spin-foam transition
amplitudes are considered to describe the quantum evolution of Loop Quantum Gravity
states. The introduction to Spin-foam models covering the points that are necessary in
the further chapters of this thesis is presented in section §1.2.

This chapter is a brief introduction rather then a technical review of the subject.
Detailed derivations and proofs are omitted. No discussion on former dead-ends of the
research is given. The point of this chapter is to give the background to understand the
further ones. Moreover, no open issues of the theory are discussed here. The presentation
of the problems that were addressed in this thesis can be found in chapter 2.

All the mathematical conventions used in this thesis can be found in Appendix A.
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1.1 Loop Quantum Gravity as canonical quantisation of Gen-
eral Relativity

Loop Quantum Gravity (LQG) is a promising attempt to quantise General Relativity. It
started being developed in 1980’s based on a discovery of new convenient variables that
can be used to describe gravitational field [4, 5]. It is based on canonical quantisation
framework.

Loop Quantum Gravity was widely described in several review papers and books, for
example [6, 1]. This section is to provide a brief historical and technical review of the
field, that is necessary to understand the further parts of the thesis. It is based mainly
on [6].

The subsection 1.1.1 briefly recalls the way from Einstein’s formulation of General
Relativity to Ashtekar Variables for Gravity. The subsection 1.1.2 describes the kinematic
Hilbert space of quantum states of Loop Quantum Gravity. Finally the subsection 1.1.3
presents the basic issues of quantum dynamics of the theory in it’s canonical approach.
The path-integral approach to the dynamics of LQG is described in section §1.2.

1.1.1 General Relativity as a theory of dynamical connections

General relativity was originally formulated as a theory of a pseudo-metric field gµν on a
4-dimensional Riemannian manifold M [7]. There were many attempts to quantise the
field gµν itself or to decompose it into a perturbation around a flat metric gµν = ηµν+hµν ,
but none of them succeeded. Thus LQG is an attempt to quantise it using the canonical
formalism.

The canonical formalism for General Relativity was given by Arnowitt, Deser and
Misner [8, 9]. The gravitational field is expressed in terms of a metric tensor qab on a
3-dimensional manifold Σ and its conjugate momentum πab. An attempt to quantise
such theory was done by deWitt in [10]. However, within this formalism there was never
found a kinematic Hilbert space of the theory [11].

Instead of considering a metric tensor as a dynamical field of General Relativity one
may consider a tetrad of 1-forms eI and a connection ωIJ , as it was done in Plebański
formalism [12]. Such approach with a slightly modified action [13] leads to new variables
for General Relativity, known as Ashtekar Variables [4, 5].

In this subsection we start with a brief recall of the ADM formalism (in subsec-
tion 1.1.1.1), then we present the connection formalism (subsection 1.1.1.2) and finally
we introduce the Ashtekar variables for General Relativity (subsection 1.1.1.3).

1.1.1.1 Canonical formulation of General Relativity - ADM formalism

The Einstein-Hilbert action for General Relativity is given by

S =
1

2κ

ˆ
M

√
−det (g)

(4)

R (1.1)

where
(4)

R is the Ricci scalar of the metric tensor gµν and κ = 8πG (we assume g has the
signature (−,+,+,+)) [14, 7].

Consider a foliation of the manifoldM = R × Σ into 3-dimentonal Cauchy surfaces
Σ. Let nµ be a timelike vector generating this foliation, so that for each t ∈ R the
space {t} × Σ is the 3-submanifold ofM orthogonal to nµ at each point. Let qab be the
restriction of the metric tensor gµν , i.e. q = g|Σ (the Latin indices from the beginning
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of the alphabet a, b, c, · · · will be used for manifold directions parallel to Σ, the Greek
indices µ, ν, · · · will be used for manifold directions in wholeM). Let us introduce three
more fields: a density πab, a scalar N and a vector Na. The density density is defined as

πab := −√q
(
Kab − qabK

)
(1.2)

where Kab := 4∇(anb) is the second fundamental form of qab (i.e. the external curvature
of q, the covariant derivative 4∇ is taken with respect to 4-dimensional metric g) and
K = Kabqab. The fields N and Na are such that

gµν =

(
−
(
N2 −NaN

a
)

Na

Na qab

)
(1.3)

where NaN
a = qabN

aN b. Then the Einstein-Hilbert Lagrangian can be expressed as

L =
√
−g

(4)

R = −qab∂0π
ab −NC −NaCa − 2∂a

(
πabNb −

1

2
πNa +

√
det (q)∇aN

)
(1.4)

where π = πabqab, Ca := −2∇bπab and

C = −
√

det (q)

[
R+

1

det (q)

(
1

2
π2 − πabπab

)]
(1.5)

with R being the Ricci scalar for q metric and all covariant derivatives taken with respect
to q (see [8, 9]).

The last term is the divergence of a vector field, thus it can be integrated by parts
to a boundary term (which vanish for Σ without boundary or for asymptotically flat
gravitational field). The terms N and Na are Lagrange multipliers, because no time-
derivatives of them appear in the Lagrangian. Thus the terms C and Ca are constraints
of the theory (called scalar and vector constraint respectively).

Applying the Legendre transform to (1.4) we obtain the ADMHamiltonian for General
Relativity

H =

ˆ
Σ

d3x [N (x) C (x) +Na (x) Ca (x)] (1.6)

1.1.1.2 Palatini action for General Relativity

An alternative way to define General Relativity is to consider a tetrad of one-forms
e :=

(
eI
)
I=0,...,3

instead of the metric field gµν . Assuming, that the one-forms form a
coframe (i.e. for each point the form dV = εIJKLe

I ∧ eJ ∧ eK ∧ eL 6= 0 for εIJKL
being the alternating tensor) the relation to the metric formulation is as follows: let
ηIJ = diag (−1, 1, 1, 1), then g = ηIJe

I ⊗ eJ . Given a coordinate system (xµ) we have
eI = eIµdxµ and thus gµν = ηIJe

I
µe
J
ν . Now let ΓIJ be the connection one-form of the

Levi-Civita connection of the metric g and let ΩI
J be the curvature 2-form of ΓIJ . Then

the action
S [e] =

1

4κ

ˆ
M
eI ∧ eJ ∧ ΩKL [e] εIJKL (1.7)

imposes (via variational principle) Einstein equations on the metric gµν .
The action (1.7) is called second-order tetrad action, since the equations it imposes

on the fields are of second order. There is a physically equivalent, but mathematically
different formulation, called first order. Consider an action

S [e, ω] =
1

4κ

ˆ
M
eI ∧ eJ ∧ ΩKL [ω] εIJKL (1.8)
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depending on the tetrad field and a kinematically independent field ωIJ . Vanishing of
variation of the action (1.8) with respect to ω impose the requirement, that the curvature
form is flat, while vanishing of variation of S [e, ω] with respect to e requires ω to be a
connection compatible with the metric g = ηIJe

I⊗eJ . These two conditions put together
makes 1st order the Palatini formulation of General Relativity physically equivalent to
Einstein’s General Relativity [15].

1.1.1.3 Ashtekar Connection

Let us now introduce another variables. Consider the manifold M foliated as R × Σ.
The 3-dimensional metric is q = g|Σ = ηije

i⊗ ej , where the small indices i, j = 1, 2, 3, so
ηij = diag (1, 1, 1), and the frame ei is the projection of the frame eI at Σ, i.e eia = Pαa P

i
Ie
I
α

for Pαa and P iI being appropriate projections1. Let us define the following two fields at
Σ:

• a connection A = Γ + γK (for Γ being the Levi-Civita connection of q and K
being the extrinsic curvature of Σ and γ being a real positive number - called the
Barbero-Imirzi parameter),

• a triad of vector densities Ei =
√

det (q)ei.

It was shown [6, 5, 4] that there is a canonical transformation between (A,E) and (q, π)
fields. Moreover, the fields (A,E) can be obtained from a canonical analysis of the action
(1.8) modified by a so called Holst term [13]:

SHolst [e, ω] =

ˆ
M

(
1

4κ
eI ∧ eJ ∧ ΩKL [ω] εIJKL −

1

2κγ
eI ∧ eJ ∧ ΩIJ [ω]

)
(1.9)

The Holst term does not change the classical dynamics, because it vanishes on the solution
of equation of motion generated by the action (1.7), so the action (1.9) describes the same
physical theory, as the Palatini action, and thus it is Einstein’s General Relativity, but
expressed in different variables.

The connection A is called the Ashtekar connection and the triad E is it’s canonically
conjugated momentum. The momentum E can be expressed in coordinates as

Eai =
√

det (q)eai (1.10)

where ei = eai ∂a is a triad of vector fields dual to ei = eiadx
a, i.e eiaeaj = δij and e

i
ae
b
i = δba.

The Ashtekar connection can be also expressed in coordinates. Let n = nα∂α := eα0∂α
be a tangent vector field normal to Σ at each point, then the external curvature map is
Kb
a = P bβ

(
Pαa

4∇α
)
nβ , and the external curvature tensor is Ki

a = Kb
ae
i
b. The Levi-Civita

connection is given by the one-form valued in so(3),2 i.e. Γ = Γadx
a = Γ i

a jdx
awiw

j

(for wi, wj being the basis vectors in R3 and
(
R3
)? respectively). A choice of basis

τi in so (3) gives a map so (3) → R3, i.e. so (3) 3 X = Xiτi 7→ Xiwi ∈ R3. The
1Let

(
x̃α
)
α=0,1,2,3

be a coordinate system on M and (xa) be a coordinate system on Σ, then
Pαa := dx̃αy ∂

∂xa
. Let (vI)I=0,1,2,3 be a basis of the fibre vector space R4 over M and let (wi)i=1,2,3

be a basis of the R3-subspace of the fibre, being the fibre over Σ, then P iI = vIη
ijwj . For simplicity we

assume, that P i0 = 0 and P iI = δiI .
2In fact it takes values in the anti-hermitian Lie algebra s0 (3)A = ı̇so (3) - see Remark A.3 in

Appendix A.2.1.3. Similarly when saying, that the Ashtekar connection takes values in su(2) we mean
su(2)A. Since the hermitian and anti-hermitian Lie algebras g and gA are isomorphic, the choice is only
the matter of convention.
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antisymmetric tensor εijk together with the metric ηij indicates the choice of basis via
τi = εijkw

kwlη
jl = ε ji kwjw

k. One can decompose Γ in the τi basis obtaining Γa = Γiaτi.
So that finally the Ashtekar connection is A = Aiadx

aτi with

Aia = Γia + γKi
a (1.11)

The Poisson bracket between A and E is{
Aia (x) , Ebj (y)

}
= κγδijδ

b
aδ (x, y) (1.12)

In the original General Relativity the connection ω is SO (1, 3)-connection. In order
to admit coupling the gravitational field with fermionic fields one can consider the spin-
connection, i.e. connection of the gauge group being the universal cover of SO (1, 3),
namely a SL(2,C)-connection. When doing the canonical analysis one picks a timelike
vector n ⊥ Σ, which selects a SU(2) subgroup of SL(2,C), that does not change the
vector n (namely the little group of n). The Ashtekar connection can be naturally treated
as SU(2)-connection. Indeed, although the Levi-Civita connection is SO (3)-connection,
the Lie algebra so (3) is isomorphic to su(2). One can choose a basis τi = τ Ai Bw

BwA in
su(2) ≡ so (3) (where wA and wB are the basis vectors of C2 and

(
C2
)? respectively) and

identify the components of the spin-connection by decomposing Γ in the 3-dimentional
representation of τi.

1.1.2 Spin-network states

Spin-network states form the basis in the kinematic Hilbert space of Loop Quantum
Gravity. They are complex functionals on the space of Ashtekar connections, and since
the space of Ashtekar connections is the configuration space of Ashtekar formulation of
General Relativity, spin-network states are wave-functions in the Schrödinger picture.
Spin-network states represent singular configurations of the gravitational field i.e. they
are eigenstates of quantum Ebj operator, and thus, because of Heisenberg uncertainty
principle, they give infinite uncertainty of the conjugate observable.

In this subsection we present a construction of spin-network functions. First in sub-
section 1.1.2.1 we study quantum kinematics of a free particle on a Lie group. This gives
us a starting point to introduce spin-network functions, which are appropriate collections
of wave-functions on many copies of a group (see subsection 1.1.2.2). In subsection 1.1.2.3
we introduce basic quantum operators acting on spin-network states, which leads us in
subsection 1.1.2.4 to the physical interpretation of these states.

1.1.2.1 Quantisation of a free particle on a group

Consider a free particle on a configuration space G being a compact Lie group [6]. In
order to quantise it let us consider a Hilbert space HG := L2 (G,dµ), where dµ is the
Haar measure.

From the Peter-Weyl theorem we know, that HG =
⊕

ρ

(
Hρ ⊗H?ρ

)
where the sum

goes through all the irreducible representations ρ of G and each Hρ is the carrier space
of the corresponding representation. A natural basis in HG is given by vectors

ψBA,ρ = |eA〉 〈eB|ρ ∈ Hρ ⊗H
?
ρ (1.13)

for eA, eB - an orthonormal basis in Hρ. Considered as a wave functions on G they act
as

ψBA,ρ (g) := 〈eB| ρ (g) |eA〉ρ = ρBA (g) (1.14)

which we shell often denote as 〈eB| ρ (g) |eA〉ρ =: 〈eB| g |eA〉ρ.

11



Quantum observables of such particle are generated by the operators X̂i and f̂ :

• Given an arbitrary smooth function f : G → C we define an operator (possibly
unbounded) f̂ acting as follows: let ψ ∈ HG, then

f̂ : ψ 7→ fψ (fψ) (g) = f (g)ψ (g) (1.15)

For G-compact all such operators are bounded operators. We call such operators
position operators. Indeed, for f being a matrix element of G in defining represent-
ation the wave-function is multiplied by coordinates, and each other function is a
function of these matrix elements.

• Given the Lie algebra g of G and a basis Xi of g let XL
i be the left-invariant vector

field on G. The operators X̂i act on a function ψ (g) via the Lie derivative in
direction Xi:

X̂iψ (g) := ı̇LXL
i
ψ (g) (1.16)

for the basis functions ψAB,ρ the action of X̂i can be expressed in terms of the
representation ρ:

X̂iψ
B
A,ρ (g) = ı̇LXL

i
ψBA,ρ (g) = ψBC,ρ (g)Tρ (Xi)

C
A (1.17)

where Tρ is the representation of g tangent to ρ. The operators X̂i are considered
momenta operators. Indeed, they are differentiations with respect to position on
G.3

Given two functions f and f ′, the commutator[
f̂ , f̂ ′

]
= 0 (1.18)

The commutator of X̂i operators is given by the commutator of the Lie algebra g elements:[
X̂i, X̂j

]
L2(G)

= ̂[Xi, Xj ]g (1.19)

The commutator of f̂ and X̂i operators is given by the action of X̂i on the function f :[
X̂i, f̂

]
= ı̇

̂(
LXL

i
f
)

(1.20)

An important operator in HG is the Casimir operator. It is given by

X̂2 := X̂iX̂jk
ij (1.21)

for kij being a G-invariant metric tensor (for example the Killing form).
3Here we choose the convention in which for a unitary representation ρ of a group G the Lie algebra

is represented by hermitian operators Tρ (g). One can as well choose the convention in which the Lie
algebra is represented by anti-hermitian operators - we would denote it by gA 3 XA, such that(

Tρ
(
XA
))†

= −Tρ
(
XA
)

In the anti-hermitian convention the X̂i operator would act as

X̂iψ
B
A,ρ (g) = ı̇ψBC,ρ (g)Tρ

(
XA
i

)C
A

The difference between the hermitian and anti-hermitian convention is in the choice of the exponent map
from g to G: in the hermitian convention it is g 3 X 7→ eı̇X ∈ G, while in the anti-hermitian convention
it is gA 3 XA 7→ eX

A

∈ G. It is discussed with more details in Appendix A.2.1.3.
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If G = SU(2), the representations ρ can be labelled by half-integer spin-labels (i.e.
j ∈ Z+

2 ∪ {0}). The basis in the Lie algebra su(2) is given by (Li)i=1,2,3 being generators
of rotations. The Casimir operator is

L2 =
3∑
i=1

L2
i (1.22)

and it’s eigenspaces are spanned by the matrix elements ψAB,j of the representations j:

L̂2ψAB,j = j (j + 1)ψAB,j (1.23)

1.1.2.2 Spin-network states as quantum states for general relativity

Consider now a manifold Σ equipped with a SU(2)-connection A. Given a graph G
embedded in Σ one can calculate a holonomy of A along G (see Appendix A.3.3.1):

HolG : A 7→ (U`1 [A] , . . . , U`2 [A]) ∈ SU(2)LG (1.24)

For each link ` ∈ LG we introduce a Hilbert space H` = L2 (SU(2)), as it was discussed
in previous subsection, obtaining L2

(
SU(2)LG

)
=
⊗

`∈LG H`. As it is shown in Ap-
pendix A.3.3.1, the gauge transformations act on HolG [A] only at the nodes of G and the
space of gauge-invariant holonomies along G is SU(2)LG/SU(2)NG . Wave functions on
such configuration space form a Hilbert space HG = L2

(
SU(2)LG/SU(2)NG

)
.

In the Appendix A.3.3.2 we recalled the structure of the Hilbert space HG . The
orthonormal basis in HG is given by so called spin-network functions:

NG.j`,ιn
(
{U`}`∈L

)
=
∏
`∈L

√
2j` + 1Dj` (U`)

m`−
m`+
·
∏
n∈N

ιn
m
`+1
···m

`+
k

m
`−1
···m

`−
l

(1.25)

for j` - a collection of spin-labels (one per each link of G), ιn - a collection of SU(2)-
invariant tensors (belonging to appropriate Hilbert space Hn called node-Hilbert space,
one per each node of G) and Dj (U)-Wigner matrices. We will study interpretations of
these states later.

If the connection A is the Ashtekar connection, the holonomy HolG [A] captures a finite
number of degrees of freedom of the gravitational field. One could imagine a singular
configuration of the gravitational field, such that the connection A vanishes everywhere
outside the graph G - given such constraints the holonomy HolG [A] would capture all
degrees of freedom of A and the kinematic Hilbert space of a quantum theory of such
connections should be HG .

In order to capture all degrees of freedom of physical field configurations, one has to
consider all possible graphs embedded in all possible ways in Σ. Moreover, two different
graphs that overlap at least a part of a link cannot be considered separately, because the
same degree of freedom would be counted twice, thus the kinematic Hilbert space cannot
be simply

⊕
G HG . The kinematic Hilbert space of quantum states is the closure of the

inductive limit of graph Hilbert spaces (being dual to the projective limit presented in
[16]):

HLQG = lim
G→
⊃
∞
HG (1.26)

The projective limit is defined as follows. Let us introduce the following partial order on
graphs: the graph G is later then G′ if G ⊃ G′. Obviously two graphs G1,G2 might be
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incomparable, if they have nonintersecting parts, but there is always a graph later than
both G1 and G2, namely G1 ∪ G2. Each Hilbert space HG is a subspace of the projective
limit. For each Hilbert space state HG there is a unique injection map into each HG′ for
G′ later then G, namely each wave-function ψ ∈ HG has its equivalent ψ̃ ∈ HG′ being a
function that depends only on these holonomies, that are along the links common for G
and G′. Each element of HLQG is a linear combination of elements of HGs or is a limit of
a Cauchy series of such elements.

Let A be the space of all SU(2)-connections on Σ. The kinematic Hilbert space of a
quantum theory of Ashtekar connection should be L2 (A,dµ) for an appropriate measure.
It was proven [17], that there is a unique measure dµAL on A (called the Ashtekar-
Lewandowski measure), that is diffeomorphism invariant and that is compatible with the
action of the group. It is precisely the one, that is induced by the HLQG Hilbert space.
Thus the spin-network states form an orthonormal basis of kinematic Hilbert states of
Loop Quantum Gravity.

1.1.2.3 Quantum operators

In order to define a quantum theory one has to introduce the algebra of canonical oper-
ators on the kinematic Hilbert space. In case of Loop Quantum Gravity these operators
are the flux of a triad E and the holonomy of a connection A. We shall describe them
for a connection defined on a graph (i.e. for HG), because generalisation of their action
to the whole HLQG is straightforward.

Recalling, that HG inherits its structure from
⊗

`∈LG H
G
` , the operators acting on

HG should be functions of group elements and acting of left-invariant fields. Indeed, the
algebra of operators on HG is spanned by f̂ (U`) and L̂i,`. They act intuitively: given
ψ ∈ HG we have

(
f̂ψ
)

(U`) := f (U`)ψ (U`) and the operator L̂i,` is a Lie derivative
applied to U` argument of ψ.

The operators of a connection A (x) and of a triad E (y) are ill defined on HG [18].
One has to considered smeared operators. The connection A has to be smeared along a
path `, obtaining U` [A]. Quantum operator representing this quantity is Û` [A] which is
obviously one of f̂ (U`) operators. The triad has to be smeared along a surfaces S and it
was shown [18], that the corresponding operator is proportional to L̂i,` if the S crosses
the link ` and gives 0 if it does not. To be precise: let ~n be a vector normal to the surface,
then ˆ

S
Êiy~ndS = ~κγ

∑
`∈LG :`∩S 6=∅

L̂i,` sgn
(
~n · ~̀

)
(1.27)

for ~l being the velocity vector of the link `. We will also introduce a shortcut notation
for a triad operator smeared along a surface crossing only one link: Êi,` := ~κγL̂i,` .

One can easily calculate the commutator of Û` and Êi,`′ . It can be simply derived
from the fact, that U` is in fact a (very simple) spin-network function, thus[

Û`, Êi,`′
]

= −Êi,`′ (U`) (1.28)

For ` 6= `′ we have obviously [
Û`, Êi,`′

]
= 0 (1.29)

For ` = `′ we have [
Û`, Êi,`

]
= −~κγL̂i,` (U`) (1.30)

14



1.1.2.4 Physical interpretation of spin-network states.

The constant in front of the triad operator ~κ has units of squared length. In fact it
equals precisely ~κ = 8π`2Pl. Thus the triad operator is a natural candidate to introduce
geometric interpretations of spin-network states. Two basic geometric operators (area
and volume) were quantised in [19] and [20]. They commute and thus they generate the
physical quantum numbers for states of Loop Quantum Gravity. We discuss them below.
The length and angle operators were introduced later [21, 22].

All the operators are considered for a spin-network state on a fixed graph G. The
generalisation to whole HLQG space is straightforward.

Area
The area of a surface S is SS :=

´
S
√

det (q|S). Remembering, that matrix elements
of q can be expressed in terms of the triad field E one can derive

SS = γ

ˆ
S

(√
EiEjkijy~n

)
dS (1.31)

for ~n - the vector normal to the surface. To find the quantum area operator one regularise
the operator by dividing S into little fragments, so that each fragment has at most one
intersection point with the graph G. Since quantum Êi operator is proportional to L̂i,
the integrand can be quantised as the Casimir L̂2

` . At the end of the day the quantum
area operator acting on a spin-network state is

ŜS = γ
∑

`∈LG :`∩S6=∅

√
Êi,`Êj,`kij = 8πγ`2Pl

∑
`∈LG :`∩S6=∅

√
L̂2
` (1.32)

Since the spin-network states NG,j`,ιn are eigenstates of the Casimir operator L̂2
` , one

can easily see the area of a surface for the singular configuration of the gravitational field
given by NG,j`,ιn :

ŜS |NG,j`,ιn〉 = 8πγ`2Pl

∑
`∈LG :`∩S6=∅

√
j` (j` + 1) |NG,j`,ιn〉 (1.33)

So only these surfaces, that intersect the links of G has any area, and each link contributes
a quantum of area equal to 8πγ`2Pl

√
j` (j` + 1). Moreover, since there is a minimal non-

zero eigenvalue of the Casimir operator (for spin j = 1
2), there is also a minimal eigenvalue

of the area operator, equal to
a0 = 4

√
3πγ`2Pl (1.34)

The details of this derivation can be found in [19].
This leads us to conclusion, that the physical area is concentrated at the links of

spin-network states.

Volume
Given a region R ⊂ Σ its volume is given by VR =

´
R
√

det (q). Again one can express
it in terms of triad field as VR =

´
R
√

det (E). Regularisation and quantisation of this
expression (done in [20]) leads to an operator

V̂R =
∑
x∈R

√
|q̂x| (1.35)
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where the operator

q̂x =
1

48

∑
`,`′,`′′

εijkε(`, `′, `′′)Êi,`Êj,`′Êk,`′′ (1.36)

where ε (`, `′, `′′) is the orientation of the triad of velocity vectors of these links and the
sum goes through all the germs of links crossing the point x. Obviously the operator
gives o for points with no links as well as for the points with one link - thus two germs
of link. Thus the operator q̂x vanishes for all points that are not nodes of G, so

V̂R =
∑
n∈NG

√
|q̂n| (1.37)

Given a spin-network state NG,j`,ιn one can consider a region containing only one node.
Then obviously the operator V̂n acts only on the tensor ιn. It was shown, that for a
3-valent node it gives always identically zero, but it acts nontrivially for 4- and higher
valent nodes.

One can introduce a basis of eigenstates of V̂R, for example ιv1 , ιv2 , . . .. However, the
exact form of these eigenstates (or their eigenvalues) is not known yet. Nevertheless, we
conclude that the physical volume is concentrated at the nodes of spin-network states.
It is expected (but not proven), that there is also a minimal nonzero eigenvalue of V̂n,
similarly to the area operator.

Volume operator commutes with the area operator.

Geometric interpretation of a spin-network
Knowing the action of volume and area operators the following picture of quantum geo-

metry represented by a spin-network state arises. Consider a spin-network state NG,j`,ιn
with each ιn being an eigenstate of the V̂n. Each node n ∈ NG represents a quantum
polyhedron of volume given by the eigenvalue of ιn, with the number of faces given by
the number of links incident to n and each face having the area S` = 8πγ`2Pl

√
j` (j` + 1).

Two polyhedra share a face if there is a link between corresponding nodes.
One can introduce length and angle operators by similar procedures [21, 22]. Since

they are not necessary in later part of this thesis, we do not discuss here.

1.1.3 Dynamics of Loop Quantum Gravity

Dynamics of Loop Quantum Gravity can be obtained by canonical analysis of the Holst
action (1.9). It was presented in for example in [6, 1]. The canonical analysis gives

SHolst =

ˆ
dt

ˆ
Σ

d3x
(
Eai LtAia − ΛiGi −NaCa −NC

)
(1.38)

where Λi, Na and N are Lagrange multipliers, thus Gi , Ca and C are constraints. The
constraints are called: Gauss constraint, diffeomorphism constraint and scalar constraint,
respectively. They are shortly discussed in what follows.

The constraints provide the dynamics for the classical theory. Quantising them is
one of the most important open issues of Loop Quantum Gravity. Several strategies
were already addressed with promising results [23, 24, 25, 26, 27], however, none of them
leads to a computable theory (we are not going to discuss this issue further because it is
loosely related to the topic of the thesis). It was one of the reasons to set up an alternative
framework, namely the spin-foam models, described in section §1.2.
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1.1.3.1 Gauss constraint

The Gauss constraint Gi equals

Gi = ∂aE
a
i + εkijA

j
aE

a
k (1.39)

which can be shortly written as Gi =
(A)

∇Ei. So vanishing of this constraint imposes the
condition

(A)

∇E = 0 (1.40)

It ensures, that the theory is invariant under local SU(2)-transformations. This constraint
was absent in the ADM formulation of General Relativity, however it is present in theories
of dynamical connections [28]. It forces the triad to be divergence-free and it reduces the
dimension of the phase space of connections so that it is equal to the dimension of phase
space of metric tensors.

In quantum theory this constraint is solved by applying local SU(2)-symmetry, which
leads to considering only gauge-invariant spin-network states (see subsection 1.1.2.2).

1.1.3.2 Diffeomorphism constraint

The diffeomorphism constraint is

C̃a = EbiF
i
ab +

1 + γ

γ
Ki
aGi (1.41)

which (for the Gauss constraint satisfied) is equivalent to

Ca = Ebi
(A)

∇aA
i
b (1.42)

which generates diffeomorphism of fields on Σ.
This constraint is solved in quantum theory by averaging spin-network states |NG〉

over all possible diffeomorphisms of φ of Σ. Each diffeomorphism defines a unitary map
acting by transforming the underlying graph:

Uφ : |NG〉 7→
∣∣Nφ(G)

〉
(1.43)

Averaging a state |NG〉 over all possible diffeomorphisms φ ∈ Diff (Σ) results with a vector
which is not normalisable in HLQG. However, it is a well defined element of the space
of linear (but unbounded) maps HLQG → C. We denote it as (NG | and call it abstract
spin-network state. Abstract spin-network states act on an arbitrary spin-network as
follows: given a spin-network N ′G′ if there is a diffeomorphism φ such that φ (G) = G′,
then (NG |

∣∣N ′G′〉 = 〈UφNG |
∣∣N ′G′〉, otherwise (NG |

∣∣N ′G′〉 = 0. All the operators defined on
HLQG can act on abstract spin-network states by duality: given Â : HLQG → HLQG we
have Â† : (NG | 7→

(
ÑG
∣∣∣ such that

(
ÑG
∣∣∣ ∣∣N ′G′〉 = (NG | Â

∣∣N ′G′〉.
Spin-network states are labelled by embedded graphs G ⊂ Σ. Abstract spin-networks

are labelled by abstract graphs G, i.e. equivalence classes of all graphs that can be mapped
one to another via a diffeomorphism.
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1.1.3.3 Scalar constraint and the Hamiltonian constraint

Scalar constraint is given by

C̃ =
Eai E

b
j

2κ
√

det (q)

[
εijk F

k
ab −

(
1 + γ2

)
2Ki

[aK
i
b]

]
+
(
1 + γ2

)
∂a

(
Eai√

det (q)

)
Gi (1.44)

Assuming the Gauss constraint satisfied it simplifies to

C =
Eai E

b
j

2κ
√

det (q)

[
εijk F

k
ab −

(
1 + γ2

)
2Ki

[aK
i
b]

]
(1.45)

This constraint generates the time evolution of Loop Quantum Gravity. Indeed,
applying the Legendre transform to the Holst action (1.38) we obtain the Hamiltonian

H =

ˆ
Σ

d3x
(
ΛiGi +NaCa +NC

)
(1.46)

Assuming that we can quantise these operators, we would obtain

Ĥ =

ˆ
Σ

d3x
(

ΛiĜi +NaĈa +N Ĉ
)

(1.47)

Consider now an abstract, gauge-invariant spin-network state (NG |. Obviously Ĉa (NG | = 0
and Ĝi (NG | = 0, so

Ĥ (NG | =
ˆ

Σ
d3xN (x) Ĉ (x) (NG | (1.48)

thus quantisation of the scalar constraint is essential to understand the Hamiltonian
constraint of Loop Quantum Gravity.

There were several attempts to regularise and quantise this constraint (for example
[23, 29, 30, 24, 27]). However, the operator obtained as a result is hard to apply even
to relatively simple quantum states. Nevertheless, there is an alternative, path-integral-
based approach to describe dynamics of Loop Quantum Gravity, namely the spin-foam
models.

1.2 Spin-foams as a way to calculate transition amplitudes
of Loop Quantum Gravity

In this section we shall briefly present the spin-foam models being an alternative way to
describe the dynamics of Loop Quantum Gravity. The spin-foam models, starting from
another approach to quantisation of classical theories, end up with a theory analogous to
Loop Quantum Gravity at the kinematic level, but with a build in path-integral formula
for quantum amplitudes.

In subsection 1.2.1 we briefly discuss the relation between spin-foams and Loop
Quantum Gravity providing a little historical and conceptual introduction to the the-
ory. In subsection 1.2.2 we present the EPRL model, being currently the most popular
one, and being the base to most of the calculation in this thesis. In subsection we discus
some technical issues of the EPRL model.
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1.2.1 Spin-foams as another way to approach dynamics of Loop Quantum
Gravity

The Loop Quantum Gravity provide a beautiful formalism to describe the kinematics of
quantum theory of dynamical connections. It also gives tools to describe its dynamics,
but solving the evolution equations appeared to be a difficult problem. Some attempts
to derive the path-integral formalism from the Hamiltonian constraint of Loop Quantum
Gravity were made - and they are briefly recalled in subsection 1.2.1.1, but they did not
succeed so far.

However, there was another attempt to quantise a theory of dynamical connection,
called the BF -theory - described in subsection 1.2.1.2. The BF -theory is a topological
theory, not capturing the differential degrees of freedom of General Relativity. Neverthe-
less it gave a starting point to the concept obtaining the General Relativity by imposing
so called simplicity constraints on the B-field of the BF -theory (see subsection 1.2.1.3
and [12]), which lead to a path-integral formulation of a theory with the Holst action -
which is precisely the action of Loop Quantum Gravity.

1.2.1.1 Motivation I: Spin-foam as a history of a spin-network

Problem of time
The Hamiltonian in General Relativity is in fact a constraint (see (1.6)). Thus time

evolution in GR is a gauge transformation. This leads to so called problem of time in
General Relativity, which can be solved by for example coupling gravity with a matter
field (we call it clock field and denote by T ) of appropriate properties (see for example
[31, 2, 32]) which adds to the Hamiltonian constraint a term ∂2

T , so that

0 = H = HGR − ∂2
T +Hmatter (1.49)

which can be solved to
∂T =

√
HGR +Hmatter (1.50)

The field T is called emergent time.
We are not going to discuss the framework of emergent time here. However, the

problem of time leads to the following conclusion. If one does not use the emergent time
framework, the time evolution in the coordinate time is a gauge transformation, and thus
the traditional interpretation of quantum transition amplitudes

Wψinψout (t) = 〈ψout| e−
ı̇Ĥt
~ |ψin〉 (1.51)

is not valid. Instead of evolution operator e−
ı̇Ĥt
~ one has to consider the projection on

the kernel of the Hamiltonian:

Wψinψout = 〈ψout| P̂ |ψin〉 = lim
T→∞

〈ψout| e−ĤT |ψin〉 (1.52)

History of a spin-network
In order to evaluate matrix elements of the P̂ operator (1.52) one can perform a similar

procedure, as when deriving a path integral in ordinary quantum mechanics.
The exponent in the transition amplitude is−ĤT = −

´ T
0 dt

´
d3x Ĥ (x) = −

´ T
0 dt Ĥ.

Using diffeomorphism invariance one can set T = 1 obtaining

Wψinψout = 〈ψout| e−
´ 1
0 dt Ĥ |ψin〉 (1.53)
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Figure 1.1: A scheme of action of Loop Quantum Gravity Hamiltonian on a node of a
spin-network state (based on [33]).

Then one can split the “time” period into N intervals and insert N copies of identity
operator

Wψinψout = 〈ψout|1e−
Ĥ
N 1e−

Ĥ
N 1 · · ·1e−

Ĥ
N 1 |ψin〉 (1.54)

Note, that the identity operator is a sum over all spin-network states 1 =
∑
N |N ) (N|,

not an integral. Thus the amplitude is

Wψinψout =
∑

{Ni}i=0,...,N

〈ψout| |N0〉 〈NN | |ψin〉 ·
N−1∏
i=0

A
(N)
i (1.55)

for A(N)
i = 〈Ni| e−

Ĥ
N |Ni+1〉. So the transition amplitude is given by a (discrete) sum over

histories (each history given by a series of spin-networks) weighted by amplitude factors,
not by an integral. For N � 1 the operator e−

Ĥ
N can be approximated by 1− Ĥ

N +O
(

1
N2

)
,

so that each path can be approximated by a sum of the path with one less change of state
and a matrix element 〈Ni| Ĥ |Ni+1〉. Thus the sum over histories can be decomposed into
parts with precisely M changes of the state:

WN
ψinψout

=
∞∑

M=0

(
− 1

N

)n ∑
{Ni}i=0,...,M

〈ψout| |N0〉 〈NM | |ψin〉 ·
M−1∏
i=0

Ai (1.56)

for Ai = 〈Ni| Ĥ |Ni+1〉.
The Hamiltonian operator was analysed in for example in [27] and it was shown, that

it acts only at nodes of spin-network (see figure 1.1). Thus spin-networks contributing to
a transition amplitude must form a series such that each two neighbouring spin-network
have graphs differing either by one node splitting into several new nodes or by some
neighbouring nodes joined into a node. The derivation above is based on[33], taking into
account the remarks of [34].

Such history of spin-networks was called spin-foam, since it may be graphically presen-
ted as a foam (see figure 1.2). One could derive the dynamics of Loop Quantum Gravity
by analysing all such spin-foams, where changes between two neighbouring states are
governed by the Hamiltonian constraint (see for example [29, 30]). However, this would
require detailed analysis of the Hamiltonian constraint, which is far non-trivial. Nev-
ertheless, the concept of spin-foam representation of history of a spin-network leads to
other approaches.
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Figure 1.2: A spin-foam: a history of a spin-network.
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1.2.1.2 Motivation II: BF theory

Let us consider a so called BF -theory, i.e. a theory of a dynamical G-connection ω and
2-form B valued in the lie algebra g. The action of the BF -theory is

S [B,ω] =

ˆ
M
BIJ ∧ FIJ [ω] (1.57)

where F is the curvature 2-form of the connection ω. The path-integral approach says,
that given a boundary state |ψ〉 = |ψin〉 ⊗ |ψout〉 the transition amplitude between |ψin〉
and |ψout〉 is

Aψin→ψout = (Z| |ψ〉 (1.58)

for (Z| being the partition function generalized state, i.e.

ZBF =

ˆ
DBDω e−ı̇

´
M S[B,ω] (1.59)

Integrating over DB gives δ (F [ω]):

ZBF =

ˆ
Dω δ (F [ω]) (1.60)

so the only connections that contribute are the flat connections.
Consider now a triangulation ∆ of a manifoldM. Let the 2-complex4 κ = ∆? be a 2-

complex dual to the triangulation ∆ (see Appendix A.1.2.6). One can discretise the path
integral (1.60) as follows. Given two neighbouring 4-simplices s1 and s2 let v1 and v2 be
their middle points (i.e. their equivalents in κ = ∆?). The 2-simplices s1 and s2 share a
tetrahedron θ, which is represented by an edge e in κ. Let ge be the holonomy of ω along
this edge (let us fix an orientation of each edge of κ, obviously the holonomy calculated in
the opposite direction is g−1

e ). These holonomies will determine our discretised connection
ω, so the integral

´
Dω will be substituted by

´ ∏
e dge. Now consider a triangle t of ∆

(and its dual face f ∈ κ). It is shared by a number of tetrahedra θi, such that the edges
dual to them form a cycle e1, e2, . . . , ek. One can consider a holonomy gf around this
face being the holonomy along the loop e1, e2, . . . , ek. Let us introduce a notation ge,f
being the holonomy along e calculated in the direction induced by the orientation of the
face (obviously ge,f = ge if the orientation of e induced by f agrees with the orientation
of e we fixed above, and ge,f = g−1

e in the opposite case).
Since the connection ω must be flat, the holonomy must be trivial. Thus let us

introduce the discretised partition function

Z∆
BF =

ˆ ∏
e

dge
∏
f

δ (ge1,fge2,f · · · gek,f ) (1.61)

The integral goes over all internal edges of the 2-complex κ, so that the partition function
becomes a function of the holonomies along the boundary links of κ:

Z∆
BF = Z∆

BF (g`) (1.62)

the boundary of κ is a graph with naturally induced structure of a spin-network. Thus
for arbitrary spin-network state N defined at ∂κ the transition amplitude is

A (N ) :=

ˆ ∏
`∈∂κ

dg`N (g`)Z
∆
BF (g`) (1.63)

4By 2-complex we mean 2-CW-complex, for simplicity we drop CW- in what follows. For definitions
- see Appendix A.1.2.
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It appears [35], that the partition function is independent on the triangulation and it is
equal to the smooth partition function:

Z∆
BF = Z∆′

BF = ZBF (1.64)

The δ-functional on a group can be represented in Fourier transformed representation
as a sum over irreducible representations:

δ (g) =
∑
ρ

dim (ρ) Tr (ρ (g)) (1.65)

and each integral over a group element can be represented as a projection on irreducible
representations:

ˆ
G

dg

n∏
i=1

ρi (g) = PInv(Hρ1⊗···⊗Hρn) =
∑
ιI

|ιI〉 〈ιI | (1.66)

for ιI forming an orthonormal basis in Inv (Hρ1 ⊗ · · · ⊗ Hρn). This leads to another
representation of the discretised partition function in terms of colorings of elements of
the 2-complex κ dual to ∆:

ZκBF =
∑
{ρf}

∑
{ιe}

∏
f

dim (ρf )
∏
e

|ιe〉 〈ιe|
∏
v

Av (1.67)

where Av is a tensor that contracts the indices of ιes in appropriate way in order to obtain
the δ-functionals present in (1.61) (in case of SO (4)− BF -theory it is 15j-symbol - see
[36]).

1.2.1.3 Concept: constrained BF theory

Note, that the Holst action for General Relativity (1.9) is precisely the BF -action (1.57),
but with a constraint imposed on the B-field, namely

BIJ = εIJKLe
K ∧ eL +

1

γ
eI ∧ eJ (1.68)

Thus one can try to translate this constraint to the language of BF -partition function
and obtain a candidate for a partition function for gravity.

In order to understand the constraint (1.68) let us perform canonical analysis of the
BF -action (see [37]). Let us pick a timelike vector field n = nIeI defining the foliation
of M into Σ, i.e. ny e|Σ = 0. The momentum conjugate to ωIJ is BIJ

∣∣
Σ
. Now note,

that in gravity the gauge group is SL(2,C), thus BIJ is a sl(2,C)?-valued 2-form. A
constraint on B can be thus expressed in terms of SL(2,C)-generators. Let us split B
into generators of the little group preserving the timelike vector n (i.e. rotations) and
the dual part (i.e. boosts). The rotations are

~L := −ny ? B (1.69)

and the boosts are
~K = nyB (1.70)

where (?B)IJ = εIJKLB
KL is the Hodge dual. Applying the condition ny e|Σ = 0 we get

~K = ny ? (e ∧ e) and ~L = −1

γ
ny ? (e ∧ e) (1.71)
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so
~K + γ~L = 0 (1.72)

This is the so called simplicity constraint. They can be solved by the EPRL-map, which
is discussed in the next subsection.

1.2.2 The Spin-foam models

The EPRL spin-foam model is based on the concept presented above, i.e. to impose the
simplicity constraints on the BF -theory. There were several approaches to derive such
model [38, 39, 40, 41, 42, 43, 44, 45, 46], here we present the result known as EPRL-FK
or EPRL-KKL model (based mainly on [43, 42, 41], we will often shortly call it EPRL).

The subsection 1.2.2.1 presents the EPRL-map - the key object in calculating the
vertex amplitude in the model. The subsection 1.2.2.2 shows the general construction of
a spin-foam and a prescription, how to calculate the transition amplitude of a spin-foam.
The subsection 1.2.2.3 presents the interpretation of the spin-foam amplitude as a matrix
element of the evolution operator.

1.2.2.1 The EPRL-map - a solution to the simplicity constraint

The integration over the B-field in (1.61) generates the δ-distribution on a group. The
δ-distribution on a group is given by

δ (g) =
∑

ρ∈Irrep(G)

∑
|v〉ρ∈Hρ

〈v| g |v〉ρ (1.73)

for |v〉ρ being the orthonormal basis in the ρ-representation carrier space Hρ. One can
rewrite it in terms of a big carrier Hilbert space HIrrep(G) =

⊕
ρ∈Irrep(G)Hρ

δ (g) =
∑

|v〉 basis in HIrrep(G)

〈v| g |v〉 = TrHIrrep(G)
(g) (1.74)

The simplicity constraint (1.72) has it’s counterpart in HIrrep(G). Indeed, the Lie
algebra g has a natural action in HIrrep(G). The idea presented in [41, 42, 40, 39] was to
solve the simplicity constraint by replacing the δ-functional by a constraint δ-functional
being the trace on the subspace of HIrrep(G) that satisfy the simplicity constraint. An
attempt to solve this constraint strongly was done [45, 46], but it appeared, that the model
build on such assumption does not capture enough degrees of freedom to be gravity. Thus
in the EPRL model the simplicity constraint is solved weakly.

In case of General Relativity the gauge group is SL(2,C). The unitary irreducible
representations of SL(2,C) are labelled by a pair (p, k) of real positive number p and a
half-integer number k (see (A.4)). Given a timelike vector n there is a SU(2) subgroup
SL(2,C) being the little group not changing this vector. This choice of SU(2) subgroup
introduce a basis in the carrier space of the representation (p, k) such that

H(p,k) =

∞⊕
j=k

H(p,k)
j (1.75)

where the little group SU(2) acts at each H(p,k)
j via the Wigner matrices of spin j (the

spins j differ from k by a an integer number, not a general half-integer). The basis in

24



H(p,k) is given by the vectors |(p, k) , (j,m)〉. Thus an arbitrary matrix element of the
(p, k) representation is

〈g|
∣∣(p, k) ; (j,m) ,

(
j′,m′

)〉
= D(p,k) (g)jmj′m′ (1.76)

and the δ-functional is

δ (g) =

ˆ
dp

∑
k∈ Z+∪{0}

2

∞∑
j=k

j∑
m=−j

〈(p, k) ; (j,m)| g |(p, k) ; (j,m)〉µ (p, k) (1.77)

for µ (p, k) being a weight of the irreducible representation.
It was shown in [47, 48], that the simplicity constraint are weakly satisfied for the

vectors of carrier space such that p = γk and j = k. Thus we substitute the δ-functional
by the functional

δγ (g) =
∑

k∈ Z+∪{0}
2

k∑
m=−k

〈(γk, k) ; (k,m)| g |(γk, k) ; (k,m)〉µ (γk, k) (1.78)

For each representation (p = γk, k) the carrier vectors satisfying the simplicity constraint
span a subspace of the subspace H(p,k)

j=k ⊂ H
(p,k). All these spaces for all possible ks span

the Hilbert space
Hγ =

⊕
k∈ Z+∪{0}

2

((
H(γk,k)
k

)?
⊗H(γk,k)

k

)
(1.79)

which is isomorphic to L2 (SU(2)). Note, that the structure of a δγ-functional is also
very similar the δ-functional on the SU(2)-group:

δSU(2) (h) =
∑

k∈ Z+∪{0}
2

k∑
m=−k

(2j + 1) 〈m|h |m〉k (1.80)

The idea of the EPRL model is to consider spin-foams labelled by SU(2)-tensors,
which are mapped to corresponding SL(2,C)-tensors via the so-called EPRL-map

Y : L2 (SU(2))→ Hγ (1.81)

This map can is determined by its action on the carrier space HIrrep(SU(2)):

Y : |m〉j 7→ |(γj, j) ; (j,m)〉 (1.82)

and can be generalised to arbitrary tensor product of representations of SU(2).
The next subsubsection explains, how the EPRL map is used in calculation of spin-

foam transition amplitude.

1.2.2.2 The general construction

A spin-foam is a 2-complex colored in an appropriate way, such that it represents a
transition amplitude of a quantum process (this interpretation will be discussed further
in subsection 1.2.2.3). The 2-complex κ̃ =

(
F, Ẽ, Ṽ

)
consists of the set of faces F, edges

E and vertices V. The boundary ∂κ = (L,N) is a graph (build of the set of links L ⊂ Ẽ
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and nodes N ⊂ V). The bulk part of the 2-complex is the complex minus its boundary, so
that κ = int (κ̃) = (F,E,V) for E = Ẽ \ L and V = Ṽ\N (more detailed introduction to
CW-complex conventions used in this thesis can be found Appendix A.1). In the original
papers [39, 42, 40, 41] the complex κ̃ was assumed to be dual to some triangulation of
the manifoldM, later the theory was generalised (see section §2.1), which was one of the
issues addressed in this thesis (see chapter 3).

The bulk 2-complex is colored as follows:

• Each face f ∈ F is colored by a representation of SU(2)-group (i.e. by a half-integer
spin jf ).

• Each edge e ∈ E is colored by an invariant tensor |ιe〉 ∈ HInv
e,v where v is one of the

ending points of e, HInv
e,v = Inv

(⊗
f H

εf
jf

)
, the product is over the faces incident to

e and εs mark the relative orientation of faces and the edge (assuming, that e points
at the vertex v, if the orientation induced by f is consistent with the one assumed,
then εf disappears, and if the induced orientation is opposite to the one assumed,
then εf = ? stands for the dual representation). In fact the tensor |ιe〉 appears in
two copies: as |ιe〉 at the starting point of e and as the dual 〈ιe| at the ending point
of e (note, that for v and v′ being the ending points of e we have HInv

e,v =
(
HInv
e,v′

)?
,

thus the pair {〈ιe| , |ιe〉} is independent on the fact which ending point we choose).

The coloring of the bulk induces the coloring of the boundary:

• Each link ` ∈ L is a boundary of precisely one face f , thus it is colored by the spin
j` = jf .

• Each node n ∈ N is an endpoint (or startpoint) of precisely one edge e, thus it is
colored by |ιn〉 being either |ιe〉 or 〈ιe| - respectively to the coloring of e.

Thus the boundary graph together with the above coloring determines a spin-network
function N∂κ,j`,ιn .

The most general amplitude of a spin-foam is given by the following formula:

Aκ (jf , ιe) =

∏
f∈F

Af
∏
e∈E

Ae
∏
v∈V

Av

 ·(∏
`∈L

A` ·
∏
n∈N

An

)
(1.83)

In the EPRL model the edge- and node- amplitudes are fixed to be 1, thus the amplitude
simplifies:

Aκ (jf , ιe) =

∏
f∈F

Af
∏
v∈V

Av

 ·(∏
`∈L

A`

)
(1.84)

ant the face-, link- and vertex-amplitudes are as follows:

• The face amplitude is Af = µ (ρf ) is the weight of the representation carried by the
face. It is disputed, whether one should use the SU(2)-weight [37] or the weight of
the image of the EPRL map [44] (so SL(2,C)-weight for the Lorentzian case and
Spin (4) for the Euclidean case, which shall be discussed in subsection 1.2.3.2). For
most of the calculations presented in this thesis it is straightforward to substitute
one or another approach. If it is not, we use the SU(2)-weight, i.e Af = 2jf + 1.

• The link amplitude is Al = 1√
Af

where f is the face containing the link `.
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• The vertex amplitude Av is given as follows.

Each edge ending at v contributes by the tensor |ιe〉 (if it is the dual tensor 〈ιe| ,
we treat it as an ordinary tensor of a dual space). Each such tensor has one
index me,f corresponding to each face incident to the edge (being either upper or
lower index, depending on their relative orientation). Thus overall in the tensor
product

⊗
e∈v |ιe〉 there is one upper and one lower SU(2)-index per each face

incident to v. We map the tensor product using the EPRL map, obtaining a tensor⊗
e∈v Y |ιe〉, in which there is one upper and one lower SL(2,C)-index per each face

incident to v. We project the obtained tensor onto the SL(2,C)-invariant tensors
and then contract each pair of indices corresponding to the same face and obtain
the amplitude:

Av = TrSL(2,C)

[
P̂ Inv
SL(2,C)

(⊗
e∈v

Y |ιe〉

)]
(1.85)

This procedure can be also viewed in other way. The tensor
⊗

e∈v |ιe〉 is in fact a
SU(2)-spin-network state, let us denote is as Nv (more discussion on the graph, on
which it is defined, can be found in section §2.1 and in [43]). The vertex amplitude
is

Av =
(
P̂ Inv
SL(2,C)YNv

)
(1) (1.86)

The partition function of a given 2-complex κ is given by sum over all possible colorings:

ZκEPRL =
∑
{jf}

∑
{ιe}

Aκ (jf , ιe) (1.87)

where the summation over the representations goes for each face from jf = 0 to jf =∞
with the step of 1

2 , and having fixed the spin of the faces, the summation over the
invariant tensors ιe goes for each edge through an orthonormal basis of the edge Hilbert
space HInv

e = Inv
(⊗

f H
εf
jf

)
(it does not depend on the choice of the basis).

1.2.2.3 Spin-foam transition amplitude as the evolution operator

As it was already stated in subsection 1.2.1.2, the partition function of a spin-foam can
be treated as a function Zκ (g`) of the holonomies on the boundary graph ∂κ. Thus
given a spin-network function N∂κ supported on the boundary graph, one can calculate
the scalar product as:

(Zκ| |N∂κ〉 =

ˆ
GL

dg`Z
κ (g`)N∂κ (g`) (1.88)

The partition function in general does not have to be a spin-network function, because it
does not have to be normalisable in the spin-network scalar product. In fact the partition
function is an element of the algebraic dual H∗∂κ, i.e. the linear (but not necessarily
bounded) functionals on H∂κ.

Consider a graph build of two disconnected subgraphs G = Gin t G?out (for later con-
venience we assume that the second component G \Gin is dual to some graph Gout - which
is always true, since G?? = G; each of these two subgraphs may have arbitrary number
of connected components). The graph Hilbert space containing such spin-network states
can be decomposed as

HG = HGin ⊗H
?
Gout
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Let us now consider a spin-foam defined on a 2-complex κ such that ∂κ = G. Then for
each coloring EPRL-coloring of κ the partition function ZκEPRL ∈ H∗G , thus it defines an
operator P̂κ : HGin → HGout , by the following condition: let

|ψ〉 = |Nin〉 ⊗ 〈Nout| ∈ HGin ⊗H
?
Gout

= HG (1.89)

then
〈Nout| P̂κ |Nin〉 := (ZκEPRL| |ψ〉 (1.90)

(obviously since ZκEPRL does not have to be a bounded functional, the operator P̂κ can
be also unbounded).

The matrix elements of the operator P̂κ are interpreted as transition amplitudes for
the quantum process between the state |Nin〉 and |Nout〉 described by the spin-foam κ.
The partition function already contains summation over all possible colorings of the bulk
degrees of freedom. In order to obtain the transition amplitude concerning all possible
quantum processes one has to sum over all possible 2-complexes κ (or take the limit with
respect to refining the 2-complex κ - see [49]):

〈Nout| |Nin〉phys = 〈Nout|
∑
κ

P̂κ |Nin〉 = lim
”κ→∞”

〈Nout| P̂κ |Nin〉 (1.91)

The question, what is the appropriate class of the 2-complexes one has to sum over
is one of the problems addressed and answered within this thesis (see section §2.1 and
chapter 3).

1.2.3 Technical issues

Here let us focus on three technical details of the EPRL model, that are not of key
importance to understand the construction of the theory, but are quite significant to
follow the details of calculations in what follows.

Firstly, in subsection 1.2.3.1, we introduce a framework called operator spin-foam mod-
els, which simplifies some formulas and clarifies some physical interpretations of spin-foam
models. Then in subsection 1.2.3.2 we present a short discussion of so called Euclidean
version of the model. Finally, in subsection 1.2.3.3, we recall an argument that one can
drop one of integrals over the SL(2,C) group per each vertex of the spin-foam.

1.2.3.1 Operator spin-foam models

An useful reformulation of the partition function was given in [38], called operator spin-
foam models. The authors realised, that instead of summing over an orthonormal basis
of HInv

e , one can use the fact, that each intertwiner ιe appears twice, once as ιe and once
as ι†e and replace it with the projection operator P Inv

e : He → HInv
e , so that

ZκEPRL =
∑
{jf}

Aκ
(
jf , P

Inv
e

)
(1.92)

The missing sum is build in the form of the projector:

P Inv
e :=

∑
ιe− orthonormal basis

|ιe〉 〈ιe| (1.93)

The amplitude Aκ
(
jf , P

Inv
e

)
can be obtained by introducing any basis in each of He-

spaces, decomposing each of P Inv
e -operators in the corresponding basis and applying the

formula (1.85) at each vertex. The merit of the calculation does not change.
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There are two benefits of the operator spin-foam models approach. Firstly it gives
a clear interpretation of an edge of a spin-foam: it is an operator, that maps the initial
state of a node of a spin-network into either an interaction, or to the final state. It can
be seen as a free propagator of the state of a node. Secondly it allows to easily extend
the the model to other dynamics not only by changing the vertex amplitude, but also
by coloring the edges with the operators other then the projector - which may be useful
when considering issues related to renormalization.

1.2.3.2 Lorentzian versus Euclidean version of Spin-foams

The first papers presenting the spin-foam models of our concern there were considered a
simplified version of the theory, namely the so called Euclidean gravity. This theory is
defined by the Holst action, but with an assumption, that the metric 2-form in the fibres
of is ηIJ = diag (1, 1, 1, 1), and thus the gauge group is Spin (4) being the double cover
of SO (4) instead of SL(2,C) being the double cover of SO (1, 3)+.

Since Spin (4) = SU(2)×SU(2), each irreducible representation of Spin (4) is a tensor
product of two representations of SU(2), thus they are labelled by two spins (j+, j−).
The Spin (4)-vectors are the tensor products of SU(2)-vectors, i.e:

H(j+,j−) = Hj+ ⊗Hj− 3 |m+〉j+ ⊗ |m−〉j− (1.94)

The Euclidean EPRL spin-foam model is defined in by the same construction, which
was described in the previous subsections, with the only difference: the EPRL map Y
injects SU(2) into SO (4)-vectors according to the formula

Y : |m〉j 7→ Cmm+m− |m+〉j+ ⊗ |m−〉j− for j± =
|1± γ|

2
j (1.95)

where Cmm+m− are the Clebsh-Gordan coefficients [41].

1.2.3.3 Omitting of one of SL(2,C)-integrals

Consider a spin-foam vertex such that the vertex spin-network is N . As we have noted
in (1.86), the vertex amplitude is given by

A =
(
P̂ Inv
G YN

)
(1) (1.96)

(where we consider a generalized EPRL map with the image in representations of arbitrary
group G). The projection is

P̂ Inv
G =

ˆ
GN

dgn gn (1.97)

We shall study the amplitude (1.96) and show, that for a compact group G one can skip
one of integrals per each connected component of G, and if G is non-compact (for example
G = SL(2,C)) the amplitude is infinite unless one regularizes it by skipping one integral
per a connected component of G. This derivation was already presented in [46, 50].

A spin-network state can be decomposed into a basis of tensor products of intertwiners
in node Hilbert spaces (see Appendix A.3). Thus let us consider only a spin-network state
of the form

|N 〉 =
⊗
n∈NG

|ιn〉 (1.98)
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we can write it emphasising the index structure of the tensors ιn as

N =
⊗
n∈NG

[ιn]
m
`+1
···m

`+
k

n
`−
k+1
···n

`−
k+k′

(1.99)

where k and k′ are the numbers of incoming and outgoing half-links at n respectively (of
course this numbers may be different for each node n). Acting by the EPRL map on N
gives

YN =
⊗
n∈NG

[ιn]
m
`+1
···m

`+
k

n
`−
k+1
···n

`−
k+k′

Y
A
`+1

m
`+1

· · ·Y
A
`+
k

m
`+
k

Y †
n
`−
k+1

B
`−
k+1

· · ·Y †
n
`−
k+k′

B
`−
k+k′

=
⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′

(1.100)
for some ι̃n (not necessarily G-invariant). Applying the action of the projection onto the
G-invariant states one gets

P̂ Inv
G YN =

ˆ
GN

dgn
⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′

(1.101)

ρ`
+
1 (gn)

C
`+1

A
`+1

· · · ρ`
+
k (gn)

C
`+
k

A
`+
k

ρ`
−
k+1
(
g−1
n

)B`−
k+1

D
`−
k+1

· · · ρ`
−
k+k′

(
g−1
n

)B`−
k+k′

D
`−
k+k′

where ρs are appropriate irreducible representations of G. By gathering together the
term corresponding to the same link one gets

P̂ Inv
G YN =

ˆ
GN

dgn
⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′

⊗
`∈LG

ρ`
(
g−1
t(`)

)B`−
D`−

ρ`
(
gs(`)

)C`+
A`+

(1.102)

where all A and B indices of ρs are contracted with indices of ι̃s. The evaluation at unity
means contracting the above formula with

⊗
`∈LG δ

D`−
C`+

, which leads to

(
P̂ Inv
G YN

)
(1) =

ˆ
GN

dgn
⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′

⊗
`∈LG

ρ`
(
g−1
t(`)gs(`)

)B`−
A`+

(1.103)

Let us now pick a node n0 and insert an extra term gn0g
−1
n0

between each pair g−1
t(`)gs(`).

The result obviously does not change. Now using the invariance of the Haar measure let
us shift all the group elements gn for n 6= n0 to g̃n := g−1

n0
gn. One can then rewrite the

integral as(
P̂ Inv
G YN

)
(1) =

(ˆ
G

dgn0

) ˆ
GN−1

dg̃n 6=n0

⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′⊗

`∈LG :s(`)=t(`)=n0

ρ` (1)
B`−
A`+⊗

`∈LG :s(`)=n0∧t(`)6=n0

ρ`
(
g̃−1
t(`)

)B`−
A`+

(1.104)

⊗
`∈LG :s(`)6=n0∧t(`)=n0

ρ`
(
g̃s(`)

)B`−
A`+⊗

`∈LG :`∩n0=∅

ρ`
(
g̃−1
t(`)g̃s(`)

)B`−
A`+
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where we can factorize the integral
´
G dgn0 thanks to the fact that the integrand does

not depend on gn0 any more. We can simplify this formula by introducing g̃n0 := 1 and
putting it in the places, where there was gn0 , so that we have(

P̂ Inv
G YN

)
(1) =

(ˆ
G

dg

) ˆ
GN−1

dg̃n 6=n0

⊗
n∈NG

[ι̃n]
A
`+1
···A

`+
k

B
`−
k+1
···B

`−
k+k′

(1.105)

⊗
`∈LG

ρ`
(
g̃−1
t(`)g̃s(`)

)B`−
A`+

∣∣∣∣∣∣
g̃n0=1

If the group G is compact, the Haar measure is normalized, so that the integral
´
G dg = 1

and we can skip it. If the group G is not compact, the integral
´
G dg =∞, thus in order

to obtain a finite amplitude one has to regularize it by dropping one integral over G.
Such regularization does not guarantee, that the result is finite, but it is necessary to
make any chances for the amplitude to not diverge.

If the graph G is not connected, all the above formulae factorize into a product
over connected components of G, thus one can perform the same derivation for each
connected component separately, concluding that one can drop one integral over G per
each connected component of G.
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Chapter 2

Presentation of the issues addressed
in the thesis

This chapter is devoted to present the questions that was addressed an answered
within this thesis.

There are three main topics that contribute to this thesis. The first one was the ques-
tion about a class of 2-complex that should be used in defining the spin-foam models. It
is presented in section §2.1, and answered in chapter 3. The second one is the problem
of higher order contributions to the transition amplitude calculated in Dipole Cosmology
model - one of basic applications of spin-foam models. This question led to more general
problem, i.e. finding all spin-foams with a given fixed boundary, at some given order of
expansion. We present this question, together with a brief review of Dipole Cosmology
model, in section §2.2, and answer it in chapter 4. The last topic is the problem of diver-
gences and renormalization of spin-foam models. In this thesis we focus on two aspects of
it: finding the bubble part of a spin-foam and calculating one transition amplitude related
to one of bubbles. The issues are presented in section §2.3 and answered in chapter 5 and
chapter 6. Each section of this chapter contains a brief review of research in the field,
that was done already, together with fixing some conventions of notation.

2.1 What class of 2-complexes should we use in Spin-foam
models?

The EPRL spin-foam models were designed in analogy to the BF -model on spin-foams
defined on 2-complexes dual to triangulations of a 4-manifoldM [51]. This construction
was based on a concept of discretisation of an appropriate action (either BF or Holst).
Such approach restricts the topology of the 2-complexes - and respectively their boundary
graphs - to a certain class. On the contrary Loop Quantum Gravity admits all the spin-
networks with the support being an arbitrary graph. This leads to an inconsistency of
these two theories.

Original EPRL-vertex amplitude was defined in terms of geometrical data of a quantum
4-simplex (i.e. as a 15-j symbol, being a function of areas of triangles at the 4-simplex).
Further study [43, 38] allowed to express it in terms of more general objects, so that
it was easy to extend to case of vertices with more general structure - other then ones
dual to 4-simplices. It was a major step to extend the EPRL-spin-foam formalism the
one compatible with Loop Quantum Gravity kinematics: one can calculate spin-foam
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amplitude for 2-complexes that are not necessarily dual to any triangulation, thus their
boundaries can be arbitrary.

However, a question arose: what class of 2-complexes one should consider when sum-
ming over all possible processes? Obviously 2-complexes dual to triangulations are too
narrow class, but on the other hand the class of all general 2-complexes seams to be too
wide. The appropriate class should admit a natural way to calculate the transition amp-
litudes and should be compatible with the kinematic structure of LQG on the boundary.
We addressed this question in our research.

The subsection 2.1.1 emphasises differences between the topological structures dual to
triangulations and the general ones. The subsection 2.1.2 presents the KKL construction,
being the starting point to our answer to the above question. The subsection 2.1.3 states
the question formally and guides to the answer.

2.1.1 Incompatibility of topological structures of Loop Quantum Grav-
ity and spin-foam models

As it was mentioned above, in canonical Loop Quantum Gravity the physical states
are spin-network functions defined on closed graphs. On the other hand the underlying
topological structure of spin-foam models are 2-complexes dual to triangulations of 4-
dimensional manifolds. Boundary graphs of these 2-complexes determine the possible
boundary spin-network states of the spin-foam theory.

Consider a 2-complex κ dual to a 4-dimensional triangulation 4∆ of a manifoldM.
Its boundary ∂κ is a graph dual to a 3-triangulation G = 3∆?. If the boundary manifold
Σ = ∂M has no boundary, the graph G is closed and thus one can define a spin-network
on the graph G.

However, the kinematics of Loop Quantum Gravity considers spin-networks defined
for all closed graphs. The difference is in allowed valence of nodes of graphs - a graph
dual to a triangulation of a 3-manifold has only 4-valent nodes, while a graph of a general
spin-network may have nodes of arbitrary valence (greater then 2).

A general graph might be dual to an arbitrary cellular decomposition of Σ - namely a
3-CW-complex 3C (not necessarily a ∆-complex), such that X 3C = Σ (for more details
- see Appendix A.1.2.6). However, a graph dual to a general cellular decomposition of
a closed manifold may be incompatible with Loop Quantum Gravity kinematics, which
requires graphs to be closed. One can introduce a degenerate cellular decomposition of a
closed manifold, in which there are 2-cells with only one faces - see figure 2.1, which would
lead to a graph with 1-valent nodes, what is forbidden for gauge-invariant spin-network
states. In this sense general cellular decompositions of Σ generate too wide class of graphs
for Loop Quantum Gravity. Thus let us admit only these cellular decompositions, for
which the graph dual to them is closed.

In this interpretation nodes of spin-networks becomes quantum polyhedra, glued to-
gether via quantum polygons - represented by faces - see [52].

Within the original EPRL framework there is a wide class of boundary spin-network
states for which the dynamics is not defined. An extension of a spin-foam formalism is
needed. Such an extension requires two steps: generalisation of the formula for transition
amplitude (already done in [43], discussed in subsection 2.1.2) and a strict definition of
the class of 2-complexes to be used in the computations.

A natural candidate for a class of 2-complexes, that would make spin-foam models
compatible with Loop Quantum Gravity is the class of all 2-complexes dual to all 4-
dimensional cellular decompositions of M. However, this class has the same drawback,
that considered above class of graphs dual to cellular decompositions of Σ - it is too wide
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(a)

(b)

(c)

Figure 2.1: Degenerate cellular decompositions. (a) - A 3-cell with one face, no edges and
one vertex on its boundary. In the dual graph it is represented by a 1-valent node and
a half-link. (b) - A cellular decomposition of a 3-sphere into two 3-balls glued by their
boundary; each 3-ball is a cell like at (a). (c) - A graph dual to the cellular decomposition
presented at (b); it is build of two 1-valent nodes connected by a single link.

for Loop Quantum Gravity. An immediate example is a cellular decomposition ofM such
that it’s boundary is a cellular decomposition of Σ = ∂M with the dual graph containing
1-valent nodes. It is not clear, whether putting a restriction, that the boundary of the
4-celural decomposition is compatible with Loop Quantum Gravity is enough to avoid all
non-physical behaviours in the bulk, so the question on the class of 2-complexes requires
further investigation (see subsection 2.1.3 and chapter 3).

2.1.2 KKL construction

Recently a generalisation of spin-foam transition amplitude was proposed in [43]. The
generalized prescription allows to calculate spin-foam amplitudes for 2-complexes with
vertices more general, than dual to 4-simplex. The key concept of this generalization is
to assign to each vertex a graph (called vertex graph), that encodes the local structure
of the 2-complex at this vertex. Then one colors this graph using the coloring of the
2-complex in a neighbourhood of the vertex, obtaining a so called vertex spin-network.
The transition amplitude is then read from the vertex spin-network function.

This procedure is the starting point of our research for the proper class of 2-complexes,
thus let us recall it here with more details. In subsection 2.1.2.1 we recall the definition
of a vertex graph for an internal vertex of a 2-complex. In subsection 2.1.2.2 we present
the exact calculation of spin-foam transition amplitude using the vertex spin-networks.

2.1.2.1 Vertex graph

Consider a 2-complex κ dual to some cellular decomposition (we assume, that the 2-
complex satisfies all required properties, not stating yet, what they are). Let us focus on
one internal vertex v of κ. We shall define a graph Γv, that captures the local structure
of κ at v, as follows. Let Γv = (N,L), then:
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(a) (b) (c)

Figure 2.2: An illustration of the KKL procedure of obtaining the vertex graph.
(a) - A spin-foam with a sphere drawn around the interaction vertex. (b) - Zoom at
the interaction vertex. Note the relation between orientation of faces of the spin-foam
and orientation of links the vertex graph. (c) - The vertex graph.

• For each edge e incident to v there is precisely one node ne ∈ N (and there are no
other nodes).

• For each face f incident to v there is a link `f ∈ L as follows. Let us go along
the boundary of f . At some point we arrive to v through the edge e, and leave it
though the edge e′ (it may be the same edge). We introduce a link `f such that
s (`f ) = ne′ and t (`f ) = ne. If the face f is multi-incident to v, we introduce one
link per each appearance of v at the boundary of f .

There is a geometrical interpretation of the above procedure. Let us embed κ in R4 and
draw a sphere S3 centred at v with the radius small enough that there is no other vertex
of κ inside the sphere. The graph Γv is precisely the intersection of κ and the sphere (see
figure 2.2).

2.1.2.2 Vertex spin-network and vertex amplitude

Given a spin-foam, i.e. a 2-complex κ with faces colored by irreducible representations
of SU(2) and edges colored by invariant SU(2)-tensors (see subsection 1.2.2.2), one can
define a spin-network state for each internal vertex of κ. Indeed, let v be an internal
vertex and Γv its vertex-graph (as it was defined above). Each link `f of Γv corresponds
to a face f of κ, thus it can be colored by the irreducible representation, as the face, i.e.
j`f := jf . For each node ne of Γv the invariant node Hilbert space HInv

ne is the same, as
HInv
e,v , thus the tensor |ιe〉 is a good coloring of the node ne (in the operator spin-foam

framework one decomposes each operator Pe in a basis, and then obtain appropriate |ιe〉-
tensors - see subsection 1.2.3.1). The spin-network NΓv ,j`,ιn obtained by the j`f := jf
and ιne = ιe is precisely the one, that is used to calculate the vertex amplitude according
to the formula (1.86):

Av =
(
P̂ Inv
SL(2,C)YNΓv ,j`,ιn

)
(1) (2.1)
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This construction allows to decompose a spin-foam into a set of spin-network states
(each per each vertex). Note, that for two vertices v and v′ connected by a face f the
links of Γv and Γv′ corresponding to the face f are colored by the same spin jf . Similarly,
for two vertices v and v′ connected by an edge e the nodes of Γv and Γv′ corresponding
to the edge e are colored by dual invariant tensors |ιe〉 and 〈ιe|. These properties will be
the base for construction of operator spin-network diagrams framework (see chapter 3).

2.1.3 The question: What class of 2-complexes one should use in spin-
foam models?

One of technical details of the KKL model was still unclear, namely: what class of 2-
complexes should be summed over in the formula (1.91)? The following properties of this
class are suggested by physical intuition:

• The boundary of a 2-complex should be an arbitrary graph

• The boundary graph G should have a neighbourhood of the topology G × [0, 1] in
the 2-complex, i.e. there should not be any interaction vertex on the boundary.

• There should be a well defined operation of composition of 2-complexes, corres-
ponding to composition of evolution process.

We found a class of 2-complexes, that satisfy the above properties and which is in natural
way compatible with the dynamics described by the KKL model. We give our definition
constructively, i.e. we provide a procedure of constructing a 2-complex, and our claim is
that each 2-complex that can be a result of our procedure belongs to our class.

Our attempt to study this issue lead to the concept of Operator Spin-network Dia-
grams - a framework that far exceeded the answer to the question presented above. We
developed an approach to note the dynamical processes in quantum gravity in terms
of certain diagrams. The elements of these diagrams are graphs, each graph represent-
ing an interaction vertex of a spin-foam. Our framework allows both to reconstruct the
2-complex picture and to easily read out the formula for a transition amplitude of a
quantum process. It is also easily extendible for more general models of spin-foam dy-
namics. Moreover, the Operator Spin-network Diagrams framework is a basic tool used
in all other issues addressed in this thesis.

The Operator Spin-network Diagrams framework, being our answer to this question,
was presented in [53] and it is described in chapter 3.

2.2 What is a contribution of higher order transition amp-
litudes in the Dipole Cosmology model?

A KKL construction, recalled in previous section, allowed to study a toy-model of Spin-
foam theory, called the Dipole Cosmology model [54, 55, 56, 57, 58, 59]. It is based on
several approximation assumptions:

• boundary states are assumed to be spin-networks on a fixed graph, called the Dipole
Graph,

• interaction is calculated in large-j-limit,

• there is only one interaction vertex,

• the interaction vertex is of very specific type.
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We will introduce the model in subsection 2.2.1, explaining in detail the assumptions
presented above.

