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Abstract

This thesis is concerned with the mysteries of neutron stars and the quest for
gravitational waves. Rapidly-rotating neutron stars are anticipated sources
of periodic gravitational waves, and are expected to be detectable within the
next decade using kilometre-scale laser interferometry.

We first perform ideal-magnetohydrodynamic axisymmetric simulations
of a magnetically confined mountain on an accreting neutron star. Two
scenarios are considered, in which the mountain sits atop a hard surface or
sinks into a soft, fluid base. We quantify the ellipticity of the star, due to
a mountain grown on a hard surface, and the reduction in ellipticity due
to sinking. The consequences for gravitational waves from low-mass x-ray
binaries are discussed.

We next present two approaches to reducing the computational cost of
searches for periodic gravitational waves. First, we generalise the PowerFlux
semi-coherent search method to estimate the amplitudes and polarisation of
the periodic gravitational wave signal. The relative efficiencies of the gener-
alised and standard methods are compared using simulated signals. Second,
we present an algorithm which minimises the number of templates required
for a fully coherent search, by using lattice sphere covering to optimally
place templates in the search parameter space. An implementation of the
algorithm is tested using Monte Carlo simulations.

Finally, we present a coherent search for periodic gravitational waves tar-
geting the central compact object in the supernova remnant Cassiopeia A, us-
ing data from the fifth science run of the Laser Interferometer Gravitational-
Wave Observatory. The search parameter space is determined by the sensitive
frequencies of the detectors, by the age of the compact object, and a range of
braking indices. No gravitational wave signal is detected. We set an upper
limit on the strength of gravitational waves from the compact object in Cas-
siopeia A, which surpasses the theoretical limit based on energy conservation.
Cassiopeia A is thus one of only a few astronomical objects, to date, where
gravitational wave observations are beginning to constrain astrophysics.
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Chapter 1

Introduction

This thesis is concerned with two exciting arenas of modern physics: neutron
stars, and gravitational waves. Since the beginning of the twentieth century,
experiments have been conducted, with increasing precision, to probe the
nature of gravity, and to test the predictions of its most successful theory: the
general theory of relativity. Gravitational waves, predicted by the theory, are
the next frontier of experimental gravity, and a first direct detection is widely
anticipated within the next decade. Meanwhile, the existence of neutron stars
has been confirmed by the discovery of pulsars, which have been studied in
detail over the last half-century. Neutron stars are important gravitational
wave sources; in turn, gravitational wave astronomy offers the possibility of
gaining further insights into neutron star physics. Chapter 2 introduces the
physics of neutron stars and gravitational waves, and discusses one important
link between them.

Chapters 3–4 are concerned with the physics of accreting neutron stars.
Specifically, we investigate the formation by the accreted matter of a moun-
tain on the stellar surface, held in a stable equilibrium by the star’s powerful
magnetic field. The burial of the magnetic field by the accreted mountain can
explain why the magnetic field of a neutron star reduces as the star accretes,
which is important for models of the evolution of binary pulsar systems.
Magnetic mountains are also a plausible means of generating gravitational
radiation from low-mass x-ray binaries. The effect of the magnetic mountain
sinking into the neutron star crust has not been accounted for in previous
work, and is the key advance of the work presented here.

In Chapter 3, we review previous work on this problem, and present a
numerical procedure capable of building magnetic mountains with realistic
masses. In Chapter 4, we present a detailed comparison of two scenarios,
where the magnetic mountain either sits atop a hard surface or sinks into
a soft, fluid base. We discuss the evolution of a magnetic mountain during

1



2 1. Introduction

accretion, and compare the hydromagnetic structures of mountains grown
on hard and soft bases. We allow the mountain to sink in two different but
theoretically identical scenarios, and confirm that the resultant equilibria
are equivalent. We quantify the ellipticity of the neutron star, due to a
mountain grown on a hard surface, and the reduction in ellipticity due to
sinking. Finally, we compare our simulations to the model of Choudhuri
& Konar (2002), and discuss the consequences for gravitational waves from
low-mass x-ray binaries.

Chapters 5–9 are concerned with gravitational waves, and the challenge
of analysing the output of kilometre-scale laser interferometric detectors in
search of their signatures. In Chapter 5, we summarise results from the
searches for gravitational waves conducted to date. We then review the
analysis of periodic gravitational waves, which are anticipated to be generated
by rapidly rotating neutron stars. We present the analytic model of the
periodic gravitational wave signal, the coherent matched filtering technique
used to search for them, and discuss the computational cost of such searches.
We then explore, in Chapters 6–7, two different approaches to lowering the
computational cost of periodic gravitational wave searches.

In Chapter 6, we consider semi-coherent search techniques. Compared
to fully coherent matched filtering, these techniques are less sensitive, but
are also less computationally intensive; as a result, they can achieve greater
overall sensitivity by searching longer stretches of data than would be com-
putationally feasible using a coherent method. We consider the PowerFlux
semi-coherent method, and present an alternative derivation to that of Der-
gachev & Riles (2005). We then generalise the PowerFlux method to estimate
the amplitudes of the plus and cross polarisations, and the polarisation angle
of the periodic gravitational wave signal. Using simulated signals injected
into Gaussian noise, we compare the parameter estimation and detection
efficiencies of the generalised and standard PowerFlux methods.

In Chapter 7, we present an algorithm which generates a bank of tem-
plates for a coherent search over a given template parameter space. The
algorithm is designed to minimise the number of templates required to cover
the parameter space, thus minimising the computational cost of the search,
while ensuring that any potential signal will still be closely matched by some
template in the bank. The algorithm uses sphere coverings on optimally
thin lattices to position the points in the parameter space, and a metric on
the parameter space to ensure the correct spacing. Particular care is taken
to generate extra templates along the edges of the parameter space to en-
sure that they are completely covered. The chapter introduces the necessary
background material, presents the algorithm, discusses how to estimate the
number of templates the algorithm requires for coverage, and tests the per-



1.1. Author contributions and publications 3

formance of an implementation of the algorithm.
Finally, in Chapters 8–9, we present a search for periodic gravitational

waves targeted at the central compact object in the supernova remnant Cas-
siopeia A. The compact object is likely the youngest known neutron star,
and has been widely studied by astronomers since its discovery a decade ago.
No pulsations are observed from the compact object, and it therefore has no
known spin frequency. The search uses data from the fifth science run (S5)
of the Laser Interferometer Gravitational-Wave Observatory (LIGO), and is
the first gravitational wave search to target a known non-pulsing neutron
star. An indirect upper limit on the strength of gravitational waves from the
compact object can be beaten, over a range of frequencies, using a coherent
search of 12 days of LIGO S5 data. Cassiopeia A is therefore one of the
few periodic gravitational wave sources which could conceivably be seen by
LIGO at its present sensitivity.

In Chapter 8, we review electromagnetic observations of Cassiopeia A,
and the motivation for a gravitational wave search. We derive the indirect
upper limit on the compact object, and present details of the proposed search,
including the choice of analysis method and the time span of the data set, the
parameter space of frequencies and frequency derivatives to be searched, and
its estimated sensitivity. We confirm that the search will beat the indirect
upper limit, and is computationally feasible. Chapter 9 presents the imple-
mentation of the search, which includes the selection of data from the LIGO
S5 run, the execution of the search pipeline, and post-processing procedures
to remove false candidates arising from instrumental noise. After performing
these steps, we find that there is no evidence for the detection of a gravita-
tional wave signal from Cassiopeia A. We then determine upper limits on the
strength of gravitational waves from Cassiopeia A which, as expected, beat
the indirect limit over the range of frequencies searched. Cassiopeia A is one
of only a handful of astronomical objects for which this has been achieved.

Chapter 10 summarises the thesis and considers possible directions for
further research.

1.1 Author contributions and publications

While this thesis is substantially the work of the author, it also includes
work that was done in collaboration with colleagues. This section describes
in full the contributions made by the author to the research presented in each
chapter, and any publications on which the chapter is based.

Chapter 2 reviews background information relevant to the thesis as a whole.



4 1. Introduction

Chapters 3–4 present work done in collaboration with Andrew Melatos
and Matthias Vigelius (University of Melbourne). The two chapters
are closely based on the following publication:

Wette et al. (2010):
K. Wette, M. Vigelius, and A. Melatos, 2010. Sinking of a mag-
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Chapter 2

Neutron stars and gravitational
waves

This chapter introduces the two physical phenomena which concern this the-
sis: neutron stars, and gravitational waves. We begin with a brief history
of their discovery and study since the beginning of the 20th century (sec-
tion 2.1). We then review the formation, structure, and taxonomy of neutron
stars (section 2.2), gravitational waves, and their detection using large-scale
laser interferometry (section 2.3). In section 2.4, we discuss one important
link between the two phenomena: periodic gravitational waves are expected
to be generated by spinning neutron stars.

2.1 The last hundred years

In the early years following the debut of general relativity (Einstein 1916),
only three tests of the theory were experimentally accessible (Bertotti et al.
1962, Will 1993, 2006, and references therein). While the perihelion advance
of Mercury was immediately confirmed, and to 1% accuracy, attempts to
conduct the remaining two tests were hampered by experimental limitations;
measurements of the deflection of light around the Sun achieved 50% accu-
racies at best, while the gravitational red-shift of light was never reliably
detected during this period. It was not until the latter half of the century
that gravitational experiments began to be conducted to high precision.

Meanwhile, the neutron was discovered in 1932 (Shapiro & Teukolsky
1983, and references therein); soon after, it was suggested that cold dense
stars, composed of the new particle, might be formed in supernovae (Baade
& Zwicky 1934). Initial work on the internal structure of neutron stars (be-
ginning with Oppenheimer & Volkoff 1939) was motivated by the possibility

7
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that neutron cores were the source of stellar energy in massive stars (Landau
1967); when this idea was superseded by thermonuclear fusion, interest in
neutron stars declined. General relativity was also neglected: in addition to
the three classical tests, it could explain the observed expansion of the Uni-
verse, but predicted an age, based on initial observations, that was younger
than Earth. In the absence of definitive experimental corroboration of gen-
eral relativity, a number of alternative theories of gravity emerged, which
general eschewed curved spacetime, as well as competing cosmologies such
as the steady-state Universe.

Beginning in the 1960s, a number of important discoveries revived interest
in both general relativity and neutron stars (Shapiro & Teukolsky 1983, Will
1993, 2006). Non-solar x-ray sources, first observed in 1962, were thought to
be young neutron stars. Quasars were discovered in 1963; to understand their
vast expenditure of energy and compact size, general relativity was applied
to problems in astrophysics for the first time. This motivated a systematic
testing of the theory, beginning with its weak field effects, and which made
use of advances in quantum technologies such as lasers. This experimental
effort, which saw its heyday between 1960 and 1980, included laboratory
measurements of the gravitational red-shift, the use of radio interferometry
to measure the light deflection from quasars, and lunar laser ranging experi-
ments to constrain the Nordtvedt effect.

While initial hypotheses linking quasars to neutron stars were discounted,
pulsars, discovered in 1967 (Hewish et al. 1968), were soon identified as ro-
tating neutron stars (Shapiro & Teukolsky 1983, Will 1993, 2006). Within
a year, the Crab and Vela pulsars were found in supernova remnants, con-
firming the hypothesised formation of neutron stars in supernovae. X-ray
pulsars, discovered a few years later, were found to be neutron stars accret-
ing matter from a binary companion star. Then, in 1974, came the first
discovery (Hulse & Taylor 1975) of two neutron stars, one of them a pulsar,
orbiting each other – a binary pulsar. The relativistic gravitational field of
the binary system, combined with the precision measurements obtainable
from radio observations of the pulsar, allowed for accurate measurements of
astrophysical parameters, such as the neutron star masses, and permitted
general relativistic effects to be tested for the first time. In particular, from
the gradual shortening of the orbital period, it was deduced that the sys-
tem was losing orbital energy in the form of gravitational radiation, at the
level predicted by general relativity (Taylor & Weisberg 1982, 1989). Since
their initial discovery, the population of known pulsars now numbers in the
thousands; it includes rotation- and accretion-powered pulsars, high- and
low-mass x-ray binaries, and double pulsar systems (Lorimer 2008).

With strong, but indirect, evidence for the existence of gravitational
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waves, a new experimental effort was begun to attempt a direct detection
using Earth-based instruments (Saulson 1994, and references therein). The
first generation of gravitational wave detectors were resonant mass (or bar)
detectors at room temperatures; early claims of detections using these instru-
ments were never independently confirmed, and remain controversial. The
next generation of cryogenically-cooled bar detectors started operation in
the 1980s, and grew to a network of up to five detectors capable of long ob-
servation times; these detectors targeted high-frequency gravitational wave
bursts (Astone et al. 2003, 2007). In addition, the bar detector in West-
ern Australia was used to search for continuous gravitational waves from a
millisecond pulsar whose gravitational wave frequency fortuitously concided
with the resonant frequency of the bar (Dhurandhar et al. 1996). The idea
of using kilometre-scale interferometers as gravitational wave detectors be-
gan to be seriously considered in the 1980s, and construction on a number
of projects began in the 1990s. Four kilometric-scale gravitational wave in-
terferometers are currently in operation (Acernese et al. 2008, Abbott et al.
2009e), and are sensitive to spacetime perturbations on the order of 10−18 m.

2.2 Neutron stars

In a normal star, the inward pressure of the star’s self-gravity is balanced
by the outward radiation pressure sustained by nuclear fusion, which takes
place initially within the stellar core, and subsequently within a thin shell
that expands outward as the star burns through its nuclear fuel (Shapiro
& Teukolsky 1983, and references therein). The stellar core collapses under
its self-gravity and heats up, providing sufficient energy to catalyse further
nuclear reactions, the precise sequence of which is sensitively dependent on
the initial mass of the star. Inevitably, however, the weakening nuclear fur-
nace is unable to support the star’s own weight; the star ceases to burn, and
collapses.

The circumstances under which a star collapses to a particular type of
compact object are not known for certain. The star’s pre-collapse mass
and metallicity are believed to be important parameters (e.g. Shapiro &
Teukolsky 1983, Heger et al. 2003, Janka 2004, Zhang et al. 2008), and recent
insights have come from numerical simulations of supernova explosions (e.g.
Buras et al. 2003, Heger et al. 2005, Ott et al. 2006, Burrows et al. 2007,
Dimmelmeier et al. 2008, Marek & Janka 2009). If the mass of the star is a
few times the mass of the Sun (denoted M�), it will eject its outer layers into
a planetary nebula and form a white dwarf star, which supports its weight by
the pressure of degenerate electrons (Shapiro & Teukolsky 1983). Neutron
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stars are believed to form during the collapse and subsequent supernova of
stars with masses in the vicinity of 10 to 20M�; the collapse of more massive
stars are expected to form black holes (Shapiro & Teukolsky 1983, Fryer 1999,
Heger et al. 2003, Kokkotas 2008). Massive stars which undergo rapid mass
loss due to a strong stellar wind (known as Wolf-Rayet stars) may, however,
be left with insufficient mass to trigger a supernova. A white dwarf may
also collapse further to form a neutron star, after the accretion of additional
matter from a companion star.

Neutron stars have typical masses of 1.4M� and radii of∼ 10 km (Shapiro
& Teukolsky 1983, Fryer & Kalogera 2001). They are sufficiently dense that
electrons are captured by protons to form neutrons, in the process radiating
neutrinos which rapidly cools the star. As the name suggests, neutrons be-
come the dominant particle in neutron stars, and their degeneracy pressure is
sufficient to halt any further gravitational collapse. Despite this uniformity
in composition, the internal structure of neutron stars is far from simple, and
indeed is not entirely understood (Chamel & Haensel 2008, and references
therein). The interior is first divided into two regions: a central core, where
the density exceeds typical values for atomic nuclei of ∼ 1014 g cm−3, and
a surrounding outer layer, the crust, which contains only a small fraction of
the total mass, and at sub-nuclear densities. The crust is further divided
into an inner and outer crust, where the division is at the density of neutron
drip (∼ 1011 g cm−3), where neutrons begin to no longer be bound within
nuclei. The high-density physics of the core is a challenging theoretical prob-
lem, and remains the least understood. The structure and composition of the
crust differs according to, among other factors, how the star was formed, and
whether it is undergoing accretion. In the latter case, for example (Brown &
Bildsten 1998, Chamel & Haensel 2008), the star acquires a series of outer
shells composed of hydrogen burning to helium, which sinks to atop the iron
crust and is compressed; at ∼ 107 g cm−3, a helium flash is ignited, leading
to explosive burning of the outer layers and a burst of x-rays.

Pulsars are rapidly rotating neutron stars with strong (∼ 1012) magnetic
fields (Shapiro & Teukolsky 1983, Kramer 2005, and references therein). In
a simple model, proposed soon after their discovery, the magnetic pole is
misaligned to the rotation axis, generating electromagnetic radiation which,
on Earth, is most commonly observed at radio frequencies. This radiation
is collimated into beams which, if they sweep across the Earth, are observed
as radio pulses at the frequency of rotation. Subsequent research has led
to a more sophisticated model: the magnetic field of the star induces a
quadrupole electric field strong enough to rip charged particles from its own
surface. These charges form a co-rotating plasma, the magnetosphere, which
is confined by the star’s magnetic field, and extends out to the radius of
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Figure 2.1: Periods P , period derivatives Ṗ , and surface magnetic fields B
of known pulsars, as given by the ATNF (2009) pulsar catalogue (Manchester
et al. 2005). (left) Ṗ versus P for isolated (red) and binary (blue) pulsars.
(right) B versus P for binary pulsars. B is calculated from P and Ṗ by
assuming rotational energy is lost through magnetic dipole radiation, which
gives the relation B/G = 3.2× 1019(PṖ/s)1/2 (e.g. Kramer 2005).

the so-called light cylinder, where the co-rotation velocity of the plasma
approaches light speed. Charged particles may escape along open magnetic
field lines, i.e those which pass through this cylinder, and it is these particles
which generate the radio emission, although the precise mechanism has yet
to be determined (e.g. Kramer et al. 1997, Kramer 2005, Lorimer 2008). Not
all neutron stars are observed as pulsars; for example, the supernova remnant
Cassiopeia is believed to contain the youngest known neutron star, which is
not observed as a pulsar (see section 8.1). The population of non-pulsing
neutron stars is targeted by all-sky searches for periodic gravitational waves
(see section 5.1.4).

