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Abstract. The symmetry algebra of asymptotically flat spacetimes at null infinity in

four dimensions in the sense of Newman and Unti is revisited. As in the Bondi-Metzner-

Sachs gauge, it is shown to be isomorphic to the direct sum of the abelian algebra of

infinitesimal conformal rescalings with bms4. The latter algebra is the semi-direct sum

of infinitesimal supertranslations with the conformal Killing vectors of the Riemann

sphere. Infinitesimal local conformal transformations can then consistently be included.

We work out the local conformal properties of the relevant Newman-Penrose coefficients,

construct the surface charges and derive their algebra.

1. Introduction

The definitions of asymptotically flat four dimensional space-times at null infinity by

Bondi-Van der Burg-Metzner-Sachs [1, 2] (BMS) and Newman-Unti (NU) [3] in 1962

merely differ by the choice of the radial coordinate. Such a change of gauge should not

affect the asymptotic symmetry algebra if, as we contend, this concept is to have a major

physical significance.

The problem of comparing the symmetry algebra in both cases is that, besides the

difference in gauge, the very definitions of these algebras are not the same. Indeed, NU

allow the leading part of the metric induced on Scri to undergo a conformal rescaling.

When this generalization is considered in the BMS setting, it turns out that the symmetry
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algebra is the direct sum of the BMS algebra bms4 [4] with the abelian algebra of

infinitesimal conformal rescalings [5], [6]. There are two novel and independent aspects in

this computation.

• The first concerns the fact that the BMS algebra in 4 dimension involves the

conformal Killing vectors of the unit, or equivalently, the Riemann sphere and

can consistently accommodate infinitesimal local conformal transformations. The

symmetry algebra bms4 then involves two commuting copies of the non centrally

extended Virasoro algebra, called superrotations in [7], and simultaneously the

supertranslations generators are expanded in Laurent series. The standard, globally

well-defined symmetry algebra bmsglob
4 consists in restricting to the globally well

defined conformal Killing vectors of the sphere which correspond to infinitesimal

Lorentz transformation, while the supertranslation generators are expanded into

spherical harmonics.

This local versus global versions of the symmetry algebra are of course not related

to the BMS gauge choice, but will also occur in alternative characterizations of the

asymptotic symmetry algebra where the conformal Killing vectors of the sphere play a

role. Examples of this are the geometrical approach of Geroch [8] based on Penrose’s

definition of null infinity [9] and also, as we will explicitly discuss in this paper, the

asymptotic symmetries in the NU framework.

• The second aspect is related to the modified Lie bracket that should be used when

the vector fields parametrising infinitesimal diffeomorphisms depend explicitly on

the metric. Indeed, when using the modified Lie bracket, the space-time vectors

realize the asymptotic symmetry algebra everywhere in the bulk and furthermore,

even on Scri, this bracket is needed to disentangle the algebra when conformal

rescalings of the induced metric on Scri are allowed. Similarly, in the context of

the AdS/CFT correspondence, this bracket allows one to realize the asymptotic

symmetry algebra in the bulk and to disentangle the symmetry algebra at infinity

when considering transformations that leave the Fefferman-Graham ansatz invariant

only up to conformal rescaling of the boundary metric [10]. From a mathematical

point of view, the modified Lie bracket is the natural bracket of the Lie algebroid

that is associated to any theory with gauge invariance [11].

What we will do in this paper is to re-derive from scratch the asymptotic symmetry

algebra in the NU framework by focusing on metric aspects and on the two novel features

discussed above. As expected, the symmetry algebra is again the direct sum of bms4 with

the abelian algebra of infinitesimal conformal rescalings of the metric on Scri and thus

coincides, as it should, with the generalized symmetry algebra in the BMS approach. A

related analysis of asymptotic symmetries in the NU context from the point of view of

Scri and emphasizing global issues instead can be found in [12], [13].
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Even though the results presented here are not really surprising in view of those in

the BMS framework and the close relation between the NU and BMS approaches, the

exercise of working out the details is justified because the NU framework is embedded in

the context of the widely used Newman-Penrose formalism [14] so that explicit formulae

in this context are directly relevant in many applications, see e.g. the review article [15].

