
1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
European Laboratory for Particle Physics

Internal Note/DAQ
ALICE reference number

ALICE-INT-2001-15 V 1.3
Institute reference number

Date of last change

2001-06-16

Author:

S. Chapeland

Abstract:

The DATE V3 system includes shell scripts for the control of external processes to be
executed at the start-of-run and at the end-of-run. This feature has been complemented by
the addition of a State Machine Interface (SMI) package to synchronise and co-ordinate
their execution both at the single detector level and at the experiment levels. This note
describes the integration of SMI with the DATE system.

Contact Person P. Vande Vyvre e-mail:Pierre.Vande.Vyvre@cern.ch
Tel: + 41-22 767.83.36 / Fax : + 41-22.767.95.85 Creation Date: 2001-January-18

The DATE SMI run control

Distribution lists
For Approval:

For Information:

EDMS Number: 312494 version 1.0

2

1. Introduction

In DATE V3 [1], the LDC or GDC software can be customized by the addition of detector
specific programs. These programs are started through common (to all LDCs or GDCs) or
specific (to one LDC or GDC) Unix shells scripts. These scripts are executed at every start and
at every end of run and are then executed independently from the DATE system. However,
there is a need to synchronise the execution of these programs with the DATE start and end of
run sequences without modification of the DATE run-control itself.
Different methods and tools have been investigated to identify a solution for control of
processes by the run-control [1, 2]. None of these options has been found sufficiently
satisfactory to be included in the DATE system.
A first prototype has also been developed to interface DATE with the SCADA (System for
Control and Data Acquisition) system currently used at CERN for the development of Detector
Control Systems [3]. This prototype has shown that on the one hand the user interface of the
SCADA system was not well adapted to the control of a DAQ system and on the other hand the
SCADA system itself requires the addition of an external package for the control of external
programs. The external package that has been used for a test with the SCADA is the State
Machine Interface [4] developed for Delphi and used by Delphi and a few other experiments
since several years.
A second prototype has then been started to integrate directly DATE, and in particular the run-
control, with the SMI package. This note describes the architecture of this integration, the
modifications done in the DATE run control and the installation of the DIM (Distributed
Information Management System) [6] and the SMI packages.

2. The DATE and SMI packages

This note assumes a good knowledge of the DATE system and of the basic SMI and DIM
concepts. See the references to find a list of relevant documents. SMI and DATE basic
knowledge can be found in Ref [4, 5].

3. Usage of SMI for DATE

The idea of finite state machines is to describe the behavior of a complex system in a modular
and readable way. Moreover, given that DATE has to be connected to different detectors, the
front-end software may require the addition of detector specific software. For instance, when a
run starts, some detector specific processes dedicated to a given hardware may need to be
started. This can even be some more complex procedure including different phases such as
calculating pedestals, loading them and checking the status. A script-based description of the
actions to do at start of run (and in each of the phases of the run) allows flexibility and
modifications at each level.

SMI was tried for this prototype because it was developed at CERN, intensively tested in the
Delphi experiment and still maintained. It has all the features required to implement finite state
machines and distribution of the system. The SMI system uses DIM as the communication layer.
The DIM package includes publish and subscribe facilities organized around a domain name
server.

3

4. Architecture

The architecture is based on DATE v3.7. No modifications were done in any other package than
on the run control. The software has been kept compatible with DATE v3.7. The new run
control can even work in the v3.7 native mode.

The SMI package is a software tool to control complex distributed systems. The control is based
on a model made of the system in terms of objects with a finite state machine behavior. SMI
includes a dedicated language used to express the model. The SMI language is used to write
SMI programs or “scripts” that are executed by the SMI interpreter or “state manager”.

The SMI objects used to model the system belong to two distinct categories. Some of these
objects correspond to existing hardware or software elements of the system such as the DATE
processes. In this case the SMI object is “associated” to a program. Another category of object is
logical objects that are abstract entities that exist only in the SMI script.

