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Abstract: We reconsider the next to minimal supersymmetric Standard Model (NMSSM) as a nat-

ural solution to the µ-problem and show that both the stability and the cosmological domain walls

problems are eliminated if we impose a discrete Z2 R-symmetry on the non-renormalizable operators of
the theory. The content of this talk is based on work done in collaboration with C.Panagiotakopoulos.

The N = 1 supersymmetric extension of the

Standard Model provides a well defined frame-

work for the study of new physics beyond it[1].

The low energy data support the unification of

gauge couplings in the supersymmetric case in

contrast to the standard case. The minimal su-

persymmetric extension of the Standard Model

(MSSM) is defined by promoting each standard

field into a superfield, doubling the Higgses and

imposing R-parity conservation. The most viable

scenario for the breaking of supersymmetry at

some low scalems , no larger than the TeV range,

is the one based on spontaneously broken Su-

pergravity. Although this scenario does not em-

ploy purely gravitational forces but could require

the appearance of gaugino condensates of some

hidden sector, it is usually refered to as gravita-

tionally induced supersymmetry breaking. The

resulting broken theory, independently of the de-

tails of the underlying high energy theory, con-

tains a number of soft supersymmetry breaking

terms proportional to powers of the scale ms .

Probably the most atractive feature of the MSSM

is that it realises a version of “dimensional trans-

mutation” where radiative corrections generate

a new scale, namely the electroweak breaking

scale MW . This is a highly desirable, but also

non-trivial, property that is equivalent to deriv-

ing MW from the supersymmetry breaking scale

as opposed to putting it by hand as an extra

arbitrary parameter. Unfortunately a realistic

utilization of radiative symmetry breaking[2] in

MSSM requires the presence of the so called µ-

term, namely µH1H2, with values of the theoret-

ically arbitrary parameter µ close to ms or MW
. This nulifies all merits of radiative symmetry

breaking since it reintroduces an extra arbitrary

scale from the back door. Of course, there exist

explanations for the values of the µ-term, alas,

all in extended settings[3].

At first glance, the most natural solution to

the µ-problem would be to introduce a massless

gauge singlet field S , coupled as λSH1H2 , whose

v.e.v., after minimization would turn out to be

of the order of the other scales floating around,

namely ms and MW . The simplest extension

of the MSSM is the so called “Next to Mini-

mal” SSM or NMSSM[4] with a cubic superpo-

tential(renormalizable part)

Wren = λSH1H2 + f
3!
S3

+Y (d)QDcH1 + Y
(u)QU cH1 + Y

(e)LEcH1 (1)

Unfortunately, this scenario runs into diffi-

culties. As can be readily seen the NMSSM at

the renormalizable level has a (non-anomalous)

Z3 global discrete symmetry under which all su-
perfields are multiplied by e2πi/3 . This symme-

try is broken during the phase transition associ-

ated with the electroweak symmetry breaking in
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the early universe and cosmologically dangerous

domain walls are produced. These walls would

be harmless provided they disappear effectivelly

before nucleosynthesis. This would, roughly, re-

quire the presence in the effective potential of

Z3-breaking terms of magnitude

δV ≥ (MeV )4 ∼ 10−12GeV 4

This estimate is not very different from the more

elaborate one of Abel, Sarkar and White[5]

δV ≥ 10−7v3M2W /MP
where v is the scale of spontaneous breaking of

the discrete symmetry and MP is the Planck

mass. The above magnitude ofZ3-breaking seems
to correspond to the presence in the superpoten-

tial or the Käler potential of Z3- breaking op-
erators suppressed by one inverse power of the

Planck mass.

Non-renormalizable terms involving the sin-

glet S can induce quadratically divergent correc-

tions1 which give rise to quadratically divergent

tadpoles for the singlet[6]. Their generic form,

cut-off at the Planck mass, is

ξm2sMP (S + S
∗) (2)

where ms is the scale of susy breaking in the

visible sector. The value of ξ depends on the loop

order of the associated graph (two or three in this

case), which, in turn, depends on the particular

non-renormalizable term that gives rise to the

tadpole. Such terms lead to vevs for the light

singlet S much larger than the electroweak scale.

Thus it seems that the non-renormalizable terms

that are able to make the walls disappear before

nucleosynthesis are the ones that destabilize the

hierarchy.

The purpose of the present article is to ad-

dress the two poblems of domain walls and desta-

bilization that arise in the NMSSM and show

that, despite the impass that the previous ar-

guments seem to indicate, there is a simple way

out rendering the model a viable solution to the

1These non-renormalizable terms appear either as D-

terms in the Kähler potential or as F -terms in the su-

perpotential. The natural setting for these interactions

is N = 1 Supergravity spontaneously broken by a set of

hidden sector fields.