As a first application, we study the transformation properties of the Newman-Penrose

coefficients parametrizing solution space in the NU approach. Our main focus is on

the inhomogeneous terms in the transformation laws that contain the information on

the central extensions of the theory. We then discuss the associated surface charges by

following the analysis in the BMS gauge [16] and briefly compare with standard expressions

that can be found in the literature. The algebra of these charges is derived and shown to

involve field dependent central charges in the case of bms4 which vanish for bmsglob
4 .

2. NU metric ansatz for asymptotically flat spacetimes

The metric ansatz of NU is based on a family of null hypersurfaces labelled by the first

coordinate, x0 ≡ u = const. The second coordinate x1 ≡ r is chosen as an affine parameter

for the null geodesic generators lµ of these hypersurfaces, so that lµ = −δµr . Up to a change

of signature from (+,−,−,−) to (−,+,+,+), a renumbering of the indices and the tetrad

transformation that makes PNU real, the line element considered in section 4 of NU [3]

can be written as

ds2 = Wdu2 − 2drdu+ gAB(dxA − V Adu)(dxB − V Bdu) , (1)

with associated inverse metric

gµν =

 0 −1 0

−1 −W −V B

0 −V A gAB

 , (2)

where

gABdx
AdxB = r2γ̄ABdx

AdxB + rCABdx
AdxB + o(r) , (3)

with γ̄AB conformally flat. Below, we will use standard stereographic coordinates

ζ = cot θ2e
iφ, ζ̄, γ̄ABdx

AdxB = e2ϕ̃dζdζ̄, ϕ̃ = ϕ̃(u, x).

In addition, the choice of origin for the affine parameter of the null geodesics is fixed

through the requirement that the term proportional to r−2 in the expansion of the spin

coefficient −ρ = Dρlνm
ρm̄ν is absent.

When expressed in terms of the metric, one finds

ρ = −1

4
gABgAB,r = −1

4
∂r ln |g| = −r−1 +

1

4
CAAr

−2 + o(r−2) , (4)
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where g = det gρν and the index has been raised with the inverse of γ̄AB. The requirement

is thus equivalent to the condition

CAA = 0 . (5)

In the following we denote by D̄A the covariant derivative with respect to γ̄AB and by

∆̄ the associated Laplacian and by R̄ the scalar curvature. In complex coordinates ζ, ζ̄,

Cζζ̄ = 0 and we define for later convenience Cζζ = e2ϕ̃c, Cζ̄ζ̄ = e2ϕ̃c̄. Finally,

V A = O(r−2), W = −2r∂uϕ̃+ ∆̄ϕ̃+O(r−1) , (6)

where ∆̄ϕ̃ = 4e−2ϕ̃∂∂̄ϕ̃ with ∂ = ∂ζ , ∂̄ = ∂ζ̄ .

The more restrictive fall-off conditions in [3] are relevant for integrating the field

equations but play no role in the discussion of the asymptotic symmetry algebra.

3. Asymptotic symmetries in the NU approach

The infinitesimal NU transformations can be defined as those infinitesimal transformations

that leave the form (2) and the fall-off conditions (3)-(6) invariant, up to a rescaling of

the conformal factor δϕ̃(u, xA) = ω̃(u, xA). In other words, they satisfy

Lξguu = 0, LξguA = 0, Lξgur = 0, (7)

∂r

[ 1√
|g|
∂ρ(
√
|g|ξρ)

]
= o(r−2) , (8)

LξgrA = O(r−2), LξgAB = −2ω̃gAB +O(r−3),

Lξgrr = 2r∂uω̃ + 2ω̃∆̄ϕ̃− ∆̄ω̃ +O(r−1) .
(9)