Each DATE process is associated to a corresponding SMI object. Each SMI object behavior is
described in a SMI script, giving the different states, possible actions and triggering events.
These scripts are easier to read and maintain than lower level language code. Each script is
interpreted by a process called «state manager».

The DATE run control logical architecture is shown in Figure 1.

Figure 1 - DATE run control logical architecture

The root of the tree is the run control process. The main purposes of the runControl are :
- provide a user interface to input run parameters and control the system (start, stop
commands, status display…);
- communicate with the subsystems (LDCs, GDCs, …), upload run parameters, control
and synchronize them (send commands, check status).

The current version of the user interface is adequate for the current applications and has not
been modified. Only the control part was changed and needs to be discussed here.

The run control itself has a corresponding SMI object, called DATE_RUN. This object’s behavior
is completely described in a SMI script. Links between user interface and the actions in each
state have been established, so that a click on the START button actually triggers a START
action in the SMI interpreter that simulates the object. Some actions done at start or end of run

LDC1 LDC2 GDC GDC

readout recorder

etc

etc

Run Control

4

are not handled by the SMI control yet, like the run parameters downloading. These actions are
still written in a Tcl script.

On the lower level, there are objects corresponding to the LDCs and GDCs. Their associated
processes (on each machine) are named «LDC_SMI_SERVER» and «GDC_SMI_SERVER».
These objects have a well defined interface with the object DATE_RUN. Their states and
actions are described in the DATE_RUN SMI script. The state machine behavior of a LDC or a
GDC is local to a machine. It is possible to change the script, provided the interface is respected.
The SMI class SMI_SERVER indicated in Listing 1 defines this interface.

Figure 2 shows all SMI objects used for the run control and how they interact with each other.
Bold arrows represent the control flow. Dashed arrows show links that don’t deal with control,
but which are more specific to the implementation.

class: SMI_SERVER /associated
state: STOPPED

action: START
state: STARTING
state: READY

action: SET_RUNNING
state: RUNNING

action: STOP
state: ENDING

state: ERROR
action: STOP

Listing 1 – State machine description of a LDC or GDC object

Coexistence of objects with the same name is allowed by the usage of SMI domains. A SMI
domain is a name space to which an object belongs and which limits the visibility of this name.
Therefore, the system can hold an unlimited amount of «LDC_SMI_SERVER» objects, if all
are in a different SMI domain.

The SMI domain feature is used to keep clean boundaries between machines, and to have an
homogeneous naming convention on each machine. Currently, the SMI domain is based on the
ip name and type (LDC or GDC) of a machine, to avoid conflicts and to ease the deployment.

5

Figure 2 - SMI objects of the DATE run control

The LDCs and GDCs are selected by the user in the DATE run control. A number of macros
have been developped to write the run control SMI script without knowing a priori which are the
machines involved in the run. These macros are of the type $ALL_LDC, $ALL_GDC,

$ANY_LDC, $ANY_GDC. They are replaced by the effective list of machines by the Tcl program
during the connect command once they have been defined. The run control executes this
substitution immediately before launching the DATE_RUN SMI interpreter. An example of a
simple SMI script for object DATE_RUN is given in Listing 2.

state: STOPPED
action: START

do START $ALL_LDC::LDC_SMI_SERVER
do START $ALL_GDC::GDC_SMI_SERVER
do START(TIME=20) timer
terminate_action/state=STARTING

action: DISCONNECT
terminate_action/state=NOT_CONNECTED

LDC 1

LDC 2

LDC n

DATE_RUN

LDC_SMI_SERVER

TIMER

READOUT

RECORDER
SMI_EXEC

Detector specific

GDC 1

GDC 2

GDC n

GDC_SMI_SERVER

TIMER

EVENT_BUILDER

SMI_EXEC
Detector specific

objects
GDC1
GDC2

LDC1
LDC2

TIMER

6

state: STARTING
when ($ALL_LDC::LDC_SMI_SERVER in_state READY)

