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1 Introduction

A number of astrophysical observations based on gravitational interactions point to the

existence of dark matter (DM) in the Universe, which can not be described with the

Standard Model (SM). One of the simplest extensions of the SM, which can provide a

dark matter candidate is the Inert Doublet Model (IDM) [1–3]. The scalar sector of the

IDM consists of two SU(2) doublets where one is the SM-like Higgs doublet, ΦS , while the

other is called inert or dark doublet, ΦD. After electroweak symmetry breaking the sector

has five physical states: apart from the SM Higgs boson h it has two neutral ones, H and

A, as well as two charged scalars, H±. A discrete Z2 symmetry prohibits the inert scalars

from interacting with the SM fermions through Yukawa-type interactions and makes the

lightest neutral scalar, chosen to be H in this work, a good dark matter candidate.

In this work we study the potential of CLIC running at three energy stages as a

discovery machine for the IDM scalars. We consider neutral scalar (HA) and charged

scalar (H+H−) pair-production at center-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV.

We explore a set of benchmark points (BPs) proposed in [4], which satisfy all the recent

experimental and theoretical constraints, provide the neutral H boson as the dark matter

candidate (mH < mH± ,mA), and span the inert scalar mass range from about 50 GeV to

1 TeV. Earlier analyses of the IDM at colliders were done in [2, 5–30].

The paper is organized as follows. The structure of the IDM scalar sector and the

considered benchmark points are briefly described in section 2. In section 3 the analysis

strategy and simulation tools are described. In section 4 results on the possible measure-

ment of low-mass benchmark points at the first stage of CLIC, at 380 GeV, are presented,

while section 5 discusses the prospects for heavy inert scalar production at high-energy

CLIC. Finally, the conclusions are given in section 6.
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2 Inert Doublet Model

The scalar sector of the IDM consists of two scalar doublets, the SM Higgs doublet ΦS

with SM-like Higgs boson h and the inert doublet ΦD with four inert scalars H, A, H±.

A discrete Z2 symmetry is imposed under which the SM-like Higgs doublet ΦS and all the

other SM fields are even, whereas the inert doublet ΦD is odd. As a result, inert scalars do

not interact with the SM fermions through Yukawa-type interactions, and the most general

renormalizable scalar potential for the IDM is given by

V = −1

2

[
m2

11(Φ
†
SΦS)+m2

22(Φ
†
DΦD)

]
+
λ1
2

(Φ†SΦS)2+
λ2
2

(Φ†DΦD)2

+λ3(Φ
†
SΦS)(Φ†DΦD)+λ4(Φ

†
SΦD)(Φ†DΦS) +

λ5
2

[
(Φ†SΦD)2+(Φ†DΦS)2

]
.

(2.1)

A more detailed discussion of the potential and physical parameters can be found in

section 2 of [23].

Due to the exact Z2 symmetry, the lightest neutral scalar H (or A) is stable and

thereby may serve as a good dark matter candidate. In this work we choose H to be the

lightest particle (choosing A instead of H as the lightest particle changes only the meaning

of λ5 → −λ5). After fixing the SM-like Higgs boson mass to mh = 125.1 GeV and the

vacuum expectation value of the SM-like doublet to v = 246 GeV (the SM value) we are

left with 5 free parameters, which we take as

mH ,mA,mH± , λ2, λ345, (2.2)

where λ345 = λ3 + λ4 + λ5 determines the Higgs-DM coupling, while λ2 corresponds to

couplings within the dark sector.

To study the prospects of IDM scalar measurement at CLIC we consider a set of bench-

mark points proposed in [4], and listed in table 1 for the low-mass benchmarks accessible

at 380 GeV, and in table 2 for the high-mass benchmarks accessible only at higher collider

energies of 1.5 and 3 TeV. These benchmarks were selected from a larger set of points in

the IDM parameter space, which were found to be in agreement with all the theoretical and

current experimental constraints. Points corresponding to different assignment of masses

and couplings were selected in the parameter range interesting in view of future linear e+e−

collider searches.

We refer the reader to [4, 23, 29] for a detailed discussion of the theoretical and ex-

perimental constraints and the benchmark selection; comments on the impact of future

XENON-nT measurements and prospects of testing the IDM model at the LHC can be

found in [4]. We summarize the crucial points of the discussion presented there below.