Equations (7) are equivalent to

∂rξ
ν = gνρ∂ρξ

u ⇐⇒


∂rξ

u = 0 ,

∂rξ
A = ∂Bξ

ugBA ,

∂rξ
r = −∂uξu − ∂AξuV A ,

(10)

and are explicitly solved by
ξu = f,

ξA = Y A + IA, IA = −∂Bf
∫∞
r dr′gAB,

ξr = −r∂uf + Z + J, J = ∂Af
∫∞
r dr′V A,

(11)

with ∂rf = 0 = ∂rY
A = ∂rZ. Equation (8) then implies

Z =
1

2
∆̄f . (12)
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The first equation of (9) requires ∂uY
A = 0, the second that Y A is a conformal Killing

vector of γ̄AB, which amounts to

Y ζ ≡ Y = Y (ζ), Y ζ̄ ≡ Ȳ = Ȳ (ζ̄) , (13)

in the coordinates ζ, ζ̄, and also that

∂uf = f∂uϕ̃+
1

2
ψ̃ , (14)

with ψ = D̄AY
A, or more explicitly in ζ, ζ̄ coordinates, ψ = ∂Y + ∂̄Ȳ + 2Y ∂ϕ̃ + 2Ȳ ∂̄ϕ̃,

and ψ̃ = ψ − 2ω̃. Finally, the last equation of (9) implies

2(∂uZ + Z∂uϕ̃) = Y A∂A∆̄ϕ̃+ ψ∆̄ϕ̃+ 2∂Afγ̄
AB∂B∂uϕ̃+ f∆̄∂uϕ̃− ∆̄ω̃, (15)

which is identically satisfied when taking the previous relations into account.

One approach is to consider that (14) fixes ω̃ in terms of f and Y , ω̃ = 1
2ψ+f∂uϕ̃−∂uf .

Consider Scri, the space I with coordinates u, ζ, ζ̄ and metric

ds2
I = 0du2 + e2ϕ̃dζdζ̄ . (16)

The NU algebra is then defined as the commutator algebra of the vector fields

ξ̄ = f
∂

∂u
+ Y A ∂

∂xA
, (17)

with f = f(u, xA) arbitrary and Y A(x) conformal Killing vectors of a conformally flat

metric in 2 dimensions, or equivalently, the algebra of conformal vector fields of the

degenerate metric (16).

This is not the symmetry algebra of asymptotically flat spacetimes in the sense of NU

however. Indeed, ϕ̃ is arbitrary, it can for instance be considered as the finite ambiguity

related to Penrose’s conformal approach [9, 17, 18] to null infinity. One can then interpret

ϕ̃ as part of the background structure, or in other words, of the gauge fixing [8], and

compute the asymptotic symmetries for a fixed choice of ϕ̃, i.e., ω̃ = 0 in the formulae

above, or ask the more general question of how the asymptotic symmetries depend on

changes in ϕ̃ by an arbitrary infinitesimal amount ω̃. In both cases, one has to consider

(14) as a differential equation for f . As we now show, the symmetry algebra will then be

isomorphic to the trivially extended bms4 algebra by the abelian algebra of infinitesimal

conformal rescalings, as it should, and as a consequence, the Poincaré algebra is embedded

therein in a natural way. Furthermore, there is a natural realization of the asymptotic

symmetry algebra on an asymptotically flat 4 dimensional bulk spacetime. Note also

that, for ω̃ = 0, equation (14) has been interpreted from the point of view of Penrose’s

conformal approach to null infinity in [12] following [19] and related to the preservation
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of null angles, which is the standard way [9, 17, 20, 21] to recover the BMS algebra from

geometrical data on Scri.

The general solution for (14) reads

f = eϕ̃
[
T̃ +

1

2

∫ u

0
du′e−ϕ̃ψ̃

]
, T̃ = T̃ (ζ, ζ̄) , (18)

and the general solution to equations (7)-(9) defining the asymptotic symmetries is given

by ξρ as in (11) where Z,Y A,f satisfy (12), (13), (18) with ω̃ arbitrary. Asymptotic Killing

vectors thus depend on Y A, T̃ , ω̃ and the metric, ξ = ξ[Y, T̃ , ω̃; g].

For such metric dependent vector fields, consider on the one hand the suitably modified

Lie bracket taking the metric dependence of the spacetime vectors into account,

[ξ1, ξ2]M = [ξ1, ξ2]− δgξ1ξ2 + δgξ2ξ1, (19)

where δgξ1ξ2 denotes the variation in ξ2 under the variation of the metric induced by ξ1,

δgξ1gµν = Lξ1gµν .

