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We use gauge/ gravity duality to study the production of p, fl, J /\JI and ¢ mesons, in the limit 
of high center of mass energy at fixed momentum transfer, corresponding to the limit of low 
Bjorken x, where the process is dominated by the exchange of the pomeron. At strong cou­
pling the pomeron is described as the graviton Regge trajectory, in AdS space, with a hard 
wall to mimic confinement effects. This is an extension of our previous work on deep inelastic 
scattering and deeply virtual Compton scattering. We compare our AdS / CFT calculations to 
experimental data collected at HERA, both for differential and exclusive cross sections. 

1 Introduction 

Vector meson production (VMP) is one of the diffractive processes studied in electron-proton 
collisions at HERA. It is conceptually similar to deeply virtual Compton scattering (DVCS), but 
instead of an outgoing photon a vector meson is produced. The vector mesons have the same 
J PC values as the photon (i.e. 1--) ,  so the process is kinematically similar. The key difference 
comes from the vector mesons' structure functions. In the limit of high center of mass energy at 
fixed momentum transfer, corresponding to the limit of low Bjorken x, this process is dominated 
by the exchange of the pomeron Regge trajectory between the photon and the proton. Here we 
will study processes where the final state is a p, </>, J/'¢ or fl, and apply gauge/gravity duality 
methods. This is a continuation of our work presented at Moriond on DIS1 •2•3 and DVCs1. Due to 
the briefness of this note, very few details will be given, and we direct the interested reader to the 
aforementioned references, as well as the paper that this work is based on18 . A number of authors 
5,6,7,8,9,lO,ll have studied vector meson production using the weak coupling analysis providing a 
decent fit to the data. More recently, the analysis in 12 uses AdS wave functions within a dipole 
approximation to fit p production. A new key aspect of our gauge/gravity duality description 
of VMP, in comparison with DIS and DVCS, will be to use a very simple holographic model 
for the vector mesons which gives the holographic wave function of the mesons as a function of 
their mass. These wave functions are normalisable modes of the AdS U(l) gauge field dual to 
the electromagnetic current operator j'} = ,/f;J'Ya'¢J · The meson wave functions are determined in 
terms of the scale ZJ, but we fix this by the observed meson mass. The parameters we have in our 
model are the scale of the proton state, z., the intercept jo of the BPST3 Pomeron, and g5 which 
is determined by the coupling of the pomeron to the external states (and is therefore different 
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for each vector final state) . A fit to the data assuming the conformal propagator hence depends 
on three parameters and we find already a good fit. A fourth parameter can be introduced to 
represent confinement in the propagator, a hard-wall cut off at large zo > ZJ. We also make fits 
including this adjustment and find a better overall x2 fit. 

To compute the total cross section for vector meson production we need first to compute the 
following hadronic tensor 

(1) 

where ..\ is the polarization of the outgoing vector meson. Contracting with the polarization of 
the incoming photon, the amplitude for the transition between a photon of polarization ..\ and a 
vector meson of polarization ..\' is given by 

(2) 

We will average over the incoming polarizations and sum over the final ones. The differential 
cross-section is then given by 

3 dO" 
( 2 l 

1 1 '"""' I w>->-' 12 . dt x, Q ' t = l67rs2 3 L.., 
>.,A'=l 

(3) 

The different polarizations of the amplitude above can be shown to be represented by 

where 

Wrr = (n>.)a w
a 
>.' (kj) = (E>. . E,V ) Qm W1 ' 

WLL = (n�·)a W/°' (kj) = -Qm Wo , 
(..\, >..' = 1 , 2) 
(,\ = >..' = 3) 

(4) 
(5) 

(6) 

B(S, L) above is the propagator for Pomeron exchange in AdS, the Regge trajectory of the 
graviton. In this paper we are interested in the limit of large 't Hooft coupling ..\ » 1 ,  but with 
sufficiently high energies such that v'>./ ln S « 1 .  In this limit all fields in the graviton Regge 
trajectory contribute to the amplitude 14 , and we have 

where 

L2 
- 2 ( . (7rP)) I 1-p e- p ln(a'S) L 

B(S, L) - 90 1 + i cot 2 (a S) 
(p ln(a'S))3/2 sinh L '  

(7) 

'
S -

zzs . 2 z2 + ;z2 + z2 
a - ,/). ,  p = 2 - Jo = ,/). ,  cosh L = 2zz -1 (8) 

Wn(z) and <I>(z) are functions of the external states, in this case 

Wn(z) = - ( � z2 Kn(Qz)) ( ���) z2 Jn(mz)) , <I>(z) = z35(z - z.) , (9) 