The periods of all known pulsars span four orders of magnitude, from
P ∼ 10–10−3 s (ATNF 2009). Isolated pulsars typically spin slower than 0.1 s,
whereas pulsars in binary systems typically spin faster than this. Pulsars
with periods in the vicinity of 10−3 to 10−2 s are often specifically referred
to as millisecond pulsars. Characteristically, pulsar periods increase over
time due to the conversion of rotational kinetic energy into electromagnetic
(and, potentially, gravitational) radiation. Spindown rates range from Ṗ ∼
10−21 s s−1–∼ 10−8 s s−1 (ATNF 2009). The most interesting exception to
this rule are glitches: occasionally, some pulsars are observed to suddenly spin
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up rapidly, then return to their former spindown rate over a short timescale.
A logarithmic plot of Ṗ versus P (Figure 2.1, left) can be used to describe
the evolution of pulsars, by analogy with the Hertzsprung–Russell diagram
for normal stars (Kramer 2005). A young isolated pulsar begins life around
the top-left hand corner of the diagram, i.e. with a short period and high
spindown. As the pulsar loses rotational kinetic energy, thereby increasing
its period, the rate of energy loss also decreases, and with it the period
derivative. Thus, a pulsar will move roughly down and to the right in the
Ṗ–P diagram as it ages. It is believed that pulsars eventually reach a state
where their slow rotation can no longer power their radio emission, and they
cease to be observed as a pulsar. This transition is often marked by a pulsar
death line in the Ṗ–P diagram, although this does not explain the existence
of some slowly-spinning pulsars (e.g. Young et al. 1999). Binary pulsars, on
the other hand, follow a different evolutionary path (see below).

Observed pulsars are associated with the Galaxy, the Large and Small
Magellanic Clouds, and globular clusters (Lorimer 2008, and references therein).
While the majority are isolated pulsars, a few percent are found in supernova
remnants (confirming the link between supernovae and neutron stars), and
in binary systems with white dwarf, main sequence, or neutron star compan-
ions. (Two are even orbited by a planet.) The taxonomy of pulsars can be
explained by a simple model describing the evolution of a binary star. When
the more massive star supernovas, the binary is most likely to be disrupted,
due to the likely asymmetric explosion, and separate into a lone star and
a young pulsar. If it survives, and the second star has sufficient mass to
become a red giant which overflows its Roche lobe (the region within which
matter is gravitationally bound to the star), the neutron star will accrete
matter from its companion and emit x-rays: the system is now observed as
an x-ray binary. Accretion will gradually decrease the period of the pulsar
as angular momentum is transferred from its companion; this spinning up
process is also known as recycling. During this process, the magnetic field of
the neutron star is observed to decrease in proportion to the duration of the
accretion process (Choudhuri & Konar 2002, and references therein). This is
shown in Figure 2.1 (right): binary pulsars with shorter periods (indicating
longer accretion phases) possess much weaker magnetic fields.

The physical mechanism responsible is not known for certain, and a num-
ber of models have been proposed (see Vigelius 2008, and references therein).
One in particular, that the accreted matter acts to bury the magnetic field
within the crust, is the subject of Chapters 3 and 4 of this thesis.

The ultimate fate of an x-ray binary lies with the relative mass of the
companion star. A relatively low-mass companion will eventually collapse to
a white dwarf, by which time the neutron star has spun up to a millisecond
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ẑẑ

Figure 2.2: Perturbation of a ring of test masses due to either a plus-
polarised (left, red) or cross-polarised (right, blue) plane gravitational waves
travelling in the ẑ direction.

period; this is consistent with the period distribution of binary pulsars seen
in Figure 2.1 (left). A relatively high-mass companion will itself supernova
and form a second neutron star; if the binary again survives, it will become
a rare double pulsar system.

2.3 Gravitational waves

Gravitational waves are wave-like solutions of the linearised field equations of
general relativity (Shapiro & Teukolsky 1983, Thorne 1980, 1987, Kokkotas
2008, and references therein). The linearised equations are applicable suffi-
ciently far from the source, so that the waves can be regarded as small pertur-
bations to an otherwise flat spacetime. Gravitational radiation is quadrupo-
lar or higher; monopole and dipole radiation are forbidden by conservation of
energy and momentum respectively. The gravitational wave strain is propor-
tional to the second time derivative of the quadrupole moment of its source.
Thus, in order to produce gravitational waves, a source must possess a non-
zero quadrupole moment; a non-zero second derivative is usually created by
the quadrupole moment changing cyclically in time.

In the so-called transverse traceless gauge, spacetime coordinates coincide
with world lines of freely-falling test masses, and the spatial gravitational
wave strain

H = h+H+ + h×H× , (2.1)

is written in terms of two polarisations, plus and cross, with respective am-
plitudes h+ and h×, and respective bases H+ and H× (see section 5.2.1).
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When expressed in the transverse traceless gauge, a gravitational wave does
not accelerate masses, but instead changes the measured distance∫

path

√
~dx · (1 + H) ~dx (2.2)

between objects along a particular path. Figure 2.2 illustrates the (greatly
exaggerated) change in distance, measured radially, from the origin to a ring
of test masses, due to the passing of a plane gravitational wave of pure plus
and pure cross polarisations. The measured distance along a particular axis
is alternately stretched and shrunk at the frequency of the wave; the same
perturbation, but with opposite phase, occurs along an orthogonal axis. The
perturbations due to the plus and cross polarisations are rotated 45% (about
the ẑ axis) with respect to each other.

There are many astrophysical sources of gravitational waves (Schutz &
Sathyaprakash 2009, and references therein). They may be roughly di-
vided into a number of frequency bands (Hughes 2003); sources in different
frequency bands require different experimental techniques to detect them.
Gravitational waves with frequencies below 10−13 Hz (which corresponds to
wavelengths comparable to the size of the universe) are likely to have been
generated during inflation, and are expected to leave imprints in the cosmic
microwave background detectable by ground- and space-based experiments
(Baskaran et al. 2010, and references therein). Between 10−9 and 10−7 Hz, a
background of massive binary black holes are expected to be detectable by
pulsar timing, which uses time-of-arrival delays in the observed pulses of a
suite of millisecond pulsars (Lorimer 2008, and references therein). Space-
based interferometric detectors, such as the planned Laser Interferometer
Space Antenna (LISA), will be sensitive to gravitational waves from stellar-
mass, white dwarf, and black hole binaries, radiating at frequencies between
10−5 and 1 Hz (Shaddock 2008, and references therein). Finally, gravita-
tional wave sources with frequencies above 1 Hz include coalescence of com-
pact binary stars, bursts from e.g. core collapse supernovae, rapidly spinning
neutron stars, and the stochastic background (see section 5.1). These last
sources are targeted by ground-based detectors, such as cryogenic bars and
large-scale interferometers. The sensitive range of cryogenic bars is limited
to relatively narrow bands surrounding the resonant frequency of the bar,
which ranges between 700 and 900 Hz (Astone et al. 2003). Ground-based
interferometers are generally sensitive to gravitational waves over a broad
range of frequencies, typically from 1 Hz to several kHz (e.g. Abbott et al.
2009e).

Figure 2.3 shows a schematic diagram of a Michelson interferometer, the
base configuration of current large-scale gravitational wave interferometers.
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Figure 2.3: Schematic of a Michelson interferometer. The arrows shows the
expansion and contraction of space caused by a passing gravitational wave
during the first half (blue) and second half (orange) of its cycle.

The beamsplitter and end mirrors are freely suspended, so that they approx-
imate freely-falling test masses in the transverse traceless gauge. A laser
beam is divided by the beamsplitter; each beam travels down one arm of
the interferometer and is reflected back to the beamsplitter. The resulting
interference pattern is sensitively dependent on the difference in the optical
path lengths of each arm. If the arm lengths differ by an integer-and-a-half
multiple of the laser wavelength, the returning beams destructively interfere
at the beamsplitter, and no light reaches the photodetector. A gravitational
wave, travelling perpendicular to the plane of the interferometers arms, will
tend to increase the measured length of one arm, and decrease the measured
length of the other arm, during one half of its cycle, then reverse the pertur-
bation during the second half (see Figure 2.2). The change in the relative
lengths of the arms, and thus in the optical path length, produces an cyclical
output, of the same frequency of the wave, at the photodetector.

The operation of a real kilometre-arm-length interferometer, such as LIGO,
is of course a more complicated affair (Saulson 1994, Abbott et al. 2009e). For
example, the single end mirror is commonly replaced by a Fabry-Perot cavity,
where photons are bounced many times between the two cavity mirrors be-
fore being return to the beamsplitter; this increases the effective arm-length
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of the interferometer, which maximises the optical path length difference.
The mirrors, beamsplitter, and other optical components hang from steel
wire pendula, which mitigate seismic vibrations by ∼ 4 orders of magnitude,
and which themselves hang from complicated isolation stacks which reduce
vibrations by a further ∼ 8 orders of magnitude. All optical components
are housed in an ultra-high vacuum system, the creation of which required,
for example, the electrical heating to 160◦ C of kilometres of stainless steel
tubing. Locking, the process of bringing the many optical components into
the correct alignment, requires precise sensing and actuation control. The
raw output of the interferometer must also be calibrated, which requires,
among other things, the ability to physically manipulate the mirrors at the
∼ 10−18 m level, using electromagnetic actuators, to simulate a test grav-
itational wave signal. Sources of noise affecting the operation and overall
sensitivity of the instrument include: the quantum statistics of the laser
light, thermal noise, the temperature-dependent refractive index of the mir-
rors (which distorts the laser beam when the mirrors are heated – by the
laser itself), electronics, wind, local traffic, tides, passing aircraft, remote
earthquakes, and so on. In addition, the analysis of the calibrated data in
search of faint gravitational wave signals is itself a significant challenge (see
Chapter 5).

Three kilometre-scale gravitational wave observatories are currently in op-
eration. The Laser Interferometer Gravitational-Wave Observatory (LIGO)
has constructed two observatories in the United States: in Hanford, Wash-
ington, and in Livingston, Louisiana. The Hanford observatory houses one
4-km and one 2-km arm length interferometer, while the Livingston observa-
tory houses a 4-km interferometer. During commissioning, LIGO collected
science-quality data during four science runs (designated S1–S4), which were
analysed by the LIGO Scientific Collaboration (LSC) to produce the first
upper limits on gravitational waves from interferometric detectors. LIGO
embarked on its fifth science run (S5) in November 2005; when it concluded
in October 2007, LIGO had collected a year of data, coincident between
its detectors, at its initial design sensitivity. During S5, the interferometers
at their most sensitive reached a strain sensitivity to gravitational waves
of ∼ 3 × 10−23 Hz−1/2 (Abbott et al. 2009e), which roughly translates to
measurements on the order of 10−18 m. The VIRGO Collaboration has also
constructed and operates a 3-km arm-length interferometer near Pisa, Italy,
which is sensitive to gravitational waves at the 10−22 Hz−1/2 level (Acernese
et al. 2008).

There are also a number of sub-kilometre arm-length interferometers
which continue to demonstrate advanced technologies. GEO600, a 600-
m instrument near Hanover, Germany, has attained a best sensitivity of
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∼ 3 × 10−22 Hz−1/2 (Grote 2008). Located in Japan, the 300-m TAMA300
(Takahashi et al. 2008), and the 100-m cryogenic CLIO (Yamamoto et al.
2008) have respective best sensitivities of ∼ 10−21 Hz−1/2 and ∼ 10−20 Hz−1/2.

No detection of gravitational waves has been made to date. While the
present-day initial generation of interferometers have demonstrated their
ability to collect science-quality data over lengthy observation times, they
are not sensitive enough to guarantee detection. A second generation of
advanced interferometric detectors will feature order of magnitude improve-
ments in sensitivity, and are expected to begin operation around the middle
of the next decade. The Japanese LCGT project, and the Australian ACIGA
consortium, also plan to construct advanced detectors.

2.4 Periodic gravitational waves from spin-

ning neutron stars

Periodic gravitational waves are long-lived, quasi-monochromatic signals.
They are anticipated to be generated by rapidly spinning neutron stars, pro-
vided that the star is not axially symmetric about its angular momentum
vector.

In general, the spectrum of a periodic gravitational wave signal contains
lines at three frequencies, which are functions of the neutron star’s rota-
tion frequency frot, and precession frequency fprec (Zimmermann & Szedenits
1979, Zimmermann 1980, Van Den Broeck 2005, Vigelius & Melatos 2009a).
Two lines, at frot + fprec and 2(frot + fprec), arise from the precessing motion,
and are likely to be detectable only after improvements in sensitivity planned
for advanced interferometers (Jones & Andersson 2002, Van Den Broeck 2005,
Prix 2009, Abbott et al. 2007b). The third line, at 2frot, is present only if
the star is non-axisymmetric, i.e. if its three principal moments of inertia
I1 < I2 < I3 are all different. To date, searches for periodic gravitational
waves have directly targeted only this line. The amplitudes of the plus and
cross polarisations of this line are given by

A+ =
1

2
h0(1 + cos2 ι) , A× = h0 cos ι (2.3)

where ι is the inclination angle of the total angular momentum vector to the
line of sight. (See equation 5.3 for the relationship between these amplitudes
and the amplitudes h+ and h× of equation 2.1). The overall strain tensor
amplitude,

h0 =
4π2G

c4

Izzε

D
f 2 , (2.4)
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is given in terms of the gravitational wave frequency f = 2frot, the distance
to the source D, the principal moment of inertia Izz, and the equatorial
ellipticity ε (Abbott et al. 2007b, Jaranowski et al. 1998). Equation 2.4
is used, along with energy conservation arguments (see section 8.2), to set
indirect upper limits on the non-axisymmetric gravitational wave strain from
known pulsars (e.g. Abbott et al. 2010), and from a Galactic population of
spinning neutron stars (Abbott et al. 2007b, Knispel & Allen 2008).

The greatest source of uncertainty in estimating the gravitational wave
strain is the possible range of ellipticities (Prix 2009, and references therein).
Isolated neutron stars may be born with some non-axisymmetry, which be-
comes frozen into the crust as the star rapidly cools via neutrino emission
(Ruderman 1969). The crust will likely crack and relax as the young neu-
tron star spins down; the timescale over which this occurs is unclear, and is
probably dependent on the maximum breaking strain of the crust (Abbott
et al. 2007b, Prix 2009). Recent simulations by Horowitz & Kadau (2009)
concluded that the breaking strain of a neutron star crust could be up to
∼ 10−1, an order-of-magnitude larger than previous estimates. Younger neu-
tron stars (e.g. the central compact object in Cassiopeia A; see Chapters 8–9)
are more likely to retain any non-axisymmetry, as there has been less time
for the deformation to relax elastically or diffusively. In some circumstances,
however, the crust may be melted from below by heat generated by r-mode
oscillations (see below) within the star (Lindblom et al. 2000, Wu et al. 2001).
Crust melting is likely to delay the formation of the crust in young, rapidly
rotating neutron stars, and may very well affect the formation and retention
of any non-axisymmetry.

Estimates of the ellipticities supportable by an isolated neutron star range
over several orders of magnitude. The ellipticity supportable by a conven-
tional neutron star crust is estimated by Ushomirsky et al. (2000) to be
εmax . 5 × 10−7, using a breaking strain of 10−2. Much larger ellipticities,
however, can be supported by neutron stars with more exotic equations of
state (Owen 2005). It is believed that the super-nuclear densities in the core
may support some form of pure quark matter; proposed models include solid
quark stars (Xu 2003), crystalline colour superconducting quark matter (Al-
ford et al. 2004, Haskell et al. 2007, Lin 2007, Mannarelli et al. 2007, Knippel
& Sedrakian 2009), and mixed quark-baryon cores (Glendenning 1992, Owen
2005). Using breaking strains of ∼ 10−2, these models estimate ellipticities
of 10−6 . εmax . 10−4, and up to εmax . 10−2 (Owen 2005, Haskell et al.
2007, Lin 2007). The ellipticity also depends on elasticity (Ushomirsky et al.
2000, Haskell et al. 2007).

In accreting neutron star systems, there are a number of possible scenarios
whereby the accretion flow may create non-axisymmetric distortions. One
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in particular is the subject of Chapters 3 and 4 of this thesis: the accreted
plasma is channelled by the star’s dipolar magnetic field onto the poles, where
it builds up to form magnetically confined mountains (Melatos & Payne
2005). The pressure at the base of the mountain forces it to spread sideways,
dragging with it frozen-in lines of magnetic flux.1 Eventually, the increasing
magnetic pressure exerted by the distorted field lines halts the spread of the
mountain and a stable equilibrium is achieved. Because the magnetic axis
is generally misaligned to the rotation axis, the system is nonaxisymmetric;
Vigelius & Melatos (2009a) estimated ellipticities of εmax . 2× 10−5.

Another possible scenario is that the accreted matter locally compresses
and heats the crust, leading to a non-uniform temperature distribution (Bild-
sten 1998). At crustal densities, the rate at which electrons are captured by
protons to form neutrons is temperature dependent; as a result, the density
increase associated with electron capture occurs at a depth dependent on
the temperature. If the temperature distribution is non-axisymmetric and
stable, a non-zero quadrupole moment is generated, and the ellipticity may
reach up to the maximum predicted by Ushomirsky et al. (2000).