Consider on the other hand the extended bms4 algebra, i.e., the semi-direct sum of

the algebra of conformal Killing vectors of the Riemann sphere with the abelian ideal of

infinitesimal supertranslations, trivially extended by infinitesimal conformal rescalings of

the conformally flat degenerate metric on Scri. More explicitly, the commutation relations

are given by [(Y1, T̃1, ω̃1), (Y2, T̃2, ω̃2)] = (Ŷ ,
̂̃
T , ̂̃ω) where

Ŷ A = Y B
1 ∂BY

A
2 − Y B

2 ∂BY
A

1 ,̂̃
T = Y A

1 ∂AT̃2 − Y A
2 ∂AT̃1 + 1

2(T̃1∂AY
A

2 − T̃2∂AY
A

1 ),̂̃ω = 0 .

(20)

It thus follows that

Theorem 3.1. The spacetime vectors ξ[Y, T̃ , ω̃; g] realize the extended bms4 algebra in the

modified Lie bracket,[
ξ[Y1, T̃1, ω̃1; g], ξ[Y2, T̃2, ω̃2; g]

]
M

= ξ[Ŷ ,
̂̃
T , ̂̃ω; g] , (21)

in the bulk of an asymptotically flat spacetime in the sense of Newman and Unti.

Note in particular that for two different choices of the conformal factor ϕ̃ which is held

fixed, ω̃ = 0, the asymptotic symmetry algebras are isomorphic to bms4, which is thus a

gauge invariant statement.

Proof. The proof follows closely the one in [6] for the BMS gauge. In order to be self-

contained we recall the different steps here. In a first stage, one shows that on I , the
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vectors fields ξ̄[Y, T̃ , ω̃; γ̄] given in (17) with f as in (18) realize the extended bms4 algebra

in terms of the modified Lie bracket. Indeed, this is obvious for the A components which

do not depend on the metric so that the modified bracket reduces to the standard Lie

bracket for these components. For the u component, taking into account that

δg
ξ̄1
f2 = ω̃1f2 +

1

2
eϕ̃
∫ u

0
du′e−ϕ̃[−ω̃1(ψ2 − 2ω̃2) + 2Y A

2 ∂Aω̃1] ,

we have [ξ̄1, ξ̄2]uM |u=0 = eϕ̃|u=0T̂ . Direct computation then shows that ∂u([ξ̄1, ξ̄2]uM ) =

f̂∂uϕ̃+ 1
2D̄AŶ

A with f̂ given by (18) with T̃ , Y, ω̃ replaced by their hatted counterparts,

implying the result for the u component.

For the spacetime vectors, direct computation gives [ξ1, ξ2]uM = [ξ̄1, ξ̄2]uM = f̂ . Using the

defining property (10), one then finds that ∂r([ξ1, ξ2]ρM ) = gρν∂ν f̂ . For the A components

the result then follows from the one on I , limr→∞[ξ1, ξ2]AM = Ŷ A. This is due to the fact

that IA goes to zero at infinity, that the non-vanishing term at infinity does not involve

the metric and that the correction term in the bracket does not change the asymptotic

behaviour. Finally, for the r component, we still need to check that the r independent

component of [ξ1, ξ2]rM is given by 1
2∆̄f̂ , which follows by direct computation.

For completeness, let us also stress here that, if one focuses on local properties and

expands the conformal Killing vectors Y A∂A and the infinitesimal supertranslations T in

Laurent series,

ln = −ζn+1 ∂

∂ζ
, l̄n = −ζ̄n+1 ∂

∂ζ̄
, n ∈ Z , (22)

T̃m,n = ζmζ̄n, m, n ∈ Z , (23)

the commutation relations for the complexified bms4 algebra read

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0,

[ll, Tm,n] = (
l + 1

2
−m)Tm+l,n, [l̄l, Tm,n] = (

l + 1

2
− n)Tm,n+l.