The first of these is a product of the incoming photon and the outgoing vector meson wave 
functions. They were found by solving the Maxwell equation, in the gauge DµAµ = 0, given 
by D2 Aµ = 0. The photon corresponds to the non-normalizable mode, and the vector meson to 
the normalizable. To fix the asymptotic normalization of the mode we must impose a large z 
(IR) boundary condition on the solution. We simply include a "fermion hard-wall" at the scale 
ZJ � mJ1 for each fermion flavour and impose Neumann boundary conditions on the field at the 
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wall. The value of ZJ is phenomenologically fixed by the measured vector meson mass and the 
model contains no free parameters in the mesonic sector. 

In equation (7) we use the Pomeron propagator in the conformal model. In the hardwall 
model, following 3, we use the approximation (with T = log( a' S)) 

where 

Xhw(T, l.L, z, z) = C(T, z, z) D(T, l.L) x��(T, l.L, z, z) , 

D( l ) = . (l exp[-m1l.L - (mo - m1)2Z:jj4pT] ) T, .l mm , [ ( )2 2; ] , exp -m1zo - mo - m1 z0 4pT 

( 10) 

( 11) 

is an exponential cutoff at large l.L, known to be present asymptotically and determined by the 
first glueball masses mo and m1, and 

The function 

x��(T, l.L, z, z) = Xc(T, l.i, z, z) + F(T, z, z) Xc(T, l.L, z, z5/z) . 

F(T, z, z) = 1 - 4.../iIT e"2 er f c(ry) , 
- log(zz/z6) + 4T 

'/) = 
v'4T , 

(12) 

(13) 

is set by the boundary conditions at the wall and represents the relative importance of the two 
terms and therefore confinement. 

2 Results 

Using the above equations, we perform a fit to the data collected at HERA by the Hl collaboration 
15·16, except for the fl meson, where only ZEUS data is available17 . In Table 1 we see a summary 
of all our fits. We show fits to the full cross-section and the differential cross-sections for each 
process. N labels the number of available data points. 

cr [nb] dcr/dt [ nb/Ge\12] 
p "' Q Jill' p 41> Jill' 

m fGeV] 0.77549: 1.019445 0.78265 3.09691€ 0.77549 1.019445 3.09691€ 

N 48 27 6 3' 35 21  "' 
c 
0 z' 0.92, 0.60' 0.0099 0.2' 1.7 1.3 2.< 
n 
f g,' 0 4.6 1.8 0.53 0.6< 1.6 0.25 0.5! 

r 
m p 0.76: 0.73, 0.64 0.7C 0.65' 0.54 0.7' 

a ' I z• fGeV"l 3.4' 3.0 1.8 0.9• 2.1 2.5 2-' 

H oc' 0.88 
: 

0.3C 1.4 LE 0.61 0.015 1.7· 

a 
r g,' 4.1; 1.8 0.67 0.75 2.2 0.38 0.6S 

d I 
w p 0.76' 0.73 0.66 0.71 0.69 0.59 0.7� 

a �· fGev·11 I 3.6: 3.6i 1.5 0.87 2.2 2.5 2A 

I �0 [GeV1] 4.8' 4.4 7.3 5.3 7.7 8.6 4.€ 

Table 1: Output data for our fits. 

We list the x2 per degree of freedom in the fit and the best fit values of the parameters. 
Firstly, the fits to the full cross-sections provide very good x2 < 1 in all cases. Note the n 

363 



production fit is only to 6 data points. The best fit for the intercept ]o = 2 - p is in the range 
0.64 < p < 0. 76 across the fits, which seems fairly stable, and consistent with the intercepts 
found in DIS 3 and DVCS 4. The fits are less good than for the full cross-section data but still 
have x2 < 2 in each case. To claim such a good fit for the J /iJ! meson we do need to include the 
hard-wall parameter zo and this is the only place in our fits where it makes a significant impact. 
For this process the momentum transfer energies t go as low as 0.05 GeV2, which is already below 
the hard-wall cut off scale set by 1/ zo. We therefore might need to improve the hard-wall model 
in order to obtain a better fit for this meson. We also note that these fits are not quite as good 
as the equivalent ones to DIS and DVCS data using the AdS methods, presumably reflecting the 
additional complication of fitting the mesonic wave functions holographically. In conclusion we 
find that the strong coupling AdS/CFT inspired model of low x vector meson production gives 
a very good fit to the data, providing further evidence for the strength of gauge gravity duality 
methods. Full details can be found in 18 . 
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