A strong magnetic field may also aid the generation of gravitational waves.
The distortion in shape of the neutron star due to such a field has been
studied by Bonazzola & Gourgoulhon (1996), Colaiuda et al. (2008), and
Haskell et al. (2008); possible maximum ellipticities were found to be εmax .
10−6–10−5 at field strengths of ∼ 1015 G. Cutler (2002) showed that a large
toroidal magnetic field will tend to squeeze the star at its equator to form
a prolate shape, with the symmetry axis parallel to the angular momentum
axis. This configuration is unstable until the symmetry axis realigns to be
at right angles to the angular momentum axis, which is also optimal for
gravitational wave emission (Owen 2006). The expected ellipticity depends
on the magnetic field strength; for a magnetic field of 1015 G, one finds εmax .
10−6. Akgün & Wasserman (2008) studied the distortion due to toroidal
magnetic fields of a type II superconducting star where the magnetic flux is
concentrated in tubes which occupy a small fraction of the stellar volume;
for magnetic fields ∼ 1015 G, they found ε ∼ 10−9–10−8. Recent studies
of the neutron star magnetic fields by Braithwaite & Nordlund (2006) and
Braithwaite & Spruit (2006) found the magnetic field lines form complicated
toroidal geometries.

Periodic gravitational waves may also be generated by unstable fluid os-
cillations of the neutron star. At sufficiently high rotation rates, such that

1 In the ideal-magnetohydrodynamic (ideal-MHD) limit, which holds if the Ohmic
diffusion timescale is much greater than the accretion timescale, material cannot cross
magnetic field lines. This assumption is relaxed in Vigelius & Melatos (2009b).
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the rotational energy exceeds a certain fraction of the gravitational binding
energy, the neutron star is deformed, for a few rotations, into a bar shape
(Prix 2009, and references therein). This may produce a short-lived periodic
gravitational wave signal, although its detectability is unclear.

More promising are the family of fluid oscillations known as r-modes
(e.g. Andersson 1998, Kokkotas & Schmidt 1999, Stergioulas 2003, Anders-
son & Comer 2007), which are toroidal oscillations where the Coriolis force
provides the restoring force. The frequencies of these modes are always
less than the rotation frequency of the star; thus, they are prograde (i.e.
rotate with the star) as seen by an inertial observer, and retrograde (i.e.
counter-rotating) with respect to the star’s co-rotating frame. This triggers
the Chandrasekhar-Friedman-Schutz instability, which removes positive an-
gular momentum from the star as gravitational waves. For r-modes, the
instability is present at all rotation frequencies (Andersson 1998). It is ex-
pected to rapidly spin down young neutron stars (Lindblom et al. 1998), and
produce detectable gravitational radiation many years after their formation
(Owen et al. 1998, Bondarescu et al. 2009). The instability can, however, be
suppressed by viscosity due to the boundary layer between core and crust
(Bildsten & Ushomirsky 2000), or by hyperon interactions in the core (Lind-
blom & Owen 2002). Strange quark stars, however, are not subject to the
same damping mechanisms (Madsen 2000).

Other fluid instabilities which may produce detectable gravitational wave
signals include f -mode oscillations (e.g. Andersson et al. 2009) following
magnetar flares, which are potentially detectable by initial LIGO (Abbott
et al. 2008e, 2009k), and nonaxisymmetric Ekman flows excited by rota-
tional glitches (van Eysden & Melatos 2008), which may be detectable by
advanced interferometers.

It should be emphasised that the maximum possible ellipticities, listed
above, imply nothing about the average ellipticities of spinning neutron stars
in general, or of any one neutron star in particular. There is nothing to
prevent the average ellipticity being much less than the maximum; thus, a
non-detection of periodic gravitational waves from a particular neutron star
cannot, at present, be used to exclude any one of the possible mechanisms
described above. An all-sky search sensitive to a population of neutron stars
may, in future, be able to make some statistical statement disfavouring a
particular mechanism, if sufficiently stringent upper limits are obtained (and
assuming no detection is made).

Determining a theoretical minimum ellipticity permitted by a particu-
lar mechanism would allow it to be ruled out by observational upper limits.
Magnetic deformation, assuming the internal field to be of at least equal
magnitude to the external field, sets a minimum ellipticity (Melatos 2000,
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Cutler 2002), which is often very low: for the Crab pulsar, ε ∼ 10−11 (Ab-
bott et al. 2008c). In the case of accreting neutron stars, the flow of fresh
accreted matter may replenish any natural decay of the non-axisymmetric
distortion, and so it seems plausible that an equilibrium state, together with
a detectable non-zero ellipticity, can be established. A highly accurate model
of the physical processes involved would still be required to make an accu-
rate prediction. A small step towards such an accurate model of magnetically
confined mountains is taken in Chapters 3–4.

2.5 Summary

This chapter introduced the two areas of physics which are the focus of the
remainder of this thesis; neutron stars, and gravitational waves. We first
gave a brief history of the two fields. We introduced neutron stars, their
formation in supernova remnants, pulsars, and the formation and evolution
of millisecond pulsars. We then introduced gravitational waves, and efforts to
detect them using kilometre-scale laser interferometers. Finally, we reviewed
the physics involved in the generation of periodic gravitational waves by
spinning neutron stars: an important link between the two phenomena, and
of central concern to this thesis.





Chapter 3

A method of building stable
mountains with sinking

In this chapter and Chapter 4, we study the formation of magnetic mountains
on the surface of an accreting neutron star. The formation of these mountains
and the associated burial of the star’s magnetic field is important to models
of the evolution of low-mass x-ray binaries and the creation of millisecond
pulsars, as well as for the prospects of detecting gravitational waves from
low-mass x-ray binaries. In section 3.1, we review previous work on this
problem; in section 3.2, we present the numerical method used to build the
magnetic mountain equilibria presented in Chapter 4.

See section 1.1 for author contributions and publications relevant to this
chapter.

3.1 Magnetic burial

The magnetic dipole moment µ of a neutron star is observed to diminish in
the long term as the star accretes (Taam & van den Heuvel 1986, van den
Heuvel & Bitzaraki 1995), although Wijers (1997) argued that µ may also
be a function of parameters other than the accreted mass Ma. The µ–Ma

correlation has been ascribed to a number of physical mechanisms (Melatos
& Phinney 2001, Cumming 2005). First, the magnetic field may be dissi-
pated in the stellar crust by Ohmic decay, accelerated by heating as the
accreted plasma impacts upon the star (Konar & Bhattacharya 1997, Urpin
et al. 1998, Brown & Bildsten 1998, Cumming et al. 2004). Second, magnetic
flux tubes may be dragged from the superconducting core by the outward
motion of superfluid vortices, as the star spins down (Srinivasan et al. 1990,
Ruderman et al. 1998, Konar & Bhattacharya 1999, Konenkov & Geppert

23
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2001). Third, the magnetic field may be screened by accretion-induced cur-
rents within the crust (Bisnovatyi-Kogan & Komberg 1974, Blondin & Freese
1986, Lovelace et al. 2005). In particular, the field may be buried under a
mountain of accreted plasma channelled onto the magnetic poles. When Ma

is large enough, the mountain spreads laterally, transporting the polar mag-
netic flux towards the equator (Hameury et al. 1983, Romani 1990, Brown &
Bildsten 1998, Cumming et al. 2001, Melatos & Phinney 2001, Choudhuri &
Konar 2002, Payne & Melatos 2004, Zhang & Kojima 2006, Payne & Melatos
2007, Vigelius & Melatos 2008, 2009b).

Payne & Melatos (2004) computed the unique sequence of self-consistent,
ideal-magnetohydrodynamic (ideal-MHD) equilibria that describes the for-
mation of a polar mountain by magnetic burial as a function of Ma. They
found that the accreted mountain is confined by the equatorially compressed
magnetic field, which was unaccounted for in previous calculations, and that
10−5M� must be accreted to lower µ by 10%. Surprisingly, mountains are
stable with respect to axisymmetric ideal-MHD perturbations; they oscillate
globally in a superposition of acoustic and Alfvén modes but remain intact
due to magnetic line-tying at the stellar surface (Payne & Melatos 2007).
The same equilibria are susceptible to nonaxisymmetric, Parker-like insta-
bilities (specifically the gravitationally driven, undular sub-mode), but the
instability preserves a polar mountain when it saturates, despite reducing
the mass ellipticity by ∼ 30% (Vigelius & Melatos 2008). Recently, Vigelius
& Melatos (2009b) considered resistive effects. They found that the moun-
tain does not relax appreciably for realistic resistivities over the lifetime of a
low- or high-mass X-ray binary, either by global diffusion, resistive g-mode
instabilities, or reconnection in the equatorial magnetic belt. The Hall drift,
which exerts a destabilising influence in isolated neutron stars (e.g. Rhein-
hardt & Geppert 2002), is unlikely to be important in accreting neutron
stars due to crustal impurities (Cumming et al. 2004, Cumming 2005). Since
non-ideal-MHD effects (e.g. resistivity, the Hall drift) have been found to be
small when modelling the formation of a magnetic mountain on an accreting
neutron star, the assumption that the neutron star plasma obeys ideal-MHD
physics is a reasonable one, and is made throughout this work.

The investigations outlined in the previous paragraph suffer from two
limitations. First, the mountain is assumed to rest upon a rigid surface.
Under this assumption, the accreting plasma cannot sink into the stellar
crust. This is unrealistic. During magnetic burial, frozen-in magnetic flux
is redistributed slowly within the neutron star by the accreted plasma, as it
sinks beneath the surface and spreads laterally. Choudhuri & Konar (2002)
showed that the time-scale and end state of burial are tied to these slow inte-
rior motions. Second, the accreted plasma is assumed to satisfy an isothermal
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equation of state. This is an accurate model only for neutron stars with low
accretion rates Ṁa . 10−10M�yr−1; the thermodynamics of neutron stars
accreting near the Eddington limit (∼ 10−8M�yr−1) is more complicated,
with a depth-dependent adiabatic index (Brown & Bildsten 1998, Brown
2000). The equation of state affects the growth rate of Parker-like instabili-
ties (Kosiński & Hanasz 2006). In this work (Wette et al. 2010), we seek to
overcome the first limitation.

3.2 Growing a realistically sized mountain by

injection

In order to investigate how a magnetically confined mountain sinks into the
stellar crust, we need a numerical method capable of building a stable moun-
tain, with a realistic Ma, on top of a fluid base. The approach we take
builds upon previous work by Payne & Melatos (2004, 2007) and Vigelius &
Melatos (2008, 2009a). Here, as a service to the reader, we briefly recapitu-
late the physical arguments and key results from these previous papers, with
references to the relevant sections and equations.

3.2.1 Previous work

In Payne & Melatos (2004), axisymmetric magnetic mountain equilibria
are computed by solving an elliptic partial differential equation: the Grad-
Shadranov equation describing hydromagnetic force balance in axisymmetric
geometry [Payne & Melatos (2004), section 2.1 and equation (12)]. The cal-
culation ensures that the mass-magnetic flux distribution ∂M/∂ψ is treated
self-consistently: the final ∂M/∂ψ is equal to the initial ∂M/∂ψ together with
the mass-flux distribution of the accreted matter, ∂Ma/∂ψ, which is charac-
terised by the parameter ψa [Payne & Melatos (2004), section 2.2 and equa-
tion (13)]. In the limit of small Ma, the final equilibrium flux solution is char-
acterised by the ratio Ma/Mc, where the characteristic mass Mc ∝ M?R

2
?B

2
?

is the accreted mass required to halve µ [Payne & Melatos (2004), section 3.2
and equation (30); Payne & Melatos (2007), section 2.2 and equation (3)].
The characteristic mass contains the dependence of the equilibrium solu-
tion on the parameters of the neutron star, in particular the magnetic field
strength B?. The Grad-Shafranov equilibria are computed using an iterative
numerical solver [Payne & Melatos (2004), section 3.3]; this approach only
converges numerically for low accreted masses Ma ≤ Mc ≈ 10−4M� [Payne
& Melatos (2004), section 3.4], and it fails to accommodate a fluid interior
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within its fixed-boundary framework.1

In Payne & Melatos (2007) and Vigelius & Melatos (2008), Grad-Shafranov
equilibria are loaded into ZEUS, a multi-purpose, time-dependent, ideal-
MHD solver (Stone & Norman 1992a,b, Hayes et al. 2006), and further
evolved in axisymmetric (Payne & Melatos 2007) and three-dimensional ge-
ometries (Vigelius & Melatos 2008). The characteristic mass Mc is used to
reduce the length scales of the simulated neutron star to circumvent numer-
ical difficulties and render the simulations computationally tractable [Payne
& Melatos (2007), section 3.3; Vigelius & Melatos (2008), section 2.3 and
equation (6), and section 4.6]. Two approaches are explored to augmenting
the mass of a Grad-Shafranov mountain, up to Ma . 5.6Mc: in the first
approach, additional matter is injected through the outer boundary along
the polar flux tube 0 ≤ ψ ≤ ψa [Payne & Melatos (2007), section 4.2]; in
the second approach, the density of the mountain is uniformly increased at
every point, while the magnetic field is preserved [Payne & Melatos (2007),
section 4.4]. A plausible attempt to extend this latter approach to include
sinking is outlined in Appendix 3.A.1; ultimately this attempt proved unsuc-
cessful, and was abandoned. Instead, the method presented in this section
uses ZEUS-MP (Hayes et al. 2006) to build magnetic mountain equilibria
from scratch; this approach was first proposed in Vigelius & Melatos (2009a).

3.2.2 Outline of the method

The setup of the simulations presented here is described schematically in
Figure 3.1. Three numerical experiments are performed: growing onto a
hard surface, growing onto a soft surface by injecting matter from below,
and repeating the latter experiment by injecting matter at some altitude.

Throughout this work, we adopt the viewpoint that the accreted matter
and the mountain are one and the same; the accreted mass and the mass of
the mountain are identical and are both denoted by Ma. This is a matter of
terminology, not physics. There is no “hard edge” to the mountain; matter
is accreted on all flux surfaces 0 ≤ ψ ≤ ψ? [see equation 3.6 in section 3.2.4],
not just on the polar cap 0 ≤ ψ ≤ ψa, which contains ∼ 63% of Ma. Under
the assumption of ideal MHD, matter cannot spread across flux surfaces, i.e.
there is no Ohmic diffusion. We also do not model the accreted matter once
it has sunk beyond the crust, as do e.g Choudhuri & Konar (2002); see the

1 In Payne & Melatos (2004), the Grad-Shafranov equation is solved subject to Dirichlet
and Neumann conditions at fixed boundaries. Mathematically, one can formulate a well-
posed boundary-value problem for the Grad-Shafranov equation in the presence of a free
boundary, e.g. the sinking base of a mountain; in practice, however, this is an extremely
difficult problem to solve.
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M⋆

Mbase

Ma

Matm

rmin R⋆ rmax

(a) Fluid base, inner surface

M⋆

Mbase

Ma

Matm

rmin R⋆ rmax

(b) Fluid base, stellar surface

M⋆

Ma

Matm

rmin=R⋆ rmax

(c) Hard surface

Figure 3.1: Diagrams illustrating schematically three mountain growth
scenarios. The simulation region is bounded by rmin ≤ r ≤ rmax, 0 ≤ θ ≤ π/2
(thick lines), and represents a quadrant of the star. Boundary conditions
assume symmetry about θ = 0 and reflection at θ = π/2. The surface of
the star is located at r = R?. Three sub-regions are identified. The fluid
interior beneath the surface, containing mass Mbase, is shaded blue. The
region where the mountain mass Ma is injected into the simulation is shaded
in a light to dark red gradient; the colour intensity is proportional to the
injected flux [see equation 3.6] as a function of θ. The outer atmosphere of
the star, containing mass Matm, is unshaded. A central gravitational point
source is labelled with its mass M?. For mountains grown on a fluid base,
Ma can be injected (a) at the inner boundary r = rmin, or (b) at the stellar
surface r = R?. For mountains grown on a hard surface, (c) there is no fluid
interior; the inner boundary is identical to the stellar surface r = rmin = R?

(Mbase = 0). See the text in section 3.2.4.
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discussion in section 4.3.
To simulate accretion, we inject matter from below, through the inner

boundary of the simulation at r = rmin. One might expect a realistic sim-
ulation of accretion to add matter from above, through the outer boundary
r = rmax. The two scenarios are, however, equivalent in ideal MHD; the
magnetic field is frozen into the fluid, which is thus constrained to move
along lines of magnetic flux. Provided that the simulation reaches equilib-
rium, it becomes inconsequential, with respect to ideal MHD, through which
end of a flux tube matter is added. This is because matter cannot cross flux
surfaces in ideal MHD, so the mass column dM(ψ) between ψ and ψ + δψ
adjusts to reach the same hydrostatic radial profile in equilibrium, whether
it enters slowly from below or falls slowly from above. In the presence of
gravity, which (in the case of a sinking mountain) induces steep density gra-
dients in the fluid base, the results to be presented in section 4.2 confirm
that this situation remains true; two different injection scenarios (described
below) give ellipticities consistent to within 10%. There remains, however,
the subtle and difficult question of irreversible magnetic reconnection at the
grid corners, which remains unresolved (see the discussion in section 4.2.2).