(24)

The bms4 algebra contains as subalgebra the Poincaré algebra, which we identify with the

algebra of exact Killing vectors of the Minkowski metric equipped with the standard Lie

bracket. It is spanned by the generators

l−1, l0, l1, l̄−1, l̄0, l̄1, T̃0,0, T̃1,0, T̃0,1, T̃1,1 . (25)

Non trivial central extensions of the algebra (24) have been studied in [7]: the

computation of H2(bms4) reveals that there are only the standard ones for the Virasoro

algebra extending the first two commutation relations.
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4. Explicit relation between the NU and the BMS gauges

The definition of asymptotically flat space-times in the BMS approach [1], [2], [4] as

reviewed in [5], [6], amounts to replacing guu = 1/guu = −1 by

guu = 1/guu = −e2β, β = O(r−2) (26)

in (1) and (2) while imposing the additional requirement that

det gAB = r4det γ̄AB . (27)

Both definitions then differ just by a choice of radial coordinate. Indeed, replacing

the radial coordinate by a function of the 4 coordinates preserves the zeros in (1) and

(2) (see e.g. the discussion in [22]). Furthermore, to first non trivial order in r, the

determinant condition leads to the same restriction (5) as the choice of the origin of the

affine parameter. It follows that the relation between the two radial coordinates does not

involve constant terms and is of the form

r′ = r +O(r−1) . (28)

More explicitly, starting from the NU approach, BMS coordinates are obtained by defining

the new radial coordinates as [23]

rBMS =
(det gAB

det γ̄AB

) 1
4 . (29)

Conversely, starting from the BMS approach with radial coordinate r, NU coordinates are

obtained by changing the radial coordinate to

rN = r −
∫ ∞
r

dr′(e2β − 1) . (30)

These changes of coordinates only affect lower order terms in the asymptotic expansion

of the metric that play no role in the definition of asymptotic symmetries and explains a

posteriori why the asymptotic symmetry algebras in both approaches are isomorphic.

We will now work out the explicit relation between the free data characterizing

asymptotic solution space in both approaches. The inverse metric in the BMS gauge

(as discussed in [6]) is given by

gµνBMS =

 0 −e−2β 0

−e−2β −e−2β V
r −e−2βUB

0 −e−2βUA gAB

 . (31)

gAB = r2γ̄AB + rCAB +
1

4
γ̄ABC

C
DC

D
C +O(r−1), (32)
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For simplicity, we assume here that there is no trace-free part DAB at order 0 and that the

conformal factor is time-independent, ∂uϕ̃ = 0, in which case the news tensor is simply

NAB = ∂uCAB and f = T + 1
2uψ̃ with T = eϕ̃T̃ . Writing

Cζζ = e2ϕ̃c, Cζ̄ζ̄ = e2ϕ̃c̄, Cζζ̄ = 0, (33)

we have

β = −1

4
r−2cc̄+O(r−4),

U ζ = − 2

r2
e−4ϕ̃∂(e2ϕ̃c̄)− 2

3r3

[
N ζ − 4e−4ϕ̃c̄∂̄(e2ϕ̃c)

]
+O(r−4),

V

r
= 4e−2ϕ̃∂∂̄ϕ̃+ r−12M +O(r−2),

(34)

which implies in particular that

rN = r +
cc̄

2r
+O(r−3) . (35)

The angular momentum and mass aspects N ζ = N ζ(u, ζ, ζ̄),M = M(u, ζ, ζ̄) satisfy the

evolution equations

∂uM = −1

8
NA
BN

B
A +

1

8
∆̄R̄+

1

4
D̄AD̄CN

CA, (36)

∂uNA = ∂AM +
1

4
CBA∂BR̄+

1

16
∂A
[
NB
C C

C
B

]
− 1

4
D̄AC

C
BN

B
C

− 1

4
D̄B

[
CBCN

C
A −NB

C C
C
A

]
− 1

4
D̄B

[
D̄BD̄CC

C
A − D̄AD̄CC

BC
]
. (37)

Consider now the “eth” operators [24] defined here for a field ηs of spin weight s

according to the conventions of [25] through

ðηs = P 1−s∂̄(P sηs), ð̄ηs = P 1+s∂(P−sηs) , P =
√

2e−ϕ̃ , (38)

where ð, ð̄ raise respectively lower the spin weight by one unit and satisfy

[ð̄,ð]ηs =
s

2
R̄ ηs . (39)

The spin weights of the various quantities are summarized in table 1. Note that the P used

here differs from the one used in [3], which we will denote by PN below. It also no longer

denotes the particular function 1
2(1 + ζζ̄), contrary to the notation used in [6, 16]. In the

current conventions, the particular value of P adapted to the unit sphere is 1√
2
(1 + ζζ̄).