AND ($ALL_GDC::GDC_SMI_SERVER in_state READY)
do SET_READY

when (timer in_state TIME_OUT)
do SET_ERROR

action: SET_READY
do STOP timer
terminate_action/state=READY

action: SET_ERROR
do STOP timer
terminate_action/state=ERROR

Listing 2 - Example of SMI script for run control

On each LDC (or GDC), there are other SMI objects running, used for several low level
purposes. The «smi_exec» object provides a set of actions to communicate with lower level
DATE processes, like readout or recorder. It has an SMI associated process, written in C, that
extends the restrictive capabilities of SMI scripting to all the features of the C-language. For
example, this smi_exec object can be used to set or read flags in the DATE shared memory
segment, to log messages, to start processes. Another SMI object that is found everywhere
is the TIMER object, which gives a way to have timeouts in SMI scripts.
An example of SMI script for a LDC is given in Listing 3.

state: STARTING
when LDC_SMI_SERVER in_state STARTING do EXECUTE_START

action: EXECUTE_START
do SET_RUNSTATUS(runstatus="STARTING") smi_exec
do REINIT_SHM_VARS smi_exec

if (smi_exec not_in_state READY) then
terminate_action/state=ERROR

endif

do START recorder
if (recorder not_in_state READY) then

terminate_action/state=ERROR
endif

do START readout
if (readout not_in_state READY) then

terminate_action/state=ERROR
endif

do SET_RUNSTATUS(runstatus="READY") smi_exec

terminate_action/state=READY

Listing 3 – Example of SMI script for LDC

7

5. SMI Tests

Extensive testing has been done to understand the features provided by SMI and to check the
behaviour of SMI objects on a large scale. Among them, the following features were tested:

- commands between objects of same or different domains
- associated processes / objects
- SMI classes
- queue priority when several actions are sent to the same object
- synchronisation between several objects
- asynchronous actions / priority of actions:

- 2 objects with the same «when»
- several «when» within one object

- usage of the SMI Run Time Library
- sending a command to a large number of associated processes (up to 100 on one

machine) and synchronisation between them

6. Tests with the SMI DATE run control

Extensive testing has been performed, including either standalone tests with a limited number of
machines, or tests with a few tens of machines using the third ALICE Data Challenge setup
(ADC3).

Tests have been done with rapid start/stop commands. Typically, the maximum number of
events was set to 100 to 200 in the DATE parameters, so that machines ask for the stop of the
run a few seconds (around 5) after being started. In these conditions, a good stability has been
reached. More than 4000 start/stop in 14 hours (1 run start and stop every 20 seconds) has been
successively triggered without error in a 3 LDCs x 1 GDC configuration.

Tests of synchronisation have also been successful in the ADC3 setup, in a configuration
reaching 13 LDCs x 13 GDCs running full speed.

The DATE performance has not been influenced by the introduction of SMI. Start and stop
phases are even 10% to 35% faster, depending on the configuration. The scalability of the DIM
domain name server should be checked, especially when there is a large number of nodes (more
than 50). In a 13x13 configuration, the DIM domain name server (DNS) machine is far from
saturation: less than 5% CPU usage is reached at maximum during one second at start of run, on
a 2x400MHz PC.

The execution time of the sequences for start and stop of run is satisfactory in the current
prototype of the SMI DATE run control.

7. Conclusion

The prototype provides adequate functionality to control processes, with a good flexibility. The
configuration can be defined at run time with a few macros, and scripts can be modified easily
by hand to add new processes or phases. SMI was well adapted to develop this process control,
even if a lack of useful features was noticed, like a timer that has been added externally.