In practice, it is advantageous to add matter through the inner boundary,
because we wish to inject along particular flux tubes, and this is easiest to
do at r = rmin, where the magnetic footprints are fixed in place (unlike at
r = rmax). This constraint, known as magnetic line tying, contributes to
the stability of the mountain (Goedbloed & Poedts 2004, Vigelius & Melatos
2008). It is well justified physically, provided that rmin lies deep enough
within the star, so that the fluid base (and frozen-in magnetic flux) remains
relatively stationary, and is not significantly perturbed by the spreading and
sinking of the mountain. This is the case if the mass Mbase of the fluid
base, initially in the region rmin < r < R?, is much greater than Ma. To
confirm that the mountain does not greatly push the crustal material, we
first calculate the fraction of Mbase contained in each grid cell, and then
determine the change in this quantity between the initial and final times of
the simulation; this gives the change in the spatial distribution of Mbase over
the simulation, as a function of the grid cell. For all simulations with sinking,
the median change in Mbase, over all grid cells, is on average ∼ 10%; thus,
the distribution of the fluid base does not change much during accretion.
Recent molecular dynamics simulations of crystalline neutron matter, which
predict a high breaking strain ∼ 0.1 (Horowitz & Kadau 2009), also support
the line-tying hypothesis.

When a mountain is grown onto a fluid base Mbase, a difficulty arises.
ZEUS-MP models a single fluid, with a unique velocity field (Hayes et al.
2006); there is no facility for simulating the movement of one fluid, the in-
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jected mountain, with respect to another fluid, the stationary crust.2 We
are left with two alternatives: to assign the same velocity to the injected
mountain and the crust (the behaviour of ZEUS-MP’s “inflow” boundary
condition), or to assign a negligible or zero velocity to the injected moun-
tain, in order to keep the base stationary. In the first case, ZEUS-MP fails
catastrophically for desirable values of the injection velocity (& 5% of the es-
cape velocity). In the second case, which we study in section 4.2, mountains
remain subterranean and never rise to the stellar surface r = R?. As a check,
therefore, we examine two scenarios: injection at r = rmin and r = R?. We
show in section 4.2 that the results in both scenarios are quantitatively alike,
confirming their robustness.

3.2.3 Initial setup

The initial setup of our simulations closely follows Payne & Melatos (2007)
and Vigelius & Melatos (2008). The setup of ZEUS-MP (see bibliography) is
through a set of parameters which control: the geometry of the problem, the
physical phenomena to be modelled (e.g. MHD, gravity), the simulation grid
and its boundary conditions, the equation of state, and the choice of timestep.
Appropriate values for these parameters are given in Payne & Melatos (2007),
section 3 and appendix A1, and in Vigelius & Melatos (2008), sections 2.2–2.3
and appendix A.

To avoid numerical difficulties with steep magnetic field gradients, we
simulate a scaled-down neutron star, where the mass M? and radius R? are
artificially reduced, while the hydrostatic scale height h0 = c2

sR
2
?/GM? is

kept constant (Payne & Melatos 2007). The down-scaling transformation
preserves the equilibrium shape of the mountain exactly in the small-Ma

limit (Payne & Melatos 2004, 2007) and has been validated approximately
for Ma . 20Mc (Vigelius & Melatos 2008). We use dimensionless units
within ZEUS-MP, setting the isothermal sound cs and gravitational constant
G to unity, and adopting h0 as the unit of length. Table 3.1 explains how to
convert between an astrophysical neutron star, the scaled-down model, and
dimensionless ZEUS-MP units.

The simulations are performed on an axisymmetric rectangular grid with
Nr cells spaced logarithmically in r, and Nθ = 64 cells spaced linearly in θ.
The logarithmic spacing in r is determined by ∆rNr−1/∆r0, the ratio of the
maximum to minimum radial grid spacing, as follows. The Nr + 1 radial cell
boundaries rmin = r0, r1, r2, . . . , rNr = rmax are given by rn+1 = rn + ∆rn,

2 ZEUS-MP can track the concentrations of comoving components within the same
fluid; we exploit this in section 3.2.4.
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where

Nr−1∑
n=0

∆rn = rmax − rmin , (3.1)

∆rn+1

∆rn
=

(
∆rNr−1

∆r0

)1/(Nr−1)

. (3.2)

The values of ∆rNr−1/∆r0 used in the simulations presented in Chapter 4
are given in Table 4.1. They are chosen large enough to concentrate grid res-
olution near the inner boundary, but small enough to ensure reasonable run
times. We set rmax = 1.2R? = 60h0 to give the mountain ample room to ex-
pand without meeting the outer boundary, and stipulate reflecting boundary
conditions at θ = 0 and θ = π/2, “inflow” boundary conditions at r = rmin,
and “outflow” boundary conditions at r = rmax; more details can be found
in Payne & Melatos (2007). The magnetic field is initially that of a dipole,
and B? is its magnitude at the polar surface.

A gravitational point source M? is placed at r = 0, and self-gravity is
ignored. The density field is initialised to be the static atmosphere of an
isothermal fluid with no self-gravity:

ρ(t = 0, r) = ρR? exp

[
GM?

c2
s

(
1

r
− 1

R?

)]
. (3.3)

Ideally the region r > R? should start evacuated, but ZEUS-MP requires the
density to be nonzero everywhere, so we set Matm = 5 × 10−6M� (approxi-
mately 4% of the mass of the smallest mountain; see Table 4.1). Integrating
equation 3.3 over the region r > R? (see Figure 3.1) fixes the density at the
stellar surface ρR? in terms of Matm. In contrast, we require the mass of the
fluid base Mbase (when a soft surface is being modelled) to be much larger
than the mass of the mountain, as discussed in section 3.2.2. In all runs, we
choose Mbase/Ma ≈ 10. Integrating equation 3.3 over the region containing
Mbase then fixes rmin.

3.2.4 Injection procedure

ZEUS-MP’s “inflow” boundary condition permits injection at the edge of
the simulation volume. To enable injection at r = R?, as in Figure 3.1b, we
implement a more flexible custom procedure, and use the built-in “inflow”
condition only to tie the magnetic flux at r = rmin. We describe the procedure
briefly below; further details are in Appendix 3.A.2.

We inject mass Ma into an injection region rinj < r < rinj + δrinj, 0 <
θ < π/2, over a time interval 0 < t < Ta. (We set δrinj = 0.1h0 throughout.)
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Figure 3.2: (left) The accretion rate Ṁa(t), given by equation 3.5. (right)
The initial mass-flux distribution ∂M/∂ψ, given by equation 3.6. Contours
are at (right to left) 0.05, 0.1, 0.3, 0.5, 0.7, and 0.9 of the maximum.

The flux of accreted matter at time t entering a point (r, θ) in the injection
region is given by

∂3Ma

∂t∂r∂θ
(t, r, θ) ∝ Ṁa(t)

∂Ma

∂ψ
(r, θ) . (3.4)

where we choose
Ṁa(t) ∝ t2(Ta − t)2 , (3.5)

and
∂Ma

∂ψ
(r, θ) ∝ exp(−bR?r

−1 sin2 θ) . (3.6)

The normalisation of equation 3.4 is chosen so that, for each simulation, the
mass of the mountain is equal to Ma at time t = Ta, i.e. Ma(t = Ta) ≡ Ma.
After time t = Ta, no further mass is added, but we evolve the system up to
t = tmax = 1.5Ta to test the stability of the mountain obtained.

Equation 3.5 determines the rate of accretion; it is plotted in Figure 3.2 (left).
The functional form was chosen to ensure numerical stability in ZEUS-MP,
and has no particular astrophysical justification, except to ensure that a
mountain builds up to its target mass smoothly over the time scale Ta. For
this reason, it is a smooth bell-shaped function, designed to avoid any dis-
continuity in the accretion rate, which might excite undesired oscillations in
the fluid or provoke numerical instabilities.

Equation 3.6 gives a mass-flux distribution consistent with that of Payne
& Melatos (2004); it is plotted in Figure 3.2 (right). It does not attempt to
model the interaction of the accreted matter with the magnetosphere, from
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which the mass-flux distribution would originate; instead, it is chosen such
that the majority (∼ 63%) of the accreted matter falls on the polar cap
0 ≤ ψ ≤ ψa. The parameter b = ψ?/ψa = 3 determines the polar cap radius
R? sin−1(b−1/2). It is determined astrophysically by disk-magnetosphere force
balance, and is related to the stellar magnetic field via b ∝ ψ? ∝ B? (Payne
& Melatos 2004). In this work, however, we treat b (and therefore B?) as
a free parameter, and do not attempt a self-consistent solution of the disk-
magnetosphere system (e.g. Romanova et al. 2008). With this freedom, b is
chosen unrealistically large to preserve numerical stability (Payne & Melatos
2007); more realistic values for b are investigated in Payne & Melatos (2004).

We use ZEUS-MP’s multi-species tracking facility (Hayes et al. 2006) to
record, throughout the simulation, the fraction of the density, 0 ≤ Xa(t, r, θ) ≤
1, that originates from accretion (i.e. added at t > 0 via the injection pro-
cedure), as opposed to from the initial configuration at t = 0. This allows
us to track the spread of the mountain independently of the motion of the
remaining (displaced) stellar matter.

We require that the mountain grows quasistatically, in the sense that the
accretion timescale Ta is always much greater than tAlfvén, the characteristic
pole-equator crossing time of an Alfvén wave. Following Vigelius & Melatos
(2008), we compute the crossing time at t = 0, r = R?: from the Alfvén
speed vAlfvén = B?/(4πρR?)

1/2 ≈ 0.2cs (see Table 1), we obtain tAlfvén =
πR?/(2vAlfvén) ≈ 400t0. The condition tAlfvén � Ta is verified by comparison
with the values for Ta listed in Table 4.1. The condition also implies that
the magnetostatic limit always holds: the ratio B?Ma/Ṁa � π3/2R?ρ

1/2
R?
≈

2× 108 G s, and from Tables 1 and 2, B?Ma/Ṁa ≈ B?Ta & 3× 109 G s.
For mountains grown on a hard surface, we additionally set the velocity

v(t, r, θ) within the injection region, such that the accreted matter is always
given a fixed speed vinj = 10−4cs parallel to the magnetic field B(t, r, θ). The
value of vinj should be a small fraction of the escape speed vesc ≈ 4.1cs, so
there is negligible mass lost through the outer boundary (see section 4.1.2).
We find that setting the direction of the injection velocity v carefully is
critical to ZEUS-MP’s numerical stability close to the injection region, but
does not otherwise affect the simulations.

3.3 Summary

This chapter reviewed the physics of magnetic burial, and presented a nu-
merical method capable of building stable magnetic mountains with the pos-
sibility of sinking. We reviewed previous work on the numerical simulation of
magnetic mountains, discussed our strategy of injecting the mountain from
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below, and presented the initial setup of the simulations and the custom injec-
tion procedure. Chapter 4 will use this method to simulate sinking magnetic
mountains.

3.A Additional material

This appendix includes additional material pertaining to this chapter.

3.A.1 Matching a fluid base to a Grad-Shafranov moun-
tain

We attempted to incorporate a fluid base into the framework of Payne &
Melatos (2007) and Vigelius & Melatos (2008) in the following ad-hoc man-
ner. Starting with a Grad-Shafranov equilibrium loaded into ZEUS-MP, we
extend the inner simulation boundary, initially at r = R?, inwards to cre-
ate a region rmin < r < R?, containing the fluid base. The magnetic field
B in this region is initialised to a dipole. At r = R?, Br matches per-
fectly, but Bθ is discontinuous [see Figure 2 of Payne & Melatos (2004)].
The initial density ρ(t = 0, r, θ) is chosen to match the Grad-Shafranov den-
sity ρGS(r, θ) at r = R?, and to match an isothermal, non-self-gravitating
profile within r < R?. A number of ad-hoc choices of ρ(t = 0, r, θ) were
tried, e.g. the maximum of ρGS(R?, θ) and ρ′R? exp[GM?(r

−1−R−1
? )/c2

s ], with
ρ′R? = minθ ρGS(R?, θ). When the combined Grad-Shafranov mountain and
fluid base are evolved in ZEUS-MP, the results are undesirable. Except when
R? − rmin � h0, the fluid base is sufficiently far from equilibrium to com-
pletely disrupt the Grad-Shafranov mountain, which collapses over a short
time-scale ∼ t0.

3.A.2 Custom injection procedure

We add a new subroutine to ZEUS-MP which is called at the beginning of
each time-step δt. Within the subroutine, the density ρ(t, r, θ), mountain
concentration Xa(t, r, θ), and velocity v(t, r, θ) of a grid cell within the injec-
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tion region (at point (r, θ) with size δr × δθ) are updated, as follows:

ρ(t+ δt, r, θ) = ρ(t, r, θ) + δρ(t, r, θ) , (3.7)

Xa(t+ δt, r, θ) =
ρ(t, r, θ)Xa(t, r, θ) + δρ(t, r, θ)

ρ(t+ δt, r, θ)
, (3.8)

v(t+ δt, r, θ) = vinj
B(t, r, θ)

|B(t, r, θ)|Xa(t+ δt, r, θ)

+ v(t, r, θ)[1− Xa(t+ δt, r, θ)] .

(3.9)

The density increment is given by

δρ(t, r, θ) =
Ma

2πδrδθ
I(t, r, θ) ; (3.10)

the factor of 2π comes from the size of the grid cell in the φ dimension. The
function

I(t, r, θ) =
1

N

∫ t2

t1

dt

∫ r2

r1

dr r2

∫ θ+δθ

θ

dθ sin θ
∂3Ma

∂t∂r∂θ
(t, r, θ) (3.11)

integrates the injected flux given by equation (3.4); the constant

N =

∫ Ta

0

dt

∫ rinj+δrinj

rinj

dr r2

∫ π/2

0

dθ sin θ
∂3Ma

∂t∂r∂θ
(t, r, θ) (3.12)

ensures the correct normalisation. The times

t1 = min(t, Ta) , (3.13)

t2 = min(t+ δt, Ta) , (3.14)

give the intersection of the current time-step with the injection time interval,
and the radii

r1 = min[max(r, rinj), rinj + δrinj] , (3.15)

r2 = min[max(r + δr, rinj), rinj + δrinj] , (3.16)

give the intersection of the grid cell with the injection region.





Chapter 4

Sinking of a mountain on an
accreting neutron star

In Chapter 3, we reviewed previous work on the problem of magnetic burial
and the formation of magnetic mountains, and presented a numerical method
capable of building magnetic mountain equilibria, and that can incorporate
sinking. In this chapter, we present the results of simulations, using this
method, of mountains grown onto a hard surface and sinking into a soft fluid
base. In section 4.1, we tabulate the simulations and perform a number of
validation checks. In section 4.2, the structure of mountains grown on hard
and soft surfaces are compared, to determine the role of sinking, and the
resulting mass quadrupole moment is evaluated as a function of Ma for hard
and soft surfaces. A comparison with the results of Choudhuri & Konar
(2002) is presented in section 4.3; the implications for gravitational wave
emission from rapidly rotating accretors (e.g. low-mass X-ray binaries) are
discussed in section 4.4.

See section 1.1 for author contributions and publications relevant to this
chapter.

4.1 Simulations of magnetic mountains with

sinking

Table 4.1 lists the parameters of the simulations presented in this chap-
ter. Mountains grown on a hard surface are labelled H(Ma/Mc). Mountains
grown on a fluid base are labelled S(rinj,Ma/Mc), where the injection radius
rinj may be either rmin or R?. The parameters of each run are chosen to grow
a mountain with a particular target mass, Ma. We choose four values for

37
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Table 4.2: Important physical parameters of accreting neutron stars (top
part), and a summary of the results of the simulations presented in this work
(bottom part).

Quantity Value/Range Reference

accreted mass 10−4 – 0.8M� 1, 2, 4
accretion timescale 104 – 106 yr 1, 7
density of crust 109 – 1014 g cm−3 5, 10
depth of crust ∼ 1000 m 5, 10
initial magnetic field 1012 – 1013 G 3, 8, 9
temperature 108 – 109 K 6, 10

ellipticity 5× 10−5 – 2× 10−4 11
effect of sinking ε reduced by 25 – 60 % 11

References: 1. Taam & van den Heuvel (1986); 2. van den Heuvel &
Bitzaraki (1995); 3. Hartman et al. (1997); 4. Wijers (1997); 5. Brown &
Bildsten (1998); 6. Brown (2000); 7. Cumming et al. (2001);
8. Arzoumanian et al. (2002); 9. Faucher-Giguère & Kaspi (2006);
10. Chamel & Haensel (2008); 11. This work.

Ma in the range 10−4 – 10−1M�. These values are chosen to demonstrate
the ability of the injection procedure to generate stable mountains over a
wide range of masses. This range also encompasses the range of Ma of real
accreting neutron stars (see Table 4.2). The main source of uncertainty is
the accretion efficiency (van den Heuvel & Bitzaraki 1995), which may be as
low as ∼ 5% (Tauris et al. 2000); this is reflected in the chosen range of Ma.

Simulations were performed on the xe cluster of the Australian NCI Na-
tional Facility (see bibliography). The CPU time required for each run was,
on average, ∼ 10−2 seconds per grid cell per unit t0 of simulation time. For
S(R?)-type simulations, one must scale Ta with Ma to prevent numerical in-
stabilities. Even so, run S(R?, 103) does not complete; ZEUS-MP aborts at
t ≈ 0.35Ta, when the adaptive time-step shrinks below its allowed minimum.
Figure 4.1 shows that this behaviour arises when Br diverges at r . rinj

along the boundary θ = 0: for Ma = 102Mc, Br threatens to break out for
t . 0.5Ta but ultimately settles down to the equilibrium configuration before
t = Ta, whereas for Ma = 103Mc, it grows uncontrollably up to the time of
failure.
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Figure 4.1: Radial component of the magnetic field Br along θ = 0: for
simulation S(R?, 102) (left), at t = 0.45Ta (purple) and t = 0.85Ta (black);
and for simulation S(R?, 103) (right), at t = 0.24Ta (purple), and its time of
failure t = 0.35Ta (black).