Theoretical and experimental constraints. As theoretical constraints, positivity of

the potential [31], the condition to be in the global inert vacuum [32] and perturbative

unitarity [33, 34] have been imposed. We also require agreement with electroweak precision

tests [35] via oblique parameters [36–39], zero contributions to electroweak gauge boson

widths from inert particles by kinematically forbidding decays W± → AH±, HH±, Z →
AH,H+H− [40], and agreement with recasts of LEP and LHC searches [6, 20], including a

– 2 –
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No. mH mA mH± λ2 λ345 Ωch
2

BP1 72.77 107.8 114.6 1.445 -0.004407 0.1201

BP2 65 71.53 112.8 0.7791 0.0004 0.07081

BP3 67.07 73.22 96.73 0 0.00738 0.06162

BP4 73.68 100.1 145.7 2.086 -0.004407 0.08925

BP6 72.14 109.5 154.8 0.01257 -0.00234 0.1171

BP7 76.55 134.6 174.4 1.948 0.0044 0.0314

BP8 70.91 148.7 175.9 0.4398 0.0058 0.122

BP9 56.78 166.2 178.2 0.5027 0.00338 0.08127

BP10 76.69 154.6 163 3.921 0.0096 0.02814

BP11 98.88 155 155.4 1.181 -0.0628 0.002737

BP12 58.31 171.1 173 0.5404 0.00762 0.00641

BP13 99.65 138.5 181.3 2.463 0.0532 0.001255

BP14 71.03 165.6 176 0.3393 0.00596 0.1184

BP15 71.03 217.7 218.7 0.7665 0.00214 0.1222

BP16 71.33 203.8 229.1 1.03 -0.00122 0.1221

BP18 147 194.6 197.4 0.387 -0.018 0.001772

BP19 165.8 190.1 196 2.768 -0.004 0.002841

BP20 191.8 198.4 199.7 1.508 0.008 0.008494

BP21 57.48 288 299.5 0.9299 0.00192 0.1195

BP22 71.42 247.2 258.4 1.043 -0.0032 0.122

BP23 62.69 162.4 190.8 2.639 0.0056 0.06404

Table 1. Low mass IDM benchmark points considered in the presented study, taken from [4]. In

all benchmarks mh = 125.1 GeV. Bold font denotes BP for which H completely saturates DM relic

density. Note that BP5 and BP17 were excluded by the updated Xenon1T limits [56]. The values

of the λ345 parameter for scenarios BP8 and BP22 were slightly modified with respect to [4], to be

consistent with the most recent results on the relic density [54].

lower limit of 70 GeV for the charged scalar mass [41].1 We also set a hard upper cutoff on

the charged scalar life-time to avoid constraints from long-lived charged particle searches; a

more detailed study of these constraints has recently been presented in [43]. We make use

of recent LHC findings to constrain the total width of the Higgs particle [44], its invisible

branching ratio [45] and the branching ratio h → γγ [46].2 In order to not overclose

the universe the relic density of dark matter candidate H was required to be at most

within a two sigma range of the value recently published by the Planck experiment, i.e.

Ωc h
2 ≤ 0.1224 [54]. Relic density has been calculated including all relevant channels, in

particular decays into virtual gauge bosons. The proposed benchmarks have been selected

1In recent work [42], an additional recast has been presented which uses 13 TeV LHC data. We found

that our benchmark points are not constrained by the limits derived in that reference.
2Additional tests of agreement with collider findings were performed using HiggsBounds [47–51] and

HiggsSignals [52, 53].
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No. mH mA mH± λ2 λ345 Ωch
2

HP1 176 291.4 312 1.49 -0.1035 0.0007216

HP2 557 562.3 565.4 4.045 -0.1385 0.07209

HP3 560 616.3 633.5 3.38 -0.0895 0.001129

HP4 571 676.5 682.5 1.98 -0.471 0.0005635

HP5 671 688.1 688.4 1.377 -0.1455 0.02447

HP6 713 716.4 723 2.88 0.2885 0.03515

HP7 807 813.4 818 3.667 0.299 0.03239

HP8 933 940 943.8 2.974 -0.2435 0.09639

HP9 935 986.2 988 2.484 -0.5795 0.002796

HP10 990 992.4 998.1 3.334 -0.040 0.122

HP11 250.5 265.5 287.2 3.908 -0.1501 0.00535

HP12 286.1 294.6 332.5 3.292 0.1121 0.00277

HP13 336 353.3 360.6 2.488 -0.1064 0.00937

HP14 326.6 331.9 381.8 0.02513 -0.06267 0.00356

HP15 357.6 400 402.6 2.061 -0.2375 0.00346

HP16 387.8 406.1 413.5 0.8168 -0.2083 0.0116

HP17 430.9 433.2 440.6 3.003 0.08299 0.0327

HP18 428.2 454 459.7 3.87 -0.2812 0.00858

HP19 467.9 488.6 492.3 4.122 -0.252 0.0139

HP20 505.2 516.6 543.8 2.538 -0.354 0.00887

Table 2. Additional set of high mass IDM benchmark points considered in the presented study,

taken from [4]. In all benchmarks mh = 125.1 GeV. For HP10 scenario (bold) H completely

saturates DM relic density; the value of the λ345 parameter for this scenario was slightly modified

with respect to [4], to be consistent with the most recent results on the relic density [54].