We are interested in generalizing the Dipole Cosmology by relaxing the above assump-
tions, especially by relaxing the last one. We do it by applying the Operator Spin-network
Diagrams framework and finding all diagrams at certain level of expansion. Moreover,
we found a general algorithm to find all diagrams (thus all spin-foams) with an arbitrary
fixed boundary at all levels of expansion. The precise formulation of issues we addressed
at this stage of research is presented in subsection 2.2.2.

2.2.1 Description of the model

The Dipole Cosmology model was introduced in [55, 54], then it was extended and stud-
ied in detail in [56, 57, 58]. It is based on an assumption, that a space of in and out
states of the Universe is restricted to the ones supported on the Dipole graph (see subsec-
tion 2.2.1.1) and that it is a coherent state (see subsection 2.2.1.2). The quantum process
itself is assumed to follow the simplest non-trivial spin-foam (see subsection 2.2.1.3).
The overview on the derivation of the amplitude can be found in subsection 2.2.1.4, and
the approximations taken in the limit of large volume of the Universe are recalled in
subsection 2.2.1.5.

2.2.1.1 Dipole graph

In Dipole Cosmology one assumes that the boundary spin-network state of the considered
spin-foam decomposes into in and out state, so that the underlying graph has two con-
nected components. It is assumed that the topology of the graph is not changed during
evolution, so the in and out part of the graph look the same.

The Dipole graph Gdipole = Γin
dipoletΓout

dipole is presented at figure 2.3a. Let us focus on
only one of its connected components. Note, that it is a graph dual to a triangulation of
some 3-dimensional manifold (see Appendix A.1.2.6). Indeed, consider a 3-sphere. It can
be decomposed into a pair of 3-dimensional balls glued along their boundaries. Each node
of Γdipole is dual to a tetrahedron, which is homeomorphic to a 3-ball, thus the Γdipole is
dual to a decomposition of a 3-sphere into two tetrahedra glued along their boundaries
(see figure 2.3b).

Recalling the fact, that nodes of spin-network can be labelled by eigenvalues of the
volume operator (see subsection 1.1.2.4), the Dipole graph captures the total volume of
the Universe and the volume of each of the tetrahedra of the triangulation. Thus one can
encode the dipole-moment of the volume, which is the origin of its name (see [54]).

2.2.1.2 Coherent states

In Dipole Cosmology model one assumes that the in and out states are coherent states
of Loop Quantum Gravity, designed according to the procedure presented in [60].

To define a general coherent state one peaks for each link ` of Γ
in/out
dipole an element

H` ∈ SL(2,C) and then define the state as a spin-network function given by

ψH` (U`) =

ˆ
SU(2)N

dhn
∏
`

Kt

(
h−1
s(`)U`ht(`)H

−1
`

)
(2.2)

where Kt : SU(2)→ C is the heat-kernel function:

Kt (h) =
∞∑
j=0

(2j + 1) e−2t~j(j+1)Tr
[
Dj (h)

]
(2.3)
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(a) (b)

Figure 2.3: The Dipole Graph. (a) - The graph and it’s decomposition into Γin
dipoletΓout

dipole.
(b) - The triangulation of a 3-sphere dual to one of Gdipole connected components.

where the sum goes every half-integer j, the parameter t determines the spread of the
coherent state and the Planck constant ~ is kept to ensure the formulae to agree with
[55, 56] (for Dj (H`) we use the analytic continuation of the Wigner matrices, which are in
fact the nonunitary representations of SL(2,C)). One can show, that for H` = eı̇(ı̇X`)h`,
where h` ∈ SU(2) and X` ∈ su(2), the expectation values are

〈ψH` | Û` |ψH`〉
〈ψH` | |ψH`〉

= h` (2.4)

and
〈ψH` | Ê` |ψH`〉
〈ψH` | |ψH`〉

=
κ~γ
4t

X` (2.5)

and that their spread is small [55, 60, 61].
In Dipole Cosmology model one chooses the coherent states such that their expect-

ation values agree with the classical quantities calculated for a homogeneous isotropic
space, so

h` = n`e
ı̇αc

σ3
2 n−1

` and X` = n`βp
σ3

2
n−1
` (2.6)

where (c, p) are symetry-reduced canonical coordinates - equivalents of the Ashtekar vari-
ables on an isotropic S3-Universe (see [62]), α and β are two real constants (irrelevant in
further considerations) and n` is the SU(2)-element such that n`σ3n

−1
` = ~n` · ~σ for ~n` -

the vector normal to the triangle dual to the link ` (obviously there are many such n`-
elements, but the ambiguous part of n` commutes with σ3, thus h` and X` are determined
unambiguously). Introducing a complex parameter z := αc+ ı̇βp one can express

H` (z) = n`e
ı̇z
σ3
2 n−1

` (2.7)

and then label in/out states of Dipole Cosmology model by the phase-space point on
which they are peaked:

ψz = ψH`(z) (2.8)

thus the full boundary state is

ψzin,zout := ψzin · ψzout (2.9)
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Figure 2.4: A spin-foam used in dipole cosmology model. The structure of the interaction
vertex is determined by the vertex graph being identical with the boundary graph.

2.2.1.3 Spin-foam

In Dipole Cosmology model one considers only one spin-foam, presented at figure 2.4.
This spin-foam consists of precisely one interaction vertex, connected by edges with the
boundary nodes. There are no other edges. Each face has a boundary link and forms
a triangle build of the link and the edges connecting the nodes of the link with the
interaction vertex. There are no other faces.

Although it is the most natural nontrivial spin-foam connecting the in and out part
of Gdipole-graph, it is not the only one. We have shown (see chapter 4), that even for only
one internal vertex there are many more possible spin-foams.

2.2.1.4 Amplitude

The Dipole Cosmology vertex transition amplitude was calculated using the formula
(1.86). Originally it was calculated in the Euclidean EPRL scheme [55], later it was
generalized to the Lorentzian case [57]. The calculations presented below comes from the
quoted papers. We recall them with details as a reference point for notation conventions,
because very similar calculations will be performed in chapter 4.

Thanks to the very simple structure of the interaction vertex, the transition amplitude
is

A(zin, zout) =
(
P̂ Inv
G Y ψzin,zout

)
(1) (2.10)

where G = SO (4) in the Euclidean case and G = SL(2,C) in the Lorentzian case (the
face amplitudes are omitted).

The EPRL map Y acts at ψz as follows (see (2.2))

(Y ψz) (g`) =

ˆ
SU(2)N

dhn
∏
`

Kt

(
h−1
s(`) Y

†g`Y ht(`)H
−1
` (z)

)
(2.11)
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where we generalize the notation of the heat kernel Kt, such that in presence of Y -map
it is defined as follows:

Kt

(
hY †gY h′

)
:=

∞∑
j=0

(2j + 1) e−2t~j(j+1)Dj (h)mm′ Y
†m′
A DY (j) (g)AB Y

B
m′′D

j
(
h′
)m′′
m

(2.12)
where Y (j) is the unitary representation of G corresponding to j according to Y map (it
is (j+, j−) in the Euclidean case and (γj, j) in the Lorentzian case), the indices m,m′,m′′

label the coefficients in Hj and the indices A,B label the coefficients in HY (j).
The projection P̂ Inv

G can be written in terms of the representation matrices:

P̂ Inv
G ψ (g`) =

ˆ
GN

dgnψ
(
g−1
s(`)g`gt(`)

)
(2.13)

which composed with (2.10) and (2.11) gives

A(zin, zout) =

ˆ
GN

dgn

ˆ
SU(2)N

dhn
∏
`

Kt

(
h−1
s(`) Y

†g−1
s(`) 1 gt(`)Y ht(`)H

−1
`

)
(2.14)

the SU(2)-integrals were omitted, because each h ∈ SU(2) commute with the Y -map (see
Appendix A.4.3), and then one can shift each integral

´
G dgn to

´
G dg̃n for g̃n = gnhn,

so that the integrals over SU(2) result in multiplication by the group volume (which is 1
due to normalisation of the Haar measure). Thus

A(zin, zout) =

ˆ
GN

dgn
∏
`

Kt

(
Y †g−1

s(`)gt(`)Y H
−1
`

)
(2.15)

Notting the fact, that for ` = 1, 2, 3, 4 the nodes s (`) = N and t (`) = S, and for
` = 5, 6, 7, 8 the nodes s (`) = N ′ and t (`) = S′ one can easily factorise the amplitude
into

A (zin, zout) = A (zin)A (zout) (2.16)

where
A (z) =

ˆ
G2

dgNdgS
∏
`

Kt

(
Y †g−1

N gSY H
−1
` (z)

)
(2.17)

Again one of the integrals may be omitted (by shifting the other one and using the
normalisation of the Haar measure in the Euclidean case or by using the property of
SL(2,C)-integrals recalled in subsection 1.2.3.3), thus finally we have

A (z) =

ˆ
G

dg
∏
`

Kt

(
Y †gY H−1

` (z)
)

(2.18)

2.2.1.5 Large-j-limit

Here let us again recall the details of calculations done in [55], which we shall refer to
when doing some calculations in chapter 4.

The transition amplitude in Dipole Cosmology model is calculated by assuming, that
the volume of the Universe is far bigger than `2Pl. It is represented by the requirement,
that = (z)� 1. This assumption allows to approximate the Wigner representation of H`

by
Dj
(
H−1
` (z)

)
= Dj (H` (−z)) ∼= e−ı̇zjP

(j)
` (2.19)
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where P (j)
` = n` |j〉j 〈j|j n

−1
` =: |n`〉 〈n`|j is the projector on the state with maximum

spin-projection on the direction given by ~n` (all the other matrix elements are suppressed
by e−=(z) factor). This simplify the formula for heat kernel:

Kt

(
Y †gY H−1

` (z)
)
∼=
∑
j

(2j + 1) e−2t~j(j+1)−ı̇zj 〈n`|Y †gY |n`〉 (2.20)

The exponent is a 2nd order polynomial in j, with maximum at j = j0 ∼= −ı̇z
4t~ (we assume

that the real part of z is negligible when compared to it’s imaginary part). For = (z)� 1
the sum can be approximated by a Gaussian integral around the maximum point, so that

Kt

(
Y †gY H−1

` (z)
)
∼=
√

π

2t~
e−

z2

8t~ 2j0 〈n`|Y †gY |n`〉j0 (2.21)

(we approximate (2j + 1) by 2j), so that

A (z) ∼=
(√

π

2t~
e−

z2

8t~ 2j0

)4 ˆ
G

dg
∏
`

〈n`|Y †gY |n`〉j0 (2.22)

In the Euclidean case (i.e. G = SO (4)) the integral gives the volume of the Livine-
Speziale coherent tetrahedron [63, 55], which is approximately N0j

−3. Recalling, that
j0 ∼= −ı̇z

4t~ one gets finally

A (z) = − ı̇π2

t3~3
N0 ze

− z2

2t~ = N ze−
z2

2t~ (2.23)

and the total amplitude is

A (zin, zout) = N2 zinzoute
− z

2
in+z2out

2t~ (2.24)

In the Lorentzian case the integral
´
SL(2,C) dg

∏
` 〈n`|Y †gY |n`〉j0 requires techniques that

are developed in chapter 6.

2.2.2 Formulation of the question

We are interested in finding the contribution to the Dipole Cosmology transition amp-
litude from spin-foams with more general interaction vertices that the one presented in
subsection 2.2.1.3. An attempt to such generalization was already done in [59], where
some of the possible interaction vertices were found. We go further: we want to find all
spin-foams with this certain boundary, and order them in a well behaving expansion.

In order to do that we apply the operator spin-network diagrams formalism, which
was developed as an answer to the question posed in section §2.1, and which is presented
in chapter 3 and in [53]. We used it to develop a general algorithm to find all diagrams
with some specified properties, such as: total number of vertices, total number of edges,
structure of the boundary graph. Moreover the diagrammatic structure of our framework
allows to introduce convenient Feynman-like rules to read the transition amplitude out
of a diagram.

We applied the algorithm to find all diagrams with one vertex and minimal number
of internal edges and with the boundary being the dipole graph. The Feynman-EPRL
rules allowed us to estimate the contribution of most of them to the total amplitude in
large-j-limit. These results, together with the algorithm to find all diagrams with given
properties, were published in [64] and they are presented in chapter 4.
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2.3 How to identify and compute the divergent part of Spin-
Foam amplitudes?

In spin-foam models it might happen, that some foams give infinite contribution to
the transition amplitude. This is usually caused by so called bubbles - fragments of
2-complexes forming closed surfaces. The bubbles are spin-foam analogues of loops in
Feynman diagrams.

In this thesis we focus on two aspects of bubbles. First is to identify the spin-
foams containing bubbles - which is discussed more in subsection 2.3.1 and answered
in chapter 5. Second is an issue of regularisation one specific example of bubble - which
is discussed in subsection 2.3.2 and answered in chapter 6.

2.3.1 A spin-foam with a bubble

As we have already noticed, a total spin-foam transition amplitude is a sum over all
possible 2-complexes of amplitudes of corresponding spin-foams:

Z =
∑
κ

Zκ (2.25)

It appears, that some of these amplitude may diverge, when summed over all possible
colorings. This situation highlights the necessity of applying renormalization techniques
to the theory. Developing a renormalization of spin-foam models is a huge project, which
far exceeds the scope of this thesis. Nevertheless, one of the necessary steps in this
direction was done: we found a way to identify the part of the spin-foam that admit
infinite number of colorings giving nontrivial amplitude and thus is a candidate for the
divergent part.

We start with some general remarks about the state of the research (in subsec-
tion 2.3.1.1). Then in subsection 2.3.1.2 we present the problem that we have studied.

2.3.1.1 Why bubbles cause divergence

The divergent parts of spin-foam models was already studied [65, 66, 67, 68, 69, 70],
however so far the research were limited only to spin-foams dual to a triangulation of
a 4-manifold. Since we have shown, that spin-foam models should be defined for more
general class of 2-complexes, one should generalize the research to the extended case.

Most of bubbles admit infinite number of colorings giving non-trivial contribution
to the transition amplitude for a fixed coloring of the boundary. This is not the case
for bubbleless spin-foams, where the spins coloring of the internal faces is limited (via
triangle-inequalities) by combinations of the boundary links spin-labels. One could at-
tempt to solve this divergence problem by coloring spin-foams with representations of the
quantum group SU(2)q for q ∈ ]0, 1[, where the total number of representations is limited
by the q-parameter [71, 72, 73, 74], i.e. let q = e−κ, then the maximum spin is less then
4π
κγ , where γ is the Barbero-Imirzi parameter. However, the deformation parameter has
interpretation of exponent of the cosmological constant in Planck units:

q = e
− `Pl

2

`c2 where `c
2 :=

1

Λ
(2.26)

(see [73]) so the maximum spin is bounded by

jmax <
1

Λ

4π

`Pl
2γ

(2.27)
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Nevertheless, since Λ ≈ 10−120`Pl
−2 [75, 76], such regularization in general does not help

to the problem of huge contribution of the order of 10120 from the bubble parts. Thus
the issue of renormalization is still unresolved.

2.3.1.2 How to find a bubble sub-foam?

The first step to renormalize the theory is to identify and characterize the possible sources
of divergences. As we have noticed, a natural candidate to the source of divergence is
a bubble. So far bubbles were defined as a subset of faces of a spin-foam, that form a
closed surface [77, 69, 65]. Such definition is neither precise nor applicable to operator
spin-network diagrams framework, which we introduced in chapter 3.

We introduced a strict definition of a bubble in terms of operator spin-network dia-
grams framework, together with an procedure that allows to find the bubble subdiagram.
Moreover, we introduce a notion of rank of a bubble - the number simple bubbles for
which the bubble can be decomposed - together with another procedure to find it. We
study several examples showing, how our algorithms works. Our results are presented in
chapter 5 (the publication is in preparation).

2.3.2 A study of an example of a bubble

One example of spin-foam with bubbles was already studied in details [78, 79]. It is
so called melonic bubble. It can be interpreted as a self-energy-like correction to the
transition amplitude of a 4-valent edge of a spin-foam. The recent research led to a
regularization of the transition amplitude together with a derivation showing, that the
operator corresponding to the edge with a bubble is proportional to

WΛ
melonic = ln (Λ) · T2 (2.28)

for some operator T, where Λ is the regularization constant. We studied the leading order
of the operator T.

A brief presentation of the regularization procedure is recalled in subsection 2.3.2.1.
The problem of the operator T is presented in subsection 2.3.2.2, and our solution is
described in chapter 6.

2.3.2.1 Riello’s melonic bubble

Consider a spin-network containing a 4-valent node n0. This node may evolve into a
spin-network in which all nodes and links are unchanged, except n, which is split into
4 new nodes n1, . . . , n4 - see figure 2.5a. Now if in the next step of evolution the nodes
n1, . . . , n4 join into one node n′0, the spin-foam representing these two steps would contain
the so called melonic bubble. - see figure 2.5b.

Let us now fix the spins at the boundary spin-network, but not at the internal faces
of the bubble (i.e. the spins j12, j13 . . . , j34 can be arbitrary) and consider an Operator
Spin-foam of such process. It is easy to see, that it factorises into product over the nodes:

Wκ =
⊗
n∈Γ

P̂n (2.29)

The operators related to all the nodes n 6= n0 are simply the projectors onto the invariant
node Hilbert space P̂ Inv

n . The operator P̂n0 is a composition of the bubble amplitude
Wbubble sandwiched by P̂ Inv

n0
-operators:

P̂n0 = P̂ Inv
n0
WbubbleP̂

Inv
n0

(2.30)
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(a) (b)

Figure 2.5: An example of a quantum process represented by a spin-foam with the melonic
bubble. (a) - A 4-valent node n0 splits into four 4-valent nodes n1, . . . , n4; the nodes
n5, . . . , n8 evolve unchanged to n′5, . . . , n′8. (b) - The nodes n1, . . . , n4 join back to n′′0;
the other nodes evolve unchanged to n′′5, . . . n′′8.

45



where
Wbubble =

∑
{j12,...,j34}

Wbubble (j12, . . . , j34) (2.31)

The regularization introduced in [78] introduces a cutoff on the internal spins, i.e.
one assumes that j12, . . . , j34 < Λ. Moreover one assumes, that the the spins on the
external faces of the bubble are also high, but they are much smaller, than the cutoff, i.e.
1� j1, j2, j3, j4 � Λ. Under such assumption one can estimate the WΛ

bubble. The details
of this estimation can be found in [78], they are not relevant to the further parts of the
thesis, so let us recall only the result, which is

WΛ
bubble ∼ fµ (Λ)

ˆ
SL(2,C)2

dgdg′
4∏
`=1

〈m`|Y †gY Y †g′Y |n`〉j` (2.32)

where µ is the degree of the polynomial Af (j) of the face amplitude in the model con-
sidered and

fµ (Λ) := C
Λ∑
x=0

x6(µ−1)−1 ∼=

{
C̃ · Λ6(µ−1) µ 6= 1

C̃ · ln (Λ) µ = 1
(2.33)

for some constants C and C̃ (since we consider Λ � 1, only the leading order in Λ is
taken into account in (2.33)). For the standard face amplitude Af (j) = 2j + 1, so the
parameter µ = 1 and we have

WΛ
bubble ∼ ln (Λ)

ˆ
SL(2,C)2

dgdg′
4∏
`=1

〈m`|Y †gY Y †g′Y |n`〉j` (2.34)

2.3.2.2 Lorentzian Polyhedra Propagator

The integral, that appears in (2.34), is a matrix element of a certain operator acting at
Hn. One can easily separate the integrals and obtain

WΛ
bubble ∼ ln (Λ) 〈m1,m2,m3,m4|T2 |m1,m2,m3,m4〉j1,j2,j3,j4 (2.35)

for

T :=

ˆ
SL(2,C)

dg
4∏
`=1

[
Y †gY

]
j`

(2.36)

where
[
Y †gY

]
j

:= D(γj,j) (g)j,mj,n .
The T operator seams to be of key importance to deal with the melonic bubble at an

edge of a spin-foam. Knowing it’s exact form one could renormalize the edge operator
by modifying the bare operator P̂n by a “radiative correction” coming from the bubble.
Thus we decided to investigate the properties of T.

We calculated the leading order of T operator under the assumption, that the spins
on the external faces are much bigger then 1. It appeared to be proportional to the
identity operator, with the proportionality factor being a function of the spins j1 . . . , j4.
The details of our calculation are presented in chapter 6.

Note, that the same operator’s matrix elements appeared in the Dipole Cosmology
transition amplitude in the Lorentzian model - see subsection 2.2.1.5. Indeed, our calcu-
lation can be applied also to this model.
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Part II

My own work





Chapter 3

Operator Spin-network Diagrams

The KKL procedure (recalled in subsection 2.1.2, first presented in [38, 43]) of calcu-
lating spin-foam vertex amplitudes provides a tool to decompose a spin-foam into a set of
graphs with links colored by spins and nodes colored by operators. In this decomposition
each vertex of a spin-foam is represented by a graph, each edge ending at this vertex is
represented by a node of this graph, and each face sharing this edge is represented by a
link incident to the corresponding node.

An extra structure emerges from this procedure. Consider an internal edge, i.e. an
edge that has two internal vertices at its ends (in contrary to an external edge - namely
an edge with one internal and one boundary vertex at its ends, and a boundary edge -
an edge with two boundary vertices at its ends). Such edge is represented by precisely
two nodes of graphs. Since both nodes represent the same edge, their structure must be
related - i.e. if a node n has k incoming and l outgoing links, the node n′ related to it has
to have l incoming and k outgoing links. These links represent the faces incident to the
edge we consider, thus each link incident to n is strictly associated with a link incident
to n′ representing the same face. The external edges in this language are represented by
a single node of a graph, because they have only one internal vertex on their ends.

Thus the structure that emerges from KKL procedure is a set of graphs with some
extra relations between nodes and links of these graphs. Appropriate coloring of this
structure provides all data necessary to compute the transition amplitude of a spin-foam.

The key concept of our framework was to inverse this procedure: since all the data
one need to compute a spin-foam amplitude is encoded in such structure, why not to
start from such structure an reconstruct the spin-foams out of it? We gave a name of
graph diagram to the topological structure of our framework, and the structure colored by
SU(2)-tensors is named operator spin-network diagram. We developed the tools necessary
to operate on them.

Very soon a question arose: are there any restrictions on graph diagrams? In other
words: given a general graph diagram - defined as an arbitrary collection of graphs with
nodes and links connected in some way (that will be precised soon) - is it always a graph
diagram of some 2-complex? We addressed this question and answered it by providing
an algorithm showing how to reconstruct a 2-complex out of an arbitrary graph diagram
- no hidden assumptions on graph diagram are taken, thus all diagrams are admissible.

The similar question arises for coloring of diagrams and spin-foams. Here the answer
is: our framework is more general than the standard spin-foam models. It admits the
BF and EPRL models if certain constraints on the coloring are taken. However one can
easily generalise it to other schemes of computing transition amplitudes.
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Our framework gives one of possible answers to the question raised in section §2.1:
what class of 2-complexes should be used in spin-foam models? Our answer is: all 2-
complexes that can be constructed out of an operator spin-network diagram - it will be
explained in the discussion at the end of this chapter.

This chapter is organised as follows. First of all we provide a brief mathematical
introduction: definitions of most needed notions from CW-complex theory and from har-
monic analysis on SU(2) group (the full mathematical context - the definitions, theorems
and references to the textbooks - can be found in Appendix A). Then in section §3.2 we
study the topological aspects of our framework. We introduce the definition of graph dia-
grams and describe their structure and basic properties. Then we explain the algorithm
of constructing a 2-complex out of a graph diagram. In section §3.3 we study the com-
putational properties of our framework. First we describe colorings of graph diagrams by
SU(2)-tensors, then we explain the procedure of diagram-driven contraction of tensors,
which lead us to a formula on a transition amplitude operator of a diagram. Finally we
explain, how to obtain a transition amplitude compatible with various spin-foam mod-
els. In section §3.4 we study some special cases of graph diagrams: trivial diagram and
one-interaction diagram. We also explain the procedure of gluing the diagrams. In fact
each diagram can be decomposed into a number of gluings of trivial diagrams and one-
interaction diagrams, thus these examples cover all possible cases. In the next chapter
we will use these examples to develop more sophisticated techniques, that will be used in
finding higher order corrections to transition amplitudes of the Dipole Cosmology model.
Finally, in section §3.5, we conclude and discuss the answer to the question raised in
section §2.1.

This chapter is based mainly on [53] (some partial results were also presented in [80,
81]). The work was done in collaboration with mgr Marcin Kisielowski. The research on
the topological structure of the framework in section §3.2 was done mainly by the Author.
The analysis of tensor structure of Operator Spin-network Diagrams in section §3.3 is
mostly the result of Marcin Kisielowski’s work, thus they are recalled with less details.
The examples in section §3.4 are the common result.

3.1 Introduction

3.1.1 The idea: to inverse the KKL procedure

The key concept of the KKL procedure is to take a little neighbourhood of each vertex
(i.e. a contractible neighbourhood containing only one vertex, and having nonvanish-
ing intersection only with edges and faces, that are incident to the vertex). Each such
neighbourhood can be treated as a 2-complex with a boundary, and the boundary of this
2-complex is a graph that encodes the structure of the vertex.

This procedure can be visualised as follows. Since each vertex of a 2-complex has a
neighbourhood, that can be embedded in R4, let us embed it and then draw a sphere S3

r

around it (r is the radius of the sphere). The topology of the intersection of S3
r and the

2-complex may depend on r, however there is r0 > 0 such that for r < r0 the topology of
the intersection does not depend on r and it is the topology of some graph. This graph
is precisely the graph defined above.

Consider now the inversed procedure: given a set of graphs, draw each graph on a
sphere S3. Then shrink each sphere radially to its middle point. The trace of the graph
will determine a fragment of a 2-complex being a neighbourhood of a vertex. Moreover
the structure of the vertex will be indicated by the graph - it will be precisely the same,
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as if the graph were obtained from this vertex via KKL procedure.
Now if some nodes of the graphs we had were gathered in pairs, and the structure

of nodes in each pair is compatible (to be defined later), one can glue the fragments of
2-complexes obtained in above shrinking procedure along fragments of their boundary -
neighbouring the nodes in a pair (a procedure of relating links incident to the node is also
needed). One can perform such gluing for each such pair, resulting a more complicated
2-complex.

The concept of graph-diagrams concretises the intuitions presented above: it gives
precise definition of compatible nodes and of relating links incident to the nodes. It
describes in detail the glueing procedure and proves uniqueness of the result of glueing.
As a result we end up extracting the minimal set of data necessary to construct a spin-
foam. We find the structure of this data more convenient, then the traditional 2-complex
approach, for at least two reasons. First of all: even though graphs do not have to be
planar, they are far easier to draw then 2-complexes - the later ones require 3d- and
sometimes even 4d-imagination (there are 2-complexes nonembeddable in R3). Moreover
the diagram structure is very closely related to the index structure of the coloring of a
diagram - thus reading the transition amplitude and finding, which indices should be
contracted with each other is natural. Of course there is a drawback of our framework.
A spin-foam has its natural interpretation as a time evolution of a spin-network, which
is not explicit in graph-diagrams approach.

3.1.2 Mathematical introduction

The detailed mathematical introduction can be found in Appendix A. Here let us fix
some conventions and briefly recall definitions of non-standard notions.

3.1.2.1 Graphs

Graphs will be denoted by G = (N,L), where N = {n1, . . . , nN} is the set of nodes
and L = {`1, . . . `L} is the set of links. All graphs are oriented, unless explicitly stated
otherwise. Given a link ` its source node is denoted by n = s(`) and its target node by
n′ = t(`) (some links might be loops, i.e. such that s(`) = t(`)). All graphs (except so
called squids) are closed, which means that each node has at least two links incident to
it. In general graphs are not required to be connected. However for each graph one can
define its decomposition into connected components. We will write G = {Γ1, . . . ,ΓK}
if G = Γ1 t · · · t ΓK and each of graphs Γi is connected itself. General graphs will be
denoted by G letter, connected graphs will be denoted by Γ. A graph dual to a graph
G is a graph G∗ with the same set of nodes and links, as G, but orientation of each link
reversed.

A useful notion of a half-link of a graph is introduces in Appendix A.1.1. A half-link
is a pair of a link and a sign `ε = (`, ε) ∈ L×{+,−}. A half-link defines a decomposition
of a link into two halves, without introducing any extra nodes. A half-link is incident to
only one node, called its boundary n = ∂`ε. For the positive half-link we have ∂`+ = s(`)
and for the negative half-link we have ∂`− = t(`). Set of all half-links of a node n is
denoted by Ln (possibly with a superscript + or −). A set of all half-links of a graph G
is denoted by LG .

Half-links allows to introduce a notion of duality of nodes: two nodes n, n′ are dual,
iff number of positive half-links of n equals to number of negative half-links of n′ and vice
versa. For each pair of dual nodes there is at least one duality map φn,n′ : Ln → Ln′ , i.e.
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(a) (b) (c)

Figure 3.1: Graphs. (a) - A graph G = {Γ1,Γ2}. The source of the link `1 is s (`1) = nI ,
the target is t (`1) = nII (b) - Half-links of the node nIII are highlighted (positive by
red, negative by blue). (c) - The nodes nIV and nV are dual. The dotted line describe a
duality map between them.

a bijective map such that φn,n′ (L+
n ) = L−n′ and vice versa (for nodes of valency higher

then 2 there are more than one such map).
A graphical explanation of the above definition can be found at figure 3.1.
Given a graph G there is a group Aut (G) of automorphisms of the graph. In order to

be an automorphism a map φ =
(
φ(0), φ(1)

)
must be a pair of a bijection φ(0) on the set

of nodes NG and a bijection φ(1) on the set of links LG and it must satisfy the following
condition:

∀`∈LG s
(
φ(1)(`))

)
φ(0) (s(`)) ∧ t

(
φ(1)(`)

)
= φ(0) (t(`)) (3.1)

Each automorphism has the following property (called the node-consistency property):
each node of G is mapped onto a node with the same structure of incident links. Obviously
there is always at least one automorphism of G, namely the trivial automorphism. Other
automorphisms represent the symmetries of G.

Consider now a map φ̃ : G → G∗ being a composition of an automorphism of G with
the inversion of all the links of G. From the node-consistency property one can see, that
φ̃ maps each node of G onto a dual node of G∗. We call such map a duality map of a
graph induced by an automorphism. Obviously φ̃ induces a duality map of half-links of
each pair of nodes mapped one to another.

Squids and squid-graphs
A squid is a very specific kind of a graph defined as λ = (Nλ,Lλ) with

Nλ = {n} ∪ {x1, . . . , xk} and Lλ = {`1, . . . , `k} such that each link `i connects the
node n and the node xi. Example of a squid is on the figure 3.2a. The node n is called
the head of the squid. The links `i are called legs of the squid, the nodes xi are called
leg-nodes. A leg `i is called outgoing iff s(`i) = n ∧ t(`i) = xi. A leg is called incoming
iff s(`i) = xi ∧ t(`i) = n. Valence of a squid is the number of its legs k. One can also
introduce the positive valence k+ being the number of outgoing legs, and the negative
valence k− being the number of incoming legs. (see Appendix A.1.1.4). Squids are always
open graphs.

Given a graph G one can define the squid-graph γG as the pair (G(s), S), where

• G(s) (called the split graph) is a graph obtained by splitting each link `i of G into
two links `si and `ti by putting an extra node x`i in the interior of each link (the
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(a) (b) (c)

Figure 3.2: Squid-graphs. (a) - An example of 6-valent squid, with k+ = 4 and k− = 2.
(b) - A graph Γ that we will turn into a squid-graph. (c) - The split graph Γ(s) of the
graph Γ. One of the squids, i.e. the squid λn of the node n of Γ, is emphasised.

link `si starts at s(`i) and ends at x`i , the link `ti starts at x`i and ends at t(`i)).

• S is the squid-set of the graph G, i.e. for each node n of the graph G there is one
squid λn ∈ S such that n is the head of λn, and the legs of λn are links of G(s)

incident to n (in fact they are in 1-to1 correspondence with half-links of G).

A procedure of obtaining a squid-graph of a graph is illustrated on figures 3.2b-3.2c.

Remark 3.1. Later we will need to know the precise graph structure of G(s). Let
G = (N,L), then

G(s) = (N ∪X,L+ ∪ L−) (3.2)

where X = {x`i ∈ `i : `i ∈ L} is the set of middle points of the links of G, and the
sets L+/− contain the links of G(s) representing the positive/negative half-links of G
respectively, i.e. L+ = {`si : `i ∈ L} and L− =

{
`ti : `i ∈ L

}
.

3.1.2.2 2-complexes

The 2-complexes are CW-complexes with maximal dimension of cells equal 2. We shell
use the definition of CW-complexes consistent with [82]. It can be also find in the
appendix of [53] (some minor changes were done in the definition, they are explained in
Appendix A.1.2).

A 2-complex κ = (F,E,V; f2, f1) is a triple of sets: of faces F, edges E and vertices
V, together with a pair of boundary maps f1 : ∂E → V and f2 : ∂F → E defining how
the 1- and 2-cells are glued onto lower dimensional skeletons. There are two so called
boundary relations ∼m (m = 1, 2) defined by the boundary functions fm. Two points
x, y ∈ ∂E are in ∼1 relation iff f1(x) = f1(y) (and likewise for x, y ∈ ∂F with ∼2 and f2).
The topological space Xκ of a 2-complex κ is Xκ := (

⊔
F f) / ∼2 (see Appendix A.1.2.1).

A face f ∈ F is called incident to an edge e ∈ E iff e ⊂ f2 (∂f). An edge e ∈ E is
called incident to a vertex v ∈ V iff v ∈ f1 (∂e). The incidency relation is symmetric (if
a face is incident to an edge, than the edge is incident to this face) and transitive (i.e. a
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(a) (b)

Figure 3.3: Removable cells. (a) - A simple oriented 2-CW-complex. Orientations of faces
is given by black round arrows. Induced orientation of edges is given by green arrows.
The edge e1 can be oriented with respect to f1 (see the upper arrow) and with respect
to f2 (the lower arrow). The edge e2 can be oriented with respect to f2 (the left arrow)
and with respect to f3 (the right arrow). The boundary edges are oriented uniquely.
(b) - The faces f2 and f3 are oriented consistently, because the orientations induced by
them on e2 are opposite. Thus e2 is a removable cell. The edge e1 is not removable. The
vertex V was not removable when the edge e2 was present, but now it is removable (we
can call it pre-removable, as it was defined in Appendix A.1.2.3, but we will often call it
also removable).

face may be incident to a vertex - if there is an edge incident to both of them). Two faces
are called adjacent iff there is an edge incident to both of them. Similarly two edges are
adjacent iff there is a vertex incident to both of them.

An edge is called a boundary edge iff there is precisely one face incident to it. A vertex
is a boundary vertex iff it is incident to a boundary edge. A boundary ∂κ is a subcomplex
of κ build of all boundary edges and vertices.

All 2-complexes we shall use are oriented, which means that for each face f ∈ F we
introduce its orientation (each face treated as a topological manifold is a disc - thus it
is orientable). Orientation of an edge is defined only with respect to one of the faces
incident to it (except for the boundary edges - they can be oriented uniquely, and thus
the boundary graph is an oriented graph). We say, that two adjacent faces f , f ′ are
oriented consistently iff for each edge e incident to both of them the orientation of e
induced by f is opposite to the orientation of e induced by f ′.

We say, that a vertex is removable iff it is incident to precisely two edges. We say, that
an edge is removable iff it is incident to precisely two faces, these two faces are oriented
consistently and none of its ending vertices is removable (see figure 3.3). There is a strict
procedure of removing such cells (see Appendix A.1.2.3).

Whenever in this section we will say that two 2-complexes κ and κ′ are equivalent,
we will mean that they are the same oriented 2-complex up to a number of removable
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cells. In other words the topological spaces Xκ and Xκ′ are homeomorphic and the ori-
entations of 2-cells agrees. It is so called weak equivalence, of CW-complexes, in contrary
to strong equivalence, which requires the same structure of the skeleton of 2-complex at
all dimensions (see definitions A.19 and A.20).

Consider a graph G and its squid-graph γG =
(
G(s), S

)
and a 2-complex κ such that

∂κ = G(s). We can naturally introduce an extra structure on the boundary of κ - the
decomposition into squids. The pair (κ, S) will be called a squid-2-complex.

3.1.2.3 SU(2)-tensors

Graph diagrams will be colored by SU(2)-tensors. These tensors are described in Ap-
pendix A.3.2. Here let us recall some basic objects and introduce some shortcut names
for mostly used notions.

First of all: we will often call the representation Hilbert space Hj shortly as j-
representation.

Consider now a node n with k+ positive half-links and k− negative half-links, each
half-link labelled by a representation j`. The Hilbert space

⊗
`+ Hj+ ⊗

⊗
`− H`− will be

called the node Hilbert space and denoted by Hn. The SU(2)-invariant part of Hn (i.e.
Inv

[⊗
`+ Hj+ ⊗

⊗
`− H`−

]
- see Appendix A.3.2) we will call invariant node Hilbert space

and denote by HInv
n . For each Hn there is a natural projection map P̂ Inv

n : Hn → HInv
n ,

called the invariant projection. Of course the projection becomes the unity operator,
when its domain is restricted to HInv

n , however we will often call it anyway the projection,
even if the domain will be restricted (this is to keep our notation consistent with [53]).

Consider now a spin-network state with the underlying graph Γ. For fixed spins on
the links the Hilbert space of such states is a product of the invariant node Hilbert spaces
of each node of this graph and is denoted by

HΓ,~j :=
⊗
n∈NΓ

HInv
n (3.3)

(we will not consider any non-invariant spin-network states in this chapter). The total
Hilbert space of all spin-network states of this graph is HΓ =

⊕
~j HΓ,~j . The Hilbert space

dual to HΓ will be called the contractor space of the graph Γ, and elements of it we will
call contractors 〈A|:

〈A| ∈ H∗Γ (3.4)

Of course for fixed spins there is a fixed-spin contractor space H∗
Γ,~j

.
Given a spin-network Hilbert space HΓ,~j and an automorphism φ of the graph Γ we

say, that φ is a spin-network automorphism iff each link of Γ is mapped by φ onto a link
colored by the same spin. The group of spin-network automorphisms is smaller then the
corresponding group of graph-automorphisms, since there are more constraints on them.
However there is always at least the trivial one.

3.2 Graph diagram - the underlying topological structure

3.2.1 Graph Diagram - definition

The original definition of graph diagram [53] was given in terms of squid-graphs and maps
between squids. Here we will first provide an improved definition, based on the notion of
half-links of a graph. Then we will explain, how to translate it to the language of squid-
graphs. Finally we will define two relations that can be read out of a graph diagram
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(so called edge- and face- relation), which play key role in translating graph diagrams to
spin-foams (however they are not necessary in defining the diagrams).

3.2.1.1 The definition

Definition 3.1. Graph diagram
Let us define a graph diagram D = (G,R) as a graph G and a family of relations

R = (Rnode,Rlink), where

• Rnode is a symmetric relation in the set of nodes N of the graph G, such that for
each node n ∈ N one of the following possibilities take place:

– either n is in relation with precisely one node n′, such that n′ 6= n and n′ is
dual to n

– or n is not in relation with any node.

In other words:

∀n∈N
(
∃!n′∈N\{n}(n, n′) ∈ Rnode

)
∨
(
@n′∈N (n, n′) ∈ Rnode

)
and ∀n∈N (n, n) 6∈ Rnode

(3.5)

• Rlink is a family of relations:

Rlink =
{
R(n,n′)

link : (n, n′) ∈ Rnode

}
(3.6)

where each relation R(n,n′)
link is a relation on the sets Ln and Ln′ induced by one of

the duality maps between the nodes n and n′. In other words for each pair of nodes
(n, n′) related by the node relation we pick one of the duality maps φn,n′ and define

R(n,n′)
link :=

{
(`ε, `

′−ε) ∈ Ln × Ln′ : φn,n′(`
ε) = `′−ε

}
(3.7)

where −ε = + iff ε = − and vice versa.

An example of a graph diagram is presented an described at figure 3.4.

3.2.1.2 Translation to squid-graphs

Given a graph-diagram (G,R) one can naturally translate it to the language of squid-
graphs. A squid-graph diagram is defined as follows:

Definition 3.2. Squid-graph diagram
A squid-graph diagram is a pair (γ,Φ) of a squid-graph γ and a collection of a duality

maps between pairs of squids, such that each squid λ ∈ S is either a domain or an image
of at most one duality map φ ∈ Φ.

The graph G has its squid-graph γG - see subsection 3.1.2.1. Each pair of nodes in
node relation indicates a pair of dual squids. The link relation indicates the duality map
of the pair of squids representing these nodes. Thus instead of a graph and a family of
relations one can consider a squid-graph and a family of duality maps between the squids.
This definition is used in [53].
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Figure 3.4: An example of a graph diagram. Dashed lines show the node-relation, dotted
lines show the link-relations.
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3.2.1.3 Edge- and face-relations

It is convenient to introduce two more relations on a graph-diagram: the edge-relation
Redge and the face-relation Rface. They are named after faces and edges of 2-complex,
because equivalence classes of them will be in 1-to-1 correspondence with the internal
cells of the 2-complex constructed out of a graph diagram (see subsection 3.2.2).

Definition 3.3. Edge-relation
The edge-relation Redge of a graph-diagram is the smallest equivalence relation on the

set N of nodes of the graph G, such that the node relation Rnode is a sub-relation of it.

The simplest way to characterise a relation is to list its equivalence classes. In case
of Redge there are two types of equivalence classes:

1. For each pair of nodes (n, n′) being in node relation there is a two-element equival-
ence class {n, n′} of edge relation. We will call it an internal equivalence class, or
an internal edge.

2. For each node n that do not belong to any pair of the node relation there is a
single element equivalence class {n} of the edge relation. We will call it an external
equivalence class, or an external edge.

The names internal and external edge are explained in subsection 3.2.3.1.
Knowing Redge one can reconstruct Rnode and vice versa. The node-relation is easier

to define and to use in construction of the 2-complex out of the graph diagram, however
the edge relation will be more convenient in further use.

Definition 3.4. Face-relation
The face relation Rface of a graph diagram is the smallest equivalence relation on the

set of half-links of the graph G, such that

• each two half-links of the same link are in face relation,

• whenever there is a relation R(n1,n2)
link such that `+1 is in relation with `−2 , then `+1

and `−2 are in face-relation.

Again it is easier to characterise Rface by listing the equivalence classes of it. There
are two major types of classes: open and closed. The closed classes are these, where there
is a cyclic series of connected half-links. The open classes are these, where the series of
connected half-links is not cyclic. The following examples clarify these definitions:

1. If there is a link ` of G such that none of its half-links is related to any other half-link
by any of R(n,n′)

link -relations, then the pair {`+, `−} is an equivalence class of Rface

relation. We say it is an open equivalence class.

2. Consider a link ` of G such that n = s(`) and n′ = t(`) and the pair (n, n′) is related
by the node relation Rnode . It may happen, that `+ is related to `− by R(n,n′)

link .
In such case the half-links {`+, `−} form an equivalence class of Rface. We call it a
closed equivalence class.

3. Consider now a pair of links (`1, `2) such, that `+1 and `−2 are related by one of
relations R(n,n′)

link , but `−1 and `+2 are not related with any other half-links. Then the
quadruple

{
`−1 , `

+
1 , `
−
2 , `

+
2

}
form an equivalence class of Rface. We call such a class

an open class.
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4. Consider a pair of links (`1, `2) like in previous example, however now assume, that
`−1 and `+2 are also related by another link-relation R(n′′,n′′′)

link . Then the equivalence
class of the Rface relation is the same quadruple

{
`−1 , `

+
1 , `
−
2 , `

+
2

}
, but now we will

call it a closed equivalence class.

5. The example 3 can be generalised to arbitrary number of links: consider a k-tuple
of links (`1, `2, . . . , `k) such that each pair `+i and `−i+1 is related by one of R(n,n′)

link -
relations (for i = 1, . . . , k−1), but `−1 and `+k are not related to any other half-link.
Than the 2k-tuple

{
`−1 , `

+
1 , . . . , `

−
k , `

+
k

}
is an open equivalence class of Rface.

6. Analogously the example 4 can be generalised to arbitrary number of links: consider
a k-tuple of links (`1, `2, . . . , `k) such that each pair `+i and `−i+1 is related by one of
R(n,n′)

link -relations (for i = 1, . . . , k−1), and `−1 and `+k are related by another R(n,n′)
link

relation. Than the 2k-tuple
{
`−1 , `

+
1 , . . . , `

−
k , `

+
k

}
is a closed equivalence class of

Rface.

The half-links that are not related to any other half-link (in the open equivalence classes)
are called boarder members of the equivalence class. There are always two boarder mem-
bers of each open equivalence class.

Note, that although Rface is fully determined by Rlink, the opposite is not true. The
information about openness and closeness of equivalence classes of Rface is not encoded
in this relation itself.

Some examples of equivalence classes of Rface relation can be found at figure 3.5. The
edge relation, thanks to its simplicity, does not require extra illustration.

3.2.2 How to construct a 2-complex out of a graph diagram

As we noted at the beginning of this chapter, given a spin-foam we can construct a graph-
diagram out of it. Now we shell show, that for each graph diagram we can construct a
spin-foam out of it.

The procedure will be as follows. First for each connected component ΓI of the graph
G of a graph diagram D we shell construct a 2-complex, that represents a fragment of a
spin-foam being a small neighbourhood of a vertex with structure encoded in the graph
ΓI (see subsection 3.2.2.1). Then we glue these fragments of 2-complexes into bigger
complexes according to the procedure, that we shell define in subsection 3.2.2.2: for
each pair of nodes, that are in the node relation we glue the complexes by identifying
corresponding half-links in a certain way. Finally we realise, that some elements of the
resulting 2-complex are in fact redundant, and thus we remove them (see subsection 3.2.3).

The procedure was first presented in [53]) and in [81].

3.2.2.1 From a graph to 1-vertex foam

Our construction is reversing the procedure presented in subsection 2.1.2, where we were
drawing a sphere around a vertex of 2-complex to capture the graph representing its
structure. Here we draw a graph on a sphere and then shrink the sphere radially to
a point in order to obtain a 2-complex. Given a connected graph Γ we will obtain a
2-complex containing precisely one internal vertex (we shell call it a 1-vertex foam κΓ).
Resulting 2-complex is characterised by the following prescription (which can be treated
as its definition).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: On figures (a)− (f) there are highlighted examples of equivalence classes of
types 1-6 respectively.
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Definition 3.5. 1-vertex foam
Consider a closed connected graph Γ = (N,L). Its squid-graph is γΓ = (Γ(s), S) with

Γ(s) = (N ∪X,L+ ∪ L−) - see Remark 3.1 in subsection 3.1.2.1. The 1-vertex foam of
the graph Γ is a squid-2-comples κΓ = (F,E,V; f2, f1 ; S) such that:

• The set of vertices is V = {v} ∪N ∪X.

• The set of edges is E = L+ ∪ L− ∪NI ∪XI, where NI = {ni × I : ni ∈ N} where
I = [0, 1] is an interval, and similarly XI = {xi × I : xi ∈ X}

• The set of faces is F = L+
∆ ∪ L−∆, where L

+/−
∆ =

{
∆` : ` ∈ L+/−}, where ∆ is a

2-simplex (triangle).

• The map f1 is defined as follows:

– for each edge e` ∈ L+∪L− the function f1 is induced by the adjacency relation
of the graph Γ(s), i.e

f1(e`(0)) = s(`) ∈ N ∪X ⊂ V and f1(e`(1)) = t(`) ∈ N ∪X ⊂ V (3.8)

– for an edge en ∈ NI the function f1 maps its beginning onto the central vertex
v, and its end onto the node n:

f1(en(0)) = v and f1(en(1)) = n ∈ N ⊂ V (3.9)

and analogously for ex ∈ XI.

• The map f2 is defined as follows. Boundary of each triangle consist of three inter-
vals, let us name them V N , NX and XV . The boundary map acting on ∂f` ∈ L+

∆

maps the NX interval onto the e` edge f2(NX ⊂ ∂f`) = e` ∈ L+ ⊂ E, the V N in-
terval onto the edge of the source node of the link:
f2(V N ⊂ ∂f`) = es(`) ∈ NI ⊂ E and the interval XV onto the edge of the tar-
get node of the link: f2(XV ⊂ ∂f`) = et(`) ∈ XI ⊂ E. For a face ∂f` ∈ L−∆ the
action is analogous, the only change is that V N is mapped onto the edge of the
target node et(`), and XV is mapped onto the edge of the source node es(`).

• Each link e` is a boundary link, thus it can be oriented. We orient it in agreement
with the link ` of the graph Γ(s) (i.e. in such a way, that the boundary graph
∂κΓ ←↩ Γ(s) including orientation). The orientation of each face f` by definition
agrees with the orientation of the edge of the link e`.

Since the graph Γ is closed, the boundary of κΓ is precisely Γ(s) , thus the squid-decomposition
S is directly induced from γΓ.

An illustration of the construction is presented at figure 3.6.

Given a graph G = {Γ1, . . . ,ΓK} we perform this construction separately for each
connected component Γi and obtain a squid-2-complex κG = κΓ1 t · · · t κΓK .

3.2.2.2 Gluing along squids

Consider a squid-2-complex (κ, S) and a duality map φ between two squids λ1, λ2 ∈ S.
We will show now, how to glue this 2-complex along this pair of squids.
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(a) (b) (c)

Figure 3.6: Illustration of the construction of the 1-vertex foam. (a) - A connected
component Γ. (b) - Its split graph Γ(s). (c) - The 1-vertex foam κΓ.

Definition 3.6. Glueing a 2-comlex κ along a duality map φ : λ1 → λ2

The squid-2-complex κ = (F,E,V ; f2, f1 ; S) glued along a pair of squids λ1, λ2 ∈ S,
λ1 6= λ2, according to the duality map φ : λ1 → λ2 is a squid-2-complex κ/φ given by(
F̃, Ẽ, Ṽ ; f̃2, f̃1 ; S̃

)
defined as follows:

• The set of faces does not change: F̃ = F.

• The set of edges is the original set of edges divided by a relation Ẽ = E/ ∼φedge,
where two edges e, e′ ∈ E are in the relation ∼φedge iff e ∈ λ1, e′ ∈ λ2 (or opposite)
and φ(e) = e′ (or φ−1(e) = e′ in the opposite case).

• The set of vertices is defined in the analogous way: Ṽ = V/ ∼φvertex, where two
vertices v, v′ ∈ V are in the relation ∼φvertex iff v ∈ λ1, v′ ∈ λ2 (or opposite) and
φ(v) = v′ (or φ−1(v) = v′ in the opposite case).

• The function f̃1 coincides with the function f1, but it must be followed by the pro-
jection πφ0 onto equivalence classes of the relation ∼φvertex:

f̃1 : ∂Ẽ 3 x 7→ πφ0 (f1(x)) ∈ Ṽ (3.10)

One needs to check consistency of f̃1 with the relation ∼φedge, i.e. check, if x ∼
φ
edge x

′

implies f̃1(x) = f̃1(x′). Outside the glued squids it is obviously satisfied, since in
this regime equivalence classes of ∼φedge are one-element sets. Assume therefore,
that x ∈ ∂e for e ∈ λ1 and we have x′ 6= x such that x′ ∼φedge x. If it is so, x′

must be in λ2 and φ(x) = x′. We have f̃1(x) = πφ0 ◦ f1(x) and f̃1(x′) = πφ0 ◦ f1(x′).
However, since φ is a morphism of graphs, the condition φ(x) = x′ must follow
φ(f1(x)) = f1(x′), and thus f1(x) ∼φvertex f1(x′), so πφ0 (f1(x)) = πφ0 (f1(x′)), what
ends the proof.

• The function f̃2 coincides with the function f2, but it must be followed by the pro-
jection πφ1 onto equivalence classes of the relation ∼φedge:

f̃2 : ∂F̃ 3 x 7→ πφ0 (f2(x)) ∈ Ẽ (3.11)

Since F̃ = F, no consistency check is needed.
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(a) (b) (c)

Figure 3.7: Illustration of the 2-complexes. (a) - Fragments of graphs that will be glued.
(b) - Fragment of 2 complex before gluing. (c) - The glued 2-complex.

• The new set of boundary squids is S̃ = S \ {λ1, λ2}.

Each leg of the glued squids becomes an internal edge, because after gluing it is adjacent
to precisely two faces. Thus the new squid set S̃ covers all the boundary graph, and thus
the resulting 2-complex κ/φ is a proper squid-2-complex.

Example of the gluing procedure is presented at figure 3.7.

Given a graph diagram (G,R) and a squid-2-complex κG of its 1-vertex foams we can
associate a duality map of squids φi which each pair of nodes (ni, n

′
i) which are in the

node relation (see subsection 3.2.1.2). Then we can perform gluing along each pair of dual
squids obtaining a 2-complex κ/ (φ1, φ2, . . . , φ#Rnode

) = (· · · (κG/φ1) /φ2 · · · ) /φ#Rnode
.

The resulting 2-complex does not depend on the order in which we perform gluings (for
proof see Appendix B.1 of this thesis or Theorem 1 in [53, appendix]). So there is an
unambiguous procedure of gluing a squid-2-complex along a set of maps, and the result
is well defined: κR := κ/ {φ1, . . . , φ#R} for an arbitrary order of gluings.

Thus we define the 2-complex of the graph diagram as

κD = κG/R (3.12)

and we know that the resulting 2-complex is well defined.

3.2.3 Properties of the 2-complexes and removing the unnecessary cells

Let us now characterise the resulting 2-complex κD. We shell describe all types of cells
(vertices, edges, faces) that can appear in the complex. We will start with describing
the edges, because knowing, which types of edges are removable will make easier to
understand, which vertices are removable and why. Then we will deal with faces, and
finally we will characterise the boundary graph of κD.

In subsection 3.2.2.1 we introduced a notation in which each face is a triangle V NX.
At that stage the vertices N were heads of the squids of the boundary graphs of the
1-vertex foams, and the vertices X were the leg-nodes of these squids. Note, that through
all the gluing procedure the vertices N can be glued only to other vertices N ′ and the
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vertices X are also glued only to other vertices X ′. The vertices V are never subjects
of the gluing procedure. Thus it is convenient to introduce three classes of vertices -
V -type, N -type and X-type vertices. Those classes allow us also to characterise the
edges as V N -type, V X-type and NX-type edges. We shell use these classification in
what follows.

3.2.3.1 Edges

There are four types of edges: V N , V X, internal NX and boundary NX.

1. Each V N -type edge is a history of a head of a squid (the head itself corresponds
to the point N). It is always shared by at least two faces (actually: the number of
faces equals to the number of legs of the squid it was build from).

2. Each V X-type edge is a history of a leg-node of a squid (the leg-node itself corres-
ponds to the point X). It is always shared by precisely two faces (coming from the
links that were meeting at the node). These faces are oriented consistently.

3. Each NX-type edge is a leg of a squid. It is a boundary edge if and only if the
squid it belongs to was not glued to another squid (i.e. the head of this squid is a
type 2 equivalence class of the edge relation Redge, and the leg itself is a boundary
member of an open equivalence class of Rface - see subsection 3.2.1.3).

4. An edge of type NX is an internal edge of the complex if and only if the squid it
belongs to was glued to another squid. In such case this edge is shared by precisely
two faces. These faces are oriented consistently (i.e. the head of this squid is a
member of a type 1 equivalence class of the edge relation Redge, and the leg itself
is a member of a closed equivalence class of Rface - see subsection 3.2.1.3).

The edges of type V X and the internal edges of type NX are always removable edges
(see definition subsection 3.1.2.2).

It may happen, that an edge of type V N is removable (if the squid of the vertex N is
bivalent, and it has one incoming and one outgoing leg) - however in most cases we will
not remove them. They constitute the skeleton of the spin-foam.

Removing the removable edges and anticipating from subsection 3.2.3.2, that the
internal N -type nodes are removable, we are left with three types of edges:

• boundary edges - one for each pair of the boundary NX-edges sharing the same
boundary X-vertex. After removing the X-vertex they become a single NN -edge.

• internal edges with one boundary end - the V N -edges of the nodes that has not been
glued. There is one such edge for each external equivalence class of Redge-relation.

• internal edges - one for each pair of V N -edges sharing the sameN -vertex. Removing
all NX-edges starting at this N -vertex makes the vertex removable, so the final
edge is V V -type. There is one such edge for each pair {n, n′} being an internal
equivalence class of the Redge-relation.

3.2.3.2 Vertices

There are six classes of vertices to describe: the V -type vertices, the internal N -type
vertices, the boundary N -type vertices, the internal X-type vertices, the simple boundary
X-type vertices and the complex boundary X-type vertices.
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1. Vertices of type V are always internal vertices. There is one such vertex for each
connected component ΓI ∈ G. The structure of this vertex is encoded in the split
graph Γ(s).

2. Vertices of type N are heads of squids. Such a vertex is an internal vertex if and
only if the squid, that the vertex came from, was glued with another squid. In such
case the N -type vertex looks like it were the vertex of type V coming from the
θ-like graph (see figure 3.8 for illustration and subsection A.1.1.3 for definition). Of
course the similarity is only local.

There are always two edges of type V N ending at such a vertex, and a number
of internal NX-type edges. Since all those NX - edges are removable (what we
shall explain shortly), after removing them the internal N -type vertex also becomes
removable.

3. The vertex of type N coming from a non-glued squid is a boundary vertex. It is
then a node of the boundary graph.

4. Vertices of type X are leg-nodes of squids. Such a vertex is an internal vertex
if and only if the squid-leg it came from is a half-link that belongs to a closed
equivalence class of the face relation (i.e. equivalence class of type 2,4 or 6 - see
subsection 3.2.1.3)

Since all edges ending at such X-type vertex are removable (i.e. V X-edges and
internal NX-edges), the vertex itself also becomes removable (after removing all
but last two edges).

5. If none of the squids, to whom a vertex of type X belongs, is glued to any other
squid, it is a simple boundary vertex (it is a leg-node in the middle point of a
link being unrelated to any other link by Rlink relation, so it belongs to a type 1
equivalence class of the face relation Rface - see subsection3.2.1.3)

Removing the V X-edge ending at such vertex makes it a boundary bivalent node.
Both links incident to it have consistent orientation. Thus such vertex is a removable
cell.

6. The last possibility for the X-type vertex is that it is the middle of a link ` being
an element of a non-trivial open equivalence class of the face relation Rface (i.e. an
equivalence class of type 3 or 5 - see subsection 3.2.1.3).

Such a vertex is also removable, because all internal edges ending at it are either
V X- or internal NX-edges, thus they are removable (see subsection 3.2.3.1). Re-
moving all of them leaves us again with a simple bivalent boundary node, like in
the previous case.

In what follows we will call the vertices of type 5 and 6 boundary X-vertices and treat
them as the same type. The vertices of type 4 will be called internal X-vertices.

The only non-removable vertices are vertices of type V and boundary vertices of
type N . Each boundary N -type vertex has a structure determined by the squid it came
from. Each V -type vertex at first had structure indicated by the graph Γ(s) it came from,
however each node x` ∈ X ⊂ NΓ(s) is represented by a V X-edge, that was already marked
removable. Thus the structure of each vertex of type V simplifies while the removable
parts are removed. Anticipating that the non-removable edges will be only the V N -type,
we conclude, that each x`-node of Γ(s) should be removed. Removing them leads us to
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the original graph Γ, and thus after removing all removable parts the structure of each
V -type vertex is indicated precisely by the connected graph Γ it came from.

3.2.3.3 Faces

The set of faces do not change during the gluing procedure, so the final set F of the
2-complex κD is the same, as the set F of the 2-complex κG . All the faces are triangular.
Each face has two internal edges (V N and V X) and the third edge (NX-type), which is
either also internal iff the squid that the face came from was glued to another squid, or
it is a boundary edge iff the squid was not glued to anything. Topologically each face is
a disk, placed onto some skeleton. Given a face, none of its edges are glued with other
edges of the same face (see subsection 3.2.3.1).

Since the V X and internal NX edges are all removable, it is convenient to introduce
generalised faces - being collections of faces sharing the same X-vertex. There are two
types of generalised faces, determined by the type of X-vertex they contain.

• The boundary generalised face is a generalised face containing a boundaryX-vertex.
There is one such face for each open equivalence class of Rface-relation. The face
contains precisely one boundary edge (being the boundary N1N2-link) and the
orientation of the edge and the face are consistent. Other edges of that face are
in order: the N2V1-edge (where N2 is the ending of the boundary link), then a
sequence of internal edges V1V2, . . . , Vk−1Vk (however k may be equal to 1) and
then VkN1.

Some of the Vi vertices may be equal, in that case it effects the topology of the
generalised face. Moreover it may happen, that N1 = N2 (the boundary link is a
loop), and thus V1 = Vk. In such case the edges N2V1 and VkN1 are the same -
with all the consequences for the topology of the generalised face (i.e. the face is
either a cylinder of a cone).

• The internal generalised face is a generalised face containing an internal X-vertex.
There is one such face for each closed equivalence class of Rface-relation. All edges
of such face are internal V V -edges.

Orientation of such face is determined by orientation of links in the graph diagram.
Each simple (triangular) face is oriented consistently with the half-link it came
from. Then all the way through the gluing procedure the new neighbours of each
face were oriented consistently with it. Thus after removing the removable edges,
the orientation remain the same.

In other words we orient the generalised face in such a way, that if one considers a
small neighbourhood of any internal vertex V , then the boundary of this neighbour-
hood agrees with the connected component Γ of the graph G of which the vertex
came from, including the orientation of the graph.

The edges of such face form a cyclic sequence. Some elements of this sequence
(edges or vertices) may appear more then once.

After removing the removable edges and nodes each generalised face become a face of the
2-complex. Examples of generalised faces are shown at 3.9.

Note, that even though the interior of each face is a disc, its boundary may be glued in
a topologically nontrivial way. A suitable example is shown and explained at figure 3.10.
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Figure 3.8: Types of vertices: The vertices V1 and V2 represent the type 1 of the enumer-
ation of subsection 3.2.3.2. The vertex N1 represents the type 2. The vertices N2 and N3

represent type 3. The vertices X2 and X3 might be of type 4, iff the dashed green edges
are the internal edges of the graph 2-complex. Otherwise they are of type 6, and so does
X1. The vertices X4, X5, X6, X7 are of type 5. One can also read the possible types of
edges : the edges ViNj and ViXj are straightforward. The edges N1X1, N1X2 and N1X3

are the internal NX-edges (of type 4 of the enumeration of subsection 3.2.3.1), the other
NX-edges are the boundary NX-edges (of type 3).
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(a) (b)

Figure 3.9: Examples of generalised faces. The removed edges are represented by
dashed lines, the removed points are denoted by weak dots and grey letters. (a) - The
face N2V1N2V2N3X1 of figure 3.8, which after removing the removable cells becomes
N2V1V2N3. (b) - The same face after gluing the boundary nodes corresponding to the
vertices N2 and N3.

3.2.3.4 Boundary

The boundary of the 2-complex κD is a so called boundary graph of a graph diagram (we
shell denote it as ∂D). It can be read out of D by a following simple algorithm:

1. Take the graph G and remove each node, that is related with another node by
Rnode-relation.

2. Remove the nodes together with the half-links incident to them.

(a) If both half-links of ` are removed, we say that all the link is removed.
(b) If only one half-link of ` is removed - an open half-link is left. We shell deal

with them in the next point.

3. Each open half-link is a boarder member of an open equivalence class of Rface-
relation. Each such class has two boarder members, of the opposite signs - so one
can connect them into one new link. Thus we do connect them.

This algorithm can be illustrated graphically. An example is drawn and explained at
figure 3.11.

The graph ∂D can be characterised by description of its nodes and links:

• There is one node for each node of G not related to any other node (one for each
one-element equivalence class of Redge).

• There is one link for each boundary generalised face (for each open equivalence class
of Rface).
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(a) (b)

(c) (d)

Figure 3.10: A face with the topology of the projective plane. (a) - Fragments of graph
diagram that will be glued. The half-links a, b, c and d are related to a′, b′ c′ and d′

respectively. (b) - Fragments of one-vertex-foams. The edges α = V1X
′ and β = V2X

′′ are
drawn in two copies each in order to make figure more legible. In fact each copy of α (or β
respectively) represent the same cell of 2-complex. (c) - The same fragment of 2-complex
but with the edges α and β drawn in one copy. The green arrows do not mean the
orientation of the links, but the pattern of gluing (for example a and a′ are glued in such
a way, that N2is glued with N ′2 and X is glued with X ′′′ - and the interior of the edges
is glued continuously). (d) - The projective-plane-face. Each edge N1X is removable.
The removable edges N2X were already erased. The point X is thus pre-removable. The
arrows on the edges N1X represent, in which way they are glued. Removing them leads to
the topological space homeomorphic to a projective plane RP (2). However, the series of
edges N1V1N2V2N1 is not removable - it is the part of the core skeleton of the 2-complex.
Thus our generalised face is in fact a disk glued onto this skeleton in such a way, that the
topology of the result of gluing is nontrivial. The topology of the face itself is trivial.
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(a) (b)

(c) (d)

Figure 3.11: An example of the boundary graph of a graph diagram. (a) - A graph
diagram. (b) - Step 1: the pairs of nodes related by Rnode-relation are removed.
(c) - Step 2a: four links had both of their half-links removed, thus we remove them
completely. (d) - Steps 2b and 3: connecting the remaining open half-links result with
the boundary graph of the graph diagram.
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3.3 Operator Spin-network Diagrams - colored graph dia-
grams

Operator Spin-network Diagram is a Graph Diagram colored by some SU(2) tensors.
The brief recall of types of SU(2)-tensors we are going to use was presented in subsec-
tion 3.1.2.3. The detailed definitions and discussion can be found in Appendix A.3.2.

In the next subsection we will describe in detail the rules of general coloring of a
graph diagram. Then in subsection 3.3.2 we will explain, how to calculate the transition
amplitude of a colored diagram by performing so called diagram-driven contraction of
the tensors used in the coloring. Then in subsection 3.3.3 we will explain, what specific
coloring should be taken in order to obtain the transition amplitude compatible with one
of standard spin-foam models amplitude. Finally, in subsection 3.3.4, we will discuss,
what is the influence of the objects, that were marked as removable in the previous
section, on the transition amplitude calculation.

3.3.1 The proper coloring of a graph diagram

In order to obtain an Operator Spin-network Diagram one have to color a graph diagram
D in the following way:

• Each link of each graph is colored by a spin j`.

• Each node of each graph is colored by an operator P̂n ∈ HInv∗
n ⊗HInv

n , where HInv
n

is the invariant node space defined by the spins of links incident to n.

• Each graph is colored by a contractor 〈A| ∈ H∗
Γ,~j

.

The coloring cannot be arbitrary, the following consistency conditions must be held:

• If two half-links are related by one of link relations, the links they come from must
be colored by the same spin.

• If two nodes n and n′ are related by the node relation, their operators must be

hermitian conjugations, i.e. P̂n = P̂ †n′ .

The first condition ensures that all equivalence class of Rface relation has the same spin
coloring. Thanks to this fact, the second condition is self consistent: since n′ is a dual
node to n and each half-link of n has the same spin, as its corresponding half-link of n′,
the Hilbert spaces are dual: HInv

n = HInv∗
n′ , and thus the operators P̂n and P̂n′ belong to

the same space.
An Operator Spin-network Diagram will be denoted by

(
D; ~j, ~P , ~A

)
or shortly (D, C)

with C =
(
~j, ~P , ~A

)
being the coloring. An example can be found at figure 3.12.

Boundary
The coloring of a graph diagram indicates also a so called boundary Hilbert space.

Each link of the boundary graph can be assigned to a single equivalence class of the Rface

relation. Thus for each link of the boundary there is a uniquely determined spin j`. This
fixes a spin-network Hilbert space for the graph ∂D with spin labels ~j`. Let us then define
the boundary Hilbert space of a graph diagram as this spin-network Hilbert space H∂D,~j .
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Figure 3.12: An example of operator spin-network diagram

3.3.2 The amplitude operator of OSD

Operator Spin-network diagrams are in fact designed to be a tool to compute transition
amplitude for boundary states |ψ〉 ∈ H∂D,~j . Let us now explain, how to construct a
functional 〈A| ∈ H∗

∂D,~j such that the transition amplitude will be 〈A| |ψ〉. The functional
〈A| will be called amplitude operator of the diagram. The name operator comes from the
fact, that given a diagram with a disjoint boundary graph ∂D = G1tG∗2 (where G∗ is the
inversed graph i.e a graph G with each link’s orientation reversed - see subsection 3.1.2.1)
and a boundary state |ψ〉 = |ψG1〉 ⊗

∣∣ψG∗2 〉, the transition amplitude can be treated as

〈AD| |ψ〉 = 〈ψG2 | ÂD |ψG1〉 (3.13)

and the operator ÂD has interpretation of the evolution operator (see subsection 1.2.2.3).
The amplitude operator of a diagram (D, C) will be given by certain contraction of

indices of the tensors 〈AΓ| and P̂n, called diagram-driven contraction yD, multiplied by
face- and link-amplitudes (from equivalence classes of Rface relation and from links of the
boundary graph):

〈AD| =

(⊗
Γ∈G
〈AΓ|

)
yD

 ⊗
[n]∈Redge

P̂n

 ·
 ∏
f∈Rface

Af

 ·( ∏
`∈∂D

A`

)
(3.14)

The following subsections explain the diagram-driven contraction and other terms in
the above formula.

3.3.2.1 Diagram-driven contraction

The diagram-driven contraction gives us the so called unweighted diagram operator

Aunweighted
D = ”

⊗
〈AΓ|yD

⊗
P̂n” (3.15)

Before defining it, let us point out some properties of tensor objects appearing in the
coloring.

First let us remind that given a spin-network state |NΓ〉 ∈ HΓ supported on a graph
Γ for each link ` there are two indices in spin j` representation: the upper one (related
to the positive half-link `+) and the lower one (related with the negative half-link `−)
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- see subsection A.3.3, i.e. |NΓ〉 =
∑
{−−→m`+ ,−−→n`−} N

m
`+1
···m

`+
L

n
`−1
···n

`−
L

|−−→m,n〉. Since the contractors

belong to the dual space 〈AΓ| ∈ H∗Γ, it is opposite for them: the lower indices are related
with positive half-links and the upper indices are related with the negative half-links:

〈AΓ| =
∑
{−−→m`+ ,−−→n`−} A

n
`−1
···n

`−
L

m
`+1
···m

`+
L

〈−−→m,n|.

Consider now an operator P̂n ∈ HInv
n ⊗HInv∗

n . Since

HInv
n ⊂ Hn =

 ⊗
`+∈L+

n

Hj`

⊗
 ⊗
`−∈L−n

H∗j`

 (3.16)

the operator P̂n has two spin-j` indices for each half-link incident to n. For a positive
half-link it has one upper index from Hn space and one lower index from H∗n . In case of
a negative half-link the upper index come from H∗n and the lower index come from Hn.
The indices of Hn-space will be denoted by m` for positive and n` for negative half-links
(and they will be called small indices). The indices of H∗n will be denoted by A` for
positive and B` for negative half-links (and called big indices), thus

P̂n = Pn

m
`+1
···m

`+

k+
B
`−1
···B

`−
k−

n
`−1
···n

`−
k−

A
`+1
···A

`+

k+

= Pn

−−→m
`+n

−−→
B
`−n

−−→n
`−n

−−→
A
`+n

(3.17)

If the node n is related with another node n′, than we can say, that P̂n ∈ Hn ⊗ Hn′ ,
and then we translate the big indices coming from H∗n into small indices from Hn′ , and
denote it as

P̂n = Pn

−−→m
`+n

−−−→m
`+
n′−−→n

`−n
−−→n
`−
n′

(3.18)

In this case all the indices will be called small indices. Note, that now each positive index
A`+n becomes a negative index n`−

n′
and vice versa: B`−n becomes m`+

n′
.

The unweighted diagram operator is obtained by appropriate contraction of indices of
all P̂n operators and all contractors 〈AΓ|. Let us make it more precise. Consider the tensor
product or all contractors 〈A| :=

⊗
Γ∈G 〈AΓ| and the tensor product of all operators (the

product is taken over the7 equivalence classes of the edge relation): P̂ :=
⊗

[n]∈Redge
P̂n.

The tensors 〈A| and P̂ are very multi-index objects. However for each half-link of each
graph of the diagram D there is precisely one index in 〈A|, one small index in P̂ and zero
or one big index in P̂. The big index appears if and only if the half-link is not related to
any other half-link by the link relations. If the half-link is positive, the index of 〈A| is
lower, the small index of P̂ is upper and the possible big index of P̂ is lower. If the half-
link is negative, the index of 〈A| is upper, the small index of P̂ is lower and the possible
big index of P̂ is upper. The procedure of diagram-driven contractionxD is following:
each small index of 〈A| is contracted with the small index of P̂ corresponding to the
same half-link. The big indices remain uncontracted, thus the result of this construction
is a tensor having one lower index per each positive half-link of the boundary graph and
one upper index per each negative half-link of the boundary graph. Such tensor structure
is precisely the same, as the tensor structure of functional of H∗

∂D,~j Hilbert space.
Graphical illustration of the diagram-driven contraction can be found at figure 3.13
Given a boundary state |ψ〉 ∈ H∂D,~j the unweighted transition amplitude is

Aunweighted
ψ := 〈AD| |ψ〉 (3.19)

73



(a)

(b)

(c)

Figure 3.13: Graphical illustration of diagram-driven contraction. (a) - The contractor
A1 and relation between its indices and the half-links of the diagram (only four of them,
in order to keep the figure clear). (b) - An example of an operator P̂ of a pair of nodes
related by the Rnode-relation. Some of indices of this operator refer to half-links at the
node n1, and the others refer to half-links at n′′ . (c) - An example of an operator of a
boundary node n′ - only half of the indices refer to half-links of the diagram, the other
half is left uncontracted.
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3.3.2.2 Face and link amplitudes

In the spin-foam models the amplitude is weighted by the so called face amplitudes. In
fact one can introduce an amplitude for each cell-element of the diagram: Af for faces
(i.e. equivalence classes of Rface relation), Ae for edges, Av for vertices, An for nodes of
the boundary graph and A` for links of the boundary graph. However vertex amplitudes
can be obviously incorporated to the contractors 〈AΓ| and edge- and node-amplitudes
can be incorporated to the operators P̂n. For face- and boundary link-amplitudes (we
will call them weight amplitudes) it is not possible in a general case. Thus finally the
Operator Spin-network Diagram transition amplitude for a boundary state |ψ〉 is

AD(ψ) :=

∏
f∈F

Af

 ·( ∏
`∈∂D

A`

)
· 〈AD| |ψ〉 (3.20)

3.3.3 Relation to the spin-foam transition amplitudes

In order to obtain the diagram transition amplitude equal to the BF transition amplitude
the following assumptions on the coloring and weight amplitudes must be done:

• Each contractor 〈AΓ| must be the natural contractor
〈
ATr

∣∣ given by the following
formula: 〈

ATr
∣∣ =

∏
`∈LΓ

δ
n`−
m`+

(3.21)

• Each operator P̂n must be the identity operator on the invariant node Hilbert space
HInv
n (or in terms of Hn it is a projector P̂ Inv

n ).