4.1.1 Verification

We first check that, for each mountain, (i) we accumulate the correct total
mass Ma, with minimal loss through the outer boundary; (ii) the mass above
the surface, Matm, remains much smaller than Ma; and (iii) for mountains
with sinking, the mass in the fluid base, Mbase, remains large compared to Ma,
so that the magnetic line-tying condition at r = rmin is a good approximation.
Figures 4.2a, 4.2c, and 4.2e show Ma(t) =

∫
V
dV ρXa integrated over the

simulation volume V at time t. We see that the mountains achieve their
target mass, which remains in the simulation for t > Ta. The injected mass
Ma(t)/Ma, found by integrating equation 3.5 with respect to time, is plotted
alongside in grey; the two curves overlap. Figure 4.2b shows Matm for the
hard-surface experiment; it is always small. Figures 4.2d and 4.2f show Mbase

for the soft-surface experiments; it always exceeds ≈ 10Ma, as desired. For
all simulations where Mbase > 0, the total fraction of Mbase lost through the
outer boundary is � 0.01%, consistent with Vigelius & Melatos (2008).

We next check that accretion takes place in the magnetostatic limit, i.e.
that the total kinetic energy Ek =

∫
V
dV ρ|v|2/2 is small compared to the

total magnetic energy Em =
∫
V
dV |B|2/(8π). Figure 4.3 shows the ratio of

Ek to Em as a function of time. We see that Ek/Em tends to increase with
Ma but typically never rises above 1%, except in H(103) and the incomplete
run S(rmin, 103). After accretion stops, at t = Ta, Ek/Em typically falls to
less than 10−4.

Magnetic field transport in ZEUS-MP is divergence-free by construc-
tion (Hayes et al. 2006), but it is worth checking whether this property
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Figure 4.2: Accreted mass Ma(t) and masses in the stellar atmosphere
Matm(t) and fluid base Mbase(t), plotted in black, for Ma/Mc = 1 (dotted),
10 (dot-dashed), 102 (dashed), and 103 (solid). The injected mass from
equation 3.5 is over-plotted in grey. The labels beneath each panel indicate
a hard-surface (H, blue) or soft-surface [S(rmin), red, or S(R?), orange] run;
see Table 4.1. The short solid orange line at the bottom of Figure (f) is from
the aborted run S(R?, 103)
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Figure 4.3: Kinetic energy Ek(t), normalised by the magnetic energy Em(t),
for Ma/Mc = 1 (dotted), 10 (dot-dashed), 102 (dashed), and 103 (solid). The
labels beneath each panel indicate a hard-surface (H, blue) or soft-surface
[S(rmin), red, or S(R?), orange] run; see Table 4.1.

is preserved by the injection algorithm. We find that the mean value of
|∇ ·B|/∑i(|Bi|/dxi) is initially . 6× 10−3, and increases by a factor of 3.5
at most over the run. Figure 4.4 shows contours of the normalised |∇ · B|
for an illustrative mountain.

4.1.2 Illustrative example

We choose mountain H(102), grown on a hard surface with Ma = 102Mc,
to illustrate the general evolution of a magnetic mountain during accretion.
Figure 4.5 shows contours of the mountain density ρXa, normalised by the
initial surface density ρR? , at four different times. Figure 4.6 shows the
magnetic flux ψ, normalised by ψ? = B?R

2
?/2, at the same times. Matter



4.1. Simulations of magnetic mountains with sinking 43

0° 30° 60° 90°
50.

52.

54.

56.

58.
r/
h
0

θ

Figure 4.4: Contours of the absolute, normalised divergence of B of moun-
tain H(103) at t = Ta. Contour levels are at 5× 10−2 (blue), 10−2 (purple),
5× 10−3 (black).

is added predominately at the pole, as determined by dM/dψ. In the early
stages of accretion (t = 0.1Ta), the magnetic field is only slightly disturbed.
As accretion progresses, the mountain spreads towards the equator, dragging
the frozen-in magnetic field with it. The angular span of the ψ contours is
compressed from ∼ 70◦ [Figure 4.6a] to ∼ 20◦ [Figure 4.6b]. At the half-
way point (t = 0.5Ta), the flux is significantly displaced from its initial
configuration, but remains anchored to the inner boundary at r = rmin,
demonstrating magnetic line tying. We see, in the ψ/ψ? = 1.2×10−2 contour,
the early formation of the magnetic “tutu” configuration, observed in Payne
& Melatos (2004, 2007) for Ma = 10−5M�.

At t = Ta, the mountain reaches its target mass (Ma = 102Mc in Fig-
ures 4.5 and 4.6). Despite sliding towards the equator, the accreted matter
still exhibits a noticeable variation in density with respect to θ; a polar moun-
tain is formed. The tutu configuration of the magnetic field is clearly visible;
see for comparison Figures 2 and 4(a) of Payne & Melatos (2004). This equi-
librium state remains largely unchanged when we run the simulation for an
additional 0.5Ta, during which no further mass is added.
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Figure 4.5: Hydromagnetic structure of hard-surface mountain H(102) at
times t/Ta = 0.1, 0.5, 1.0, and 1.5: contours of accreted density ρXa/ρR?
(blue). The maximum is indicated with a small arrow and labelled in bold.
Colour intensities are linear in ρXa/ρR? . Note that the scale of the r axis
differs between the figures.
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Figure 4.6: Hydromagnetic structure of hard-surface mountain H(102) at
times t/Ta = 0.1, 0.5, 1.0, and 1.5: contours of magnetic flux ψ/ψ?, at the
labelled times (red), and at t = 0 (purple). The t > 0 contours meet their
t = 0 equivalents on the left vertical axis. Colour intensities are linear in
ψ/ψ?. The change in the contour scale between Figure (a) and Figures (b)–
(d) is due to the difference in ψ between t = 0, where the magnetic field is
dipolar, and subsequent times when the magnetic field is distorted.
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4.2 Comparison of mountains grown on hard

and soft bases

We next compare the hard-surface equilibrium state, illustrated in Figures 4.5c
and 4.6c, with the two experiments where we include sinking. Figures 4.7
and 4.8 show contours of ρXa and ψ respectively in each of the three sce-
narios, with Ma = 10Mc. The hard-surface mountain [Figure 4.7a] spreads
appreciably, and the magnetic flux [Figure 4.8a] is significantly displaced to-
wards the equator. The density contour ρXa/ρR? = 10 begins a distance
∼ 4h0 = 215 cm (see Table 3.1) above the injection radius r = rmin = R?

at the pole and sinks below the equator to ∼ 75% of the polar height of the
mountain. In contrast, the same contour of the sinking mountain grown at
r = rmin [Figure 4.7b] begins ∼ 0.6h0 above the injection radius r = rmin at
the pole and sinks below the equator to just ∼ 19% of the polar height of
the mountain. From the ρXa/ρR? = 10−3 contour, we see that the accreted
matter is confined to r − rmin . 0.7h0 above the inner boundary at the pole
and r − rmin . 0.15h0 at the equator.

In short, the sunk mountain grown at r = rmin hugs the inner boundary
and pole and resembles the initial mass distribution seen in Figure 4.5a. This
is not surprising. Matter is fed in at r = rmin with zero velocity, as discussed
in section 3.2.2. It expands outward due to the pressure gradient created
as matter piles up at the injection radius; since we are injecting quasistati-
cally, the pressure gradient is small. On the other hand, the weight of the
massive overburden (Mbase ≈ 10Ma) presses down on the added material.
The magnetic flux is displaced [Figure 4.8b], but much less than for the hard
mountain. Field lines remain tied to the inner boundary, bending away in
its immediate vicinity (because the slug of injected matter does not rise).
Above this layer, the field lines of the initial and final states remain largely
parallel.

4.2.1 Sinking scenarios

The structure of the sunk mountain grown at r = R? [Figure 4.7c] differs
from the other two cases. The contour ρXa/ρR? = 10, tracked above, starts
at the pole, remains virtually flat at ∼ 2h0 below the injection radius, bends
sharply inward near the equator, moves directly toward the inner boundary,
then curves back towards the pole, crossing it again at ∼ 6h0 below the
injection radius. For the previous two mountains, grown from r = rmin, the
angular variation in density increases with altitude. Here the reverse is true:
the angular variation density decreases with increasing r, up until r . R?,
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Figure 4.7: Comparison of the hydromagnetic structure of hard- and soft-
surface mountains: contours of accreted density ρXa/ρR? of mountainsH(10),
S(rmin, 10), and S(R?, 10), at time t = Ta. Colour intensities are logarithmic
to base 10 in ρXa/ρR? ; other details are as for Figure 4.5. Note that the scale
of the r axis differs between the figures.
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Figure 4.8: Comparison of the hydromagnetic structure of hard- and soft-
surface mountains: contours of magnetic flux ψ/ψ? of mountains H(10),
S(rmin, 10), and S(R?, 10), at time t = Ta. Details are as for Figure 4.6.
Note that the scale of the r axis differs between the figures.
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Figure 4.9: Shaded contours of the absolute, normalised difference in total
density ρ between S(rmin, 10) and S(R?, 10), overlaid with the ρXa (accreted
only) contours of Figures 4.7b (red) and 4.7c (orange). Colouring ranges
from blue (minimum difference) to white (halfway between the minimum
and maximum differences) to red (maximum difference). The minimum and
maximum density differences are indicated with small arrows and labelled in
bold.
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with the greatest variation within∼ 4h0 of the inner boundary. While the two
sinking scenarios differ in their final distributions of accreted (as opposed to
total) density, their final distributions of magnetic flux [Figures 4.8b and 4.8c]
are very similar.

The mountain sinks three times further into the fluid base at the pole
than at the equator. This is consistent with how mass is injected according
to equation 3.6; the input flux is ∼ 20 times greater at the pole than at the
equator. In addition, the magnetic field guides accreted matter sideways as
field lines flatten across the surface towards the equator, whereas matter at
the pole can sink inward readily along almost vertical flux tubes [e.g. the
contour ψ/ψ? = 6× 10−2 in Figure 4.8c].

The density contours bunch together along the underside of the mountain,
spanning five orders of magnitude; the injected matter does not sink below
this boundary. The lowest of the bunched density contours, ρXa/ρR? =
10−3, never reaches the inner boundary; the mountain is floating in isostatic
equilibrium with the surrounding fluid base. The ρXa/ρR? = 10−3 contour
rises to only ∼ 1h0 above R? at the equator and ∼ 3h0 at the pole; in contrast
it sinks to R? − r . 6h0 at the pole. The path of this contour in the region
r > R?, if overlaid on Figure 4.7a, would trace densities between 2 × 10−3

and 50ρR? ; the density of accreted matter above R? is much less for the
sunk mountain than for the hard-surface mountain. Finally, note that 0.3%
of the mountain mass is above the stellar surface. Compared to the other
two scenarios, the structure of S(R?, 10) is perhaps more reminiscent of an
“iceberg”.

Ultimately we are interested in the final distribution of the total mass ρ,
that is, the accreted matter, ρXa, plus the fluid base it displaces, ρ(1−Xa).
Does injection at rmin or R? make a difference? Figure 4.9 displays the abso-
lute, normalised difference |ρrmin

−ρR?|/|ρrmin
+ρR?| between the total densities

in the two sinking scenarios as a shaded plot. The largest differences occur
at r > R?, where there is little mass, and are therefore unimportant; these
differences are simply spurious numerical artifacts. For r < R?, the difference
peaks near the pole but remains less than ∼ 0.8%. In other words, despite the
difference in the final distribution of ρXa between the two injection scenarios
(emphasised by the overlaid contours), the final distribution of ρ is essentially
the same. Injecting at rmin or R? makes no difference, because the soft base
readjusts in each case to yield the same overall equilibrium state. This is an
important result. It confirms the robustness of the injection method and the
argument presented in section 3.2.2: in ideal MHD, the equilibrium state is
independent of precisely where matter is initially injected. In practice, in-
jection at rmin seems preferable, because it reduces the simulation time (see
Table 4.1) and improves numerical stability, as illustrated by the failure of
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Figure 4.10: Angle between the magnetic field B and the radial unit
vector, plotted versus colatitude θ at (a) r = rmin = R?, (b) r = R?, and (c)
r = rmin, for Ma/Mc = 1 (dotted), 10 (dot-dashed), 102 (dashed), and 103

(solid). Results from this work are plotted in colour. Plotted in monochrome
are β(r, θ) for a Payne & Melatos (2004) Grad-Shafranov mountain (grey),
and for a dipole (black).

run S(R?, 103).

4.2.2 Magnetic line tying

Finally, we investigate the assumption of magnetic line tying. In Figure 4.10
we plot the angle β(r, θ) = sin−1(Bθ/|B|) between the magnetic field B and
the radial unit vector as a function of θ at r = rmin and r = R?. We also
plot β at the inner boundary of a Grad-Shafranov mountain with Ma = Mc

(Payne & Melatos 2004), and β for a dipole (independent of radius). The
S(R?) mountains give the same results as S(rmin).

The hard-surface mountains in Figure 4.10a behave like the Grad-Shafranov
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mountain at low Ma but become increasingly dipolar as Ma increases. This
is expected; at low Ma, the accreted mass stays close to the pole and dis-
torts the magnetic field there. As Ma increases, the mountain spreads over
a greater volume, and the magnetic field is distorted less at any particular
point. The sign inversion close to the equator may be caused by numerical
reconnection, or by the reflective boundary condition at θ = π/2; further
tests with a resisitive ideal-MHD solver are needed to make sure.

The soft-surface mountains in Figure 4.10b are dipolar at r = R?, as
expected, but at r = rmin [Figure 4.10c] they more closely resemble the
Grad-Shafranov mountain. One might expect β to closely match a dipole at
r = rmin, given that the magnetic field lines are tied there, and we choose
Mbase � Ma in order to minimise sideways fluid displacements at the bot-
tom of the soft base. It is unclear whether the magnetic distortions are
artificial, because the injected slug of matter enters from below and cannot
expand upwards to match accretion from above (see section 4.3 for further
discussion). Alternatively, kinks in the magnetic field may be communicated
rapidly down to arbitrary depths by Alfvén waves, even though the Alfvén
speed ∝ ρ−1/2 decreases rapidly with depth. If so, the high breaking strain of
the solid, conducting crust (Horowitz & Kadau 2009) assumes even greater
importance in enforcing line tying.

We argued, in section 3.2.2, that the final equilibrium state (i.e. of the
mountain plus the fluid base) is independent of rinj; this has been demon-
strated in Figure 4.9. In general, however, a given total Ma and injected mass
flux ∂Ma/∂ψ does not define a unique ideal-MHD equilibrium. Matter in-
jected from above spreads sideways faster than it sinks, like a layered cocktail
drink, while a slug of matter injected from below forces the base sideways
without much movement at the surface [compare Figures 4.7c and 4.7b].
Conceivably, therefore, ZEUS-MP may converge on different equilibria de-
pending on rinj. The results of section 4.2 engender confidence that the final
equilibrium state does not depend on rinj; the issue is not definitively settled,
however, for the following subtle reason.1

Consider a polar field line in Figure 4.6. As accretion proceeds, it bends
towards the equator until it touches the corner (r, θ) = (rmax, π/2). At that
point, it instantaneously snaps through some nonzero angle, from Br 6= 0
(free boundary at r = rmax) to Br = 0 (reflecting boundary at θ = π/2). Ef-
fectively, this corresponds to a dissipative, reconnection-like event occurring
just outside the simulation volume, artificially pinching off magnetic loops.2

1Sterl Phinney, private communication.
2 The effect can be magnified in ZEUS-MP by increasing the cell size close to r = rmax;

eventually ZEUS-MP aborts when Br diverges close to the (rmax, π/2) corner.
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Such a process is irreversible. Furthermore, it acts differently on the sequence
of quasistatic equilibria that ZEUS-MP hypothetically passes through during
slow accretion from above and below, because sideways spreading happens
at different altitudes in the two cases.

In the runs presented in this work, the density in the vicinity of the corner
(rmax, π/2) is tiny, as is the mass efflux through the boundary r = rmax (see
section 4.1.1). One can therefore argue plausibly that the irreversible dissipa-
tion at (rmax, π/2), while it exists in principle, does not significantly affect the
final state. There is a chance, however, that if one adds material slowly from
above, reconnection (where numerical or real) pinches off one small magnetic
loop after another at the equator, as in the Earth’s magnetotail. Resisitive
MHD simulations by Vigelius & Melatos (2009b) do not show such behaviour,
but they mostly started from preformed Grad-Shafranov equilibria instead
of growing the mountain from scratch. A more careful consideration of this
issue is required for future simulations.

4.2.3 Mass quadrupole moment

The distorted hydromagnetic equilibria in section 4.2 have an associated mass
quadrupole moment, with principal axis along the pre-accretion magnetic
axis, which is quantified in terms of the poloidal ellipticity3

ε =
π

Izz

∫ rmax

rmin

dr r4

∫ π/2

0

dθ sin θ(3 cos2 θ − 1) ρ(t, r, θ) , (4.1)

with Izz = 2M?R
2
?/5. Figure 4.11 shows ε with respect to time as the moun-

tain grows. All mountains achieve a nonzero ellipticity at t = Ta, which de-
creases negligibly thereafter, confirming the mountains are stable; extending
the simulation time to confirm the mountains’ stability was not attempted
due to computational constraints. The time taken for the hard-surface moun-
tains to converge to their equilibrium values of ε decreases with Ma, from
∼ Ta (Ma = 1Mc) to ∼ 0.1Ta (Ma = 103Mc); this is consistent with the de-
creased confinement of the mountain by the magnetic field, i.e. its increased
ability to spread. The ellipticities of the soft-surface mountains for the two
injection scenarios are virtually identical; even the incomplete run S(R?, 103)
closely follows S(rmin, 103) up until failure. As in section 4.2, the final density
distribution is independent of the injection procedure.