(out of 13500 that passed all above criteria) to represent different signatures at e+e−

colliders that differ e.g. in the mass spectrum or production cross sections, in order to

cover a wide variety of possible collider signals. For the selected benchmark points, all of

which correspond to masses of DM particles below 1 TeV, the Sommerfeld enhancement

does not play a relevant role [55]. Finally the agreement with results from direct detection

experiments [56] has been required.3 As discussed in [4], constraints from indirect detection

are weaker than direct detection constraints (see also e.g. discussion in [58]). The most

stringent limits stem from indirect detection leading to b b̄ final states [59]. These can be

easily avoided by tuning the value of λ345, which is irrelevant for the collider phenomenology

discussed here. It should also be noted that dark matter predictions for some points,

especially BP23, highly depend on the input in the SM mass spectrum; e.g. variations

3Electroweak higher-order corrections to direct detection cross section within the IDM have been pre-

sented in [57]. From that work, we can estimate the one-loop contributions for out benchmark points to be

O
(
10−11 pb

)
. We explicitly checked that even assuming such a maximal additional contribution does not

exclude any of our BPs.

– 4 –
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within 3 standard deviations for bottom and Higgs masses can lead to large variations in

the predictions (up to a factor 5), while these are of no importance for our studies. In the

scan presented in [4], we made use of the publicly available tools: the 2HDMC code [60] and

micrOMEGAs version 4.3.5 [61] to apply several of the constraints discussed above.

Prospects for detection at the LHC. In general, the IDM can be tested at the

LHC through a variety of signatures, including mono-jet, mono-Z, mono-Higgs and Vector-

Boson-Fusion + missing transverse energy signatures, as well as through multi-lepton and

multi-jet final states, see discussions in [24, 25, 25, 28, 28, 62]. In [42], a dedicated dis-

cussion suggests that current searches, e.g. for multi-lepton final states, would have to be

significantly modified in order to access the current IDM parameter space even for low

dark matter masses. On the other hand, vector boson fusion production of an invisibly

decaying Higgs [63] can already significantly constraint the models parameter space for

mH & 62.5 GeV. Depending on the channel, masses of DM particle up to 200–300 GeV

would be accessible at the HL-LHC [25, 28, 62]. For the di-jet plus missing transverse

energy signature, large background significantly affects LHC sensitivity.

Production cross sections for the benchmark points proposed here depend on the signa-

ture that is considered and can reach up to O ( pb) at the 13 TeV LHC [64, 65]. An increase

in center-of-mass energy to 27 TeV, as in the HE-LHC setup [66], can lead to an increase

of an order of magnitude in production cross sections. However, without detailed exper-

imental analyses, projections of reachability are difficult to make. We therefore strongly

encourage the experimental collaborations to investigate the benchmark points presented

here at current and future LHC runs.

3 Analyses strategies and simulation setup

In this work, we consider the following tree-level production processes of inert scalars at

e+e− collisions4

e+e− → A H, (3.1)

e+e− → H+H−.

For the calculation of cross-sections as well as detailed signal and background simulation,

we make use of the Monte Carlo event generator WHizard 2.2.8 [67, 68]. For the signal,

we employ the IDM model implemented in SARAH [69]. Model parameter files for the

considered benchmark scenarios were prepared using SPheno 4.0.3 [70, 71]. When gener-

ating signal and background events samples for the presented analysis, energy spectra for

CLIC [72], based on detailed beam simulations, were taken into account. For initial state

radiation (ISR), the intrinsic WHizard implementation of the lepton ISR structure function

includes all orders of soft and soft-collinear photons as well as up to the third order in

hard-collinear photons.

4The process e+e− → AA is in principle possible as well. However, this process is moderated by an

s-channel SM Higgs and therefore highly suppressed by the electron Yukawa couplings.

– 5 –
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Figure 1. Leading-order cross-sections for neutral (left) and charged (right) inert scalar production,

e+e− → HA and e+e− → H+H−, for 380 GeV collision energy. The yellow band represents all

scenarios selected in the model scan [4] while the blue dots represent the selected benchmark

scenarios. Beam energy spectra are not included.

Leading-order cross-sections for the processes in (3.1) for 380 GeV collision energy,

including initial state radiation, are presented in figure 1. In the scenarios considered in

this paper the produced dark scalar A decays to a (real or virtual) Z boson and the (lighter)

neutral scalar H, A→ Z(?)H, while the produced charged boson H± decays predominantly

to a (real or virtual) W± boson and the neutral scalar H, H+ →W±
(?)
H, where the DM

candidate H escapes detection. Since both the production and decay processes are governed

by the SM electroweak couplings, the inert masses are the only BSM parameters probed

at CLIC.