In order to compare with the notation used in [3], we use ζ = x3 + ix4. With

x′α = u, rN, x
3, x4 and xµ = u, r, ζ, ζ̄, computing gαβN (x′) = −

(
∂x′α

∂xµ g
µν
BMS

∂x′β

∂xν

)
(x(x′)),
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where the overall minus sign takes the change of signature into account, then gives the

following dictionary by comparing with [3]:

PN =
1√
2
e−ϕ̃ =

1

2
P , ∇ = 2∂̄ , µ0 = −P 2∂∂̄ lnP =

1

2
∆̄ϕ̃ = −1

4
R̄ ,

Ψ0
2 + Ψ̄0

2 = −2M − ∂u(cc̄) , σ0 = c̄ , ω0 = ð̄σ0 ,

Ψ0
1 = −PNζ̄ − σ0ðσ̄0 − 3

4
ð(σ0σ̄0) .

(40)

For convenience, let us also use

Ψ0
3 = −ð ˙̄σ0 − 1

4
ð̄R̄, Ψ0

4 = −¨̄σ0 . (41)

In these terms,

Ψ̇0
3 = ðΨ0

4, Ψ̇0
2 = ðΨ0

3 + σ0Ψ0
4, Ψ̇0

1 = ðΨ0
2 + 2σ0Ψ0

3 . (42)

Indeed, the first equation holds by definition and the assumed time-independence of P .

The evolution equation (36) is equivalent to the real part of the second equation. Taking

into account the on-shell relation of the NU framework,

Ψ0
2 − Ψ̄0

2 = ð̄2σ0 − ð2σ̄0 + σ̄0σ̇0 − σ0 ˙̄σ0 , (43)

we find

M = −Ψ0
2 − σ0 ˙̄σ0 +

1

2
ð̄2σ0 − 1

2
ð2σ̄0 , (44)

in terms of which (36) is fully equivalent to the second equation of (42) and (37) is

equivalent to the last equation of (42), in agreement with [3].

5. Transformation laws of the NU coefficients characterizing asymptotic

solutions

Let Y = P−1Ȳ and Ȳ = P−1Y . The conformal Killing equations and the conformal factor

then become

ðȲ = 0 = ð̄Y, ψ = (ðY + ð̄Ȳ) . (45)

It follows for instance that

ð̄ðY = −R̄
2
Y, ð2ψ = ð3Y − 1

2
ȲðR̄, ð̄ðψ = −1

2
[ð(R̄Y) + ð̄(R̄Ȳ)] . (46)

Using the notation S = (Y, T̃ , ω̃), we have −δS γ̄AB = 2ω̃γ̄AB for the background metric

and

[−δS , ð̄]ηs = −ω̃ð̄ηs + sð̄ω̃ηs, [−δS ,ð]ηs = −ω̃ðηs − sðω̃ηs . (47)
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To work out the transformation properties of the NU coefficients characterizing

asymptotic solution space, one needs to evaluate the subleading terms in LξgαβN on-shell.

This can also be done by translating the results from the BMS gauge, which yields

−δSσ0 = [f∂u + Yð + Ȳð̄ +
3

2
ðY − 1

2
ð̄Ȳ − ω̃]σ0 − ð2f ,

−δS σ̇0 = [f∂u + Yð + Ȳð̄ + 2ðY − 2ω̃]σ̇0 − 1

2
ð2ψ̃ ,

−δSΨ0
4 = [f∂u + Yð + Ȳð̄ +

1

2
ðY +

5

2
ð̄Ȳ − 3ω̃]Ψ0

4 ,

−δSΨ0
3 = [f∂u + Yð + Ȳð̄ + ðY + 2ð̄Ȳ − 3ω̃]Ψ0

3 + ðfΨ0
4 ,

−δSΨ0
2 = [f∂u + Yð + Ȳð̄ +

3

2
ðY +

3

2
ð̄Ȳ − 3ω̃]Ψ0

2 + 2ðfΨ0
3,

−δSΨ0
1 = [f∂u + Yð + Ȳð̄ + 2ðY + ð̄Ȳ − 3ω̃]Ψ0

1 + 3ðfΨ0
2 .