8

The integration was fast and easy. SMI can be learned quickly (one week). The development
and integration, included testing lasted around 5 months. The result is efficient given resources
involved, compared to more complex and expensive tools. The new version of the run control is
now more flexible to control external processes without any loss of performance.
Most of the remaining work concerns SMI scripts, to feature good error recovery. The basis can
be used to develop a more complex and automated control system.

8. References

1. M.Macowicz, ALICE DAQ System Control - User Requirements Document, ALICE
Internal Note/DAQ 1998/01.

2. M.Macowicz, ALICE Data Acquisition System Control: Assessment of methods and tools
for the development, ALICE Internal Note/DAQ 1998/02.

3. SCADA: http://itcowww.cern.ch/pvss2/index.htm
4. SMI web site: http://delonline.cern.ch/d$onl/smixx/doc/www/SMI.HTML
5. CERN ALICE DAQ group, ALICE DATE User's Guide - DATE V3.7, ALICE Internal

Note/DAQ 2000/31.
6. DIM, a Portable, Light Weight Package for Information Publishing, Data Transfer and Inter-

process Communication , CHEP 2000, Padova, Italy, February 2000

9

Appendix 1:DATE SMI Run Control Installation

Upgrade from date v3.7
• Get and Install DATE v3.7
• Get the DATE_SMI_upgrade package

New installation
• Get and install the DATE_SMI package

In any case:
• Get and Install DIM and SMI

They should be installed in $DATE_ROOT/dim and $DATE_ROOT/smi
If this is not the case, $DATE/runControl/packageParams has to be modified
with the appropriate values.

• A machine has to be chosen to run the DIM domain name server (DNS)

• run “dns” process on it
• set the environment variable:

DIM_DNS_NODE my_dns_node.cern.ch
should be written in $DATE_SITE_CONFIG/smi.config file.
(The DIM_DNS_NODE variable is currently defined in
packageParams.)

The SMI DATE run control can thereafter be started.

10

Appendix 2: DATE runControl – Some details of implementation

The SMI version of runControl is based on DATE v3.7. It is compatible with DATE v3.7. (only
rcServer.sh must be changed, due to a new non-smi feature: DATE_SITE is set on LDCs/GDCs
when connecting).

The non-SMI control mode is still available. You can set/unset the Tcl variable
SMI_runControl to select which mode to use. This should be done ONLY before connect.
This is implemented by switches everywhere required in the code, to keep both versions
compatible and to avoid replicated code. All modifications are tagged by the #SMI header.

Only the start_run and stop_run procedures are done in another way, because of their
complexity. There is a SMI_start_run and a NOTSMI_start_run procedure (and the
same for stop run). If the non-smi code is changed in one of the procedures, it should be also
changed in the other one.

It should be noticed that the current implementation is not completely smi controlled, due to the
event builder. In fact, the event-builder daemon has a peer to peer communication with
runControl.tcl, which forbids a smi control similar to the readout and recorder. This
should be changed in next releases, so that the smi start and stop in the tcl code are simpler,
synchronous and clean. A good synchronisation between smi and the evB is not possible yet.

A new label has been added in the window, next to the status label. It is called status_det,
standing for status_detailed. This label displays the phases for connect, start, stop, disconnect. In
smi mode, the status displayed is the smi status. It is obtained by polling: there were some
problems with the TK library when getting it by callback. The callback functions for smi are
implemented in the "smi/tcl library" written in runControl.c. It works fine as far as the
variable isn't displayed in the window. It could be used by a control routine/watchdog.

Processes architecture

The main idea is that each process of the DATE architecture is modeled by a smi object which
reflects its actual state. Commands are sent from the run control through smi. As some
backward compatibility is required, and because some critical processes should be kept as they
are (readout, recorder...), it was not possible to make each of process an smi-associated process.

Therefore some workarounds were used to keep clean boundaries between a smi run control and
some non smi processes.

We can describe the main objects of the architecture and the corresponding processes from top
to down (runControl to each subprocess) (see Fig. 3).