Since isolated leptons (electrons and muons) can be identified and reconstructed with

very high efficiency and purity [72], we concentrate on Z and W± leptonic decays, leading

to a signature of leptons and missing transverse energy. For the same flavour lepton pair

signature, we restrict the analysis to the µ+µ− final state, allowing for almost perfect

reconstruction of lepton kinematics,5 while for different flavour lepton pairs µ+e− and

e+µ− final states are considered. We refrain from including detector effects in the results

presented here as for the considered final states they are expected to only marginally change

the outcome of our study. Muon pair production can be a signature of the AH production

process followed by the A decay:

e+e− → HA → HHZ(?) → HHµ+µ− (3.2)

while the production of the different flavour lepton pair is the expected signature for H+H−

production:

e+e− → H+H− → HHW+(∗)
W−

(∗) → HH`+`′−νν̄ ′. (3.3)

Note that when both W bosons in (3.3) decay to muons, the charged Higgs pair production

process will contribute to the signature (3.2) of HA production as well.

5For final state electrons energy resolution is affected by the final state radiation and bremsstrahlung

effects [72].

– 6 –
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During simulations we do not constrain the intermediate particles, but consider all

processes leading to `+ (`−)′ + /E⊥. Especially processes with additional neutrinos can

contribute and need to be taken into account. This includes processes with tau (pair)

production and their successive leptonic decays.

To be specific, for processes with muons in the final state, the following processes have

been simulated:

e+e− → µ+µ− HH,

→ µ+µ−νµν̄µ HH,

→ τ+µ−ντ ν̄µ HH, µ+τ−νµν̄τ HH,

→ τ+τ− HH, τ+τ−ντ ν̄τ HH,

where the final state taus are then forced to decay to a muon and a neutrino. For the

background the following Standard Model processes are considered:

e+e− → µ+µ−,

→ µ+µ− νiν̄i,

→ τ+µ− ντ ν̄µ, µ
+τ− νµν̄τ ,

→ τ+τ−, τ+τ− νiν̄i,

where the additional neutrino pair can be of any flavour (i = e, µ, τ). As before, we gen-

erate all processes leading to the above final states, without constraining the intermediate

particles states.

Similarly, for the electron-muon pair final state the following signal processes are

considered:

e+e− → µ+νµ e
−ν̄e HH, e+νe µ

−ν̄µ HH,

→ µ+νµ τ
−ν̄τ HH, τ+ντ µ

−ν̄µ HH,

→ e+νe τ
−ν̄τ HH, τ+ντ e

−ν̄e HH,

→ τ+ τ− HH, τ+ντ τ
−ν̄τ HH,

with the final state tau leptons decaying to an electron or a muon (to match the required fi-

nal state signature, µ+e− or e+µ−). For the background in this case the following Standard

Model four-fermion processes are considered:

e+e− → µ+νµ e
−ν̄e , e

+νe µ
−ν̄µ ,

→ µ+νµ τ
−ν̄τ , τ

+ντ µ
−ν̄µ,

→ e+νe τ
−ν̄τ , τ

+ντ e
−ν̄e ,

→ τ+τ−, τ+ντ τ
−ν̄τ .

As mentioned above, beam energy spectra and ISR were taken into account.

Generator-level cuts corresponding to the expected detector acceptance were applied

for both signal and background simulations: electrons or muons with energy of at least

– 7 –
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5 GeV need to be emitted at least 100 mrad from the beam direction and their angular

separation should also be at least 100 mrad. To reduce background from radiative Z-return

events we also require that there are no ISR photons emitted at angles above 100 mrad

with energies larger that 10 GeV.

For the considered final states we assume that only two charged leptons are recon-

structed in the detector. The observed final state can be completely described by a small

set of kinematic variables. To assure the best possible discrimination between signal and

background events, resulting in highest expected significance of the possible observation,

we make use of multivariate analyses. We apply the Boosted Decision Tree (BDT) clas-

sification algorithm, as implemented in TMVA toolkit [73], with the following eight input

variables describing the kinematics of the dilepton final state:

• total energy of the lepton pair, E``;

• dilepton invariant mass, M``;

• dilepton transverse momentum, p``T ;

• polar angle of the dilepton pair, Θ``;

• Lorentz boost of the dilepton pair, β`` = p``/E``;

• reconstructed missing (recoil) mass Mmiss (calculated assuming nominal e+e− colli-

sion energy);

• `− production angle with respect to the beam direction, calculated in the dilepton

center-of-mass frame, Θ?
` ;