• The face amplitudes must be Af = 2jf + 1 and the boundary link amplitudes must
be A` = 1√

2j`+1
.

In order to obtain the diagram transition amplitude equal to the EPRL spin-foam trans-
ition amplitude, the following assumptions on the coloring and weight amplitudes must
be done:

• The nodes operators P̂n and the weight amplitudes Af and A` are like in BF model.

• Each contractor 〈AΓ| must be either the EPRL contractor
〈
AEPRL

∣∣ or the natural
contractor

〈
ATr

∣∣. However the later one is allowed only in case of the θ-like graphs.
The EPRL contractor is given by the following formula:

〈
AEPRL

∣∣ =

 ∏
n∈NΓ

Y
−−→n`−
−−→
A`+

−−→m`+
−−→
B`−

[
P InvG
n

]−−→B`−−−→C`+−−→
A`+
−−→
D`−

 ·
∏
`∈LΓ

δ
D`−
C`+

 (3.22)

where G stands for a group (either SO(4) in case of Euclidean theory or SL(2,C)
in case of Lorentzian theory), the tensor Y is the EPRL map to the group G (see

subsection 1.2.2.1), the tensor P̂ InvG
n is a projection onto the invariant tensors in

the representation of G-group, and the big A, B, C and D indices are indices of
G-group action. For more details see Appendix A.4.3.
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3.3.4 The redundant parts of a 2-complex of an OSD

Note, that the θ-like graphs labelled by
〈
ATr

∣∣ correspond to the fragments of spin-foam
that do not change the transition amplitude. Indeed, they are (locally) fragments of BF -
foams, which are invariant under removing bivalent edges and vertices (see [38], see also
the calculation in subsection 3.4.1). Thus the only meaning of the θ-like graphs labelled
by
〈
ATr

∣∣ may by topological: they ensure some topological properties of the 2-complex
and of the boundary graph.

Note then, that each of the vertices, that we marked as removable in subsection 3.2.3,
had a structure of θ-like graphs. Moreover the necessary criteria of choosing them was
not changing the topology of the 2-complex. Thus if they were colored by

〈
ATr

∣∣, they
would indeed be irrelevant from the point of view of the transition amplitude calculation.
On the other hand in the KKL procedure each vertex referring to some dynamical process
was represented by one of graphs of the diagram - so all vertices other then V -type (i.e.
other then coming from graphs of the graph diagram) should not refer to any dynamical
process, and thus there is no reason to color them by anything else then

〈
ATr

∣∣. So in
the end we see, that each removable vertex of 2-complex of a graph diagram is in fact
redundant from the point of view of the transition amplitude operator.

Let us thus summarise the redundant parts of a 2-complex of an Operator Spin-
network Diagram.

The redundant edges are:

• All V X-type edges, i.e. all edges that are traces of the leg-nodes of squids.

• All internal NX-type edges, i.e. all edges that are legs of squids glued with another
legs of squids.

The redundant vertices are

• All X-type vertices, i.e. leg-nodes of the squids.

• All internal N -type vertices i.e. heads of squids, that were glued to other squids.

3.4 Examples and properties of OSDs

Let us now provide some examples of operator spin-network diagrams to illustrate our
framework in use. First of all we will describe a diagram corresponding to the amplitude
operator equal to identity, called the trivial diagram. Such operator can be constructed
for an arbitrary boundary spin-network Hilbert space and can be seen as a free propagator.
Then we will describe a diagram referring to a spin-foam with precisely one nontrivial
(interaction) vertex inside. Finally we will show, how to glue two diagrams into a bigger
one. In fact this operation allow to construct arbitrary complicated diagrams out of the
building blocs presented in first two steps.

3.4.1 The Trivial diagram

Let us now show, how to construct a trivial diagram, i.e. such diagram, that the transition
amplitude operator related to it will be the identity operator.

Consider a graph G = (NG ,LG) with every link ` colored by a spin j`. This defines a
spin-network Hilbert space HG,~j . In order to construct an operator on such Hilbert space
we need a diagram with its boundary graph being G t G∗. Indeed, then the transition
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Figure 3.14: Construction of θ-like graphs

amplitude operator is an element of a space HG,~j ⊗ H
∗
G,~j , so it can be treated as an

operator. Â : HG,~j → HG,~j .
To make the construction more transparent, let us first explain how to construct a

θ-like graph of a node n (called θn).

• Given a node n let us take a squid λn of this node, and a dual squid λ∗n.

• Each leg-node of λn has a corresponding leg-node of λ∗n. We connect them into one
node.

• We introduce the following naming of elements of this graphs:

– The head node of λn will be called n, the head node of λ∗n will be called n∗.
– For each half-link `ε incident to n in the original graph (the sign ε comes from

its relation with n, not with n∗) there are two links and one node in the θ-like
graph. The link incident to the head of λn we shell call `εn, the link incident
to the head of λn∗ will be called `εn∗ . The node between them will be called
x`ε .

An example of a θn graph is presented at figure 3.14.
The trivial diagram DId

G of the graph G is constructed as follows:

• For each node n ∈ NG we construct a θ-like graph θn. The graph of DId
G is

⊔
n∈N θn.

• We introduce the node relation Rnode as follows: For each link ` ∈ LG we have two
nodes of type x`ε : we have x`+ of θs(`) and x`− of θt(`). Each pair (x`+ , x`−) is in
the Rnode relation.

• We introduce the link relation as follows: for each pair (x`+ , x`−) there are two
links `+n and `+n∗ incident to x`+ and two links `−n′ and `−n′∗ incident to x`− . The

relation R(x`+ ,x`−)
link connects `+n with `−n′ and `

+
n∗ with `

−
n′∗ .

Example of such diagram - together with its interpretation in terms of 2-complexes - can
be found at figure 3.15. Note, that the 2-complex is in fact a cylinder over the graph G,
with an extra set of horizontal internal edges, forming a subcomplex homeomorphic with
G.

The coloring of the diagram is following:

• Each of links `εn and `εn∗ is labelled by the spin j`.
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(a) (b) (c) (d)

Figure 3.15: Example of a trivial diagram. (a) - The diagram. (b) - Reading the boundary
graph of the diagram. (c) - The spin-foam corresponding to the diagram. (d) - Since each
horizontal edge is bivalent and labelled i BF -manner, thus they can be removed and the
resulting foam is a simple cylinder.

• Each node n is labelled by the identity operator P̂n = 1~j on H
Inv
n . The node n∗ is

labelled by the same operator P̂n∗ = P̂n.

• For each node x`ε the invariant node Hilbert space is HInv
x`

= Inv
(
Hj` ⊗H∗j`

)
≡ C.

We label each pair (x`+ , x`−) by the identity operator on this space P̂x` = 1|HInv
x`

.

• Each θ-like graph θn is labelled by the natural contractor
〈
ATr

∣∣.
• The face amplitude is Af = 2jf + 1 and the boundary link amplitude A` = 1√

2j`+1
.

The transition amplitude operator calculated according to subsection 3.3.2 is precisely

ÂDTr
G

= 1 (3.23)

Indeed, the following calculation proves above result.
Let us write explicitly the matrix elements of the tensors in the spin basis (i.e. in

terms of elements of Hn).

• The contractors
〈
ATr
θn

∣∣ expressed in the spin-basis are given by set of deltas:

〈
ATr
θn

∣∣ =
∏

`+/−∈L+/−
n

δ
n
`+/−

m
`+/−

δ
n∗
`+/−

m∗
`+/−

(3.24)

The m`+/− indices are always associated with the starting node of the link `+/−

in θn, the indices n`+/− are associated with the target node of the link `+/− in θn.
The indices m∗

`+/−
and n∗

`+/−
refer to the links `+/−n∗ .

• The P̂x` operators expressed in the spin j` basis are P̂x` = 1
2j`+1δ

m`−
n∗
`−
δ
m∗
`+

n`+
(the

naming of the indices is the same as in case of contractors, however now indices
m∗`+ and n`+ refer to the graph θn, while the indices m`− and n∗`− refer to the graph
θn′ , where n = s(`) and n′ = t(`)).
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• The P̂n operators expressed in spin basis are projection operators P̂n =
[
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+

.

The P̂n∗ operators are the same operators, however their indices are named differ-

ently: P̂n∗ =
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

.

The unweighted transition amplitude operator is

Aunweighted

DTr
G

=
∏
n∈NG

 ∏
`+/−∈L+/−

n

δ
n
`+/−

m
`+/−

δ
n∗
`+/−

m∗
`+/−

yD

yD
∏
n∈NG

([
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
·
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

)
· (3.25)

·
∏
`∈LG

(
1

2j` + 1
δ
m`−
n∗
`−
δ
m∗
`+

n`+

)

the weight amplitude is: since there are two faces per each link, the face amplitude factor
is
∏
`∈LG (2j` + 1)2, and since there are two boundary links per each link of G, the link

amplitude factor is
∏
`∈LG

1

(
√

2j`+1)
2 , thus overall weight factor is

∏
`∈LG (2j` + 1) and

cancels with the factor
∏
`∈LG

1
2j`+1 coming from the P̂x` operators. Thus we are left

with the index contractions:

ADTr
G

=

 ∏
n∈NG

 ∏
`+/−∈L+/−

n

δ
n
`+/−

m
`+/−

δ
n∗
`+/−

m∗
`+/−

yD
yD

 ∏
n∈NG

([
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
·
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

)
· (3.26)

·
∏
`∈LG

(
δ
m`−
n∗
`−
δ
m∗
`+

n`+

)
Note, that the terms coming from P̂x` operators can be decomposed into the product

over nodes:
∏
`∈LG

(
δ
m`−
n∗
`−
δ
m∗
`+

n`+

)
=
∏
n∈NG

(∏
`+∈L+

n
δ
m∗
`+

n`+

)
·
(∏

`−∈L−n δ
m`−
n∗
`−

)
, so we end

up with

ADTr
G

=
∏
n∈NG

 ∏
`+/−∈L+/−

n

δ
n
`+/−

m
`+/−

δ
n∗
`+/−

m∗
`+/−

yD

yD

([
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
·
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

)
· (3.27)

·

 ∏
`+∈L+

n

δ
m∗
`+

n`+

 ·
 ∏
`−∈L−n

δ
m`−
n∗
`−
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Performing the contraction we can group the deltas:

ADTr
G

=
∏
n∈NG

[[
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
·

·

 ∏
`+∈L+

n

δ
n`+
m`+

δ
n∗
`+

m∗
`+
δ
m∗
`+

n`+

 ·
 ∏
`−∈L−n

δ
n`−
m`−

δ
n∗
`−

m∗
`−
δ
m`−
n∗
`−

 · (3.28)

·
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

]

Each triple of deltas in the brackets simplify to either δ
n∗
`+

m`+
or δn`−m∗

`−
:

ADTr
G

=
∏
n∈NG

[P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
·

 ∏
`+∈L+

n

δ
n∗
`+

m`+

 ·
 ∏
`−∈L−n

δ
n`−
m∗
`−

 · [P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−


=

∏
n∈NG

[[
P Inv
n

]−−→m`+−−→B`−
−−→n`−
−−→
A`+
· δ
−−→
n∗
`+−−→m`+
· δ
−−→n`−−−→
m∗
`−
·
[
P Inv
n∗
]−−→m∗

`−
−−→
C∗
`+−−→

n∗
`+

−−→
D∗
`−

]
(3.29)

so at the end of the day, knowing that P̂ Inv
n = P̂ Inv

n∗ , for each node n of G we have a
product of P̂ Inv

n operators

ADTr
G

=
∏
n∈NG

[[(
P Inv
n

)2]−−→B`−−−→C∗`+
−−→
A`+
−−→
D∗
`−

]
(3.30)

now knowing that in the spin basis P Inv
n is a projection operator, we have

ADTr
G

=
∏
n∈NG

[[
P Inv
n

]−−→B`−−−→C∗`+−−→
A`+
−−→
D∗
`−

]
(3.31)

which is precisely the identity operator on the gauge invariant spin-network Hilbert space
HG,~j (see subsection A.3.3).

The coloring of the diagram we introduced here is in fact the BF -coloring. Note,
that the BF -model has a very convenient property, namely each bivalent edge in BF -
spin-foam can be removed with no consequences for the transition amplitude (see [38]).
Indeed, it can be derived from the form of contractor. Thus the transition amplitude of
DTr
G is equal to the transition amplitude of the foam being a simple cylinder over a graph
G (see figure 3.15).

3.4.2 The one-interaction diagram

Consider now a following process. The initial state is given by a spin-network state
supported on a graph Gin. There is precisely one interaction vertex represented by a
connected graph Γ. We pick some nodes n1, . . . , nk of Gin and relate them with some
nodes n′1, . . . , n′k respectively of Γ. This process is represented by a spin-foam with
precisely one interaction vertex. It can be treated as a Feynman diagram with a very
simple interaction.

The Operator Spin-network Diagram of such process is called one-interaction diagram.
We will characterise such diagrams in this subsection. They are also studied in section
6.3 of [53].
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The one-interaction Operator Spin-network Diagram can be always constructed by
the following procedure.

1. Construct a trivial diagram DTr
Gin

of a graph Gin.

2. Add the graph Γ to the set of graphs of DTr
Gin

.

3. Extend the node relation as follows. For each node ni of the nodes n1, . . . , nk that
participate in the interaction take the node n∗i of the graph θni . Extend the Rnode

relation by the pairs (n∗i , n
′
i), where n

′
i ∈ NΓ (note, that n′i must be dual to n∗i , and

thus it must be isomorphic to ni).

4. Extend the link relation as follows. For each pair (n∗i , n
′
i) introduce a duality map

φ(n∗i ,n′i)
and the link relation induced by this map. The maps may be arbitrary,

however one has to keep an eye on the consistency of the coloring of the diagram
(see 5b).

5. Color the graph as follows:

(a) The trivial diagram is colored as it was indicated in the previous subsection.

(b) The links of the graph Γ that are incident to the nodes n′i has spins indicated
by the spins of links of Gin. Note, that this indicates a constraint on the duality
maps chosen in 4: in order to obtain non-vanishing transition amplitude, one
has to ensure that two half-links of the same link are never connected to two
links with different spins.

(c) The links of Γ that are not incident to any of n′i are colored by arbitrary spins.

(d) The nodes of Γ are colored by the invariant projectors of an appropriate node
Hilbert spaces.

(e) The graph Γ itself is colored by
〈
AEPRL

∣∣ contractor.
We will denote such diagram by DGin,Γ. An example of a one-interaction diagram is
presented at figure 3.16

It is interesting to study the boundary of one-interaction diagrams. The boundary
graph of DGin,Γ can be always decomposed into two disjoint components:

∂ (DGin,Γ) = Gin t Gout (3.32)

The first disjoint component is precisely the initial graph Gin (of course in the general
case it does not have to be connected, what we emphasised by using the letter G). The
second component Gout is determined by the following algorithm:

1. Take the graph Gin and reverse its links, obtaining Gin.

2. For each node ni ∈ NGin that was connected to the interaction vertex, there is a
node ni ∈ NGin

. Remove each ni together with the half-links incident to it.

3. Remove each node n′i ∈ NΓ that was connected to one of initial graph’s nodes.
Remove it together with the half-links incident to it.

4. Whenever in step 2 of in step 3 two half-links of a link are removed - consider all
the link removed. If only one half-link is removed - consider it as a temporary open
half-link.
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(a) (b) (c)

Figure 3.16: Two examples of one-interaction diagrams. (a) - A very simple example.
(b) - The spin-foam corresponding to the diagram presented at (a). (c) - A more complic-
ated example (link relations between the trivial part of the diagram and the interaction
graph are indicated by letters, i.e. a goes with a′, b with b′ etc.). The spin-foam corres-
ponding to this example is hard to draw, thus we do omit it.

5. Note, that each removed ni node was dual to the corresponding removed n′i node.
Thus for each positive open half-link that is left in Γ because of removing n′i there is
a negative open half-link in Gin left there because of removing ni. Moreover there is
a map between these half-links induced by the duality map φ{n∗i ,n′i} that we picked
in point 4 of the previous procedure (in fact the map φ{n∗i ,n′i} relates the half-link
incident to the nodes, however for each temporary open half-link there is precisely
one half-link incident to the removed node, so the generalisation of the duality map
is natural). Thus let us connect these open half-links according to the map and
obtain Gout.

The coloring of the out-graph is in natural way induced by the coloring of Gin and of Γ.
This procedure is very similar to the one used in subsection 3.2.3.4 to find the bound-

ary graph of a graph diagram, however here instead of the graph of a diagram we use the
initial graph. For graphical illustration of this procedure see figure 3.17.

3.4.3 Glueing of diagrams

Consider two graphs G and G′ with decomposition into connected components given by
G = {Γ1, . . . ,Γn} and G′ = {Γ′1, . . . ,Γ′m}. We say that G and G′ have a compatible con-
nected component iff there is a pair of connected graphs

(
Γi,Γ

′
j

)
, where Γi is a connected

component of G, Γ′j is a connected component of G′ and Γi = Γ′j . We say, that G and

G′ have k compatible connected components iff there are k pairs
(

Γi1 ,Γ
′
j1

)
,. . .,

(
Γik ,Γ

′
jk

)
satisfying the above condition (each connected component Γia , Γ′jb may appear in these
pairs at most once).

Given a spin-network Hilbert spaces HG,~j and HG′,~j′ supported on the graphs G and
G′ respectively we say, that they have k compatible connected component, if the graphs
G and G′ have k compatible connected components, and for each pair

(
Γia ,Γ

′
ja

)
spins of
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(a) (b) (c)

Figure 3.17: Graphical illustration of the procedure of finding boundary of a one-
interaction diagram, presented for the diagram of figure 3.16a.

the corresponding links match.
Let us now consider two diagrams:

D1 = (G1, (Rnode,1,Rlink,1) ; C1) and D2 = (G2, (Rnode,2,Rlink,2) ; C2) (3.33)

such that their boundary graph Hilbert spaces has k compatible connected components.
We can glue the diagrams along these components. The resulting diagram D1+2 is defined
up to a spin-network automorphism-induced duality maps φa : Γia → Γ′ja for each pair
of compatible connected components (see subsection 3.1.2.3). Let us thus pick k spin-
network duality maps φ1, . . . , φk and describe the glued diagram.

1. The graph of D1+2 is simply the disjoint sum of graphs of the ingredients:
G1+2 = G1 t G2.

2. The node relation Rnode,1+2 is the sum of the node relations Rnode,1 and Rnode,2,
extended by the gluing node-relation.

• The gluing node relation Rgluing
node is defined as follows: each node n(B)

I of the
boundary graph ∂D1 (or ∂D2) has its corresponding node nI in the graph
G1 (or G2 respectively), being unrelated with any other node. Suppose, that
nI ∈ G1 is an unrelated node such that n(B)

I belongs to a component Γia that
we are gluing along. Then there is a node n(B)

J = φa

(
n

(B)
I

)
of the component

Γ′ja and its corresponding unrelated node nJ ∈ G2. Thus we put a pair (nI , nJ)

into the relation Rgluing
node .

Having defined the Rgluing
node we can formally define Rnode,1+2 as

Rnode,1+2 = Rnode,1 ∪Rnode,2 ∪Rgluing
node (3.34)

which means that two nodes of G1+2 are in node relation iff they are either inRnode,1

relation, or in Rnode,2 relation, or in Rgluing
node relation.

3. The link relation is defined analogously:

Rlink,1+2 = Rlink,1 ∪Rlink,2 ∪Rgluing
link (3.35)
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where the Rgluing
link is defined as follows. Given a pair of nodes (n1, n2) in Rgluing

node

relation, there is a duality map between them induced by the graph morphism φa of
the components they belong to (see subsection 3.1.2.1). This duality map induces
the R(n1,n2)

link being a part of the family Rgluing
link .

4. The coloring of links is completely induced by the colorings C1 and C2 since no new
links appeared. The same works for the coloring of graphs by contractors.

The coloring of nodes needs more care. It is also induced at these nodes, that do
not belong to any pair of Rgluing

node relation. For the pairs of nodes that do belong to
Rgluing

node we need to do some extra adjustment. Namely if (n1, n2) ∈ Rlink
node, we color

both the nodes by the operator P̂(n1,n2) := P̂n1 ◦ P̂n2 . This composition is permit-
ted, because the node Hilbert spaces of n1 and n2 are dual (see subsection 3.1.2.3
and Appendix A.3.2). Note, that if the diagram is colored in one of the schemes
presented in subsection 3.3.3, the operators P̂n1 and P̂n2 are projections, thus the
operator P̂(n1,n2) = P̂n1 = P̂n2 .

The transition amplitude of a composed diagram is the composition of the transition
amplitudes of the diagrams being composed. To prove it consider a decomposition
of the graph ∂D1 into ∂Dfree

1 t ∂Dglued
1 , where ∂Dglued

1 := Γi1 t Γi2 t · · · t Γik is the
sum of the components compatible with ∂D2. We can decompose ∂D2 analogously into
∂Dfree

2 t ∂Dglued
2 where ∂Dglued

2 =
(
∂Dglued

1

)∗
. Then, according to subsection 1.2.2.3,

we can treat the transition amplitude 〈AD1 | ∈
(
H∂Dfree

1
⊗H

∂Dglued
1

)∗
as an operator

ÂD1 : H∂Dfree
1
→ H∗

∂Dglued
1

, and similarly 〈AD2 | ∈
(
H∂Dfree

2
⊗H

∂Dglued
2

)∗
as an operator

ÂD2 : H
∂Dglued

2
→ H∗

∂Dfree
2

. Now since ∂Dglued
2 =

(
∂Dglued

1

)∗
, the corresponding Hilbert

spaces are also dual: H
∂Dglued

2
=
(
H
∂Dglued

1

)∗
, so the image of ÂD1 is in the domain of

ÂD2 , so the operators can be composed.
The composition of these operators would be given by taking the tensor product of

them and then contracting all the indices, that refer to half-links of Gglued
1/2 :

ÂD1 ◦ ÂD2 = [AD1 ⊗AD2 ]y
∏

`ε∈L
Gglued

1

δm`εn`ε
(3.36)

where m`ε is the index referring to a half-link of ∂Dglued
1 and n`ε is referring to a half-link

of ∂Dglued
2 iff ε = +, and opposite if ε = −. But this contraction is precisely what is

done, when the operator P̂(n1,n2) := P̂n1 ◦ P̂n2 is calculated. So we already know, that the
unweighted amplitude operator is the composition of unweighed amplitude operators of
the ingredients:

̂
Aunweighted
D1+2

=
̂

Aunweighted
D1

◦ ̂
Aunweighted
D2

(3.37)

To prove, that the weighted amplitude operator matches, we have to check the face and
link amplitude factors. Again only the amplitudes referring to ∂Dglued

1/2 matters, because
all the other terms in the weight amplitude are simply multiplied. In the diagrams D1 and
D2 each link ` of ∂Dglued

1/2 corresponds to an open equivalence class of the face relations

(one in each diagram, i.e. f
(1)
` of Rface,1 and f

(2)
` of Rface,2). Thus the corresponding

weight factors are A
f

(1)
`

·A` for ` ∈ L
∂Dglued

1
and A

f
(2)
`

·A`∗ for `∗ ∈ L
∂Dglued

2
, so the overall
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factor is

A(`),unglued = A
f

(1)
`

·A` ·Af (2)
`

·A`∗ = (2j + 1)
1√

2j + 1
(2j + 1)

1√
2j + 1

= 2j + 1

(3.38)

In the diagram D1+2 each link ` ∈ ∂Dglued
1 corresponds to a closed equivalence class of

the face relation. Indeed, the positive boundary member of each equivalence class f (1)
` is

glued with the negative boundary member of f (2)
` and vice versa - so the half-links form

a cyclic series, and the face f` is internal. Thus the corresponding weight factor is

A(`),glued = Af` = 2j + 1 = A(`),unglued (3.39)

So the weight factors are the same in the composed operator ÂD1◦ÂD2 and in the operator
ÂD1+2 . Thus at the end of the day we have

ÂD1+2 = ÂD1 ◦ ÂD2 (3.40)

Quod erat demonstrandum.
Two remarks on the glueing procedure should be done. First: the glueing procedure

can be easily generalised to the case, where the boundary graphs ∂D1 and ∂D2 do not have
to have compatible connected components, but only a number of compatible nodes. The
procedure is analogous, but the property (3.40) does not have to be satisfied any more.
Second: the very special case is gluing the trivial diagram DTr

Γ because it’s operator is the
identity operator. These remarks are discussed in subsection 3.4.3.1 and subsection 3.4.3.2
respectively.

3.4.3.1 Generalisation of the gluing procedure

Consider two diagrams D1 and D2 with the boundary graphs ∂D1 and ∂D2 respectively.
Let us pick k pairs of pairwise dual nodes (ni, n

′
i)i=1,...,k and the duality maps {φi}i=1,...,k

such that ni ∈ N∂D1 and n′i ∈ N∂D1 and each duality map is compatible with the spin-
network structure of the graphs (i.e. each φi preserves the coloring of the links with
spin-labels). Then we can glue the two diagrams along these pairs of nodes, and the
resulting diagram D1+2 is defined as follows:

1. The graph of the diagram D1+2 is just the sum of graphs of D1 and D2 - as in the
step 1 of the previous procedure.

2. The node and link relations are defined by the same extension of ingredient relations,
as it was presented in the steps 2 and 3 of the previous procedure. However now
the Rgluing

node connects the nodes of the selected pairs (ni, n
′
i)i=1,...,k which do not have

to form any subgraph of any of graphs, and the Rgluing
face is indicated by the picked

duality maps{φi}i=1,...,k, instead of graph automorphisms.

3. The coloring of D1+2 is defined analogously to the one defined in the step 4 of
previous procedure: the glued nodes are colored by P̂(ni,n′i)

:= P̂ni◦P̂n′i , the coloring
of all the other cells is precisely the same as the coloring of D1 or D2.

To study the transition amplitude of a result of generalised glueing procedure first note,
that each spin-network Hilbert space can be decomposed into product of node Hilbert
space (see (3.3)):

HG =
⊗
n∈NG

HInv
n (3.41)
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thus if we named two sets of glued nodes N1 := {ni}i=1,...,k and N2 := {n′i}i=1,...,k, we
can say, that

H∂D1 =
⊗

n∈N∂D1
\N1

HInv
n ⊗

⊗
n∈N1

HInv
n =: H∗1 ⊗Hglued (3.42)

and

H∂D2 =
⊗

n∈N∂D2
\N2

HInv
n ⊗

⊗
n∈N2

HInv
n =: H2 ⊗

(
Hglued

)∗
(3.43)

so ÂD1 : H1 → Hglued and ÂD2 : Hglued → H2, so composing these two amplitudes
is admissible. And in fact the unweighted amplitude of a composed diagram is the
composition of unweighted amplitudes:

̂
Aunweighted
D1+2

=
̂

Aunweighted
D1

◦ ̂
Aunweighted
D2

(3.44)

However when we consider the weight factors, the following problem arise: in the previous
procedure we were always sure, that either all the boundary link were glued to another
boundary link, or it was left unglued. Thus in the resulting diagram each face containing
a link of glued subgraphs was an internal face being a composition of two external faces
of the ingredient diagrams. That’s why the identity (3.39) holds. Conversely in the
generalised procedure it may happen that only one half-link of a boundary link is glued,
and thus the resulting diagram contains an external face being a composition of two
external faces of the ingredient diagrams (see figure 3.18a). Even more complicated
scenarios may happen: a face of the resulting diagram may be composed of many more
than two faces of the ingredient diagram (see figure 3.18b). Thus the weight factors of
AD1+2 are related to the weight factors of AD1 and AD2 in a nontrivial, glueing dependent
way. We shell call this difference of weight factor the gluing weight factor and denote as
Agluing, thus

ÂD1+2 = Agluing · ÂD1 ◦ ÂD2 (3.45)

The gluing weight factor is a product over pairs of glued nodes of node gluing weight factor
Agluing =

∏k
i=1A

gluing

(ni,n′i)
, which are products of terms related to each glued pair of half-

links Agluing
(ni,ni′ )

=
∏
`ε∈Lni

Agluing

(`ε,`′−ε)
. The gluing weight factor of any pair

(
`ε, `

′−ε
)
is in

general Agluing

(`ε,`′−ε)
= 1

A`·Af`
- because it reduces by one both number of boundary links and

number of internal faces. The only exception is when two half-links of the same boundary
link are glued (two examples can be found at figure 3.18c and figure 3.18d) - then the
gluing weight factor is Agluing

(`ε,`′−ε)
= 1

A`
- because number of faces does not change. The

gluing weight factor should be calculated node by node, i.e. when calculating Agluing

(ni,n′i)
one

asks whether two glued half-links are of the same boundary link of the boundary graph
of diagram after the pairs of nodes (n1, n

′
1) , . . . ,

(
ni−1, n

′
i−1

)
had been already glued.

The generalised gluing procedure in fact is simply extending of the node and link
relations. An example of the generalised gluing procedure is each one-interaction diagram
(see subsection 3.4.2) being the trivial diagram (see subsection 3.4.1) glued to a one-
vertex diagram (i.e. a diagram with graph with precisely one connected component -
see subsection 3.2.2.1). We will also use it a lot in the next chapter while defining the
algorithm to find all diagrams with a fixed boundary (see section §4.2).
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(a) (b)

(c) (d)

Figure 3.18: Examples of different configurations of gluing weight factor. For simplicity
assume that each half-link at nI and n′II is positive and each half-link at n′I and nII
is negative. (a) - The diagrams D1 and D2 are glued via the nodes nI and n′I . The
links `1 and `′1 were external faces of D1 and D2 respectively. After gluing they are
form a single external face of D1+2. (b) - The diagrams were glued also via nII and
n′II . The duality map φnII→n′II was chosen in such a way, that now the series of links
{`′5, `1, `′1, `2, `′2, `3, `′3, `4} for a single external face of D1+2. Before the gluings each of
these links belonged to separate external face of D1 or D2. (c) - Simple example of closing
the face: the duality map φnII→n′II was chosen in such a way, that {`1, `′1} is an internal
face of D1+2. The gluing weight factor for connecting nII and n′II is Agluing(

`−1 ,`
′+
1

) = 1
A`1

.

(d) - More complicated example of closing the face: Before gluing nII with n′II there were
had three external faces {`1, `′1}, {`2, `′2} and {`3, `′3}, which now became one internal face
{`1, `′1, `2, `′2, `3, `′3}. The gluing weight factor is 1

A`1
= 1

A`2
= 1

A`3
.
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Figure 3.19: Equivalent chains of diagrams Dθ of θ-like graphs.

3.4.3.2 Gluing of the trivial diagram.

Second remark refers to the properties of the trivial diagram DTr
G . As we have proven in

subsection 3.4.1, the transition amplitude of the trivial diagram is precisely the identity
operator. Thus given a diagram D = (G,R, C) we can glue it with the trivial diagram DTr

Γ

of any connected component Γ ∈ G without changing neither the transition amplitude
nor the boundary structure of the diagram. Moreover the 2-complex of a diagram D is
equivalent to the 2-complex of the diagram D glued with DTr

Γ . Thus we will consider
these two diagrams equivalent.

Moreover, compiling the concept of trivial diagrams with the generalised gluing pro-
cedure, consider a diagram Dθn being a simple θ-like graph (of some node n), with void
relations, and colored by the ATr contractor. Given an arbitrary diagram D such that its
boundary has a node n∗ dual to n one can glue this diagram to Dθn with no effects to
neither the transition amplitude nor the topology.

One can go even one step further. Consider a series of Dθn diagrams, glued together
into a chain (see figure 3.19). The input of such chain into a transition amplitude of
any graph is precisely the same as the input of one θ-like graph - what can be proven
analogously to the calculation presented in subsection 3.4.1. The bivalent nodes in this
chain has no influence on the spin-network structure of the boundary, thus they can be
removed harmlessly. The only meaning of them is when they are related in a nontrivial
way to other nodes of the diagram. Then they effect the topology of the 2-complex of
the diagram.

3.4.4 Disconnected diagrams

Consider now a diagram D such that its graph G consists of two disconnected parts G1

and G2 (each of them may have arbitrary number of connected components), such that in
the node relation there is no pair containing one node from G1 and one node from G2. We
say, that such diagram is disconnected (or that the graph G of D is diagram-disconnected
- see also definition5.8 in subsection 5.1.1).
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An operator spin-network diagram based on a disconnected graph diagram can be
treated as two independent quantum processes D1 and D2. Indeed, its diagram operator
factorizes into a tensor product of two operators, one related to G1 and the other to G2.
One can see it easily by considering the formula (3.14). Let us recall it here:

〈AD| =

(⊗
Γ∈G
〈AΓ|

)
yD

 ⊗
[n]∈Redge

P̂n

 ·
 ∏
f∈Rface

Af

 ·( ∏
`∈∂D

A`

)
(3.46)

The contractor part of the formula is a product over connected components of G, thus it
can be naturally split into

⊗
Γ∈G
〈AΓ| =

⊗
Γ∈G1

〈AΓ|

⊗
⊗

Γ∈G2

〈AΓ|

 (3.47)

The projector part is a product over equivalence classes of edge relation. But since there
is no pairs in Rnode that mix nodes of G1 and G2, this product again split into

⊗
[n]∈Redge

P̂n =

 ⊗
[n]∈Redge:n∈NG1

P̂n

⊗
 ⊗

[n]∈Redge:n∈NG2

P̂n

 (3.48)

The same happens for face amplitudes - since there are no pairs of nodes linking G1 with
G2, there must not be any equivalence classes of face relation containing links from both
G1 and G2, thus

∏
f∈Rface

Af =

 ∏
f∈Rface:`f∈LG1

Af

⊗
 ∏
f∈Rface:`f∈LG2

Af

 (3.49)

and for the same reason there are no boundary links that come from one half-link of G1

and one half-link of G2, so

∏
`∈∂D

A` =

 ∏
`∈∂D:`±∈BG1

A`

⊗
 ∏
`∈∂D:`±∈BG2

A`

 (3.50)

The diagram driven contraction yD connects only the indices that refer to the half-links,
that are somehow connected within the diagram (i.e. either they are the same link or
there is a link-relation), thus it does not mix the terms referring to G1 with the terms
referring to G2, thus the overall amplitude can be written as

〈AD| = 〈AD1 | ⊗ 〈AD2 | (3.51)

3.5 Conclusions and discussion

We developed a framework in which one can describe the structure of a spin-foam in
terms of 2-dimentional drawings, that we named graph diagrams. This framework is
capacious, it allows many schemes of coloring a foam by SU(2)-tensors, among which
there are standard BF model and both Euclidean and Lorentzian EPRL models (see
subsection 3.3.3), but there are many more. In fact our framework allows even more
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general approach, i.e. to consider spin-foam models for an arbitrary gauge group G -
what is discussed in subsection 3.5.2.

It is worth to notice, that our approach do not change the calculation of a transition
amplitude of a foam. Every step of the diagram-driven contraction (introduced in subsec-
tion 3.3.2.1) was designed in such a way, that the final formulae agrees with the standard
BF or EPRL computation (if appropriate choice of contractors was done).

Our framework however has some input on the calculation of total transition amp-
litude being the sum over all quantum processes between the in and out states. The
graph diagrams precise the list of processes, that should be taken into account in such
summing - see subsection 3.5.1.

Next chapter describes, how to use operator spin-network diagrams when addressing
concrete questions. We provide there a detailed algorithm to find and order all diagrams
with some properties (i.e. with fixed boundary). We also show, how they can be used to
simplify the process of reading the formula of the transition amplitude out of a diagram
- by adopting Feynman-like rules of spin-foams [37] to Feynman-like rules of diagrams.

3.5.1 The class of 2-complexes

Our framework provide an answer to the question raised in section §2.1: what class of
2-complexes is appropriate in defining the spin-foam models for Loop Quantum Gravity?

Let us recall the question with more details. The spin-foam models claim, that the
transition amplitude of a boundary state |ψ〉 is

Aψ =
∑

κ:∂κ=ψ

Aκ (3.52)

The question is: the spin-foams κ in the above formula are elements of what class? Which
of them are considered equivalent, and thus counted as one and the same? Are there any
2-complex that we consider (for some reason) inadmissible?

Our answer is: the class of the 2-complexes should be all the 2-complexes that can
be obtained out of a graph-diagram by the procedure described in subsection 3.2.2.
Moreover, two 2-complexes that differ only by some removable cells colored in BF manner
are considered the same diagram.

The answer above although being strict, is not very convenient. What one would
expect is a set of assertions listing the properties that the admissible 2-complex must or
must not satisfy. We have such list (see below), however we do not know whether it is
complete.

1. The boundary vertices are always incident to precisely one internal edge.

Whenever two or more internal edges meet, an interaction takes place. The interac-
tion vertices are always internal vertices of the 2-complex (which is a straightforward
conclusion of constructing the one-vertex foams in subsection 3.2.2.1). An example
of inadmissible situation together with explanation, how to correct it, is shown at
figure 3.20

2. Each internal vertex’s structure can be represented by a connected graph.

This is an obvious conclusion of the fact, that in subsection 3.2.2.1 we were creating
the one-vertex foams only for connected components of the graph G.
To be more precise - in our framework we admit the vertices with structure defined
by a disconnected graph. One can obtain it by gluing together the vertices rep-
resented by the connected component of it. However the input to the transition
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(a) (b)

Figure 3.20: Admissible boundary vertices. (a) - The forbidden situation, where three
internal edges meet at the boundary. (b) - Possible representation of similar process in
our framework.

amplitude coming from such a vertex is precisely the product of the inputs of ver-
tices of the connected components. Thus we simply treat a foam containing such
vertices as equivalent to the foam with the connected components separated - see
figure 3.21.

3. All removable cells that are colored in BF scheme are irrelevant in calculation of
the transition amplitude. Thus we treat each foams that differ only by a number
of such cells as equivalent - see figure 3.22.

In the points 2 and 3 of the above enumeration we claimed some classes of spin-foams
being equivalent. One of the reasons we did it was the fact, that the transition amp-
litude of them was always equal. Obviously this was not the only reason. The other
one was a common sense. It might happen, that there are many spin-foams giving the
same transition amplitude for the same boundary conditions, however representing qual-
itatively different processes. This decision was our choice, based on our understanding
what should be considered physical in the spin-foam models. One could provide a self-
consistent framework without these assumptions. Of course the final distinction should
be done by comparing transition amplitudes computed in both approaches with some
experimentally measurable quantities.

3.5.2 Generalisation to groups other then SU(2)

The framework presented in this chapter can be easily generalised to the theories of
dynamical connections of an arbitrary group, not only SU(2). This of course require
redefining the rules of coloring. The general rules, for an arbitrary group G, should be
as follows:

• Links of the graph of a diagram should be colored by unitary representations ρ` of
the group G (perhaps the framework might be generalised also for the coloring by
non-unitary representations, the author however did not studied this issue).
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(a) (b)

Figure 3.21: Vertices with structure described by a disconnected graph. The transition
amplitude of the fragment of a spin-foam presented at (a) is precisely the same, as the
transition amplitude of the one presented at (b). We treat them as equivalent.

(a) (b)

Figure 3.22: The two spin-foams κ1 and κ2 differ only by a removable edge V1V2 and two
removable vertices V1 and V2. The vertices are colored by

〈
ATr

∣∣ and the edge is colored
by P̂ Inv, thus it is the BF coloring. They spin-foams κ1 and κ2 are equivalent, which
means that when summing the transition amplitudes, we will always count only one of
them.
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• Nodes of the graph of a diagram should be colored by operators P̂n : Hn → Hn
acting on the node Hilbert spaces HGn :=

(⊗
`+∈L+

n
Hρ`

)
⊗
(⊗

`−∈L−n H
∗
ρ`

)
. However

for the author it seams convenient to use everywhere HG,Inv
n being the G-invariant

subspace of HGn .

• Connected components of the graph of a diagram should be colored by contractors
〈AΓ| ∈

(
HGΓ
)∗ where HGΓ is the Hilbert space of G-spin-networks with the support

on the graph Γ. A G-spin-network is a gauge-invariant, square-integrable function
on L copies of the group G, where the gauge action is determined by the structure
of the graph Γ (i.e. the gauge transformations act in nodes and act only on the
variables related to the links incident to the node - see also Appendix A.3.3.3).

Thus HGΓ = L2

(
GL/

Γ

GN
)
, where L and N are numbers of links and nodes of Γ.,

and the gauge action is determined by the graph structure.

• Face and link weight factors are some functions depending on the representation ρf
and ρ`. They might be related to the dimension of the representation, but they do
not have to.

By comparing the above rules with the subsection 3.3.1 one can clearly see, that the
coloring scheme presented there is precisely an application of this general rules to the
SU(2) group.
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Chapter 4

Boundary Formalism for OSD and
its application in Dipole Cosmology

In chapter 3 we have introduced the formalism of Operator Spin-network Diagrams
(OSDs) as an alternative language for Spin-Foams theories. A spin-foam - and equi-
valently a graph diagram - can be treated as a quantum process between the in and out
states determined by its boundary, as it was discussed in subsection 1.2.2.3. Considering
any quantum transition amplitude one has to take into account all possible elementary
processes have some property - like for example a specific boundary condition. An import-
ant issue arises: how to find and characterise all such processes? As we have mentioned
in section §3.5, the operator spin-network diagrams provides a convenient tool to find
all spin-foams (i.e. all OSDs) that have a fixed, given boundary graph. This chapter is
devoted to this problem.

This chapter is organised as follows. First in we describe a decomposition of an OSD
into very elementary building blocks. The graphs and relations of half-links we were
using in the previous chapter are already a simplification when compared to 2-complexes,
however, here we will find that it is still not the elementary level - each graph is in fact a
set of nodes connected in some way, and the structure of each node is encoded in a squid -
what will be described in detail in section §4.1. Then, in section §4.2, we will describe the
main part of this chapter, namely the algorithm of finding all diagrams (and thus all spin-
foams) with a fixed boundary. The algorithm’s input is the boundary graph. We read out
of the graph, which elements of the diagram are necessary to have such boundary, then we
add an arbitrary number of extra building blocks and connect them in an arbitrary way
to obtain one of the result diagrams. In fact for each boundary graph there are infinitely
many diagrams, however, the procedure order them in a well organised series. One of the
additional results of our procedure and of the diagrammatic representation of quantum
processes is a simple way to read out the formulae for the transition amplitude out of a
diagram. These Feynman-EPRL rules, adopted from the Feynman rules for spin-foams
[37], are presented in section §4.3. The tools presented in this chapter are applied to the
model of Dipole Cosmology (described in [55, 56, 57, 58], recalled in section §2.2). The
section §4.4 presents the application of our algorithm to find all the diagrams in the first
order. The section §4.5 presents, how to use the Feynman-EPRL rules to calculate their
input to the transition amplitude.

This chapter is based mainly on [64]. The paper is a common work of the Author and
of Marcin Kisielowski. However, the results presented in sections 4.1, 4.2 and 4.3 were
mainly effects of the Author’s research. Application of these results to the example of
Dipole Cosmology model was done mainly by Marcin Kisielowski.
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4.1 Elementary building blocks of OSD

There are two main representation of the spin-network states: the holonomy represent-
ation and the invariant tensors representation. The first one focus on the links, along
which the integrals of the underlying spin-connection are taken (see Appendix A.3.3). In
the later one main role is played by the nodes the graph - where the tensors seat. In this
chapter we will use only the tensor representation of the spin-network states, because it
simplifies identifying the elementary building blocks of states.

The spin-network Hilbert space of a graph G with fixed spin-labelling ~j can be de-
composed into

HG,~j =
⊗
n∈NG

HInv
n where HInv

n = Inv

 ⊗
`ε∈Ln

Hεj`

 (4.1)

One can see that what is crucial for the structure of the Hilbert space is the structure
of the nodes, not the particular way of connection between them. Of course adjacency
relations matter when an evaluation of a spin-network state |ψ〉 ∈ HG,~j on a certain field
configuration {u`}`∈LG is taken:

ψ (u`) = ” 〈u`| |ψ〉 ” :=

∏
`∈LG

Dj` (u`)
n`−
m`+

 · [ψ]
−−→m`+−−→n`−

(4.2)

where the way, in which the indices are contracted is determined by the links. However,
the tensor structure of the Hilbert space HG,~j is indifferent on neighbour relations of the
nodes. The only thing that matters is the tensor structure of the node Hilbert spaces.
But we have already introduced an object that captures the structure of a node: a squid
(see subsection 3.1.2.1 and Appendix A.1.1.4).

In the end, the full information contained in a spin-network state can be encoded in a
set of colored squids and an instruction, how to connect their legs. To obtain an operator
spin-network diagram we need to enhance this structure by a set of duality maps between
some pairs of heads of squids, which will induce the node and link relations.

Next three subsections concretise the intuitions presented in above paragraph and
illustrate them by appropriate figures. In subsection 4.1.1 we provide a strict definition
of an oriented squid set (OSS), in subsection 4.1.2 we show, how to construct all possible
OSDs from a given OSS, and in subsection 4.1.3 we discuss in what way the coloring of
squids influence all the construction.

4.1.1 Squids and oriented squid sets

The notion of squids was introduced in subsection 3.1.2.1 and it was described in details
in Appendix A.1.1.4. A squid is a graph with one node (head) in the middle and several
links (legs) incident with it - thus its shape is reminiscent of a squid or an octopus (that’s
the origin of the name). The precise definition is as follows:

Definition 4.1. Oriented squid
An oriented squid is a graph λ = (Nλ,Lλ), where Nλ = {n} ∪ {x1, . . . , xk} and

Lλ = {`1, . . . , `k} and each link `i (a leg) connects the node n (the head) with the node
xi (a leg-node). A link (leg) is called outgoing or positive, iff s(`i) = n∧t(`i) = xi. A link
(leg) is called incoming or negative in the opposite case, namely s(`j) = xj ∧ t(`j) = n.
The number k is called the valency of the squid. The numbers of positive/negative legs
k+/− are called positive/negative valency respectively. An example of a squid can be
found at figure 4.1a.
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Remark 4.1. Squids are always open graphs. In fact they are the only open graphs we
ever consider in this section. Whenever in what follows we mention a graph - we mean
closed.

The squids are oriented, because the orientation of their legs matters. Such definition
of squids were used in [64] (in contrary to [53], where all the legs of all squids were
by definition oriented positive - thus actually their orientation had no meaning and the
squids were unoriented). The word oriented in terms of both squids and squid-sets is used
here to keep consistency with [64] notation. However, we often drop this word, because
both in this and in previous chapter we use almost only the oriented squids (whenever
we consider the unoriented ones, we explicitly mention it).

Let us introduce a notion of oriented squid sets. A general oriented squid set S
is simply a set of oriented squids: S = {λ1, . . . , λN} and does not contain any extra
information - see figure 4.1b. However, it is convenient to define a squid set of a graph G.

Definition 4.2. Oriented squid set of a graph
An oriented squid set of a graph G is a collection of squids: one per each node of G,

capturing the structure of this node. Namely SG := {λn : n ∈ NG}. Graphically one can
express it by erasing a point from interior of each link of G, and then “shaking” the whole
think, so that the disconnected parts of each link “go apart” - see figure 4.1c.

Note, that two different graphs may have the same squid set. This was a hint for us
to treat the squid, not the graph as an elementary building block in our constructions.

Not every squid set S is a squid set of any graph. This happens if and only if the
total number of positive legs of all squids of a squid set equals to the total number of
negative legs. In such case such procedure is obviously not unique (except some very
special cases). This gives us a way to describe graphs: to get a graph one can provide its
squid set an a prescription of connecting its legs (which we will call the closing of a squid
set) - see figure 4.2.

4.1.2 Constructing an OSD from an oriented squid set

Let us now describe, how to find all graph diagrams sharing a given oriented squid
set S. We have noted already, that a graph can be constructed out of a squid-set by
indicating, which legs should be connected. To obtain a graph diagram, one needs to
introduce furthermore a node relation and a family of link relations. In order to do
it, note that all the possible nodes to be related are in fact heads of the squids of the
squid set. Thus one needs to pick some pairs of dual squids and introduce the duality
maps (see subsection A.1.1.4) between them. This leads us to the following algorithm of
constructing all graph diagrams:

1. Squids: fix a squid set S (see figure 4.3). Ensure it may be closed into a graph
(namely the total numbers of incoming and outgoing legs are equal).

2. Node relation: choose N pairs of dual squids {λi, λ′i}i=1,...,N nothing, that a squid
can appear at most once among the pairs. The relation Rnode is such, that heads
of the chosen squids λi and λ′i are related to each other, and heads of other squids
are not related at all (see figure 4.4).

3. Link relation: for each pair of squids chosen in previous step pick a duality map
φi : λi → λ′i. The duality map induces the node relation, as it was described in
subsection 3.2.1.2.
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(a) (b)

(c)

Figure 4.1: Oriented squid set’s basics. (a) - An oriented squid with k+ = 4 outgoing
(positive) and k− = 2 incoming (negative) legs. (b) - An example of an oriented squid
set. (c) - A graph (on the lhs) and its oriented squid set (on the rhs) consisting of four
three-legged squids.
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(a) (b)

(c)

Figure 4.2: Three examples of closing of an oriented squid set. (a) - An oriented squid
set (lhs) and a unique graph obtained by gluings the legs (rhs). (b) - An oriented squid
set whose legs cannot be glued to give a closed oriented graph. (c) - An oriented squid set
(lhs) and three different oriented graphs (rhs), each of which can be obtained by different
closing prescription.

Figure 4.3: The step 1 of the squid-set algorithm: An oriented squid set S.
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Figure 4.4: The step 2 of the squid-set algorithm: Three pairs of squids have been chosen
to be related by the node relation.

Figure 4.5: The step 4 of the squid-set algorithm: One of the graph diagrams that can
be constructed from S (the link relation is omitted).

4. Closing the graph: connect the leg-node of each outgoing leg with the leg-node of
exactly one incoming leg of either the same of a different squid (see figure 4.5).

5. Iterating: repeat each of above steps, such that all possible choices are done precisely
once (see for example figure 4.6). For example:

(a) In step 4 perform all possible options of connecting the graph

(b) In step 3 pick all possible combinations of duality maps, and hence link rela-
tions.

(c) In step 2 pick all possible combinations of dual pairs.

Note, that step 4 commutes with 2 and 3. We choose to put it at the end to emphasise
the role of squid set over the particular choice of graph. However, it can be done as well
before choosing the pairs to be node-related (as it was presented in chapter 3), or after
choosing the node relation, but before the link relation (as it is expressed at figure 4.6).

The steps 2 and 3 obviously do not commute - the link relation is strictly dependent
to the node relation and cannot be determined before picking related nodes.

We will call the above procedure the squid-set algorithm. Each graph diagram ob-
tained in the squid set algorithm becomes an OSD after coloring by SU(2)-tensors - as
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(a)

(b)

(c)

Figure 4.6: The step 5 of the squid-set algorithm: Three graph diagrams obtained by
different choices of link relation for diagram of figure 4.5. Diagrams (a) and (b) can
be mapped one to another by an automorphism of the right graph. The diagram (c)
is essentially different from (a) and (b), because they cannot be mapped on it by any
graph automorphism. In total, there are 16 different graph diagrams for this choice of
the node relation and graph-closing (which reduces to 4 diagrams, when applying the
graph automorphisms), and many more for arbitrary choice of a node relation and graph
closings.
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it was described in subsection 3.3.1. To obtain all diagrams one needs to iterate over all
possible coloring, where possible means consistent with the diagram structure. It might
be however convenient to determine the coloring already at the level of squids, so at
the step 1. Such approach causes some constraint on the above procedure, which are
discussed in the next subsection.

4.1.3 Constraints on oriented squid sets caused by coloring

In previous subsection we constructed a graph diagram, and then considered only these
colorings, that are consistent with its structure. Of course the inversed approach is also
valid: one can consider from the very beginning a colored oriented squid set and for
each step of the squid-set algorithm allow only such connections, that the consistency of
the coloring is held. Such variation of the procedure will be called the colored-squid-set
algorithm.

A squid captures the structure of graph’s node, thus a colored squid captures the
structure of a spin-network’s node. We will consider squids colored in the following way:
each leg ` of a squid is colored by a spin j`indicating a unitary SU(2)-representation.
The head n of a squid is colored by an operator P̂n : HInv

n → HInv
n , where HInv

n is the
invariant part of the node Hilbert space Hn :=

⊗
`Hεj` where ε stands for ∗ ( i.e. the dual

representation space) for the negative leg and stands for nothing (i.e. the representation
space) for the positive leg (see subsection 3.1.2.3).

The coloring of the squids allows to construct an Operator Spin-network Diagram,
not just a graph diagram out of the squids. However, it cause certain constraints on the
construction. To be precise let us list them:

• Closing the graph: when considering colored squids, one can connect only legs of
the same coloring in the step 4 of the squid-set algorithm. This induce an extra
constraint on the oriented colored squid set to be closable: now it is not enough
to have the same total number of incoming and outgoing legs. One has to ensure,
that there is the same number of positive and negative legs colored by each spin.

• Node relations: When in the step 2 of the squid-set algorithm one chooses the pairs
to be in the node relation one has to ensure, that not only the squids are dual,
but also the node Hilbert spaces are dual. This requirement allows to compose the
operators attached to the related heads, thus in the resulting OSD each related pair
of squids {λ, λ′} is labelled by the operator P̂{n,n′} = P̂n ◦ P̂n′ .

• Link relations: the duality maps chosen at step 3 of the squid-set algorithm must
be consistent with the coloring - by mapping each leg onto the leg colored by the
same spin (i.e. they must be the node-Hilbert spaces duality maps).

• The procedure based on the oriented squid sets do not create any restrictions on
the coloring by the contractors (besides the requirement that they have to be in
a contractor Hilbert space indicated by the graphs structure). The only difference
with respect to the previous chapter is that here at the beginning of the procedure
we do not know, how many connected components the graph of our diagram will
have.

4.1.4 Summary of the squid sets

The approach of (colored-)squid-set algorithm presented in this section allows to control
the complexity of the diagram by the following measures: the number of internal edges
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(namely the number of pairs of squids related by the node relation), the number of
disconnected components of the graph (which gives the number of internal vertices of the
spin-foam) and the complexity of each component (i.e. the the number of legs of each
squid - the more legs, the more complicated graph it produces).

However, from the point of view of the physical application, what is more important
is the boundary part of the diagram. Here it is build out of all the squids that were
not chosen to be paired at the step 2 of the squid-set algorithm. In each particular
case the squid set can be decomposed into the boundary and the internal part, but this
decomposition varies during the procedure. Thus in order to keep the boundary structure
of considered diagrams under control, we developed an improved algorithm, presented in
the next section.

4.2 The algorithm finding all diagrams with a given bound-
ary

As we have mentioned in previous section, the (colored-)squid-set algorithm is a tool to
find all diagrams described by a certain squid set, however, in the physical applications
it is rather the boundary, not the squid set, that we are given. In this section we will
study the problem of finding all diagrams with a given fixed boundary.

Note, that the drawback of the squid-set algorithm was that we had no control on
the boundary of our diagram. Nevertheless, the procedure of finding all diagrams with a
given squid set might still be useful in problem considered here. The boundary structure
of the diagram depend only on these squids, that are not related with any others. Thus we
should keep control on the squids that are necessary to reconstructed the given boundary,
and enhance our squid-set by all possible pairs of squids, that must be pairwise related
by the node relation (what ensures that they will not influence the boundary). The
subsection 4.2.1 explains our concept in detail.

There are two possible approaches to construct an operator spin-network diagrams
using the graph diagrams obtained in our procedure: one can first construct all possible
graph diagrams and then for each diagram consider its colorings, or one can color the
input data (namely the boundary graph) at first, and then consider only the diagrams
that are compatible with this particular coloring. The subsection 4.2.2 presents the
first approach, the subsection 4.2.3 explains, how to adopt the algorithm presented in
subsection 4.2.2 to the second approach.

4.2.1 The concept

In subsection 3.4.1 we have introduced a graph diagram corresponding to the static spin-
foam of an arbitrary graph G, describing the trivial evolution of the graph. Such graph
diagram was denoted by DTr

G and is called the static graph diagram of G. The boundary
of DTr

G is the disjoint union G t G∗. The static graph diagram colored in the BF -manner
represents the identity operator on the boundary graph’s Hilbert space.

All the diagrams constructed by the improved algorithm, called the fixed-boundary
algorithm (introduced below), will have the boundary G given as the input, ant they will
have a subdiagram being the trivial diagram of the boundary DTr

G . Given a boundary
graph G, our construction provide all the diagrams D with the boundary ∂D = G, modulo
the trivial subdiagram. In other words, in terms of spin-foams, we construct all the spin-
foams which boundary is the graph G, such that the neighbourhood of the boundary is a
cylinder G × [0, 1].
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The key trick behind our construction is the following observation: given a graph G
of the squid set SG and an arbitrary graph diagram Dint called an interaction diagram,
whose boundary graph ∂Dint has the same squid set:

S∂Dint
= SG (4.3)

we can combine the diagram Dint with the trivial diagram DTr
G into a new graph diagram

DTr
G #Dint such that the graph G is the boundary of the combined diagram. We achieve

that by gluing each node of the graph G∗ of the boundary of DTr
G with one of the nodes

of the boundary of Dint according to the generalised gluing procedure described in sub-
section 3.4.3.1. It is possible thanks to the matching of the squid-sets (4.3): the squid
set of ∂DTr

G is SG ∪ SG∗ and thus each squid of the boundary of Dint is for sure dual to
one of the squids of SG∗ . The only squids left unrelated are those of SG and they form a
graph G being the boundary of the resulting diagram.

The identification of the squid sets SG∗ ans S∂Dint
is defined module symmetries of

SG∗ (exchanging identical squids, different duality maps). Of course there are more such
symmetries, then simply the automorphisms of G, what enriches the set of results of our
procedure.

Below we implement this idea in detail.

4.2.2 The algorithm

The input of the fixed-boundary algorithm is an unoriented boundary graph |G|. We
consider an unoriented graph, because given two oriented graphs G1 and G2 such that
|G1| = |G2| there is always a unique unitary map identifying HG1 and HG2 . Thus from
the physical point of view these two Hilbert spaces represent the same sets of states (see
subsection 1.1.2.4, in fact two diagrams obtained by our procedure that differ only by some
reorientations of links are considered one and the same diagram - see subsection 3.4.4).
Nevertheless a specific orientation of the boundary graph may cause some interaction
diagrams forbidden. However, since we want to find all processes with the fixed boundary,
we need to consider all possible orientations.

The fixed-boundary algorithm goes as follows: given a boundary unoriented graph
|G| we pick one of its possible orientations G and construct the trivial diagram DTr

G , then
construct all possible interaction diagrams Dint compatible with G, and finally glue them
together in all possible ways. The first step was described in detail in subsection 3.4.1,
thus let us just recall it at figure 4.7. The last step was discussed in subsection 3.4.3.1, thus
we also just illustrate it at figure 4.8. The middle step, namely constructing all interaction
diagrams compatible with G, uses the squid-set algorithm (see subsection 4.1.2), with
certain constrains imposed on the squid-sets considered. All the procedure is described
below step by step.

1. G: choose an orientation of each link of |G|. The result is an oriented graph (fig-
ure 4.9). Keep in mind the static diagram of this graph, that will be recalled in the
step 4.

2. Sint: Take the squid set SG of the graph G and add to it N pairs of squids
λ1, λ

′
1, . . . , λN , λ

′
N , such that for each pair the squid λi is dual to λ′i. Denote the

resulting squid set as Sint. Within each pair (λi, λ
′
i) the heads of the squids are re-

lated by the node relation (figure 4.10). No other node relation will be introduced
(compare this step with the steps 1 and 2 of the squid-set algorithm).
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(a) (b) (c) (d)

Figure 4.7: A static diagram. (a) - A given graph G consisting of two connected compon-
ents. (b) - The corresponding trivial graph diagram DTr

G build of θ-graphs and suitable
defined node and link relations (the link relation is omitted). (c) - The scheme of building
a trivial foam from the diagram. (d) - The boundary graph ∂DTr

G of the diagram DTr
G is

the disjoint union of G and G∗.

Figure 4.8: The static diagram DTr
G of figure 4.7 glued to an interaction diagram Dint.

The result is the diagram DTr
G #Dint (link relations are omitted).
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Figure 4.9: The step 1 of the fixed-boundary algorithm: choosing the orientation.

(a) (b)

Figure 4.10: The step 2 of the fixed-boundary algorithm: (a) - SG , which becomes Sint in
case of N = 0 pairs of squids added. (b) - Sint obtained by adding N = 2 pairs of squids
paired by a node relation.
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(a) (b)

Figure 4.11: The step 3 of the fixed-boundary algorithm: glueing of a graph diagram
Dint (one of several possibilities) from the squid set Sint presented at figures figure 4.10a
and figure 4.10b respectively. The dotted lines mark the glueing of the legs of the squids.
The link relation is not drawn, to keep the clarity of the figure.

3. Dint: take the squid set Sint with the node relation as defined in the previous step
and apply to it the steps 3 and 4 of the squid-set algorithm (see subsection 4.1.2),
namely choose the link relation at each pair of related squids and define gluing of
the legs of the squids, such that they can be connected into closed graphs. The
resulting diagram we will denote by Dint (see figure 4.11).

4. DTr
G #Dint: take the static graph diagram DTr

G of the boundary graph G and glue
it to the interaction diagram Dint, as it was explained in subsection 4.2.1 (see
figure 4.12). In order to perform the glueing, pick an automorphism of the oriented
squid set SG ⊂ Sint covering the unrelated nodes of Dint. This automorphism will
characterise the Rgluing

node and Rgluing
link relations.

5. Coloring: define an arbitrary coloring of the diagram DTr
G #Dint, which turns it

into an operator spin-network diagram (see figure 4.13). An alternative approach is
possible, namely one can pick the coloring at the very beginning or the procedure
and then in the step 3 perform gluing and relating of the edges consistently with the
coloring chosen, i.e. using the colored-squid-set algorithm instead of the squid-set
algorithm (see subsection 4.1.3).

6. Consider all possible: orientations of |G| in the step 1, N -tuples of pairs of squids
added to SG in the step 2, ways of connecting the legs of Sint, link relations for each
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(a) (b)

Figure 4.12: Step 4 of the fixed-boundary algorithm: the graph diagram Dint of figures
4.11a and 4.11b respectively, combined with the trivial diagram DTr

G of the graph G of
figure 4.9 into the final graph diagram Dint#DTr

G ..
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(a) (b)

Figure 4.13: The graph diagram of figure figure 4.12a colored in two possible ways. The
coloring of the boundary trivial diagram by operators and contractors is omitted for
transparency of the figure (each pair of nodes in this part of the diagram is colored by
appropriate 1j , each graph is colored by ATr

θ ). The coloring of (a) represents diagram
with trivial evolution on the vertical edges. The coloring of (b) represents diagram with
the EPRL norm calculated for each vertical edge.
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λi, λ
′
i in the step 3, ways of gluing the trivial diagram in the step 4 and colorings

in the step 5.

The construction presented above allows us to control the level of complexity of resulting
diagram by the level of complexity of the diagram Dint. The complexity can be measured
by the number of pairs of the nodes related by the node relation, i.e. the number of
internal edges. The simplest case is zero internal edges, i.e. the squid set

S(N=0)
int = SG (4.4)

A general example of the interaction graph diagram Dint in N th order is build of a graph
G̃int and a node relation Rint

node consisting of exactly N pairs of nodes. Increasing the
number, we increase the complexity of the diagram DTr

G #Dint.

Remark 4.2. One remark on the orientations should be done. In fact in order to find
all diagrams with the boundary fixed by an unoriented graph, it may be convenient to
consider unoriented squids in the interaction squid set Sint. We choose to use the oriented
ones to keep the control on the gluing of the boundary static diagram to the interaction
diagram. One could choose the other approach: one could construct all the interaction
diagram using unoriented squids (then closing the legs simplifies - one can connect each
two legs), and then when the orientation of the boundary is chosen - use only these
interaction diagrams, that can be oriented consistently with the boundary. Anyway, even
using this approach the unoriented squid may be only the ones that comes from SG . The
added pairs of the squids must be oriented, because we must ensure that they are dual
within each pair - to be connectible with the node relation.

4.2.3 Constraints on the coloring

Consider a boundary state |ψ〉 ∈ HG,~j with a fixed spins. Obviously any diagram with
boundary spins different than the ones indicated by ~j gives zero contribution to the
transition amplitude of such state. Thus it is reasonable to consider an algorithm for
which the input graph will have fixed spins - we will call it the colored-fixed-boundary
algorithm.

In such approach we slightly change the procedure presented in previous subsection:

• In the step 2 the squids of the squid set SG have already chosen their coloring. This
of course influence the coloring of squids of Sint that come from SG .

• When adding the pairs of squids in the step 2, within each pair the two colored
squids must be dual to each other (namely node Hilbert spaces of their heads must
by dual).

Moreover, in order to obtain any nontrivial interaction with the internal edges, at
least two legs of the added squids must be colored by spins that agree with spins
of the boundary. Otherwise the only possible graph diagrams obtained in the next
steps are such, that all internal edges form a disjoint subdiagram. Such diagram is
an isolated bubble (for more details see chapter 5) and can be treated analogously
to the vacuum self-energy in quantum field theory (see figure 4.14).

• In the step 3 one has to follow appropriate steps of the colored-squid-set algorithm,
not the squid-set algorithm, i.e. only the legs labelled by the same spin can be
connected when defining both the link relations and the graph course.
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(a) (b)

Figure 4.14: A vacuum self-energy example. (a) - A disjoint diagram. (b) - The foam
corresponding to the diagram.

• Similarly in the step 4 the coloring limits a lot the possible ways to attach the trivial
diagram - namely the automorphism that determine the gluing must preserve the
coloring of the links.

• In the step 5 one has to pick the coloring of the diagram by the contractors. The
coloring of the links was already chosen and is fixed. The coloring of the nodes is
usually fixed by the considered scheme of the coloring. In general from the point
of view of the coloring there are three possible classes of nodes:

– the boundary nodes of the diagram: they are only the nodes of the static
diagram, that refer to the G part of its boundary. They are colored - as it is
indicated in figure 3.15 - by the operators P̂ Inv

n .

– the pairs of nodes such that one node in the pair comes from DTr
G and the

other comes from Dint - then before gluing the node n coming from the static
diagram had been colored by P̂ Inv

n , the node n′ coming from the interaction
diagram had been colored by P̂n′ determined by the coloring scheme one had
chosen, and in the final diagram DTr

G #Dint the pair of the nodes is colored by
the composition of the operators: P̂(n,n′) = P̂ Inv

n ◦ P̂n′

– the coloring of pairs of nodes coming from heads of squids added at the step
2 to form the interaction squid is fully determined by the coloring scheme one
had chosen.

• When iterating over all possibilities of diagram’s content (in the step 6) one has to
limit the iteration to such configurations, that the above rules of consistency hold
(namely the coloring of links match at every step of the construction).

The (colored)-fixed-boundary algorithm will be used in section §4.4 to find all diagrams
with 0 internal edges in the Dipole Cosmology model.
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4.3 The Feynman - EPRL rules

The operator spin-network diagrams encode not only the topological structure of spin-
foam models. They also provide a tool to read out transition amplitudes of the processes.
They do not change the calculations, nevertheless it is convenient to represent the com-
plicated formulae in a graphical way. In this sense they play the role of Feynman diagrams
of the theory - they encode the formulae of transition amplitudes in drawings.

In this section we explain procedure of decoding the formula for the transition amp-
litude out of a diagram.

4.3.1 The components of Feynman-EPRL rules

Before going to the Feynman-EPRL rules, let us describe the components of the formulae:
the Livine-Speziale semicoherent states, the EPRL map and the Generalized Wigner
Matrices.

4.3.1.1 The Livine-Speziale semicoherent states

The LS semicoherent states were introduces in [63]. They form an overcomplete basis
in the Hilbert space of spin-network functions. They are interpreted as states with fixed
areas of faces dual to the spin-network links, that are peaked at certain orientations of
vectors normal to these faces.

In order to describe them let us recall, that given a unit vector

~u (θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) (4.5)

one can define an SU(2)-element u such that uσ3u
−1 = ~u·~σ (where σi are Pauli matrices).

It is given by

u (θ, φ) =

(
cos θ2 −e−ı̇φ cos θ2
eı̇φ sin θ

2 cos θ2

)
(4.6)

(of course it is defined up to a z-rotation, but we choose it to have real diagonal elements).
Let us also introduce a shortcut notation for SU(2)-elements in j-representation

SU(2) 3 h 7→ |h〉j := D(j) (h) |j〉j =

j∑
m=−j

D(j) (h)mj |m〉j (4.7)

and in the dual representation:
〈h|j := |h〉†j (4.8)

The Livine-Speziale semicoherent states are determined as follows: given a graph G,
for each link ` ∈ LG pick a triple: a half-integer spin j` and two unit vectors ~u`+ and
~u`− referring to the half-links of the edge. As we have already shown, the vectors can
be translated to the SU(2)-elements u`± . Now using the above notation, the non-gauge-
invariant LS semicoherent state is defined as the following spin-network function

ψNGI
j`,u`+ ,u`−

(U`) :=
∏
`∈LG

〈u`+ |U` |u`−〉j` (4.9)

and the gauge-invariant states are

ψGI
j`,u`+ ,u`−

(U`) :=

ˆ
SU(2)N

dhn
∏
`∈LG

〈u`+ |h−1
s(`)U`ht(`) |u`−〉j` (4.10)
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In Dirac notation we will denote the LS states as ψGI
j`,u`+ ,u`−

:= |j`, u`+ , u`−〉 (and

ψNGI
j`,u`+ ,u`−

:= |j`, u`+ , u`−〉NGI). The gauge-invariant LS states form an overcomplete
basis of spin-network functions. The scalar product between the non-gauge-invariant
states is

〈j`, u`+ , u`− |NGI
∣∣j′`, u′`+ , u′`−〉NGI

=
∏
`∈LG

δj`j′`

〈
u′`+
∣∣ |u`+〉j` 〈u`− | ∣∣u′`−〉j` (4.11)

and between gauge-invariant it is

〈j`, u`+ , u`− |
∣∣j′`, u′`+ , u′`−〉 =

ˆ
SU(2)N

dhn
∏
`∈LG

δj`j′`

〈
u′`+
∣∣h−1

s(`) |u`+〉j` 〈u`− |ht(`)
∣∣u′`−〉j`

(4.12)
which we will denote shortly as

∏
`∈LG δj`j′`

〈
u′`+
∣∣ |u`+〉GI

j`
〈u`− |

∣∣u′`−〉GI

j`
.

4.3.1.2 The EPRL map

The Feynman-EPRL rules are valid for the EPRL spin-foam models. The EPRL map
was discussed in subsection 1.2.2.1, here we will just recall it.

The EPRL map Y maps the vectors of representations of SU(2) group to the vectors of
representations of G group, where G depends on the particular model. In the Lorentzian
model the group G = SL(2,C) and the map is given by

Y : |m〉j 7→ |(γj, j) ; j,m〉 (4.13)

where γ is the Barbero-Imirzi parameter, and (γj, j) is the (p, k)-pair that labels the
primary series of SL(2,C) unitary representations. In the Euclidean model the group
G = SO(4) and the EPRL map acts as

Y : |m〉j 7→ Cm+,m−
m |m+〉j+ ⊗ |m−〉j− for j± =

|1± γ|
2

j (4.14)

where Cmm+m− are the Clebsh-Gordan coefficients.

4.3.1.3 Generalized Wigner matrices

The Wigner matrix elements D(j) (h)mn are building blocks of unitary representations of
SU(2):

SU(2) 3 h 7→ D(j) (h)nm := 〈n|j h |m〉j (4.15)

Thanks to the EPRL map we have a representation-like functions of the G-group,
acting on the SU(2) representation spaces. It is convenient to introduce a similar to
Wigner’s notation for these functions - it will simplify a lot the formulae in what follows.
We call them generalized Wigner matrices and define them as by the formula:

G 3 g 7→ D̃(j) (g)nm := 〈n|j Y
†gY |m〉j (4.16)

They are not true representations, because they do not satisfy the composition principle:

D̃(j) (g)mm′ D̃
(j)
(
g′
)m′
m′′
6= D̃(j)

(
g · g′

)m
m′′

(4.17)
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4.3.2 The rules

4.3.2.1 Labelling

Knowing the assumption, namely the coloring consistent with the EPRL scheme, we can
relabel our diagram by the terms that will appear in the formula for the amplitude. We
do it according to the following scheme:

1. Each link ` ∈ θn at the boundary static diagram DTr
G label by |u`,n〉j`- they are the

external legs of the diagram. For this procedure we neglect the fact that the links
in DTr

G are split into two parts and we treat each such pair as a one link.

2. Each link `′, that is in the face relation with one of the boundary links `, label by
the spin j`′ = j`.

3. Each link `f , that is not in the face relation with any boundary link, label by an
arbitrary spin jf - the same for all equivalence class [`f ].

4. Each node I of each graph colored by AEPRL label by a G-group element gI (where
G = SL(2,C) in the Lorentzian case and G = SO(4) in the Euclidean case).