(48)

Following for instance the terminology in [26] section 3, but now for general infinitesimal

transformations ζ ′ = ζ + εY (ζ), ζ̄ ′ = ζ̄ + εȲ (ζ̄) instead of those associated to linear

fractional transformations on the sphere and also considering ζ̄ as the holomorphic

coordinate instead of ζ, a field η has spin weight s and conformal weight w if it transforms

as

−δY,Ȳ η =
[
Y A∂A +

s

2
(∂̄Ȳ − ∂Y )− w

2
ψ
]
η . (49)

A tensor density of rank s> 0 and weight n transforms as

−δY,ȲAζ̄...ζ̄ =
[
Y A∂A + s∂̄Ȳ + n(∂Y + ∂̄Ȳ )

]
Aζ̄...ζ̄ . (50)

while for rank s6 0 and weight n, we have

−δY,ȲAζ...ζ =
[
Y A∂A − s∂Y + n(∂Y + ∂̄Ȳ )

]
Aζ...ζ . (51)

It then follows that a tensor density of weights (s, n) defines a field of weights (s,−(2n+|s|))
and conversely, a field of weights (s, w) defines a tensor density of weights (s,−1

2(w+ |s|)).
For s> 0, this is done through η = Aζ̄...ζ̄P

2n+s and Aζ̄...ζ̄ = Pwη. For s6 0, we

have η = Aζ...ζP
2n−s and Aζ...ζ = Pwη. Note that complex conjugation gives rise to

opposite spin weight and rank but leaves the conformal and density weights unchanged.

Alternatively, (49) can be written as

−δY,Ȳη =
[
Yð + Ȳð̄ +

s− w
2

ðY − s+ w

2
ð̄Ȳ
]
η . (52)

When focusing on T = 0 = ω̃ at the surface u = 0 and on the homogeneous part

of the transformations, this gives the weights summarized in tables 1, 2. These tables

are extended to the Lie algebra elements, which are passive in all our computations, by

writing [Y, T̃ ] = −δY,Ȳ T̃ and [Y, Y ′]A = −δY,Ȳ Y ′A.
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Table 1. Spin and conformal weights

σ0 σ̇0 Ψ0
4 Ψ0

3 Ψ0
2 Ψ0

1 Y T

s 2 2 −2 −1 0 1 −1 0

w −1 −2 −3 −3 −3 −3 1 1

Table 2. Rank and density weights

P−1σ0 P−2σ̇0 P−3Ψ0
4 P−3Ψ0

3 P−3Ψ0
2 P−3Ψ0

1 Ȳ T̃

s 2 2 −2 −1 0 1 −1 0

n −1
2 0 1

2 1 3
2 1 −1 −1

2

6. Surface charge algebra

In this section, ω̃ = 0 so that f = T + 1
2uψ and we use the notation s = (Y, Ȳ, T ) for

elements of the symmetry algebra, which is given in these terms by [s1, s2] = ŝ where

Ŷ = Y1ðY2 − (1↔ 2), ̂̄Y = Ȳ1ð̄Ȳ2 − (1↔ 2),

T̂ = (Y1ð + Ȳ1ð̄)T2 −
1

2
ψ1T2 − (1↔ 2) .

(53)

The translation of the charges, the non-integrable piece due to the news and the central

charges computed in [16] gives here

Qs[X ] = − 1

8πG

∫
d2Ωϕ

[(
f(Ψ0

2 + σ0 ˙̄σ0) + Y(Ψ0
1 + σ0ðσ̄0 +

1

2
ð(σ0σ̄0))

)
+ c.c.

]
,

Θs[δX ,X ] =
1

8πG

∫
d2Ωϕ f

[
˙̄σ0δσ0 + c.c.