• `− production angle with respect to the dilepton pair boost direction, calculated in

the dilepton center-of-mass frame, ∠?(`, ``),

where lepton pair `` denotes µ+µ− for AH channel and µ+e− or e+µ− for H+H− produc-

tion. The first five variables refer to the dilepton pair system as a whole, while the last

two correspond to the single lepton polar angle calculated in the two different reference

frames. Please note that these eight variables are not independent, as the final state with

two massless leptons and missing energy only can be completely described by five param-

eters (plus azimuthal angle, which is not relevant). However, using more input variables

resulted in better signal selection efficiencies. The BDT algorithm is trained individually

for each benchmark scenario and each running energy using the generated event samples

after detector acceptance and pre-selection cuts.

4 Inert scalars at the first stage of CLIC

First we investigate the discovery prospects for the IDM benchmarks at the initial CLIC

operation at
√
s = 380 GeV with an expected integrated luminosity of 1 ab−1 [74].

The possibility to access benchmark points with
∑
mi ≥ 380 GeV, that are not ac-

cessible at the first stage, is investigated in section 5, where the second and third energy

– 8 –
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Figure 2. Distribution of the lepton pair invariant mass, Mµµ, as a function of the lepton pair

longitudinal momentum, PµµZ , for BP1 scenario (green points) and Standard Model background

(red points). Same number of events were simulated for signal and background for centre-of-mass

energy of 380 GeV, using CLIC luminosity spectra.

stages of CLIC, at 1.5 TeV and 3 TeV are considered with integrated luminosities of 2.5

and 5 ab−1, respectively.

4.1 Neutral dark scalar pair production e+e− → AH

As described above, in this channel we focus on final states with muon pairs and missing

transverse energy. As the DM particles escape detection, the signal process will lead

to large missing energy and momentum. Furthermore, the invariant mass of the lepton

pair, stemming from the decay of a real or virtual Z boson, should be relatively small

(depending on the mass splitting between A and H, but not greater than mZ). On the

other hand, the dominant Standard Model background process proceeds via the s-channel

Z/γ di-muon production, with most pairs produced either with high invariant mass (events

without hard ISR) or with significant longitudinal boost (events with high-energy ISR

photon). We display the lepton pair invariant mass distribution for signal and background

processes in figure 2. As expected, we observe that the event distribution for the signal

(for the benchmark scenario BP1; green points) is concentrated on a much smaller range

in the Pµµz ,Mµµ plane than the SM background distribution (red points). For the 380 GeV

analysis we therefore require an invariant mass of the produced lepton pair to be below

100 GeV, and the absolute value of the longitudinal momentum below 140 GeV. These

pre-selection cuts significantly reduce background from direct two fermion production,

e+e− → µ+µ−, hardly affecting the signal.

Shown in figure 3 are the distributions of the muon pair energy, Eµµ, total trans-

verse momentum, pµµT , polar angle, Θµµ, and the difference of the lepton azimuthal angles,

cos ∆φµµ for three benchmark scenarios with virtual Z boson production and the SM

background. As the experimental signature is expected to depend on the mass difference

– 9 –
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Figure 3. Distributions of the kinematic variables describing the leptonic final state considered

in AH analysis: lepton pair energy, Eµµ, total transverse momentum, pµµT , pair production angle,

cos Θµµ and the difference of the lepton azimuthal angles, cos ∆φµµ. Expected distributions for

representative benchmarks BP1 (red histogram), BP2 (green) and BP7 (blue) are compared with

expected background (black histogram). Samples simulated for CLIC running at 380 GeV are

normalised to 1 ab−1.

between A and H states, we present benchmark points corresponding to different mass

splittings: of about 6 GeV (BP2), 35 GeV (BP1) and 58 GeV (BP7). For low mass differ-

ences, the contribution from H+H− channel to the muon pair production signature is also

clearly visible (a tail of events with higher lepton pair energy and transverse momentum).

Distributions of variables presented in figure 3 can be used to select signal-enhanced

samples of events. The following selection requirements are therefore further imposed on

the lepton pair:

• energy Eµµ < 100 GeV,

• transverse momentum pµµT > 10 GeV,

• production angle (polar angle of the Z boson) 30◦ < Θµµ < 150◦,

• difference of the lepton azimuthal angles |∆ϕµµ| < π
2 .

Presented in figure 4 is the lepton pair invariant mass distribution after pre-selection and

selection cuts. Signal samples for selected benchmark scenario and the background sample

– 10 –
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running at 380 GeV are normalised to 1 ab−1.
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Figure 5. Response distributions of the BDT classifiers used for the selection of AH production

events at CLIC, at
√
s = 380 GeV. Signal samples for BP1 scenario and SM background are

normalised to 1 ab−1.

are normalised to 1 ab−1. About 5400 background events are expected after all selection

cuts, while 1810, 1290 and 540 signal events are expected for the BP1, BP2 and BP7

scenarios, respectively. This corresponds to about 21σ, 16σ and 7σ significance.