Example of this relabelling can be found at figure 4.15a.

4.3.2.2 External faces

The terms for the external legs of the diagram, namely the external faces, are obtained
as follows:

1. Pick a node n in the boundary graph and a link ` outgoing from it.

2. Go to θn in the boundary static diagram and pick the link corresponding to `. Write
for it

〈u`,n|j` · · ·

3. Follow the link relation of `. Whenever it leads to a node I of a graph colored by
AEPRL, write Y †g−1

I :
〈u`,n|j` Y

†g−1
I · · ·

4. Then, whenever leaving a graph colored by AEPRL at node II, write gIIY :

〈u`,n|j` Y
†g−1
I gIIY · · ·

5. Repeat it for each graph passed - if it is colored by AEPRL. But if the graph passed
is colored by ATr - write the identity (or just do not write anything):

〈u`,n|j` Y
†g−1
I gIIY 1Y †g−1

V gV IY · · ·

6. When reaching again the boundary static diagram, end the formula with
∣∣u`′,n′〉j`′ ,

where `′ is the appropriate boundary link (it does not need to be `):

W ext
` := 〈u`,n|j` Y

†g−1
I gIIY 1Y †g−1

V gV IY Y
†g−1
V IIgV IIIY

∣∣u`′,n′〉j`′ (4.18)

thanks to the consistency conditions (see subsection 3.3.1), we are sure that j` = j`′ .
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(a) (b)

(c) (d)

Figure 4.15: An illustration to section 4.3.2. (a) - A labelling, as in 4.3.2.1. To make
the figure more legible, only those elements of the labelling and the link relations are
written that are used in the following examples. (b) - The elements of the diagram that
contribute the term 〈u1|j1 Y

†g−1
I gIIY 1Y †g−1

V gV IY |u1′〉j1 coming from an external face.
(c) - The elements of the diagram that contribute to another external term, this time
including only θ-graphs: 〈u2|j2 |u2′〉j2 . (d) - The elements of the diagram that contribute
to the internal face’s term:

∑
jf

Trjf
[
Y †g−1

V IIIgIIY 1Y †g−1
V gV IIY

]
.

115



One can find two examples on figures figure 4.15b and figure 4.15c.
Recalling our notation introduced in subsection 4.3.1.3, all the elements of the formula

(4.18) are in fact the generalised Wigner matrices subsection 4.3.1.3 in the j` represent-
ation. Thus treat (4.18) as a shortcut notation of

W ext
` := D(j`) (u`)

j`
m D̃

(j`)
(
g−1
I gII

)m
m′
δm
′

m′′ · · · (4.19)

· · · D̃(j`)
(
g−1
V gV I

)m′′
m′′′

D̃(j`)
(
g−1
V IIgV III

)m′′′
m′′′′

D(j`) (u`′)
m′′′′

j`

Repeat this procedure for all links in the boundary graphs.
Each term W ext

` must be multiplied by the weight factor (see subsection 3.3.2.2). In
the simplest case, when the sequence ends at the same link, at which it started (i.e.
`′ = `), this term takes into account, that our term W ext

` represents one face and one
boundary link, thus its weight factor is Aext

` = Af` · A` =
√

2j` + 1. However, if the
link closing considered series is not the starting one, then the face we consider consist of
several generalised faces with separate boundaries, and we have a series of boundary links
{`1, . . . , `k} (let us denote is as an equivalence class [`i] := {`1, . . . , `k} for i = 1, . . . , k),
and one has to take the boundary amplitudes of each of them into account. The rule is
than the following: for each link in the series the weight factor is Aext

` = A` = 1√
2j`+1

,
however, for the last link in the series we multiply it also by the face amplitude, so that
Aext
`k

= Af`k ·A`k =
√

2j`k + 1. Thus after all we have

Wexternal =
∏
`∈∂D

Aext
` W ext

` (4.20)

which simplifies to product over boundary links of link amplitude and product over equi-
valence classes of face amplitude:

Wexternal =

( ∏
`∈∂D

A`

)
·

 ∏
[`]⊂∂D

Af`

 ·W ext
` (4.21)

4.3.2.3 Internal faces

For the remaining links in the graph diagram do as follows.

1. Pick a link `f that has not been used yet and write 〈m|jf for it (using a half-integer
m ∈ {−jf ,−jf + 1, . . . , jf}).

2. Repeat the steps 3-5 of the procedure for external faces (see subsection 4.18).

3. When reaching the link ` again, close the formula with |m〉jf (since the link we
have chosen was a member of closed equivalence class of the face relation, for sure
we will reach it again).

4. Sum over m:

W int
f :=

jf∑
m=−jj

〈m|jf Y
†g−1
I gIIY · · ·Y †g−1

IIIgIV Y |m〉jf (4.22)

The resulting term is in fact the SU(2) trace of the generalized Wigner matrices:

W int
f = Tr(jf)

[
D̃(jf)

(
g−1
I gII

)m
m′
· · · D̃(jf)

(
g−1
IIIgIV

)m′′
m′′′

]
(4.23)
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An example can be found in figure 4.15d.
Repeat this procedure until all links of the diagram were visited.
As in case of the external faces, the termsW int

f must be multiplied by the weight factor
(see subsection 3.3.2.2). In their case the weight factor is simply Aint

f = Af = 2jf + 1.
Then multiply all the terms together:

W internal =
∏

f−internal

AfW
int
f (4.24)

4.3.2.4 Total amplitude

In order to obtain the final transition amplitude of the diagram, one has to multiply the
terms W internal and W external, and then sum and integrate all the variables that are not
determined by the boundary data, thus:

• Sum with respect to all possible combinations of jf s (onlyW internal, becauseW external

does not depend on jf s): ∑
{jf}

W internal

• For each node I of the graphs colored by the AEPRL contractor integrate over the
group G with respect to the Haar measure dgI :

ˆ
GN

∏
I∈NSEPRL

int

dgI W
external ·

∑
{jf}

W internal

Note, that for each graph the last integration is trivial and simply multiplies the
result by the volume of the group G. In the Euclidean case this volume is equal to
1 thanks to normalisation of the Haar measure. However, in the Lorentzian case
the integration goes over a non compact group and the volume is infinite. Thus, to
avoid this infinity, remember to drop one integration for each graph (see [50, 46]).

The resulting amplitude is therefore:

AD =

ˆ
GN

∏
I∈NSEPRL

int

dgI

∑
{jf}

∏
f

Af (jf ) Tr(jf)
[
Y †g−1

I gIIY · · ·Y †g−1
IIIgIV Y

]
(4.25)

∏
`

A` (j`) 〈u`,n|j` Y
†g−1
I gIIY · · ·Y †g−1

IIIgIV Y
∣∣u`′,n′〉j`

4.4 Application of the algorithm in Dipole Cosmology

In this section we apply the fixed-boundary algorithm to the case of Dipole Cosmology
model (see subsection 2.2.1, and [55, 56, 57, 58, 59]).

The Dipole Cosmology model tries to test the behaviour of the spin-foam transition
amplitudes in the limit of the homogeneous and isotropic boundary states. The boundary
state in this model is a coherent state of two 3-sphears, each of which is represented by
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Figure 4.16: The dipole graph
∣∣Gdipole

∣∣ :=
∣∣∣θ(4)

in

∣∣∣ t ∣∣∣θ(4)
out

∣∣∣.
two glued tetrahedra. As a spin-network it is represented by a graph being a disjoint sum
of two 4-link θ-graphs (see figure 4.16), called Dipole Graph

∣∣Gdipole
∣∣ :=

∣∣∣θ(4)
in

∣∣∣ t ∣∣∣θ(4)
out

∣∣∣.
The transition amplitude in DC model was calculated under several approximations.

One of them was the so-called vertex expansion: at the first order one considers only
the contribution of the spin-foams with precisely 1 interaction vertex. The original DC
paper [55] considered only one of such foams, in [59] some more examples were found and
studied.

In our paper [64] we proposed a different expansion: the edge- expansion. It is
easier to control within our framework, but moreover it seams to be more physically
justified. Having the number of internal edges unlimited even in the first step of the
vertex expansion one would have to consider an infinite series of spin-foams with loop
edges starting and ending at this vertex (see figure 4.16). On the other hand having
a fixed number of internal edges one can easily restrict oneself to a defined number of
vertices. In our framework vertices are represented by the connected components of the
interaction graph, thus each one can simply restrict the results to only these ones, that
has a certain number of connected components. In our paper - and in this section - we
find all the diagrams with boundary being the dipole graph, in the first order of the
edge-expansion.

The process of finding all the interaction graphs was dome mainly by Marcin
Kisielowski, thus it is just recalled here, without getting deep into details.

4.4.1 Adaptation of the fixed-boundary algorithm

As we have already mentioned, we are going to use the fixed-boundary algorithm presen-
ted in subsection 4.2.2 to the dipole boundary graph

∣∣Gdipole
∣∣. We will do it only in the

first order of the edge-expansion, thus for no internal edges - which will mean no pairs of
squids added to the interaction squid set.

The individual steps of the procedure are described below:

1. G: choose an orientation of each link of each two graphs
∣∣θ(4)

∣∣ (figure 4.17a).
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(a) (b) (c)

Figure 4.17: Construction of the interaction graph diagram. (a) - Step 1: choose an ori-
entation of each link of Gdipole. (b) - Step 2: construct the squid set Sint. (c) - Step 3: con-
struct an interaction graph Gint being in fact the interaction diagram Dint - one of possible
examples.

2. Sint = SG : for the interaction squid set take the squid set SGdipole of the graph
Gdipole. That means that in point 2 of the fixed-boundary algorithm we add N = 0
pairs of squids. The interaction squid-set consists of four 4-valent squids, oriented
according to the previous step (figure 4.17b). No link relation has to be set, because
the node relation is void.

3. Gint: close the squid-set SG by connecting each incoming leg with one outgoing
leg of the squids. In the next subsection we will show all the graphs that can be
constructed in this way (figure 4.17c).

4. DGdipole#Dint: take the static diagram DGdipole of the graph Gdipole (figure 4.18a)
and attach it to the interaction diagram (figure 4.18b).

5. Coloring: Color the interaction part of the diagram in the EPRL scheme, color the
static diagram in the BF scheme. The spins on the boundary links choose arbitrary
(but consistently with the diagram).

6. Consider all possible: orientations of the graph Gdipole in the step 1, closing of the
interaction graph in the step 3, ways of attaching the static diagram in the step 4
(the last iteration will be discussed in subsection 4.4.3).

4.4.2 All possible interaction graphs

The orientation of links in the fixed-boundary algorithm is chosen only to keep control
on the possible ways of connecting it to the static diagram of the boundary. In fact in
order to find all graphs that share an unoriented squid set, one can use the unoriented
squids, and afterwards, when attaching the boundary static diagram, for each orientation
of the boundary choose only these diagrams, that can be oriented consistently with it
(see remark 4.2 in subsection 4.2.2). Let us do it in this case.
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(a) (b)

Figure 4.18: Construction of the full graph diagram. (a) - The static diagram of the
dipole graph (the dotted lines denote the link relations). (b) - A graph diagram Dint

attached to the static diagram gives the final diagram DGdipole#Dint

All the interaction graphs that are allowed by the above construction can be charac-
terised as follows:

• Each graph |Gint| has precisely four nodes.

• Each node of |Gint| is precisely four-valent.

Each such graph can be characterised by so called adjacency matrix : the N ×N -matrix
(N is the number of nodes of the graph), such that Aij = x iff there are precisely x link
connecting the node i and j (in case of i = j the loop links are counted twice). This is the
unoriented adjacency matrix, there is also the oriented version of it, but we will not use
it here. The above conditions put some constraints on this matrix, namely: it is a 4× 4
matrix, and the sum of elements in each row and each column equals precisely 4. There
are also constraints on Aij coming from the fact that it is adjacency matrix: namely it
has to be symmetric: Aij = Aji, and the diagonal elements must be even number.

Each matrix satisfying the above conditions describe one graph that can be an in-
teraction graph of our problem. However permutations of nodes may lead to different
matrices that represent the same graph. Marcin Kisielowski developed a method to find
and parametrise all such matrices, and thus all interaction graphs. It was described with
details in [64], section 4.2. Here we will just recall the result of his procedure: all the
interaction graphs are represented at figure 4.19.

In our case of 4-node graph one could find all these graphs without using the sophist-
icated method of Marcin Kisielowski, however one could easily miss one of them. And if
the squid set we considered were bigger or the squids had more legs - the number of pos-
sible combinations would likely exceed human possibilities and thus the strict procedure
is needed.
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1) 2) 3)

4) 5) 6)

7) 8) 9)

10) 11) 12)

Figure 4.19
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13) 14) 15)

16) 17) 18)

19) 20)

Figure 4.19: (Continued.) The list of all possible interaction graphs in the first order of
edge-expansion. The graphs are unoriented - given a specific orientation of the boundary
one has to use only those that can be oriented consistently with it. Note, that spin-foams
considered in [59] have the interaction graphs of type 18, 19 or 20.
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(a) (b)

Figure 4.20: An example of node-exchange ambiguity.

4.4.3 Gluing the static diagram

There are 20 various interaction graphs, however there are much more graph diagrams
that can be constructed out of them. This is because of many possible ways to attach
the static diagram:

• When defining the Rgluing
node it may happen, that two nodes of G has the same struc-

ture. Then the two nodes of Gint can be exchanged. The two resulting diagrams
are usually different. An example is shown at figure 4.20

• When defining the Rgluing
link , for each node one can permute the links (of course

preserving their orientation) and obtain a different diagrams. An example is shown
at figure 4.21. However, it may happen, that two different permutations of links
give the same diagram (for example see figure 4.21c).

Furthermore, when gluing a colored static boundary diagram, one realises, that some
interaction diagrams may give immediately zero transition amplitude. We will call such
interaction graphs incompatible with the certain coloring of the boundary. Let us explain
it on an example.

Consider a boundary graph colored an oriented like on figure 4.22, and the interaction
graph of type 12. Let us choose the Rgluing

node and Rgluing
link as on figure 4.21a. Note, that

thanks to the consistency conditions (see subsection 4.2.3) the transition amplitude is
zero unless j2 = j3 and j1 = j5. The two loops in the interaction graph ensure, that the
amplitude is non-zero only if there are pairs of equal spins among j1, . . . , j8.

A similar analysis can be done for other graphs. One can see, that the constraints on
the spins arise if there is a loop link (then the constraint relates the spins of one connected
part of the boundary), or if there is a node connected at least two other nodes (then the
constraint relates the spins of in and out part of the boundary). It leads to an interesting
conclusion: for all graphs other then 20 there are always such constraints, so it is the
only interaction graph, that can give non-zero amplitude for a generic boundary state.
Nevertheless, it also can be attached in a way that produces constraints - see figure 4.23.
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(a) (b)

(c)

Figure 4.21: Examples of link-exchange ambiguity. The diagrams (a) and (b) are differ-
ent. The diagram (c) has different link-relation, than (a), but an automorphism of the
interaction graph may map it back into (a).
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Figure 4.22: An example of coloring of Gdipole by spin-labels.

4.5 The transition amplitudes in 1st order Dipole Cosmo-
logy

In this section we will calculate the transition amplitudes of some diagrams that contrib-
ute to the Dipole Cosmology model in our approximation (i.e. when restricting oneself
to the diagrams found in section §4.4). We will show, that in large j limit the amplitude
related to interaction graphs containing at least one loop-link is negligible when compared
to the original DC amplitude. Our calculation will be done using the Feynman-EPRL
rules developed in section §4.3.

The boundary state used in the Dipole Cosmology model is a semicoherent state |ΨH`〉
defined by a wave function

ΨH` (U`) =

ˆ
SU(2)N

dhn
∏
`

Kt

(
h−1
s(`)U`ht(`)H

−1
`

)
(4.26)

where Kt is the heat kernel function on the SU(2) group, t labels the spread of the heat
kernel, and H` ∈ SL(2,C) encode the phase space point, on which the coherent state is
peaked (see[55, 56]). In case of DC the parameters H` has special form, determined by
the requirement of homogeneity and isotropy of the geometry we want to describe:

H`

(
zin/out

)
:= u`e

−ı̇zin/outσ3u−1
` (4.27)

where zin/out = αȧin/out + ı̇βa2
in/out (for some constants α and β [55, 57]) and a is the

scale factor of the state we describe (for more details see subsection 2.2.1). Of course one
can express these states as a superposition of LS semi-coherent states. The coefficients
are

〈j`, u`+ , u`− | |ΨH`〉 ∼
∏
`

e
−(j`−j0` )

2

2∆j` 〈u`| |u`+〉GI
j`
〈u`− | |u`〉GI

j`
(4.28)
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Figure 4.23: An example of a constraint on spin-labels produced by the choice of link-
relation when gluing the interaction graph of type 20 to the boundary static diagram.
Here the link relations enforces j5 = j6.
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(a) (b)

Figure 4.24: Two diagrams that are considered in section §4.5. To make the figure more
legible the spin labels and the link relations are omitted. (a) - The interaction graph 16
from figure 4.19. Each link ` carry a spin label j`. For the link relations see figure 4.25.
(b) - The interaction graph 20 from figure 4.19. Each link of the in part of the static part
of the diagram carry the same spin label j and each link of the out part of the static part
of the diagram carry the same spin label j′. The link relation is the simplest possible:
each two links with the same u` are connected through the interaction graph.

for j0
` = 2t~−ı̇z

4t~ and ∆j` = 1
4t~ . The scalar products 〈u`| |u`+〉GI

j`
and 〈u`− | |u`〉GI

j`
ensure

that the vectors on both ends of each link are the same: u`+ = u`− = u`, thus we will
consider only the LS states of the form |j`, u`, u`〉.

We will do our calculations using the interaction graph of type 16 of figure 4.19. The
full diagram is shown at figure 4.24a. We will compare the amplitude of this diagram
with the amplitude of the original DC calculation, which refers to the interaction graph
of type 20, presented at figure 4.24b. Although we use only one interaction graph, our
result depend only on one feature of this graph, namely the loop-link, and there is a
straightforward generalisation of our calculation to to all interaction graphs with that
feature.

We start (in subsection 4.5.1) with recalling the calculation of the original transition
amplitude of the DC model and pointing out some features that we are interested in.
Then, in subsection 4.5.2, we calculate the amplitude of a diagram having a loop-link
in the interaction graph. Finally (in subsection 4.5.3) we compare these two amplitudes
and discuss, what do we mean by negligible.

4.5.1 Original Dipole Cosmology amplitude

Let us first calculate the transition amplitude of the diagram presented at figure 4.24b. It
was computed first in [57], and it was recalled in subsection 2.2.1. It was shown that the

127



main contribution to this amplitude comes from the terms in which j` = j for ` = 1, . . . , 4
and j` = j′ for ` = 5, . . . , 8. Since here we use this diagram only as a reference point for
the second calculation, it is enough to use only this types of boundary states.

Using the Feynman-EPRL rules of section §4.3 we can read the transition amplitude
of this diagram as:

A20 = [A`(j)]
4

[ˆ
G

dgNdgS

4∏
`=1

〈u`|j Y
†g−1
N gSY |u`〉j

]
·

·
[
A`(j

′)
]4 [ˆ

G
dgN ′dgS′

8∏
`=5

〈u`|j′ Y
†g−1
N ′ gS′Y |u`〉j′

]
(4.29)

=

[ˆ
G

dg
4∏
`=1

〈u`|j Y
†gY |u`〉j

][ˆ
G

dg′
4∏
`=1

〈u`|j Y
†g′Y |u`〉j

]

· (2j + 1)2 (2j′ + 1
)2 [ˆ

G
dg′′
]2

The term
´
G dg′′ comes from the invariance of the Haar measure under multiplication

and inversion. In the Euclidean case we can calculate it explicitly: it is equal 1 thanks to
the normalisation of the Haar measure. In the Lorentzian case such integral would give
an infinite factor, but we regularise the integrals by dropping one integration per each
connected component - and thus we simply drop both these terms (see subsection 1.2.3.2).
Thus both in Euclidean and Lorentzian case the unweighted amplitude is

Aunweighted
20 =

[ˆ
G

dg

4∏
`=1

〈u`|j Y
†gY |u`〉j

][ˆ
G

dg′
4∏
`=1

〈u`|j Y
†g′Y |u`〉j

]
(4.30)

and the weight factor is
w
(
j, j′
)

= (2j + 1)2 (2j′ + 1
)2 (4.31)

and it is a polynomial in j and j′.
In the Euclidean case each term

´
SO(4) dg

∏
〈u`|j Y †gY |u`〉j is the coherent regu-

lar tetrahedron of LS, that was calculated in [63] to be equal N0j
−3 in the large j

limit. In the Lorentzian case the terms
´
SL(2,C) dg

∏
〈u`|j Y †gY |u`〉j are the matrix ele-

ments of the Lorentzian Polyhedra Propagator (studied in [83], described in chapter 6),
which in this case behave similarly as N0j

−3. Thus in both Euclidean and Lorentzian
case the unweighted transition amplitude decays polynomially. The overall amplitude
A20 = w (j, j′)Aunweighted

20 also decays polynomially - to be more precise:

A20 = O
(
j−1 · j′−1

)
(4.32)

4.5.2 Amplitude for a vertex containing a loop

Let us now calculate the the terms of transition amplitude of the diagram present at
figure 4.24a. We do it using the Feynman-EPRL rules.

Thanks to very simple structure of the diagram, each (unweighted) term coming from
external faces has a form

〈u`|j` Y
†g−1
I gIIY |u`′〉j`′ (4.33)

Some examples are presented at figure 4.25.
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(a) (b)

(c) (d)

Figure 4.25: Examples of terms appearing in the amplitude A16:
(a): 〈u1|j1 Y

†g−1
N gSY |u1〉j1 , (b): 〈u2|j2 Y

†g−1
N gSY |u3〉j3 (c): 〈u4|j4 Y

†g−1
N gSY |u5〉j5 ,

(d): 〈u6|j6 Y
†g−1
N gSY |u7〉j7
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We are not going to calculate all these terms. We will focus on the last example,
presented at figure 4.25d. In this case the group elements gI and gII are the same
element gN ′ , and thus

〈u6|j6 Y
†g−1
N ′ gN ′Y |u7〉j7 = 〈u6|j6 Y

†Y |u7〉j7 = 〈u6| |u7〉j6 δj6,j7 (4.34)

Obviously the spins j6 and j7 must match. Assuming j6 = j7 = j we can calculate this
term. First let us expand the |u〉j notation (see equation (4.7)) and use the properties of
Wigner matrices to express it in terms of matrix elements of u6 and u7:

〈u6| |u7〉j = 〈j|u−1
6 u7 |j〉j =

(〈
1

2

∣∣∣∣u−1
6 u7

∣∣∣∣12
〉

1
2

)2j

(4.35)

Now using the definition of u` elements we can express it all in terms of angles:〈
1

2

∣∣∣∣u−1
6 u7

∣∣∣∣12
〉

1
2

= cos
θ6

2
cos

θ7

2
+ sin

θ6

2
sin

θ7

2
e−ı̇(φ6−φ7) =: α6−7 (4.36)

Using some trigonometric identities we can estimate the modulus of α6−7:

|α6−7|2 =
1

2
(1 + cos θ6 cos θ7 + sin θ6 sin θ7 cos (φ6 − φ7))

≤ 1

2
(1 + cos θ6 cos θ7 + sin θ6 sin θ7) (4.37)

=
1

2
(1 + cos (θ6 − θ7)) ≤ 1 (4.38)

where the inequality equation (4.37) is strong for all pairs such that φ6 6= φ7 (because
φ ∈ [0, 2π[) and the inequality equation (4.38) is strong for all pairs such that θ6 6= θ7

(because θ ∈ [0, π]). Thus we have

|α6−7| < 1 for ~u6 6= ~u7 and |α6−7| = 1 for ~u6 = ~u7 (4.39)

The unweighted contribution coming from the external leg presented at figure 4.25d
to the amplitude A16 is

〈u6|j6 Y
†g−1
N ′ gN ′Y |u7〉j7 = 〈u6| |u7〉j6 δj6,j7 = δj6,j7 (α6−7)2j6 (4.40)

Unless ~u6 = ~u7 this term decays exponentially with j6.
Note, that the calculation above is valid whenever there is a loop-link in the interac-

tion diagram (to be more precise: whenever there is a loop-link at one of the nodes of
interaction diagram, that is attached to the boundary static diagram - but in our case
there are no other nodes). Indeed, the cancellation at equation (4.34) happens because
both the starting and ending node of the considered link are the same node, and thus
the corresponding group element is the same. Thus the result equation (4.40) and equa-
tion (4.39) is general - there is always a multiplicative exponentially decaying term in the
amplitude of an interaction diagram containing a loop attached to the boundary static
diagram.

All the other contributions are at most polynomially growing. The weight amplitudes
A` are bounded from above by

√
2j` + 1. The other terms form an evaluation of a spin-

network with the loop cut, thus it can be estimated. In the Euclidean case it is bounded
by the norms of elements of the integrand:∣∣∣∣∣∣
ˆ
SO(4)4

dgn
∏
`,`′

〈u`|Y †g−1
n gn′Y

† |u`′〉

∣∣∣∣∣∣ ≤
ˆ
SO(4)4

dgn
∏
`,`′

‖〈u`|‖·
∥∥∥Y †∥∥∥·∥∥g−1

n gn′
∥∥·∥∥∥Y †∥∥∥·‖|u`′〉‖

(4.41)
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where by ‖g‖ we mean the norm of the tensor product of representations
∥∥∥⊗`D

(j+` ,j
−
` ) (g)

∥∥∥.
Each of the terms in (4.41) has the norm equal 1, thus the total expression is bound by´
SO(4)4 dgn = V 4

SO(4) = 1 (because of the normalisation of Haar measure). In the Lorent-
zian case the graph is 2-edge connected, thus one has to regularise the expression by
removing appropriate number of integrations over SL(2,C) to obtain a formula like for a
3-edge connected graph (in this particular case one have to drop 2 integrations), and the
amplitude for a 3-edge connected graph is bounded as a function of j-s (see [84, 50, 46]).
Thus in the end the whole expression apart from the α6−7-term grows at most polynomi-
ally in j. In the large j regime such asymptotic behaviour is dominated by the (α6−7)2j6

term, and thus
A16 = O

(
(α6−7)2j6

)
unless ~u6 = ~u7 (4.42)

Note that this property of the amplitudes with loop-link does not depend on the
signature of our model - the calculation of exponentially decaying term are independent on
the signature, and the other facts used above are true for both Euclidean and Lorentzian
models. Thus our result is signature independent.

4.5.3 Comparison of these two amplitudes and discussion

As we have shown in subsection 4.5.2, the amplitude A16 (and in fact amplitudes of all
interaction diagrams with a loop link) decays exponentially in the large j regime if the
vectors ~u6 and ~u7 differ. This is however the generic case. Consider a boundary state
where ~u6 = ~u7. In terms of LS semicoherent states the vectors corresponds to directions
perpendicular to the faces of the polyhedra, pointing outside the polyhedra. Thus ~u6 = ~u7

means that two faces of the tetrahedron are in fact a single face, artificially divided into
two. A tetrahedron with such property is degenerate (for example it has volume equal
0). Thus let us restrict our consideration to only these tetrahedra, where ~u6 6= ~u7 (or
more general: where ~ui 6= ~uj for i 6= j if both i, j = 1, . . . , 4 or i, j = 5, . . . , 8 thus it may
happen that ~u1 = ~u5 etc.).

Having this restriction let us assume, that we scale the spins in A16 uniformly to the
large j regime. This assumptions prevents from the situation, where the boundary state
represents a universe with hi volume, but the spins j6 and j7 are far smaller then the
other spins. Under these conditions it is obvious that A16 � A20 in large j regime - this
is because the exponent function O

(
αj
)
for α < 1 and j � 1 decays faster than any

inversed polynomial O
(
j−k
)
. The same happen for all Ai where i = 1, . . . , 16. Thus all

the graphs of type 1, . . . , 16 presented at figure 4.19 are negligible when compared to A20

in the large j regime, quod erat demonstrandum.
The amplitudes of diagrams containing graphs 18, 19, 20 of figure 4.19 was calculated

in [59]. The amplitude of diagram containing graph 17 of figure 4.19 has not been
computed yet.
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Chapter 5

Identification of bubble subdiagram

As it was discussed in the literature [65, 66, 67, 68, 69, 70] and recalled in section §2.3,
bubbles are these parts of spin-foams that are responsible for divergent amplitudes. So far
some study was done, but concerning only spin-foams dual to triangulations (for example
[69, 65, 70]). Here we expand the study to all 2-complexes admissible by the Operator
Spin-network Diagram framework (see section §3.5).

Bubbles are spin-foam analogues of Feynman diagram’s loops. A spin-foam containing
a bubble in most cases admits infinitely many colorings giving nonvanishing amplitude
for fixed boundary conditions (see subsection 5.2.4). Since the transition amplitude for
a boundary state is defined as a sum over all internal configurations, the above property
of bubbles make them natural candidates for sources of possible infinite amplitudes of
the theory. Thus in order to understand the theory well one has to be able to identify
bubbles and characterise their properties.

One of the advantages of Operator Spin-network Diagram framework is that they
provide an easy way to identify a subdiagram equivalent to a spin-foam being an isolated
bubble. A very similar algorithm allows to count the rank of the bubble - namely the
number describing, how many sub-bubbles it contains. This chapter is devoted to this
issue.

This chapter is organized as follows. Firstly, in section §5.1, we define bubbles in terms
of Operator Spin-network Diagrams. We also introduce some naming conventions that
simplify further sections and we discuss the relation between our definition and the ones
used in literature. The section §5.2 presents the algorithms mentioned above together
with several examples of diagrams to which we apply the algorithms and explaining some
classes of bubbles that may appear and calculate amplitudes related to some of these
examples.

5.1 Definitions

In section §3.2 we introduced and studied the framework of graph diagrams. They were
designed to represent spin-foam calculations, thus some restrictive assumptions were made
for their components.

On the contrary, this chapter is devoted finding parts of graph diagrams satisfying
certain conditions, what requires a strict procedure of identifying and classifying objects
obtained by removing parts of graph diagrams. These objects will be called generalized
graph diagrams. In contrast, the graph diagrams as they were defined in section §3.2 will
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(a) (b)

Figure 5.1: Generalized graph diagrams. (a) - An example of an ordinary graph dia-
gram D. (b) - The one node 1-valent node and two links added, one link erased and
link-relation spoiled - so that it is not always a duality relation - becomes a generalized
graph diagram D′.

be called ordinary graph diagrams. Strict definitions of generalized graph diagrams and
operations on them are given in subsection 5.1.1.

Having defined generalized graph diagrams we use them to the issue of bubbles, what
is described in subsection 5.1.2. We introduce a definition of a bubble in terms of graph
diagram framework, we discuss its relation with definitions used in the literature and we
introduce a notion of rank of a bubble, that helps to characterize them.

5.1.1 Generalized graph diagrams

Definition 5.1. Generalized graph diagram
A generalized graph diagram is a pair D = (G,R) of a graph G and a family of

relations R = (Rnode,Rlink), where G is a general graph (not necessarily closed) and the
relations Rnode and Rlink are similar to the node- and link-relations of a graph diagram
(see definition 3.1 in subsection 3.2.1.1) with the following conditions loosen:

• The Rnode relation may relate pairs of nodes that are not dual.

• For each pair (n, n′) ∈ Rnode there is a relation R(n,n′)
link ⊂ Ln × Ln′ in the family

Rlink, however, the relation R(n,n′)
link does not have to be induced by a duality map

between Ln and Ln′ . Nevertheless, the relation R(n,n′)
link must be induced by a duality

map φ : L̃n → L̃n′, where L̃n ⊂ Ln and L̃n′ ⊂ Ln′. Obviously it may happen, that
L̃n = Ln and L̃n′ = Ln′ - then the relation is a duality relation, as in the case of
ordinary graph diagrams. It may also happen, that L̃n = L̃n′ = ∅ - then the relation
R(n,n′)

link is the empty relation.

Obviously an ordinary graph diagram is a generalized graph diagram, but not the
opposite.

The easiest way to obtain a generalized graph diagram is to take a graph diagram and
add or remove some links and nodes to it, without paying attention to the consistency of
link and node relations - see figure 5.1.
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(a) (b)

Figure 5.2: The boundary graph of the the generalized graph diagram D′ of figure 5.1b.
(a) - The boundary ∂D′. (b) - The same graph, but deformed to make the drawing more
legible.

The notions of face- and edge-relations generalize straightforward to generalized graph
diagrams.

It is useful to redefine the notion of a boundary concerning generalized graph dia-
grams.

Definition 5.2. Boundary of a generalized graph diagram
We say, that a half-link of a generalized graph diagram is a boundary half-link iff it

is not related by any of R(n,n′)
link -relations.

We say, that a node of a generalized graph diagram is a boundary node iff at least
one of half-links incident to it is a boundary half-link.

The boundary graph ∂D of a generalized graph diagram D is a graph build of all the
boundary nodes and boundary half-links of D connected as follows:

• obviously each boundary half-link is incident to the node of the boundary graph, to
which it was incident in the diagram.

• two boundary half-links form a link iff they belong to the same equivalence class of
the face relation.

Thanks to definition of the face relation for each positive boundary half-link there is a
negative boundary half-link belonging to the same (open) equivalence class of the face
relation, thus there are no half-links left open in the boundary graph. However, there
might be open links in the boundary graph, i.e. links incident to 1-valent nodes.

An example can be found at figure 5.2.

In case of ordinary graph diagram the above definition overlaps with the definition
introduced in subsection 3.2.3.4. Indeed, in case of ordinary graph diagrams a half-link
incident to a node is a boundary half-link iff this node is not related with any other node
by the node relation. In such case all the other half-links incident to this node are also
boundary.

For generalized graph diagram one can define operations of erasing links and nodes
in a way preserving the generalized graph diagram category (which was not the case for
ordinary graph diagrams).
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(a) (b)

(c) (d)

Figure 5.3: Erasing links of generalized graph diagrams. (a) - A diagram D which links
we will erase. (b) - Erasing one link: the diagram D \ `1. (c) - Erasing several links: the
diagram D \ {`1, `2, `3}. (d) - Outer links. The link `1 is simply outer. The link `3 is
outer, but not simply-outer: one has to erase `1 and `2 to make it simply-outer. The link
`4 is inner.

Definition 5.3. Erasing a link
Given a generalized graph diagram D = (G,R) and a link ` ∈ LG we define a graph

diagram with erased link (which we shell denote as D \ `) as follows:

• The graph G \ ` is the graph with the set of nodes NG\` = NG and the set of links
LG\` = LG \ {`}. All the incidence relations in G \ ` are induced by the incidence
relations in G.

• The node relation Rnode of the diagram D \ ` is the same as in D.

• The link relations change as follows: if a half-link ˜̀ε was related to one of half-links
of ` in the diagram D, then it becomes a boundary half-link in the diagram D \ `.
In other words each pair containing `+ of `− is removed from any R(n,n′)

link relation.

Since all the operations presented above are subtractions of sets, the result does not depend
on the order in which they are performed. This leads to a conclusion, that erasing many
links can be done simultaneously. For erasing several links {`1, . . . , `N} we introduce the
notation D \ {`1, . . . , `N} := (· · · (D \ `1) \ . . .) \ `N .

An example of erasing links can be found at figure 5.3.
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For later convenience let us introduce a notion of outer links. The definition is re-
cursive, thus first let us introduce the base of the recursion:

Definition 5.4. Simply outer link
A link ` of a generalized graph diagram is called simply outer iff at least one of the

following is true:

• at least one of half-links of ` is a boundary half-link,

• ` is incident to a 1-valent node.

Erasing the links may cause some links to become simply outer. This leads us to next
definition:

Definition 5.5. Outer link
A link ` of a generalized graph diagram D is called outer iff it is simply outer or there

exists a series of links (`1, . . . , `N ) such that

• the link `1 is a simply outer link of D,

• for each i = 2, . . . , N the link `i is a simply outer link of D \ {`1, . . . , `i−1},

• the link ` is a simply outer link of D \ {`1, . . . , `N}.

Note, that although erasing the links is order-independent, the ordering of the series
(`1, . . . , `N ) matters. Indeed, the diagram D \ {`1, . . . , `N} does not depend on the or-
der of erasings, however, the intermediate steps differ for different orderings and the
property of being simply outer is required to be satisfied through all intermediate steps.

Obviously if ` is outer, there may be more than one series satisfying the above condi-
tions.

Illustration of outer links can be found at figure 5.3d

Erasing nodes is more complicated. In order to preserve the generalized graph dia-
grams category one has to deal with the links incident to the nodes one erases and there
are several ambiguous ways to do it. From the point of view concerning our purpose
(namely dealing with bubble subdiagrams) it is convenient to consider only the following
approach: in order to erase a node one has to first erase all the links incident to it and
then erase the 0-valent node using the following procedure.

Definition 5.6. Erasing a 0-valent node
Given a generalized graph diagram D = (G,R) and a 0-valent node n ∈ NG we define

a graph diagram with erased node (which we shell denote as D \ n) as follows:

• The graph G \ n is the graph with the set of nodes NG\` = NG \ {n} and the set of
links LG\` = LG. All the incidence relations in G \ n are induced by the incidence
relations in G.

• If the node n was related with another node n′ in the diagram D , then the node
relation Rnode\n of the diagram D \ n equals Rnode \ {(n, n′)}, otherwise the node
relation Rnode\n of the diagram D \ n is the same as in D.

• Even if the node n was related with another node n′ in D, the only possible link
relation R(n,n′)

link was the void relation, because n was by assumption 0-valent. We
remove it in such case. In any case, the equivalence classes of Rlink in the diagram
D \ n are the same, as in D.
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Again removing several 0-valent nodes is independent and can be done simultaneously, we
will denote it as D \ {n1, . . . , nN} := (· · · (D \ n1) \ . . .) \ nN .

Let us now define and characterize subdiagrams of generalized graph diagrams:

Definition 5.7. Subdiagrams
A generalized graph diagram D′ is called a generalized subdiagram of D iff it can be

obtained by erasing some links and then erasing some 0-valent nodes of D.
A generalized subdiagram D′ of D that is an ordinary graph diagram is called a proper

subdiagram of D.
A proper subdiagram D′ of an ordinary graph diagram D such that the graph G′ of D′

is a subgraph of the graph G of D obtained by erasing only all connected components of G
is called a simple subdiagram of D.

We will also need to identify connected parts of (generalized-) graph diagrams. For
our purpose it is convenient to consider connectivity in terms of the edges of the 2-complex
related to an ordinary graph diagram (what can be easily generalized to generalized graph
diagrams). This intuition is concretized by the following definition:

Definition 5.8. Diagram-connectivity
Given a (generalized-) graph diagram D = (G,R) we say, that each connected compon-

ent ΓI of G is diagram-connected. Moreover, each two connected components ΓI ,ΓII are
diagram-connected, if there is a node relation relating a node n ∈ NΓI with n′ ∈ NΓII .
Moreover we want diagram-connectivity to be transitive, so if ΓI is diagram connected
with ΓII , and ΓII is diagram connected with ΓIII , then ΓI is diagram-connected with
ΓIII .

A diagramD is diagram-connected if each connected component of its graph is diagram-
connected with each other connected component. A diagram-connected part of a graph
diagram D is a maximal subdiagram of D, which is diagram-connected.

Two elements (nodes or links) of a graph diagram D are diagram-connected iff they
are in the same diagram-connected part of D.

If two elements (nodes, links or connected components) are not diagram-connected,
they are called diagram-disconnected.

For a generalized diagram its diagram-connected parts are its generalized subdiagrams
(they can be proper, but they do not have to). For an ordinary graph diagram each
diagram-connected part is a simple subdiagram.

In case of graphs one has to always emphasise whether considering topological con-
nectivity of diagram-connectivity. However, in the category of (generalized-) graph dia-
grams there is no notion of connectivity other then diagram-connectivity. Thus whenever
it will not cause a confusion we drop the prefix diagram-.

As it was discussed in subsection 3.4.4, a diagram-disconnected diagram has trans-
ition amplitudes that factorizes into a product of transition amplitudes of its diagram-
connected parts.

5.1.2 Bubble-part of graph diagram

In the spin-foam community the word bubble was used mainly in context of 2-complexes
dual to a triangulation of a 4-manifold. The bubble was defined as a set of faces of the
foam that form a closed surface [77, 69, 65] (the surface does not mean smooth surface,
since faces of spin-foams are not smooth manifolds, it means a topological surface). This
definition was not used strictly - it was applied also to for example the melonic bubble
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[79, 78] or self-energy-bubble [69], which are not topological surfaces, but rather closed
(i.e. boundaryless) 2-CW-complexes. This leads us to formulating our definition, which
though being more strict, covers the traditional definition.

In what follows a bubble in context of spin-foams will be called a spin-foam bubble
or a topological bubble. The name bubble without any adjective will be reserved for
representation of the ones in terms of (generalized-) graph diagrams.

5.1.2.1 Bubble in graph-diagram framework

First let us define an isolated bubble.

Definition 5.9. An isolated bubble
An isolated bubble is a nonempty graph diagram with no boundary.

Let us justify the above definition by showing its relation to the traditional one. As
we have showed in chapter 3, graph-diagrams define a class of 2-CW-complexes, that can
be used to define a spin-foam theory. Thus an isolated bubble has its interpretation in
terms of 2-CW-complexes and vice versa.

Let us firstly consider a 2-CW-complex κ1 forming a closed surface. We assume that
κ1 is a 2-CW-complex of some spin-foam, thus by assumption there is a graph diagram
representing it (see subsection 3.5.1). Since κ1 has no boundary, the graph diagram Dκ1

also has no boundary. Since κ1 form a surface, it must have at least one face, thus Dκ1

must have at least one link, so it is nonempty. Thus Dκ1 is an isolated bubble.
As we have already recalled, the notion bubble was used also in case of more general

foams, i.e. for subcomplexes that are not topological manifolds (like for example the
melonic bubble). Nevertheless, they were still nonempty boundaryless 2-complexes. Let
κ2 be such complex. Then again, by assumption, there must be a graph-diagram Dκ2

representing this 2-complex. The diagram Dκ2 must be non-empty and must not have a
boundary - so it must be an isolated bubble. Consider now the opposite situation: let D3

be an isolated bubble and κD3 be the 2-complex it represents. Since D3 is boundaryless,
the 2-complex κD3 must not have boundary, and since D3 is nonempty, κD3 contains at
least one face, so κD3 is a bubble in the traditional means.

Although the above considerations may seam tautological, they are not. The tra-
ditional definition was formulated in context of 2-complexes dual to triangulations of
manifolds. The class of 2-complexes we introduced in chapter 3 is more general and thus
we must have assured that the traditional definition of a bubble could be translated to
this new context.

In case of diagrams with boundary, the full diagram cannot be a bubble, but it can
contain a bubble:

Definition 5.10. A diagram containing a bubble
If a graph diagram contains a proper subdiagram being an isolated bubble, we say

that it is a diagram containing a bubble or simply it is a diagram with a bubble. The
subdiagram is called the bubble of the diagram.

The assumption, that the isolated bubble part is a proper subdiagram, assures, that
within the class of admissible 2-complexes there must be one corresponding to this bubble
part of considered diagram.

Thanks to the correspondence between graph-diagrams and 2-complexes, our defini-
tion applies also to spin-foam bubbles:
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Definition 5.11. A spin-foam containing a bubble
If a 2-complex of a spin-foam can be represented by a graph diagram with a bubble,

we say that this spin-foam contains a bubble.

5.1.2.2 Characterisation of bubbles

Let us characterise some basic properties of possible bubbles. We characterise only isol-
ated bubbles. A diagram with a bubble is characterised by the isolated bubble it contains
and the information about the way the isolated bubble is embedded it.

Definition 5.12. Connected bubbles
An isolated bubble that is diagram-connected is called a connected bubble.

In what follows we consider only connected bubbles. Obviously each diagram-
connected part of an isolated bubble is an isolated bubble itself. Disconnected bubbles are
disjoint products of connected bubbles. In terms of spin-foam amplitudes the contribu-
tion of disconnected parts of a diagram simply multiply (see subsection 3.4.4). Although
it may happen, that a connected diagram with a bubble contains a disconnected isolated
bubble, it is the issue of embedding bubbles in diagrams, unrelated to internal structure
of the bubbles.

Let us define the rank of a bubble:

Definition 5.13. Rank of a bubble:
Given an isolated bubble D the rank of the bubble D is the minimal number of links

that must be erased from D to obtain a bubbleless diagram.

Obviously the rank of a disconnected bubble is the sum of ranks of its connected
parts.

The rank of a bubble measures the quantity that can be intuitively called as the
number of surfaces in the bubble. In fact, the above definition translates to the spin-
foam bubbles as the minimal number of faces one has to remove in order to make the
foam bubbleless (in other words: it is the minimal number of faces of a CW-complex
homotopic to the bubble).

Consider for a moment an isolated bubble D and a diagram D′ containing a bubble
such that it’s bubble part is precisely D. Note, that if one erases these links of D′, which
would cause D to become bubbleless, the diagram D also becomes bubbleless. Indeed,
erasing links cannot increase the number of inner links of a diagram, so no new bubble
may appear. But the old bubble cannot preserve such operation, because the links we
erased by definition cause all the bubble part of D′ to become outer. Thus we conclude,
that rank is a property not only of isolated bubbles, but also of the whole diagram (and
the definition is straightforward, namely the rank of a diagram is the minimal number
of links that must be erased from it to obtain a bubbleless diagram, which equals to the
rank of its maximal subdiagram being an isolated bubble). The topological interpretation
also generalizes to whole diagram: given a 2-CW-complex of an ordinary graph diagram
D′ the minimal number of faces of a general CW-complex 1 homotopic to it equals to the
rank of the diagram D′, because each 2-comples of a bubbleless diagram is homotopic to
a 1-complex [85].

There is a topological invariant that measures a similar quantity, namely the 2nd
Betti number. It measures the number of holes enclosed by a 2-dimentional complex. It
was already used to characterise bubbles of spin-foams [70]. Nevertheless, they do not

1See remark A.2.
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equal to the rank of the bubble - for example a projective plane is a bubble of rank 1 (see
subsection 5.2.3.3), while its 2nd Betti number equals 0.

5.2 The algorithm finding bubble subdiagram

This section presents two algorithms that the Author formulated. The first algorithm,
presented in subsection 5.2.1, is a tool to find a subdiagram of an operator spin-network
diagram being a pure bubble together with a proof of correctness. The second algorithm,
presented in subsection 5.2.2, is a slight modification of the previous algorithm, that
allows to count the order of the bubble found using the previous algorithm.

The algorithms are described in a condensed manner, without illustrations. Examples
of applications of the algorithms can be found in subsection 5.2.3.

Finally, in subsection 5.2.4, we study some basic harmonic-analytical properties of
bubbles.

5.2.1 Does a diagram have a bubble?

Given an ordinary graph diagram D we will find its bubble. The general concept of the
algorithm is based on the following fact:

Theorem 5.1. The bubble of a graph diagram
Given a (generalized-) graph diagram D with a bubble, the bubble of D is the subdia-

gram build of all inner link of D.

Proof
First let us proof a lemma saying, that if D′ is a closed proper subdiagram of D and
` 6∈ GD′ , then D′ is a closed proper subdiagram of D \ `. Indeed, erasing ` must not
spoil any of properties of D′. If there were a link of D′ related within D with ` via Rlink

relation, D′ would not be closed. If there is a node of D′ incident to `, it must be incident
to at leas 2 other links, both in D′, otherwise D′ would not be proper. Thus erasing `
neither opens any equivalence class of face-relation in D′ nor reduce the valency of any
nodes of D′ to 1, so D′ is a closed proper subdiagram of D \ `.

Now we will prove one direction of implication, namely that no outer link of a diagram
D is a member of the bubble of D.

From the above lemma we conclude, that if ` does not belong to any closed proper
subdiagram of D, each closed proper subdiagram of D is a closed proper subdiagram of
D \ `.

Consider thus a link ` being an outer link of D. We will show that there is no proper
boundaryless subdiagram of D that contains `.

If ` is outer, there are 2-possibilities: either it is simply outer or it is not.
If ` is simply outer, by definition it may not be a member of a proper closed subdia-

gram. If ` has a boundary half-link, each subdiagram containing ` must have a boundary,
thus it cannot be closed. If ` is incident to a 1-valent node, each subdiagram containing
` must have a 1-valent node, thus it is not proper. So each simply outer link ` must not
be a member of a proper closed subdiagram of D.

If ` is not simply outer, there is a sequence of links (`1, . . . , `N ) satisfying the prop-
erty of definition 5.5 (i.e. for each i = 1, . . . , N the link `i is a simply outer link of
D \ {`1, . . . , `i−1} and ` is a simply outer link of D \ {`1, . . . , `N}). Since `1 is simply
outer, it must not be a member of any proper closed subdiagram of D, thus (as it was
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concluded from the lemma) each closed proper subdiagram of D is a closed proper subdia-
gram of D\`1. But `2 is a simply outer link of D\`1, thus each closed proper subdiagram
of D \ `1 is a closed proper subdiagram of D \ {`1, `2}, and of course it is a closed proper
subdiagram of D. Iterating though the whole series we conclude, that each closed proper
subdiagram of D is a closed proper subdiagram of D \ {`1, . . . , `N}. But ` is a simply
outer link of D \ {`1, . . . , `N}, so it must not belong to any closed proper subdiagram of
D \ {`1, . . . , `N}, so it must not belong to any closed proper subdiagram of D.

We are left with the proof that if a link ` is inner, it belongs to a proper closed
subdiagram of D.

Let ` ∈ LΓ for one of connected components Γ of the graph GD. Since Γ is closed
(what follows from the assumption, that D is an ordinary graph diagram), there must be
an unoriented cycle of links in Γ containing `. If ` is inner, there must be an unoriented
cycle of inner links containing ` within Γ. Indeed, assume, that each unoriented cycle
containing ` has at least one outer link, and then erase all outer links of D - so that only
the inner links are left in Γ. Because of the assumption, there are no unoriented cycles
containing ` in Γ - but this is possible only in an open graph. But if Γ is open, at least
one of its links is simply outer. But if it became simply outer after removing some outer
links, it was outer by definition, what is in the contrary with our assumption, that we
erased all outer links. Thus a subgraph Γ′ of Γ build of only inner links is a closed graph.

Note now, that if ` is inner, then both of its ends must not be boundary links. Indeed,
since D is an ordinary graph diagram, if one of ends of ` were boundary nodes ` would
be a boundary, thus simply outer link. Moreover, ` must not be a member of an open
equivalence class of the face relation. If it were, the links in the link relation would form
a series of links ending with a boundary, thus simply outer link. Moreover, if ` is inner,
than none of the links in the equivalence class of face relation to which ` belongs may
be outer. Indeed, consider an internal equivalence class of the face relation such that it
contains a link `′ being for some an outer link. Let’s erase all the links that cause `′

to become simply outer and then erase `′. Then the equivalence class becomes an open
equivalence class, thus all its members are also outer. Thus if ` is an inner link, its whole
face-relation equivalence class consists also of only inner links.

Consider now a subdiagram D′ of D build of an inner link ` together with the whole
inner subgraph Γ′ of its connected component Γ, extended by whole equivalence classes
of all the links in Γ′, and then extended of all inner subgraphs of all the links added in
previous step, and then extended by whole equivalence classes of the links added in the
previous step, and so on, until no new links are added. This subdiagram consists of only
closed graphs, because each inner subgraph of a connected component of the graph is
closed. This subdiagram has no boundary nodes (and thus it has no boundary), as we
have proven in previous paragraph. Thus it is an isolated bubble.

Quod erat demonstrandum

The theorem was proven for generalized graph diagrams, because even starting from
an ordinary graph diagram removing links quickly leads to generalized graph diagrams.

The proof of the theorem is in fact the base for our algorithm, which is presented
below:

Proposition 5.1. Find-bubble algorithm
Consider a graph diagram D. In order to find the bubble part of D do as follows:

1. Erase each simply-outer link of D.

2. If after doing step 1 some links become simply-outer - go back to step 1 and erase
them.
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3. If no new simply-outer links appeared - erase all 0-valent nodes.

4. If all the diagram was erased - it means it had no bubble. If not - what is left is the
bubble part of D, in the form of an isolated bubble.

At first the only simply-outer links to be erased are the links with boundary half-links.
However, starting from the second iteration some links incident to 1-valent nodes may
start to appear.

5.2.2 What is the rank of the bubble?

Consider now an isolated bubble (possibly the one obtained as a result of find-bubble
algorithm). We present here a way to find its rank.

If a bubble is disconnected, one should apply the following algorithm to each connected
part and sum the results.

Proposition 5.2. Rank-of-bubble algorithm
Let D be a connected isolated bubble. In order to find its rank do as follows:
Start with rank r = 0.

1. Pick a link ` of D and erase it, increase r by 1.

2. Apply the the find-bubble algorithm to the diagram D \ `, obtaining another dia-
gram D̃.

3. If D̃ is disconnected - rewind the procedure to the step 1 and pick another link `′,
such that it was not one of the links erased in the step 2.

4. If D̃ is an empty diagram the number r is the rank of the original bubble. Otherwise
repeat the procedure starting form D̃.

The step 3 prevents from the situation, when the 2-complex representing the diagram
D has a form of two (or more) isolated bubbles connected by a set of faces homeomorphic
to a disc (or several disconnected discs). If a link corresponding to one of the faces of
this disc were chosen, the result of find-bubble algorithm would be these disconnected
bubbles. However, erasing the links corresponding to faces of the component bubbles will
lead at some point to the situation, when the links corresponding to the disc connecting
the bubbles become outer links without increasing the rank counter. And since the
rank counter is the minimal number of links erased, one must not count the links of the
connecting disc. An illustration of such situation can be found in the example presented
in subsection 5.2.3.5.

5.2.3 Examples

Here we provide several examples of applications of the algorithms presented above. We
start with three examples of bubbleless diagrams in subsection 5.2.3.1. Then we introduce
several realisations of a bubble with topology of a sphere (see subsection 5.2.3.2). In
subsection 5.2.3.3 we study other basic possibilities of bubbles with rank 1, i.e. real
projective plane, torus and Klein-bottle. In subsection 5.2.3.4 we present an example
of a diagram containing a bubble considered in [78] (called melonic bubble). Finally in
subsection 5.2.3.5 we show, how do our algorithms work in case of multiple bubbles, both
when they form a disconnected isolated bubble and if they form a bubble connected by
contractible faces (i.e. when the step 3 of the rank-of-bubble algorithm applies). For the
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simple bubbles of subsections 5.2.3.2-5.2.3.3 we also add the calculation of BF transition
amplitudes of isolated bubbles.

The examples are described mostly by the figures. For most of bubbles there are extra
figures presenting construction of spin-foams corresponding to them (except from those,
which are non-embeddable in 3d). The simply outer links are highlighted red (sometimes
links which are outer, but not simply outer, are also highlighted).

The diagrams presented at the figures are results of erasing of links, thus they are
mostly generalized graph diagrams. This means, that it might happen, that two nodes in
the diagram are related by the Rnode relation, but no links incident to them are related
by Rlink relation. However, in most situations this is not the case, and if it is, it is
emphasised explicitly in the description of the figure. Usually when there is a pair of of
nodes related by the node relation and no link relation is drawn, it means that the link
relation is a duality relation, however its precise form is irrelevant for the step we present
at this particular figure and it would make the figure illegible.

Due to limit the number of figures we usually omit the figures presenting few last final
steps of each procedure (if they are obvious). Usually we stop at the step, when all the
remaining links are simply-outer.

5.2.3.1 Bubbleless diagrams

Let us start with three examples of bubbleless diagrams.
First let us consider the simplest nontrivial diagram, that was used as an example

in subsection 3.4.2. It is obviously bubbleless and thus it is a good example to show,
how our algorithm behaves in such situation. The figure figure 5.4 present the steps of
find-bubble algorithm.

As the next let us take the diagram with the same boundary, presented in section §4.3
at figure 4.15a. It appears to be also bubbleless, however it requires more steps to see it.
It is analysed at figure 5.5. First two steps of the procedure effect only the boundary static
diagram, that is attached to the interaction part of the diagram. In fact the boundary
static part of the diagram, being a topological cylinder over the boundary, never contains
a bubble and is always removed by the fist two steps of the find-bubble algorithm.

As the third example let us take the diagram that we recalled at the beginning of this
chapter at figure 5.1a. It is also bubbleless, what can be showed in three steps, presented
at figure 5.6.

5.2.3.2 Spherical bubbles

Let us now consider few simple realisations of diagrams with bubbles. In each example
we choose possibly simple diagrams (usually with all outer links being simply-outer) in
order to keep attention on the pattern of bubble subdiagrams rather then the way they
are embedded in full diagrams.

First let us consider a diagram containing a dumpling bubble, presented at figure 5.7.
The name comes from the shape of the bubble obtained in this procedure. The dumpling
bubble topologically is a sphere, what is shown at figure 5.8.

One can simply calculate the BF transition amplitude of such bubble.
Given a spin-label j of the face, the nodes are labelled by a projection operator

P̂ : Inv (Hj ⊗Hj) → Inv (Hj? ⊗Hj?). But the space Inv (Hj ⊗Hj) is 1-dimensional,
spanned by εm`m`′ , thus the projection operator is P̂ = 1

2j+1ε
m`+m`′+ εn`−n`′− . The BF

contractor is ATr = δ
n`−
m`+

δ
n`′−
m`′+

. The face weight amplitude is Af = 2j + 1 per each face,
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(a) (b)

(c) (d)

Figure 5.4: An example of bubbleless diagram. (a) - Step 0: The diagram that is studied.
(b) - Step 1: All the simply-outer links are colored red. (c) - Step 2: Some (in fact all)
of the remaining links became simply-outer. (d) - Step 3: After repeating the Step 1 no
links are left. All the remaining nodes are 0-valent, thus we remove them and we go to
the Step 4, where we are left with the empty diagram. Thus there is no bubble.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: The second example of a bubbleless diagram. Until (e) the link-relations are
irrelevant, and thus they are omitted at the figures (it is enough to know, that whenever
two nodes are connected by the node-relation, there is a duality relation between their
links). (a) - The diagram we consider. (b) - The first iteration - the simply outer links of
the original diagram. (c) - The simply outer links of the diagram obtained after the first
iteration. (d) - Since this moment the boundary static part of the diagram will not be
relevant, thus focus on the interaction part. The third iteration of the simply outer links.
(e) - The first moment when the precise form of the link-relation matters: it indicates,
which links of the remaining θ-graph are simply outer (because they were related to the
links we already removed), and which one is not. (f) - The last iteration - only one link
remains and it is simply outer.
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(a) (b) (c)

Figure 5.6: Another example of bubbleless diagram. (a) - The simply outer links of the
diagram D of figure 5.1a are highlighted. (b) - Removing all the simply outer links cause
some other links become simply-outer. (c) - The last link remain. But it is also simply
outer, because it is incident to 1-valent nodes. Thus we must erase it and then, left with
only 0-valent nodes, we conclude that there is no bubble in the diagram D.

(a) (b) (c)

Figure 5.7: A diagram containing a dumpling bubble. (a) - The diagram. (b) - All simply
outer links of the diagram are highlighted. (c) - The subdiagram being an isolated bubble
- i.e. the dumpling bubble.
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(a) (b)

Figure 5.8: Construction of a 2-complex corresponding to the dumpling bubble.
(a) - The 1-vertex foam obtained from the dumpling bubble diagram. The blue square
points are the middles of links, that appear when dividing a graph into a squid-graph
(see subsection 3.2.2) (b) - The foam closed according to the relations becomes a sphere.
The boundary links are glued like a dumpling - and that’s the origin of the name.

and there are 2 equivalence classes of the face relation. There are obviously no boundary
links, so the amplitude related to them is 1. Thus the amplitude (for fixed j) is

Adumpling (j) = (2j + 1)2 1

2j + 1
εm`+m`′+ εn`−n`′− δ

n`−
m`+

δ
n`′−
m`′+

= (2j + 1) εABεAB = (2j + 1)2

(5.1)
Thus the total transition amplitude Adumpling =

∑∞
j=0Adumpling (j) is infinite. If one

regularise it by putting a maximum spin cut-off Λ, one gets

AΛ
dumpling :=

Λ∑
j=0

Adumpling (j) = O
(
Λ3
)

(5.2)

The sum goes every half-integer, so it is convenient to change the summing index to the
dimension d of the spin-j representation:

AΛ
dumpling =

2Λ+1∑
d=0

d2 =
1

6
(2Λ + 1) (2Λ + 2) (4Λ + 3) =

2

3
Λ3 +O

(
Λ2
)

(5.3)

The Lorentzian EPRL amplitude of this bubble is not well defined, because the graph
is only 2-edge connected, not 3-edge connected (see [84]). One can regularise it by re-
moving all the redundant SL(2,C)-integrals - but there is one redundant integral for
each 2-valent node, and this graph contain only 2-valent nodes, so one has to remove all
SL(2,C)-integrals and the amplitude becomes the same as the BF -amplitude. This is
the case for all bubbles with only 2-valent nodes.

Of course there are more realisations of spherical bubbles. Another example is a
double-cone bubble, presented at figure 5.9.

The transition amplitude of a double-cone bubble is the same as the one of the dump-
ling bubble. Indeed, now the projection operator is P̂ : Inv (Hj ⊗Hj?)→ Inv (Hj ⊗Hj?),
and its matrix elements in the spin basis are P̂ = 1

2j+1δ
m`+
n`−

δ
m`′+
n`′−

. The BF contractors for
each graph are ATr = δ

n`−
m`+

and A′Tr = δ
n`′−
m`′+

respectively. There is only one equivalence
class of the face relation, so the face amplitude contributes only once. Thus

A2−cone (j) = (2j + 1)
1

2j + 1
δ
m`+
n`−

δ
m`′+
n`′−

δ
n`−
m`+

δ
n`′−
m`′+

= δAAδ
B
B = (2j + 1)2 (5.4)
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(a) (b) (c)

Figure 5.9: A diagram containing a double-cone bubble. (a) - The diagram. (b) - All simply
outer links of the diagram are highlighted. (c) - The subdiagram being the isolated bubble
- i.e. the double-cone bubble.

(a) (b)

Figure 5.10: Construction of a 2-complex corresponding to the double-cone bubble.
(a) - Two 1-vertex foams obtained from the double-cone bubble diagram. (b) - The
foams glued along their boundaries become a sphere.
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(a) (b)

(c) (d) (e)

Figure 5.11: Another diagram containing a spherical bubble. (a) - The diagram.
(b) - Again all outer links of this diagram are simply outer, they are highlighted red.
(c) - The isolated spherical bubble. (d) - 1-vertex foams of this isolated bubble are very
similar to the double cone bubble. (e) - The 2-complex of considered bubble is a 2-sphear.

so, similarly, the total (regularized) amplitude is

AΛ
2−cone =

2

3
Λ3 +O

(
Λ2
)

(5.5)

One can also obtain spherical bubbles concerning more then one pair of related nodes,
as it is presented at figure 5.11.

The common feature of all spherical bubbles is that the bubble subdiagram contains
only 2-valent nodes. This leads to a conclusion that their rank equals 1. Indeed, erasing
any link of a closed connected diagram containing only 2-valent nodes cause that each
outer link becomes outer. Because of connectivity there must be a sequence of links either
adjacent or link-related between any two links in the diagram; erasing a link at one end
of such sequence makes the next link simply outer, and then the sequence becomes the
sequence of simply-outer links required by the definition of being an outer link.

However, not only spherical bubbles has this property. Other examples with this
property are described in the next subsection.
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(a) (b) (c)

Figure 5.12: A diagram containing a real-projective-plane bubble. (a) - The diagram -
being the diagram of figure 5.7a with the link relation slightly modified. (b) - The simply
outer links of the diagram remain the same as in the dumpling bubble case. (c) - The
subdiagram being an isolated bubble with the topology of real projective plane.

5.2.3.3 Other bubbles of rank 1

Real projective plane bubble
A real projective plane is the next to the simplest example of a bubble. It was in-

troduced in subsection 3.2.3.3 (at figure 3.10), but it can be also realised by a simple
modification of the dumpling bubble from previous subsection, what is presented at fig-
ure 5.12. Since the projective plane is not embeddable in R3, we do not even try to draw
the foam representing it.

Let us calculate the transition amplitude of the projective-plane bubble. All the
components of the amplitude are the same as in case of the dumpling bubble (see subsec-
tion 5.2.3.2), however there two subtleties. First: there is only one equivalence class of
the face relation, thus the factor (2j + 1) contributes only once. Second: the order of the
indices of the projector operator is switched, so P̂ = 1

2j+1ε
m`+m`′+ εn`′−n`− . This leads to

the amplitude

ARP(2) (j) = (2j + 1) P̂ =
1

2j + 1
εm`+m`′+ εn`′−n`− δ

n`−
m`+

δ
n`′−
m`′+

= εABεBA = − (2j + 1)

(5.6)
thus the total amplitude is

AΛ
RP(2) =

2Λ+1∑
d=0

−d = −(2Λ + 1) (2Λ + 2)

2
= −2Λ2 +O (Λ) (5.7)

Let us explain more the switch of the indices, which caused the minus sign. For a
moment let us consider a diagram of the real projective plane bubble without gluing of the
nodes. Then each node has its separate projection operator with free indices: the upper
node has P̂+ = 1

2j+1ε
m`+m`′+ εA`+A`′+ and the lower node has P̂− = 1

2j+1ε
B`−B`′− εn`−n`′−

(of course there is also a boundary-link term 1

(
√

2j+1)
2 and one more face-weight term

(2j + 1), but they together give the factor of 1, so we neglect them). As it was described
in subsection 3.4.3, relating these two nodes results with appropriate contraction of the
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(a) (b)

(c)

Figure 5.13: Another realisation of a diagram containing a real projective plane bubble.
(a) - The diagram. (b) - All outer links of this diagram are simply outer, they are
highlighted red. (c) - The real projective plane subdiagram.

free indices (and appropriate adjustment of the weight factors, but as we mentioned, it
does not matter in this case). The contraction is determined by the link relation. Since
the half-link `+ is related to `′− and the half-link `′+ is related to `−, the contraction is
indicated by δA`+B`′−

δ
A`′+
B`−

, what gives

P̂ = P̂+ ◦ P̂− =
1

2j + 1
εm`+m`′+ εA`+A`′+

1

2j + 1
εB`−B`′− εn`−n`′− δ

A`+
B`′−

δ
A`′+
B`−

=
1

2j + 1
εm`+m`′+ εn`−n`′− ·

1

2j + 1

[
εA`+A`′+ δ

A`+
B`′−

δ
A`′+
B`−

εB`−B`′−
]

(5.8)

The term in bracket is precisely εABεBA = − (2j + 1), so the overall factor is −1, what
we incorporated in the switch of the indices of P̂ .

An example of a diagram containing the real projective plane bubble as it was intro-
duced in subsection 3.2.3.3 is presented at figure 5.13

Toroidal bubble
Let us introduce another bubble diagram with only 2-valent nodes. It is presented at

figure 5.14. The topology of a 2-complex corresponding to it is a torus - see figure 5.15.
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(a) (b) (c)

Figure 5.14: A diagram containing a toroidal bubble. (a) - The diagram. (b) - All outer
links of this diagram are simply outer, they are highlighted red. (c) - The isolated bubble
subdiagram. One of possible orientations of links is indicated.

(a) (b) (c)

Figure 5.15: A spin-foam of the isolated diagram of a toroidal bubble. (a) - The 1-vertex
foam. (b) - A pair of nodes glued. (c) - The second pair of nodes glued resulting in the
topology of a torus.
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(a) (b)

Figure 5.16: Klein-bottle bubble. (a) - The diagram of an isolated bubble forming the
Klein bottle. (b) - The intermediate step of construction of a spin-foam representing such
bubble (note the link relation different than the one at figure 5.15b). We do not draw
the final step, because the Klein bottle is not embeddable in 3d and such drawing would
be illegible.

The BF -amplitude of such bubble can be calculated similarly to the amplitude of a
spherical bubble. Let us orient and name links as it is indicated at figure 5.14c. Each pair
of nodes is colored by the projection operator with appropriate indices, i.e. the vertical

one is P̂vert = 1
2j+1ε

m
`+1
m
`+4 εn

`−2
n
`−3

and the horizontal one is P̂hor = 1
2j+1δ

m
`+2

n
`−1
δ
m
`+3

n
`−4

. The

contractor is ATr = δ
n
`−1

m
`+1

δ
n
`−2

m
`+2

δ
n
`−3

m
`+3

δ
n
`−4

m
`+4

. There is only one equivalence class of face

relation, so the weight factor is (2j + 1). Thus

Atorus (j) = (2j + 1)
1

2j + 1
ε
m
`+1
m
`+4 εn

`−2
n
`−3
· 1

2j + 1
δ
m
`+2

n
`−1
δ
m
`+3

n
`−4
· δ
n
`−1

m
`+1

δ
n
`−2

m
`+2

δ
n
`−3

m
`+3

δ
n
`−4

m
`+4

=
1

2j + 1
εABεAB = 1 (5.9)

so the regularized amplitude is
AΛ

torus = 2Λ + 1 (5.10)

Klein-bottle bubble
A little modification of the link relation of the diagram figure 5.14a leads to the bubble

with the topology of Klein bottle - see figure 5.16.
The BF -amplitude of Klein-bottle bubble is very similar to the one of the toroidal

bubble. The only difference is the switch of the indices in the P̂vert operator - in the same
way, as we did it in case of the projective plane bubble. Thus the amplitude differs only
by a sign and equals

AΛ
Klein bottle = − (2Λ + 1) (5.11)

5.2.3.4 Melonic bubble

One of important bubbles considered so far in the literature is the so called melonic
bubble. It was considered in [69] and studied with details in [78, 79]. A simple example
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of a diagram containing such bubble is presented at figure 5.17 - it is a melonic bubble
sandwiched between two static diagrams.

On figure 5.17d there is the fragment of diagram representing the edge with a melonic
bubble. This is precisely the pattern one has to look for when searching for an edge with
a melonic bubble. The outer links of this diagram are in fact the external faces of such
edge. Note, that such diagram can be obtained by taking a θ-like-graph build of the outer
links, cutting it in half and inserting an isolated bubble into them. The isolated melonic
bubble (with the link relation specified) is presented at figure 5.17e.

Let us now study the rank of such bubble using the rank-of-bubble algorithm. The
steps of this algorithm are presented and explained at figure 5.18. As a result we get the
rank of melonic bubble equal to 3, which agrees with the intuition: the melonic bubble
has topology of three spheres glued by fragments of their surfaces (see figure 5.19).

5.2.3.5 Multiple bubbles

Two disjoint bubbles Let us now consider a diagram containing two disjoint bubbles.
In the example presented at figure 5.20 the bubble subdiagrams becomes disconnected
although the starting diagram was connected. Each of obtained diagrams is a spherical
bubble, thus one can easily calculate the rank of the bubbles.

Two bubbles connected by a face Now let us consider a diagram with a bubble
being two isolated bubbles connected by a contractible face. An example of such dia-
gram is presented at figure 5.17e. The find-bubble algorithm ends up with a connected
subdiagram, unlike in previous example. Applying the rank-of-bubble algorithm (see
figure 5.22) one faces the situation mentioned in subsection 5.2.2 in the step 3 of the al-
gorithm - namely erasing one of the links and applying the find-bubble algorithm results
with a disconnected subdiagram (see figure 5.22c). Thus one has to go back and choose
another link (see figure 5.22d). If we did not rewind the procedure at figure 5.22c, the
result of it would have been 3 (i.e. 1 plus the rank of the bubble figure 5.22c, which is
obviously 2). And of course removing three faces of such bubble makes it contractible to
a 1-complex. But the rank is the minimal number of faces one has to remove in order
to obtain something contractible to a 1-complex, and this minimal number is 2 - what is
shown at figures 5.22d-5.22g.
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(a) (b)

(c) (d) (e)

Figure 5.17: The melonic bubble sandwiched between two static diagrams. Due to make
figures legible the link relations are omitted, so far it is important that for each pair
of nodes related by the node relation all the links incident to one node are in 1-to-1
correspondence with the links of the other node. (a) - The diagram. (b) and (c) -
Erasing the simply-outer links of the static boundary subdiagrams. (d) - The subdiagram
representing the melonic bubble, including the outer faces of the edge on which the bubble
appears. The link relation is not drawn, but it is given by the following conditions: for
each related pair of nodes the outer links are in link relation with each other and the link
relation on the inner links is indicated by figure 5.17e. (e) - The melonic bubble with the
link relations omitted.

156



(a) (b) (c)

(d) (e) (f)

Figure 5.18: Rank-of-bubble algorithm applied to the melonic bubble. (a) - Step 1: first
link chosen to be removed. The counter r = 1. (b) - Step 2: erasing the link in previous
step caused one link to become outer. (c) - The diagram obtained after (b) was neither
disconnected nor empty, thus we pass through the steps 3 and 4 and we repeat the step 1:
another link chosen to be erased. Now the counter r = 2. (d) - The links that became
outer after the previous step. (e) - Again step 1: we choose another link to be erased.
Now the counter r = 3. (f) - Step 2: now all remaining links became outer. Erasing
them leads us to the empty diagram, thus as we proceed to step 4 with the counter r = 3,
we conclude that the rank of the melonic bubble is 3.
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(a) (b)

Figure 5.19: Construction of a 2-complex corresponding to the melonic bubble. (a) - Two
1-vertex foams obtained from the melonic bubble diagram. (b) - The foams glued along
their boundaries.
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(a) (b)

(c) (d)

Figure 5.20: A diagram containing two disjoint bubbles. (a) - The diagram, the link
relations are omitted. (b) - The simply-outer links of diagram are highlighted red.
(c) - We assume that the link relation was such that now at each node the green links
are related. The red links are the outer links. (d) - The isolated bubble subdiagram. It
consist of two disjoint diagrams: one being the double-cone, and the second being either
sphere (as at figure 5.11) or a projective plane (as at figure 5.13) - depending on the link
relation.