]
, (54)

Ks1,s2 [X ] =
1

8πG

∫
d2Ωϕ

[(1

4
f1ðf2ð̄R̄+

1

2
σ̄0f1ð2ψ2 − (1↔ 2)

)
+ c.c.

]
.

Note that one could also write the charges Qs[X ] by allowing for the additional terms

(1
2ð

2σ̄0 − 1
2 ð̄

2σ0) in the first parenthesis since these terms cancel with the corresponding

terms in the complex conjugate expression. Note also that not Ψ0
2 but only Ψ0

2 + Ψ̄0
2 is

free data on-shell because of the relation (43).

We recognize all the ingredients of the surface charges described in [27], which in turn

have been related there to previous expressions in the literature and, in particular, to the

twistorial approach of Penrose [28]. More precisely, up to conventions, Q0,0,T agrees with

Geroch’s linear super-momentum [8] Qgn +Qgn, as given in equation (A1.12) of [27]. The
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angular (super-)momentum that we get is

QY,0,0 = − 1

8πG

∫
d2Ωϕ Y

[
Ψ0

1 + σ0ðσ̄0 +
1

2
ð(σ0σ̄0)− u

2
ð
(
Ψ0

2 + Ψ̄0
2 + ∂u(σ0σ̄0)

)]
. (55)

It differs from Qηc given in equation (4) of [27] by the explicitly u-dependent term of the

second line. It thus has a similar structure to Penrose’s angular momentum as described in

equations (11), (12), and (17a) of [27] in the sense that it also differs by a specific amount

of linear supermomentum, but the amount is different and explicitly u-dependent,

QY,0,0 = Qu=0
Y,0,0 +

1

2
uQ0,0,ðY . (56)

The main result derived in [16] states that

• if one is allowed to integrate by parts,∫
d2Ωϕ ðη−1 = 0 =

∫
d2Ωϕ ð̄η1, (57)

where d2Ωϕ = 2dζ∧dζ̄
iP 2 ,

• if one defines the “Dirac bracket” through

{Qs1 , Qs2}∗[X ] = −δs2Qs1 [X ] + Θs2 [−δs1X ,X ], (58)

then the charges define a representation of the bms4 algebra, up to a field dependent

central extension,

{Qs1 , Qs2}∗ = Q[s1,s2] +Ks1,s2 , (59)

where Ks1,s2 satisfies the generalized cocycle condition

K[s1,s2],s3 − δs3Ks1,s2 + cyclic(1, 2, 3) = 0 . (60)

The representation theorem contained in equations (59) and (60) can be verified directly

in the present context by starting from (54), (43) and using the properties (39), (57) of ð,

the evolution equations (42), the conformal Killing equations (45), the bms4 algebra (53)

and the transformation laws (48).

Several remarks are in order:

• Integrations by parts are justified for regular functions on the sphere and thus for

bmsglob
4 and regular solutions. In the case of Laurent series more care is needed, see

e.g. [29]. We will address this question elsewhere.

• For the globally well-defined bmsglob
4 algebra on the sphere, the central charge Ks1,s2

vanishes.
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• The non-conservation of the charges follows by taking s2 = (0, 0, 1) and s1 = s.

Indeed, since d
duQs = ∂

∂uQs − δ(0,0,1)Qs, the equality of the right hand sides of (58)

and (59) gives

d

du
Qs = − 1

8πG

∫
d2Ωϕ

[
˙̄σ0(−δsσ0) +

1

4
ðf ð̄R̄+

1

2
σ̄0ð2ψ + c.c.

]
. (61)

For s = (0, 0, 1), this gives the standard Bondi-Sachs mass loss formula,

d

du
Q0,0,1 = − 1

8πG

∫
d2Ωϕ

[
˙̄σ0σ̇0 + c.c.

]
. (62)

It also follows that the standard bmsglob
4 charges are all conserved on the sphere in

the absence of news.

To the best of our knowledge, except for the previous analysis in the BMS gauge,

the above representation result does not exist elsewhere in the literature. A more detailed

discussion of its implications, a detailed comparison with results in the literature as well as

a self-contained derivation of the bms4 transformation laws in the context of the Newman-

Penrose formalism will be given elsewhere.
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