Higher signal significances are obtained making use of multivariate analyses after the

application of pre-selection cuts. As an example, we show the BDT response distributions

for BP1 (signal and SM background) in figure 5 for 1 ab−1 collected at CLIC 380 GeV

center-of-mass energy. The optimal significance is obtained for a BDT response cut of

about 0.12, corresponding to 71% signal selection efficiency and 2.2% background selection

efficiency, with a resulting signal significance of about 27.7σ. In figure 6 the significance
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Figure 6. Expected significance of the deviations from the Standard Model predictions observed

at 380 GeV CLIC for events with two muons in the final state (µ+µ−) as a function of the neutral

inert scalar mass sum (left) and the production cross-section for the considered signal channel, after

pre-selection cuts (right), for the BPs from table 1. Color indicates the mass splitting between the

A and H scalars (right scale applies to both plots).

using the above method is displayed as a function of the neutral inert scalar mass sum, mA+

mH , and of the signal production cross-section for the considered final state, σ(e+e− →
HHµ+µ−Xinv). The expected significance is mainly related to the AH production cross-

section. A discovery, corresponding to 5 σ, at the initial stage of CLIC is expected for

scenarios with the signal cross-section (in the µ+µ− channel, after pre-selection cuts on

generator level) above about 0.5 fb, which corresponds to the neutral inert scalar mass sum

below about 290 GeV. For the considered benchmark points we do not observe any sizable

dependence of the expected significance on the mass splitting between the two neutral

scalars, mA −mH (indicated by colour scale in figure 6).

4.2 Charged scalar pair production e+e− → H+H−

The selection of H+H− production events is more challenging than for the AH channel,

as the two leptons in the final state no longer originate from a single (on- or off-shell)

intermediate state. We therefore do not apply any additional pre-selection cuts (except for

the detector acceptance cuts, as described in section 3). However, this also allows us to

consider the electron-muon pairs in the final state, avoiding large SM background from the

direct lepton pair production (e+e− → `+`−; this channel contributes only via leptonic tau

decays, suppressed by the corresponding branching fractions).

With only the detector acceptance cuts on the generator level, the expected background

cross-section for the considered final state is about 500 fb, over two orders of magnitude

higher than for the considered benchmark points. However, kinematic distributions are

very different, as two massive scalars are produced in the signal case, reducing the kine-

matic space available for lepton pair production. In figure 7 distributions of the selected

variables describing the leptonic final state for three benchmark scenarios (BP1, BP3 and

BP6) are compared with Standard Model expectations. Clear differences between the sig-

nal and background distributions allow for efficient selection of signal-enhanced sample of

events using the multivariate analysis. We follow the same procedure and the same set of
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Figure 7. Distributions of the kinematic variables describing the leptonic final state considered in

H+H− analysis: lepton pair invariant mass, Meµ, total longitudinal momentum, PeµZ , lepton pair

energy, Eeµ, total transverse momentum, PeµT , pair production angle, Θeµ and the angular distance

between the two leptons, cos∠µe . Expected distributions for BP1 (red histogram), BP3 (green)

and BP6 (blue) are compared with expected background (black histogram). Samples simulated for

CLIC running at 380 GeV are normalised to 1 ab−1.

input variables is used as for the AH analysis described above. The BDT classification

algorithm is trained separately for each benchmark point to discriminate between signal

and background processes. Examples of the BDT response distributions for the BP1 sig-

nal sample and SM background samples simulated for 1 ab−1 at 380 GeV CLIC are shown

in figure 8. While due to a large SM background it is not possible to select the signal-

dominated sample based on the BDT response, the highest significance is obtained when
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Figure 9. Expected significance of the deviations from the Standard Model predictions observed

at 380 GeV CLIC for events with electron-muon pair in the final state (e+µ− or µ+e−) as a function

of twice the charged scalar mass (left) and the production cross-section for the considered signal

channel (right), for different IDM benchmark points. Color indicates the mass splitting between

the H± and H scalars (right scale applies to both plots).

selecting events with BDT response above 0.12. About 1700 signal events are expected

in the final sample (BDT selection efficiency of 70%) with background contribution of

about 8500 events (BDT selection efficiency of 1.7%), resulting in the significance of the

observation of about 17σ.