(a) (b) (c)

Figure 5.21: A diagram containing and isolated bubble consisting of two bubbles connec-
ted by a contractible face. (a) - The diagram. (b) - The simply-outer edges of the diagram
are highlighted red. (c) - The result of the find-bubble algorithm, i.e. the subdiagram
being an isolated bubble.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.22: Rank-of-bubble algorithm applied to two bubbles connected by a contractible
face. (a) - Step 1: first link chosen to be removed. The counter r = 1. (b) - Step 2:
erasing the link in previous step caused one link to become outer. (c) - Step 3: proceeding
the find-bubble algorithm leads to a disjoint diagram - thus we have to go back to step 1.
(d) - Step 1 again: choosing another link to erase. We cannot choose neither `1 nor `2,
because both of them were chosen in a previous attempt. The counter r still equals 1.
(e) - Step 2: again erasing the outer links. The links `1 and `2 are now erased because of
being outer. (f) - Step 4: the diagram obtained in previous steps is connected, thus again
go to step 1, where we choose one of the links to be erased and increase the counter r to
2. (g) - Step 2: Only one link left and it is an outer link, thus we remove it, obtaining
the empty diagram. We proceed to step 4 with the counter r = 2, being the total rank
of the bubble.
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5.2.4 Bubbles in terms of SU(2)-labelled diagrams.

Let us briefly analyse some properties of bubbles from the point of view of colored graph
diagrams, namely Operator Spin-Network Diagrams.

Our analysis is based on coloring of the diagram by SU(2)-tensors (where the EPRL
contractors are considered as SU(2)-tensors, because thanks to the EPRL-map they have
SU(2)-index structure - see Appendix A.4.3). We do not know, whether our results can
be generalized to colorings by tensors of other groups, however we state the necessary
condition to do so.

First let us observe a property of isolated bubbles:

Claim 5.1. SU(2)-colorings of an isolated bubbles
An isolated bubble admits infinitely many colorings by SU(2) labels giving non-zero

amplitude.

Proof
Let us pick an integer spin j and assume that each link of a bubble is colored by this spin.
Then for each node the node Hilbert space will be of the form HInv

n = Inv
(⊗

`εi∈Ln
Hεij
)
.

Such Hilbert space is never 0-dimentional. Note, that

Inv (H1 ⊗ · · · ⊗ Hk) ⊃ Inv (H1 ⊗H2)⊗ Inv (H3 ⊗ · · · ⊗ Hk) (5.12)

For k even, we can find the subspace of the node Hilbert space

HInv
n ⊃ Inv (H1 ⊗H2)⊗ · · · ⊗ Inv (Hk−1 ⊗Hk) (5.13)

If k is odd, the last term in such division has three elements:

HInv
n ⊃ Inv (H1 ⊗H2)⊗ · · · ⊗ Inv (Hk−2 ⊗Hk−1 ⊗Hk) (5.14)

Since all the spins are equal, for each k, l we have either Hk = Hl or Hk = H?l . In case
of 2-spin terms there is always a nontrivial invariant tensor: either εmn or δmn . For 3-spin
space there is a non-trivial invariant tensor of Inv

(
Hj ⊗Hj ⊗H?j

)
iff j is an integer (not

half-integer), and it is a Clebsh-Gordan coefficient Cmnl . Thus we have proven that there
is always a nontrivial invariant tensor |ιn〉 ∈ HInv

n for all links incident to n having the
same integer spin j.

Consider now a following coloring of an isolated bubble: let all links be colored by
the same integer spin j and each pair of nodes be colored by an operator P̂n := |ιn〉 〈ιn|.
The transition amplitude of such diagram is (see section §3.3)

A =
∏
faces

Af ·
⊗

Γ

ATr
Γ yD

⊗
n

P̂n (5.15)

It factorises into a product over connected components of the graph:

A =
∏
faces

Af ·
∏
Γ

ATr
Γ y

⊗
n∈NΓ

|ιn〉 =
∏
Γ

AΓ (5.16)

Inserting the form of BF -contractors we get

AΓ = N ·
∏
`∈LΓ

δ
n`−
m`+
·
∏
n

[ιn]m`+n`′−
(5.17)

where N is a number coming from normalisation of the projection operators P̂n.
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We do not want to calculate the particular value of the amplitude. We only want
to show it is non-vanishing. So far we showed it is a product of the terms AΓ, now we
will show, that each AΓ is non-vanishing. Let us insert the particular form of the ιn
contractors. We obtain a product of δAB, ε

CD, εEF and Clebsh-Gordan coefficients CGHI ,
with all indices contracted, so that:

AΓ = N · δAB · · · εCD · · · εEF · · ·CGHI (5.18)

There are as many Clebsh-Gordan terms in the product, as there are odd-valent nodes in
Γ. Thanks to the Handshake Lemma it must be an even number. The delta- end epsilon-
terms cause that the indices of the Clebsh-Gordan coefficients get contracted in some
way. Contractions of Clebsh-Gordan coefficients leads to more delta- and epsilon- terms
(normalised by factors dependent on j), thus in the end we obtain AΓ equal to trace of
unity operator multiplied by some combinatoric factor. Thus each AΓ is non-zero so all
the amplitude is also non-zero.

Quod erat demonstrandum

This leads us to another claim:

Claim 5.2. A diagram containing a bubble has infinitely many SU(2) − BF -colorings
giving non-zero contribution to the amplitude for a boundary state being a constant
function.

Proof
A constant function is represented by a coloring in which each boundary link has a spin
j` = 0.

Consider a following coloring of a graph diagram: let each outer link be colored by a
spin j`outer = 0 and each inner link be colored by a spin j`innerr

= j ∈ Z+. The transition
amplitude of a diagram colored this way is non-zero, as it was proven above. Moreover,
a diagram colored this way contributes to the transition amplitude of a boundary state
given by a constant function, because all the boundary links are outer links so they are
colored by j` = 0. Since there are infinitely many ways to choose the spin j coloring the
inner links, the claim is proven.

One can easily interpret the notion of rank of a bubble in the above terms.

Claim 5.3. The rank of a bubble (of or a diagram) is the minimal number of spins that
must be set by hand to zero in order to spoil the above properties of diagrams containing
a bubble.

Remark 5.1. In order to generalize the results of this subsection for groups G other
then SU(2), one has to ensure one property of the representation theory on G, that we
used above. Let us introduce the intertwiners of pairs of representations of G:

[δρ]AB ∈ Inv
(
Hρ ⊗H?ρ

)
[ερ]AB ∈ Inv (Hρ ⊗Hρ) [ε?ρ]AB ∈ Inv

(
H?ρ ⊗H?ρ

)
(5.19)

then the group G must have infinitely many inequivalent irreducible representations
ρ such that there is at least one nontrivial tensor [T ρ]ABC ∈ Inv

(
Hρ ⊗Hρ ⊗H?ρ

)
such

that each contraction of a product of [T ρ]s with [δρ], [ερ] and [ε?ρ] does not vanish.
This property of G ensures, that an isolated bubble admits infinitely many inequivalent
colorings, that gives non-vanishing amplitude, which is a key of further considerations.
In case of SU(2) the [T ρ]-tensors are the Clebsh-Gordan coefficients, which always exists
for three equal integer spins and which have well known properties. Perhaps there is a
weaker condition, that allows to generalize our result for even wider class of groups.
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Chapter 6

Lorentzian Polyhedra Propagator

When doing a direct spin-foam calculation one meets the terms of the form
ˆ
SL(2,C)N

dgn
∏
`

〈u`|Y †g−1
n gn′Y |u`′〉j` (6.1)

(see section §4.3). The simplest case of such terms appear when interaction vertices of
structure given by θ-graphs are considered, like in Dipole Cosmology model (see sec-
tion §4.5) - then the group elements gn and gn′ form always the same pair, thus one of
them can be shifted thanks to the invariance of the Haar measure, so that one gets

ˆ
SL(2,C)2

dgdg′
∏
`

〈u`|Y †gY |u`′〉j` (6.2)

where the integral over dg′ can be dropped thanks to the regularisation (see [84, 50]),
and one ends up with ˆ

SL(2,C)
dg
∏
`

〈u`|Y †gY |u`′〉j` (6.3)

The result is a matrix element of some operator, that we decided to investigate.
Such operator appear whenever a spin-foam has an edge split by a vertex colored by a

Lorentzian EPRL contractor. Such edge can be interpreted as a self-interacting (because
of the vertex) propagator of the objects at the ends of the edge. Since this objects are spin-
network nodes, that has interpretation of quantum polyhedra (see subsection 1.1.2.4), we
named the operator Lorentzian Polyhedra Propagator (LPP).

The same operator appears also in calculation of [78], where the radiative correction
of a simple bubble to a spin-foam edge is calculated. There the result is proportional to
T2.

The analysis of T requires estimation of integrals of matrix elements of unitary rep-
resentations of SL(2,C)-group. A brief introduction to harmonic analysis on SL(2,C)
based on [86] can be found in Appendix A.4. The estimation of the integrals was done
by applying the saddle point approximation method, generalised to integrands that do
not have the explicit form required in the classical version of the theorem.

This chapter is organised as follows. First, in section §6.1, we provide the formal
definition of LPP and we study some basic properties of it. Then, in section §6.2, we
present the key tool used in calculations, namely the generalised saddle point approxim-
ation method of estimating integrals. The section §6.3 shows how to apply each step of
section §6.2 to the integrand that we have in LPP. Finally, in section §6.4, we discuss the
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implications of obtained form of LPP on Dipole Cosmology model and on renormalization
of transition amplitude of an edge in spin-foam theories.

In order to keep the main text of the chapter clear and fluent, some strictly technical
details were skipped in sections 6.2 and 6.3 and moved to section §6.5. These are mostly
details concerning intermediate steps of derivations, which, though not mathematically
trivial, are not of key importance conceptually.

This chapter is Author’s own work. The results presented here are also described in
a paper of the Author [83].

6.1 Definition of Lorentzian Polyhedra Propagator

Let us start with the formal definition of the Lorentzian Polyhedra Propagator. All
the conventions about SU(2)- and SL(2,C)-tensors can be found in Appendix A.3 and
Appendix A.4 respectively.

For simplicity we do all the calculations for T acting on a tensor space Hj1⊗· · ·⊗HjN ,
however, there is a straightforward generalisation toHj1⊗· · ·⊗HjN⊗H?jN+1

⊗· · ·⊗H?jN+M
.

6.1.1 Definition

Given a node Hilbert space (see Appendix A.3.3.2) Hn = H~j = Hj1 ⊗ · · · ⊗ HjN for
N -tuple of spins jj , . . . , jN let us define an operator T : H~j → H~j by the formula

T :=

ˆ
SL(2,C)

dg Y †gY (6.4)

where Y is the Lorentzian EPRL map (see Appendix A.4.3) in the ~j-representation. In
the spin-z basis |~m〉~j = |m1, . . . ,mN 〉~j the matrix elements of T are

Tm1···mN
m′1···m′N

:= 〈~m|T |~m〉~j =

ˆ
SL(2,C)

dg

N∏
i=1

D(γji,ji)(g)jimi
jim′i

(6.5)

This operator is in fact build of the matrix-elements of the regularized Lorentzian
EPRL contractor of a θ-graph. Such graph can be interpreted as a part of an Operator
Spin-network Diagram and it leads to a spin-foam with an edge split by a vertex with
the Lorentzian EPRL amplitude (see figure 6.1)

Let us now study the basic properties of the T operator.

6.1.2 Domain and range

Recall that each element g ∈ SL(2,C) can be decomposed into g = k ·u, where u ∈ SU(2)
and k ∈ H3 (see Appendix A.4.1). Using the fact that SU(2)-elements commute with
Y -map, the T can be rewritten as

T =

ˆ
H3×SU(2)

dkdu Y †k · uY =

ˆ
H3

dk Y †k Y

ˆ
SU(2)

du u (6.6)

The same derivation works for inversed decomposition g = ũ · k̃:

T =

ˆ
SU(2)

du u

ˆ
H3

dk Y †k Y (6.7)
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Figure 6.1: The T-operator in context of spin-foam models. A fragment of a spin-foam
representing T : the edge with a vertex, the structure of the vertex is precisely θ -graph
labelled by a Lorentzian EPRL contractor.

Since in any unitary representation
´
SU(2) duu = P̂ Inv, we have T = Â · P̂ Inv = P̂ Inv · Â,

thus
T = Â · P̂ InvÂ (6.8)

for Â =
´
H3 dk Y †k Y . This implies that T|(

HInv
~j

)⊥ = 0 and it is enough to study

T : HInv
~j
→ HInv

~j
.

Given two invariant tensors ι, ι′ ∈ HInv
~j

we have

Tιι′ := 〈ι|T
∣∣ι′〉~j =

ˆ
SL(2,C)

dg 〈ι|Y †g Y
∣∣ι′〉~j (6.9)

Let us introduce a function Φι
ι′ (g) := 〈ι|Y †g Y |ι′〉~j , so that

Tιι′ =

ˆ
SL(2,C)

dgΦι
ι′ (g) (6.10)

In what follows we will study the integrand Φι
ι′ (g).

6.1.3 Symmetries

The EPRL map distinguishes one of SU(2) subgroups of SL(2,C), which commutes with
the Y operator (i.e. SL(2,C) ⊂ SU(2) 3 u→ uY |x〉j = Y u |x〉j - see Appendix A.4.3).
Such choice divides the invariant fields X ∈ sl(2,C) into generators of this distinguished
SU(2)-subgroup, which we shall call rotation generators Li, and their orthogonal com-
pletion, namely boost generators Ki. The group elements that can be generated by a
linear combination of only rotation generators eı̇~ω·~L and only boost generators eı̇~η· ~K will
be called pure rotations and pure boosts respectively.
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One can check, that the integrand Φι
ι′ (g) is invariant under pure rotations. Indeed,

given u ∈ SU(2) we have consider the right action of SU(2) on SL(2,C):

Φι
ι′ (g · u) = 〈ι|Y †g · uY

∣∣ι′〉 = 〈ι|Y †g Y u
∣∣ι′〉 (6.11)

and since ι′ is an invariant tensor, we have u |ι′〉 = |ι′〉, thus

Φι
ι′ (g · u) = Φι

ι′ (g) (6.12)

Analogous derivation goes for the left action, so:

Φι
ι′ (u · g) = Φι

ι′ (g) (6.13)

Thus, given a decomposition g = k · u for k ∈ H3 and u ∈ SU(2) the integrand depend
only on the pure boost:

Φι
ι′ (k · u) = Φι

ι′ (k) = Φι
ι′ (ũ · k) (6.14)

Let us now consider dependence of the integrand on the direction of the boost. Each
pure boost can be expressed as k(~η) = eı̇~η·

~K for ~η called the boost vector. Each boost
vector can be obtained by an appropriate pure rotation (called u~η) of the z-versor, such
that ~η· ~K

η = u†~ηK
3u~η (where η := |~η|). Thus each boost can be expressed as

k(~η) = eı̇~η·
~K = eı̇ηu

†
~η
K3u~η = u†~ηe

ı̇ηK3
u~η (6.15)

Combining (6.14) and (6.15) we get

Φι
ι′ (k (~η)) = Φι

ι′

(
eı̇ηK

3
)

(6.16)

so the integrand depend only on the length of the boost vector of the pure-boost-part of
its argument. Let us denote this dependence as

Φι
ι′ (η) := Φι

ι′

(
eı̇ηK

3
)

= 〈ι| eı̇ηK3 ∣∣ι′〉 (6.17)

6.1.3.1 Integral measure

In order to obtain Tιι′ the integrand Φι
ι′ (g) is integrated over the SL(2,C) group with

respect to the Haar measure. Since SL(2,C) is not compact, the measure is not defined
uniquely. All the calculation can be done for measure dg = c · dg for a positive constant
c, and appropriate rescaling of the result must be done. We pick the one used in [86] (see
also Appendix A.4.2.3), which ensures, that the measure induced on the SU(2)-subgroup
in the defining representation is normalized. Using the decomposition g = u · k the
measure dg factorises into dudk. The integral over SU(2) is trivial (see subsection 6.1.3)
and gives 1 (thanks to normalisation of Haar measure on a compact group), thus we are
left with

Tιι′ =

ˆ
H3

dk(~η) Φι
ι′(η) (6.18)

According to [86] the measure dk is

dk(~η) =
1

(4π)2 dφ(~η) sin θ(~η)dθ(~η) (sinh |~η|)2 d |~η| (6.19)

where φ(~η) and θ(~η) are the spherical angles of the direction of the boost vector.
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Let us now introduce a measure function that will simplify the expression. Let

µ (~x) :=

(
sinh |~x|
4π |~x|

)2

(6.20)

Obviously dk (~η) = µ (~η) d3~η . Plugging it into (6.18) and (6.19) we get

Tιι′ =

ˆ
R3

d3~η µ (|~η|) Φι
ι′ (|~η|) (6.21)

and this is the integral we will study in what follows.

6.1.4 Result

Before doing the calculation let us state the result.
We do not have the strict form of the T operator. The calculation is done in the first

order in 1
J -expansion, where J is the maximum of the spins j1, . . . , jN . The result is

T =

(
1

4π

)2(2π

J

) 3
2

[
3

(1 + γ2)
∑N

i=1 xi

] 3
2

1~j +O
(
J−

5
2

)
(6.22)

where γ is the Barbero-Imirzi parameter and xi := ji
J are numbers, that belong to the

interval ]0, 1], but cannot be considers small (at least one of them equals 1, and the sum
must be greater or equal 2).

6.2 Scheme of calculation - Generalised Saddle Point Ap-
proximation method

The operator T has a form of an integral over the SL(2,C) group. We will not do this
integral explicitly. We will find the leading order of the T operator using the saddle point
approximation (SPA) method [87].

The SPA theorem gives a tool to estimate integrals of the form

I (Λ) =

ˆ
dNx g(x)e−Λf(x) (6.23)

for large values of Λ as a power series in 1
Λ . The leading order is estimated by a Gaussian-

like integral around a critical point x0 of the exponent function f (x):

I (Λ) =

ˆ
dNx g(x)e−Λf(x) =

(
2π

Λ

)N
2

(∣∣∣∣∂2f

∂x2

∣∣∣∣
x0

)− 1
2

g(x0)e−Λf(x0)
(
1 +O

(
Λ−1

))
(6.24)

where
∣∣∣∂2f
∂x2

∣∣∣ is the determinant of the Hessian matrix of the function f(x). If the function
f has more than one critical point {x1, . . . , xk}, than the argument x0 that appear in
the formula (6.24) is the maximal critical point, i.e. such a point x0 ∈ {x1, . . . , xk} that
< (−f(x0)) is maximal (if there is more then one maximal critical point, than we sum
over them).

Several assumptions must be satisfied for the formula (6.24) to be valid. First of all
the function f(x) must be smooth and twice differentiable at the point x0. Moreover
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the integrand g(x)e−Λf(x) must vanish outside a compact region Ω ⊂ RN . (or decay
sufficiently fast with |~x| → ∞ – see subsection 6.2.2).

The integrand Φι
ι′ (g) for the Lorentzian EPRL amplitude does not satisfy assumptions

of the SPA theorem. It neither have form (6.23) nor is defined on a compact region.
However, we prove appropriate generalisation of the SPA theorem. The subsection 6.2.1
generalises the theorem for the functions that do not have the form (6.23), but satisfy
some other necessary conditions. The subsection 6.2.2 shows, how to generalize the
theorem for non-compact domain of integration.

Three further subsections discuss two more technical issues of the integration. The
subsection 6.2.3 shows, how does the calculation simplifies when the integrand is spher-
ically symmetric. The subsection 6.2.4 explain, how does the result change when an
integrand is multiplied by a measure function. Lastly the subsection 6.2.5 explains, how
to avoid looking for all critical point of a considered function.

The section §6.3 will be devoted to detailed study of our integrand Φι
ι′(g) showing

step by step, how to apply the generalised SPA method to it.

6.2.1 The Theorem

When considering the Euclidean EPRL model, the transition amplitudes factorises into
matrix elements of SU(2)-representations (see subsection 1.2.3.2), which can be expressed
in terms of combinations of spin 1

2 matrix elements (see Appendix A.86):

〈u|h
∣∣u′〉

j
= 〈↑|u−1hu′ |↑〉2j (6.25)

thus for large spins ji the largeness parameter J naturally appear in the exponent and
the integrals have the form (6.23) and one can apply the SPA theorem directly. For the
Lorentzian model this is not the case. We have to then extend the SPA theorem to the
integrands with more general form.

Consider a smooth function Φ : R+ × Ω→ C. Let us define

χ (Λ, x) := ln (Φ (Λ, x)) (6.26)

and let us assume, that χ has a simple pole of degree 1 in the first argument at Λ→∞.
The saddle point approximation theorem can be generalized so that it can be applied to
Φ being the integrand:

Theorem 6.1. Given a smooth function χ : R+ × Ω 3 (Λ, x) 7→ χ (Λ, x) ∈ C, (where
the compact set Ω ⊂ Rn contains a neighbourhood of 0) with a simple pole of degree 1 at
Λ→∞ and assuming, that

∀x 6=0,Λ∈R+ < (χ (Λ, x)) < 0 (6.27)
∀Λ∈R+ lim

x→∂Ω
< (χ (Λ, x)) = −∞ (6.28)

∀Λ∈R+ χ (Λ, 0) = 0 (6.29)

∀i=1,...,N lim
Λ→∞

1

Λ

∂χ (Λ, x)

∂xi

∣∣∣∣
x=0

= 0 (6.30)

∀i,j=1,...,N lim
Λ→∞

1

Λ
<
(
∂2χ (Λ, x)

∂xi∂xj

∣∣∣∣
x=0

)
= −Ciδij < 0 (6.31)

one has ˆ
Ω
eχ(Λ,x)dx =

1√
Λn

I (Λ) (6.32)

for a smooth function I
(

1
Λ

)
: [0,∞[→ C, such that I (0) =

√
(2π)n 1√

− det(∂2
xχ−1(0))

.
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The proof of the theorem can be found in Appendix B.2.
Having the above theorem let us define the exponent part of Φ as

φ(x) := lim
Λ→∞

1

Λ
log (Φ(Λ, x)) (6.33)

Let A := {x ∈ Ω : ∇φ (x) = 0}. Let the maximal critical point of φ (x), i.e. the point
xmax ∈ A such that < (φ (x)) is maximal among all the points x ∈ A. The integral of the
function Φ (Λ, x) over Ω can be then estimated by

ˆ
Ω

dNxΦ(Λ, x) =

(
2π

Λ

)N
2

(
∂2φ

∂x2

∣∣∣∣
xmax

)− 1
2

Φ(Λ, xmax)
(
1 +O

(
Λ−1

))
(6.34)

6.2.2 Noncompact integration range

The SPA theorem requires the integration range Ω to be compact and the the integrand
to vanish at ∂Ω. Nevertheless, under certain assumptions, one can generalise this theorem
to noncompact integration ranges.

Let us consider a noncompact Ω and assume that exists Λ0 such that for all Λ > Λ0

the following is true: for each ε > 0 exists a compact region Rε ⊂ Ω, such that
ˆ

Ω\Rε
dNx |Φ(Λ, x)| < ε (6.35)

and that Rε ⊂ Rε′ for ε > ε′. Then let us introduce for each ε another compact region
R̃ε, such that Rε ( R̃ε ⊂ Ω and a smooth function χε(x) such that

χε(x) =


1 x ∈ Rε
0 ≤ χε(x) ≤ 1 x ∈ R̃ε \Rε
0 x ∈ Ω \ R̃ε

(6.36)

Obviously
´

Ω\Rε dNx |χε(x)Φ(Λ, x)| < ε.
Let I(Λ) :=

´
Ω dNxΦ(Λ, x) and Iε(Λ) :=

´
Ω dNxχε(x)Φ(Λ, x). Obviously for all

Λ > Λ0 we have |I(Λ)− Iε(Λ)| < 2ε, thus function Iε(Λ) converges to I(Λ) uniformly
with respect to Λ. But each integral Iε(Λ) is in fact an integral over a compact region
R̃ε, so it can be calculated using the SPA method:

Iε(Λ) =

(
2π

Λ

)N
2

(∣∣∣∣∂2φ

∂x2

∣∣∣∣
xε

)− 1
2

Φ(Λ, xε)
(
1 +O

(
Λ−1

))
(6.37)

where xε is the maximal critical point of φ in the region Rε. For ε sufficiently small, for

example for ε < 1
Λ

(
2π
Λ

)N
2

(∣∣∣∂2φ
∂x2

∣∣∣
x0

)− 1
2

Φ(Λ, x0), the region Rε must contain the maximal

critical point of φ, so xε = xmax, thus the leading term does not depend on ε. So the
leading term of the function I(Λ) is the limit at ε → 0 of the leading terms of Iε(Λ).
Quod erat demonstrandum.

6.2.3 Case of spherically symmetric integrals

Consider now a spherically symmetric integrand Φ (Λ, ~x) = Φ (Λ, r), for r = |~x|, with the
maximal critical point at r = 0 (being in the interior of the region Ω). Then obviously
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φ (~x) is also a spherically symmetric function. This simplifies a lot calculation of the
Hessian matrix of the exponent part of the integrand.

The Hessian matrix of a spherically symmetric function φ is

∂2φ

∂xi∂xj
=

∂2r

∂xi∂xj
dφ

dr
+

∂r

∂xi
∂r

∂xj
d2φ

dr2
(6.38)

If r = 0 is the critical point, the differential dφ
dr

∣∣∣
r=0

= 0, thus the first term vanish.

Further simplification comes from the fact, that

1

2

∂2r2

∂xi∂xj
=

∂r

∂xi
∂r

∂xj
+ r

∂2r

∂xi∂xj
=

∂r

∂xi
∂r

∂xj
at r = 0 (6.39)

and since r2 =
∑(

xi
)2, we have

∂r

∂xi
∂r

∂xj
= δij at r = 0 (6.40)

Thus the Hessian matrix is

∂2φ

∂xi∂xj

∣∣∣∣
~x=0

=
d2φ

dr2

∣∣∣∣
r=0

δij (6.41)

And the Hessian determinant: ∣∣∣∣ ∂2φ

∂xi∂xj

∣∣∣∣
~x=0

=

∣∣∣∣d2φ

dr2

∣∣∣∣N
r=0

(6.42)

6.2.4 Multiplying of the integrand by a Λ-independent function

Consider now an integral of the form

Ĩ(Λ) :=

ˆ
Ω

dNxµ(~x)Φ(Λ, ~x) (6.43)

where µ(~x) is a nonvanishing function and Φ (Λ, ~x) satisfies the assumption of gener-
alised SPA. When using the SPA method, the integral Ĩ(Λ) can be easily related to
I(Λ) :=

´
Ω dNxΦ(Λ, x). Indeed, note, that presence of µ(~x) does not effect the exponent

part of the integrand:

φ̃(~x) = lim
Λ→∞

1

Λ
lnµ(~x) +

1

Λ
ln Φ(Λ, ~x) = 0 + lim

Λ→∞

1

Λ
ln Φ(Λ, ~x) = φ(~x) (6.44)

thus the maximal critical points of the exponent of the integrand does not know about
presence of µ(~x). So using the SPA we get

Ĩ(Λ) =

(
2π

Λ

)N
2

(
∂2φn

∂x2

∣∣∣∣
xmax

)− 1
2

µ(xmax)Φ(Λ, xmax)
(
1 +O

(
Λ−1

))
= µ(xmax)I(Λ)

(6.45)
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6.2.5 The role or the maximal critical point

Consider now an integrand Φ (Λ, x) such that

|Φ (Λ, x)| ≤ e−Λα(x) |Φ (Λ, x0)| (6.46)

where x0 is a critical point of the exponent part φ (x) and ∀x 6=x0α (x) > 0. Then x0 is
the maximal critical point of φ (x). Indeed, let us estimate the real part of φ (x) for any
other point:

< (φ (x)) = lim
Λ→∞

1

Λ
ln |Φ (Λ, x)|

< lim
Λ→∞

1

Λ
ln
(
e−Λα(x) |Φ (Λ, x0)|

)
(6.47)

= −α (x) + lim
Λ→∞

1

Λ
ln |Φ (Λ, x0)| = −α (x) + < (φ (x0))

and since (by assumption) α (x) > 0, obviously < (φ (x)) < < (φ (x0)).
This leads to a convenient conclusion: if one finds a point, such that (6.46) is satisfied,

the derivation (6.47) shows, that it provides maximum real value of the exponent part of
the integrand φ (x). It is thus enough to check, if it is a critical point of the exponent
part of the integrand. If it is, there is no need to look for any other critical point. If it is
not, the theorem cannot be applied (the integrand does not behave Gaussian-like around
the maximum point).

One can easily estimate the contribution from Gaussian-like integral I1 (Λ) around
any other critical point x1 of φ (x)

I1 (Λ) =

(
2π

Λ

)N
2

(∣∣∣∣∂2φn1

∂x2

∣∣∣∣
x1

)− 1
2

Φ (x1,Λ)
(
1 +O

(
Λ−1

))
= C (x1) Λ−

N
2 Φ (x1,Λ)

(
1 +O

(
Λ−1

))
(6.48)

Let I0 (Λ) = C (x0) Λ−
N
2 Φ (x0,Λ)

(
1 +O

(
Λ−1

))
. Then the modulus of I1 (Λ) is

|I1 (Λ)| = |C (x1)|Λ−
N
2 |Φ (x1,Λ)|

(
1 +O

(
Λ−1

))
≤ e−Λα(x1) |C (x1)|Λ−

N
2 |Φ (x0,Λ)|

(
1 +O

(
Λ−1

))
= e−Λα(x1) |C (x1)|

|C (x0)|
|I0 (Λ)|

(
1 +O

(
Λ−1

))
= |I0 (Λ)| ·O

(
e−Λα(x0)

)
(6.49)

so I1 (Λ) is exponentially suppressed.

6.3 Details of calculations

In previous section we developed the tools needed to integrate the matrix elements Φι
ι′ (g)

over SL(2,C). In this section we study properties of this particular integrand, that are
needed to apply the above methods.

As we have already mentioned (see subsection 6.1.3.1), the integral (6.10) can be
easily expressed as an integral over R3:

Tιι′ =

ˆ
R3

d3~η µ (~η) Φι
ι′ (~η) (6.50)
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where ι, ι′ ∈ inv (Hj1 ⊗ · · · ⊗ HjN ). The integrand is in fact a spherically symmetric
function dependent only on η := |~η|:

Φ̃(η) := µ(η)Φι
ι′(η) (6.51)

Our largeness parameter is J = max {ji}i=1,...,N . For later convenience we also introduce
the numbers xi := ji

J , which although being 0 ≤ xi ≤ 1, cannot be considered small
parameters.

This section is organised as follows. Firstly, in subsection 6.2.4, we identify the parts
dependent and independent on the largeness parameter in the integrand. We also fix some
notations used later on. Then, in subsection 6.3.2, we express the functions appearing in
the integrand in terms of hypergeometric functions. In subsection 6.3.3 we identify the
maximal critical point of the exponent part of the integrand. The subsection 6.3.4 shows
that despite noncompactness of the integration region we can apply the SPA method.
The subsection 6.3.5. Finally, the subsection 6.3.6 we collect all the results of this section
into the final form of the leading order of the T operator.

6.3.1 Decomposition into measure and exponent part

Recalling (6.51) the integrand is Φ̃(η) = µ(η)Φι
ι′(η) with

µ(η) =

(
sinh η

4πη

)2

Φι
ι′(η) = 〈ι|Y †eı̇ηK3

Y
∣∣ι′〉 (6.52)

Obviously the function µ(η) does not depend on the largeness parameter J . Thus, using
subsection 6.2.4, it is enough to find the critical points of Φι

ι′(η). From now on we will call
the function Φ̃(η) the full integrand, the function Φι

ι′(η) the integrand, and the function
µ(η) the measure part of the integrand or simply the measure.

In this section we will often go back to the |m〉j basis, thus let us introduce appropriate
notation:

Φι
ι′(η) =

∑
~m ~m′

〈ι| |~m〉~j
〈
~m′
∣∣∣ ∣∣ι′〉~j Φ~m

~m′
(η) (6.53)

where

Φ~m
~m′

(η) :=
N∏
i=1

〈mi|Y †eı̇ηK
3
Y
∣∣m′i〉ji (6.54)

Since
[
K3, L3

]
= 0, each term 〈mi|Y †eı̇ηK

3
Y |m′i〉ji is proportional to δmi,m′i , thus we

can define the function
f (j)
m (η) := 〈m|Y †eı̇ηK3

Y |m〉j (6.55)

such that

Φ~m
~m′

(η) =

N∏
i=1

δmi,m′if
(ji)
mi (η) (6.56)

Thanks to (6.56) it is now obvious, that in the basis |~m〉~j all the nondiagonal matrix
elements are precisely zero.

The exponent part of the integrand is

φιι′(η) = lim
J→∞

φιι′(η, J) := lim
J→∞

1

J
ln

[∑
~m

ι~mι
′
~me
∑N
i=1 ln f

(ji)
mi

(η)

]
(6.57)
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Because of the sum under the logarithm it is quite inconvenient object, thus most calcu-
lations we be done for the exponent part of the function Φ~m

~m′
(η), which is

φ~m(η) = lim
J→∞

φ~m(η, J) := lim
J→∞

1

J

N∑
i=1

ln f (ji)
mi (η) (6.58)

Note, that

φιι′(η, J) =
1

J
ln

[∑
~m

ι~mι
′
~me

Jφ~m(η,J)

]
(6.59)

6.3.2 Hypergeometric representation

Let us now focus on the function f (j)
m (η). According to [86] it can be written as

f (j)
m (η) = (2j + 1)

(
2j

j +m

)
e−(j+m+1)ηeı̇γjη (6.60)

·
ˆ 1

0
dt tj+m (1− t)j−m

[
1−

(
1− e−2η

)
t
]ı̇γj−(j+1)

(see also Appendix A.4.3). Recall now the integral definition of the Gauss’s hypergeo-
metric function [88]:

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0
dt tb−1 (1− t)c−b−1 (1− zt)−a (6.61)

Comparison of formulas (6.60) and (6.61) gives a conclusion, that

f (j)
m (η) = e−(j+m+1)ηeı̇jγη 2F1

(
j + 1− ı̇γj, j + 1 +m; 2j + 2; 1− e−2η

)
(6.62)

More detailed study of properties of functions f (j)
m (η) can be found in subsection 6.5.1.

6.3.3 Maximal critical point

To apply the SPA method we need to find the maximal critical point of φιι′(η). We will
find it as follows: first we will identify the only point such that if it were a critical point,
it would be relevant (i.e. was there any other critical point, it’s contribution would be
exponentially suppressed - see subsection 6.2.5), then we will check that the point we
found is actually a critical point.

6.3.3.1 Identification of the potentially maximal critical point.

The natural candidate for the maximal critical point is η = 0. Since f (j)
m (η)

∣∣∣
η=0

= 1 (see

(6.119)), it is obvious to find the value of the integrand

Φ~m
~m(0) = 1 so Φι

ι′ = 〈ι|
∣∣ι′〉 (6.63)

Now let us show, that η = 0 is the only critical point that counts, i.e. was there any
other critical point η1, The value of Φ~m

~m(η1) would be exponentially suppressed in large
J limit (see subsection 6.2.5). Indeed, one can estimate the modulus of f (j)

m (η) by

∣∣∣f (j)
m (η)

∣∣∣ ≤ (e1−2η−e−2η
) (j+1)2−m2

4(2j+3) (6.64)
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(see subsection 6.5.1.4) thus

∣∣∣Φ~m
~m(η1)

∣∣∣ ≤ (e1−2η1−e−2η1
)∑N

i=1

(ji+1)2−m2
i

4(2ji+3)
= [C(η1)]

∑N
i=1

(ji+1)2−m2
i

4(2ji+3) (6.65)

Now since

|Φι
ι′(η1)| =

∣∣∣∣∣∑
~m

Φ~m
~m(η1)ι~mι

′
~m

∣∣∣∣∣ ≤
∣∣∣∣∣∑
~m

∣∣∣Φ~m
~m(η1)

∣∣∣ ι~mι′~m
∣∣∣∣∣ (6.66)

we have

|Φι
ι′(η1)| ≤

∣∣∣∣∣∑
~m

[C(η1)]
∑N
i=1

(ji+1)2−m2
i

4(2ji+3) ι~mι
′
~m

∣∣∣∣∣ (6.67)

Now using the fact, that the states |ι〉 and |ι′〉 are SU(2)-gauge invariant we can apply
the lemma of subsection 6.5.2 to replace

∑N
i=1m

2
i by

∑N
i=1

ji(ji+1)
3 in the above formula

and obtain

|Φι
ι′(η1)| ≤

∣∣〈ι| ∣∣ι′〉∣∣ [C(η1)]
1
12

∑N
i=1 ji+1 =

∣∣〈ι| ∣∣ι′〉∣∣ [C(η1)]
1
12
J
∑N
i=1 xi+

1
J (6.68)

(see (6.175)). Adopting the above formula to the form of the condition (6.46):

|Φι
ι′(η1)| ≤ |Φι

ι′(0)| e−Jα̃(η1,J) (6.69)

where

α̃ (η, J) = −
∑N

i=1 xi + 1
J

12
ln [C(η)] (6.70)

Since ∀η1>0C(η1) < 1 (see subsection 6.5.3.1), the logarithm is always negative and thus
α̃ (η, J) is always positive. Although the obtained function α̃ depends on J , one can
find a weaker estimation independent on J , namely α (η) = −

∑N
i=1 xi
12 ln [C(η)]. Obviously

∀J>0α (η) < α̃ (η, J), and thus

∀η>0 |Φι
ι′(η)| ≤ |Φι

ι′(0)| e−Jα(η) (6.71)

so η = 0 is the point maximising the real part of exponent part of the integrand.

6.3.3.2 Smoothness check

Having proven that the maximal critical point of φιι′ is at η = 0 (if any), let us check,
whether the exponent part of the integrand is smooth at this point, i.e. if

dφι
ι′

dη

∣∣∣
η=0

= 0?

Using the property (6.59) we have

dφιι′

dη

∣∣∣∣
η=0

=

1
J

∑
~m ι~mι

′
~mJe

Jφ~m(η) dφ~m
dη

Φι
ι′(η)

∣∣∣∣∣
η=0

=
∑
~m

ι~mι
′
~m

〈ι| |ι′〉
dφ~m
dη

∣∣∣∣
η=0

(6.72)

We will show, that dφ~m
dη

∣∣∣
η=0

= 0 for all ~m.

Let us then calculate:

∂

∂η
φ~m(η, J) =

1

J

N∑
i=1

df
(ji)
mi
dη

f
(ji)
mi (η)

(6.73)
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Details of calculations can be found in subsection 6.5.1.2, the result is

∂

∂η
φ~m(η, J) =

1

J

[
N∑
i=1

−δi + 2
aibi
ci
e−2η 2F1

(
ai + 1, bi + 1; ci + 1; 1− e−2η

)
2F1 (ai, bi; ci; 1− e−2η)

]
(6.74)

with δi = δ := ji + 1 + mi − ı̇γji, ai = 1 + ji − ı̇γji, bi = 1 + ji + mi, ci = 2ji + 2. For
η = 0 all the hypergeometric functions value 1, and we are left with

∂

∂η
φ~m(η, J)

∣∣∣∣
η=0

= − 1

J

N∑
i=1

δi − 2
aibi
ci

(6.75)

using simple algebra (similarly to (6.132)) we can simplify it to:

∂

∂η
φ~m(η, J)

∣∣∣∣
η=0

= −ı̇γ
∑N

i=1mi

J
+O

(
J−1

)
(6.76)

Thanks to SU(2) invariance of the states we act on, the sum
∑N

i=0mi = 0. The second
term vanish when the limit J →∞ is taken. Thus for all ~m

d

dη
φ~m(η)

∣∣∣∣
η=0

= 0 (6.77)

so
dφιι′

dη

∣∣∣∣
η=0

= 0 (6.78)

so the exponent part of the integrand is appropriately smooth at η = 0 and thus η = 0
is the maximal critical point.

6.3.4 Asymptotics

As we have already shown in (6.68), the modulus of the integrand is bounded by

|Φι
ι′(η)| ≤

(
e1−2η−e−2η

) J
12

∑N
i=1 xi+

1
J (6.79)

Thus for arbitrary small ε one can find such an ηε that

∀J>1

∣∣∣∣ˆ ∞
ηε

dη µ(η)Φι
ι′(η)

∣∣∣∣ < ε (6.80)

Indeed, this integral can be estimated by∣∣∣∣ˆ ∞
ηε

dη µ(η)Φι
ι′(η)

∣∣∣∣ ≤ ˆ ∞
ηε

dη |µ(η)Φι
ι′(η)|

≤
ˆ ∞
ηε

dη

(
sinh η

4πη

)2 (
e1−2η−e−2η

) J
12

∑N
i=1(xi+

1
J )

(6.81)

≤ 1

2

(
e

4πηε

)2 (
e− e1−e−2ηε − e1−2ηε−e−2ηε

)
where the last inequality holds for J

12

∑N
i=1

(
xi + 1

J

)
> 3 (see subsection 6.5.3.2) - what

is for sure true for J > 36, and since we consider the large J limit, this condition holds
in the limit. As it is shown in subsection 6.5.3.2, the inequality

1

2

(
e

4πηε

)2 (
e− e1−e−2ηε − e1−2ηε−e−2ηε

)
< ε (6.82)

has always a solution. Thus the assumptions of the lemma of subsection 6.2.2 are satisfied,
so our integrand Φι

ι′ has proper asymptotic behaviour and the SPAmethod can be applied.
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6.3.5 Hessian matrix

Since the maximal critical point is η = 0, we need to know the Hessian determinant
∣∣∣∣∂2φι

ι′
∂~η2

∣∣∣∣
at this point (see (6.34)). Thanks to the spherical symmetry it equals∣∣∣∣∂2φι

ι′
∂~η2

∣∣∣∣
η=0

=

∣∣∣∣d2φι
ι′

dη2

∣∣∣∣3
η=0

(see subsection 6.2.3).

To calculate the second derivative of φιι′(η) we use the equation (6.72):

d2φιι′

dη2
=

d

dη

∑
~m ι~mι

′
~me

Jφ~m(η) dφ~m
dη

Φι
ι′(η)

=
∑
~m

ι~mι
′
~me

Jφ~m(η)

Φι
ι′(η)

d2φ~m
dη2

−
dΦι

ι′

dη

∑
~m

ι~mι
′
~me

Jφ~m(η)[
Φι
ι′(η)

]2 dφ~m
dη

(6.83)

The second term in above formula vanishes at η = 0. Indeed, in subsection 6.3.3.2
we have checked, that ∀~m dφ~m

dη

∣∣∣
η=0

= 0 up to O
(
J−1

)
corrections. Thus noting, that

Φι
ι′(0) = 〈ι| |ι′〉 and φ~m(0) = 0, we have

d2φιι′

dη2

∣∣∣∣
η=0

=
1

〈ι| |ι′〉
∑
~m

ι~mι
′
~m

d2φ~m
dη2

∣∣∣∣
η=0

(6.84)

Let us then analyse d2φ~m
dη2

∣∣∣
η=0

. Obviously it decomposes into a sum

d2φ~m
dη2

∣∣∣∣
η=0

=
N∑
i=1

1

J

d2 ln
[
f

(ji)
mi

]
dη2

∣∣∣∣∣∣
η=0

(6.85)

Using the calculations of subsection 6.5.1.3 we get (up to 1
J corrections)

d2 ln
[
f

(ji)
mi

]
dη2

∣∣∣∣∣∣
η=0

= −
(
1 + γ2

) (ji + 1)2 −m2
i

(2ji + 3)

(
1 +O

(
J−1

))
(6.86)

so (neglecting the O
(
J−1

)
terms)

d2φ~m
dη2

∣∣∣∣
η=0

= −1 + γ2

J

N∑
i=1

(ji + 1)2 −m2
i

(2ji + 3)
(6.87)

Now recalling (6.84) we have

d2φιι′

dη2

∣∣∣∣
η=0

=
1

〈ι| |ι′〉
∑
~m

[
ι~mι
′
~m

(
−1 + γ2

J

) N∑
i=1

(ji + 1)2 −m2
i

(2ji + 3)

]
(6.88)

Thanks to SU(2) symmetry we may use the lemma of subsection 6.5.2 and substitute
each term m2

i by ji(ji+1)
3 (see (6.176)). Then we get

d2φιι′

dη2

∣∣∣∣
η=0

= −1 + γ2

J

∑
~m ι~mι

′
~m

〈ι| |ι′〉

N∑
i=1

(ji + 1)

3
(6.89)
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The ι-dependent factor cancels out, because
∑

~m ι~mι
′
~m = 〈ι| |ι′〉:

d2φιι′

dη2

∣∣∣∣
η=0

= −1 + γ2

3

(
N∑
i=1

xi +
1

J

)
(6.90)

Neglecting the 1
J -order terms simplify the formula a lot and gives

d2φιι′

dη2

∣∣∣∣
η=0

= −1 + γ2

3

N∑
i=1

xi (6.91)

So the Hessian determinant is∣∣∣∣∂2φιι′

∂~η2

∣∣∣∣
η=0

=

[
1 + γ2

3

N∑
i=1

xi

]3

(6.92)

6.3.6 Results and overall factors

Let us summarise all the calculations done above. The Lorentzian Polyhedra Propagator
T is given by the integral

Tιι′ =

ˆ
R3

d3~η µ(η)Φι
ι′(η) (6.93)

For J � 1 it can by approximated by the value of an integrand at η = 0 and the Hessian
matrix of the exponent part of the integrand at this point:

Tιι′ =

(
2π

J

) 3
2
∣∣∣∣∂2φ

∂~η2

∣∣∣∣−
1
2

η=0

µ(0)Φι
ι′(0)

(
1 +O

(
J−1

))
(6.94)

Noting that µ(0) =
(

1
4π

)2, Φι
ι′(0) =

∑
~m, ~m′

ι~mι ~m′δ~m, ~m′ = 〈ι| |ι′〉, taking the value of∣∣∣∂2φ
∂~η2

∣∣∣
η=0

from (6.92) and neglecting 1
J corrections we get

Tιι′ =

(
1

4π

)2(2π

J

) 3
2

[
3

(1 + γ2)
∑N

i=1 xi

] 3
2

〈ι|
∣∣ι′〉 (6.95)

This means that the leading order of T is proportional to the identity:

T =

(
1

4π

)2(2π

J

) 3
2

[
3

(1 + γ2)
∑N

i=1 xi

] 3
2

1~j (6.96)

The proportionality factor will be denoted

α (xi) :=

(
1

4π

)2
[

6π

(1 + γ2)
∑N

i=1 xi

] 3
2

(6.97)

so that
T = α (xi) J

− 3
21~j (6.98)

One can easily check, that ‖T‖ < 1. Indeed, the factor α (xi) <
0.52

((1+γ2)
∑N
i=1 xi)

3/2 is

less then 1, because 1 + γ2 ≥ 1 and
∑N

i=1 x1 ≥ 2. Moreover, by assumption J � 1.
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The higher order terms of T have not been studied yet, but we have already found
(see (6.56)), that in the spin-z basis |~m〉~j only the diagonal terms are nonzero:

T~m
~m′

=

(
1

4π

)2
[ 6π

J (1 + γ2)
∑N

i=1 xi

] 3
2

+

(
1

J

) 5
2

T~m

 δ ~m~m′ (6.99)

6.4 Application of Lorentzian Polyhedra Propagator

The operator T obtained above can be applied in some explicit calculations of spin-foam
theory. The very simple form of its leading order, i.e. fact, that it is proportional to
identity, simplifies some calculations a lot. In this section we will list few of applications
that we considered.

First in subsection 6.4.1 we discuss the applications in the transition amplitude of
the Dipole Cosmology model. In subsection 6.4.2 we discuss the input of T operator on
the radiative correction caused by the melonic bubble (studied by Aldo Riello in [78],
recalled in subsection 2.3.2.1). Finally, in subsection 6.4.3, we make an attempt to study
the issue of renormalization of edge-amplitude in spin-foam models.

6.4.1 Dipole Cosmology

As it was calculated in [57, 58] and recalled in section §2.2 and subsection 4.5.1, the
transition amplitude of the Dipole Cosmology model is given by

W (z) =
∑
{j`}

4∏
`=1

(2j` + 1) e−2t~j`(j`+1)−ı̇zj`
ˆ
SL(2,C)

dg

4∏
`=1

〈j`|u†~n`Y
†g Y u ~n′`

|j`〉j`

=
∑
{j`}

4∏
`=1

(2j` + 1) e−2t~j`(j`+1)−ı̇zj` 〈ι|T
∣∣ι′〉 (6.100)

with ι(
′) :=

ˆ
SU(2)

du

4∏
`=1

u · u ~n(′) |j`〉

Our calculations influence only the term 〈ι|T |ι′〉. Authors of [57, 58] assume that this
term behaves like Ñ0

j30
(with j0 = =z

4t~ and Ñ0 being a constant for a given graph). The
direct formula for the Lorentzian Polyhedra propagator shows, that it is

〈ι|T
∣∣ι′〉 = α (xi) · J−

3
2 〈ι|

∣∣ι′〉 (6.101)

where the factor

α (xi) = α0

(
4∑4
i=1 xi

) 3
2

=: α0ξ (xi) (6.102)

depend on ratios of spins xi = ji
J , but it does not scale with J . The coherent SU(2)-

intertwiner have norm squared scaling as j−
3
2 (see [63]), thus the overall scaling of 〈ι|T |ι′〉

is N · j−3, as expected. So taking into account the direct calculation of the Lorentzian
Polyhedra Propagator, the Dipole Cosmology transition amplitude reproduce the original
DC formula of [55, 57, 58]:

W (z) =
∑
{j`}

N (xi)

j3
0

4∏
`=1

(2j` + 1) e−2t~j`(j`+1)−ı̇λv0j
3
2
` −ı̇zj` (6.103)

178



(a) (b)

Figure 6.2: A 2-vertex contribution to Dipole Cosmology transition amplitude. (a) - The
graph diagram representing the interaction vertices of the process. (b) - The spin-foam
of the process.

with a minor correction: the graph-shape dependent factor N now depends also on the
ratios of spins.

Using the same summation technique, as in [55], (i.e. summing by integrating the
Gaussian integrals, see also subsection 2.2.1) one obtains a similar result

W (z) =
N (xi)

j3
0

(
2j0

√
π

t
e−

z2

8t~

)4

= N (xi) ze
− z2

2t~ (6.104)

where (likewise in (6.102)) the normalisation factor N (xi) = N0ξ (xi) for N0 being the
normalisation factor of the original SC The original DC transition amplitude (see (2.23))
can be obtained by setting all parameters xi = 1.

It is important to notice, that the factor ξ (xi) varies from ξ (xi) = 1 for all spins
being equals to ξ (xi) = 2

√
2 for a degenerate configuration (for example j1 = j2 and

j3 = j4 = 0). Thus it does not influence the exponential behaviour of the total amplitude.

Simple 2-vertex Dipole Cosmology The fact that the T-operator is proportional to
identity allows to calculate the contribution of one of 2-vertex terms to Dipole Cosmology
transition amplitude.

Consider a diagram presented at figure 6.2a. It is equivalent to the spin-foam presen-
ted at figure 6.2b, with eight rectangular faces and one internal edge connecting two
interaction vertices. Recalling the form of the boundary state (subsection 2.2.1.2) and
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the Feynman-EPRL rules (section §4.3), the transition amplitude of such process is:

W (2v) (zin, zout) =
∑
{j`}

∏
`

(2j` + 1) e−2t~j`(j`+1)−ı̇z`j`

·
ˆ
SL(2,C)6−2

(dgNdgN ′dgN ′′dgSdgS′dgS′′)
′′

(6.105)

·
4∏
`=1

〈j`|u†~n`Y
†g−1
N gN ′′ Y Y

†g−1
S′′ gSu ~n′`

|j`〉j`

·
8∏
`=5

〈j`|u†~n`Y
†g−1
N ′ gN ′′ Y Y

†g−1
S′′ gS′u ~n′`

|j`〉j`

where by
´
SL(2,C)6−2 (dgNdgN ′dgN ′′dgSdgS′dgS′′)

′′
we mean, that two of the integrals

are dropped (thanks to the property recalled in subsection 1.2.3.3), and z` = zin for
` = 1, . . . , 4 and z` = zout for ` = 5, . . . , 8 (similarly to subsection 2.2.1.4 we omit the face
amplitudes). Note, that the only terms that prevent the formula from the factorization
on in and out parts are the gN ′′ and gS′′ group elements. Thus, using the regularization
(see [46, 50] or subsection 1.2.3.3), we can choose to drop these two group elements,
obtaining

W (2v) (zin, zout) = W (2v) (zin)W (2v) (zout) (6.106)

for

W (2v) (zin) =
∑
{j`}

∏
`

(2j` + 1) e−2t~j`(j`+1)−ı̇zj` (6.107)

·
ˆ
SL(2,C)2

dgNdgS

4∏
`=1

〈j`|u†~n`Y
†g−1
N Y Y †gSu ~n′`

|j`〉j`

Comparing it with (6.100) we can write, that

W (2v) (z) =
∑
{j`}

4∏
`=1

(2j` + 1) e−2t~j`(j`+1)−ı̇λv0j
3
2
` −ı̇zj` 〈ι|T2

∣∣ι′〉 (6.108)

and recalling (6.98) we get

〈ι|T2
∣∣ι′〉 = α2 (xi) · J−3 〈ι|

∣∣ι′〉 = α (xi) J
− 3

2 〈ι|T
∣∣ι′〉 (6.109)

so
W (2v) (z) = α (xi) j

− 3
2

0 W (z) (6.110)

and we conclude, that the correction coming from this particular 2-vertex contribution
to Dipole Cosmology transition amplitude is proportional to the original amplitude and
is negligible in large j limit.

6.4.2 Bubble Divergence

As it was proven in [78] and recalled in subsection 2.3.2.1, the radiative correction to the
spin-foam edge coming from the melonic bubble (see figure 6.3) is proportional to the T2

operator. To be precise, given a cutoff Λ on the internal spins of the bubble, the leading
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Figure 6.3: Since the T operator represents a single EPRL vertex on an edge, and the
identity operator represents a single edge, the melonic bubble regularised in [78] can be
regularised one step further, as it is shown above.

order of the transition amplitudes are proportional to matrix elements of the following
operator

WΛ
M ∼WΛ := ln (Λ) · T2 (6.111)

Our calculation shows, that in large J limit (with J being the maximal spin of the
external faces of the bubble) up to 1

J corrections this radiatively-corrected edge operator
is proportional to the identity with the constant dependent on Λ and J :

WΛ
ι,ι′ = ln Λ ·

(
1

J

)3

· 27

32π

[
1

(1 + γ2)
∑N

i=1 xi

]3

δι,ι′ (6.112)

The proportionality factor we will call a (J,Λ):

a (J,Λ) := ln Λ ·
(

1

J

)3

· 27

32π

[
1

(1 + γ2)
∑N

i=1 xi

]3

(6.113)

we will use it in the next subsection in the edge renormalization problem.
Note that since Λ is the maximum spin appearing in the bubble causing infinity,

whereas J is the maximum spin appearing on the external faces, so they cannot be
identified. To make the formula (6.112) correct we have to assume 1� J � Λ.

6.4.3 Edge renormalization

Consider now a series of spin-foams (κn)n=0,1,... such that they differ only by a number of
vertices on one selected edge e, i.e. κn has precisely n EPRL vertices on e (see figure 6.4).
Then the spin-foam operator related to κn is

Wκn = Wκ0 · Tn (6.114)

As we have mentioned in subsection 6.3.6, ‖T‖ < 1. Thus we can sum the series of Wκn

to

WR
κn =

∞∑
n=0

Wκn = Wκ0

1

1− T
= Wκ0

1

1− α (xi) J−3/2
(6.115)

The same procedure can be done for a series of spin-foams κ̃n that differ by a number
of melonic bubbles on a 4-valent edge (see figure 6.5). Then, using the results of previous
subsection (and assuming WΛ

M = C ·WΛfor some constant C) we have

Wκ̃n = Wκ̃0 ·
(
C · ln Λ · T2

)n
= Wκ̃0 · (C · a (J,Λ))n (6.116)
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Figure 6.4: A series of spin-foams (κn)n=0,1,.... For each foam only a fragment containing
the considered edge e is presented.

Figure 6.5: A series of spin-foams (κn)n=0,1,.... For each foam only a fragment containing
the considered edge e is presented.

We can write a formal sum of the power series:

WR,bubble
κ̃n

=

∞∑
n=0

Wκ̃n ” = Wκ̃0

1

1− C · a (J,Λ)
” (6.117)

which equals to the actual sum if the series is convergent, thus if C · a (J,Λ) < 1.
Let us now study the factor a (J,Λ). Thanks to the logarithmic dependence on the

cut-off it takes relatively small values even for huge values of the cut-off. Assume for a
moment, that the maximum internal spin Λ is the inverse cosmological constant expressed
in Plan units, i.e. that Λ = 10120 (such choice is justifies for example in [78]), Then we
get an upper bound for a, namely

a (J,Λ) <
9.28

J3
(6.118)

thus for each reasonable value of the proportionality constant C there is a scale J such
that C · a (J,Λ)|Λ=10120 < 1 and the sum (6.117) converges. If C = 1, this condition is
satisfied even for J ≥ 21

2 (note, that our approximations were made in large J limit, so
they do not apply for J ≤ 2 and it is possible, that the sum (6.117) with C = 1 converges
for all Js).
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Note, that the formula (6.115) is valid for edges with arbitrary valency. In contrast,
the derivation concerning bubbles is based on the calculation of [78], that was done only
for a 4-edge bubble on a 4-valent edge. In order to derive a formula similar to (6.117) for
other types of edges and bubbles one has to calculate first the divergent parts of these
bubbles.

6.5 Technical issues

In this section there one can intermediate steps of the calculations done above (mainly
in section §6.3).

In subsection 6.5.1 we study the properties of the functions f (j)
m (η) (introduced in sub-

section 6.3.1). Subsection 6.5.2 states and proves the theorem about functions dependent
on squared magnetic momentum number used to simplify lots of formulae. Finally the
subsection 6.5.3 contains proves of some estimations done in the main text of the chapter.

6.5.1 Some properties of f (j)
m (η) function

This subsection is devoted to the function f (j)
m (η). First we study some basic symmetries

of f (j)
m (η). Then we calculate it’s derivatives. Finally we prove it decays exponentially

in η.
Before doing so let recall some definitions and fix some notations.
The f (j)

m (η) functions are very closely related to Gauss hypergeometric function. Let
us recall the definition of 2F1 in both series and integral representation [88]:

2F1 (a, b; c; z) : =
∞∑
k=0

akbk

ckk!
zk =

Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0
dt tb−1 (1− t)c−b−1 (1− zt)−a

(6.119)

where

xk :=

k−1∏
n=0

(x+ n) (6.120)

Note that the if all arguments a, b, c > 0 and 0 ≤ z < 1, then the series is sum of real
positive numbers, thus in this case 2F1 (a, b; c; z) ≥ 0.

The function f (j)
m (η):

f (j)
m (η) = e−(j+1+m−ı̇γj)η

2F1

(
j + 1− ı̇jγ, j + 1 +m; 2j + 2; 1− e−2η

)
(6.121)

Let us define another function, g(j)
m (η), by setting γ = 0 in the above formula:

g(j)
m (η) = e−(j+1+m)η

2F1

(
j + 1, j + 1 +m; 2j + 2; 1− e−2η

)
(6.122)

One can easily see, that g(j)
m (η) ≥ 0. Indeed, all the parameters of 2F1 function are

positive and z (η) = 1− e−2η < 1.
In this subsection it is convenient to consider f (j)

m and g(j)
m as functions of z(η):

f (j)
m (η) = (1− z)

(j+1+m−ı̇γj)
2 2F1 (j + 1− ı̇jγ, j + 1 +m; 2j + 2; z) (6.123)

We will also use a following shortcut notation:

J := j + 1 G := γj (6.124)
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a := J − ı̇G b := J +m c := 2J δ := J +m− ı̇G (6.125)

thus
f (j)
m (η) = (1− z)

δ
2 2F1 (a, b; c; z) (6.126)

in case of g(j)
m (η) it is convenient to use also ã := J , so

g(j)
m (η) = (1− z)

b
2 2F1 (ã, b; c; z) (6.127)

6.5.1.1 Mirror symmetry: f (j)
m (z) = f

(j)
−m(z)

Let us use the symmetry of 2F1 function:

2F1 (a, b; c; z) = (1− z)c−a−b 2F1 (c− a, c− b; c; z) (6.128)

and the mirror symmetry 2F1

(
a, b; c; z

)
= 2F1 (a, b; c; z) to relate f (j)

m (z) with f (j)
−m(z).

In our case c − a = J + ı̇G = a and c − b = J −m, and c − a − b = −m + ı̇G, thus for
0 ≤ z < 1 we have

f (j)
m (z) = (1− z)

δ
2 2F1 (J − ı̇G, J +m; 2J ; z)

= (1− z)
J+m−ı̇G

2 (1− z)−m−ı̇G 2F1 (J + ı̇G, J −m; 2J ; z)

= (1− z)
J−m+ı̇G

2 2F1 (J + ı̇G, J −m; 2J ; z) (6.129)

= (1− z)
J−m−ı̇G

2 2F1 (J − ı̇G, J −m; 2J ; z) = f
(j)
−m(z)

Obviously the same calculation show that g(j)
m (z) = g

(j)
−m(z).

6.5.1.2 First derivative of f (j)
m (z(η))

Let us now calculate the first derivative of f (j)
m and g

(j)
m with respect to η. Using

∂z 2F1 (a, b; c; z) = ab
c 2F1 (a+ 1, b+ 1; c+ 1; z) we get:

df
(j)
m (z(η))

dη
= −δe−δη 2F1 (a, b; c; z) (6.130)

+e−δη
dz(η)

dη

ab

c
2F1 (a+ 1, b+ 1; c+ 1; z)

using (6.125) and z = 1−e−2η we get dz
dη = 2e−2η = 2(1−z), abc = (J−ı̇G)(J+m)

2J = δ
2−

ı̇Gm
2J

so

df
(j)
m (z(η))

dη
= −δe−δη 2F1 (a, b; c; z) (6.131)

+e−(δ+2)η

(
δ − ı̇Gm

J

)
2F1 (a+ 1, b+ 1; c+ 1; z)

At η = 0 we use z(0) = 0 and 2F1 (a, b; c; 0) = 1 to obtain

df
(j)
m (η)

dη

∣∣∣∣∣
η=0

= −δ + δ − ı̇Gm

J
= − ı̇Gm

J
= −ı̇ γjm

j + 1
= −ı̇m

(
1 +O

(
j−1
))

(6.132)
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To find the derivative of g(j)
m (η) we just set G = 0 in the above formulae and get

dg
(j)
m (z(η))

dη
= −δe−δη 2F1 (a, b; c; z) + δe−(δ+2)η

2F1 (a+ 1, b+ 1; c+ 1; z)

= −δe−δη [ 2F1 (a, b; c; z)− (1− z) 2F1 (a+ 1, b+ 1; c+ 1; z)]

(6.133)

We can simplify the hypergeometric term using the series expansion:

2F1 (a, b; c; z)− (1− z) 2F1 (a+ 1, b+ 1; c+ 1; z) =

= 1 +

∞∑
k=1

akbk

ckk!
zk − 1−

∞∑
k=1

(a+ 1)k(b+ 1)k

(c+ 1)kk!
zk +

∞∑
k=1

(a+ 1)k−1(b+ 1)k−1

(c+ 1)k−1(k − 1)!
zk

=

∞∑
k=1

akbk

ckk!
zk
[
1− (a+ k)(b+ k)c

ab(c+ k)
+
ck

ab

]

=

∞∑
k=1

akbk

ckk!
zk
abc+ abk − abc− akc− bkc− ck2 + c2k + ck2

ab(c+ k)
(6.134)

=

∞∑
k=1

akbk

ckk!
zk

(c− a)(c− b)k
ab(c+ k)

= z
(c− a)(c− b)
c(c+ 1)

∞∑
k=1

(a+ 1)k−1(b+ 1)k−1

(c+ 2)k−1(k − 1)!
zk−1

= z
(c− a)(c− b)
c(c+ 1)

∞∑
k=1

(a+ 1)k(b+ 1)k

(c+ 2)kk!
zk

= z
(c− a) (c− b)
c (c+ 1)

2F1 (a+ 1, b+ 1; c+ 2; z)

so

dg
(j)
m (z(η))

dη
= −δe−δηz(η)

(c− a) (c− b)
c (c+ 1)

2F1 (a+ 1, b+ 1; c+ 2; z(η)) (6.135)

what we will need in (6.5.1.4).

6.5.1.3 Second derivative of f (j)
m (z(η)) and ln

[
f

(j)
m (z(η))

]
at η = 0

In subsection 6.3.5 we need to know d2

dη2 ln
[
f

(j)
m (z(η))

]
at η = 0.

Let us first calculate d2f
(j)
m (z(η))
dη2 . By differentiating the equation (6.131) and recalling,

that
(
δ − ı̇Gm

J

)
= 2abc we get

d2f
(j)
m (z(η))

dη2
= −δ

[
−δe−δη 2F1 (a, b; c; z(η)) + 2

ab

c
e−(δ+2)η

2F1 (a+ 1, b+ 1; c+ 1; z(η))

]
− (δ + 2) 2

ab

c
e−(δ+2)η

2F1 (a+ 1, b+ 1; c+ 1; z(η)) (6.136)

+2
ab

c

(a+ 1) (b+ 1)

(c+ 1)

dz(η)

dη
e−(δ+2)η

2F1 (a+ 2, b+ 2; c+ 2; z(η))
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Fortunately we do not need to know the second derivative for all η, it is enough to find
its value at η = 0, where z(0) = 0 and 2F1 (a, b; c; 0) = 1, so the formula simplifies:

d2f
(j)
m (z(η))

dη2

∣∣∣∣∣
η=0

= −δ
[
−δ + 2

ab

c

]
− (δ + 2) 2

ab

c
+ 4

ab

c

(a+ 1) (b+ 1)

(c+ 1)
(6.137)

Now using (6.125) one get

d2f
(j)
m (z(η))

dη2

∣∣∣∣∣
η=0

= 4

[
δ2

4
− abδ

c
− ab

c
+
ab

c

(a+ 1) (b+ 1)

(c+ 1)

]
(6.138)

We are interested in the second differential of ln
[
f

(j)
m (z(η))

]
. Using the identity

d2 ln f(x)

dx2
=
f ′′(x)f(x)− [f ′(x)]2

[f(x)]2
(6.139)

and the fact, that f (j)
m (z(0)) = 1 we have

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣∣
η=0

=
d2f

(j)
m (z(η))

dη2

∣∣∣∣∣
η=0

−

 df
(j)
m (z(η))

dη

∣∣∣∣∣
η=0

2

(6.140)

putting here the expressions (6.131) and (6.138) we get

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣∣
η=0

= 4

[
δ2

4
− abδ

c
− ab

c
+
ab

c

(a+ 1) (b+ 1)

(c+ 1)

]
−
[
−δ + 2

ab

c

]2

= δ2 − 4
abδ

c
− 4

ab

c
+ 4

ab

c

(a+ 1) (b+ 1)

(c+ 1)
− δ2 + 4

abδ

c
− 4

(
ab

c

)2

= 4
ab

c

[
−1− ab

c
+

(a+ 1) (b+ 1)

(c+ 1)

]
= 4

ab

c
· −c

2 − c− abc− ab+ abc+ ac+ bc+ c

c (c+ 1)
(6.141)

= −4
ab

c

(c− a) (c− b)
c (c+ 1)

= −4
a (c− a) · b (c− b)

c2 (c+ 1)

Now using (6.125) we have

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣∣
η=0

= −4

(
J2 +G2

) (
J2 −m2

)
4J2 (2J + 1)

= −
(

1 +
G2

J2

)
J2 −m2

(2J + 1)
(6.142)

and using (6.124)

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣∣
η=0

= −

(
1 +

(
γj

j + 1

)2
)

(j + 1)2 −m2

(2j + 3)
(6.143)
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Since γj
j+1 = γ

(
1 +O

(
j−1
))
, the leading order of

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣
η=0

is

d2 ln
[
f

(j)
m (z(η))

]
dη2

∣∣∣∣∣∣
η=0

= −
(
1 + γ2

) (j + 1)2 −m2

(2j + 3)

(
1 +O

(
j−1
))

(6.144)

The term dependent on m can be further simplified - see subsection 6.5.2.

6.5.1.4 Estimations

It is easy to see, that |
∣∣∣f (j)
m (η)

∣∣∣ ≤ g
(j)
m (η). Indeed, taking the integral representation of

2F1 we see, that∣∣∣f (j)
m (z(η))

∣∣∣ =

∣∣∣∣∣e−(j+1+m−ı̇γj)η (2j + 1)!

(j +m)!(j −m)!

ˆ 1

0
dt

tj+m (1− t)j−m

[1− (1− e−2η) t](j+1)−ı̇γj

∣∣∣∣∣
= e−(j+1+m)η (2j + 1)!

(j +m)!(j −m)!

∣∣∣∣∣
ˆ 1

0
dt

tj+m (1− t)j−m

[1− (1− e−2η) t](j+1)−ı̇γj

∣∣∣∣∣
≤ e−(j+1+m)η (2j + 1)!

(j +m)!(j −m)!

ˆ 1

0
dt

∣∣∣∣∣ tj+m (1− t)j−m

[1− (1− e−2η) t](j+1)−ı̇γj

∣∣∣∣∣
= e−(j+1+m)η (2j + 1)!

(j +m)!(j −m)!
(6.145)

·
ˆ 1

0
dt tj+m (1− t)j−m

[
1−

(
1− e−2η

)
t
]−(j+1)

= e−(j+1+m)η
2F1

(
j + 1, j + 1 +m; 2j + 2; 1− 2−2η

)
= g(j)

m (z(η))

Let us now estimate g(j)
m (η) from above and from below.

To estimate g(j)
m we will estimate it’s derivative. We will consider bounds of

dg
(j)
m

dη

g
(j)
m

:

dg
(j)
m

dη (z(η))

g
(j)
m

= −(J +m)(J −m)

2(2J + 1)

z 2F1 (J + 1, J +m+ 1; 2 (J + 1) ; z)

2F1 (J, J +m; 2J ; z)
(6.146)

To simplify the formulae let us introduce a constant ω := (J+m)(J−m)
2(2J+1) = b(c−b)

2(c+1) .

Estimation of g(j)
m (z) from above One can easily see, that for nonnegative a, b, c, for

0 ≤ z < 1 and for c = 2a and b ≤ c the following inequality holds

2F1 (a, b; c; z) ≤ 2F1 (a+ 1, b+ 1; c+ 2; z) (6.147)

Indeed, using the series representation we can compare each term, obtaining:

1 = 1 (k = 0)

ab

2a
<

(a+ 1)(b+ 1)

2a+ 2
(k = 1) (6.148)

ab

(2a)(2a+ 1)
<

(a+ k)(b+ k)

(2a+ k)(2a+ k + 1)
(k ≥ 2)
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where the last inequality is equivalent to

0 < k2 (4a+ 2− b) + k
(
4a2 + 2a+ b

)
(6.149)

which is satisfied for our assumptions. Thus z 2F1(J+1, J+m+1; 2J+2; z)

2F1(J, J+m; 2J ; z) ≥ z, so

dg
(j)
m

dη (z(η))

g
(j)
m

≤ −(J +m)(J −m)

2(2J + 1)
z(η) = −ω

(
1− e−2η

)
(6.150)

Integrating the above equations one gets

ln
(
g(j)
m

)∣∣∣η
0
≤ ω

2
− ωη − ω

2
e−2η (6.151)

so we have the upper bound:

g(j)
m (z(η)) ≤

[
e1−e−2η−2η

] (J+m)(J−m)
4(2J+1) (6.152)

and replacing J by j + 1 (see (6.124))

g(j)
m (z(η)) ≤

[
e1−e−2η−2η

] (j+1+m)(j+1−m)
4(2j+3) (6.153)

Estimation of g(j)
m (z) from below To find the lower bound of (6.146) let us show,

that under even weaker assumptions (i.e. a, b, c ≥ 0 and 0 ≤ z < 1) the following is true:

∃α>0α 2F1 (a, b; c; z) ≥ z 2F1 (a+ 1, b+ 1; c+ 2; z) (6.154)

Let us introduce an auxiliary quantityAα := α 2F1 (a, b; c; z)−z 2F1 (a+ 1, b+ 1; c+ 2; z)
and use the series expansion of the hypergeometric functions:

Aα = α+ α
∞∑
k=1

akbk

ckk!
zk −

∞∑
k=1

(a+ 1)k−1 (b+ 1)k−1

(c+ 2)k−1 (k − 1)!
zk

= α+
∞∑
k=1

akbk

ckk!
zk
(
α− c(c+ 1)k

ab(c+ k)

)

= α+
∞∑
k=1

akbk

ckk!
zk
(
αabc+ αabk − c(c+ 1)k

ab(c+ k)

)
(6.155)

= α+ α
∞∑
k=1

akbk

(c+ 1)k k!
zk +

(αab− c(c+ 1))

c(c+ 1)

∞∑
k=1

(a+ 1)k−1 (b+ 1)k−1

(c+ 2)k−1 (k − 1)!
zk

= α 2F1 (a, b; c+ 1; z) +
z

c(c+ 1)
(αab− c(c+ 1)) 2F1 (a+ 1, b+ 1; c+ 2; z)

For α ≥ α0 := c(c+1)
ab all the elements of the above formula are nonnegative, thus we have

Aα ≥ 0|α≥α0
, which proves the lemma. Thus

z 2F1 (a+ 1, b+ 1; c+ 2; z)

2F1 (a, b; c; z)
≤ α0 (6.156)
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so
dg

(j)
m

dη (z(η))

g
(j)
m

≥ −ωα0 = − b (c− b)
2 (c+ 1)

c (c+ 1)

ab
= − c

2a
(c− b) (6.157)

In our case c = 2a, so

dg
(j)
m

dη (z(η))

g
(j)
m

≥ − (c− b) = − (j + 1−m) (6.158)

Integrating above formula one gets

g(j)
m (z(η)) ≥ e−η(j+1−m) (6.159)

So finally we have

e−η(j+1−m) ≤ g(j)
m (z(η)) ≤

[
e1−e−2η−2η

] (j+1+m)(j+1−m)
4(2j+3) (6.160)

6.5.2 Squared magnetic momentum number

Several times in the calculations above the squared magnetic numberm2 appears. It seem
to break SU(2) invariance, however when considering the invariant states
|ι〉 ∈ Inv (Hj1 ⊗ · · · ⊗ HjN ), one can express such components in terms of gauge invariant
quantities, what we will prove below.