µ-problem. The crucial observation is that due

to the divergent tadpoles a Z3-breaking operator
could have a much larger effect on the vacuum

than its dimension naively indicates. Thus, it is

conceivable that non-renormalizable terms sup-

pressed by more than one power of MP are able

to generate linear terms in the effective poten-

tial which are strong enough to eliminate the do-

main wall problem, although, at the same time,

they are too small to upset the gauge hierarchy.

Clearly, a better understanding of the symme-

tries that could be imposed on the model and of

the magnitude of destabilization that the various

non-renormalizable operators generate is needed.

The renormalizable part of the NMSSM su-

perpotential (1) possesses the following global

symmetries

U(1)B : Q(1/3), U
c(−1/3), Dc(−1/3), L(0),

Ec(0), H1(0), H2(0), S(0)

U(1)L : Q(0), U
c(0), Dc(0), L(1), Ec(−1),

H1(0), H2(0), S(0)

U(1)R : Q(1), U
c(1), Dc(1), L(1), Ec(1),

H1(1), H2(1), S(1)

The last U(1) is an anomalous R-symmetry un-

der which the renormalizable superpotentialWren
has a charge +3 . The soft trilinear susy-breaking

terms break the continuous R-symmetry U(1)R
down to its Z3 subgroup that we mentioned ear-
lier which is not an R-symmetry. We see that

the renormalizable part of the model possesses a

discrete Z3 symmetry whose spontaneous break-
down produces domain walls.

Of cource, one does not have to impose all

the above continuous symmetries in oredr to ob-

tain Wren for the NMSSM. The same Wren can
be obtained if we impose a discrete symmetry.

There are various choices among which it is use-

ful to consider two interesting possibilities:

a) ZMP2 ×Z3
ZMP2 : (Q,U c, Dc, L, Ec)→ −(Q,U c, Dc, L, Ec)

(H1, H2, S)→ (H1, H2, S)
and

Z3 : (Q,U c, Dc, L, Ec, H1, H2, S)→

2
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e2πi/3(Q,U c, Dc, L, Ec, H1, H2, S)

Note that Z3 ⊂ U(1)R and that the matter
parity is ZMP2 = ZB2 ZL2 , with ZB2 ⊂ U(1)B
and ZL2 ⊂ U(1)L . This is not an R-symmetry
(W →W).
b) ZMP2 ×Z(R)4

Z(R)4 : (Q,U c, Dc, L, Ec, H1, H2, S)→

i(Q,U c, Dc, L, Ec, H1, H2, S)

W → −iW
where the matter parity ZMP2 is as in a and the

R-symmetry is Z(R)4 ⊂ U(1)R .
Although it makes no difference which of the

above symmetries are imposed on the renormal-

izable superpotential, we should make sure that

the Z3 symmetry or any other symmetry contain-
ing it is not a symmetry of the non-renormalizable

operators. If Z3 invariance is imposed on the
complete theory the domain walls will not disap-

pear. In contrast, the Z(R)4 symmetry can be im-

posed on the non-renormalizable operators and

no domain walls associated with its breaking will

form because the soft susy-breaking terms break

Z(R)4 completely.

Let us now move to another important issue

that has to be addressed in the presence of the

gauge singlet superfield S , namely the destabi-

lization of the electroweak scale due to quadrat-

ically divergent tadpole diagrams involving non-

renormalizable operators which generate in the

effective action linear terms of the type (2). As

mentioned such terms lead to vevs for the light

singlet in general much larger than the electroweak

scale. Abel[7] has shown that the potentially

harmful non-renormalizable terms are either even

superpotential terms or odd Kähler potential ones.

Such terms are easily avoided if we impose on the

full non-renormalizable theory a Z(R)2 R-symmetry

under which all superfields, as well as the super-

potential, flip sign. This symmetry is a subgroup

of both U(1)R and Z(R)4 . Therefore, one has the

option of imposing on all operators a symmetry

ZMP2 ×Z(R)4 or ZMP2 ×Z(R)2 or just Z(R)2 assum-

ing in the last two cases that the renormalizable

superpotential has accidentally a larger symme-

try.

Notice that the non-renormalizable terms al-

lowed by Z(R)2 or Z(R)4 , although not harmful to

the gauge hierarchy, are still able to solve the Z3-
domain wall problem since they generate through

the n-loop tadpole diagrams linear terms in the

effective action of the form

δV ∼ (16π2)−nm3s(S + S∗)

These terms are small to upset the gauge hier-

archy but large enough to break the Z3 symme-
try and eliminate the domain wall problem. For

example, the presence of the term S7/M4P in the

superpotential, allowed by both symmetries Z(R)2
and Z(R)4 , is able to generate at four loops such

a harmless linear term, as shown by Abel.

Combining all the above we see that by adopt-

ing the renormalizable superpotential (1) of the

NMSSM and imposing on the non-renormalizable

operators just a Z(R)2 R-symmetry we are able

to solve both the cosmological and the stability

problems of the model . Thus, NMSSM can be

finally regarded as a solution to the µ-problem of

the MSSM without invoking non-minimal Kähler

potentials coupling directly visible and hidden

fields.
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