As was the case for the AH channel, the expected significance of the eµ signal is mainly

related to the production cross-section for the considered channel. This is shown in figure 9,

where the expected significance for the electron-muon final state (e+µ− or µ+e−) are plot-

ted as a function of 2mH± (left panel) and the production cross-section (right panel), for

different IDM benchmark points. Discovery at the initial stage of CLIC is only possible for

scenarios with signal cross-sections (in the electron-muon channel) above about 1 fb. This
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the sum of neutral inert scalar masses and (right) events with an electron and a muon in the final

state (e+µ− or e−µ+) as a function of twice the charged scalar mass, for IDM benchmark points

in tables 1 and 2.

corresponds to charged scalar masses below roughly 150 GeV. We do not observe any sizable

dependence of the expected significance on the mass splitting between the charged and neu-

tral inert scalars, mH± −mH (indicated by colour scale in figure 9), within the considered

range of parameters. Reduced signal channel cross section and thus reduced signal sensi-

tivity observed for one of the benchmark points in figure 9 (BP2 with mH± = 112.8 GeV)

is due to the significant contribution of cascade decays, H± →W±?A→W±?Z?H, which

were not considered in the signal event selection.

5 Inert scalars at high-energy stages of CLIC

We now turn to the discovery prospects of the two high-energy stages at 1.5 TeV and

3 TeV with assumed integrated luminosities of 2.5 ab−1 and 5 ab−1 [74]. The same analysis

procedure described in section 4 was applied to signal and background samples simulated

for high-energy CLIC stages. As before, proper energy spectra for CLIC [72], based on

detailed beam simulations, were taken into account, which is crucial for a correct description

of signal and background at high collider energies. We applied the same generator-level

cuts as before, but did not make use of any additional pre-selection cuts. Furthermore,

we extend our study to include additional high-mass benchmark points not accessible at

380 GeV; these are listed in table 2.

In figure 10, we display the expected significances of the IDM signal in the AH and

H+H− channel as a function of the inert scalar masses for subsequent CLIC running

stages. For the AH channel (muon-pair production), increasing the running energy and

integrated luminosity results in only a moderate extension of the discovery potential of

CLIC. With 2.5 ab−1 at 1.5 TeV scenarios with the sum of neutral inert scalar masses

up to about 550 GeV can be probed, compared to about 290 GeV for 380 GeV running.

Prospects for high-energy CLIC running look significantly better if the H+H− production

with the electron-muon final state is considered. Here the expected signal significance
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cross-section in the considered channel, for: (left) events with two muons in the final state (µ+µ−)

and (right) events with electron-muon pair production (e+µ− or e−µ+), for the IDM benchmark

points in tables 1 and 2.

decreases much slower with the charged scalar mass and we can probe masses up to about

500 GeV at 1.5 TeV, compared to 150 GeV at the first CLIC stage (see figure 10 right panel).

The significance is mainly driven by the signal production cross section and is approx-

imately proportional to the square-root of the integrated luminosity. For parameter points

that are already accessible at Stage 1 the AH production cross sections decrease with the

collision energy much faster than most of the backgrounds and the significance of observa-

tion decreases at Stage 2. Only for points with mA+mH & 300 GeV, which are close to the

production threshold at Stage 1, higher integrated luminosity and the production cross sec-

tions enhanced by up to a factor of 2 result in better sensitivity at center-of-mass energy

of 1.5 TeV. Similarly, when going from 1.5 TeV to 3 TeV, the significance of observation

increases only for scenarios with mA +mH & 1.2 TeV.

As we search for the signal contribution on top of a much larger background, we expect

that the significance is (to a first approximation) proportional to the square-root of the

integrated luminosity. In order to compare the CLIC sensitivity to the IDM benchmark

scenarios at different energies, we scale the expected significance at high-energy stages

to the integrated luminosity of 1 ab−1 assumed for 380 GeV running. This allows us to

separate luminosity and cross-section contributions to the overall significance, and will also

allow for projections of the discovery potential at arbitrary luminosities.

In figure 11, we show the scaled significance results, presented as a function of the signal

production cross-section. For the AH channel, which leads to µ+µ− final states, a universal

linear dependence on the signal cross-section is observed which does not seem to depend on

the running energy. Significant (above 5σ) observation is possible for cross-sections roughly

larger than 0.5 fb (for higher luminosities, these should be rescaled by
√

1 /L · ab).

For the H+H− channel, however, leading to e±µ∓ final states, the high-energy run-

ning of CLIC clearly gives better sensitivity to heavy IDM scenarios (for points with sim-

ilar production cross-section and assuming same luminosity) than the initial CLIC stage
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the signal cross-section in the considered channel: (left) with two muons in the final state (µ+µ−)

and (right) with electron-muon pair production (e+µ− or e−µ+), as a function of the scalar mass

differences, for different IDM benchmark points.