At the beginning let us remind, that given an invariant state |ι〉 we can decompose it
in the magnetic momentum basis

|ι〉 =
∑

m1,...,mN

ιm1···mN |m1〉j1 ⊗ · · · ⊗ |mN 〉jN =:
∑
~m

ι~m |~m〉~j (6.161)

note, that
ι~m := 〈~m| |ι〉~j (6.162)

We will learn how to compute the formulae of the form∑
~m

f
(
m2
a, jb

)
ι~mι
′
~m (6.163)

for a real analytic function f .

6.5.2.1 Single squared magnetic momentum number

First let us consider an expression
∑

~mm
2
i ι~mι

′
~m for a single index i. By definition we

have m2
i |~m〉~j = L̂z,(i)

2
|~m〉~j . Now using (6.162) we get∑
~m

m2
i ι~mι

′
~m =

∑
~m

〈ι| |~m〉~j 〈~m|
∣∣ι′〉~jm2

i

=
∑
~m

〈ι|m2
i |~m〉~j 〈~m|

∣∣ι′〉~j (6.164)

=
∑
~m

〈ι| L̂z,(i)
2
|~m〉~j 〈~m|

∣∣ι′〉~j
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Now since
∑

~m |~m〉 〈~m| is the identity operator, we have∑
~m

m2
i ι~mι

′
~m = 〈ι| L̂z,(i)

2 ∣∣ι′〉 (6.165)

Now thanks to SU(2) invariance we have

〈ι| L̂z,(i)
2 ∣∣ι′〉 = 〈ι| L̂x,(i)

2 ∣∣ι′〉 = 〈ι| L̂y,(i)
2 ∣∣ι′〉

=
1

3
〈ι|
[
L̂x,(i)

2
+ L̂y,(i)

2
+ L̂z,(i)

2] ∣∣ι′〉 (6.166)

=
1

3
〈ι| L̂2

(i)

∣∣ι′〉
The operator L̂2

(i) is an invariant with eigenvalue ji(ji + 1), thus after all we have∑
~m

m2
i ι~mι

′
~m =

ji(ji + 1)

3
〈ι|
∣∣ι′〉 (6.167)

6.5.2.2 Real function of m2
i

Consider now a real analytic function f
(
m2
i

)
instead of m2

i , i.e. let us calculate∑
~m f
(
m2
i

)
ι~mι
′
~m. We will start with a polynomial:

(
m2
i

)n. Since L̂z,(i)
2
is a positive,

selfadjoint operator, we can repeat the above procedure and obtain∑
~m

(
m2
i

)n
ι~mι
′
~m = 〈ι|

(
L̂z,(i)

2)n ∣∣ι′〉 (6.168)

Now we can insert an orthonormal intertwiner basis between each two L̂z,(i)
2
operators:∑

~m

(
m2
i

)n
ι~mι
′
~m =

∑
ι1···ιn−1

〈ι| L̂z,(i)
2
|ι1〉 〈ι1| · · · |ιn−1〉 〈ιn−1| L̂z,(i)

2 ∣∣ι′〉 (6.169)

Each expression 〈ιI | L̂z,(i)
2
|ιI+1〉 equals 1

3 〈ιI | L̂
2
(i) |ιI+1〉 (see (6.166)) giving the eigenvalue

ji(ji+1)
3 , thus we have ∑

~m

(
m2
i

)n
ι~mι
′
~m =

[
ji(ji + 1)

3

]n
〈ι|
∣∣ι′〉 (6.170)

For a real analytic function f more general than the polynomial we expand f in a
power series and follow the above steps for each power of m2

i , obtaining∑
~m

f
(
m2
i

)
ι~mι
′
~m = f

(
ji(ji + 1)

3

)
〈ι|
∣∣ι′〉 (6.171)

6.5.2.3 Function of many m2
i s

Consider now a real function f
(
m2

1, . . . ,m
2
N

)
. Since the operators L̂z,(i) commute for

different i, for each term m2
i we can do the procedure of subsection 6.5.2.2 separately,

obtaining∑
~m

f
(
m2

1, . . . ,m
2
N

)
ι~mι
′
~m = f

(
j1(j1 + 1)

3
, . . . ,

jN (jN + 1)

3

)
〈ι|
∣∣ι′〉 (6.172)
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6.5.2.4 Function of many m2
i s and many jis

At least let us consider a real function f
(
m2

1, . . . ,m
2
N , j1, . . . , jN

)
=: f

(−→
m2,~j

)
. Note,

that given an expression
∑

~m f
(−→
m2,~j

)
ι~mι
′
~m, the ji-dependent parts do not differ when

~m changes. We can thus follow the procedure of subsection 6.5.2.3, treating all ji-
dependences as parameters of the function, and obtain the result:

∑
~m

f

(−→
m2,~j

)
ι~mι
′
~m = f

(−−−−−−→
j (j + 1)

3
,~j

)
〈ι|
∣∣ι′〉 (6.173)

6.5.2.5 Application in the text

In the main text of the article the above lemma is used twice: when the large J behaviour
of the function Φι

ι′(η) is considered subsection 6.3.3, and when the Hessian matrix of φιι′(η)
is calculated subsection 6.3.5.

In the first case we estimate
∣∣Φι

ι′(η1)
∣∣ =

∣∣∑
~m Φ~m

~m(η1)ι~mι
′
~m

∣∣ ≤ ∣∣∑~m

∣∣Φ~m
~m(η1)

∣∣ ι~mι′~m∣∣,
knowing that

∣∣Φ~m
~m(η1)

∣∣ ≤ [C(η1)]
∑N
i=1

(ji+1)2−m2
i

4(2ji+3) , where the factor C(η1) does not depend
on ~m. We have thus

|Φι
ι′(η1)| ≤

∣∣∣∣∣∑
~m

[C(η1)]
∑N
i=1

(ji+1)2−m2
i

4(2ji+3) ι~mι
′
~m

∣∣∣∣∣ (6.174)

and using our lemma we can substitute each appearance of m2
i by ji(ji+1)

3 , obtaining

|Φι
ι′(η1)| ≤ [C(η1)]

∑N
i=1

(ji+1)2−
ji(ji+1)

3
4(2ji+3)

∣∣〈ι| ∣∣ι′〉∣∣ = [C(η1)]
1
12

∑N
i=1 ji+1

∣∣〈ι| ∣∣ι′〉∣∣ (6.175)

In the second case we calculate
d2φι

ι′
dη2

∣∣∣∣
η=0

= 1
〈ι||ι′〉

∑
~m

d2φ~m
dη2

∣∣∣
η=0

ι~mι
′
~m, knowing that

d2φ~m
dη2

∣∣∣
η=0

= −1+γ2

J

∑N
i=1

(ji+1)2−m2
i

(2ji+3) . Again using our lemma allows to substitute each

appearance of m2
i by ji(ji+1)

3 , obtaining

d2φιι′

dη2

∣∣∣∣
η=0

= −1 + γ2

J

N∑
i=1

(ji + 1)2 − ji(ji+1)
3

(2ji + 3)

〈ι| |ι′〉
〈ι| |ι′〉

= −1 + γ2

3J

N∑
i=1

(ji + 1) (6.176)

6.5.3 Proofs of estimations

Twice in the text of this chapter some inequalities were stated without a proof. They
were

• The prove of the inequality ∀η>0C(η) < 1 for C (η) := e1−2η−e−2η in subsec-
tion 6.3.3.1

• The prove of the estimation of the integral
´∞
ηε

dη
(

sinh η
4πη

)2 (
e1−2η−e−2η

) J
12

∑N
i=1(xi+

1
J )

used in (6.81) in subsection 6.3.4.

Since they are not obvious, but they are rather mathematical analysis exercises, we
skipped proves of them in the main text, providing them here.
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6.5.3.1 The inequality ∀η>0C(η) < 1

Let us show the following inequality

∀η≥0

(
e1−2η−e−2η

)
≤ 1 (6.177)

where the equality holds only for η = 0.
Obviously the case η = 0 is satisfied:

e1−0−e0 = e0 = 1 (6.178)

Since both sides of the inequality are nonnegative, we can take the logarithm of the
inequality

1− 2η − e−2η ?
< 0 (6.179)

We can differentiate both sides of the inequality with respect to η:

− 2 + 2e−2η < 0 (6.180)

which is obviously true for η > 0. Thus for η > 0

1− 2η − e−2η = 1 +

ˆ η

0

(
−2 + 2e−2η̃

)
dη̃ < 1 +

ˆ η

0
0dη̃ = 1 (6.181)

Quod erat demonstrandum.

6.5.3.2 The estimation in the equation (6.68)

We want to estimate the integral

Iηε :=

ˆ ∞
ηε

dη

(
sinh η

4πη

)2 (
e1−2η−e−2η

)κ
(6.182)

for κ > 3 and ηε > 0.
First let us note, that 1

η ≤
1
ηε

for all η in the integration range, thus

Iηε ≤
(

1

4πηε

)2 ˆ ∞
ηε

dη (sinh η)2
(
e1−2η−e−2η

)κ
≤ · · · (6.183)

Now note, that (sinh η)2 ≤ e2η, so

· · · ≤
(

1

4πηε

)2 ˆ ∞
ηε

dη e2η
(
e1−2η−e−2η

)κ
= · · · (6.184)

Now let us change the integration variables to x = e−2η :

· · · =
(

1

4πηε

)2 1

2

ˆ e−2ηη=:xη

0
dx

1

x2

(
xe1−x)κ ≤ · · · (6.185)

all the integration rage is the subset of x ≤ 1, so e1−x ≤ e, thus we can remove the
denominator:

· · · ≤ 1

2

(
e

4πηε

)2 ˆ xε

0
dx
(
xe1−x)κ−2 ≤ · · · (6.186)
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One can easily prove, that ∀x∈[0,1]x ≤ ex−1. Indeed, for x = 1 we have 1 = 1, and the
derivative of left-hand side is x′ = 1 is bigger than the derivative of the right-hand side(
ex−1

)′
= ex−1. Knowing that, and since κ > 3, we can estimate

(
xe1−x)κ−2 ≤ xe1−x,

and thus

· · · ≤ 1

2

(
e

4πηε

)2 ˆ xε

0
dx xe1−x = · · · (6.187)

which can be integrated by parts:

· · · = 1

2

(
e

4πηε

)2 [
− (x+ 1) e1−x]xε

0
= · · · (6.188)

Now putting back xε = e−2ηε we get

Iηε ≤
1

2

(
e

4πηε

)2 (
e− e1−e−2ηε − e1−2ηε−e−2ηε

)
= Ĩηε (6.189)

Proof of existence of ηε Now let us proof, that for each ε > 0 there is ηε such that
Iηε ≤ ε. We will do it by showing (using Darboux theorem), that the equation Ĩηε = ε
has a solution for each ε > 0.

Let us check the limits of Ĩηε . For ηε → 0 we have

lim
ηε→0

Ĩηε =
1

2

( e

4π

)2
(e− 2)

(
1

ηε

)2

= +∞ (6.190)

For ηε → +∞ we have

lim
ηε→+∞

Ĩηε =
1

2

( e

4π

)2
[

1

+∞
(
e− e1−0 − e−∞

)]
= 0 (6.191)

Thus Ĩηεruns through all real positive numbers, so for each ε > 0 there is ηε being the
solution to the equation Ĩηε = ε, and since Iηε ≤ Ĩηε (what we have shown in (6.189)), it
is obvious now, that

∀ε>0∃ηεIηε ≤ ε (6.192)
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Part III

Discussion and outlook





Chapter 7

Open issues and further directions

The research presented in previous, although being complete, does not exhaust the
subject. Various aspects of each issue we have studied may be investigated deeper. Some
results we obtained opens new directions of research. This chapter presents some of the
open questions we see and find being of most importance. Of course our list may be
extended.

This chapter is organized as follows. In section §7.1 we discuss the problems related
with the topological structure underlying Spin-foam models. In section §7.2 we present
possible directions in Dipole Cosmology model. In section §7.3 we point out the major
problems related to bubble divergences and renormalization of Spin-foam theories. Fi-
nally in section §7.4 we discuss several possible applications of Operator Spin-network
Diagrams framework.

7.1 Open questions about 2-complexes in spin-foams

Our answer to the question about the appropriate class of 2-complex for Spin-foam models
to make them compatible with Loop Quantum Gravity kinematics (posed in section §2.1)
was given by the claim, that one should use all the 2-complex that can be constructed
out of a graph diagram (see section §3.5). We see three most important further questions
one should ask, i.e.

• Better characterisation of these class, possibly in terms of topologically invariant
properties of the 2-complexes.

• A way to impose the cylindrical consistency on these 2-comples, possibly in terms
of equivalence classes of graph diagrams.

• A rule of calculating combinatoric weight factors to judge, how many times an equi-
valent diagram appear in inequivalent ways in an expansion of a quantum process.

Topological characterization

Our definition of the class of 2-complexes appropriate for Spin-foam models was a con-
structive definition, i.e. we gave a rule to construct all 2-complexes that one should
consider. Such definition, although being complete, is not very useful if one is given a
given 2-complex and needs to know, whether it is a member of the class. In such case
one would rather need a theorem stating a set of sufficient and necessary conditions for
a 2-complex to be in our class.
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Since the only limitation on the members of our class was of topological origin (i.e. to
be a result of a sequence of topological operations), these conditions must be formulated
in terms of topologically invariant properties of the complex (i.e. the properties, that are
invariant under a homeomorphism). We have found already two such conditions for a
2-complex κ:

• κ must be a surjective 2-complex (see Appendix A.1.2) - since by definition only
such complexes appear in our construction and this property is never spoiled during
the gluing procedure.

• the boundary ∂κ must have a neighbourhood in κ homeomorphic with ∂κ × [0, 1]
(see subsection 3.5.1).

These conditions are necessity conditions. However, we have no guarantee that they are
sufficient conditions.

Cylindrical consistency

The space of spin-network states is designed in such a way, that two states which differ
in a certain way (i.e. by a number of 2-valent nodes or a number of links colored by the
spin j = 0), are considered equivalent [16, 89], because they represent the same physical
state. This requirement is called cylindrical consistency.

Such construction suggests, that a similar requirement should be imposed on the spin-
foams representing the interactions between them. Indeed, given two pairs of states, that
are cylindrically equivalent but represented by topologically different graphs, one should
expect, that quantum transition amplitudes for both pairs are the same, not depending
on the topological representation. Thus one should be able to identify the quantum
processes, that are physically equivalent.

Some preliminary attempts to identify the rules of spin-foam cylindrical consistency
in terms of Operator Spin-network Diagrams was already done by us and our conclusions
were presented in subsection 3.5.1. Further research is being continued by the others (for
example [90]).

Combinatoric factors

The issue of cylindrical consistency leads to another puzzle: how many times a given
quantum process should be counted to the total amplitude? To be more precise, consider
a series of all diagrams (equivalent to spin-foams) connecting a given in state with an
out state (for example obtained as a result of the boundary algorithm - see section §4.2).
There might be some elements of the series which although being different diagrams,
represent an equivalent physical process, and thus should be counted as one diagram.
There might be also a diagram that correspond to more than one physical process, each of
which gives identical contribution the transition amplitude and thus it should be counted
more then once.

This question should be answered by a prescription to find a (perhaps automorphism
group dependent) factor, that should multiply each diagram appearing in the expan-
sion. These factor would be analogous of the combinatoric factors multiplying Feynman
diagrams in ordinary Quantum Field Theory.
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7.2 Further development in Dipole Cosmology model

The Dipole Cosmology model, recalled in section §2.2, provides itself a wide class of open
problems. In sections 4.4-4.5 we addressed only two of them, i.e. we found all diagrams
in certain (in fact very low) order of expansion and we estimated the contribution of some
of them. In our opinion the most important further directions here are:

• Finding and classifying diagrams with more vertices and more internal edges.

• Calculating (or at least estimating) the transition amplitude of each diagram found.

• Examining the influence of gluing ambiguities.

• Proposing a prescription to isolate the contribution from the bubble part of a dia-
gram from the bubbleless amplitude.

Higher orders

We have found the diagrams that contribute to transition amplitude of Dipole Cosmology
model in the very first order of the expansion, i.e. for precisely 0 internal edges (with
all possible number of internal vertices, i.e. from 1 to 4). As we have noted in subsec-
tion 3.5.1, the number of vertices is not of key importance, especially if the vertices are
not connected by any edge. Thus the next step would be to find all diagrams in 1-edge
expansion.

One of such vertices was already considered and in subsection 6.4.1, several other
can be easily constructed from the examples of bubble diagrams in chapter 5. Allowing
bubbles leads to infinite number of diagrams at each step of expansion, since even with
one edge one can introduce a bubble of arbitrary rank. Restricting to a fixed rank of
a possible bubble (even for rank equal 0) the number of possible diagrams is finite, but
huge. Thus one has to not only find them, but also classify them.

Some preliminary attempts were made to organize the diagrams appearing at first
order of edge expansion, together with a proposal of treating some of them as unphysical
[91]. Lots of further work needs to be done.

Calculations

Of course finding the diagrams is not enough to study a model. One has to also calculate
their transition amplitudes, or at least (if an exact calculation is out of reach) estimate
them. So far the diagrams corresponding to three possible interaction graphs (i.e. the
graphs numbers 18-20 of figure 4.19) were calculated (in [55, 56, 57, 58, 59]). In sec-
tion §4.5 and in [64] we have shown that the contribution coming from sixteen another
interaction graphs (i.e. the graphs number 1-16 of figure 4.19) can be neglected in certain
limit. Out of all 20 possible interaction graphs in the lowest order of expansion there is
still needs to be calculated (however, some attempts to estimate it are already in being
studied [92]).

Concerning diagrams with one internal edge, only one of them was already studied
(see subsection 6.4.1). Any estimation of contribution of other diagrams is still an open
issue.

Various gluings

In subsection 4.4.3 we have presented various possibilities of attaching the interaction
vertex to the boundary state. So far most of calculations in Dipole Cosmology was done
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with the assumption, that the gluing is done in the most natural way, i.e. there is the
maximal possible number of faces in the spin-foam. We expect, that the contribution from
other gluings is suppressed in the large-j-limit, because in such case it is likely to obtain
the terms enforcing the boundary state to be peaked on the degenerate tetrahedron,
however, the direct proof is not ready yet.

Renormalization

Considering all possible diagrams leads spin-foams containing bubbles already at the first
order of edge expansion. The intuition from ordinary Quantum Field Theory suggests,
that the contribution of the bubble diagrams might be absorbed by the bubble-free terms.
Such situation is desired, since at each step of the expansion the number of bubble-free
diagrams is finite.

Of course this intuition needs a strict framework. The Dipole Cosmology model,
thanks to its simplicity, would be a great candidate to test such framework when it is
designed.

7.3 Open problems concerning bubbles

The detailed study of bubble divergences is necessary to understand the relation between
transition amplitudes of a single spin-foam and the physical transition amplitude between
two states.

Within this topic we see the following important problems related to the issues ad-
dressed in this thesis:

• Further classification of bubble, related with the Lorentzian EPRL transition amp-
litude of them.

• Finding an extension of the boundary algorithm to keep under control the bubble
that appear in the resulting diagram.

• Calculation of higher order contribution of the Lorentzian Polyhedra Propagator
operator.

• Introduction of a procedure allowing to absorb bubbles by changing the coloring of
bubble-less diagrams.

Classification of bubbles by EPRL amplitude

In subsection 5.2.3 we have calculated SU(2)-BF -amplitudes of some of the examples
of bubbles. These bubbles were of rank 1, which caused that the Lorentzian EPRL
amplitude of isolated bubbles like them is ill defined (due to problems with applying
the regularization of subsection 1.2.3.3 to 2-link connected graphs). Nevertheless, one
can consider the Lorentzian EPRL amplitude of a diagram containing such bubble and
try to identify the part that comes from the bubble. For bubbles of rank higher than
1 the Lorentzian EPRL amplitude in general should be well defined (see [84]). It is
thus important to study and classify the bubbles by their transition amplitude. Such
classification would let to identify the bubbles of most importance from the point of view
of divergences.

One of the problems that one faces trying to calculate any more complicated bubble
is the presence of the matrix elements 〈m′|Y †g′gY |m〉j for g, g′ ∈ SL(2,C), where the
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composition of group elements cannot be omitted by any shift of integrals. These matrix
elements are far more complicated than 〈m′|Y †gY |m〉j , which we studied in chapter 6.
We expect, that the object one has to deal with is the matrix element of the form
〈j′,m′|(γj,j) gY |m〉j for general j and j′. It can be reduced to the matrix elements of
pure z-boost 〈j′,m|(γj,j) kηY |m〉j which is less complicated than the most general formula
(A.128), but more complicated than 〈m|Y †kηY |m〉j (see (A.165)).

Controlling the bubbles in diagrams we construct

The fixed-boundary algorithm (presented in 4.2) allows to construct all diagrams with
certain properties, namely with a fixed boundary and fixed number of internal edges.
From the point of view of renormalization of spin-foam models it is important to be able
to impose another constraint on the diagrams, namely to control the number and type
of bubbles in the diagram.

There is an obvious generalization of the algorithm allowing to obtain all diagrams
with fixed boundary, number of edges, that contain at least the chosen bubble. Let Dbub

be the diagram of the bubble we want to have. The generalization is as follows: after the
step 2 of the fixed-boundary algorithm (see subsection 4.2.2) one should add the diagram
Dbub (with the node and link relation already fixed and the half-links already connected
into links). In order to let Dbub be connected with the rest of the diagram one has to
add some open half-links to the nodes of Dbub (otherwise one would obtain a diagram
with a disconnected isolated bubble). Due to keep the diagram consistent one has to add
half-links in pairs, i.e. whenever one adds a half-link to a node n of Dbub, one has to
add a dual link to the node n′ being in relation with n (since Dbub is a bubble - there is
always n′ for each n). At this step one do not close the half-links added to Dbub - they
will be used to connect the bubble with the rest of the diagram. Then, in the step 3, one
closes the half-links of the oriented squid set and the open half-links added to Dbub and
then one continue the procedure.

The draw-back of the generalization presented above is that there is no guarantee,
that Dbub is the only bubble in the obtained diagram. The modification of this procedure
that gives such guarantee is not known yet (but the research is in progress [90]).

Higher order of Lorentzian Polyhedra Propagator

The Lorentzian Polyhedra Propagator T calculated in chapter 6 appears to be an import-
ant operator, not only when considering bubbles. So far we found the leading order of its
matrix elements, obtaining an operator proportional to identity at each Hj space (with
the proportionality factor dependent on j). This is however only the first approximation.
Finding subleading orders of T would help to control this approximation.

The most desired result would be to find a good approximation of T by the heat
kernel function on SU(2) for spread depending on the cut-off Λ and the scale J - in such
case a simple physical interpretation of its action in terms of spreading the wave function
would be natural.

Renormalization

As we have already mentioned in section §7.2, it is important to find a way to replace the
bubble part of a diagram by a bubble-less diagrams with modified coloring. Note, that
each bubble can be contracted to one complicated vertex, with the amplitude dependent
on the data on external elements and the cut-off put on the internal spins (and on the
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“type of the bubble”). This amplitude obviously is not an ordinary EPRL amplitude. It
may be thus expressed as an artificial contractor of some graph. The heuristic procedure
needs however an exact calculations of these artificial contractors together with rules to
remove the regularizations.

7.4 What else can we use Operator Spin-network Diagrams
for?

The Operator Spin-network Diagrams framework introduced in chapter 3 was originally
introduced to answer the question about the proper class of 2-complexes in Spin-foam
models (see section §2.1). However, they appeared to be a much more powerful tool.
They allowed to formulate the fixed-boudnary algorithm (see section §4.2) to find all
spin-foams with a fixed boundary. They help to simplify the procedure of reading the
transition amplitude of a spin-foam thanks to Feynman-EPRL rules (see section §4.3).
Moreover, they were a starting point to the design the tools we used to study bubbles in
chapter 5.

Despite the applications we presented, there are many others. In our opinion the
most important ones are the following

• Detailed study of other boundary problems then Dipole Cosmology model.

• A possibility to test other (then EPRL) schemes of calculating the transition amp-
litude.

• A convenient framework to modify the theory in order to incorporate matter fields.

Other boundary problems

Although the Spin-foam models were designed to be a tool to study the boundary prob-
lems in Loop Quantum Gravity (by calculating the analogue of S-matrix elements), in
fact not many problems have been in ever calculated. The Dipole Cosmology model
[55, 56, 57, 58, 59, 64] and the Graviton Propagator [93, 94, 95, 96] are the most known
examples of calculations of full transition amplitude. The melonic bubble is a study of
partial transition amplitude.

We find three issues responsible for such little number of problems being well studied.
First and the most important is the complicated form of functions that appear in the
formulae of transition amplitudes. The Operator Spin-network Diagrams framework does
not effect this issue. The second one was a difficulty in finding the boundary states with
a clear physical interpretation - which was partially solved by a recent development of
coherent states in Loop Quantum Gravity [63, 97, 60]. However, since a generic coherent
state may be represented by a very complicated spin-network state, its evolution would be
a complicated spin-foam, which leads us to the third problem: a difficulty in characterizing
the possible spin-foams for a given boundary problem.

The third issue is what Operator Spin-network Diagrams are a very well suited for.
The boundary algorithm (section §4.2) should be applied not only to Dipole Cosmo-
logy model. One can use it to find the higher-order corrections to the graviton propag-
ator. One can use it to find and order spin-foams for any boundary problem. Moreover,
thanks to the adaptation of Feynman-EPRL rules of [37] to Operator Spin-network Dia-
grams (see section §4.3), one can use the Diagrams to decompose the difficult calculation
into manageable subproblems. Furthermore (as we have mentioned in section §7.3),
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our asymptotic analysis of 〈m|Y †kηY |m〉j terms is the first step to analyse the terms
〈j′,m|(γj,j) kηY |m〉j , which are the basic building blocks of any transition amplitude in
the EPRL Spin-foam model.

Various transition amplitudes

The Operator Spin-network Diagrams in a natural way isolates the elements of the model,
which may vary when choosing a different scheme of calculating transition amplitudes.
One can easily change the vertex-contractor, one can change the scheme of choosing the
edge-projectors. In fact we have already introduced a model which is more general, than
the ordinary EPRL, i.e. we considered spin-foams with some of edges and vertices colored
in BF and the other in EPRL manner.

Using this feature of Operator Spin-network Diagrams (and having calculated a
boundary problem) one can easily test other then EPRL models of spin-foam transition
amplitude by comparing the physical predictions obtained for various models.

Introducing matter fields

The convenience of changing the prescription to calculate the transition amplitude in
Operator Spin-network Diagrams framework has another advantage. It makes a good
opportunity to extend the model by introducing matter fields.

The kinematic structure of Loop Quantum Gravity with matter was studied in [1,
chapter 12]. It leads to spin-network states enhanced by an extra coloring, with possibly
more general gauge group. As we have mentioned in subsection 3.5.2, there is an easy way
to generalize the Operator Spin-network Diagrams to any gauge group. An analogous
generalisation would work for spin-networks enhanced by scalar or spinor fields. The only
difficulty is to find an appropriate dynamics, which is encoded in three objects: the face
amplitude, the edge projector and the vertex contractor.

There are two ways to find this dynamics. One can derive a discretisation of the
action of gravity and matter, and then adopt it to Spin-foam formalism (and thus to
Operator Spin-network Diagrams) ore one can postulate some kind of vertex amplitude
and then verify its semiclassical limit. Operator Spin-foam models are suitable for both
approaches.
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Part IV

Appendixes





Appendix A

Mathematical introduction

This appendix is devoted to a brief review of mathematical concepts being the base
for the topics presented in this thesis. The issues presented here are organised in 4 sec-
tions. In Appendix A.1 we present the theory of CW-complexes emphasising graphs and
2-CW-complexes. In Appendix A.2 we discuss the issues of differential geometry. In
Appendix A.3 and Appendix A.4 we present the representation theory on SU(2) and
SL(2,C) groups respectively.

This appendix should not be treated as a detailed study of the subjects mentioned
above. Most of notions recalled here are commonly known mathematical objects. How-
ever, since various conventions of notations, naming and even of some details in defini-
tions are used, here we fix these conventions and state explicitly the ambiguous details.
Moreover some more sophisticated objects are introduced.

The sections are organised in collections of definitions. Each definition contains an
exact definition of the object, but also some helper definitions and naming conventions,
sometimes also it may contain some basic facts abut the defined object. In some cases
the definitions are followed by examples, usually when the object was assessed by the
Author to be nontrivial. Only several theorems and claims are stated explicitly, with a
proof.

This appendix is based on classical textbooks and lecture notes. Each section in
its introduction has references to the textbooks on which it is based. However, the
conventions used by the Author are only based on the textbooks and in some cases they
differ markedly. Moreover some definitions recalled are not present in cited textbooks -
these are either Author’s own definitions, or definitions of the objects that Author judges
that they are trivial. Some notions, like the topological space etc., are also used without
defining them - they are also considered trivial.

A.1 Topology of CW-complexes

Graphs (both abstract and embedded) are key topological structure underlying Loop
Quantum Gravity. They are 1-dimmensional case of CW-complexes, however, they can
be considered without all tools from the full theory. First subsection of this section is
devoted to them.

A trace of a time-evolution of a graph is a 2-dimmensional structure, namely 2-CW-
complex, and it is a topological structure on which the Spin-Foam models are build. In
the second subsection of this section we define general n-dimensional CW-complexes and
operations on them.
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Most of the facts recalled for graphs are either the common knowledge at the level
of graduate student of physics (and thus the we find pointless to refer to a particular
textbook) or thy are Author’s own definitions (thus they cannot be found in the textbooks
yet). The subsection about CW-complexes was based on the chapter 0 of [82]. Some of
the new definitions introduced by the Author can be found in [53] and [64].

A.1.1 Graphs

In this subsection we define graphs and some operations on them. We introduce a few
useful notions that help to describe the structure of nodes of the graphs (half-links, squids)
and we discuss the group of automorphisms of graphs. Moreover we define the special
class of graphs, called θ-like graphs, that are very often used in the thesis, and we define
the graphs with enhanced structure, called squid-graphs, that simplify some operations
and proofs in chapter 3 and chapter 4.

A.1.1.1 Basic definitions

Definition A.1. Graph
A graph G = (N,L) is a set of nodes N = {n1, . . . , nN} and a set of links

L = {`1, . . . `L}.
Unless specified else, all graphs are oriented, which means that each link has its source

node n = s(`) and its target node n′ = t(`). Some links might be loops, i.e. such links,
that s(`) = t(`).

The unoriented graph is denoted by |G| and is a class of all graphs, that differ only
by some changes of orientation of their links.

In general graphs are not required to be connected. However for each graph one can
define its decomposition into connected components. We will write G = {Γ1, . . . ,ΓK} if
G = Γ1t· · ·tΓK and each of graphs Γi is connected itself. General graphs will be denoted
by G letter, connected graphs will be denoted by Γ.

A closed graph is a graph in which each node has at least two links incident to it.
Unless specified else, all graphs are assumed to be closed.

Let us define a half-link of a graph.

Definition A.2. Half-link
A half-link `ε is a pair of a link ` ∈ L and a sign ε ∈ {+,−}. A half-link is incident

to only one node, called its boundary n = ∂`ε. The boundary of positive half-link `+ is
the source node of `, the boundary of the negative half-link `− is the target node of `:

∂`+ = s(`) ∂`− = t(`) (A.1)

It is convenient to define the set of all half-links incident to n:

Ln := {lε : ∂`ε = n} (A.2)

Obviously if a link ` is a loop, it appears in the set Ln twice: once as a positive, and
once as a negative half-link. It is also natural to define the sets of positive and negative
half-links at n:

L+/−
n :=

{
l+/− : ∂`+/− = n

}
(A.3)

The set of all half-links of the graph is LG =
⋃
n∈N Ln. An example is shown at

figure A.1b.
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(a) (b) (c)

Figure A.1: Graphs. (a) - A graph G = {Γ1,Γ2}. The source of the link `1 is s (`1) = nI ,
the target is t (`1) = nII . (b) - Half-links of the node nIII are highlighted (positive by
red, negative by blue). (c) - The nodes nIV and nV are dual. The dotted line describe a
duality map between them.

The notion of half-links makes the following definition very simple:

Definition A.3. Duality of nodes
Let n and n′ be nodes of a graph. We say they are dual iff the number of positive

half-links of n equals to number of negative half-links of n′ and vice versa: number of
negative half-links of n equals to number of positive half-links of n′.

It is also convenient to define a duality map:

Definition A.4. Duality map
Given two nodes n and n′ consider the sets of half-links incident to them: Ln and Ln′

respectively. We say that a map φn,n′ : Ln → Ln′ is a duality map between n and n′ iff
it is bijective and it maps L+

n onto L−n′ and L
−
n onto L+

n′.

Obviously if n and n′ are dual, there might be many duality maps between them.
However the following lemma is true: if there is at least one duality map between n and
n′, the nodes are dual.

Illustration of notion of duality is presented at figure A.1c.

A.1.1.2 Maps of graphs

We will consider two types of maps between graphs: morphisms, i.e. maps that preserve
the structure of the graphs, and the maps that does not have to preserve the graph’s
structure - we will call them half-link-maps.

Morphisms of graphs

Definition A.5. Morphism of graphs
Given two graphs G = (N,L) and G′ = (N′,L′) a morphism of graphs φ : G → G′ is

a pair of maps φN : N → N′ and φL : L → L′ such that for each ` ∈ L if n = s (`) and
n′ = t (`), we have φN (n) = s

(
φL (`)

)
and φN (n′) = t

(
φL (`)

)
.

A morphism φ =
(
φN, φL

)
is called node-surjective if φN is a surjective map, and it is

called link-surjective if φL is a surjective map. Similarly it is called node- or link-injective
if φN or φL are injective maps respectively.
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A morphism that is both node- and link-surjective is a graph-epimorphism, and is
called graph-surjection. A morphism that is both node- and link-injective is a graph-
monomorphism and is called graph-injection.

A map φ : G → G′, φ =
(
φN, φL

)
such that for each ` ∈ L if n = s (`) and n′ = t (`),

we have either φN (n) = s
(
φL (`)

)
and φN (n′) = t

(
φL (`)

)
or φN (n) = s

(
φL (`)

)
and

φN (n′) = t
(
φL (`)

)
is called an unoriented-morphism of graphs. The classification of

morphisms presented above extends straightforwardly to unoriented-morphisms.

The special case of morphisms are the automorphisms:

Definition A.6. Automorphism of a graph
Given a graph G = (N,L) a morphism φ : G → G that is both graph-surjection and

graph-injection is called an automorphism of G. All the automorphisms of G form a group
Aut (G).

Usually we are more interested in unoriented automorphisms of G

Definition A.7. Unoriented automorphism of a graph
Given two graphs G and G′ such that |G| = |G′| a morphism φ : G → G′ that is both

graph-surjection and graph-injection is called an unoriented automorphism of G or an
automorphism of |G|. All the unoriented automorphisms of G form a group Aut (|G|).

There is a normal subgroup of Aut (|G|) B Reo (G) of all unoriented automorphisms
of G such that both φN and φL are the identity maps. The elements of Reo (G) are called
reorientations of G. Each reorientation can be characterised a subset of links for which it
inverts orientations (in fact ). One can show, that Aut (|G|) /Reo (G) = Aut (G).

There is a special element of Reo (G) 3 ε called the inversion of the graph. It is defined
by inverting all the links of G. The inverted graph is denoted as G? := ε (G).

It is worth to notice, that in case of oriented automorphisms each pair of bijections
φN : N→ N and φL : L→ L that is consistent with the graph structure of G determines
fully the automorphism. It is not true in case of unoriented automorphism - one need an
extra information of the structure of G′ (which is in fact encoded in the Reo (G)-part of
the automorphism).

Whenever considering colored graph one can introduce color-preserving morphisms
by introducing requirement, that for each object (node, link) the image with respect to
the color-preserving morphism is colored by the same value, as the argument. Obviously
color-preserving automorphisms form a subgroup of all automorphisms.

Half-link maps Consider now maps that do not preserve the structure of the graph,
but they do preserve the structure of each node. We will call them the half-link maps.

Definition A.8. Half-link map
Given two graphs G = (N,L) and G′ = (N′,L′) a half-link map between them

φ : G → G′ is a map φN : N → N′ and a map φL : LG → LG′ such that for each
half-link `ε ∈ LG if n = ∂`ε then φN (n) = ∂

(
φL (`ε)

)
.

Obviously each morphism of graphs define half-link map, but not the opposite - a half-
link map may change the graph structure.

Likewise the morphisms, half-link maps may be node-surjective, half-link-surjective,
node-injective, half-link-injective, graph-surjective and graph-injective.

A half-link map is orientation-preserving iff φL
(
L+
G
)
⊂ L+

G′ and φL
(
L−G
)
⊂ L−G′.

A half-link map is orientation-consistent if in the image of φL the number of positive half-
links is equal to the number of negative half-links. It might happen that a half-link map
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is orientation preserving but not orientation-consistent or orientation-consistent, but not
orientation-preserving. However each half-link-injective map and each half-link-surjective
map must be orientation-consistent.

If G = G′ we may define half-link-automorphisms:

Definition A.9. Half-link-automorphism
A half-link map φ : G → G that is both graph-surjective and graph-injective is called a

half-link-automorphism. Obviously a graph-automorphism induces a half-link automorph-
ism, but there might be half-link map that violates the graph-structure. Half-link auto-
morphisms form a group Aut± (G).

Obviously each half-link automorphism is orientation-consistent. They may be also
orientation-preserving (at least the identity map is).

A special case of half-link-automorphisms are so called duality-maps of the graph G.
A half-link-automorphism is a duality-map of the graph if the for each node n ∈ N the
map φL restricted to Ln is the duality map of the nodes n and φN (n).

The half-link maps, especially the duality maps, are used mainly in the gluing of
2-complexes and gluing of graph-diagrams.

A.1.1.3 θ-like graphs

Let us define a class of graphs of great importance in the construction of boundary
formalism for the Operator Spin-network Diagrams, namely the θ-like graphs. First let
us define a θ-graph:

Definition A.10. θ-graph
A θ-graph is a graph Γθ = (N,L) such that N = {n, n′} is a 2-element set, and

L = {`1, . . . , `L} is at least 2-element set, and for each link `i we have either s (`i) = n
and t (`i) = n′ or the opposite, i.e. s (`i) = n′ and t (`i) = n. The number L is called the
valency of the θ-graph. The nodes of the θ-graph are called the poles. An example can be
found at figure A.2a.

The name of the θ-graphs comes from the fact, that the letter θ is a 3-valent θ-graph.
The basic θ-graphs are not used a lot in this thesis. More common are simple θ-like

graphs:

Definition A.11. Simple θ-like graph
A simple θ-like graph is a graph Γθ = (N,L) such that N = Np ∪ X where

Np = {n, n′} and X = {x1, . . . , xL} and L = Ln ∪ Ln
′ where Ln = {`n1 , . . . , `nL} and

Ln
′

=
{
`n
′

1 , . . . , `
n′
L

}
(for L ≥ 2, of course L is the same number everywhere), and the

following conditions for the links are satisfied:

• for each `ni ∈ Ln we have either s (`ni ) = n and t(`ni ) = xi or the opposite,
i.e. s (`ni ) = xi and t(`ni ) = n

• for each `n′i ∈ Ln
′ we have either s

(
`n
′
i

)
= n′ and t

(
`n
′
i

)
= xi or the opposite,

i.e. s
(
`n
′
i

)
= xi and t

(
`n
′
i

)
= n′

Obviously each node xi is bivalent.
We say, that a link `ni (or `n′j ) is positive if it is outgoing from n (or n′ respectively).
The nodes n and n′ are called the poles, the nodes xi are called the link-nodes.
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A simple θ-like graph is called simply oriented iff each node xi has one incoming
and one outgoing link. Otherwise it is a generally oriented simple θ-like graph (see fig-
ure A.2b).

One can easily see that a simple θ-like graph is a θ-graph with one node xi inserted
at each link `i (and thus each link divided into two links `ni and `n′i ). One can generalise
this by placing an arbitrary number of nodes at each link:

Definition A.12. General θ-like graph
A L-valent general θ-like graph (for L ≥ 2) is a graph Γ = (N,L) such that

N = Np ∪ X1 ∪ · · · ∪ XL, where Np = {n, n′} and each of
(
Xi
)
i=1,...,L

sets is

Xi =
{
x1
i , . . . , x

ki
i

}
(the numbers ki might be 0, and then the corresponding Xi is the

empty set) and L = Li ∪ . . . ∪ LL where each of
(
Li
)
i=1,...,L

sets is Li =
{
`0i , . . . , `

ki
i

}
(they cannot be empty), and and the following conditions for the links are satisfied:

• for each `0i we have we have either s
(
`0i
)

= n and t
(
`0i
)

= x1
i or the opposite,

i.e. s
(
`0i
)

= x1
i and t

(
`0i
)

= n

• for each `kii we have we have either s
(
`kii

)
= n′ and t

(
`kii

)
= xkii or the opposite,

i.e. s
(
`kii

)
= xkii and t

(
`kii

)
= n′

• for each `ji where j = 1, . . . , ki − 1 we have we have either s
(
`ji

)
= xji and

t
(
`ji

)
= xj+1

i or the opposite, i.e. s
(
`ji

)
= xj+1

i and t
(
`ji

)
= xji

Obviously each node xji is bivalent.
A general θ-like graph is called simply oriented iff each node xi has one incoming and

one outgoing link. Otherwise it is a generally oriented θ-like graph. An example can be
found at figure A.2c.

In the main part of the thesis we sometimes use the same name θ-like graphs for both
simple- and general θ-like graphs.

A.1.1.4 Squid-graphs

If one combine the notions of half-links and duality of nodes with the notion of graphs,
a new convenient object arises: the squid graphs. They were first introduced in [53] and
improved in [64].

Definition A.13. Squid
A squid is an open graph λ = (Nλ,Lλ) with Nλ = {n} ∪ {x1, . . . , xk} and

Lλ = {`1, . . . , `k} such that each link `i connects the node n and the node xi. Example of
a squid is on figure A.3a.

The node n is called a head of the squid. The links `i are called legs of the squid, the
nodes xi are called leg-nodes.

A leg `i is called outgoing iff s(`i) = n ∧ t(`i) = xi. A leg is called incoming iff
s(`i) = xi ∧ t(`i) = n.

Valence of a squid is number of its legs k. One can also introduce the positive valence
k+ being number of outgoing legs, and negative valence k− being the number of incoming
legs.
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(a) (b) (c)

Figure A.2: Theta-like graphs. (a) - A θ-graph. (b) - A simple θ-like graph. (c) - A general
θ-like graph.

Given a graph, for each node one can introduce a squid capturing structure of the
node. Indeed, a sufficiently small neighbourhood of each node has form of a squid. Duality
of nodes can be naturally generalised to duality of squids. If two nodes are dual, then
the squids corresponding to them are also dual. The set of squids related to all nodes of
a graph G we shall call a squid-set of this graph and denote as SG .

Note, that every half-link of a graph can be uniquely identified with a leg of one of
squids in the squid-set of this graph.

It appears that it is convenient to introduce a so called squid graph γ of a graph G,
being a graph enhanced with an extra structure:

Definition A.14. Squid-graph
A squid-graph of a graph G is a pair of a graph and a set of squids (G(s), S), where

• G(s) (called the split graph) is a graph obtained by splitting each link `i of G into
two links `si and `

t
i by putting an extra node x`i in the interior of each link (the link

`si starts at s(`i) and ends at x`i , the link `ti starts at x`i and ends at t(`i)).

• S is the squid-set of the graph G, i.e. for each node n of the graph G there is one
squid λn ∈ S, and the legs of λn are links of G(s) incident to n (in fact they are
halves of links of G)

A procedure of obtaining a squid-graph of a graph is illustrated on figure A.3.

Remark A.1. Later we will need to know the precise graph structure of G(s). Let
G = (N,L), then

G(s) = (N ∪X,L+ ∪ L−) (A.4)

where X = {x`i ∈ `i : `i ∈ L} is the set of middle points of the links of G, and the
sets L+/− contain the links of G(s) representing the positive/negative half-links of G
respectively, i.e. L+ = {`si : `i ∈ L} and L− =

{
`ti : `i ∈ L

}
.
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(a) (b) (c)

Figure A.3: Squid-graphs. (a) - An example of 6-valent squid, with k+ = 4 and k− = 2.
(b) - A graph Γ that we will turn into a squid-graph. (c) - The split graph of the graph
Γ(s). One of the squids, i.e. the squid λn of the node n of Γ, is emphasised.

A.1.2 CW-complexes

The 2-complexes are widely used in the thesis, as the topological structure underlying the
spin-foam models. They are the special case of more general concept of CW-complexes
with maximal dimension of cells set to 2. We shell use the definition of CW-complexes
consistent with [82]. It can be also found in the appendix of [53].

A.1.2.1 Basic definitions

Definition A.15. CW-complex
The n-dimensional CW-complex is a collection of sets of k-dimensional cells Ck where

k = 0, 1, . . . , n together with set of maps fj for j = 1, 2, . . . , n and relations ∼l defined as
follows.

• Each cell c ∈ Ck is a k-dimensional disc with a boundary. For each set of cells we
define its boundary as ∂Ck =

⊔
c∈Ck ∂c.

• Each relation ∼l is defined on the set ∂Cl.

• The relation ∼0 is the empty relation.

• Each function function fm is a continuous, map

fm : ∂Cm → Cm−1/ ∼m−1 (A.5)

• For m > 0 the relations are defined by the functions fm:

x ∼m y ⇔ fm(x) = fm(y) (A.6)

The functions fm are called the boundary functions. They define the way in which
higher dimension cells are glued onto the lower-dimensional skeleton. The relations says,

214



which points are glued together. Note, that since ∼0 is empty (indeed, ∼0 is a relation
on ∂C0 = ∅), it can be omitted in the construction. Then any other relation is induct-
ively constructed from the functions fm. Thus what is essential in the construction of a
CW-complex are the boundary functions, not the relations (however, they are useful in
geometrical interpretation). So we will denote a CW-complex as

κ = (Cn, . . . , C0 ; fn, . . . , f1) (A.7)

The above definition is too wide to our purpose. Almost everywhere in the thesis we
require CW-complexes to not posses any cells of non-maximal dimensions, that are not
subcells of higher dimension cells. In order to ensure it let us thus introduce an auxiliary
definition:

Definition A.16. Surjective CW-complex
A CW-complex such that each of its boundary functions fm is a surjective map

fm : ∂Cm → Cm−1/ ∼m−1 is called a surjective CW-complex.

The following claim is obvious:

Claim A.1. In a n-dimensional surjective CW-complex each k-cell (for k < n) lies on a
boundary of at least one (k + 1)-cell.

thus the surjective CW-complexes are a good class of CW-complexes for our further
considerations.

Remark A.2. Whenever in this thesis we refer to a CW-complex, we mean a surjective
CW-complex. If we want to refer to a non-necessarily surjective CW-complex, we call it
a general CW-complex.

As a topological space the CW-complex is Xκ := Cn/ ∼n. This leads to a notion of
cellular decomposition:

Definition A.17. Cellular decomposition
Given a topological space X and a CW-complex κ such that Xκ is homeomorphic with

X we call κ the cellular decomposition of X.
We say, that the cellular decomposition is n-dimensional iff it is given by a surjective

n-CW-complex.

CW-complex contains more information than just its topological space. This addi-
tional information is contained in a set of skeletons:

Definition A.18. Skeleton
For k ≤ n a k-dimensional skeleton κ(k) of an n-dimensional CW-complex

κ = (Cn, . . . , C0 ; fn, . . . , f1) is a subcomplex of κ defined by omitting all objects of di-
mension higher then k:

κ(k) = (Ck, . . . , C0 ; fk, . . . , f1) (A.8)

The skeletons allows us to define strong equivalence of CW-complexes:

Definition A.19. Complexomorphism
A complexomorphism is a map between CW-complexes preserving the CW-complex

structure.
Given two complexes κ1 and κ2 and a map φ : Xκ1 → Xκ2 we say, that φ is a

complexomorphism iff φ is a homeomorphism of Xκ1 and Xκ2 and for each k-skeleton of
κ the truncated map φ|X

κ
(k)
1

is a homeomorphism of the skeletons X
κ

(k)
1

and X
κ

(k)
2

.
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We say that two CW-complexes are strongly equivalent iff there is a complexomorph-
ism between them.

In contrary, the weak equivalence does not require equivalence of skeletons:

Definition A.20. Weak equivalence of CW-complexes
We say that two CW-complexes κ1 and κ2 are weekly equivalent iff their topological

spaces Xκ1 and Xκ2 are homeomorphic (i.e. they are cellular decompositions of the same
topological space).

In practice weak equivalence means that the CW-complexes differ by a number of
removable cells - what shell be clarified in Appendix A.1.2.3.

Given a CW-complex, its cells naturally inherits the structure of CW-complex:

Definition A.21. Induced complex
Given a k-cell c of a n-CW-complex κ the induced complex of c is the k-CW-complex

κc being the intersection of the k-skeleton of κ with c:

κc := κ(k) ∩ c (A.9)

To be precise let us spell out the ingredients of κc:

κc :=
(
C̃k, . . . , C̃0 ; fk|∂C̃k , . . . , f1|∂C̃1

)
(A.10)

where C̃k := {c}, and for l < k we have C̃l := Cl ∩ fl+1

(
∂C̃l+1

)
.

In case of 2-CW-complexes the 2-cells will be called faces f ∈ F, the 1-cells will
be called edges e ∈ E, and the 0-cells will be called vertices v ∈ V, and thus we will
introduce a notation

κ = (F,E,V; f2, f1) (A.11)

Graphs are 1-CW-complexes (although usually it is inconvenient to use the full CW-
complex notation to describe them). As we noted already in Appendix A.1.1, the 1-cells
of graphs are called links and the 0-cells of graphs are called nodes.

A.1.2.2 Relations of cells

Now let us introduce some notions to describe the relative position of cells in CW-
complexes.

Definition A.22. Incidence
Given a cell c ∈ Ck we say, that a bigger cell c′ ∈ Ck+1 is incident to c iff c ⊂ fk+1(∂c′).
Moreover if we have a cell c′′ ∈ Ck+l such that there is a sequence of cells

c1 ∈ Ck+1, . . . , cl−1 ∈ Ck+l−1 such that each ci is incident to ci−1 , and c1 is incident
to c, and c′′ is incident to ck+l−1 , then c′′ is also called incident to c.

We want incidence to be a symmetric relation, thus if c is incident to c′, then by
definition c′ is incident to c.

If c ∈ Ck and c′ ∈ Cl are incident, and l < k, we say that c′ is one of the boundary
cells of the cell c - this is because c′ has its counterimage with respect to fl+1◦fl+2◦· · ·◦fk
intersecting with ∂c, i.e.

(
f−1
k ◦ f

−1
k−1 ◦ · · · ◦ f

−1
l+1 (c′)

)
∩ ∂c 6= ∅. We denote it shortly as

c′ ⊂ ∂c.
A higher dimensional cell c may be glued onto a lower dimensional cell c′ several times.

This takes reflection is the number of copies of counterimage of c′ in ∂c. If a projection
from

(
f−1
k ◦ f

−1
k−1 ◦ · · · ◦ f

−1
l+1 (c′)

)
to c′ is a bijective map, we say that c′ is single-incident

to c, otherwise for c′ incident to c we say that c′ is multi-incident to c.
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Figure A.4: Adjacency. The cells f1 and f2 are adjacent, because they share a 1-cell eI .
The cells f1 and f3 are not adjacent although they share a 0-cell V .

Incidence is a relation between cells of different dimension. In case of cells of the same
dimension we say about adjacency:

Definition A.23. Adjacency
Two k-cells c, c′ ∈ Ck are called adjacent iff there is a (k − 1)-cell c′′ such, that c′′ is

incident to c and c′′ is incident to c′.

Thus for example two faces need to share an edge to be called adjacent. If they
share only a vertex - they have nontrivial intersection, but they are not adjacent in our
terminology (see figure A.4).

Let us now define the boundary of a CW-complex.

Definition A.24. Boundary cell of a CW-complex

• A (n− 1)-cell of a n-CW-comples κ is called a boundary cell of κ iff it is single-
incident to precisely one n-cell of κ

• A cell of dimension lower then n− 1 is called a boundary cell of κ iff it is incident
to at least one boundary (n− 1)-cell.

A (n − 1)-subcomplex of κ build of all the boundary cells is called the boundary complex
of κ and denoted by ∂κ.

A CW-complex with the empty boundary is called closed.
The non-boundary cells of κ are called interior cells of κ.
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Obviously the boundary of a 2-CW-complex is a graph.
It is important not to confuse two meanings of the notion boundary. The boundary

cells of the interior cells does not have to be the boundary cells of the whole CW-complex.
For each n-dimensional CW-complex κ the following two claims are true:

• If c is a boundary cell of at least one cell c′ such that c′ is a boundary cell of κ,
then c is a boundary cell of κ.

• If c is a boundary cell of κ, then it is a boundary cell of at least one cell c′ being
the boundary cell of κ, unless c is a (n− 1)-dimensional cell (then there is no c′

boundary cell of κ such that c ⊂ ∂c′).

A.1.2.3 Removing cells

There are some cases, when removing cells do not change the topology ofXκ. In particular
it happens, when the cell has the following property:

Definition A.25. Removable cell
A k-cell c ∈ Ck is called removable iff it is incident to precisely two (k + 1)-cells

c′, c′′ ∈ Ck+1 and none of the boundary cells c′′′ ⊂ ∂c is a removable cell (the definition is
recursive, however, the recursion stops for 0-cells, which has no boundary).

In this case the complex with removed cell c is denoted by κ \ c and defined as follows:

• The sets of cells Cl for l 6= k and l 6= k + 1 are left unchanged. The set of k-cells
equals Cnew

k = Ck \ {c}. The set of (k + 1)-cells has a new cell c̃ instead of c′ and
c′′, i.e. Cnew

k+1 = {c̃} ∪ Ck+1 \ {c′, c′′}.

• The new cell c̃ is the cell c′ glued to the cell c′′ along the cell c. I.e. it is

c̃ =
(
c′ ∪ c′′

)
/
(
fk+1|f−1

k+1(c)

)
(A.12)

In other words: It is the sum of the sets representing c′ and c′′, but for each pair
of points, that the map fk+1 maps on the same point of the cell c, the points are
identified.

• The boundary maps for all the cells apart from c′ and c′′ do not change.

• We need to define the boundary map fnew
k+1 for the new cell c̃. Since ∂c̃ ⊂ ∂c′ ∪ ∂c′′,

the new boundary map is just the truncation of the old one:

fnew
k+1

∣∣
∂c̃

= fk+1|∂c̃ (A.13)

It may happen, that after removing a removable cell, some cells become removable.
Thus let us introduce one more definition:

Definition A.26. Pre-removable cell
A k-cell c ∈ Ck is called pre-removable iff there exists a series of removal operations,

after which it becomes removable (see figure A.5c for a graphical explanation).

The pre-removable cells are the cells that does not have any crucial input to the
topology of Xκ, i.e. if there is a removable cell c in κ, then there is a complex κ′ weekly
equivalent to κ without the cell c. In the main text of the thesis we will often refer to both
removable and pre-removable cells as to removable cells, because usually we will to all
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the removings of the cells at once. However, since sometimes we use colored 2-complexes
and the coloring of some parts of the skeleton is relevant, there are some situations, when
the cells that are topologically removable will not be removed in order to not loose the
coloring data stored at them. In other words in case of colored 2-complexes we say that
the cell is removable if it is topologically pre-removable and if the coloring data stored
at it has the default value that can be unambiguously deduced from the data stored at
the other cells (where default usually means default with respect to the chosen coloring
scheme).

A.1.2.4 Orientation

One can easily enhance n-CW-complexes with an extra structure - orientation.

Definition A.27. Oriented n-CW-complex
An oriented n-CW-complex is a n-CW-complex with an orientation assigned to each

n-cell of the complex.
The orientation of lower dimensional cells is not defined a priori. One can consider

orientation of k-cell c with respect a (k + 1)-cell c′ to which c is incident - then the
orientation of c is induced by the orientation of c′.

The boundary (n − 1)-cells have uniquely determined orientation, because they are
incident to precisely one n-cell. Thus the boundary complex of an oriented CW-complex
is also an oriented CW-complex.

We say, that orientation of two adjacent k-cells c1, c2 agree, iff for each (k − 1)-cell
c′ they share the orientation of c′ induced by c1 is opposite than the orientation of c′

induced by c2 (see figure A.5).

Given a n-cell c of an oriented n-CW-complex κ, the induced complex κc of the cell c
is an oriented n-CW-complex with the orientation of c determined by its orientation in κ.
Given a (n− 1)-cell c′ of κ being a boundary cell, the induced complex κc′ is also oriented.
Given any other k-cell c′′ for k < n there is in general no natural way to determine the
orientation of c′′ in κc′′ , thus κc′′ is in general an unoriented CW-complex.

In case of oriented CW-complexes it is harder to remove cells. The updated definition
is as follows:

Definition A.28. Removable cell of an oriented CW-complex
A k-cell c of an oriented CW-complex is removable iff it is incident to precisely two

(k+1)-cells c′, c′′ ∈ Ck+1 and none of the boundary cells c′′′ ⊂ ∂c is a removable cell, and
the orientation of c′ and c′′ agree.

Since the orientation of the cells with non-maximal dimension is defined only with
respect to one of n-cells, the last condition must be satisfied for each possible choice of
the cells determining the orientation.

The procedure of removing such cell is the same, as in definition A.25. Moreover, if
the removed cell is of co-dimension 1, we have to determine the orientation of the new
cell c̃. Since the orientation of c′ and c′′ agrees, we say the orientation of c̃ to be in
agreement with the orientation of c′ and c′′ (see figure A.5c).

A.1.2.5 Special cases of CW-complexes

There are two special cases of CW-complexes of high importance for the rest of this
theses: Squid-2-CW-complexes and ∆-complexes. We define them below.
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(a) (b) (c)

Figure A.5: Orientation of cells. (a) - A simple oriented 2-CW-complex. Orientations of
faces are given by arrows. (b) - Induced orientation. The edge e1 can be oriented with
respect to f1 (see the upper arrow) and with respect to f2 (the lower arrow). The edge
e2 can be oriented with respect to f2 (the left arrow) and with respect to f3 (the right
arrow). The boundary edges are oriented uniquely. (c) - Consistent orientation. The
faces f2 and f3 are oriented consistently, because the orientations induced by them on
e2 are opposite. Thus e2 is a removable cell. The edge e1 is not removable. The vertex
V was not removable when the edge e2 was present, but now it is removable, thus the
vertex V was pre-removable.

Squid-2-CW-complexes
It may happen, that the boundary of a 2-CW-complex has form of a split graph G(s)

of a squid-graph γ =
(
G(s), S

)
. In such case we can introduce an extra structure on the

boundary of this 2-complex:

Definition A.29. Squid-2-CW-complex
A Squid-2-CW-complex is a pair (κ, S), such that (∂κ, S) is a squid-graph.

∆-complexes
In order to define ∆-complexes let us first define a k-simplex:

Definition A.30. k-simplex
A k-simplex is the subset of Rk defined as

∆k :=

{
x ∈ Rk :

(
∀i=1,...,kx

i ≥ 0
)
∧

(
k∑
i=1

xi ≤ 1

)}
(A.14)

The boundary of a k-simplex is ∂∆k =
⋃k
I=0 ∆k−1

I where for I = 1, . . . , k each set
∆k−1
I is defined as ∆k−1

I :=
{
x ∈ ∆k : xI = 0

}
and for I = 0 we have

∆k−1
0 :=

{
x ∈ ∆k :

(∑k
i=1 x

i = 1
)}

. Each of the sets ∆k−1
I can be affine transformed

into a (k − 1)-simplex, thus there is a natural decomposition of ∂∆k into (k + 1) sim-
plexes ∆k−1. This decomposition continues recursively until k = 0, where 0-simplex is
a point and has no boundary. This lets us introduce a structure of a k-CW-complex on
each k-simplex.
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Definition A.31. ∆-complex
A n-∆-complex κ∆ is a n-CW-complex such, that each k-dimensional cell of κ∆ is a k-

simplex with the k-CW-complex structure introduced as above, and each of the boundary
maps fk is consistent with the k-simplex structures (i.e. given a k-cell c = ∆k each
boundary cell of c introduced by k-simplex structure is mapped onto precisely one boundary
cell of c with respect to κ∆).

A cellular decomposition into a ∆-complex κ∆ is called triangulation.

A.1.2.6 Duality of CW-complexes

In spin-foam theories one needs a notion of a CW-complex dual to a cellular decomposition
of a topological space. Although it is hard to define such duality in general, there is no
need to do so, because in this thesis it is used only in two cases: a 1-complex dual to
a 3-dimensional cellular decomposition and a 2-complex dual to a 4-dimensional cellular
decomposition.

Let us define it here. The definitions are very technical. We will start with defining 1-
and 2-complexes dual to 3- and 4-dimensional triangulations respectively, since in case of
triangulations it is relatively easy to visualise all the procedure and to find the relations
between properties of the cellular decomposition and resulting dual complex. Then we
will discuss, how to apply the same procedure to more general cellular decompositions.

Graph dual to 3-dimensional cellular decomposition
Consider a triangulation 3∆ of a 3-dimensional topological space Σ. One can define a

graph dual to the triangulation G = 3∆? in the following way. Let
3∆ =

(
C3, C2, C1, C0, f3, f2, f1

)
, then the graph G = (N,L), where N = Nint ∪ Nbound

such that

• There is a 1-to-1 correspondence between 3-cells of 3∆ and internal nodes of G, i.e.
for each tetrahedron θ ∈ C3 there is one and only one node nθ ∈ Nint, and there
are no other nodes in Nint.

• There is a 1-to-1 correspondence between 2-cells of 3∆ and links of G, i.e. for each
triangle t ∈ C2 there is one and only one link `t ∈ L, and there are no other links.

• There is a 1-to-1 correspondence between boundary 2-cells of 3∆ and boundary
nodes of G, i.e. for each triangle t ∈ C2 ∩ ∂ 3∆ there is one and only one node
nt ∈ Nbound and there are no other nodes in Nbound.

• Whenever two tetrahedra θ, θ′ of 3∆ are adjacent (i.e. share a triangle t), the link
`t of G connects the nodes nθ and nθ′ (one can pick an arbitrary orientation).

• For each boundary triangle t of the tetrahedra θ of 3∆ the link `t of G connects nt
and nθ (again one can pick an arbitrary orientation)

Each graph obtained in such a way have two interesting properties:

• Each internal node n ∈ Nint is precisely 4-valent.

• Each boundary node n ∈ Nbound is precisely 1-valent (thus if the manifold Σ - and
respectively the triangulation 3∆ - is boundaryless, the graph G is closed).
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Obviously the graph G does not capture all the information encoded in the triangulation -
it is insensitive on gluing of 1- and 0-cells of 3∆. However it captures enough information
to construct (after appropriate coloring) a diffeomorphism-invariant spin-network state
on Σ (see Appendix A.3.3).

The above procedure can be easily generalized to the cellular decomposition that is
not a triangulation. Indeed, none of the steps of the procedure depends on the shape of
cells. The only point where we used the fact, that 3∆ is a triangulation was reading the
valency of the nodes n ∈ Nint - it is 4 because each tetrahedron has precisely 4 faces. In
case of a general cellular decomposition this number may be arbitrary, thus a graph dual
to an arbitrary cellular decomposition may have nodes of arbitrary valence.

2-complex dual to 4-dimensional triangulation
The above procedure can be easily generalised 1-dimension up. Indeed, let M be a

4-dimensional topological space and let 4∆ =
(
C4, C3, C2, C1, C0, f4, f3, f2, f1

)
be a trian-

gulation ofM (i.e. X 4∆ =M). Then the 2-complex dual to the triangulation κ = 4∆?

is defined as follows. Let κ = (F,E,V; f2, f1) where E = Eint ∪ L and V = Vint ∪N,
such that:

• There is a 1-to-1 correspondence between 4-cells of 4∆ and internal vertices of κ,
i.e. for each 4-simplex s ∈ C4 there is one and only one vertex vs ∈ Vint, and there
are no other vertices in Vint.

• There is a 1-to-1 correspondence between 3-cells of 4∆ and internal edges of κ, i.e.
for each tetrahedron θ ∈ C3 there is one and only one edge eθ ∈ Eint, and there are
no other edges in Eint.

• There is a 1-to-1 correspondence between 2-cells of 4∆ and faces of κ, i.e. for each
triangle t ∈ C2 there is one and only one face ft ∈ F, and there are no other faces.

• The boundary 3-∆-complex ∂ 4∆ is a triangulation of the boundary manifold
Σ = ∂M. Applying the above procedure one obtain a graph G =

(
∂ 4∆

)?. This
graph defines the boundary edges L and boundary vertices N of the 2-complex κ,
together with incidency relations on them.

• Whenever two 4-simplices s, s′ of 4∆ are adjacent (i.e. share a tetrahedron θ), the
edge eθ of κ connects the vertices vs and vs′ .

• For each boundary tetrahedron θ of a 4-simplex s of 4∆ the edge eθ of κ connects
the node nθ and vs.

• The faces f ∈ F are glued onto the skeleton obtained above as follows.

– Let t ∈ C2 be an triangle of 4∆. It is incident to a number of 4-simplices
s1, . . . , sk. If t is multi-incident to si, the 4-simplex si must appear multiple
times in the series s1, . . . , sk.

– Let us order the 4-simplices in such a way, that si and si+1 are adjacent and
they share a tetrahedron θi, that is incident to t.

∗ If t is an internal face of 4∆, we also want sk and s1 to be adjacent and
to share a tetrahedron θk incident to t.

– Consider a series of edges eθ1 , . . . , eθk−1
, each one oriented from si to si+1
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∗ If t is an internal face of 4∆, we add the edge eθk oriented from sk to s1

at the end of the series.
∗ If t is a boundary face of 4∆, we add the edge `t at the end of the series,

we orient it from nθk to nθ1 (because the tetrahedra θ1 and θk must be
boundary tetrahedra).

– The boundary of ft is a circle. The series eθ1 , . . . , eθk (or eθ1 , . . . , eθk−1
, `t)

form a closed path γ. We glue the face onto the 1-sceleton of κ by gluing the
circle ∂ft along the path γ. The orientation of γ induces the orientation of ft
(but of course it can be reversed)

A 2-complex dual to a triangulation of a 4-manifold has the following properties:

• Each internal vertex v ∈ Vint is precisely 5-valent.

• Each boundary vertex n ∈ N is also precisely 5-valent, but precisely one of the
edges incident of it is internal, and the other four are the boundary links.

• Each internal edge e ∈ Eint is incident to precisely 4 faces (when counting multiply
the faces, that are multi-incident).

• Each boundary edge ` ∈ L is incident to precisely 1 face.

Again a 2-complex κ = 4∆? does not capture all the information encoded in the trian-
gulation, however, it is enough to introduce the spin-foam structure on it (see subsec-
tion 1.2.2).

Again the above construction does not depend on the fact, that 4∆ is a triangulation -
this fact is necessary only when calculating the valency of vertices and edges. Thus given
an arbitrary 4-dimensional cellular decomposition one can apply the same procedure
obtaining a dual 2-complex without the above constrains on the valency of vertices and
edges.

A.1.2.7 Gluing of CW-complexes

Let us now introduce a procedure of gluing CW-complexes.

Definition A.32. Gluing a CW-complex
Consider a n-CW-complex κ = (Cn, . . . , C0 ; fn, . . . , f1) and a pair of k-cells

α = (cA, cB) together with a map fα : cA → cB that is a complexomorphism of the in-
duced complexes κcA and κcB . We can glue κ along fα obtaining the new n-CW-complex,
that we shall denote by κ/fα or simply by κ/α. The resulting complex is determined as
follows. Let κ/fα =

(
C̃n, . . . , C̃0 ; f̃n, . . . , f̃1

)
.

• The sets C̃k for k > dim (cA) of κ/fα are the same as Ck of κ.

• On the sets Ck for k ≤ dim (cA) the map fα introduces a relation defined as follows:
the cells c and c′ are in the relation iff c is incident to cA (or c = cA) and fα : c 7→ c′.
In such case the map fα defines a homeomorphism of c and c′. Let us extend this
relation to a minimal equivalence relation on Ck and call this equivalence relation
∼α,k, then C̃k = Ck/ ∼α,k.

• The maps f̃k are defined as follows. Let πα,k : Ck → C̃k be the projection on the
equivalence classes of ∼α,k. Then f̃k = πα,k−1 ◦ fk ◦ π−1

α,k.
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In order to make sure, that the definition is consistent, one has to check, if the
maps f̃k are well defined, i.e. whether they not depend on the choice of the cell in the
image of π−1

α,k. This issue appear only when considering cell with more-than-one-element
equivalence classes with respect to ∼α,k, i.e. the cells of k < dim (cA), that are incident
with cA or cB. Thus let us pick such k-cell c that is incident to cA and let us act by f̃k
on the equivalence class [∂c]∼α,k . We get

f̃k (∂c) = πα,k−1

(
fk

(
π−1
α,k

(
[∂c]∼α,k

)))
(A.15)

Since c is incident to cA, we the inversed projection π−1
α,k may pick (at least) two possible

representatives of [∂c]∼α,k , namely ∂c or fα (∂c). For ∂c the result is

f̃k (∂c)(1) = πα,k−1 (fk (∂c)) (A.16)

for fα (∂c) the result is
f̃k (∂c)(2) = πα,k−1 (fk (fα (∂c))) (A.17)

now since fα is a complexomorphism, we have fk (fα (∂c)) = fα (fk (∂c)) (together with
a homeomorphism of corresponding cells). But this means, that the images fk (∂c) and
fk (fα (∂c)) lie in the same equivalence class of ∼α,k−1, thus the projection πα,k−1 maps
them onto the same object, so f̃k (∂c)(1) = f̃k (∂c)(2). If one chose c incident to cB,
the same derivation would work with fαreplaced by (fα)−1, thus the maps f̃k are well
defined.

Quod erat demonstrandum.
One can prove, that in 2-CW-complex gluing along pairs of edges commute, i.e. given

a 2-complex κ and to pairs α = (e1, e2) and β = (e3, e4) for e1, . . . , e4 ∈ Eκ the 2-
complexes (κ/α) /β and (κ/β) /α are complexomorphic. The proof is presented in Ap-
pendix B.1.

A.2 Differential geometry

In this section we provide a short introduction to differential geometry. First in A.2.1 we
recall some basing notions of differential topology, like a manifold, tangent space, tensor
bundles etc. Then in A.2.2 we introduce Riemann and Cartan structures on manifolds,
namely: metrics, connections, covariant derivatives and holonomies. All the definitions
are based on [98].

As it is done in all sections of this appendix, this section is rather a recall and overview
then a detailed study of differential geometry. Only the most important definitions are
recalled, and most of facts are stated without a proof.

A.2.1 Differential topology

A differential topology is a tool to study differential properties of functions on topological
manifolds. The issues discussed here are often called the differential geometry, however,
we reserve the name geometry to the part of the field studied in the second subsection,
where we can define angles, volumes and twists.

First we define the topological manifolds without and with boundary and some basic
notions related to them. Then we introduce fibre bundles: vector and tensor bundles,
tangent bundles and cotangent bundles, together with vector fields, tensor fields and
differential forms. Finally we recall the special class of manifolds enhanced with a group
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structure, namely the Lie groups, and we define the gauge action of a Lie group on fibre
bundles.

A.2.1.1 Manifolds

We will define various categories of manifolds: topological manifolds (called also C0-
manifolds), differential manifolds of class Ck (called also Ck-manifolds) and smooth man-
ifolds (called also C∞-manifolds). The categories differ only by the class of functions
considered admissible in various cases. Wherever in this section we say about a function
f : Rn → Rm appropriately smooth, we mean of class Ck for k corresponding to considered
category (where k = 0 for topological manifolds and k =∞ for smooth manifolds).

Definition A.33. Topological, differentiable and smooth manifold, submanifold
A n-dimensional topological manifold (also called C0-manifold) is a pair (M,A) of a

topological separable Hausdorff space M and an atlas A = {(Uα, φα)} being a set of pairs
of open sets Uα ⊂ M and homeomorphisms φα : Uα → φ (Uα) ⊂ Rn, such that the sets
Uα cover M (i.e.

⋃
α Uα = M). Each homeomorphism φα is called a coordinate chart,

and its inverse φ−1
α

∣∣
φα(Uα)

is called a map or a parametrisation. Two atlases A and A′

are considered equivalent iff there is an atlas A′′ such that both A and A′ are subatlases
of A′′ (i.e. A ⊂ A′′ and A′ ⊂ A′′).

A topological manifold is called Ck-differentiable manifold (or smooth manifold) if the
maps of the atlas satisfy an extra condition, namely for each two intersecting sets Uα,
Uβ the change of coordinates map Φαβ := φα ◦ φ−1

β (defined on φβ (Uα ∩ Uβ) ⊂ Rn) is
a diffeomorphism of the sets φβ (Uα ∩ Uβ) and φα (Uα ∩ Uβ) of class Ck (or C∞ in case
of a smooth manifold). In the differentiable case two atlases A and A′ are considered
equivalent iff there is an atlas A′′ of the same Ck-class, such that both A and A′ are
subatlases of A′′.