11

rcServer

rcShm

Recorder Readout

LDC 1

inetd

Run Control

smiServer

smiSM interpreter

DATE_RUN

LDC_SMI_SERVER 1

LDC_SMI_SERVER 2
…

(static file)

smi_exec

Figure 3 - DATE SMI run control objects and corresponding processes.

The runControl has its behavior reflected by the DATE_RUN smi object. Each action on a button
(connect, disconnect, start, stop) triggers a smi-action on DATE_RUN. The status displayed is
the smi status of this object.

For each LDC or GDC, there is a SMI_SERVER object, which communicates with the
DATE_RUN object. The process associated to the SMI_SERVER object is the "smiServer". This
process is the same on all the LDCs and on all the GDCs (there is only one for LDCs and one
for GDCs). It is differentiated by its domain name, which is based on the machine name where it
runs. "smiServer" can understand several commands, like "start" and "stop", and has a well
defined number of possible states, known by DATE_RUN. Its state summarize the state of all the
subprocesses it handles. It does a part of what the rcServer did before, when handling
Start and Stop commands.

On a LDC, for instance, smiServer controls readout and recorder processes. If one of
these gets error, smiServer will come to "error" state. The state machine is still relatively
simple in this prototype but can be modified with a greater number of states (readout_error
or recorder_error for instance).

The "readout" and "recorder" DATE processes have their equivalent in smi. The smi
object tries to reflect at best the status of the DATE process. There is a mechanism to warn the
smi object if the DATE process dies.
Control of readout and recorder is done through the shared memory segment. Because the
smi syntax is not intended to do complex things (e.g. accessing this segment), a SMI_EXEC
object has been created. It can execute a number of actions defined in its "library". It has an
associated process, which is written in C, so it can do almost everything. This corresponding
associated process is named "smi_exec". For instance, a "set_flag" function has been
written, so that you can set the flag of readout from a smi script. The only thing to do is to ask
the SMI_EXEC object to do it for you. The way to communicate with this object is simple. It

12

can only be "ready" or "error", and handles the actions declared. The smiServer also
uses smi_exec, to launch processes for instance.

Users can add any number of new processes like readout and recorder. They will be controled
by smiServer, and nothing has to be added elsewhere (e.g. in run control). The library
handled by smi_exec can also be extended to new features easily.

To summarize, here is the list of processes running:

Run Control machine:

- DATE runControl
- SMI interpreter interpreting the temporary file created by the runControl.Tcl after

expansion of the macros of the runControl.smi script (object DATE_RUN).
- An smi_timeout process is used so that time outs can be handled in smi scripts.

LDCs:

- SMI interpreter for LDC_smiServer.smi script (smi objects: smiServer,
smi_exec, readout, recorder, user defined ...)

- smi_exec (smi associated process)
- user defined processes
- DATE readout and recorder
- DATE rcServer

GDCs:

- SMI interpreter of GDC_smiServer.smi script (smi objects: smiServer,
smi_exec, eventBuilder, user defined ...)

- smi_exec (smi associated process)
- user defined processes
- DATE rcServer
- DATE evB daemon

In SMI control mode, rcServer is only used to upload parameters and settings to LDCs and
GDCs. It also starts the SMI server shell when requested (command SMI_START). This shell
starts itself the 2 processes SMI interpreter and smi_exec. It is not used for control otherwise.

13

Appendix 3: DATE run control files modified

1. Previous system

The control was done by ASCII messages between run control process and rcServers processes
running on each machine, via a peer to peer socket based communication.

2. New system

The rcServer is kept for parameter download purposes (rcShm access on every LDC and GDC),
but is no more involved in the control. It just starts the SMI servers.
Start/Stop procedures were moved from rcServers to smiServers (launch readout, recorder, ...).
The protocol with existing DATE processes (readout and recorder) is kept.