3 We note that the ellipticity calculated here is the poloidal ellipticity ε = (I3 − I1)/I3
appropriate for an axisymmetric object with principal moments of inertia I1 = I2 < I3
(Vigelius & Melatos 2008). It is not the same as the equatorial ellipticity ε = (I2 − I1)/I3
appropriate for a nonaxisymmetric object with I1 < I2 < I3, which is used elsewhere in
this thesis, in particular in the context of gravitational waves.
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Figure 4.11: Ellipticity as a function of time, for Ma/Mc = 1, 10, 102, and
103 (top left to bottom right), and for mountains H (blue), S(rmin) (red),
and S(R?) (orange).

The origin of the uneven behaviour of the ellipticity of H(103) [Fig-
ure 4.11d] is unknown; we note, however, that its functional dependence
on t is similar to that of Ṁa [equation 3.5 and Figure 3.2], and therefore it
is likely that the rise and fall of the ellipticity is due to the reconfiguration
of the H(103) mountain in response to the changing accretion rate. We note
similar undulations in the kinetic energies [Figures 4.3b and 4.3c] and, to a
lesser degree, in the ellipticity of H(10) [Figure 4.11b].

Figure 4.12 shows ε (in black) at t = Ta as a function of Ma. The elliptic-
ities of the hard-surface mountains rise by a factor of ∼ 2.5 as Ma increases
from 1Mc to 10Mc and flattens thereafter, rising by a further 5% as Ma in-
creases from 10Mc to 103Mc. Importantly, accreting further matter does not
reduce ε; the mountain does not smooth itself out. The ellipticities of the
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Figure 4.12: Ellipticity as a function of Ma, at time t = Ta, for mountains
H (circles), S(rmin) (triangles), and S(R?) (squares).

soft-surface mountains rise by ∼ 60% per decade in Ma.
Figure 4.12 clearly quantifies the effect of sinking: ε decreases, relative to

the hard-surface scenario, by ∼ 50% at Ma = 1Mc, ∼ 60% at Ma = 10Mc,
and ∼ 25% at Ma = 103Mc.

4.3 Comparison with Choudhuri & Konar

Choudhuri & Konar (2002) developed a kinematic model of accretion, which
treats sinking in a different (but complementary) way to this work. An
axisymmetric magnetic field is evolved under the influence of a prescribed
velocity field, which models the flow of accreted matter from pole to equator,
where it submerges and moves towards the core (see their Figure 1). Ohmic
diffusion is included, but, for a subset of the results (where the resistivity
η = 0.01), it is negligible, permitting a direct comparison with this work.

Figure 5 of Choudhuri & Konar (2002) shows the evolved configuration
of an initially dipolar field which permeates the entire star. We compare
to Figures 4.8b and 4.8c of this work. In both models, the magnetic field
is distorted significantly by accreted matter spreading towards the equator
(rm < r < rs in Choudhuri & Konar; the entire simulation in this work).
In Choudhuri & Konar’s work, the magnetic field is completely submerged
beneath the surface and confined to the zone where the submerged accreted
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matter flows back towards the pole. In this work, magnetic field lines still
penetrate the surface, implying less effective screening. Within the core,
Choudhuri & Konar’s magnetic field remains relatively undisturbed. Mag-
netic line-tying is not enforced, but the prescribed radial flow within the core
naturally restricts the sideways displacement of the magnetic field there. If
there were sideways motion of the matter within the core, it would modify
the degree of magnetic screening, but neither our simulations nor the results
of Choudhuri & Konar show evidence for such motion. Extending our sim-
ulations deeper into the star to include the core and explore this possibility
properly would be a technical challenge; for instance, we would need to in-
corporate a more realistic equation of state and track even more disparate
equilibrium time-scales.

4.4 Implications for gravitational waves

To explain the narrow range in the rotation frequencies of low-mass x-ray bi-
naries (Chakrabarty et al. 2003), it is proposed that the stars radiate angular
moment in gravitational waves at a rate which balances the accretion torque
(Wagoner 1984, Bildsten 1998). Magnetic mountains are one of a number
of physical mechanisms proposed for the associated permanent quadrupole;
see Vigelius & Melatos (2009a) and references therein. The relationship be-
tween ε and the rotation frequency f predicted by torque balance is f ∝ ε−2/5.
Thus, the 25% to 60% reduction in ε due to sinking calculated in this work in-
creases f by 12% to 44%, all other things being equal. This goes some way to-
wards bringing magnetic mountain ellipticities down to a level consistent with
the data, but there is still a long way to go. Observations to date have found
45 Hz < f < 620 Hz for burst oscillation sources and 182 Hz < f < 598 Hz
for accreting millisecond pulsars, implying 6.6 × 10−9 . ε . 4.6 × 10−6 and
7.2 < 10−9 . ε . 1.4 × 10−7 respectively. Conversely, the ellipticities of
sunk mountains calculated in this work, 3.5× 10−5 . ε . 1.5× 10−4, imply
11 Hz . f . 20 Hz. Clearly, other relaxation mechanisms, like Ohmic diffu-
sion, must also be playing an important role in reducing ε, as the observed
f require.

The reduction in ε by sinking also reduces the gravitational wave strain
(e.g. Abbott et al. 2007b), h ∝ εf 2, by 6% to 17%. This is unlikely, by
itself, to rule out the detection of gravitational waves from low-mass x-ray
binaries by ground-based interferometric detectors; assuming the signal can
be coherently integrated, the loss in h can be compensated for by an increase
in the observation time ∝ h−2 of 13% to 45%. Other difficulties associated
with the detection of gravitational waves from low-mass x-ray binaries, such
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as poorly known orbital parameters and accretion-induced phase wandering
(Watts et al. 2008), are likely to be more important.

4.5 Summary

In this chapter, we simulated the growth of magnetically confined mountains
on an accreting neutron star, using the numerical procedure presented in
Chapter 3, under the two scenarios where the mountain sits on a hard surface
and sinks into a soft, fluid base. In the latter scenario, we confirmed that the
final equilibrium state is independent of the altitude where matter is injected.
We found that the ellipticity of a hard-surface mountain does not increase
appreciably for Ma & 10Mc, saturating at ∼ 2× 10−4, whereas the ellipticity
of a soft-surface mountain continues to increase from Ma = 10Mc to 103Mc.
Sinking reduces the ellipticity by up to 60% relative to the hard-surface value.





Chapter 5

Gravitational wave data
analysis

The search for gravitational wave signals in the output of ground-based in-
terferometric detectors, such as LIGO and VIRGO, presents many significant
challenges. For example, the detectors are much more sensitive to innumer-
able sources of noise than they are to the expected sources of gravitational
waves; noise sources must therefore be identified, characterised, and, if pos-
sible, eliminated. Noise may mimic the form of a plausible signal, rendering
the two indistinguishable; the detector output must then be checked against
data quality vetoes, or else the output of another widely-separated gravita-
tional wave detector. Any first detection of gravitational waves is likely to
be marginal, if not controversial; to have any confidence in the statistical
significance of a candidate signal, a thorough understanding of the statistics
of the analysis method is essential.

In this chapter, we summarise previous and contemporary searches for
gravitational waves using interferometric detectors (in section 5.1), and re-
view data analysis techniques pertaining to periodic gravitational wave sig-
nals (in section 5.2). The latter section is intended to provide the background
for Chapters 6 and 9.

5.1 Summary of gravitational waves searches

Anticipated sources of gravitational waves are generally divided into four
categories, based on the properties of their signals. Each category of signals
requires a different data analysis approach. Short-lived signals, which last on
the order of seconds, consist of compact binary coalescences (section 5.1.1),
and bursts (section 5.1.2). Long-lived signals, which persist over a typical
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observing time, are divided into the stochastic background (section 5.1.3),
and periodic gravitational waves (section 5.2).

5.1.1 Compact binary coalescences

A binary system comprising two compact objects will radiate away orbital
angular momentum as gravitational radiation; the two compact objects will
spiral towards each other, and eventually merge. The gravitational signal
emitted during these compact binary coalescences (CBCs) is generally di-
vided into three phases: the inspiral phase, before the merger; the merger it-
self; and the ringdown phase, during which the newly-formed compact object
reaches equilibrium. The inspiral and ringdown waveforms are modelled to
high accuracy using a variety of analytic methods, including post-Newtonian
expansion and black hole perturbation theory (e.g. Blanchet 2006). Improved
understanding of the merger phase, including the computation of its wave-
form, has come through recent advances in numerical relativity (e.g. Baker
et al. 2007, Cadonati et al. 2009).

A typical analysis (e.g. Abbott et al. 2009g,h) uses matched filtering of
the detector output against a bank of possible template waveforms, produc-
ing a set of triggers. A subset of the data, termed the playground, is set
aside to tune the analysis pipeline. The triggers are searched for coincidence
between detectors, and subjected to a number of consistency tests designed
to eliminate noise-generated signals. To determine the background rate of
triggers originating from noise, data from two detectors are time-shifted, with
respect to each other, by an interval greater than the light travel time be-
tween the detectors; any remaining coincident triggers must therefore be due
to noise. Coincident triggers in the un-time-shifted data are assessed against
the background rate of triggers to determine whether they are detection can-
didates. In the absence of a detection, 90% confidence upper limits are set on
the rate of CBCs per year per unit L10; the latter unit equals 1010 times the
blue luminosity of the Sun, and is a measure of the number of galaxies within
the sensitive reach of the search. Upper limits are expressed with respect to
three canonical types of binary system: binary neutron stars, binary black
holes, and black hole-neutron star binaries.

The most recent LIGO search for CBCs (Abbott et al. 2009i) used S5
data to set upper limits on the rate of neutron star, black hole, and black
hole-neutron star binary coalescences, where the total mass of the binary is
. 35M�, of 1.4 × 10−2, 7.3 × 10−4, and 3.6 × 10−3 yr−1 L−1

10 respectively.
These rates are only a few orders of magnitude above optimistic astrophysical
estimates. Using S4 data, Abbott et al. (2008g) set upper limits of ∼ 0.3–
1.0 yr−1 L−1

10 on binary black holes with total binary masses of ∼ 30–80M�,



5.1. Summary of gravitational waves searches 61

and Abbott et al. (2009g) set an upper limit of 1.6×10−3 yr−1 L−1
10 on binary

black holes with total binary masses of 85–390M�.

5.1.2 Bursts

Burst searches are designed to be sensitive to a wide class of un-modelled
transient gravitational wave signals, including from binary black hole merg-
ers and core collapse supernovae. They face many of the same issues as CBC
searches, in particular that the detector noise is a rich source of plausible
gravitational wave signals. The relaxed assumption of an arbitrary wave-
form presents an additional challenge to designing efficient and robust search
algorithms (e.g. Searle et al. 2008). Often, an algorithm will decompose the
detector output into a time-frequency plane, then search for clusterings of
points where a particular statistic exceeds the background. Other methods
use three or more widely-separated detectors to reconstruct the signal po-
larisations and its sky position. Two recent LIGO searches during S5 set
upper limits, at 90% confidence, on the burst rate per year, in the limit of
strong signals: a rate of 3.6 bursts per year for source frequencies below 2
kHz (Abbott et al. 2009f), and 5.4 bursts per year for source frequencies in
the range 1–6 kHz (Abbott et al. 2009j).

Bursts of gravitational waves which are detectable by LIGO are very
likely to be accompanied by electromagnetic counterparts. Multi-messenger
astronomy aims to cross-correlate gravitational wave triggers with real-time
electromagnetic observations (Kanner et al. 2008), and similarly to follow up
triggers from these sources with gravitational wave searches (Abbott et al.
2008b). Several LIGO burst searches have already been carried out using γ-
ray triggers. In Abbott et al. (2008f), gravitational waves associated with γ-
ray bursts (GRBs) have been searched for in the S2–S4 data; best 90% upper
limits on gravitational wave strain were on the order of 10−21 Hz−1/2. Using
S5 data, Abbott et al. (2008d) ruled out, with 99% confidence, the possibility
that GRB 070201 originated from a CBC located in the Andromeda galaxy
(as was suggested by its electromagnetically reconstructed position) with
component masses of 1–3M� and 1–40M�. A number of collaborations
are planned between the LIGO Scientific Collaboration and a number of
electromagnetic and neutrino observatories (Shawhan 2009).

Abbott et al. (2008e) searched for gravitational waves associated with
bursts from soft gamma repeaters (SGRs), and placed 90% upper limits on
their emitted gravitational wave energy (assuming isotropic emission and a
source distance of 10 kpc) of 3×1045 to 9×1052 erg, within the predictions of
some theoretical SGR models. A specific analysis targeting the SGR 1900+14
storm of March 29, 2006, using a more sensitive technique, improved the
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upper limits on gravitational wave energy emission during the storm to 2×
1045 to 6× 1050 erg, comparable to the energies in SGR giant flares (Abbott
et al. 2009k).

5.1.3 The stochastic background

The stochastic gravitational wave background is the broadband, cumulative
signal from a number of long-lived astrophysical and cosmological sources.
Astrophysical sources include the superposition of periodic signals from spin-
ning neutron stars, low-mass x-ray binaries, and supernovae. Cosmological
sources include primordial spacetime fluctuations amplified by inflation in
the early Universe, and cosmic strings. The gravitational wave strain of the
stochastic background is far below the strain noise of even advanced ground-
based detectors. To improve the signal-to-noise ratio, detector outputs are
cross-correlated and integrated over long observation times. Additional envi-
ronmental monitoring data is used to identity any instrumental lines which
may be cross-correlated between detectors.

Upper limits on the stochastic gravitational wave background are given in
terms of the dimensionless ΩGW(f), the gravitational wave energy density per
logarithmic frequency per the critical energy density of the Universe (Abbott
et al. 2004a). Assuming the Hubble constant is 72 km s−1 Mpc−1, LIGO S4
data has been used to set 90% upper limits of ΩGW(f) < 6.5× 10−5 over 51–
150 Hz (Abbott et al. 2007c), and LIGO S5 data combined with Virgo data
has set 95% upper limits of ΩGW(f) < 6.9 × 10−6 around 100 Hz (Abbott
et al. 2009c). This latest result improves upon limits deduced from the
cosmic microwave background and Big Bang nucleosynthesis. Abbott et al.
(2007d) searched for an anisotropic background in S4 data, and Abbott et al.
(2007a) searched for the background around 900 Hz by correlating the LIGO
Livingston interferometer with the ALLEGRO resonant mass detector.

5.1.4 Periodic gravitational waves

Long-lived, quasi-monochromatic gravitational wave signals are known as
periodic (also continuous or persistent) gravitational waves. They are antic-
ipated to be generated by rapidly spinning neutron stars (see section 2.4).
Searches for periodic gravitational waves have, to date, divided into three cat-
egories: searches targeting known non-accreting pulsars, searches directed at
the low-mass x-ray binary Scorpius X-1, and all-sky searches for as-yet undis-
covered isolated neutron stars.

The first search for gravitational waves from known pulsars targeted the
pulsar J1939+2134, using data from LIGO’s S1 science run (Abbott et al.
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2004b). Subsequent searches targeted 28 pulsars using data from S2 (Abbott
et al. 2005b), 78 pulsars using S3 and S4 data (Abbott et al. 2007e), and 116
pulsar using data from S5 (Abbott et al. 2010). The gravitational wave signal
is assumed to be phase-locked to the pulsars’ electromagnetic signal, which
are known from radio and (in one case) x-ray observations. The observed
frequency and spindown of the radio signal also sets an indirect limit, based
on energy conservation, on the gravitational wave strain (see section 8.2).
The first pulsar for which this indirect limit was reached by a gravitational
wave search was the Crab pulsar (Abbott et al. 2008c). In the most recent
analysis (Abbott et al. 2010), the gravitational wave strain of the Crab is
limited to be, at best, on the order of 10% of the indirect upper limit, and
the energy radiated in gravitational waves by the Crab is limited to less than
2% of its total rotational energy. The measured upper limits of the pulsars
PSR J0537-6910 and PSR J1952+3252 are also very close to their indirect
limits.

Indirect upper limits on gravitational waves from accreting neutron stars
are set by balancing the energy lost due to gravitational waves with the en-
ergy gained from accretion. The latter quantity is determined from the star’s
observed x-ray luminosity. Magnetic mountains (Chapters 3–4) are one pos-
sible mechanism by which accreting neutron stars may emit gravitational
radiation. The highest such indirect limit, that of Scorpius X-1, is reachable
only by second-generation detectors. Two LIGO searches have targeted Scor-
pius X-1: a search of S2 data using the F statistic (Abbott et al. 2007b), and
a search of S4 data using a cross-correlation technique (Abbott et al. 2007d).

All-sky searches for unknown isolated neutron stars are computationally
limited by the very large number of templates needed to cover the sky, and
a broad range of frequencies and frequency derivatives. LIGO searches to
date have taken a number of different approaches. The S2 data was searched
using the single-detector F statistic (Abbott et al. 2007b), and the Hough
transform method (Abbott et al. 2005a). Abbott et al. (2009a) conducted
a multi-detector F statistic search of S4 data using Einstein@Home, a very
large-scale distributed computing project. The S4 data was also searched
using three different semi-coherent methods: PowerFlux, StackSlide, and the
Hough transform (Abbott et al. 2008a). An all-sky analysis of the complete
S5 data set is in progress; thus far, searches of early S5 data have been com-
pleted using PowerFlux (Abbott et al. 2009b) and Einstein@Home (Abbott
et al. 2009d).
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5.2 Periodic gravitational wave data analysis

This section reviews the data analysis of periodic gravitational waves. We
present the model of the gravitational wave signal in section 5.2.1, and a fully
coherent analysis method, the F statistic, in section 5.2.2. In section 5.2.3
we review issues regarding the computational cost of periodic gravitational
wave searches.