A m-dimensional submanifold (m < n) of a manifold is a pair of a subset Σ ⊂M and
the atlas AΣ := A|Σ (i.e. the atlas obtained by restriction of all coordinate charts to their
intersection with Σ), such that for each coordinate chart in AΣ the image φα (Uα ∩ Σ)
can be mapped by a Ck bijective map to a subset of Rm (of course in case of topological
manifolds k = 0, and in case of smooth ones k =∞). We say, that the manifold structure
of Σ is induced by M .

Submanifold can be considered both as an independent manifold Σ̃, or as a submanifold
Σ ⊂ M , called an embedded manifold; there is a map, that maps each point of Σ̃ onto
corresponding point of Σ ⊂ M , called the embedding map and denoted by ı : Σ̃ ↪→M .
Whenever we want to emphasise the fact of a submanifold being embedded into its super-
manifold we use the notation Σ ↪→M .

In most cases we will not need to use the atlases of manifolds explicitly, thus we will
refer to the topological space M of the manifold as to the manifold.

Each coordinate chart φα defines a set of coordinate functions
{
xi
}
i=1,...,dimM

defined
on Uα. They act as xi (p) := (φα (p))i. However, whenever the exact choice of the
coordinate chart is not crucial, we will use a shortcut notation as xi (p) = pi. The
parametrisations will be denoted as p

(
xi
)
. In most cases we will also not need to know,

what parametrisation are we using, thus whenever this choice is irrelevant, we will simply
not mention it. For example given a function f on M and a coordinate chart, there is a
(Rn → R)-function induced by the parametrisation, namely f

(
p
(
xi
))

- if the choice of
coordinates is obvious or irrelevant, we will simply denote it as f

(
xi
)
.
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Definition A.34. Manifold with a boundary
A manifold with a boundary is defined as a manifold, however the coordinate charts are

allowed to be homeomorphisms φα : Uα → φ (Uα) ⊂ Rn≥0, where Rn≥0 :
{
x ∈ Rn : x1 ≥ 0

}
(and likewise in case of changes of coordinates; where for Ck- and smooth- manifolds the
differentials on the boundary are considered only with respect to the directions tangent to
the boundary). The boundary of a manifold with a boundary is a sum of the points, that
has x1-coordinate equal to 0 in at least one coordinate chart:

∂M =
{
p ∈ m : ∃α:Uα3px

1 (φα (p)) = 0
}

(A.18)

The boundary of a manifold has the manifold structure induced from M (it is a subman-
ifold of M).

One can consider also manifolds with corners of degree l - then the coordinate charts
are assumed to map on

{
x ∈ Rn : x1 ≥ 0, . . . , xl ≥ 0

}
.

Let us introduce a notion of region:

Definition A.35. Region
A k-dimensional region R(k) of n-dimensional manifold M is a k-dimensional con-

nected submanifold of M , possibly with a boundary. We do not use the name region when
k = 0 - the only 0-dimensional regions would be points, and we call them simply points.

Let us pay some more attention to two special cases of manifolds: the paths and the
surfaces, i.e. 1- and 2-dimensional manifolds.

Paths
Given a manifold M , a path is a continuous map γ : I → M where R ⊃ I is a

connected interval. We say, that γ is a simple path if I is a closed interval (then one can
rescale the parametrisation such that γ : [0, 1] → M). One can also consider open paths
γ : [0, 1[ → M and infinite paths γ : R → M . Given a manifold of class Ck we say, that
the path is of class Ck′ (k′ ≤ k), iff in any coordinate chart the coordinates of the path
are Ck′ functions.

A path γ define a 1-dimentional submanifold of M iff it is injective. The submanifold
being an image of a path will be called a link and denoted by `.

A simple link is an image of a simple path. It is a manifold with a boundary con-
sisting two distinct points ∂` := {` (0) , ` (1)}. The boundary points are called source
s (`) := ` (0) and target t (`) := ` (1). The path with the parametrisation inverted will
be denoted as `−1 (as a manifold ` and `−1 are the same object, however the distinction
between ` and `−1 is needed in case of embedded directed graphs).

An open link is an image of an open path. It has only one boundary point - the
source: ∂` = {` (0)}.

It may happen, that a simple path is injective on ]0, 1[, but γ (0) = γ (1). The image
of such path will be called a loop. Loops are always topological submanifolds of M ,
however, the start/end point may be a corner, and thus it may violate the differential
structure (i.e. even if a path is of class Ck′ , the loop might be a submanifold of class
lower then k′). Loops will be also often denoted by `.

Surfaces
A surface is a connected 2-dimmentional manifold. We will usually denote them

by f or S.
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A simple surface (a simple surface with a boundary) is a 2-dimmentional manifold,
that is homeomorphic to a disc (a disc with a boundary respectively). The boundary of
a simple surface with a boundary is a loop.

In case of embedded surfaces it also may happen, that the induced differential struc-
ture is different, than the one presented above (likewise in case of paths).

A.2.1.2 Fibre bundles, vector and tensor bundles

This section is valid for each class of differentiability, i.e. we assume all the manifolds are
of class Ck (for k ≥ 1) and whenever we consider a map between manifolds (or a function
from manifold to Rn), it is assumed to be Ck.

Definition A.36. Fibre bundle
Given two manifoldsM and X the fibre bundle is a manifold B and a map π : B →M

such that for each point p ∈M the counterimage π−1 (p) is diffeomorphic with X, and for
each point p ∈M there is a neighbourhood U 3 p such that there exists a diffeomorphism
φU : π−1 (U)→ U ×X.

The manifold M is called the base of the bundle, the manifold X is called the typical
fibre, each diffeomorphism φU is called local trivialisation of the bundle, the map π is
called the projection map, and the manifold B is usually called simply the bundle of the
bulk of the bundle. A fibre bundle is denoted by

(
B →

π
M
)
, or simply by (B →M), if

the projection map is obvious or irrelevant. If one wants to emphasise the typical fibre,
one can write (B →M)X .

An obvious example of a fibre bundle is the trivial bundle B = M × X with the
natural projection π : (p, x)→ p.

Nontrivial bundles appear when the base manifold is not homeomorphic to a region.
Consider base manifold being the circle M = S1 and the typical fibre being also a circle
X = S1. The trivial bundle is the torus B = S1 × S1 = T2. Let us now parametrise the
base manifold by x ∈ [0, 2π] and the fibre by α ∈ [0, 2π] (obviously 0 and 2π are glued)
and consider the following local trivialisation: on x ∈ ]0, 2π[ there is a natural local
trivialisation of onto the product ]0, 2π[× S1, but in a neighbourhood of x = 0 ≡ 2π the
fibres are inversed (i.e. limx→0+ (x, α) ≡ limx→2π− (x, 2π − α)). The resulting manifold
is the Klein bottle, and it is a S1 fibre bundle over S1.

Definition A.37. Vector bundle
Assume, that the typical fibre is a vector space V . Then the bundle

(
B →

π
M
)
V

is
called the Fibre bundle.

Fibre bundles provide a convenient definition of vector fields on manifolds.

Definition A.38. Vector field
Given an open set U ⊂M of the base of a vector bundle (B →M), the section of the

bundle B is a (appropriately smooth) map ω : U → B, such that ∀p∈Uπ (ω (p)) = p. Sec-
tions have a structure of vector space induced by the structure of fibres:
if ω1,2 (p) = (x, v1,2 (p)), then (ω1 + ω2) (p) = (p, v1 (p) + v2 (p)).

The sections are often called vector fields when applied to physics. They are also called
tensor fields if the space V has an extra structure of a tensor product V = V1 ⊗ · · · ⊗ V ?

n .
Moreover, given two bundles (B1 →M)V1

and (B2 →M)V2
and two sections ω1 of B1

and ω2 of B2 one can define the tensor product ω1⊗ω2 as the section of the third bundle
(B3 →M)V1×V2

, such that (ω1 ⊗ ω2) (p) := (p, ω1 (p)⊗ ω2 (p)). We will call the bundle
B3 the tensor product of B1 and B2.
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The set of all sections (fields) of a bundle (B →M)V is denoted as Ξ (B) (or Ξ (B)M
or Ξ (B)M,V if one wants to emphasise the structure of the bundle), set of all sections
over a certain open set U ⊂M is denoted as Ξ (B)U or Ξ (B)U,V .

The most basic example of vector bundles and vector fields are tangent and cotangent
bundle, containing tangent vectors and one-forms. There are many equivalent definitions
of the tangent vectors. Let us provide the one given in [98]:

Definition A.39. Tangent space at a point, tangent bundle
Given a manifold M and a point p ∈M consider a set of all functionals X on the set

of functions on M , satisfying the following conditions

• linearity: X (f + g) = X (f) +X (g)

• Leibniz rule: X (fg) = f (p)X (g) + g (p)X (f)

• if f is a constant function, then X (f) = 0

The set of all such functionals form a vector space of dimension equal to the dimension
of M . We call it the tangent space to M at p, and denote as TpM . One can attach a
tangent space to each point of M obtaining the tangent bundle TM (obviously the fibre
of this bundle is isomorphic to RdimM ). Sections of TM are called tangent fields to M
(or tangent vector fields on M , the value of a tangent field in a particular point is called
a tangent vector to M). Set of all tangent fields is denoted as X (M) := Ξ (TM).

Given a coordinate chart
(
xi
)
on M there is a natural basis of tangent vectors, given

by ∂i := ∂
∂xi

. A complete set of basis vectors is called frame. Vector fields will be denoted
as X(p) = Xi (p) ∂i, or in abstract index notation as Xi (p).

An example of a tangent vector to M is the velocity vector of a path: given a path
γ : ]−ε, ε[ → M such that γ (0) = p and a function f defined on a neighbourhood of p
the tangent vector Xγ

p acts on the function f as

Xγ
p (f) :=

d

dt

∣∣∣∣
t=0

f (γ (t)) (A.19)

Each tangent vector is the velocity vector of some path (however, different paths may
have the same velocity vector), we will sometimes denote it shortly as Xp = d

dt

∣∣
t=0

γ (t)
or Xp = γ̇ (t)

Tangent fields can be considered as functions on M valued in a vector space V iso-
morphic with TpM .

Having the tangent fields we can introduce tangent multivector fields as tensor products
of tangent fields. The space tangent multivectors will be denoted as
X⊗k (M) := Ξ (TM ⊗ · · · ⊗ TM), the space of symmetric tangent multivectors will be
denoted as X�k (M) := Ξ (TM � · · · � TM), the space of antisymmetric tangent mul-
tivectors will be denoted as X∧k (M) := Ξ (TM ∧ · · · ∧ TM), or as Λk (M).

Given a tangent field one can always locally define family of diffeomorphisms called
the flow of the tangent field.

Definition A.40. The flow of the tangent field
Let X be a tangent field on M . The flow of X is the family of diffeomorphisms φtX

(for t ∈ ]−ε, ε[), such that for each point p the path γp (t) := φtX (p) satisfy the condition

∀t∈]−ε,ε[ XφtX(p) =
d

ds

∣∣∣∣
s=0

γ (t+ s) (A.20)
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In other words the flow of the tangent field X is defined by the set of curves tangent
to X at each point and parametrised in such a way, that the velocity vector is precisely
X.

The diffeomorphisms of the flow of a tangent fields obviously effects the tensor fields
on a manifold M . The infinitesimal change with respect to the flow is measured by the
Lie derivative:

Definition A.41. Lie derivative
Given a tensor field Y ∈ Ξ (B)M,V and a tangent field X ∈ X (M) the Lie derivative

of Y along X is a tensor field ∂XY defined as follows

(∂XY ) (p) := lim
ε→0

Tφ−εX (Y (φεX (p)))− T (p)

ε
(A.21)

If Y ∈ X (M), the Lie derivative is denoted as ∂XY := [X,Y ] and indeed it is the vector
field defined by the commutator of the tangent fields, i.e.

[X,Y ] (f) = X (Y (f))− Y (X (f)) (A.22)

The Lie derivative commutes with tensor product and with contraction. It also acts
by the duality on the fields dual to the tangent fields, that are introduced below.

Definition A.42. Cotangent bundle and differential forms
Consider a linear functional dual at each point p ∈ M to the tangent fields, i.e. ω

such that ∀p∈Mω (p) : TpM → R is a linear map. Assuming, that given an appropriately
smooth field X the action of ω on X is a smooth function on M (i.e. f (p) := ω (p)yX (p)
is of appropriate differentiability class), such functional is called a differential form or a
one-form on M . The set of all one-form on M form a fibre bundle, called the cotangent
bundle over M , denoted by T ?M .

Consider an antisymmetric tensor of product of k copies of cotangent bundle, we will
denote it as Λ?k (M) and it is obviously a tensor bundle over M . The sections of such
bundle are antisymmetric tensor products of one-forms. Each such section is a functional
on k tangent fields. These sections are called k-forms on M , and the space of all k-
forms is denoted as Ωk (M) = Ξ

(
Λ?k (M)

)
. Obviously Ω1 (M) = Ξ (T ?M), one can also

say, that the space of all differentiable functions on M is the space of 0-forms, and thus
C∞ (M) = Ω0 (M).

Obviously given a coordinate chart
(
xi
)
on M one can at each point (where the chart

is defined) introduce a basis dual to ∂i - denoted as dxi. One-forms will be denoted as
ω (p) = ωi (p) dxi, and k-forms as ω (p) = ωi1···ik (p) dxi1 ∧· · ·∧dxik , or in abstract index
notation as ωi (p) and ωi1···ik (p) respectively.

It will be also convenient to consider forms giving values more general, then simply
real numbers:

Definition A.43. V -valued functions, V -valued k-forms and V -valued tangent vector
fields and tangent multifields, (p, q)-tensors

Consider a vector space V and a manifold M . One can construct a vector bundle
(B →M)V of V -valued functions on M (for example M × V ). We will denote them like
ordinary functions: v : M → V , v : p 7→ v (p), however remembering, that v (p) ∈ V .
Given a basis {eI} of V we have v (p) = eIv

I (p), sometimes we will use the abstract
index notation, writing simply vI (p).

Consider now a bundle B ⊗ Λ?k (M). The sections of these bundle are V -valued k-
forms on M . We denote them as ordinary forms ω : M → Λk

(
T ?pM

)
⊗V , ω : p 7→ ω (p),
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however remembering, that ω (p) ∈ Λk
(
T ?pM

)
⊗ V . Given a basis {eI} of V and a

coordinate chart
(
xi
)
on M we write ω (p) = ωIi1···ik (p) eI ⊗ dxi1 ∧ · · · ∧ dxik (of course

we will also use the abstract index notation). The space of V -valued k-forms will be
denoted as V ⊗ Ωk (M) := Ξ

(
B ⊗ Λ?k (M)

)
.

In a similar way one can define a V -valued vector field E, as a section of a bundle
B ⊗ TM . In a coordinate chart (xi) the components of a E are E (p) = EI,i eI ⊗ ∂i.
Similarly one can define multi-vector fields, as Ξ

(
B ⊗X∧k (M)

)
.

There is a special nomenclature for sections of bundles (TM)⊗p ⊗ (T ?M)⊗q - they
are called tensors fields p-covariant q-contravariant, or simply (p, q)-tensor fields. Given a
(B →M)V bundle we have also V -valued (p, q)-tensors, being sections of
B⊗ (TM)⊗p⊗ (T ?M)⊗q. Some of these tensor products may be symmetrised or antisym-
metrized, thus we have for example p-covariant symmetric q-contravariant, antisymmetric
in last two indices tensor fields being the sections of
(TM)�p ⊗ (T ?M)⊗(q−2) ⊗ (T ?M)∧2, etc.

Given a diffeomorphism of a base manifold, one can consider the way it influence the
tangent and cotangent fields.

Definition A.44. Tangent and cotangent map
Let φ : M → M be a diffeomorphism. The tangent map Tφ is a collection of linear

maps Tpφ : TpM → Tφ(p)M acting as follows: given a vector Xγ
p defined by the path γ it

is mapped to the vector defined by the path φ (γ):

Tpφ : Xγ
p 7→ X

φ(γ)
φ(p) (A.23)

The cotangent map T ?φ is defined by the algebraic duality: given a form α and a
vector X we have

[
T ?p φ (α)

]
yXφ−1(p) = αy

[
Tφ−1(p)φ

(
Xφ−1(p)

)]
.

The tangent and cotangent maps can be naturally generalised to multivectors and
higher order forms.

A.2.1.3 Lie groups

A special class of manifolds are the Lie Groups:

Definition A.45. Lie group
A Lie group is a group G with a manifold structure, such that all the group operations

(i.e. multiplication and inversion) are smooth maps.

Two Lie groups are used most in our work: SU(2) and SL(2,C).
The SU(2)-group is the group of special unitary matrices of dimension 2:

SU(2) :=

{
u =

(
a b
c d

)
∈ C2×2 : det (u) = 1 ∧ u† = u−1

}
(A.24)

It is a 3-dimensional manifold, homeomorphic to the 3-sphere S3. It covers the group
of 3-dimensional rotations: SO(3) = SU(2)/Z2. It is described in more detail in Ap-
pendix A.3. The elements of SU(2) will be denoted by h or by u, v, U, V .

The SL(2,C)-group is the group of 2× 2 matrices with determinant equal to 1:

SL(2,C) :=

{
g =

(
a b
c d

)
∈ C2×2 : det (u) = 1

}
(A.25)
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It is a 6-dimensional, noncompact manifold. It is the universal covering of the proper
orthochronous subgroup of the Lorentz group: SL(2,C)→ SO (1, 3)+. It is described in
more detail in Appendix A.4, the detailed study can be found in the textbook [86]. The
elements of SL(2,C) will be denoted by g.

Lie groups are groups and thus they have linear representations in vector spaces. A
representation of a Lie group on a vector space being a fibre of a vector bundle leads us
to the notion of gauge action and gauge transformations:

Definition A.46. Gauge Transformation
Consider a fibre bundle (B →M)V , a Lie group G and a representation

ρ : G → Aut (V ). Consider a G-valued field g (·) on M (i.e. a smooth function
g : M → G). A gauge transformation defined by the field g (·) is a map on the set of sec-
tions g (·) : Ξ (B)→ Ξ (B) (i.e. a map on V -valued fields on M - see Appendix A.2.1.2)
defined as follows. Let us pick a field X ∈ Ξ (B) and choose a local trivialisation, so
that the field looks like a function X : M → V . Then the gauge transformation maps
g (·) : X 7→ Xg, where the new field Xg (x) := ρ (g (x))X (x).

The equivalence classes of gauge transformations are called gauge orbits. Obviously
two fields that vanish in different points lay on different gauge orbits. Moreover in most
cases the representation maps G to ρ (G) that is a proper subgroup of Aut(V ), thus there
are more than one gauge orbit per point of M .

The tensor fields with gauge action of a group G will be called G-tensor fields or
G-tensors. Of course it might happen, that we want to introduce an action of G-group
on a bundle, that is not a linear representation of G on the fibre (see for example Ap-
pendix A.2.2.2) - then even though the fibre bundle has some tensor structure, we will
not call it’s sections G-tensors.

Groups obviously acts on themselves:

Definition A.47. Action of a group on itself
Given an element g ∈ G we let us define a map φLg : G→ G given by φLg : g′ 7→ g · g′.

Thanks to smoothness and invertibility of multiplication the map φLg is a diffeomorphism.
We call it left action of G on itself. Similarly we define the right action of G on itself as
φLg : g′ 7→ g′ · g.

Having the left and right action we can define invariant fields on a group:

Definition A.48. Left- and right-invariant fields
Consider a tangent field Xe ∈ TeG, where e ∈ G is the unity element. Using the

family of left and right action of G on itself we can extend each such field to each point
g ∈ G as:

XL
g := TφLg Xe XR

g := TφRg Xe (A.26)

The fields XL and XR are called left- and right-invariant fields on G, respectively. Some-
times they are called left- (right-) invariant extensions of a vector Xe.

The invariant fields are used to define the Lie algebra of a Lie group:

Definition A.49. Lie algebra
Given a group G its Lie algebra g is the vector space isomorphic to the tangent space

to G at the unity element

g :=
1

ı̇
TeG (A.27)

231



The Lie algebra product is given by the Lie derivative of the left invariant fields: let
AX , AY ∈ g be given by AX := 1

ı̇X and AY := 1
ı̇ Y for some tangent vectors X,Y ∈ TeG,

let XL and Y L are the left-invariant extensions of X and Y . The the Lie product of AX
and AY equals:

[AX , AY ]g := ı̇
[
XL, Y L

]
(A.28)

where [·, ·] is the commutator of tangent fields. Given a representation of the group
ρ : G→ Aut (V ) there is always a representation of the Lie algebra determined by the
tangent map to the representation map: Tρ : g→ End (V ).

Concerning generators of Lie groups there are two possible conventions. Given a
Lie group G, its Lie algebra may be defined either as the vector space gA := TeG or
gH := 1

ı̇ TeG (Lie algebra is a real vector space), so that in the defining representation
the elements g ∈ G (in some neighbourhood of the unity) are given by

g = eαX
A

= eı̇αX
H

(A.29)

for α ∈ R and both XA and XH being appropriate endomorphisms of the carrier space
of the defining representation of G. The algebra multiplication ◦ in both gA and gH is
induced by the adjoint action of G and it is

XA ◦A Y A :=
[
XA, Y A

]
and XH ◦H Y H := ı̇

[
XH , Y H

]
(A.30)

where [X,Y ] := XY − Y X is the ordinary matrix commutator. It is easy to see, that gA

and gH are isomorphic algebras. Indeed, ∀XA∈gA
1
ı̇X

A ∈ gH and the algebra multiplica-
tion transforms as

1

ı̇
XA ◦H

1

ı̇
Y A = ı̇

[
1

ı̇
XA,

1

ı̇
Y A

]
=

1

ı̇

[
XA, Y A

]
=

1

ı̇

(
XA ◦A Y A

)
(A.31)

Consider now a unitary representation ρ of G. The algebras gA and gH are represented
by the tangent representation Tρ. The algebra gA is mapped onto the space of anti-
hermitian generators of ρ (G), while the algebra gH is mapped onto the space of hermitian
generators of ρ (G), thus let us call gA the anti-hermitian Lie algebra of G and gH the
hermitian Lie algebra of G.

As we have shown above, the hermitian and anti-hermitian Lie algebras of G are
equivalent. However, the matrix elements of their members differ by the factor of ı̇,
which influence some formulae, thus it is important to fix this convention.

Remark A.3. The hermitian convention is more convenient for the functional analysis
(for example in this convention one has the well known action of rotation-generator in
Wigner representation, given in (A.75)), and since the main use of Lie algebras in the
thesis are in the functional analysis context, we decide to use the hermitian generators in
most cases. It is the opposite choice to the one used for example in [6]. On the other hand,
the anti-hermitian convention is more convenient when considering connections, because
it allows to introduce a covariant derivative operator (see Appendix A.2.2.2) which is an
anti-hermitian operator, similarly to ordinary derivative operator. Thus whenever we say
g-valued connection, we mean gA-valued connection. Elsewhere we either use gH or we
state the use of gA explicitly by keeping the superscript A (thus whenever - except the
phrase g-valued connection - we use g without a superscript, we mean gH).
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A.2.2 Geometry

We start with defining the (pseudo-)Riemannian metric on a manifold, together with
basic geometric notions. Then we introduce affine connections on fibre bundles. We
relate them with the Riemannian structure obtaining the Levi-Civita connection. Finally
we study holonomies of connections and we prove the formula of gauge transformation of
a holonomy.

A.2.2.1 Riemannian geometry

Consider a manifold M and a tensor field g : M → T ?pM � T ?pM (i.e. g is a section of
T ?M � T ?M). We say, that g is nondegenerated, if in each coordinate chart the matrix
gij is non degenerated. Similarly we say, that g is positive, if in each coordinate chart it
has only positive eigenvalues.

Definition A.50. (pseudo-)Riemannian manifold
A Riemannian manifold is a pair (M, g) of a manifold M and a field

g : M → T ?pM � T ?pM , such that at each point p the field g is positive and nonde-
generated. The field g is called the metric field. A manifold is called pseudo-Riemannian
iff the field g is nondegenerated, but id does not have to be positive. At each point p ∈M
the directions X ∈ TpM such that gp(X,X) = 0 are called null directions. The metric
field defines a (pseudo-)scalar product at each space TpM .

Obviously given a submanifold Σ ↪→M of a (pseudo-)Riemannian manifold there is a
induced field q := g|Σ. If (M, g) is a Riemannian manifold, (Σ, q) is also a Riemannian
manifold. If (M, g) is a pseudo-Riemannian manifold it may happen, that the induced
metric q is Riemannian, pseudo-Riemannian, or degenerate (and this property may vary
in various points of Σ).

The matrix elements of a metric tensor has a natural interpretation as angles:

Definition A.51. Angles in Riemannian manifold
Given two tangent vectors X,Y ∈ TpM , where (M, g) is a Riemannian manifold, the

angle αXY between X and Y is defined by the formula

cosαXY :=
gp (X,Y )√

gp (X,X) gp (Y, Y )
(A.32)

This definition generalises in a natural way to the angle between two intersecting curves:
given γ1 and γ2 such that γ1 (0) = γ2 (0) = p, the angle between them at p is the angle
between the their velocity vectors.

The metric tensor allows to define other geometric quantities, i.e. k-volume:

Definition A.52. k-volume
Given a k-dimensional region R(k) ↪→ M in a Riemannian manifold M (k may be

equal to dimM) the k-volume form is the k-differential form dV (k) on R(k) define in a
coordinates

(
xi
)
i=1,...,k

at R(k) as

dV k :=
√

det (qij)dx
1 ∧ · · · ∧ dxk (A.33)

Although defined in a specific choice of coordinates, the k-volume form does not depend
on the coordinate chart. For k = 1 the volume form is called length form, for k = 2 it
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is called area form, for k = 3 it is called volume form, for higher k it is called k-volume
form. The total k-volume of a region R(k) is given by

V
(
R(k)

)
:=

ˆ
R(k)

dV (k) (A.34)

(and it is called length, area, volume, and k-volume respectively) and is additive and
invariant under a change of coordinates.

A.2.2.2 Affine connections

Let us define a connection on a vector bundle (B →M)V :

Definition A.53. Connection on a vector bundle
Consider a vector bundle (B →M)V and a tangent bundle TM . A connection on B

is a map
∇ : Ξ (TM)× Ξ (B)M,V → Ξ (B)M,V

∇ : (X,Y ) 7→ ∇XY (A.35)

satisfying the following three conditions:

• It is linear in the second argument, i.e.

∇X
(
aY + bY ′

)
= a∇XY + b∇XY ′ for a, b ∈ C (A.36)

• It is functionally linear in first argument, i.e.:

∇fX+gX′Y = f∇XY + g∇X′Y for f, g,∈ C∞ (M) (A.37)

• It satisfies the Leibniz rule when multiplying the second argument by a function:

∇XfY = f∇XY +X (f) · Y for f ∈ C∞ (M) (A.38)

In other words a connection is a directed differential operator on the fields of a bundle B,
where the direction is defined by a tangent field on M .

A very trivial example of a connection is the Lie derivative (see definition A.41).
For connections other then Lie derivative the operation (A.35) is usually called covariant
derivative with respect to the connection ∇.

Since a connection is functionally linear in the tangent field, one can associate a one
form with each connection.

Definition A.54. Connection one-form
Given a connection ∇ on (B →M)V , its connection one-form ω is a one-form valued

in End (V ) = V ⊗ V ? defined as

∇XY =: ∂XY + ω (X)Y (A.39)

Consider now a coordinate chart
(
xi
)
on M and a basis eI on the vector space V . The

connection one-form can be expressed in this basis as

ω = ωIJ = ωIJ,kdx
k (A.40)
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and the derivative along the connection is given by

∇iY I = ∂iY
I + ωIJ,iY

J (A.41)

A connection one-form determines fully the connection, thus we will say connection ω
instead of connection one-form ω of the connection ∇. Having a connection ω we denote

the covariant derivative by
(ω)

∇.

Assume now, that the tensor field Y is a G-tensor for some gauge group G.

Definition A.55. Gauge covariant connection
A connection is called G-covariant, iff it transforms under gauge transformations in

such a way, that the covariant derivative does not change (it is gauge invariant), i.e.

∇XY = ∇gXgY
g (A.42)

this leads to conditions on the action of gauge-transformation on connection one-forms.
A simple calculation leads to the formula

ωg = ρ
(
g−1
)
ωρ (g) + ρ

(
g−1
)

d [ρ (g)] (A.43)

where ρ is the representation of G on the bundle (B →M)V . The action is non-linear,
and that’s why the connection one-form is not considered a G-tensor no matter that it is
a section of the bundle

(
B̃ →M

)
V ?⊗V

.

The equivalence classes of the gauge action (A.43) on the connections are called the
gauge invariant connections.

Consider now connections defined on a bundle (B →M)V such that V is the defining
representation of the group G. The gauge action of the group simplifies to

ωg = g−1ωg + g−1dg (A.44)

Moreover, note that the Lie algebra g of the group G is the subspace of V ? ⊗ V . Let us
then consider only these connections, that takes values in g. Such connection can be very
easily generalised to other G-bundles:

Definition A.56. G-connection
A connection ω is called G-connection for the group G, if it is defined by a one-form

that takes values in gA = ı̇g, which is G-covariant.
A G-connection with the base manifold M defines a G-invariant connection on each

bundle of G-tensors over M . It acts on the tensors via the representation Tρ of the Lie
algebra gA tangent to appropriate representation ρ of the gauge group G:

(ω)

∇XY := ∂XY + Tρ(ω (X))Y (A.45)

Covariant derivatives with respect to different fields in general do not commute. The
measure of non-commutativity of a connection is the Curvature form:

Definition A.57. Curvature form of a connection
Given a connection ω the curvature form is a Aut (V )-valued 2-form on M , which

action is given by

Ω (X1, X2)Y :=
(ω)

∇X1

(ω)

∇X2Y −
(ω)

∇X2

(ω)

∇X1Y −
(ω)

∇ [X1,X2]Y (A.46)
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One can prove, that if ω is a G-covariant connection, its curvature form Ω is a G-tensor-
valued 2-form. For G-connections the following equation holds

Ω = dω +
1

2
[ω, ω] (A.47)

A special class of connections are the connections on the tangent bundle to the man-
ifold. Although they are connections on a vector bundle, we will call them connections
defined on manifolds:

Definition A.58. Connection on a manifold
A connection on a manifold M is a GL (n,R)-connection on the bundle TM (where

n = dimM). The connection one-form of such connection is denoted by Γ instead of ω.
Given a coordinate chart

(
xi
)
on M and related frame (∂i) and coframe

(
dxi
)
the matrix

elements of Γ are given by

Γkj,i = dxky

[
(Γ)

∇i ∂j

]
(A.48)

and they are called Christofel symbols of second kind.
Consider a coordinate transformation φ :

(
xi
)
7→ (ya). Because of GL (n,R)-covariance

the Christofel symbols transform as

Γcb,a = Γkj,i
∂xi

∂ya
∂xj

∂yb
∂yc

∂xk
+
∂yc

∂xu
∂2xu

∂ya∂yb
(A.49)

Since Γ is a GL (n,R)-connection, it can be naturally generalised to any bundle of multi-
vectors or k-forms on M .

Although the connection form has one upper and two lower indices, it is not a (1, 2)-
tensor field, because the transformation rules (A.49) are not linear. Moreover, the con-
nection acts on two tangent fields, but they are not treated equally. The antisymmetry
of such connection is measured by Torsion tensor:

Definition A.59. Torsion of a connection on a manifold

Given a connection Γ on M the torsion of this connection is the field
(Γ)

T defined as
follows:

(Γ)

T (X,Y ) :=
(Γ)

∇XY −
(Γ)

∇YX − [X,Y ] (A.50)

One can prove, that for each connection on M the torsion is a (1, 2)-tensor field.

An example of a connection on a manifold is the Levi-Civita connection. It is defined
as follows:

Definition A.60. Levi-Civita connection
Given a (pseudo-)Riemannian manifold (M, g) the Levi-Civita connection is the SO (g)-

connection
(L−C)

∇ defined by the following property:

• It is torsionless:
(L−C)

T = 0

• Covariant derivative of the metric tensor vanishes:
(L−C)

∇ ig = 0

One can prove, that there is a unique connection satisfying these both conditions for a fixed
(pseudo-)metric field. The Christofel symbols of Levi-Civita connections can be expressed
by derivatives of the metric field:

Γij,k = gil
1

2

(
∂glk
∂xk

+
∂glj
∂xj
−
∂gjk
∂xl

)
(A.51)
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A.2.2.3 Parallel transport and holonomies

Connections gives a way to connect the fibre spaces of a fibre bundle in separate points
of the base manifold. This is done using the holonomies. In order to define holonomies
let us first introduce selfparallelness with respect to a connection.

Definition A.61. Self-parallel field
Given a connection ω on a bundle (B →M)V we say, that the field Y ∈ Ξ (B) is

self-parallel with respect to ω along a path γ : ]−1, 1[→M iff for each t ∈ ]−1, 1[ we have
(ω)

∇XγYγ(t) = 0.

Consider now a single tensor Yp ∈ V . One can extend it in a self-parallel way along
any path passing through p via the parallel transport

Definition A.62. Parallel transport of a tensor
Given a connection ω on a bundle

(
B →

π
M
)
V
, a tensor Yp ∈ π−1 (p) and a path

γ : ]−1, 1[→M we say, that the parallel transport with respect to ω of Yp along the path
γ is the function Y : ]−1, 1[ → π−1 (γ (]−1, 1[)) such that for each t ∈ ]−1, 1[ we have
(ω)

∇XγY (t) = 0 (where obviously Y (t) = Yγ(t) ∈ π−1 (γ (t)), but we will use the notation
without the subscript).

The condition for parallel transport can be expressed in terms of the connection form

d

dt
Y (t) + ω|γ(t) Y (t) = 0 (A.52)

(where ω|γ(t) := ωyXγ
γ(t)), which in coordinates gives the so called geodesic equation:

d

dt
Y I (t) + ωIJ,i (Xγ)i Y J = 0 (A.53)

Since one can parallel transport each tensor, one can transport all the fibre, which is
a vector space. Thanks to the linearity of the covariant derivative, the geodesic equation
is a linear differential equation on a vector space:

d

dt
U (t) = − ω|γ(t) U (t) (A.54)

This equation can be integrated to a linear operator on a vector space.

Definition A.63. Path ordered exponential
The unique solution of the equation (A.54) with the initial condition U (0) = 1 is

called the path ordered exponential, and denoted as P exp
(´ t

0 − ω|γ
)

where ω|γ is a
one-form on the interval [0, t] defined as ω|γ (s) := ω|γ(s) ds.

Given a compact path γ : [0, 1]→M the path ordered exponential along the full path
will be called the holonomy :

Definition A.64. Holonomy
A holonomy of a connection ω along a path γ : [0, 1]→M is Uγ [ω] := P exp

(´ 1
0 − ω|γ

)
.

Sometimes we will also use the shortcut notation U` [ω] = P exp
(´
`−ω

)
.

Consider now a holonomy on a bundle of G-tensors. The following statement is true:
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Claim A.2. Gauge transformation of a holonomy of a connection
Given a G-covariant connection ω that transforms according to (A.43), the holonomies

of ω transform as

g (·) : U` [ω] 7→ U` [ωg] = ρ
[
g−1 (` (1))

]
(U` [ω]) ρ [g (` (0))] (A.55)

Likewise, given the G-connection ω, that transforms according to (A.44), the holonomies
of ω transform as

g (·) : U` [ω] 7→ U` [ωg] = g−1 (` (1)) (U` [ω]) g (` (0)) (A.56)

Proof
It is enough to prove the claim for G-connection. The proof for general G-covariant
connections goes analogously.

Consider both sites of the equation (A.56) as functions of the parametrisation of the
curve. The left-hand site is

U` [ωg] (t) := P exp

(ˆ t

0
− ωg|`

)
(A.57)

The right-hand site is

Ug` [ω] (t) := g−1 (` (t))P exp

(ˆ t

0
− ω|`

)
g (` (0)) (A.58)

Let us differentiate both U` [ωg] (t) and Ug` [ω] (t) with respect to the t parameter. We
get for the left hand side:

d

dt
U` [ωg] (t) =

d

dt
P exp

(ˆ t

0
− ωg|`

)
= − ωg|`(t) P exp

(ˆ t

0
− ωg|`

)
(A.59)

and for the right hand side:

d

dt
Ug` [ω] (t) =

d

dt

[
g−1 (` (t))P exp

(ˆ t

0
− ω|`

)
g (` (0))

]
=

dg−1 (` (t))

dt
P exp

(ˆ t

0
− ω|`

)
g (` (0)) (A.60)

+g−1 (` (t))
(
− ω|`(t)

)
P exp

(ˆ t

0
− ω|`

)
g (` (0))

Inserting the identity 1 = g (` (t)) g−1 (` (t)) before both P exp
(´ t

0 − ω|`
)
we get:

d

dt
Ug` [ω] (t) =

dg−1 (` (t))

dt
g (` (t)) g−1 (` (t))P exp

(ˆ t

0
− ω|`

)
g (` (0))

−g−1 (` (t)) ω|`(t) g (` (t)) g−1 (` (t))P exp

(ˆ t

0
− ω|`

)
g (` (0))

=

(
dg−1 (` (t))

dt
g (` (t))− g−1 (` (t)) ω|`(t) g (` (t)) g−1 (` (t))

)
·
[
g−1 (` (t))P exp

(ˆ t

0
− ω|`

)
g (` (0))

]
(A.61)
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Note, that dg−1(`(t))
dt g (` (t)) = −g−1 (` (t)) dg(`(t))

dt (indeed, since 0 = d1 we have
0 = d

(
g−1 · g

)
=
(
dg−1

)
g+g−1dg), and that the last term in (A.61) is precisely Ug` [ω] (t).

Thus we get

d

dt
Ug` [ω] (t) =

(
dg−1 (` (t))

dt
g (` (t))− g−1 (` (t)) ω|`(t) g (` (t)) g−1 (` (t))

)
Ug` [ω] (t)

(A.62)
but the factor in the bracket is precisely ωg|`(t) (see (A.44)), so

d

dt
Ug` [ω] (t) = ωg|`(t) U

g
` [ω] (t) (A.63)

So both U` [ωg] (t) and Ug` [ω] (t) satisfy the same differential equation. Since the initial
condition also match (for U` [ωg] we have U` [ωg] (0) = 1 by definition of P exp (·), for
Ug` [ω] we have Ug` [ω] (0) = g−1 (` (0))1g (` (0)) = 1), whole functions match, and thus
the holonomy of the transformed connection U` [ωg] equals the transformed holonomy
Ug` [ω].

Quod erat demonstrandum.

Remark A.4. The above notions were introduced in terms of connections valued in gA.
They can be easily translated to gH by noticing, that the canonical isomorphism between
gA and gH is gA 3 XA 7→ 1

ı̇X
A =: XH ∈ gH . Thus given a gA-valued connection ω there

is a gH -valued connection ω̃ = 1
ı̇ω. A geodesic equation for gH -valued connection is

d

dt
Y I (t) + ı̇ω̃IJ,i (Xγ)i Y J = 0 (A.64)

and the path-ordered exponential is the unique solution to the equation

d

dt
U (t) = −ı̇ ω̃|γ(t) U (t) (A.65)

and we can write it as P exp
(
ı̇
´ t

0 − ω̃|γ
)
.

A.3 Harmonic analyses on SU(2)

Both Spin-foams and Operator Spin-network Diagrams are topological objects colored by
some tensors. Most of these tensors are elements of Hilbert spaces build of representation
spaces of SU(2)-group. Let us thus provide here a short introduction to the harmonic
analysis on SU(2) and the algebra of SU(2)-tensors.

We start with fixing conventions about denoting SU(2)-elements. Then we introduce
spin- and tensor-representations of SU(2). Finally we define spin network functions.

The SU(2) is a widely known group. The detailed study of the representation theory
on SU(2) can be found for example in [99] and [86, chap. 2]. The detailed introduction
to spin network functions can be found in for example in [100].

A.3.1 Conventions

A.3.1.1 Angular momentum operators

The hermitian generators of SU(2) will be denoted by L̂x, L̂y and L̂z. In the defining
representation they are given by halves of the hermitian Pauli matrices

L̂x =
σ1

2
=

(
0 1

2
1
2 0

)
L̂y =

σ2

2
=

(
0 − ı̇

2
ı̇
2 0

)
L̂z =

σ3

2
=

(
1
2 0
0 −1

2

)
(A.66)
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and they have the following commutation relations:

ı̇
[
L̂i, L̂j

]
= −εijkL̂k (A.67)

A.3.1.2 Parametrisation of SU(2)

Elements of SU(2)-group will be denoted by letters u, v or h. A general u ∈ SU(2)
element can be parametrised by 3 angles:

u = u (θ, α, β) =

(
eı̇
α−β

2 cos θ2 eı̇
α+β

2 sin θ
2

−e−ı̇
α+β

2 sin θ
2 e−ı̇

α−β
2 cos θ2

)
(A.68)

the ranges of the angles are

θ ∈ [−π, π] α ∈]− 2π, 2π] β ∈ [0, 2π[ (A.69)

Although the range of α may be surprising, it must be so in order to admit all possible
combinations of phases.

The elements of a U (1)-subgroup of rotations along the z-axis are denoted by

uα := u (0, α, 0) =

(
e
ı̇α
2 0

0 e−
ı̇α
2

)
= exp

(
ı̇αL̂z

)
(A.70)

Note, that here also α ∈] − 2π, 2π], and that u (0, 2π, 0) = −1. The elements uα act on
general SU(2)-elements as follows:

uαu
(
θ, α′, β

)
= u

(
θ, α+ α′, β

)
(A.71)

It is convenient to derive matrix elements of a group element which corresponds to
the rotation of the z-axis to a given direction ~n = (sin θ cosφ, sin θ sinφ, cos θ), being the
element u~n ∈ SU(2) such that

u†~nσ3u~n = ~n · ~σ (A.72)

Obviously u~n is defined up to left multiplication by a rotation around z-axis, i.e. if u~n
satisfies (A.72), then uαu~n also does. In calculations we will often use the u~n defined in
such a way, that it’s diagonal elements are real. In such convention the matrix elements
are

u~n =

(
cos θ2 eı̇φ sin θ

2

−e−ı̇φ sin θ
2 cos θ2

)
= u (θ, φ, φ) (A.73)

and the group element u~n of a vector ~n is sometimes denoted as n.

A.3.2 Representations of SU (2)

In general a SU(2)-tensor is an object on which we can act with a linear representation
of the SU(2)-group. The simplest case is SU(2)-vector, i.e. elements of spin-j Hilbert
space:

Definition A.65. Spin-j Hilbert space
Given a non-negative half-integer number j ∈ Z+

2 ∪ {0} the spin-j Hilbert Hj space
is the carrier vector space of (2j + 1)-dimensional unitary irreducible representation of
SU(2)-group. Its elements will be denoted by ket notation: |x〉j. The action of SU(2) on
Hj will be denoted by

SU(2)×Hj 3 (u, x) 7→ u |x〉j ∈ Hj (A.74)
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The spin-j Hilbert space has a basis that diagonalise the L̂z operator, i.e. |m〉j for
m ∈ {−j,−j + 1, . . . , j − 1, j}. The action of the generator of the z-rotation L̂z is given
by:

L̂z |m〉j = m |m〉j (A.75)

Unless explicitly stated otherwise we use the summation convention over spin-indices:

|x〉j = xm |m〉j :=
∑
m

xm |m〉j (A.76)

There is of course the basis diagonalising L̂x and L̂y, we denote them as |mx〉j and
|my〉j respectively. The z-angular momentum basis can be also denoted with z-subscript:
|mz〉j; however whenever there is no subscript, we assume that m refers to L̂z-basis.

The spin-j Hilbert spaces are eigenspaces of the Casimir operator L̂2 with the eigen-
value j (j + 1).

There are two special cases of spin-j Hilbert spaces. First is the scalar space H0 = C.
In most cases we will simply omit its vectors and treat them as numbers. Second one is the
defining representation H 1

2
= C2. We will denote its basis as |↑〉 :=

∣∣1
2

〉
1
2
and |↓〉 :=

∣∣−1
2

〉
1
2

(of course there are also |↑x〉, |↓x〉 and |↑y〉, |↓y〉). The higher spin representations can
be seen as symmetrized tensor products of the defining representation, i.e.

Hj = H 1
2
� · · · � H 1

2︸ ︷︷ ︸
2j times

|m〉j = N j
m|↓〉 � · · · � |↓〉︸ ︷︷ ︸

(j+m) times

� |↓〉 � · · · � |↓〉︸ ︷︷ ︸
(j−m) times

(A.77)

where N j
m :=

(
2j
j+m

) 1
2 is a normalisation factor (see [86]).

The dual space H∗j is the space of linear functionals on Hj, its elements are denoted
either by kets |y〉j∗ or by bras: 〈y|j, or by lower indices: 〈y|j = 〈n|j yn.

The group SU(2) acts on Hj via Wigner matrices:

Definition A.66. Wigner matrices
Wigner matrices are matrix representations of action of SU(2) on Hj spaces. They

are defined as
SU(2) 3 u 7→ Dj(u)nm := 〈n|u |m〉j ∈ C (A.78)

thus action of SU(2) on Hj is given by the formula

SU(2)×Hj 3 (u, x) 7→ u |x〉j = Dj (u)nm x
m |n〉j ∈ Hj (A.79)

and on H∗j the group SU(2) acts via the hermitian conjugation of Wigner matrices

SU(2)×H∗j 3 (u, y) 7→ 〈y|u = Dj(u)nmyn 〈m|j (A.80)

Using the (A.77) one can get an exact formula for matrix elements of Wigner matrices
(see [86]):

Dj (u)nm =

(
2j

j +m

) 1
2
(

2j

j + n

)− 1
2

(A.81)

·
∑
k

(
j +m

k

)(
j −m

j + n− k

)(
u+

+

)k (
u+
−
)j+n−k (

u−+
)j+m−k (

u−−
)k−m−n

where u+
+ = 〈↑|u |↑〉, u+

− = 〈↑|u |↓〉, u−+ = 〈↓|u |↑〉 and u−− = 〈↓|u |↓〉. Imposing the
unitarity and unit-determinant conditions on u±± leads to further simplifications of this
formula.
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Thanks to the Peter-Weyl theorem the Wigner Matrices matrix elements form an
orthogonal set of square-integrable functions on SU(2). The orthogonality relation is

ˆ
SU(2)

duDj(u)mn D
j′(u)m

′
n′ = δj,j

′
δmm

′
δnn′

1

2j + 1
(A.82)

Given several spins one can introduce a product representation space:

Definition A.67. Product representation
Consider a tensor product of k spin-j Hilbert spaces Hj1 ⊗ · · · ⊗Hjk . We will denote

them shortly as Hj1⊗· · ·⊗Hjk = Hj1⊗···⊗jk = H~j . The basis of this spaces will be denoted
as |m1, . . .mk〉j1⊗···⊗jk or shortly: |~m〉~j. This space has a natural action of SU(2) given
by:

SU(2)×H~j 3 (u, T ) 7→ Dj1(u)n1
m1
· · ·Djk(u)nkmkT

m1···mk |~n〉~j ∈ H~j (A.83)

It can be simply generalised to tensors with both upper and lower indices:
for Tm1···mk

mk+1···mk+l
∈ Hj1 ⊗ · · · ⊗ Hjk ⊗H∗jk+1

⊗ · · · ⊗ H∗jk+l
we have

SU(2)×H~j 3 (u, T ) 7→ Dj1(u)n1
m1
· · ·Djk(u)nkmk

·Djk+1(u)
mk+1
nk+1 · · ·Djk+l(u)

mk+l
nk+l

·Tm1···mk
mk+1···mk+l

|~n〉~j ∈ H~j (A.84)

we will often use a shortcut notation:

D
~j (u)~n~m T

~m := Dj1(u)n1
m1
· · ·Djk(u)nkmk · D

jk+1(u)
mk+1
nk+1 · · ·Djk+l(u)

mk+l
nk+l · Tm1···mk

mk+1···mk+l

(A.85)

Among the SU(2)-tensors there are tensors, that does not change under the action
of the SU(2)-group. They are called invariant tensors:

Definition A.68. SU(2)-invariant tensors
A tensor T ~m ∈ H~j is SU(2)-invariant iff

∀u∈SU(2)D
~j (u)~n~m T

~m = T ~n (A.86)

The space of SU(2)-invariant tensors will be denoted by Inv
(
H~j
)
. The projection

onto Inv
(
H~j
)
is

P̂Inv :=

ˆ
SU(2)

du D
~j(u)~n~m (A.87)

Sometimes we will expand the formula (A.87) in the spin-z-basis:

P̂Inv =

ˆ
SU(2)

du Dj1(u)n1
m1
· · ·Djk(u)nkmk ·D

jk+1(u)
mk+1
nk+1 · · ·Djk+l(u)

mk+l
nk+l (A.88)

or simplify to a formal expression

P̂Inv =

ˆ
SU(2)

du u (A.89)

The invariant tensors are often denoted by ι instead of T , and in ket-notation as |ι〉~j

242



The necessary condition for a tensor ι ∈ H~j to be invariant is L̂z |ι〉~j = 0 (as well
as L̂x |ι〉~j = L̂y |ι〉~j = 0). This put a constraint on the multi-index ~m - since |~m〉~j are
eigenstates of L̂z with the eigenvalue

∑
εimi (where εi = −1 if the spin ji is present in H~j

as a dual representation, namely H?ji , and εi = +1 otherwise), the invariant tensors has
non-zero only the components ι~m |~m〉~j for ~m such that

∑
εimi = 0. Thanks to rotations of

the generators one can prove that some tensor spaces may contain no nontrivial invariant
tensors. In order to have a non-trivial SU(2)-invariant subspace, the following condition
must be satisfied:

∀i=1,...,kji ≤
∑
a6=i

ja (A.90)

called generalised triangle inequality.
For invariant tensors one can also prove a convenient identity that were used in the

main text of the theses:

Theorem A.1. On functions of invariant tensors
Given two invariant tensors ι, ι′ ∈ H~j (where ~j = (j1, . . . , jn) |ι〉~j =

∑
~m ι~m |~m〉~j and

|ι′〉~j =
∑

~m ι
′
~m |~m〉~j ) and a function f : R2n → C being a uniform limit of a series of

polynomials we have∑
~m

f
(
m2

1, . . . ,m
2
n; j1, . . . , jn

)
ι~mι
′
~m = f

(
m1 (m1 + 1)

3
, . . . ,

mn (mn + 1)

3
; j1, . . . jn

)
〈ι|
∣∣ι′〉~j

(A.91)

The proof of this theorem can be found in subsection 6.5.2.

A.3.3 Spin-networks

Let us now introduce Spin-network states. The detailed definitions and deeper study of
spin-networks can be found in [100, 19]. Here we introduce a usable definitions, without
discussing their origins.

Spin network states are functions on configurations of a gauge field on a graph. Thus
first let us define the gauge configuration on a graph. Then we define the spin-network
functions for the SU(2)-group and express them in two pictures - as a function on a group
and as a tensor product of invariant tensors. Finally we discuss how to generalise this
picture to other groups.

A.3.3.1 Gauge field on a graph

Consider a manifold M with a SU(2)-connection defined by a su(2)-valued SU(2)-
covariant one-form ω (see Appendix A.2.2.2). Recalling the Appendix A.2.2.3, given a
path ` : [0, 1]→M one can define a holonomy of ω along ` as U` [ω] := P exp

(
ı̇
´
`− ω|`

)
,

that transforms under the gauge transformation h (·) as

h (·) : U` [ω] 7→ h (t(`))−1 U` [ω]h (s(`)) (A.92)

Consider now a graph G embedded in M. One can define a holonomy of the field
ω along the graph G as a functional HolG : Ω1 (M) ⊗ su(2) → SU(2)L defined by the
formula:

HolG : A 7→ {U` [ω]}`∈LG :=

{
P exp

(
ı̇

ˆ
`
−ω
)}

`∈LG
(A.93)
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One can check, that for ω being SU(2)-connection the holonomy of ω along the graph
G transforms under a gauge transformations according to the formula:

h (·) : {U` [A]}`∈LG 7→
{
U`

[
Ah
]}

`∈LG
=
{
h (t(`))−1 U` [A]h (s(`))

}
`∈LG

(A.94)

Consider now a collection of SU(2)-elements {U`}`∈LG and action of N copies of
SU(2)-group on them (N is the power of the set of nodes NG), similar to (A.94), namely

SU(2)N 3 {hn}n∈NG : {U`}`∈LG 7→
{
h−1
s(`)U`ht(`)

}
`∈LG

(A.95)

Let us call {U`}`∈LG a SU(2)-holonomy on the graph G, and the action of SU(2)N will be
called the SU(2)-gauge action. A SU(2)-holonomy can be defined for a graph embedded
in a manifold (then it might be a holonomy of some connection field on this manifold),
as well as for an abstract, non-embedded graph. The equivalence classes of SU(2)-
holonomies on the graph G of the gauge action of SU(2)N are called gauge-eqiuvalent
configurations of SU(2)-holonomies. The set of all gauge-equivalent configurations will
be denoted by SU(2)L/GSU(2)N , where G indicates the precise action of the gauge trans-
formations (of course even if G and G′ have the same number of links and nodes, the spaces
SU(2)L/GSU(2)N and SU(2)L/G′SU(2)N are in general different).

A.3.3.2 Spin-network functions

Let us define a general spin-network function.

Definition A.69. A spin-network function
A spin-network function is a function NGj`jnvnιn : SU(2)L → C determined by a graph

G = (N,L), colored as follows:

• each link of the graph ` ∈ L is colored by a spin j`

• each node of the graph n ∈ N is colored by a triple: a spin jn, a vector vn ∈ Hjn
and an invariant tensor ιn ∈ Inv

[
H?jn ⊗

(⊗
`+∈L+

n
Hj`
)
⊗
(⊗

`−∈L−n H
?
j`

)]
Given a set of SU(2)-elements {U`}`∈L the evaluation of the spin-network function is
given by

NGj`jnvnιn
(
{U`}`∈L

)
=
∏
`∈L

√
2j` + 1 Dj` (U`)

m`−
m`+
·
∏
n∈N

ιn
m
`+1
···m

`+
k

m
`−1
···m

`−
l
mjn · vn

mjn (A.96)

where k is the number of positive half-links and l is the number of negative half-links at
the corresponding node.

Spin-network functions span a basis of the Hilbert space L2
(
SU(2)L

)
(see [19]).

Consider a graph embedded in a manifoldM on which one defined a connection one-
form A. Then a spin-network state defines a functional on the connection one-form by
the formula

NGj`jnvnιn [A] := NGj`jnvnιn
({

U` = P exp

(
ı̇

ˆ
`
−A
)}

`∈L

)
(A.97)

Since the gauge transformations act on connections (as it was defined in
Appendix A.2.2.2 and recalled in Appendix A.3.3.1), they also effects the value of a
spin-network functional on a connection. In order to have a functional insensitive on the
gauge choice we define the gauge-invariant spin-network functions:
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Definition A.70. Gauge-invariant spin-network functions
A spin-network function NGj`jnvnιn is a gauge-invariant spin-network function iff all

the spins jn = 0. Thus the vectors vn are redundant (since they only multiply the tensors
ιn by numbers) and thus the gauge-invariant spin-network functions can be described in a
simpler way as NGj`ιn, where ιn ∈ Inv

[(⊗
`+∈L+

n
Hj`
)
⊗
(⊗

`−∈L−n H
?
j`

)]
, and evaluated

as
NGj`ιn

(
{U`}`∈L

)
=
∏
`∈L

√
2j` + 1Dj` (U`)

m`−
m`+
·
∏
n∈N

ιn
m
`+1
···m

`+
k

m
`−1
···m

`−
l

(A.98)

where k is the number of positive half-links and l is the number of negative half-links at
the corresponding node. We may say, that a gauge-invariant spin-network function is a
function NGj`ιn : SU(2)L/GSU(2)N → C.

Structure of spin-network Hilbert spaces
Let us now study the structure of the Hilbert space of all spin-network functions. In

order to do this it is convenient to name the Hilbert spaces of the form

Hn :=

 ⊗
`+∈L+

n

Hj`

⊗
 ⊗
`−∈L−n

H?j`

 (A.99)

as the node Hilbert spaces and

HInv
n := Inv

 ⊗
`+∈L+

n

Hj`

⊗
 ⊗
`−∈L−n

H?j`

 (A.100)

the invariant node Hilbert spaces (such Hilbert spaces appeared already in definitions
A.69 and A.70 at each node). We will use this notation in what follows.

Consider now all gauge-equivalent configurations of SU(2)-holonomies on a graph G,
i.e. all equivalence classes of gauge action on the space of SU(2)-holonomies on G (see Ap-
pendix A.3.3.1). These configurations form a compact topological space SU(2)L/GSU(2)N .
Let us call the the space of all functions square-integrable with respect to L copies of Haar
measure on that space as HG , i.e. HG := L2

(
SU(2)L/GSU(2)N ; (dµHaar)

L
)
. Gauge-

invariant spin-network functions are a dense subset of HG . They can be used to describe
the structure of HG [6, 100].

Each coloring of links of G by spins {j`} labels a separate orthogonal component,
thus:

HG =
⊕

{j`}`∈LG

HG,{j`} (A.101)

Given a fixed spin-labels note, that in a gauge-invariant spin-network each node of n
labelled by a tensor ιn ∈ Hn. Thus the space of all gauge-invariant spin-networks with
fixed spin-labels contains a copy of Hn for each node. Since the choice of the invariant
tensors is independent for different nodes, the node Hilbert spaces are tensor-multiplied.
Since there is no more freedom for gauge-invariant spin-network functions, we have

HG,{j`} =
⊗
n∈NG

HInv
n (A.102)

Thus the Hilbert space of all gauge invariant spin-network functions of a given graph is

HG =
⊕

{j`}`∈LG

⊗
n∈NG

HInv
n (A.103)
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Given an orthonormal basis of each of the intertwiner spaces Hn (denoted by(
ιIn
)
I=1,...,dimHn) we have the orthonormal basis of the space of spin-network functions:

HG = Span
(
NG{j`}{ιIn}

)
all possible {j`}
all possible

{
ιIn
}

for given {j`}

(A.104)

The Hilbert space HG is often called the graph Hilbert space or the space of spin-
networks on G. The space HG,{j`} is called fixed-spin Hilbert space on G; it is often
denoted shortly as HG,~j . The spaces Hn and HInv

n were already named the node Hilbert
space and the invariant node Hilbert space. The spacesHG andHG,{j`} are gauge invariant
by definition.

Spin-network functions are often used as vectors in a Hilbert space, not as functions
on a group. Because of this we often refer to them as to spin-networks, not spin-network-
functions.

A.3.3.3 Spin-network-like states for other groups

The framework of spin-network functions can be easily generalised to any compact Lie
group G. The generalisation is defined as follows.

A spin-network-like function is determined by the following modification of the defin-
ition A.69 : Each spin j` and jv is substituted by a irreducible unitary representation
ρ` or ρv of G-group respectively. The Wigner matrices are replaced by appropriate mat-
rix elements of corresponding representations. The factors

√
2j` + 1 are replaced by the

dimension of the appropriate representation
√
dρ` . The invariant tensors ιn are now in-

variant tensors of the appropriate representations of G-group, the vectors vn are elements
of the representation carrier Hilbert space Hρv . Thus the evaluation of the spin-network
function is

NGρ`ρnvnιn
(
{g`}`∈L

)
=
∏
`∈L

√
dρ`ρ` (g`)

a`−
b`+
·
∏
n∈N

ιn

b
`+1
···b

`+

k+
a
`−1
···a

`−
k−

cjn · vn
cjn (A.105)

The same substitutions are straightforward through all the formulae in Appendix A.3.3.2.
Thus in the end the space of gauge-invariant G-spin-network-like functions is decomposes
into

HGG =
⊕

{ρ`}`∈LG

⊗
n∈NG

HG,Inv
n (A.106)

with HG,Inv
n := Inv

[(⊗
`+∈L+

n
Hρ`

)
⊗
(⊗

`−∈L−n H
?
ρ`

)]
being the node Hilbert spaces of

G-group.
Spin-network-like states can be also defined for a noncompact Lie group G, however,

the Peter-Weyl theorem is not valid for non-compact groups and the matrix elements of
irreducible representations of G are not any more square-integrable functions on G - they
are distributions.

A.4 The SL(2,C) group

The SL(2,C) group, being the universal cover of proper orthochronous Lorentz group
SO (1, 3)+, is the group of key importance in the dynamics of General Relativity. In this
section we recall some basic properties of this group and fix notation conventions used
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used in this thesis. This section is based mostly on the textbook [86], and partially on
[101], however conventions used here are more similar to [37].

In subsection A.4.1 we focus on algebraic properties of the group, we show it’s relation
with the Lorentz group and show the decomposition of SL(2,C) into rotations and boosts.
In subsection A.4.2.3 present the brief recall of representation theory of the SL(2,C)-
group. In subsection A.4.3 we discuss some technical issues related to the EPRL map.

A.4.1 Algebra of SL(2,C) elements

In the defining representation the SL(2,C) group is the set of 2 × 2 complex matrices
with the determinant equal to 1:

SL(2,C) 3 g =

(
g1

1 g1
2

g2
1 g2

2

)
: g1

1g
2
2 − g1

2g
2
1 = 1 (A.107)

In this subsection we fix our convention about relating SL(2,C) elements with Lorentz
transformations, then we show, how is the SU(2)-subgroup immersed in SL(2,C), and
finally we present some formulae allowing to decompose a SL(2,C)-element into pure
rotation and pure boost.

A.4.1.1 Lorentz representation

Consider a 4-vector x in the Minkowski space. One can assign to it a hermitian 2 × 2
complex matrix X := xµσµ, where

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −ı̇
ı̇ 0

)
σ3 =

(
1 0
0 −1

)
(A.108)

Note, that det (X) = ηµνx
µxν . Indeed:

det (X) = det

(
x0 + x3 x1 − ı̇x2

x1 + ı̇x2 x0 − x3

)
=
(
x0
)2 − (x1

)2 − (x2
)2 − (x3

)2 (A.109)

Given an element g ∈ SL(2,C) one can define its action on x as follows. Let Y = g†Xg,
where Y = yµσµ. We say that Λgx = y. It is easy to check, that this representation
preserved the scalar product η. Indeed:

ηµνy
µyν = det (Y ) = det

(
g†Xg

)
===

det(g)=1
det (X) = ηµνx

µxν (A.110)

thus Λg is a Lorentz transformation.
Since SL(2,C) is connected, it covers only a connected component of SO (1, 3) con-

taining the unity, namely SO (1, 3)+. Moreover, one can easily check, that Λ−g = Λg,
thus each SO (1, 3)+ element is represented by a pair of SL(2,C) elements.

A.4.1.2 Little group

Given any hermitian matrix X one can identify a subgroup H < SL(2,C) preserving this
matrix. This subgroup is called the little group of the vector xµ (where X = xµσµ).

If the matrix X is positive-definite, the vector xµ is timelike and future-pointing. In-
deed, the determinant of a positive-defined matrix is positive, thus xµxνηµν = det (X) > 0,
so the vector is timelike. Now consider a matrix element 〈↑|X |↑〉 = x0 + x3. If xµ were
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past-pointing, we would have x0 < 0. Since xµ is timelike, obviously
∣∣x0
∣∣ > ∣∣x3

∣∣, thus
x0 + x3 < 0, so X is would not be positive-definite.

If X is positive-definite, it defines a hermitian scalar product on C2. A group that
preserves a hermitian scalar product is the group of unitary matrices U (2). Its inter-
section with SL(2,C) are the unitary matrices with unit determinant, i.e. SU(2). Thus
given a timelike future-pointing vector xµ ∈ R4 or given a hermitian positive-definite
matrix X ∈ C2×2 we can pick one of SU(2)-subgroups of SL(2,C).

The Lorentz transformations that preserve a timelike future-pointing vector xµ are the
rotations of the 3-space orthogonal to xµ. Thus the little group of proper orthochronous
Lorentz group SO (1, 3) of xµ is SO (3), being doubly covered by SU(2).

Each particular choice of SU(2)-subgroup of SL(2,C) can be interpreted as a choice
of time direction in the space-time. All the elements of Lorentz invariant theory are
invariant under such change of coordinates. Thus in most cases we chose the SU(2)-
subgroup preserving the natural hermitian scalar product in the defining space C2 of
SL(2,C), which corresponds to the choice of timelike vector x = (1, 0, 0, 0).

A.4.1.3 Decomposition into boost and rotation

Having chosen the little subgroup SU(2) < SL(2,C) one can provide a decomposition
of g ∈ SL(2,C) into the unitary and non-unitary part. In this subsection we pick the
SU(2) subgroup corresponding to the vector x = (1, 0, 0, 0).

One can perform the polar decomposition of g. Let H = g†g. Obviously H is a
positive hermitian matrix (since for each |ψ〉 we have 〈ψ|H |ψ〉 = ‖gψ‖ ≥ 0), thus it has
a unique positive hermitian square root k. The matrix u := gk−1 is unitary, thus for each
g we have a unique decomposition

g = uk (A.111)

for unitary u and hermitian k. Obviously both u and k can be treated as SL(2,C)-
elements (with appropriately trivial polar decomposition). One can perform another
decomposition (by choosing H ′ = gg†) into g = k′u′ for unitary u′ and hermitian k′,
where in general u′ 6= u and k′ 6= k.

The unitary subgroup of SL(2,C) is SU(2), thus we have u ∈ SU(2) and
k ∈ SL(2,C)/SU(2) := H3. The choice of the little group SU(2) < SL(2,C) corres-
ponds to the choice of the hermitian scalar product with respect to which we consider
u and k to be unitary and hermitian respectively. Although H3 is the quotient space
SL(2,C)/SU(2), there is a natural embedding H3 ↪→ SL(2,C). For each element of the
quotient space there is a unique hermitian representative. Thus we will usually consider
H3 as a subset of SL(2,C).

In order to characterise the quotient space H3 let us consider a general hermitian
k = k† ∈ SL(2,C). In the defining representation it can be written as

k (η, θ, φ) =

(
cosh η

2 + cos θ sinh η
2 eı̇φ sin θ sinh η

2
e−ı̇φ sin θ sinh η

2 cosh η
2 − cos θ sinh η

2

)
(A.112)

It is easy to check that given a unit vector ~nθ,φ the element k (η, θ, φ) is

k (η, θ, φ) = u†~nθ,φ

(
e
η
2 0

0 e−
η
2

)
u~nθ,φ = u†~nθ,φ exp

(
ı̇ηK̂z

)
u~nθ,φ (A.113)

for u~nθ,φ given by (A.73) and K̂z = σ3
2ı̇ . Introducing two other anti-hermitian Pauli

matrices K̂x = σ1
2ı̇ and K̂y = σ2

2ı̇ , recalling (A.72) and noting, that for unitary u we have
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u−1 exp (A)u = exp
(
u−1Au

)
, we can express k (η, θφ) as

k (η, θ, φ) = exp
(
ı̇η~nθ,φ · ~K

)
= exp

(
ı̇~η · ~K

)
=: k (~η) (A.114)

Thus the hermitian elements k ∈ SL(2,C) can be labelled by a vector ~η = η~nθ,φ ∈ R3.
We will often identify H3 with R3, however, H3 has a measure induced from SL(2,C)’s
Haar measure, being different from the natural measure on R3.

The elements of SU(2) < SL(2,C) are called pure rotations, because in the Lorentz
representation they correspond to rotations of the space x⊥ ⊂ R4. The elements of
H3 ⊂ SL(2,C) are called pure boosts, because in the Lorentz representation the element
k (~η) boost the vector x in the direction η (with the velocity monotonic with |~η|). The
generators L̂i (introduced in Appendix A.3) and K̂j are called rotation generators and
boost generators respectively. Their commutation relations are following:

ı̇
[
L̂i, L̂j

]
= −εijkL̂k ı̇

[
L̂i, K̂j

]
= −εijkK̂k ı̇

[
K̂i, K̂j

]
= εij

kL̂k (A.115)

Combining (A.113) with (A.111) one can obtain another decomposition of a general
SL(2,C) element:

g = u−1kηv (A.116)

for u, v ∈ SL(2,C) and kη := exp
(
ı̇ηK̂z

)
. This decomposition is not unique, because

the z-rotations uφ commute with z-boosts, so g = u−1kηv = u−1u−1
φ kηuφv. Nevertheless,

this decomposition is very useful in direct calculations.

A.4.2 Harmonic analysis on SL(2,C)

A very good and detailed study of harmonic analysis on SL(2,C)-group can be found in
[86]. Here we summarize the aspects of the theory, which are used in our thesis.

We start with finite dimensional representation of the SL(2,C)-group (i.e. the spinor
representations), which are non-unitary. Then we describe the principal series of unitary
representations of SL(2,C) (without going into derivations, but simply by character-
ising these properties and these matrix elements, that are necessary in our calculations).
Finally we recall some formula for Haar measure on SL(2,C).

A.4.2.1 Spinor representations of SL(2,C)

The generators, when treated as complex matrices, are proportional to corresponding
generators of rotations. This leads to a conclusion, that SL(2,C)-group can be obtained
by a complexification of SU(2). Indeed, consider the formula (A.68) for u (θ, α, β). Matrix
elements are combinations of trigonometric and exponent functions of the angles. The
determinant of u (θ, α, β) is

det (u (θ, α, β)) = eı̇
α−β

2 e−ı̇
α−β

2 cos2 θ

2
+ eı̇

α+β
2 eı̇

α+β
2 sin2 θ

2
(A.117)

It is equal to 1 thanks properties of exponent and trigonometric functions, that hold also
for complex arguments. However, the unitarity of u (θ, α, β) is ensured by the reality of
the arguments. Thus by complexifying the angles one obtains a general 2 × 2 complex
matrix with determinant equal to 1, i.e. a general SL(2,C) element.

Given a general SL(2,C) 3 g (z1, z2, z3) consider a Wigner matrix D(j) (·). Its matrix
elements are analytic functions of matrix elements of its argument. Since g (z1, z2, z3) is
complexified u (θ, α, β), one can calculate the Wigner matrix of it, obtaining D(j) (g).
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The spin-j Wigner matrices of SL(2,C) elements are invertible operators acting on
Hj . However, they are not unitary, except from the SU(2) subgroup of SL(2,C). They
form finite-dimensional irreducible non-unitary representations of SL(2,C).

A.4.2.2 Unitary representations of SL(2,C)

All unitary representations of SL(2,C) are infinite dimensional (except the trivial one).
Let us consider here the principal series of unitary representations of SL(2,C). They are
labelled by a pair of a real, positive number p and a non-negative half-integer k.

The carrier space of each of (p, k)-representations is a subspace of the space of square-
integrable functions on a sphereH(p,k) ⊂ L2

(
S2
)
. The precise action of SL(2,C) on these

functions is crucial for the derivation and can be found in [86, chapter 3.]. However, it is
irrelevant for our considerations, thus we shall treat it as given.

Let us introduce a convenient basis in (p, k). Fixing a SU(2) subgroup of SL(2,C)
decomposes H(p,k) into subspaces invariant under the action of SU(2). On each of such
subspace the little group acts via spin-j representation, for a different spin:

H(p,k) =

∞⊕
j=k

H(p,k)
j (A.118)

where the sum goes through j = k + n for a nonnegative integer n (i.e. there is no
j = k+ 1

2 etc.).1 Fixing the z-direction (i.e. choosing a little group U (1) of SU(2)) splits
each H(p,k)

j into eigenstates of L̂z, so that there is a basis in H(p,k):

H(p,k) = Span
j ∈ k + Z

m ∈ {−j,−j + 1, . . . , j}

(
|j,m〉(p,k)

)
(A.119)

the states |j,m〉(p,k) will be sometimes denoted as |(p, k) ; j,m〉. In this basis the matrix
elements of g will be denoted in one of the following ways:

D(p,k) (g)j1,nj2,m
= 〈j1, n| g |j2,m〉(p,k) = 〈(p, k) ; j1, n| g |(p, k) ; j2,m〉 (A.120)

Of course D(p,k) (g)j1,nj2,m
is an infinite dimensional unitary matrix, even for g ∈ SL(2,C)

non-unitary in the defining representation.
As we have mentioned, given an element u ∈ SU(2) < SL(2,C), it acts on |j,m〉(p,k)

via spin-j Wigner matrices, so

〈j1, n|u |j2,m〉(p,k) = δj1,j2D
(j1) (u)nm (A.121)

Thanks to the formula (A.113) it is now enough to find the matrix elements of
kη = exp

(
ηK̂z

)
. Since K̂z commutes with L̂z, D(p,k) (kη)

j1,n
j2,m

is diagonal in m,n:

D(p,k) (kη)
j1,n
j2,m

= δnmD
(p,k) (kη)

j1,m
j2,m

(A.122)

However, it is not diagonal in j1, j2. For general j1 and j2 it is given by the following
integral:

D(p,k) (kη)
j1,m
j2,m

=
√

(2j1 + 1) (2j2 + 1)

ˆ 1

0
dt
dj1k,m (2t− 1) dj2k,m (2td − 1)

[te−η + (1− t) eη]1−ı̇p
(A.123)

1 The absence of subspaces with spin lower then k follows from certain assumptions on the regularity
of the functions f ∈ L2

(
S2
)
, that are chosen to build H(p,k).
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where
td =

te−η

te−η + (1− t) eη
(A.124)

and djk,q (cos θ) = D(j) (u (θ, 0, 0))km, i.e.

djk,m (cos θ) =

(
2j

j +m

) 1
2
(

2j

j + k

)− 1
2

(A.125)

·
∑
n

(
j +m

n

)(
j −m

j + k − n

)
(−1)j+k−n

(
cos

θ

2

)2n−m−k (
sin

θ

2

)2j−2n+m+k

(see (A.81)). Putting cos θ = 2t − 1 for t ∈ [0, 1] one gets cos2 θ
2 = t and sin2 θ

2 = 1 − t,
thus the formula simplify

djk,m (2t− 1) =

(
2j

j +m

) 1
2
(

2j

j + k

)− 1
2

(A.126)

·
∑
n

(
j +m

n

)(
j −m

j + k − n

)
(−1)j+k−n (t)n−

m+k
2 (1− t)j−n+m+k

2

and thus

djk,m (2td − 1) =

[
1

te−η + (1− t) eη

]j ( 2j

j +m

) 1
2
(

2j

j + k

)− 1
2

·
∑
n

(
j +m

n

)(
j −m

j + k − n

)
(−1)j+k−n (A.127)

· (t)n−
m+k

2 (1− t)j−n+m+k
2 eη(j+m+k−2n)

Combining (A.123) with (A.126) and (A.127) we get

D(p,k) (kη)
j1,m
j2,m

= (2j1 + 1)
1
2 (2j2 + 1)

1
2

(
2j1

j1 +m

) 1
2
(

2j1
j1 + k

)− 1
2
(

2j2
j2 +m

) 1
2
(

2j2
j2 + k

)− 1
2

· (−1)j1+j2+2k eη(j2+m+k)

·
ˆ 1

0
dt

(t)−(m+k) (1− t)j1+j2+(m+k)

[te−η + (1− t) eη]1+j2−ı̇p (A.128)

·
∑
n1,n2

(
j1 +m

n1

)(
j1 −m

j1 + k − n1

)(
j2 +m

n2

)(
j2 −m

j2 + k − n2

)

· (−1)n1+n2 (t)n1+n2 (1− t)−(n1+n2) e−2ηn2

(since k is half-integer, we cannot reduce (−1)2k). For each value of the n1 and n2

the integral over dt in (A.128) gives a Hypergeometric Function with some parameters,
depending on p, k, j1, j2, m, n1 and n2.