The SMI runControl is developped on top of DATE v3.7

The new source files and the source files modified to support SMI are listed hereafter in the
section on DATE_RC directory.
The updated list of files created in the executable directory is indicated in the section
DATE_RC_BIN directory.

It should also be noticed that both DIMDIR and SMIDIR are used in this new version of the
runControl. They are currently located in /date (/date/dim and /date/smixx). The
DIM_DNS_NODE machine is defined in the smi.config file in DATE_SITE_CONFIG
directory.

Log files are located in DATE_SITE_LOGS directory. Currently, the output of SMI interpreters
are redirected to various log files (for each machine: one for smiServer and one for smi_exec).
There is also the smi_runcontrol log file which holds the output for run_control.smi (object
DATE_RUN). These log files are generated using the "log_bypage" process that keeps only the
end of the logs. Indeed the amount of log is too large and only a small fraction of it is useful.
The process log_bypage is started together with the SM interpreter.

3. DATE_RC directory

New source files for SMI runControl Description

GDC_smiServer.smi SMI script for GDC
LDC_smiServer.smi SMI script for LDC
runControl.smi smi pre-code for runControl (not true

SMI: it can include some macros such as: $ALL_LDC,
$ALL_GDC ...)

smi_exec.c code for the SMI associated object smi_exec used by
LDC/GDC SMIservers to execute some "C code"

smiStart_runControl.sh script to launch the SMI runControl and the timeout.
smiStart_LDC_smiServer.sh script to launch the SMI LDC server and smi_exec.

14

smiStart_GDC_smiServer.sh script to launch the SMI GDC server and smi_exec.

smi_timeout.c code for an SMI associated object which behaves like a
timer

log_bypage.c source code of log_bypage, process used to make log
files of defined size

packageParams.Linux SMI configuration is platform dependent
packageParams.SunOS SMI configuration is platform dependent

Files modified Modifications

rcServer.sh - the shell prompts for the DATE_SITE environment
variable and sets it. This is sent by runControl at
CONNECT
- SMI configuration file smi.config to define the
environment variables for DIM.

rcServer.c - cleaning subprocesses when exiting
rcServer.tcl - SMI

- still fully compatible with Date v3.7

runControl.c - SMI library functions to be accessed from
runControl.tcl

runControl.tcl - see file for modifications

Makefile - making of new files
- linking to SMI and DIM libraries where required

packageParams - SMI configuration added
The DIM_DNS_NODE variable is currently defined
here. A better place to define would be in smi.config.
- A special set of libraries for the building of
smi_control. It could be inserted in the gmake command
or in the GNU_makefile.

runControl.sh, runControl.csh SMI and platform specific configuration added

4. DATE_RC_BIN directory

New files Description

GDC_smiServer.sobj smi compiled code for GDC smiServer
LDC_smiServer.sobj smi compiled code for LDC smiServer

log_bypage Simple process that writes its standard input a file from
which maximum size can be specified. When max size

15

is reached, the 1st part of the file is deleted. It enables to
keep a track of the last few kilobytes of log produced by
the very verbose SMI interpreters running. As this log is
used only for hard issues, there is no need to keep it all,
just the end is useful.

runControl.smi The same as the source file

rc_tmp.smi Temporary file created by runControl.tcl at
CONNECT.The macros in run_control.smi are
substituted by the right values: $ALL_LDC by the
actual list of LDCs...
It is then "compiled" to runControl.sobj

runControl.sobj Read explanation above

smi_exec SMI associated process to smi_exec SMI object, used in
LDC/GDC smi_servers

smi_timeout SMI associated process to TIMER SMI objects.

smiStart_GDC_smiServer.sh
smiStart_LDC_smiServer.sh The same as for the files in the smiStart_runControl.sh

source directory

5. DATE_SITE_CONFIG directory

smi.config This files holds the environment variables specific to a
DATE setup. At the present time, this is only the
DIM_DNS_NODE variable, which tells which host
runs the dim dns server.