5.2.1 The signal model

The signal of a periodic gravitational wave is modelled analytically to high
accuracy. A full description of the signal model is given in Jaranowski et al.
(1998), and further analysed in Jaranowski & Królak (1999, 2000). This
section presents an outline of its derivation.

We first define a number of reference frames. The gravitational wave
frame, which is identical to the inertial frame defined by the transverse trace-
less gauge (section 2.3), is denoted (x̂w, ŷw, ẑw). The ẑw axis points in the
direction of travel, and the orientation of the x̂w–ŷw plane about the ẑw axis
is determined by the polarisation angle ψ. In this frame, the metric pertur-
bation Hw is given by

Hw(t) = h+(t)H+
w + h×(t)H×w , (5.1)

where the polarisation bases are given by

H+
w = x̂w ⊗ x̂w − ŷw ⊗ ŷw =

1 0 0
0 −1 0
0 0 0

 , (5.2a)

H×w = x̂w ⊗ ŷw + ŷw ⊗ x̂w =

0 1 0
1 0 0
0 0 0

 , (5.2b)

and ⊗ denotes the tensor product. The components of each polarisation are
modelled by

h+(τ) = A+ cos Φ(τ) , h×(τ) = A× sin Φ(τ) , (5.3)

where A+ and A× are their respective amplitudes, and Φ(τ) is the phase of
the gravitational wave with respect to the neutron star proper time τ .

In the reference frame of an interferometric detector, denoted (x̂d, ŷd, ẑd),
the vectors

x̂d = n̂1
d = (1, 0, 0) , n̂2

d = (cos ζ, sin ζ, 0) (5.4)
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point along the interferometer arms, which are separated by an angle ζ. The
response of the detector to the metric perturbation (Finn & Chernoff 1993),
as measured with respect to its local time t, is equal to

h(t) = tr
[
RT

d Hd(t)
]
, (5.5)

where the response matrix is given by (Finn 2009)

Rd =
1

2

(
n̂1

d ⊗ n̂1
d − n̂2

d ⊗ n̂2
d

)
, (5.6)

and Hd denotes the metric perturbation in the detector frame.
In propagating from the neutron star to the detector, the gravitational

wave signal is modulated both in amplitude and in phase. The phase mod-
ulation results from converting the neutron star proper time to the detector
time; it is a function of the sidereal and orbital motion of the Earth, the
linear motion of the star (and its orbital motion, if it is in a binary), and
a number of relativistic corrections. The amplitude modulation arises from
transforming from the wave frame to the detector frame; it is only dependent
on the Earth’s sidereal rotation.

The gravitational wave phase, as measured in the neutron star rest frame,
is modelled as a Taylor expansion:

Φ(τ) = Φτ0 + 2π
N∑
n=0

f (n)
w

(τ − τ0)n+1

(n+ 1)!
, (5.7)

where f
(n)
w are the time derivatives of the frequency evaluated in the neutron

star rest frame at an initial time τ0. The relationship between the neutron
star proper time and the detector time is given by

τ − τ0 =

√
1− v2

ns

c2
(tns − tns,0) , (5.8)

tssb = tns +
|~rns(tns)|

c
+ ∆ , (5.9)

t = tns +
|~rns(tns)− ~rd(t)|

c
+ ∆ . (5.10)

Equation 5.8 accounts for the time dilation observed due to the speed vns of
the neutron star with respect to the centre of mass of the solar system, com-
monly known as the solar system barycentre (SSB). Equations 5.9 and 5.10
account for the Doppler modulation of the emitted phase when observed in
an Earth-based detector. The co-ordinate times at the neutron star, the SSB,
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and at Earth are given by tns, tssb, and t respectively. The vectors ~rns and ~rd

denote the positions of the neutron star and of the detector with respect to
the SSB reference frame. The ∆ denotes additional relativistic terms due to
the wave’s propagation through the solar system (Taylor & Weisberg 1989,
Abbott et al. 2007b): the Einstein delay due to gravitational red shift and
time dilation from the planets, and the Shapiro delay due to the waves pass-
ing through curved spacetime close to the Sun. If the neutron star is in a
binary system, additional corrections are required.

Together, equations 5.8–5.10 give the phase at the detector:

Φ(t) = Φ
(
τ(t)

)
. (5.11)

For isolated neutron stars, we can assume vns ≈ 0 (Jaranowski & Królak
1999). It follows that τ , tns, and tssb now differ only by a constant term
(Abbott et al. 2007b), and that we need only consider the motion of the Earth
with respect to the SSB, given by ~rd. The observed phase Φ(t) simplifies to

Φ(t) = φ0 + 2π
N∑
n=0

f (n) (t− t0)n+1

(n+ 1)!
+ 2π

n̂ · ~rd(t)

c

N∑
n=0

f (n) (t− t0)n

n!
, (5.12)

where the vector n̂ points from the SSB to the neutron star. The spindown
parameters f (n) are the time derivative of the frequency evaluated at t = t0
in an inertial frame at rest with respect to the SSB. They coincide with
the intrinsic spindowns f

(n)
w only when vns = 0. The number of required

spindowns N depends on the age of the neutron star and the time it is
observed for. Typically, it is only necessary to include the initial frequency
f ≡ f (0), and the first spindown ḟ ≡ f (1). Searches for young neutron stars,
such as the search described in Chapters 8 and 9, may also require a second
spindown f̈ ≡ f (2).

The transformation from the wave frame (x̂w, ŷw, ẑw) to the detector frame
(x̂d, ŷd, ẑd) can be written as(

x̂d, ŷd, ẑd

)
= Mcd(t)

(
x̂c, ŷc, ẑc

)
= Mwd(t)

(
x̂w, ŷw, ẑw

)
, (5.13)

where
Mwd(t) = Mcd(t)Mwc . (5.14)

The intermediate frame, (x̂c, ŷc, ẑc), is the celestial sphere frame, where ẑc

points towards the celestial north pole and x̂c towards the vernal point. The
two matrices Mwc and Mcd(t) are Euler rotations:

Mwc = Rzxz

(
−ψ, −π

2
− δ, π

2
− α

)
, (5.15)

Mcd(t) = Rzxz

(
Φs(t) +

π

2
,
π

2
− λ, γ − ζ

2

)
, (5.16)
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x̂w

ŷw
ẑw

N̂wc

(a) Rz(−ψ)

ẑw
ẑc

N̂wc

(b) Rx(−π/2− δ)

x̂c

ŷc

ẑc

N̂wc

(c) Rz(π/2− α)

x̂c

ẑc

N̂cd

(d) Rz(Φs(t) + π/2)

ẑc
ẑd

N̂cd→

(e) Rx(π/2− λ)

x̂d

ŷd

ẑd
Ê

(f) Rz(γ − ζ/2)

Figure 5.1: The transformation from the wave frame (red) to the de-
tector frame (green), via the celestial sphere frame (blue). The top row
corresponds to equation 5.15, and the bottom row to equation 5.16. The
example rotations are for ψ = 0.25π, δ = −0.15π, α = 0.25π, Φs = 4.35π,
λ = 0.3π, γ = 0.9π, and ζ = π/2. The vectors N̂wc = ẑc × ẑw/|ẑc × ẑw|,
N̂cd = ẑc × ẑd/|ẑc × ẑd|, and Ê is the local detector East.

where
Rzxz(θ1, θ2, θ3) = Rz(θ3)Rx(θ2)Rz(θ1) (5.17)

is given in terms of the rotations

Rx(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (5.18)

The angles introduced in equations 5.15–5.16 are: the right ascension α and
declination δ of the source; the local sidereal time Φs(t) and latitude λ of the
detector; and γ, the angle of the bisector of the detector arms with respect
to local East. The composition of the rotations which transform (x̂w, ŷw, ẑw)
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to (x̂d, ŷd, ẑd) is illustrated in Figure 5.1. The metric perturbation in the
detector frame is now given by

Hd(t) = Mwd(t)Hw(t)MT
wd(t) . (5.19)

The signal waveform, or template, is often written in the form

h(t) = F+(t)h+(t) + F×(t)h×(t) , (5.20)

where F+(t) and F×(t) are known variously as the antenna response or beam
patterns functions. Expression for F+(t) and F×(t) are given in, e.g., Bonaz-
zola & Gourgoulhon (1996), Jaranowski et al. (1998), and Srivastava & Sahay
(2002). They may be written compactly in terms of the polarisation bases
and the detectors response, as follows:

F+,×(t) = tr
[
RT

d H+,×
d (t)

]
, (5.21)

where
H+,×

d (t) = Mwd(t)H+,×
w MT

wd(t) , (5.22)

and the superscript +,× denotes a choice of either + or ×. We note that
the polarisation bases H+,×

d (t) are time-dependent, and are functions of both
parameters of the source (α, δ, ψ) and of the detector (Φs(t), λ, γ, ζ).

We may equivalently define the beam pattern functions using quantities
with respect to the celestial sphere frame, thus:

F+,×(t) = tr
[
RT

c (t) H+,×
c

]
. (5.23)

In this frame, the polarisation bases are

H+,×
c = MwcH

+,×
w MT

wc , (5.24)

and the response matrix

Rc(t) =
1

2

[
n̂1

c(t)⊗ n̂1
c(t)− n̂2

c(t)⊗ n̂2
c(t)
]

(5.25)

is given by the interferometer arms

n̂kc(t) = MT
cd(t)n̂kd . (5.26)

We note that, in equation 5.23, the polarisation bases H+,×
c are now time-

independent and functions only of the source parameters.
It is useful to expand the response matrix Rc(t) in terms of its time

dependence, which comes from the local sidereal time Φs(t) of the detector.
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It turns out that Rc(t) can be written it terms of five time-independent
matrices Rc[n], with index −2 ≤ n ≤ 2, as follows:

Rc(t) = Rc[0] +
2∑

n=1

{
Rc[n] cosnΦs(t) + Rc[−n] sinnΦs(t)

}
. (5.27)

If we define the coefficients

F̄+,×[n] = tr
[
RT

c [n] H+,×
c

]
, (5.28)

then the beam patterns may also be written as

F+,×(t) = F̄+,×[0] +
2∑

n=1

F̄+,×[n] cosnΦs(t) + F̄+,×[−n] sinnΦs(t) . (5.29)

We see that the beam patterns have components which are periodic over one
sidereal day (|n| = 1) and one half sidereal day (|n| = 2), in addition to a
constant component (n = 0).

Using equation 5.29, the signal waveform h(t) may also be written as

h(t) =
2∑

n=−2

{
h̄[1, n] cos

(
Φ(t) + nΦs(t)

)
+

h̄[−1, n] sin
(

Φ(t) + nΦs(t)
)}

, (5.30)

with the coefficients

h̄[k, n] =
1

1 + | signn|

{
A+ sign

(
k + sign(n) + 1

)
F̄+

[
k|n|

]
−

A× sign
(
k + sign(n)− 1

)
F̄×
[
− k|n|

]}
. (5.31)

It it straightforward, from equation 5.30, to obtain the Fourier transform
and power spectrum of the signal. The amplitude modulation generates
four sidebands of the signal frequency observed in the detector, at ±1 and
±2 times the sidereal frequency; the phase modulation and any intrinsic
spindown of the signal will generate additional sidebands.

5.2.2 The F statistic

In common with the stochastic background, the gravitational wave strain
from sources of periodic gravitational waves is much weaker than the back-
ground detector noise. Nevertheless, because the signal model is accurately
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known, it can be used to filter the data for any variation that matches the
desired waveform, and thus improve the signal-to-noise ratio. This is known
as coherent matched filtering, and is generally the most sensitive method of
extracting a known signal, given a fixed observation time. In the context
of periodic gravitational wave data analysis, the method is known as the F
statistic. It was first derived by Jaranowski et al. (1998) for a single detec-
tor, and later extended to multiple detectors by Cutler & Schutz (2005). Its
derivation is outlined in this section.

Consider the output of a gravitational wave detector, x(t). We first hy-
pothesise that the output contains only detector noise n(t), which is Gaussian
(with zero mean), and stationary in time. The probability of x(t), under this
hypothesis, is given by a multivariate Gaussian distribution:

p(x|noise) = N exp

[
−1

2
(x‖x)

]
, (5.32)

with the appropriate normalisation N . The inner product is defined as

(x‖y) = 4<
[∫ ∞
−∞

dfx̃(f)S−1
n (f)ỹ(f)?

]
, (5.33)

where Sn(f) is the one-sided power spectral density of the detector noise,
and ˜ denotes the Fourier transform, ? the complex conjugate, and < the
real part. We now hypothesise that x(t) also contains, in addition to noise,

a gravitational wave signal h(t, ~A,~λ). The signal template is a function of

the amplitude (or extrinsic) parameters ~A, and the Doppler (or intrinsic)

parameters ~λ; the reason for the distinct sets of parameters will be seen
shortly. The probability of x(t) is now equivalent to assuming that x(t) −
h(t, ~A,~λ) = n(t) contains only detector noise, and is given by

p(x|signal+noise) = N exp

[
−1

2
(x− h‖x− h)

]
. (5.34)

The figure of merit used in matched filtering is the likelihood ratio Λ,
which is commonly written as the log-likelihood

ln Λ = ln
p(x|signal+noise)

p(x|noise)
(5.35)

= (x‖h)− 1

2
(h‖h) . (5.36)

It gives the relative probability of x(t) containing a periodic gravitational
wave signal (the hypothesis of equation 5.34), as opposed to containing only
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noise (the hypothesis of equation 5.32). The likelihood test compares the

value of Λ, computed for a particular signal template h(t, ~A,~λ), against a

threshold Λ?. If Λ exceeds Λ?, a gravitational wave signal matching h(t, ~A,~λ)
has been detected. (Of course, in the real world of non-Gaussian noise,
imperfect experiments and bug-prone software, this is only a first step; only
after many further investigations and consistency checks would a detection
really be claimed!) The value of Λ? is set by: the false alarm rate α, the
probability that a claimed detection is spurious; and the false dismissal rate
β, the probability that a genuine signal is ignored. By the Neyman-Pearson
lemma, the likelihood test is an optimal (or most powerful) test, in that it
minimises the false dismissal rate at a given false alarm rate.

The derivation of the F statistic presented here assumes a frequentist
approach to the statistics of signal analysis. In the Bayesian approach, the
likelihood ratio becomes the Bayes factor

ln Λ + ln
p(signal+noise)

p(noise)
, (5.37)

where the new second term encodes the prior probabilities of the signal and of
the noise. Prix & Krishnan (2009) have re-interpreted the F statistic within
a Bayesian framework, and shown that the Bayesian F statistic, by taking
the priors into account, is more efficient in certain circumstances.

The detection of a signal proceeds by trying to maximise Λ with respect
to the signal parameters ~A,~λ. Following Jaranowski et al. (1998), the signal
model, described in section 5.2.1, may be written in the form

h(t, ~A,~λ) =
4∑
i=1

Aihi(t, ~λ) , (5.38)

where the amplitude parameters

A1 = A+ cosφ0 cos 2ψ − A× sinφ0 sin 2ψ , (5.39a)

A2 = A+ cosφ0 sin 2ψ + A× sinφ0 cos 2ψ , (5.39b)

A3 = −A+ sinφ0 cos 2ψ − A× cosφ0 sin 2ψ , (5.39c)

A4 = −A+ sinφ0 sin 2ψ + A× cosφ0 cos 2ψ , (5.39d)

are functions of the signal amplitudes A+ and A×, the polarisation angle
ψ, and the initial signal phase φ0. Since h(t, ~A,~λ) is linear in the Ai, it is
straightforward to find values for them that maximise Λ: they are given by

Amax
i =

4∑
j=1

[M−1]ij(x‖hj) , (5.40)
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where the matrix M has elements Mij = (hi‖hj), and M−1 is its inverse.
Because the inner product is typically computed over many cycles of the
signal, only the components M11 ≈ M33, M22 ≈ M44, and M12 = M21 ≈
M34 = M43 are non-zero.

The log-likelihood, when maximised over ~A, gives the F statistic:

2F(~λ) =
4∑
i=1

Amax
i (x‖hi) =

4∑
i,j=1

[M−1]ij(x‖hi)(x‖hj) . (5.41)

Expanding this expression gives (Jaranowski et al. 1998)

2F =
2

D

{
B
[
(x‖h1)2 + (x‖h3)2

]
+ A

[
(x‖h2)2 + (x‖h4)2

]
−

2C
[
(x‖h1)(x‖h2) + (x‖h3)(x‖h4)

]}
, (5.42)

where

A ≈ 2(h1‖h1) ≈ 2(h3‖h3) , B ≈ 2(h2‖h2) ≈ 2(h4‖h4) ,

C ≈ 2(h1‖h2) ≈ 2(h3‖h4) , D = AB − C2 .
(5.43)

The F statistic is a function of the remaining Doppler parameters ~λ. These
parameters include the sky position, the initial frequency and spindowns, and
(if applicable) binary orbital parameters. In contrast to the ~A parameters,

the signal template h(t, ~A,~λ) is not linear in the ~λ parameters; it is not
practicable, therefore, to analytically find the maximum of the F statistic
with respect to ~λ. Instead, we decide on a parameter space that encompasses
value of ~λ that are of interest, and then select a finite number of ~λ that span
the extent of the parameter in some way (see Chapter 7). Finally, we compute

the F statistic for each chosen ~λ, and record values which are statistically
significant. The above process constitutes a gravitational wave search.