A.4.2.3 Measures on SL(2,C)

In order to perform integrals over SL(2,C) group one has to introduce an invariant
measure. We use the measure derived in [86]. Since SL(2,C) is non-compact, any
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invariant measure is defined up to a multiplicative constant, which we fix consistently
with the conventions presented there.

Given a parametrisation of SL(2,C) by a complex vector gµ ∈ C4

g (gµ) = g01 + ~g · ~σ (A.129)

the measure is

dg = CSL(2,C)δ (gµgνηµν − 1)
3∏

µ=0

Dgµ (A.130)

for an arbitrary constant CSL(2,C), where for z = x + ı̇y we have Dz = dxdy and
δ (z) = δ (x) δ (y). Such a choice was introduced in [86, p.13].

One can introduce an analogous parametrisation of SU(2) by a real vector uµ ∈ R4:

u (uµ) = u01 + ı̇~u · ~σ (A.131)

In this parametrisation the Haar measure on SU(2) is

du = CSU(2)δ

(
3∑

ν=0

(uν)2 − 1

)
3∏

µ=0

duµ (A.132)

for an arbitrary constant CSU(2). In [86] Rühl postulates to set CSL(2,C) = CSU(2)
2, while

the constant CSU(2) can be fixed by the normalisation requirement
´
SU(2) du = 1. Such

condition leads to
CSU(2) = π−2 (A.133)

thus, according to our convention

CSL(2,C) = π−4 (A.134)

We are especially interested in the measure expressed in terms of polar decomposition
of g into g (u, ~η) = u ·k (~η). In [86, appendix A] one can find, that given a decomposition
g = u1kηu2 the measure is

dg =
1

4π
du1du2 sinh2 ηdη (A.135)

One can shift the decomposition into g = u1u
−1
2 kηu2 without change of the measure,

thanks to invariance of du on the shift. Let us now focus on du. In terms of the
parametrisation introduced in Appendix A.3.1.2 it is

du (θ, φ, ψ) =
1

(4π)2 sin θdθdφdψ (A.136)

Note, that given u2 (θ, ψ, φ) one can decompose it into u2 (θ, ψ, φ) = eı̇(ψ−φ)Lzu2 (θ, φ, φ).
The term eı̇αLz commute with kη (see Appendix A.4.1.3), thus we can transform the term
k (~η) := u−1

2 (θ, φ, ψ) kηu2 (θ, φ, ψ) as follows

k (~η) := u−1
2 (θ, φ, ψ) kηu2 (θ, φ, ψ)

= u−1
2 (θ, φ, φ) e−ı̇(ψ−φ)Lzkηe

ı̇(ψ−φ)Lzu2 (θ, φ, φ)

= u−1
2 (θ, φ, φ) e−ı̇(ψ−φ)Lzeı̇(ψ−φ)Lzkηu2 (θ, φ, φ) (A.137)

= u−1
2 (θ, φ, φ) kηu2 (θ, φ, φ)
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obtaining the term independent on ψ. Thus we can perform the integral over ψ (which
ranges over [−2π, 2π] - see (A.69)) reducing the measure term du2 to

du2 (θ, φ, φ) =
1

4π
sin θdθdφ (A.138)

being proportional to the area element of a 2-sphere.
Collecting all this together we have

dg =
1

(4π)2 sin θdθdφ sinh2 ηdηdu2 (A.139)

Let us now focus on the part corresponding to k (~η), i.e.

dk (~η) =
1

(4π)2 sin θdθdφ sinh2 ηdη (A.140)

Note, that the natural volume element on R3 is d3~η = η2 sin θdθdφdη. This means, that
dk (~η) is proportional to d3~η:

dk (~η) =
1

(4π)2

sinh2 η

η2
d3~η (A.141)

so that finally we can rewrite dg in the form that was used in chapter 6:

dg (~η, u) =

(
sinh η

4πη

)2

d3~ηdu (A.142)

A.4.3 EPRL map

In this section we introduce the Lorentzian EPRL map. We start with a recall of ex-
planation of its construction. Then we discuss basic properties of the Y -map. Finally we
apply the simplifications induced by the EPRL map to the formula (A.128) for matrix
elements of a z-boost.

The Lorentzian EPRL map was first introduced in [41], then it was widely studied.
Most of formulae are based on the version presented in [37].

A.4.3.1 Explanation

The EPRL map was designed to be weak solution to the simplicity constraint, i.e. to find
the states |ψ〉(p,k) ∈ K(p,k) ⊂ H(p,k) such that

〈ψ| ~K + γ~L
∣∣ψ′〉

(p,k)
= 0 (A.143)

In order to do that it is convenient to recall the matrix elements of the generators ~L and
~K. Let us decompose ~L and ~K into Lz, Kz and L± := Lx ± ı̇Ly and K± := Kx ± ı̇Ky.2

Obviously (A.143) is equivalent to
〈ψ|Kz + γLz |ψ′〉(p,k) = 0

〈ψ|K+ + γL+ |ψ′〉(p,k) = 0

〈ψ|K− + γL− |ψ′〉(p,k) = 0

(A.144)

2Note, that although in the defining representation Ki = 1
ı̇
Li, in the unitary representation this is

not the case, because in the unitary representation both Li and Ki are hermitian operators.
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In the representation (p, k) the matrix elements of L and K are following (since all the
vectors |j,m〉 are in (p, k)-representation, to make the formulae more transparent we omit
the subscript):

Lz |j,m〉 = m |j,m〉
L± |j,m〉 =

√
(j ∓m) (j + 1±m) |j,m± 1〉

Kz |j,m〉 = −α (j)
√
j2 −m2 |j − 1,m〉 − β (j)m |j,m〉

+α (j + 1)

√
(j + 1)2 −m2 |j + 1,m〉 (A.145)

K± |j,m〉 = −α (j)
√

(j ∓m) (j − 1∓m) |j − 1,m± 1〉
−β (j)

√
(j ∓m) (j + 1±m) |j,m± 1〉

−α (j + 1)
√

(j + 1±m) (j + 2±m) |j + 1,m± 1〉

for

α (j) =
ı̇

j

√
(j2 − k2) (j2 + p2)

4j2 − 1
β (j) =

kp

j (j + 1)
(A.146)

(see [47]).
We postulate (the detailed argument is not a subject of our thesis, it can be found for

example in [41]), that the the space of weak solutions of the constraint (A.143) is present
iff p = γ (k + 1) and it isK(p,k) = H(p,k)

k . In order to check it, let us calculate matrix
elements of (A.144) between elements |k,m〉(p,k) and |k,m′〉(p,k) for p = γ (k + 1):〈

k,m′
∣∣Kz + γLz |k,m〉 = −β (k)m

〈
k,m′

∣∣ |k,m〉+ γm
〈
k,m′

∣∣ |k,m〉
= mδm,m′ (γ − β (k)) (A.147)

〈
k,m′

∣∣K± + γL± |k,m〉 = −β (k)
√

(j ∓m) (j + 1±m)
〈
k,m′

∣∣ |k,m± 1〉
+γ
√

(j ∓m) (j + 1±m)
〈
k,m′

∣∣ |k,m± 1〉
=

√
(j ∓m) (j + 1±m)δm±1,m′ (γ − β (k)) (A.148)

and
(γ − β (k))|p=γ(k+1) = γ − kγ (k + 1)

k (k + 1)
= 0 (A.149)

The spaces K(p,k) are in fact parametrised by one half-integer number k. Consider
now a direct sum of all these spaces

K =
⊕

k∈{0}∪Z+
2

K(p(k),k) =
⊕

k∈{0}∪Z+
2

H(γ(k+1),k)
k (A.150)

Note, that K is isomorphic to sum of all carrier spaces of irreducible representations of
SU(2)

HSU(2) =
⊕

k∈{0}∪Z+
2

Hk (A.151)

Let us now introduce a map from HSU(2) to K, called the EPRL map:

Yγ : HSU(2) → K
Yγ : |m〉k 7→ |k,m〉(γ(k+1),k) (A.152)
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This map has a natural generalisation to any tensor product of any of Hj-spaces.
Sometimes it is convenient to use so called approximated EPRL map:

Ỹγ : |m〉k 7→ |k,m〉(γk,k) (A.153)

It’s image does not satisfy exactly the simplicity constraint (A.143), but the difference
is of the order of 1

j . In the case of semicalssical calculations this difference is usually
negligible, and the corresponding formulae are simpler. More discussion of this issue can
be found in [47]. In chapter 6 we use only Ỹγ without stating it explicitly.

We will often omit the γ-subscript, when it is not necessary.

A.4.3.2 Basic properties

First of all note, that the EPRL map is defined because of a choice of a little subgroup
SU(2) of SL(2,C). Indeed, in its definition there is an asymmetry between K and L
generators, which means, that there must by a way to identify rotation and boost part
of SL(2,C).

Although the elements of K have SL(2,C)-indices, they can be treated as SU(2)-
tensors. Indeed, the map Y (or Ỹ ) is a bijection on its image, and thus the conjugate
Y † : K → HSU(2) is its inverse, so Y †Y = 1 and Y Y † = PK.

The easiest way to translate the objects lying in HSL(2,C) into SU(2)-tensors using
the Y map is to introduce Y as a collection of tensors Yk ∈ H(γ(k+1),k) ⊗Hk The matrix
elements of Yk are following:

[Yk]
j,n
m = δjkδ

n
m (A.154)

One can insert them whenever needed and then simply use the summation convention.
Thanks to the EPRL map one can introduce a new action of SL(2,C) on the SU(2)

tensors. Let us focus on one space Hj . Given an element g we can calculate

〈n|Y †gY |m〉j := 〈j, n| g |j,m〉(p(j),j) = D(p(j),j) (g)j,nj,m =: D̃j (g)nm (A.155)

We call the matrices D̃j (g)nm the generalized Wigner matrices. However, they are not a
representation of SL(2,C), because they do not satisfy the composition principle:

D̃j (g)nm′ D̃
j
(
g′
)m′
m

= 〈n|Y †gY Y †g′Y |m〉j
= 〈n|Y †gPKg′Y |m〉j (A.156)

6= 〈n|Y †gg′Y |m〉j = D̃j
(
gg′
)n
m′

Nevertheless, the thanks to (A.121), the chosen subgroup SU(2) of SL(2,C) acts
unitarily via generalized Wigner matrices. Let u ∈ SU(2) < SL(2,C), then

D̃j (u)nm = 〈n|Y †uY |m〉j = δjj2δ
n
m′′δ

j2
j1
D(j1) (u)m

′′

m′ δ
j1
j δ

m′
m = D(j) (u)nm = 〈n|u |m〉j

(A.157)

A.4.3.3 Matrix elements of boosts in EPRL map

The EPRL map reduced a lot the number of free parameters in the formula (A.128).
This makes further calculation manageable. To simplify some formula even further we
will use here the approximated EPRL map Ỹ .
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Let us calculate a matrix element 〈m| Ỹ †kηỸ |m〉j = D(γj,j) (kη)
j,m
j,m. Recalling (A.128)

it is given as

D(γj,j) (kη)
j,m
j,m = (2j + 1)

1
2 (2j + 1)

1
2

(
2j

j +m

) 1
2
(

2j

j + j

)− 1
2
(

2j

j +m

) 1
2
(

2j

j + j

)− 1
2

· (−1)j+j+2j · eη(j+m+j)

·
ˆ 1

0
dt

(t)−(m+j) (1− t)j+j+(m+j)

[te−η + (1− t) eη]1+j−ı̇γj (A.158)

·
∑
n1,n2

(
j +m

n1

)(
j −m

j + j − n1

)(
j +m

n2

)(
j −m

j + j − n2

)
· (−1)n1+n2 (t)n1+n2 (1− t)−(n1+n2) e−2ηn2

simplifying some of the numeric factors one gets

D(γj,j) (kη)
j,m
j,m = (2j + 1)

(
2j

j +m

)
· eη(2j+m)

·
ˆ 1

0
dt

(t)−(m+j) (1− t)3j+m

[te−η + (1− t) eη]1+j−ı̇γj (A.159)

·
∑
n1,n2

(
j +m

n1

)(
j −m

2j − n1

)(
j +m

n2

)(
j −m

2j − n2

)

· (−1)n1+n2 (t)n1+n2 (1− t)−(n1+n2) e−2ηn2

Now consider the binomial factors in the sum. In order
(
j+m
n1

)
not to vanish we need

n1 ≤ j + m. In order
(
j−m

2j−n1

)
not to vanish we need 2j − n1 ≤ j −m, so n1 ≥ j + m.

Thus the only n1 giving nonzero contribution is n1 = j + m. The same happens to n2.
The binomial coefficients become equal to 1, the sign factor (−1)n1+n2 = (−1)2(j+m) = 1
because j +m must be an integer, thus we end up with

D(γj,j) (kη)
j,m
j,m = (2j + 1)

(
2j

j +m

)
· eη(2j+m)

·
ˆ 1

0
dt

(t)−(m+j) (1− t)3j+m

[te−η + (1− t) eη]1+j−ı̇γj (A.160)

· (t)2(j+m) (1− t)−2(j+m) e−2η(j+m)

collecting similar terms we get

D(γj,j) (kη)
j,m
j,m = (2j + 1)

(
2j

j +m

)
· e−mη (A.161)

·
ˆ 1

0
dt

(t)j+m (1− t)j−m

[te−η + (1− t) eη]1+j−ı̇γj

One can factor out the term eη from the denominator of the integral, obtaining[
te−η + (1− t) eη

]1+j−ı̇γj
= e(j+1−ı̇γj)η [1− t (1− e−2η

)]1+j−ı̇γj (A.162)
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which leads to

D(γj,j) (kη)
j,m
j,m = (2j + 1)

(
2j

j +m

)
· e−(j+1+m)ηeı̇γjη (A.163)

·
ˆ 1

0
dt (t)j+m (1− t)j−m

[
1− t

(
1− e−2η

)]ı̇γj−(j+1)

Recalling the integral definition of the Gauss’s hypergeometric function [88]:

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

ˆ 1

0
dt tb−1 (1− t)c−b−1 (1− zt)−a (A.164)

we get

D(γj,j) (kη)
j,m
j,m = e−(j+m+1)ηeı̇jγη 2F1

(
j + 1− ı̇γj, j + 1 +m; 2j + 2; 1− e−2η

)
(A.165)
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Appendix B

Lemmas, theorems, calculations

In this appendix we gathered some strictly technical proofs or calculations, that we
decided to remove from the core part of the thesis to make the text more fluent.

In section section §B.1 we present the theorem, that was proven in the appendix to
[53], stating, that gluing 2-complexes along pairs of edges does not depend on the order
in which we perform the gluing.

In section section §B.2 we present the generalized Saddle Point Approximation the-
orem, that is of key importance in the asymptotic approximation done in chapter 6 and
in [83].

B.1 Commutativity of gluing 2-complex

In this section we will use the following notation for the elements of sets: when writing
sets by explicit list of their elements (for example A = {a, b, c}) we allow the elements to
appear more then once, for example B = {a, b, c, b}. We will treat the multiple elements
as one element, so that

{a, b, c, a, b, b} = {a, b, c} (B.1)

This is only the notation trick, so that we may write a set not knowing, whether its
elements overlap, for example

{a, b} ∪ {x, y} = {a, b, x, y} (B.2)

and when we eventually realize, that a = x, we simply write

{a, b} ∪ {x, y} = {a, b, x, y} = {a, b, y} = {x, b, y} (B.3)

Let us also introduce a notion of a set divided by a pair of its elements:

Definition B.1. A set divided by a pair
Let A be a set and x, y ∈ A. We define A divided by a pair (x, y) as

A/ (x, y) := (A \ {x, y}) ∪ {{x, y}} (B.4)

The elements A/ (x, y) are denoted by [w](x,y) for w ∈ A, where [w](x,y) = w if w 6∈ {x, y}
and [w](x,y) = {x, y} for w ∈ {x, y} (the subscript (x, y) is often omitted, if it does not
cause confusion).

Now let us prove a lemma about sets divided by pairs:
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Lemma B.1. Commutativity of dividing by pairs
Let α = (x, y) and β = (w, z) for x, y, w, z ∈ A. There is a canonical bijection between

(A/α) /β and (A/β) /α, i.e. we have (A/α) /β ≡ (A/β) /α.

Proof
Using the definition we have

(A/α) /β = (((A \ {x, y}) ∪ {[x]α}) \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
(B.5)

using the set identities we can rewrite it as

(A/α) /β = (A \ {x, y}) \ {[w]α , [z]α} ∪ ({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
(B.6)

Let us focus on the first term. We can transform it to

(A \ {x, y}) \ {[w]α , [z]α} = A \ {x, y, [w]α , [z]α} (B.7)

Now if w, z 6∈ {x, y}, the equivalence classes are [w]α = w and [z]α = z respectively, so

(A \ {x, y}) \ {[w]α , [z]α} = A \ {x, y, w, z} (B.8)

on the other hand if w ∈ {x, y}, then [w]α = {x, y}. But then [w]α 6∈ A, so

A \ {x, y, [w]α , [z]α} = A \ {x, y, [z]α} (B.9)

Moreover, thanks to our notation {x, y, z} = {x, y, w, z}, because w = x or w = y. The
same argument works for z ∈ {x, y}. Thus either case

(A \ {x, y}) \ {[w]α , [z]α} = A \ {x, y, w, z} (B.10)

The overall set (A/α) /β is thus

(A/α) /β = (A \ {x, y, w, z}) ∪ ({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
(B.11)

while the set (A/β) /α is

(A/α) /β = (A \ {x, y, w, z}) ∪
({

[w]β

}
\
{

[x]β , [y]β

})
∪
{[

[x]β

]
α

}
(B.12)

Let us now focus on the term ({[x]α} \ {[w]α , [z]α})∪
{

[[w]α]β

}
. There are three possib-

ilities: w, z 6∈ {x, y}, w, z ∈ {x, y} and only one of w, z is an element of {x, y}. We will
deal with them separately.

1. w, z 6∈ {x, y}: Then [w]α = w and [z]α = z and ({[x]α} \ {[w]α , [z]α}) = {[x]α} =
{{x, y}}. Moreover [[w]α]β = {w, z}. Thus we have

({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
= {{x, y} , {w, z}} (B.13)

2. w, z ∈ {x, y}: Then [w]α = [z]α = [x]α, so ({[x]α} \ {[w]α , [z]α}) = ∅. Moreover
[[w]α]β = [w]α, because it is an equivalence class of a trivial relation, thus the set

({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
= {[w]α} = {[x]α} = {{x, y}} (B.14)
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3. w ∈ {x, y} , z 6∈ {x, y}: then [w]α = [x]α, so ({[x]α} \ {[w]α , [z]α}) = ∅. Moreover
[[w]α]β = {{x, y} , z}, thus the set

({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
= {{{x, y} , z}} (B.15)

Let us now compare the sets (A/α) /β and (A/β) /α.

(A/α) /β = (A \ {x, y, w, z}) ∪ ({[x]α} \ {[w]α , [z]α}) ∪
{

[[w]α]β

}
(B.16)

while the set (A/β) /α is

(A/α) /β = (A \ {x, y, w, z}) ∪
({

[w]β

}
\
{

[x]β , [y]β

})
∪
{[

[x]β

]
α

}
(B.17)

In the first case it is (A \ {x, y, w, z}) ∪ {{x, y} , {w, z}}, and it is symmetric with
respect to interchange of the pairs (x, y) and (w, z), so (A/α) /β = (A/β) /α.

In the second and third case the equivalence of (A/α) /β and (A/β) /α less obvious.
The set (A/α) /β is

(A/α) /β = (A \ {x, y, w, z}) ∪B (B.18)

for B = B1 := {{x, y}} or B = B2 = {{{x, y} , z}}. Let us now write explicitly (A/β) /α.
There are two possibilities: either both x, y ∈ {w, z}, or only one of them, say x ∈ {w, z}
and y 6∈ {w, z}, so we have

(A/β) /α = (A \ {x, y, w, z}) ∪ C (B.19)

for C = C1 = {{w, z}} or C = C2 = {{{w, z} , y}}. Each of the sets B1, B2, C1 and
C2 is one-element, thus there is a natural bijection between them. This natural bijection
determines the natural bijection between (A/α) /β and (A/β) /α.

To make the proof complete, let us explicitly write the bijection
φ : (A/α) /β → (A/β) /α. The map φ|A\{x,y,w,z} is the identity map. On the glued
part there are two possibilities:

• The map φ|((A/α)/β)\(A\{x,y,w,z}) is the identity map on
{

[x]α , [w]β

}
if

{x, y} ∩ {w, z} = ∅.

• In the opposite case (i.e. if {x, y} ∩ {w, z} 6= ∅), we have φ : [[w]α]β 7→
[
[x]β

]
α
.

After this introduction let us state and prove the theorem:

Theorem B.1. On commutativity of gluing 2-complex along edges
Let κ = (F,E,V ; f2, f1) be a 2-comples. Let e1, e2, e3, e4 ∈ Eκ be four edges (it may

happen, that e3 = e2). Let fα : e1 → e2 and fβ : e3 → e4 be two homeomorphic maps of
cells. The 2-complexes κ1 := (κ/fα) /fβ and κ2 := (κ/fβ) /fα are equivalent.

Proof
To prove the theorem we have to show the equivalence of each element of the structure
of κ1 =

(
F1,E1,V1 ; f

(1)
2 , f

(1)
1

)
and κ2 =

(
F2,E2,V2 ; f

(2)
2 , f

(2)
1

)
.

The sets of faces are trivially the same, because the gluing of edges does not effect
faces.
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The sets of edges are also the same. Indeed, let α1 = (e1e2) and β1 = (e3, e4). Then
the E1 =

(
E/α1

)
/β1 and E2 =

(
E/β1

)
/α1. Using lemma B.1 there is a natural bijection

φE : E1 → E2.
To identify the sets V1 and V2 let us name the end-points of each of the edges

e1, . . . , e4 by vεi for ε ∈ {+,−}, such that the map fα maps vε1 to vε2 and the map
fβ maps vε3 to vε4. Let us name the pairs α0ε := (vε1, v

ε
2) and β0ε := (vε3, v

ε
4). Un-

der such notation the set of vertices of κ/fα is
(
V/α0+

)
/α0−, which is equivalent to(

V/α0−) /α0+ (thanks to lemma B.1). Thus the set V1 =
(((

V/α0+
)
/α0−) /α1+

)
/α1−

and V2 =
(((

V/α1+
)
/α1−) /α0+

)
/α0−. Again, thanks to lemma B.1, we can change

the order of divisions and obtain the natural bijection φV : V1 → V2.
Let us now consider the action of the boundary maps f2 and f1 and check, whether

they are consistent with the bijections φE and φV .
In order to consider the the map f2 let us consider the projections π(1)

1 : E→ E1 and
π

(2)
1 : E→ E2. The map f (1)

2 := π
(1)
1 ◦ f2, and similar f (2)

2 := π
(2)
1 ◦ f2.

The exact formula of the projections can be read out of the proof of lemma B.1.
Obviously π

(1)
1

∣∣∣
E\{e1,e2,e3,e4}

= π
(2)
1

∣∣∣
E\{e1,e2,e3,e4}

= 1. If {e1, e2} ∩ {e3, e4} 6= ∅, all

the edges are glued to one edge, and thus we have π(1)
1 : {e1, e2, e3, e4} → {[[e3]]} and

π
(2)
1 : {e1, e2, e3, e4} → {[[e1]]}, otherwise (i.e. if {e1, e2} ∩ {e3, e4} = ∅) both projections

map {e1, e2}onto {[e1]} and {e3, e4} onto {[e3]}.
Consistency of 2-complex structure require φE ◦ f (1)

2 = f
(2)
2 . In fact it is enough to

check, whether φE◦π(1)
1 = π

(2)
1 . AtE\{e1, e2, e3, e4} the bijection φE and both projections

are the identity maps, it is enough to check it at {e1, e2, e3, e4}. If {e1, e2} ∩ {e3, e4} = ∅
the bijection φE is the identity map. If {e1, e2} ∩ {e3, e4} 6= ∅, we have π(1)

1 (ei) = [[e3]],
but φE ([[e3]]) = [[e1]] = π

(2)
1 (ei), which proves the consistency of the f2 maps.

In order to consider the map f1 let us consider the projections π(1)
0 : V → V1 and

π
(2)
0 : V→ V2. The map f

(1)
1 := π

(1)
0 ◦ f1 ◦

(
π

(1)
1

)−1
, and similarly

f
(2)
1 := π

(2)
0 ◦ f1 ◦

(
π

(2)
1

)−1
. The consistency of 2-complex structure at the level of f1

function requires φV ◦ f (1)
1 ◦

(
φE
)−1

= f
(2)
1 , so

φV ◦ π(1)
0 ◦ f1 ◦

(
π

(1)
1

)−1
◦
(
φE
)−1 ?

= π
(2)
0 ◦ f1 ◦

(
π

(2)
1

)−1
(B.20)

First let us show, that φV ◦ π(1)
0 = π

(2)
0 . Note, that to obtain V2 from V1 one has to

do four changes of order of quotients. Let us introduce four bijection maps:

φVa : V1 =
(((

V/α0+
)
/α0−) /α1+

)
/α1− →

(((
V/α0+

)
/α1+

)
/α0−) /α1− =: Va

φVb : Va =
(((

V/α0+
)
/α1+

)
/α0−) /α1− →

(((
V/α0+

)
/α1+

)
/α1−) /α0− =: Vb

φVc : Vb =
(((

V/α0+
)
/α1+

)
/α1−) /α0− →

(((
V/α1+

)
/α0+

)
/α1−) /α0− =: Vc

φVd : Vc =
(((

V/α1+
)
/α0+

)
/α1−) /α0− →

(((
V/α1+

)
/α1−) /α0+

)
/α0− = V2

(B.21)

Obviously φV = φVd ◦ φVc ◦ φVb ◦ φVa . Moreover let us introduce three projection maps:
π

(i)
0 : V→ Vi for i = a, b, c. By the same argument, as we used in case of φE we see, that
πa = φVa π

(1)
0 , πb = φVb πa, πc = φVc πb and π

(2)
0 = φVd πc. By composing these identities we

obtain π(2)
0 = φVd ◦ φVc ◦ φVb ◦ φVa π

(1)
0 , so

π
(2)
0 = φV π

(1)
0 (B.22)
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Now let us check the consistency of the counterimage of
(
π

(i)
1

)−1
. As it was stated

above, if {e1, e2} ∩ {e3, e4} = ∅, both projections π(1)
1 and π

(2)
1 are equal, thus their

inverse
(
π

(1)
1

)−1
=
(
π

(2)
1

)−1
give the same counterimages for each argument. On the

other hand if {e1, e2} ∩ {e3, e4} 6= ∅ the projections are different, but the counterimages
of each argument also agrees - indeed,(

π
(1)
1

)−1
([[e3]]) = {e1, e2, e3, e4} =

(
π

(2)
1

)−1
([[e1]]) =

(
π

(2)
1

)−1 (
φE ([[e1]])

)
(B.23)

Applying (B.22) and (B.23) to (B.20) we obtain the identity, so indeed
φV ◦ f (1)

1 ◦
(
φE
)−1

= f
(2)
1 , which ends the proof.

Quod erat demonstrandum

B.2 Proof of generalized SPA

The statement of the theorem and the sketch of the proof is taken from [102]. The
extension of the proof to more general integrands was performed by the Author.

Let us recall the Saddle Point Approximation theorem in the original formulation.

Theorem B.2. Saddle Point Approximation (original formulation):
Given two smooth functions f, g : [a, b] → R and assuming, that f has a global min-

imum at a unique point c ∈ [a, b] such that f ′′ (c) > 0, one has
ˆ b

a
g (x) e−f(x)/~dx =

√
~e−f(c)/~I (~) (B.24)

for a smooth function I (~) : [0,∞[, such that I (0) =
√

2π g(c)√
f ′′(c)

.

One can easily re-express this theorem in such a way, that the function g disappears
(i.e. for f̃ (x) = f (x) ln g (x)). One can assume c = 0. One can assume f (c) = 0 (by
multiplying both sides of the formula by ef(c)/~). One should also assume < (f (x))→∞
for x → a and x → b - in order to avoid boundary terms in the integral. It is also
convenient to change the sign of f and consider f having maxima instead of minima etc.
Moreover, there is no good reason to restrict only to real functions, however one has to
slightly modify the assumptions about f .

Thus we have another theorem:

Theorem B.3. Simplified form of Saddle Point Approximation
Given a smooth function f : [a, b]→ C and assuming, that < (f) has a global maximum

at 0 ∈ [a, b] such that f ′′ (0) < 0 and f (0) = 0, and f ′ (0) = 0, and ∀x 6=0< (f (x)) < 0,
and < (f (x))→ −∞ for x→ a and x→ b, one has

ˆ b

a
ef(x)/~dx =

√
~I (~) (B.25)

for a smooth function I (~) : [0,∞[, such that I (0) =
√

2π 1√
−f ′′(0)

.

However, we are interested in integrating functions Φ (x, ~) of more general form than
ef(x)/~. Consider an integrand of the form eχ(x,~) where the function χ (x, ~) has a simple
pole of degree 1 at ~ = 0, i.e. it has a Laurent series

χ (x, ~) =
χ−1 (x)

~
+

∞∑
α=0

χα (x) ~α (B.26)
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An intuition suggests, that the contribution from the terms other than χ−1 will be neg-
ligible. The intuition is right, what we shall prove in the following theorem:

Theorem B.4. Generalized Saddle Point Approximation
Given a smooth function χ : [a, b] × ]0, 1[ 3 (x, ~) 7→ χ (x, ~) ∈ C, (where 0 ∈ [a, b])

with a simple pole of degree 1 at ~ = 0 and assuming, that

∀x6=0,~∈]0,1[ < (χ (x, ~)) < 0 (B.27)
∀~∈]0,1[ lim

x→a and x→b
< (χ (x, ~)) = −∞ (B.28)

∀~∈]0,1[ χ (0, ~) = 0 (B.29)

lim
~→0

~
∂χ (x, ~)

∂x

∣∣∣∣
x=0

= 0 (B.30)

lim
~→0

~<
(
∂2χ (x, ~)

∂x2

∣∣∣∣
x=0

)
= −C < 0 (B.31)

one has ˆ b

a
eχ(x,~)dx =

√
~I (~) (B.32)

for a smooth function I (~) : [0,∞[→ C, such that I (0) =
√

2π 1√
−χ′′−1(0)

.

Proof
The function I (~) can be defined by the equation (B.32). What we need to do is to find
it’s value at ~ = 0 and prove its smoothness.

Let us start with a sketch of the proof. It goes in three steps of estimations, i.e. we
find three classes of functions I1 (~) (a one-element class), In2 (~) for n ∈ Z+ ∪ {0} and
In3 (~) again for n ∈ Z+ ∪ {0} (we shall define these classes later), such that:

∀N∈Z+ lim
~→0

|I (~)− I1 (~)|
~N

= 0 (B.33)

∀N∈Z+ lim
~→0

∣∣I1 (~)− I2N
2 (~)

∣∣
~N+ε

= 0 (B.34)

∀N,Ñ∈Z+
lim
~→0

∣∣IN2 (~)− IN3 (~)
∣∣

~Ñ
= 0 (B.35)

From (B.33)-(B.35) we see, that

∀N∈Z+∃k∈Z+

∣∣∣I (~)− Ik3 (~)
∣∣∣ = O

(
~N
)

(B.36)

so the series of functions In3 (~) can be used to estimate the original integral. These
functions will be chosen in such a way, that at each order it is easy to evaluate the
integral and obtain the corresponding term of expansion.

Having the sketch, let us go to the proof.
Let ε ∈

]
0, 1

2

[
(it will never be considered a small number).

The function I1 (~) is defined by the following integral:

I1 (~) :=
1√
~

ˆ ~
1
2−ε

−~
1
2−ε

eχ(x,~)dx (B.37)

note, that for ~� 1 we have ~
1
2
−ε � 1. Having defined I1 (~) let us prove (B.33).
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Proof of (B.33):
To simplify the notation, let us name the integration ranges: [a, b] =: Ω

and
[
−~

1
2
−ε, ~

1
2
−ε
]

=: O~,ε.
The difference I (~)− I1 (~) is given by the integral

I (~)− I1 (~) =
1√
~

ˆ

Ω\O~,ε

eχ(x,~)dx (B.38)

we can estimate its modulus by

|I (~)− I1 (~)| ≤ 1√
~
|Ω \ O~,ε| sup

Ω\O~,ε

∣∣∣eχ(x,~)
∣∣∣ (B.39)

The measure of the set |Ω \ O~,ε| < |Ω| = b−a. The supremum is given by the supremum
of the real part of the exponent, so that

|I (~)− I1 (~)| < 1√
~

(b− a) e
supΩ\O~,ε (<(χ(x,~))) (B.40)

Since χ (0, ~) is the global maximum of the real part of χ (x, ~), for ~ sufficiently small
the supremum will be at one of the borders of O~,ε. Without loose of generality we may
assume that it is for x = ~

1
2
−ε, obtaining

|I (~)− I1 (~)| < 1√
~

(b− a) e
<
(
χ
(
~

1
2−ε,~

))
(B.41)

Since ~
1
2
−ε � 1, we may apply the Taylor expansion to χ in x around x = 0. Notting

the Laurent series (B.26) of χ, we get

χ (x, ~) =
∞∑

α=−1

∞∑
n=0

χ
(n)
α (0)

n!
xn~α (B.42)

Now applying the assumptions on the function χ we get rid of some terms in (B.42).
First of all, since χ (0, ~) = 0 for all ~ (see (B.29)), we have ∀αχα (0) = 0. Moreover,
(B.30) puts an extra constraint on χ−1, i.e. χ′−1 (0) = 0. Thus

χ (x, ~) =
∞∑
n=2

χ
(n)
−1 (0)

n!

xn

~
+
∞∑
α=0

∞∑
n=1

χ
(n)
α (0)

n!
xn~α (B.43)

The assumption (B.31) gives another constraint on the real part of second derivative of
χ−1, i.e. <

(
χ′′−1 (0)

)
= −C. Thus

< (χ (x, ~)) = −C
2

x2

~
+
∞∑
n=3

<
(
χ

(n)
−1 (0)

)
n!

xn

~
+
∞∑
α=0

∞∑
n=1

<
(
χ

(n)
α (0)

)
n!

xn~α (B.44)

For x = ~
1
2
−ε the real part of the exponent becomes

<
(
χ
(
~

1
2
−ε, ~

))
= −C

2
~−2ε +

∞∑
n=3

<
(
χ

(n)
−1 (0)

)
n!

~
n
2
−1−nε +

∞∑
α=0

∞∑
n=1

<
(
χ

(n)
α (0)

)
n!

~
n
2
−nε+α

= −C
2
~−2ε

[
1− 2

C
ζ (~)

]
(B.45)
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with

ζ (~) :=

∞∑
n=3

<
(
χ

(n)
−1 (0)

)
n!

~
n
2
−1−nε+2ε +

∞∑
α=0

∞∑
n=1

<
(
χ

(n)
α (0)

)
n!

~
n
2
−nε+α+2ε (B.46)

Now note, that lim~→0 ζ (~) = 0. Indeed, in the first series in each term ~ has the exponent
n
2 − 1 − nε − 2ε =

(
1
2 − ε

)
(n− 2), and since by n ≥ 3 and (by assumption) 1

2 > ε, it is
positive. In the second series in each term ~ has the exponent n

(
1
2 − ε

)
+α+2ε being the

sum of two positive quantities and one non-negative quantity, so it is also always positive.
Thus for ~ small enough we may be sure that |ζ (~)| < C

4 . Under such assumption we
have

∣∣1− 2
C ζ (~)

∣∣ > 1
2 , so

< (χ (x, ~)) < −C
4
~−2ε (B.47)

and thus
|I (~)− I1 (~)| < 1√

~
(b− a) e−

C
4
~−2ε

(B.48)

so it is bounded by an exponent function of 1
~ to a positive power, which indeed goes to

0 faster than any polynomial of ~, which ends the proof of (B.33).

Having proven (B.33) let us define the family In2 (~) and proceed to the proof of
(B.34). In order to define In2 (~) let us first change the integration variable in (B.37) to
y := x√

~
, so that

I1 (~) =

ˆ ~−ε

−~−ε
eχ(y

√
~,~)dy (B.49)

Note, that now the boarders of the integration range ~−ε � 1, but the argument of the
function f is still small, i.e. y

√
~� 1. The family In2 (~) is defined as

In2 (~) =

ˆ ~−ε

−~−ε

[(
eχ(y

√
~,~)
)
nth order of Taylor expantion in

√
~

]
dy (B.50)

i.e. let us introduce h :=
√
~ and a function Φ (y, h) := eχ(yh,h2), then we have

Φ (y, h) =

∞∑
n=0

∂nΦ

∂hn

∣∣∣∣
(y,0)

hn

n!
(B.51)

according to Taylor’s theorem we can introduce a family of functions Φn (y, h) such that

Φ (y, h) = Φn (y, h) +Rn (y, h) (B.52)

where Rn (y, h) is the reminder of nth order, i.e

∀y lim
h→0

Rn (y, h)

hn
= 0 (B.53)

The functions In2 (~) can be rewritten in terms of h and Φ (y, h), obtaining

In2 (h) =

ˆ h−2ε

−h−2ε

Φn (y, h) dy (B.54)

Let us now proceed to the proof of (B.34)

∀N∈Z+ lim
~→0

∣∣I1 (~)− I2N
2 (~)

∣∣
~N+ε

= 0 (B.55)
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Proof of (B.34):
Note, that in terms of Φ (y, h) the function I1 (h) is

I1 (h) =

ˆ h−2ε

−h−2ε

Φ (y, h) dy (B.56)

thus the difference I1 (h)− In2 (h) can be written as

I1 (h)− In2 (h) =

ˆ h−2ε

−h−2ε

Rn (y, h) dy (B.57)

Let us recall the Lagrange form of the reminder:

Rn (y, h) =
∂n+1Φ

∂hn+1

∣∣∣∣
y,ξ

hn+1

(n+ 1)!
(B.58)

for some ξ ∈ ]0, h[. We shall estimate the value of the reminder.
Since we are interested in Φ as a function of h, in what follows we shall treat y as a

parameter, i.e. we shall consider Φy (h) := Φ (y, h)
First let us introduce the exponent function φy (h) := χ

(
yh, h2

)
, so that Φy (h) = eφy(h).

The derivatives of Φ with respect to h are:

Φ′y (h) = φ′y (h) eφy(h)

Φ′′y (h) =
[
φ′′y (h) +

(
φ′y (h)

)2]
eφy(h)

Φ′′′y (h) =
[
φ′′′y (h) + 2φ′′y (h)φ′y (h) +

(
φ′y (h)

)3]
eφy(h)

...
...

...
Φ(n)
y (h) = Wn

(
φ′y (h) , φ′′y (h) , . . . , φ(n)

y (h)
)
eφy(h) (B.59)

where Wn (x1, . . . , xn) is a polynomial:

Wn (x1, . . . , xn) =
∑

wp1p2···pnx
p1
1 x

p2
2 · · ·x

pn
n (B.60)

and the coefficients wp1p2···pn are zero unless
∑n

i=1 i · pi = n, when they are non-negative
(they can be derived from the derivative of a composition of functions).

Consider now the Taylor series of the exponent function φy (y). Since through all the
domain the argument of χ is small (indeed, yh < h−2εh� 1, since h� 1 and 1−2ε > 0),
one can apply the expansion (B.43). We obtain

φy (h) =
χ′′−1 (0)

2
y2 + y2

∞∑
k=1

χ
(k+2)
−1 (0)

(k + 2)!
ykhk +

∞∑
α=0

∞∑
k=1

χ
(k)
α (0)

k!
ykhk+2α (B.61)

Recalling the same argument, as in (B.43) we argue, that the tail goes to 0 with h→ 0.

Thus, for sufficiently small h the modulus of the tail is less then
∣∣∣∣<(χ′′−1(0))y2

4

∣∣∣∣, so
∀y∈[−h−2ε,h−2ε]< (φy (h)) < −C

4
y2 (B.62)

Now let us study the derivatives of φy (h). By reorganizing the terms in (B.61) one
can order them by the powers of h, so that

φy (h) =
χ′′−1 (0)

2
y2 +

∞∑
n=0

hn
bn+1

2 c∑
α=0

χ
(n−2(α−1))
α−1 (0) yn−2(α−1)

(n− 2 (α− 1))!
(B.63)
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thus the nth derivative over h reads as

φ(n)
y (h) =

∞∑
k=n

hk−n
k!

(k − n)!

b k+1
2 c∑

α=0

χ
(k−2(α−1))
α−1 (0) yk−2(α−1)

(k − 2 (α− 1))!

=
∞∑
k=0

hk
(k + n)!

n!

b k+n+1
2 c∑

α=0

χ
(k+n−2(α−1))
α−1 (0) yk+n−2(α−1)

(k + n− 2 (α− 1))!
(B.64)

Again reorganizing the terms in (B.64) one can obtain a more convenient form, i.e

φ(n)
y (h) =

bn−1
2 c∑

α=−1

yn−2α

(
n!χ

(n−2α)
α (0)

(n− 2α)!
+

∞∑
k=1

(k + n)!χ
(k+n−2α)
α (0)

k! (k + n− 2α)!
(hy)k

)

+
∞∑

α=bn+1
2 c

h2α−n
∞∑
l=1

(2 (α− 1)− l + 2)!χ
(l)
α (0)

l! (2α− n+ l)!
(hy)l (B.65)

By a similar argument we see, that for each α both tails dependent on h vanishes with h
(indeed, because hy � 1 and h� 1). Thus given an arbitrary constant C̃αn for sufficiently
small h the modulus of the sum of the tails can be estimated by C̃n times the modulus
of a h-independent term:1

∣∣∣φ(n)
y (h)

∣∣∣ < C∞n +

bn−1
2 c∑

α=−1

∣∣yn−2α
∣∣
∣∣∣χ(n−2α)
α (0)

∣∣∣n!

(n− 2α)!
Cαn for Cn = 1 + C̃n (B.66)

where Cαn = 1 + C̃αn and C∞n is the total bound of all the terms for α ≥
⌊
n+1

2

⌋
For

simplicity we assume all Cαn and C∞n to be less then 2. Thus we have an estimation for
derivative of φy (h) of each degree n:∣∣∣φ(n)

y (h)
∣∣∣ < Pnχ (y) (B.67)

where Pnχ is a polynomial in |y| with positive coefficients, independent on h.
Going back to the derivative of Φy (h) (see (B.59)), thanks to (B.62) we can estimate

its modulus by∣∣∣Φ(n)
y (h)

∣∣∣ ≤ ∣∣∣Wn
(
φ′y (h) , φ′′y (h) , . . . , φ(n)

y (h)
)∣∣∣ · ∣∣∣eφy(h)

∣∣∣
≤

∣∣∣Wn
(
φ′y (h) , φ′′y (h) , . . . , φ(n)

y (h)
)∣∣∣ · e−C4 y2

(B.68)

recalling the positiveness of the coefficient of each of the polynomialsWn we can estimate

|Wn (x1, . . . , xn)| ≤Wn (|x1| , . . . , |xn|) (B.69)

combining (B.69) and (B.67) we obtain∣∣∣Wn
(
φ′y (h) , . . . , φ(n)

y (h)
)∣∣∣ ≤Wn

(
P1
χ (y) , . . . ,Pnχ (y)

)
= W̃n (|y|) (B.70)

being another polynomial, with positive coefficients (one can check, that the minimal
power of |y| is 0 and the maximal is 3n).

1Note, that now we estimate the modulus, not the real part, thus we have to add the modulus of each
term.
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Now let us go back to the integral (B.57). Thanks to (B.58) we have

ˆ h−2ε

−h−2ε

Rn (y, h) dy =
hn+1

(n+ 1)!

ˆ h−2ε

−h−2ε

Φ(n+1)
y (ξ) dy (B.71)

Since ξ ∈ ]0, h[, we can use (B.68) and (B.70) to estimate the modulus of the integral∣∣∣∣∣
ˆ h−2ε

−h−2ε

Rn (y, h) dy

∣∣∣∣∣ ≤ hn+1

(n+ 1)!

ˆ h−2ε

−h−2ε

∣∣∣Φ(n+1)
y (ξ)

∣∣∣dy ≤ hn+1

(n+ 1)!

ˆ h−2ε

−h−2ε

W̃n (|y|) e−
C
4
y2

dy

(B.72)
Since ∀y∈R the polynomial W̃n (|y|) > 0, we can estimate the integral from the above by
extending it’s limits to ±∞:

ˆ h−2ε

−h−2ε

W̃n (|y|) e−
C
4
y2

dy ≤
ˆ ∞
−∞

W̃n (|y|) e−
C
4
y2

dy (B.73)

For each polynomial the integral of the right-hand-side of (B.73) is equals to a numberM
depending only on C and the coefficients of the polynomial. Both C and the coefficients
of the polynomial are numbers depending only on the derivatives of χα (x) at x = 0, thus

ˆ ∞
−∞

W̃n (|y|) e−
C
4
y2

dy = M
(
χ(n)
α (0)

)
= Mχ (B.74)

Is important that Mχ does not depend in any way on h.
The final step of the proof of (B.34) is to plug (B.74) and (B.72) and (B.57) to (B.34),

obtaining

lim
h→0

∣∣I1 (h)− I2N
2 (h)

∣∣
h2N+2ε

= lim
h→0

∣∣∣´ h−2ε

−h−2ε R
2N (y, h) dy

∣∣∣
h2N+2ε

(B.75)

≤ lim
h→0

1

h2N+2ε

h2N+1

(n+ 1)!

ˆ h−2ε

−h−2ε

W̃ 2N (|y|) e−
C
4
y2

dy (B.76)

≤ 1

(n+ 1)!
lim
h→0

h1−2εMχ (B.77)

=
Mχ

(n+ 1)!
lim
h→0

h1−2ε (B.78)

= 0 (B.79)

where from (B.75) to (B.76) we applied the estimation (B.72), from (B.76) to (B.77) we
used the estimation (B.74) and (B.73), from (B.77) to (B.78) we used the fact, that Mχ

does not depend on h and from (B.78) to (B.79) we used the fact, that 1 − 2ε > 0, by
definition of ε.

This ends the proof of (B.34).

Having proven (B.34) let us define the family In3 (~) and proceed to the proof of
(B.35). We will do it in terms of h =

√
~ and the Taylor decomposition of the function

Φ (y, h) (see (B.52)). The function In3 (h) is defined as

In3 (h) :=

ˆ ∞
−∞

Φn (y, h) dy (B.80)
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Recalling (B.50) we have

In2 (h) =

ˆ h−2ε

−h−2ε

Φn (y, h) dy (B.81)

so we can rephrase our claim (B.35) into

lim
h→0

∣∣∣´∞−∞Φn (y, h) dy −
´ h−2ε

−h−2ε Φn (y, h) dy
∣∣∣

h2Ñ
= 0 (B.82)

Proof of (B.35):
Let us recall the Taylor series of the function Φ (y, h) = Φy (h). The nth order of the
expansion is

Φn (y, h) =
n∑
i=0

Φ
(i)
y (0)

i!
hi (B.83)

Recalling the form (B.59) of ith derivative of Φy (h) we get

Φ(i)
y (0) = W i

(
φ′y (0) , φ′′y (0) , . . . , φ(i)

y (0)
)
eφy(0) (B.84)

From (B.65) we have

φ(n)
y (0) =

bn−1
2 c∑

α=−1

yn−2αn!χ
(n−2α)
α (0)

(n− 2α)!
=: P̃nχ (y) (B.85)

being a polynomial in y. Inserting the form (B.61) of φy (h) and (B.85) of the derivatives
of φy (h) we get (now exactly, without approximation)

Φ(i)
y (0) = W i

(
P̃1
χ (y) , . . . , P̃ iχ (y)

)
e
χ′′−1(0)

2
y2

(B.86)

thus the nth order of the Taylor expansion Φn (y, h) is

Φn (y, h) = e
χ′′−1(0)

2
y2
∑
i

W i
(
P̃1
χ (y) , . . . , P̃ iχ (y)

) hi
i!

= e
χ′′−1(0)

2
y2
∑
i

W i (y)
hi

i!
(B.87)

for some polynomials W i (y) (note, that they are different then W̃ i (y) of (B.70)). Con-
sider now the nominator of the formula (B.82). It can be rewritten as

ˆ ∞
−∞

Φn (y, h) dy −
ˆ h−2ε

−h−2ε

Φn (y, h) dy =

ˆ
dy

R\[−h−2ε,h−2ε]

Φn (y, h) (B.88)

thus the domain of integration is symmetric with respect to the change of the sign of

y. Thus only the part of Φn (y, h) symmetric in y contributes. The term e
χ′′−1(0)

2
y2

is symmetric in y, so it is enough to take into account only the part of each of the
polynomials W i consisting of even powers of y, namely W i

sym. Note, that again the
polynomials W i

sym (y) do not depend on h in any way, they are fully determined by
derivatives of χα at 0. Thus the nominator of (B.82) is

In3 (h)− In2 (h) =

ˆ
dy

R\[−h−2ε,h−2ε]

e
χ′′−1(0)

2
y2

n∑
i=0

W i
sym (y)

hi

i!
(B.89)
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let us now organize the integrand in (B.89) by the powers of y. Each term y2j is multiplied
by a polynomial in h (let us call it Qnj (h)). Each Qnj (h) is a polynomial of degree less
or equal then n. The least power of y in W i (y) is 0 and the highest is 3n for even n and
3n− 1 for odd n. Let N :=

⌊
3n
2

⌋
, then

In3 (h)−In2 (h) =

ˆ
dy

R\[−h−2ε,h−2ε]

e
χ′′−1(0)

2
y2

N∑
j=0

y2jQnj (h) =

N∑
j=0

Qnj (h)

ˆ
dy

R\[−h−2ε,h−2ε]

e
χ′′−1(0)

2
y2
y2j

(B.90)
We estimate the modulus |In3 (h)− In2 (h)|, thus

|In3 (h)− In2 (h)| ≤
N∑
j=0

∣∣Qnj (h)
∣∣ ˆ

dy

R\[−h−2ε,h−2ε]

∣∣∣∣eχ′′−1(0)

2
y2
y2j

∣∣∣∣ (B.91)

recalling, that ∣∣∣∣eχ′′−1(0)

2
y2

∣∣∣∣ = e
<(χ′′−1(0))

2
y2

= e−
C
2
y2

(B.92)

we have

|In3 (h)− In2 (h)| ≤
N∑
j=0

∣∣Qnj (h)
∣∣ ˆ

dy

R\[−h−2ε,h−2ε]

e−
C
2
y2
y2j (B.93)

Now we shall estimate the integrals

Jj (h) :=

ˆ
dy

R\[−h−2ε,h−2ε]

e−
C
2
y2
y2j (B.94)

They are given by even momenta of Gaussian integrals with the spread σ :=
√

2
C . Note,

that since −2ε < 0, the bounds of the integration range h−2ε may reach arbitrary multiple
of the spread σ. Let us now consider a series

hk := (kσ)−2ε (B.95)

i.e. for each k ∈ Z+ we have h−2ε
k = kσ. Obviously limk→∞ hk = 0. We will show, that

lim
k→∞

|In3 (hk)− In2 (hk)|
h2Ñ
k

= 0 (B.96)

Note, that

Jj (hk) =

ˆ ∞
−∞

e−
y2

σ2 y2jdy −
ˆ kσ

−kσ
e−

y2

σ2 y2jdy (B.97)

Let us introduce a family of serieses of functions

Ikn (σ) :=
1√
π

ˆ kσ

−kσ
e−

y2

σ2 y2ndy (B.98)

with the limit
In (σ) := I∞n (σ) =

1√
π

ˆ ∞
−∞

e−
y2

σ2 y2ndy (B.99)
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One can find (see Appendix B.2.1.1) that

In (σ) = anσ
2n+1 (B.100)

where the series
an :=

(2n+ 1)!!

2n (2n+ 1)
for n ≥ 0 (B.101)

or equivalently

a0 = 1 and an =
(2n− 1)!!

2n
for n > 0 (B.102)

where
(2n+ 1)!! := (2n+ 1) (2n− 1) · · · 3 · 1 (B.103)

The series an satisfies the recurrence relation:

an+1 = αnan for αn =
2n+ 1

2
(B.104)

with the initial condition a0 = 1.
The integrals Ikn (σ) are given by

Ikn (σ) = aknσ
2n+1 (B.105)

where for each k the series akn satisfies the recurrence relation:

akn+1 = αna
k
n + γkβkn for αn =

2n+ 1

2
and βkn = k2n+1 and γk = −e

−k2

√
π

(B.106)

with the initial condition ak0 := 1√
π

´ kσ
−kσ e

− x
2

σ2 dx (see (B.181) in Appendix B.2.1.1). The
exact value of the initial condition cannot be obtained analytically, but it can be estimated
by √

1− e−k2 < ak0 <
√

1− e−2k2 (B.107)

(see (B.169)). One can expand the recursion and express akn by an and αn, βkn, γk - each
known explicitly - obtaining

akn = ak0 · an + anγ
kβkn−1

n−1∑
i=0

βki
βkn−1

1

ai
=: an − δakn (B.108)

(see (B.166)). Inserting the exact formulae for an, βkn and γk and the estimation of ak0,
one can estimate δakn . For n = 0 the estimation is simply∣∣∣δak0∣∣∣ = 1− ak0 < 1−

√
1− e−k2 < e−k

2
(B.109)

For k ≥ 1 we have:

δakn = an

(
1− ak0 − γkβkn−1

n−1∑
i=0

βki
βkn−1

1

ai

)
= an

(
1− ak0 +

e−k
2

√
π
k2n−1

n−1∑
i=0

k2i+1

k2n−1

2i (2i+ 1)

(2i+ 1)!!

)
(B.110)

Obviously:∣∣∣δakn∣∣∣ ≤ an
(∣∣∣1− ak0∣∣∣+

e−k
2

√
π
k2n−1

∣∣∣∣∣
n−1∑
i=0

1

k2(n−1−i)
2i (2i+ 1)

(2i+ 1)!!

∣∣∣∣∣
)

(B.111)
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Let us estimate the sum in the tail. Obviously

n−1∑
i=0

1

k2(n−1−i)
2i (2i+ 1)

(2i+ 1)!!
=

1

k2n−2
+

n−1∑
i=1

1

k2(n−1−i)
2i (2i+ 1)

(2i+ 1)!!
(B.112)

Now let us investigate the term 2i(2i+1)
(2i+1)!! for i ≥ 1:

2i (2i+ 1)

(2i+ 1)!!
=

(
i−1∏
K=0

2

)
·

(
i∏

L=0

1

2L+ 1

)
· (2i+ 1)

=

i−1∏
K=0

2

2K + 1
(B.113)

=
2

(2 · 0 + 1)

i−1∏
K=1

2

2K + 1

now since obviously 2
2K+1 <

2
2K = 1

K , so

2i (2i+ 1)

(2i+ 1)!!
≤ 2

i−1∏
K=1

1

K
=

2

(i− 1)!
(B.114)

Now since k ≥ 1, for all i we have 1
k2(n−1−i) ≤ 1. Moreover the sum of non-negative terms

up to n− 1 is less then the sum up to ∞, thus∣∣∣∣∣
n−1∑
i=0

1

k2(n−1−i)
(2i+ 1)

2i (2i+ 1)!!

∣∣∣∣∣ <
∣∣∣∣∣1 +

∞∑
i=1

2

(i− 1)!

∣∣∣∣∣ = 1 + 2

∞∑
i=0

1

i!
= 1 + 2 · e (B.115)

Applying(B.115) together with (B.107) and (B.109) to (B.111) we got

∣∣∣δakn∣∣∣ ≤ an
(
e−k

2
+
e−k

2

√
π
k2n−1 · (1 + 2 · e)

)
= ane

−k2

(
1 + k2n−1 1 + 2e√

π

)
(B.116)

Going back to Jj (hk) note, that

Jj (hk) =
√
π
(
Ij (σ)− Ikj (σ)

)
=
√
πσ2j+1δakj (B.117)

Thanks to (B.116) we have

|Jj (hk)| ≤ e−k
2
aj
(√
π + 8k2j−1

)
σ2j+1 (B.118)

Going back to (B.93) we can apply (B.118) and obtain

|In3 (hk)− In2 (hk)| ≤ e−k
2
N∑
j=0

∣∣Qnj (hk)
∣∣ aj (√π + 8k2j−1

)
σ2j+1 (B.119)

for σ =
√

2
C independent on n, j or k.
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Let us finally consider the limit limk→∞
|In3 (hk)−In2 (hk)|

h2Ñ
k

. Recalling (B.95) we have

hk := (kσ)−2ε, thus the denominator becomes a power function of k,
i.e. h2Ñ

k = k−4εÑσ−4εÑ , thus the limit is

lim
k→∞

|In3 (hk)− In2 (hk)|
h2Ñ
k

≤ lim
k→∞

e−k
2
N∑
j=0

∣∣Qnj (hk)
∣∣ aj (√π + 8k2j−1

)
k4εÑσ2j+1+4εÑ

(B.120)
Each polynomial Qnj (hk) goes to a constant Qnj (0) as hk goes to 0. Note, that

lim
k→∞

e−k
2
kα = 0 (B.121)

for any positive α. Thus the overall limit is

lim
k→∞

|In3 (hk)− In2 (hk)|
h2Ñ
k

= 0 (B.122)

for each Ñ .
This ends the proof of (B.35).

Now to find the leading order of the integral (B.32) it is enough to check I0
3 (~). It is

given by assuming ~ = 0 in (B.80). We have thus

I0
3 (~) =

ˆ +∞

−∞
eχ
′′
−1(0)y2

dy =

√
2π√

−χ′′−1 (0)
(B.123)

so ˆ b

a
eχ(x,~)dx =

√
~

√
2π√

−χ′′−1 (0)
(1 +O (~ε)) (B.124)

Moreover, it is easy to show a stronger approximation. From (B.33)-(B.35) we have, that∣∣I (~)− I2
3 (~)

∣∣ = O (~). Consider thus the integral I2
3 (~):

I2
3 (~) =

ˆ +∞

−∞
eχ
′′
−1(0)y2

(
1 +
√
~φ′y (0) +

~
2

[
φ′′y (0) +

(
φ′y (0)

)2])
dy (B.125)

Recalling (B.85) one can check, that φ′y (0) is an odd polynomial of y, thus it vanishes
when integrated with eχ

′′
−1(0)y2

over a symmetric range. The integral
ˆ +∞

−∞
eχ
′′
−1(0)y2

[
φ′′y (0) +

(
φ′y (0)

)2]
=: A (B.126)

gives a constant factor A (independent on ~), so

I2
3 (~) = I0

3 (~) + ~ ·A = I0
3 (~) +O (~) (B.127)

and thus finally ˆ b

a
eχ(x,~)dx =

√
~

√
2π√

−χ′′−1 (0)
(1 +O (~)) (B.128)

Quod erat demonstrandum.
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The multidimensional generalisation of the theorem is straightforward. Indeed, let us
do the following modification of the proof:

• We use a compact set Ω ⊂ RN , such that Ω is a neighbourhood of {0} instead
of the interval [a, b]. Moreover, let us choose the coordinates in RN , such that
the matrix ∂2χ

∂xi∂xj

∣∣∣
x=0

is diagonal (one can do this ensuring that the Jacobian

J := det
(
∂x̃i

∂xj

)
= 1 for all x ∈ RN ).

• We use the set O~,ε :=
{
x ∈ RN : |x| < ~

1
2
−ε
}

instead of
[
−~

1
2
−ε, ~

1
2
−ε
]
, and

Õ~,ε :=
{
x ∈ RN : |x| < ~−ε

}
instead of [−~−ε, ~−ε] respectively.

• We adjust the assumptions, i.e.

∀x 6=0,~∈]0,1[ < (χ (x, ~)) < 0 (B.129)
∀~∈]0,1[ lim

x→∂Ω
< (χ (x, ~)) = −∞ (B.130)

∀~∈]0,1[ χ (0, ~) = 0 (B.131)

∀i=1,...,N lim
~→0

~
∂χ (x, ~)

∂xi

∣∣∣∣
x=0

= 0 (B.132)

∀i,j=1,...,N lim
~→0

~<
(
∂2χ (x, ~)

∂xi∂xj

∣∣∣∣
x=0

)
= −Ciδij < 0 (B.133)

• The final formula reads ˆ
Ω
eχ(x,~)dNx =

(√
~
)N

I (~) (B.134)

for a smooth function I (~) : [0,∞[→ C, such that I (0) =
(√

2π
)N 1√

det

(
− ∂2χ−1

∂xi∂xj

∣∣∣∣
0

) .

Then all the steps of the proof can be translated to the multidimensional case. Whenever
in the above proof one uses the Taylor series of the functions χα (x), here one uses the
multidimensional Taylor series. Whenever one uses the smallness of x ∈

[
−~

1
2
−ε, ~

1
2
−ε
]
,

here one has it for all coordinates xi for x ∈ O~,ε. Whenever in the above proof one
derives, that a function is polynomial of |y| or of y, here one obtains a polynomial of
many coordinates xi or

∣∣xi∣∣.
The only nontrivial generalization is the estimation of the integrals

Jj (h) :=

ˆ
dy

R\[−h−2ε,h−2ε]

e−
C
2
y2
y2j (B.135)

in the proof of (B.35). In the multidimensional case one obtains a Gaussian integral over
RN \ Õ~,ε of a polynomial of multiple variables yi, with positive coefficients. One can
estimate such polynomial by a polynomial in r = |y|, because obviously r > yi. One can

also estimate the Gaussian function e−
∑
i
Ci
2 (yi)

2

≤ e−
Cr2

2 for C = min (Ci). Passing to
the spherical coordinates one obtains integrals

J̃m (h) :=

ˆ

|y|>h−2ε

|y|m−(N−1) e−
Cr2

2 dNy = S(N−1)

ˆ ∞
h−2ε

rme−
Cr2

2 dr (B.136)
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where S(N−1)is the (N − 1)-volume of the unit (N − 1)-sphere, and m can be both odd

and even. Again one introduces σ :=
√

2
C and the series hk := (kσ)−2ε and consider the

limit with k → ∞. The case of even m is handled by the derivation in the above proof,
because J̃2j (hk) = S(N−1)

2 Jj (hk), so it vanish at k → ∞. Here let us study the case of
odd m.

Let us introduce a series of integrals

Ĩkj (σ) :=

ˆ kσ

0
e−

y2

σ2 y2j+1dy (B.137)

and the limit
Ĩ∞j (σ) :=

ˆ ∞
0

e−
y2

σ2 y2j+1dy (B.138)

Similarly to the calculations in the proof above, we have

Ĩ∞j (σ) =
σ2j+2

2
ãj and Ĩkj (σ) =

σ2j+2

2
ãkj (B.139)

where by appropriate changes of variables one gets

ãj =

ˆ ∞
0

e−uujdu and ãkj =

ˆ k2

0
e−uujdu (B.140)

The integrals ãj can be easily calculated, giving

ãj = j! (B.141)

The integrals ãkj satisfy a recursive relation, similar to (B.106), i.e.

ãkj+1 = α̃j ã
k
j + γ̃kβ̃kj for α̃j = j + 1 and β̃kj = k2j+2 and γ̃k = −e−k2

(B.142)

with the initial condition
ãk0 = 1− e−k2

= 1 + γ̃k (B.143)

(see Appendix B.2.1.2). By the same argument, as in the above proof, one obtains the
difference δãkj := ãn − ãkn to be given by the formula

δãkj = ãj

(
1− ãk0 − ãk0 γ̃kβ̃kj−1

j−1∑
i=0

β̃ki
β̃kj−1

1

ãi

)
(B.144)

applying the exact form of ãj , β̃kj and γ̃k one gets

δãkj = j!e−k
2

(
1 +

(
1− e−k2

)
k2j

j−1∑
i=0

1

k2(j−i−1)

1

i!

)
(B.145)

Again we can estimate
(

1− e−k2
)
< 1 and

∑j−1
i=0

1
k2(j−i−1)

1
i! ≤

∑j−1
i=0

1
i! <

∑∞
i=0

1
i! = e, so∣∣∣δãkj ∣∣∣ ≤ j!e−k2 (

1 + e · k2j
)

(B.146)

so J̃2j+1 (hk) = S(N−1)

2

(
Ĩ∞j (σ)− Ĩkj (σ)

)
is bound by

∣∣∣J̃2j+1 (hk)
∣∣∣ < S(N−1)

2

σ2j+2

2

∣∣∣δãkj ∣∣∣ −→
k→∞

0 (B.147)
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The final calculation of I0
3 (~) factorises into N independent Gaussian integrals, which

leads to the result
I (0) =

(√
2π
)N 1√

det
(
− ∂2χ−1

∂xi∂xj

∣∣∣
x=0

) (B.148)

and ends the multidimensional generalisation of the proof.
The following subsection present the calculation of the Gaussian integrals.

B.2.1 Gaussian integrals over finite intervals

Let us derive the recursive relations for integrals Ikn (σ) and Ĩkn (σ) used in above proof.

B.2.1.1 Gaussian integral with even polynomial

Consider a family of integrals

Ikn (σ) :=
1√
π

ˆ kσ

−kσ
e−

x2

σ2 x2ndx (B.149)

with the limit
In (σ) := I∞n (σ) =

1√
π

ˆ ∞
−∞

e−
x2

σ2 x2ndx (B.150)

Integral over all real line
First let us consider In (σ). By changing variables to u := x

σ we get

In (σ) = σ2n+1 1√
π

ˆ ∞
−∞

e−u
2
u2ndu =: σ2n+1an (B.151)

For the series an we can find a recurrence relation by integrating by parts:

an =
1√
π

ˆ ∞
−∞

e−u
2
u2ndu

=
1√
π

[
u2n+1e−u

2

2n+ 1

∣∣∣∣∣
∞

−∞

−
ˆ ∞
−∞

(−2u) e−u
2 u2n+1

2n+ 1
du

]

=
1√
π

2

2n+ 1

ˆ ∞
−∞

u2n+2e−u
2
du

=
2

2n+ 1
an+1 (B.152)

thus the recurrence relation is
an+1 =

2n+ 1

2
an (B.153)

The initial condition is
a0 =

1√
π

ˆ ∞
−∞

e−u
2
du =

√
π√
π

= 1 (B.154)

(we kept the factor 1√
π
in order to have this simple initial condition). Let us introduce

the series
αn :=

2n+ 1

2
(B.155)

so that
an+1 = αnan (B.156)
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Now it is easy to solve the recursion:

an = a0

n−1∏
i=0

αi (B.157)

The product can be done explicitly:

an =
(2n− 1)!!

2n
for n > 0 and a0 = 1 (B.158)

where

(2N + 1)!! :=
N∏
k=0

(2k + 1) (B.159)

Integral over a multiplicity of the spread of the Gaussian
Now let us consider Ikn (σ) . Again the change of variables gives us a series

Ikn (σ) = σ2n+1 1√
π

ˆ k

k
e−u

2
u2ndu =: σ2n+1akn (B.160)

and integration by parts gives us a recurrence relation for akn:

akn =
1√
π

ˆ k

−k
e−u

2
u2ndu

=
1√
π

 u2n+1e−u
2

2n+ 1

∣∣∣∣∣
k

−k

−
ˆ k

−k
(−2u) e−u

2 u2n+1

2n+ 1
du


=

1√
π

[
2

2n+ 1
k2n+1e−k

2
+

2

2n+ 1

ˆ k

−k
u2n+2e−u

2
du

]
=

2

2n+ 1

[
1√
π
k2n+1e−k

2
+ akn+1

]
(B.161)

giving the recurrence relation

akn+1 =
2n+ 1

2
akn − k2n+1 e

−k2

√
π

(B.162)

Let us now introduce two more serieses

βkn := k2n+1 γk := −e
−k2

√
π

(B.163)

so that the recurrence relation becomes

akn+1 = αna
k
n + βknγ

k for n ≥ 1 (B.164)

with αn the same, as in case of an.
One can expand the recurrence relation (B.164) by inserting it in place of akn:

akn = αn−1a
k
n−1 + βkn−1γ

k

= αn−1αn−2a
k
n−2 + αn−1β

k
n−2γ

k + βkn−1γ
k

= αn−1αn−2αn−3a
k
n−3 + αn−1αn−2β

k
n−3γ

k + αn−1β
k
n−2γ

k + βkn−1γ
k

...
...

=

(
n−1∏
i=0

αi

)
· ak0 + γk

n−1∑
i=0

βki

n−1∏
j=i+1

αj (B.165)
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now since an =
∏n−1
i=0 αi, we have

∏n−1
j=i+1 αj =

∏n−1
j=0 αj∏i
j=0 αj

= an
ai+1

akn = an · ak0 + an · γk
∑
i=0

βki
ai+1

= an · ak0 + an · βkn−1 · γk
n−1∑
i=0

βki
βkn−1

1

ai
(B.166)

The initial condition ak0 for (B.164) cannot be found directly, but it can be estimated.
Let us consider

(
ak0
)2:
(
ak0

)2
=

1√
π

ˆ k

−k
e−x

2
dx

1√
π

ˆ k

−k
e−y

2
dy

=
1

π

¨
max(|x|,|y|)<k

e−(x2+y2)dxdy

=
1

π

ˆ 2π

0
dφ

ˆ r(φ)

0
e−r

2
rdr

=
1

2π

ˆ 2π

0
dφ

ˆ r2(φ)

0
e−udu

=
1

2π

ˆ 2π

0

(
1− e−r2(φ)

)
dφ (B.167)

where r (φ) is describes the borders of the square. The exact integration is impossible
in terms of elementary functions, however one can estimate it. Note, that for each φ we
have k2 ≤ r2 (φ) ≤ 2k2. Thus we have

1

2π

ˆ 2π

0

(
1− e−max(r2(φ))

)
dφ <

(
ak0
)2
<

1

2π

ˆ 2π

0

(
1− e−min(r2(φ))

)
dφ

1

2π

ˆ 2π

0

(
1− e−2k2

)
dφ <

(
ak0
)2
<

1

2π

ˆ 2π

0

(
1− e−k2

)
dφ (B.168)

1− e−2k2
<
(
ak0
)2
< 1− e−k2

so √
1− e−2k2 < ak0 <

√
1− e−k2 (B.169)

B.2.1.2 Gaussian integral with odd polynomial

Let us now consider another family of integrals

Ĩkn (σ) :=

ˆ kσ

0
e−

x2

σ2 x2n+1dx (B.170)

with the limit
Ĩn (σ) :=

ˆ ∞
0

e−
x2

σ2 x2n+1dx (B.171)

Integral over all positive real half-line
First let us consider Ĩn (σ). By changing variables to u := x2

σ2 we get

Ĩn (σ) =
σ2n+2

2

ˆ ∞
0

e−uundu =:
σ2n+2

2
ãn (B.172)
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Integrating by parts we get a recurrence relation for ãn:

ãn = −e−uun
∣∣∞
0
−
ˆ ∞

0
−e−u · n · un−1du = nãn−1 for n ≥ 1 (B.173)

Again introducing a series
α̃n := n+ 1 (B.174)

we have
ãn = α̃n−1an−1 (B.175)

with the initial condition
ã0 =

ˆ ∞
0

e−udu = 1 (B.176)

which gives

ãn = ã0

n−1∏
i=0

αi = n! (B.177)

Integral over a multiplicity of the spread of the Gaussian
Now let us consider Ĩkn (σ). Again the change of variables gives us a series

Ĩkn (σ) =
σ2n+2

2

ˆ k2

0
e−uundu =:

σ2n+2

2
ãkn (B.178)

and integration by parts gives us a recurrence relation for ãkn:

ãkn =

ˆ k2

0
e−uundu

= −e−uun
∣∣k2

0
−
ˆ k2

0
−e−u · n · un−1du

= −e−k2
k2n + n · ãkn−1

= ((n− 1) + 1) ãkn−1 − e−k
2
k2(n−1)+2 (B.179)

Introducing two more serieses

β̃kn := k2n+2 γk := −e−k2
(B.180)

we get the recurrence relation

ãkn = α̃n−1ã
k
n−1 + β̃knγ̃

k for n ≥ 1 (B.181)

similar to the (B.164).
Applying the same technique we used in case of akn we can expand the recursion

obtaining

ãkn = ãn · ãk0 + ãn · β̃kn−1 · γ̃k
n−1∑
i=0

β̃ki
β̃kn−1

1

ãi
(B.182)

Here the initial condition can be calculated explicitly

ãk0 =

ˆ k2

0
e−udu = −e−u

∣∣k2

0
= 1− e−k2

(B.183)
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