(see figure 11 right). The relatively large differences between different BPs with similar

cross-sections at the same center-of-mass energies originate from the mass scale of the

heavy scalars.

Finally, we investigate the dependence of the signal significance on the mass difference

between neutral/charged inert scalar and the DM candidate. In figure 12, we show the ratio

of the expected significance (scaled to the integrated luminosity of 1 ab−1) to the signal

cross-section in the considered channel, as a function of the corresponding scalar mass

difference. This ratio indicates the expected significance for the particular mass splitting,

assuming the reference signal channel cross section of 1 fb. For AH production (muon-

pair channel) at high-energy stages, the experimental sensitivity seems to be significantly

better for low mass differences, below mZ , when the virtual Z boson is produced in the

A boson decay, A → Z(?)H. This is because signal events can be better separated from

the SM backgrounds for such scenarios. One can also note that for high mass differences,

mA −mH > mZ , the experimental sensitivity is clearly better for low-energy running.

The situation is similar for the H+H− production signal in the electron-muon channel.

For high running energies, a better sensitivity is expected for low mass differences when the

virtual W± boson is produced in the charged scalar decay. However, it is also clear that

the experimental sensitivity is much better at high-energy running than at the first CLIC

stage and this observation does not depend on the considered dark scalar mass difference.

The results presented in figure 10 seem to indicate that many high mass IDM scenarios

will remain inaccessible at CLIC, even at high energies. However, one has to stress that this

is mainly due to the small branching ratios for the considered leptonic final states: 3.3%

for AH → HHµ+µ− and 2.3% for H+H− → HHµ±e∓νν. For scenarios where the signal

cross sections in the dilepton channel are too small, it might be worthwhile to investigate

semi-leptonic decays in the H+H− production channel. Due to the much larger branching

ratios (28.6% for H+H− → HH`±νqq′, with ` = e, µ) the expected number of H+H−

signal events in the semi-leptonic final state is over an order of magnitude larger than for
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the electron-muon signature. As a similar scaling is expected for the background processes

(dominated by the W+W− production), we expect that the significance of the observation

in the semi-leptonic channel should be increased by at least a factor of 3 (corresponding to

the ten-fold increase of the integrated luminosity). An investigation in this channel could

furthermore profit from a full reconstruction of the W± that decays hadronically, which

allows to use the reconstructed W boson mass and energy as additional discriminators in

the BDT algorithm. However, a proper estimate of the expected significance for this case

would require a much more detailed analysis, including parton showering, hadronisation

and detector response simulation, and event reconstruction with particle flow algorithm and

final state reconstruction using accurate jet clustering and lepton identification processes.

This is beyond the scope of the work presented here.

6 Conclusions

In this work, we have studied prospects for discovery of inert scalars of the Inert Doublet

Model at CLIC running at 380 GeV, 1.5 TeV and 3 TeV. A set of benchmark points, pro-

posed in [4] and satisfying all experimental and theoretical constraints, has been considered.

We focused on pair-production of charged dark scalars H+H− and production of the DM

candidate with the second neutral scalar boson, HA, with subsequent decays to leptonic

final states. Signal and background event samples were generated with WHizard 2.2.8,

taking into account all processes that lead to the considered final states. Signatures for

production of new scalars were searched for in the kinematic distributions for events with

exclusive production of two muons or an electron and a muon. Significance of the possible

observation was studied using multivariate analysis methods.

We found that most of the low-mass benchmark scenarios proposed in [4] can be

observed with high significance in the di-muon channel already with 1 ab−1 collected at

380 GeV (the first stage of CLIC), provided that the sum of neutral inert scalar masses,

mA + mH < 290 GeV. Similar constraints also apply to the observation of the charged

scalar pair-production (electron-muon pair-production channel), which is however fulfilled

for fewer scenarios.

Scenarios which are not kinematically accessible at the first stage of CLIC can be

searched for at high-energy stages, at 1.5 TeV and 3 TeV. The signal production cross-

section for both considered channels decreases significantly with energy, much faster than

for the corresponding background processes. Signal cross sections for the considered final

states are further reduced by the small branching fractions for the dilepton channels. We

found that at 1.5 TeV the discovery reach is extended to the sum of scalar masses of about

550 GeV in the dimuon channel and for charged scalar masses up to about 500 GeV in the

e± µ∓ channels. For the scenarios considered here, increasing the center-of-mass energy to

3 TeV does not significantly improve the sensitivity. Therefore, the observation of the inert

scalar production in the leptonic channels will be challenging at high-energy CLIC and a

significant signal is only expected for relatively low masses. However, higher significance

and the discovery reach extending up to the kinematic limit could be expected for H+H−

production in the semi-leptonic final state (isolated lepton and a pair of jets or one massive

jet). This is in the line of future work.
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