In the absence of a signal, the four inner products (x‖hi) are Gaussian
random variables, and are correlated due to the non-zero off-diagonal terms
in M. The correlation can be removed, however, via a suitable linear trans-
formation (Jaranowski et al. 1998), and 2F can then be written as the sum
of squares of four independent Gaussian variables. The probability distri-
bution of 2F is, therefore, a χ2 distribution with four degrees of freedom.
Due to this property of 2F , quoted values of the F statistic, here and in the
literature (e.g. Abbott et al. 2007b), will almost always refer to the value of
2F , i.e. twice the value.
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Figure 5.2: (a) Optimal signal-to-noise ratio ρ2 as a function of the observa-
tion time T . The solid line plots the dominant contribution from terms pro-
portional to T , as given by equation 5.51; the dashed line adds the sinusoidal
terms implied by equation 5.48. We take Sn/h

2
0 = 1000, ι = 0.7π, φs = 1.3π,

and other parameters as in Figure 5.1. (b) The resultant probability distri-
butions of 2F , in the presence of a signal with ρ2 given by Figure 5.2a, and
for (left to right) T = 0–7 days, in 1-day increments.

The generalisation of the F statistic to multiple detectors is straightfor-
ward (Cutler & Schutz 2005). Time series x(t) are replaced with vector-
valued time series ~x(t), where each component is the output of a separate
detector. The inner product is re-defined to be

(~x‖~y) = 4<
[∫ ∞
−∞

df ~̃x(f) · S−1
n (f)~̃y(f)?

]
, (5.44)

where Sn includes the cross-correlation of the noise in pairs of detectors.
In the presence of a signal, the probability distribution of 2F becomes a

non-central χ2 distribution with four degrees of freedom; the non-centrality
parameter is given by the optimal signal-to-noise ratio

ρ2 = (~h‖~h) . (5.45)

To derive an expression for ρ2, we assume that the detector noise, within
the band of frequencies covered by the phase evolution of the signal during
an observation, is constant in frequency, uncorrelated between detectors, and
stationary over the observation time. The first assumption is reasonable, as
periodic signals cover only a narrow range of frequencies, and the second
assumption holds if correlated instrumental lines in the detector noise are
avoided. The third assumption is not generally true, but is readily addressed
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by partitioning the data x(t) into intervals over which the noise can be re-
garded as constant, and then weighting each interval according to its noise
(Cutler & Schutz 2005). With these assumptions, the inner products reduce
to

(x‖y) ≈ 2

Sn(f)

∫ T/2

−T/2
dt x(t)y(t) , (5.46)

(~x‖~y) ≈
∑

detectors

(x‖y) , (5.47)

where f0 is the initial frequency of the signal. For simplicity we consider
only the single-detector case. We substitute the signal waveform, given by
equation 5.30, into equation 5.45; the result is

ρ2 =
2∑

m,n=−2

{
h̄[1,m]h̄[1, n]

(
cos(Φ +mΦs)

∥∥∥ cos(Φ + nΦs)
)

+

2h̄[1,m]h̄[−1, n]
(

cos(Φ +mΦs)
∥∥∥ sin(Φ + nΦs)

)
+

h̄[−1,m]h̄[−1, n]
(

sin(Φ +mΦs)
∥∥∥ sin(Φ + nΦs)

)}
. (5.48)

We model the sidereal motion of the Earth by Φs(t) = φs +Ωst, where φs is an
initial phase and Ωs is the sidereal frequency. Since the noise is independent
of frequency, the spindown of the signal is unimportant, and we model the
signal phase by Φ(t) ≈ 2πf0t. Substituting into equation 5.48, and noting
that 2πf0 � Ωs, the inner products evaluate to(

X(Φ +mΦs)
∥∥∥Y (Φ + nΦs)

)
= S

{
cos
[
(n−m)φs

]
X = Y ,

sin
[
(n−m)φs

]
X 6= Y ,

(5.49)

where X, Y denote either cos or sin, and

S =
T

Sn
sinc

[
1

2
(n−m)ΩsT

]
. (5.50)

The dominant contributions to the value of ρ2 come from the terms in equa-
tion 5.48 where m = n, and thus S ∝ T . Using only these terms, we can
write

ρ2 ≈ T

Sn

2∑
n=−2

(
h̄[1, n]2 + h̄[−1, n]2

)
. (5.51)

The remaining terms, where m 6= n, generate sinusoidal perturbations with
periods inversely proportional to |n −m|. Figure 5.2a shows ρ2 plotted for
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a week-long observation time; the contributions from the m 6= n terms to
the overall signal-to-noise ratio are small. Figure 5.2b shows examples of the
probability distribution of 2F ; both the mean and variance of the distribu-
tions increase with ρ2.

5.2.3 Computational cost

The computational cost of a search, i.e. the total time taken to run the
analysis software, is an important factor in the design of search for periodic
gravitational waves (e.g. Abbott et al. 2007b, 2008a). It is calculated by mul-
tiplying together the number of templates to be computed, the observation
time of the data, and the computational cost per template per unit observa-
tion time. For a fully coherent search for a non-binary periodic source, the
total computational cost generally scales with (e.g. Whitbeck 2006, Abbott
et al. 2007b)

Tspan f
2
maxT

2
span︸ ︷︷ ︸

α,δ

fmaxTspan︸ ︷︷ ︸
f

fmaxT
2
span︸ ︷︷ ︸

ḟ

fmaxT
3
span︸ ︷︷ ︸

f̈

· · · fmaxT
n+1
span︸ ︷︷ ︸

f (n)

· · · , (5.52)

where fmax is the maximum frequency searched, and Tspan is the time differ-
ence between the last and first time-stamps of the data being searched. The
parameters under the braces denote that the under-braced factor is included
only if the parameter is searched over. The first unbraced Tspan denotes the
scaling with the observation time Tobs = ηTspan. We assume the duty cycle
η . 1 is roughly constant, and therefore does not scale significantly with
Tspan.

We briefly justify the origin of the scaling factors in equation 5.52; see
sections 7.3.3 and 8.4.1 for further discussion regarding calculating the num-
ber of templates. As the number of cycles of a periodic signal increases with
Tspan, the template density must also increase, so that the phases of sig-
nal may still be matched by a sufficiently nearby template in the parameter
space. If fmax is increased, and thus the range of searched frequencies, the
parameter space of the spindown parameter also increases, as the values of
the spindown parameter scale with the frequency (Jaranowski et al. 1998).

The computational cost of a coherent search for gravitational waves from
a known pulsar (where the sky position, frequency and spindown are known)
scales, according to equation 5.52, approximately with Tspan; i.e. the cost of
processing the data set scales with its length. For multi-template coherent
searches, however, the cost rapidly increases. For an all-sky search, with
one spindown parameter, the cost scales as f 4

maxT
6
span; for a directed search,

where only the frequency and spindowns are searched over, the cost scales
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as f 2
maxT

4
span for one spindown, and f 3

maxT
7
span for two spindowns. In contrast,

the improvement in sensitivity only scales as T
1/2
obs ∝ T

1/2
span. In summary, the

steep increase of the computational cost with Tspan, and the relatively meagre
increase in sensitivity, is a limiting factor for all multi-template periodic
gravitational wave searches (Abbott et al. 2005a, 2007b, 2008a, 2009a,d).

There are, however, many innovative and successful approaches to ad-
dressing this limitation. One approach is to simply spread the computational
cost over multiple CPUs. In practice, all gravitational wave searches are run
on large-scale computer clusters with an ever-increasing number of CPUs.
The ultimate fulfilment of this approach is the Einstein@Home distributed
computing project; the search of the S4 data was distributed over approxi-
mately 100000 volunteered computers and took ∼ 13000 CPU years (Abbott
et al. 2009a).

A second approach is to attempt to find a less expensive, or more sensitive,
data analysis technique. One technique is to discard the phase of the gravita-
tional wave data, typically by calculating the power over short time intervals,
which results in a semi-coherent search (section 6.1). While the sensitivity

of semi-coherent methods increases with T
1/4
obs , more slowly than for a coher-

ent search, the computational cost scaling with Tspan is virtually eliminated;
all the under-braced Tspan are replaced with Tcoh � Tspan, the length of the
time intervals over which the power is calculated. Overall, therefore, a semi-
coherent search can often be more sensitive because it is able to search longer
data sets at reasonable computational cost. In Chapter 6, we consider the
PowerFlux semi-coherent method in further detail, and attempt to generalise
it to estimate multiple parameters of the gravitational wave signal. Hierar-
chical schemes, which alternate coherent and semi-coherent stages, provide
further gains in sensitivity (e.g. Brady & Creighton 2000, Cutler et al. 2005)

A third approach to reducing the computational cost is to decrease the
required number of templates. The overall template density is determined by
the maximum allowable mismatch, denoted µmax, between any periodic signal
and its nearest template in the parameter space. A careful analysis of the
function dependence of the mismatch on the difference in parameters of signal
and template leads to distance function, or metric, on the parameter space,
which determines how closely the templates need to be spaced. With the
distance determined, it remains to decide on the geometry of the placement of
templates with respect to each other; the mathematics of lattices and sphere
coverings describes how to place the templates as thinly as possible, while
ensuring the maximum allowed mismatch is bounded by µmax. Chapter 7
describes an algorithm which, following the above procedure, generates an
optimally-placed template bank.
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5.3 Summary

This chapter introduced the field of gravitational wave data analysis. We first
summarised the results of previous and present-day searches for four cate-
gories of gravitational wave signals: compact binary coalescences, bursts, the
stochastic background, and periodic gravitational waves. This last category is
of particular interest to this thesis; therefore, we presented a detailed review
of the analytic model of periodic gravitational wave signals, and the coherent
matched filtering technique used to detect them. Finally, we discussed the
often prohibitive computational cost of periodic gravitational waves; this is-
sue provides the motivation for the work presented in the next two chapters
of this thesis.





Chapter 6

Parameter estimation using
generalised PowerFlux

In this chapter, we consider one approach to the issue of the high compu-
tational cost of fully coherent, multi-template searches for periodic gravita-
tional waves, as discussed in section 5.2.3. This approach is to use semi-
coherent data analysis methods, which we introduce in section 6.1. We then
consider the semi-coherent PowerFlux method (Dergachev & Riles 2005) in
further detail. We present a derivation of this method in section 6.2, and gen-
eralise the method to extract additional parameters of the gravitational wave
signal in section 6.3. In section 6.4, we compare the detection efficiencies of
the original and generalised PowerFlux methods.

See section 1.1 for author contributions and publications relevant to this
chapter.

6.1 Semi-coherent data analysis

Semi-coherent data analysis methods are similar to coherent matched filter-
ing (section 5.2.2); they both attempt to match the output of a detector
to a template of the periodic gravitational wave signal. They differ in one
important respect: whereas matched filtering uses both the amplitude and
phase of the detector data, semi-coherent methods use only the amplitude
information. For the same observation time, semi-coherent methods are thus
less sensitive than matched filtering, due to the lost phase information. On
the other hand, the computational cost of semi-coherent methods do not in-
crease as rapidly as for matched filtering, as the observation time is increased.
Semi-coherent methods can therefore be used for all-sky broadband searches

79
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over long observation times, whereas an equivalent coherent search would be
computationally prohibitive.

The basic procedure of the semi-coherent method is to divide the detector
data into short segments, and take the discrete Fourier transform of each;
the resulting data are known as Short Fourier Transforms (SFTs). Power as
a function of frequency and time, computed from the SFTs, is then stacked
and slid in frequency so that the frequency bins containing a particular signal
are added together, taking account of the frequency evolution due to Doppler
modulation and any intrinsic spindown.

The time span of the data segments used to generate the SFTs is des-
ignated TSFT, and is typically chosen to be 30 minutes. Within this time
span, signals from an isolated source with frequencies less that ∼ 1000 Hz
will not shift in frequency by more than half the width of a SFT frequency
bin (Abbott et al. 2007b). For sources in binary systems, a shorter TSFT can
be chosen dependent on the size of the expected orbital Doppler modulation.

Three semi-coherent methods, which have been used in all-sky searches
using LIGO data, are PowerFlux, StackSlide, and the Hough transform (Ab-
bott et al. 2008a, and references therein). The StackSlide method gives
a sum of the power weighted by detector noise, while the PowerFlux and
Hough methods give sums weighted by both detector noise and the beam
patterns; in addition, the Hough transform replaces the power with a binary
count determined by whether the power in each SFT exceeds a set threshold.
Of the three, in general the PowerFlux method is the most sensitive.

6.2 A derivation of the PowerFlux method

The PowerFlux method was first derived by Dergachev & Riles (2005). Here,
we present an alternative derivation (Mendell & Wette 2008), which is also
the starting point for the generalisations presented in the next section.

It follows from the definition of TSFT that we can treat the beam pat-
terns F+, F×, and the signal frequency at the detector, as constant over the
duration of an SFT. Ignoring losses due to the difference between the sig-
nal frequency and central frequency of the nearest SFT bin, the normalised
power of the signal is given by

2|h̃|2
TSFT

=
A2

+F
2
+ + A2

×F
2
×

2
TSFT , (6.1)

where h̃ is the discrete Fourier transform of h(t) divided by the sample rate of
the data, and it is understood that F+ and F× are evaluated at the midpoint
of each SFT. Equation 6.1 represents the expected power of an elliptically
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polarised signal in one SFT. We now label the SFTs using an index α, and
consider searching for a linearly polarised signal (i.e. we choose A× = 0)
which is present in the sequence of SFTs. We represent the SFT data by x̃α,
and the power taken from the SFT bin closest in frequency to the expected
signal by

Pα =
2|x̃α|2
TSFT

. (6.2)

A natural way to estimate A2
+, analogous to χ2 minimisation, is to find

the value of A2
+ that minimises

g =
∑
α

1

S2
α

[
Pα −

A2
+F

2
+α

2
TSFT

]2

. (6.3)

This quantity is a weighted sum of the squared difference between the power
of the signal (equation 6.2) and of the data (equation 6.1 with A× = 0),
where the weights Sα are the one-sided power spectral densities of the noise
for the frequency bins used in each corresponding SFT. We set

∂g

∂A2
+

= −
∑
α

1

S2
α

[(
Pα −

A2
+F

2
+α

2
TSFT

)
F 2

+αTSFT

]
= 0 (6.4)

and solve for A2
+, obtaining

A2
+ = 4

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

/∑
α

F 4
+α

S2
α

. (6.5)

Equation 6.5 is the PowerFlux detection statistic given in Dergachev & Riles
(2005), arrived at by maximising the signal-to-noise ratio. The two ap-
proaches appear to be equivalent (Abbott et al. 2008a). To distinguish it from
the generalisations to follow, we refer to this method as linear PowerFlux.
To extend the above derivation to circularly polarised signals (A+ = A×), we
replace F 2

+α with (F 2
+α + F 2

×α) in equation 6.3; this gives what we will refer
to as the circular PowerFlux method.

To be sensitive to elliptically polarised signals (A+ 6= A× 6= 0), the imple-
mentation of PowerFlux used in LIGO searches (Abbott et al. 2008a, 2009b)
uses linear PowerFlux, with a search over discrete values of the polarisation
angle ψ, together with circular PowerFlux. This approach, however, does not
directly estimate the amplitudes of elliptically polarised signals, nor does it
directly recover ψ.
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6.3 Generalisations of PowerFlux

In this section, we investigate whether the PowerFlux method can be ex-
tended to extract additional amplitude and polarisation information, while
still using only the power computed from SFTs.

Mendell & Wette (2006, Section 2) investigated using the real and imag-
inary parts of the SFTs to estimate A+, A×, and ψ, using the method in
Jaranowski et al. (1998). The method works well for long time-span SFTs,
but fails to remain robust when TSFT ∼ 30 min. This is perhaps not surpris-
ing. All the parameter estimation methods investigated in Mendell & Wette
(2006), in Mendell & Wette (2008), and presented in this chapter, assume
that the beam patterns functions, F+ and F×, are linearly independent over
the data set from which the amplitude parameters are estimated. While this
assumption is true over the time-span of a large set of SFTs (which is used
by all of the other investigated methods), it is only marginally valid over the
time-span of a single 30-min SFT. Additionally, the search over frequency
would begin to scale in the same manner in a coherent search. We do not
consider this approach further.

6.3.1 Estimation of A2
+ and A2

×
We first extend PowerFlux to simultaneously estimate A2

+ and A2
×. The

natural generalisation of equation 6.3 is

g =
∑
α

1

S2
α

[
Pα −

A2
+F

2
+α + A2

×F
2
×α

2
TSFT

]2

. (6.6)

Following the same minimisation procedure as in section 6.2, we obtain

∂g

∂A2
+

= −
∑
α

1

S2
α

[(
Pα −

A2
+F

2
+α + A2

×F
2
×α

2
TSFT

)
F 2

+αTSFT

]
= 0 , (6.7a)

∂g

∂A2
×

= −
∑
α

1

S2
α

[(
Pα −

A2
+F

2
+α + A2

×F
2
×α

2
TSFT

)
F 2
×αTSFT

]
= 0 . (6.7b)

We then solve for A2
+ and A2

×; the result is

A2
+ =

4

D

[∑
α

F 4
×α
S2
α

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

−
∑
α

F 2
+αF

2
×α

S2
α

∑
α

F 2
×α
S2
α

|x̃α|2
T 2

SFT

]
, (6.8a)

A2
× =

4

D

[∑
α

F 4
+α

S2
α

∑
α

F 2
×α
S2
α

|x̃α|2
T 2

SFT

−
∑
α

F 2
+αF

2
×α

S2
α

∑
α

F 2
+α

S2
α

|x̃α|2
T 2

SFT

]
, (6.8b)
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where

D =
∑
α

F 4
+α

S2
α

∑
α

F 4
×α
S2
α

−
[∑

α

F 2
+αF

2
×α

S2
α

]2

. (6.9)

We refer to this method as generalised PowerFlux I. Note that, for D 6= 0,
F 2

+α and F 2
×α must be linearly independent functions of α, which should

be true over a reasonable number of SFTs. A natural detection statistic is
A2

+ +A2
×. Its evaluation requires 2.5 times as many summations as for linear

PowerFlux, and we must still include a search over discrete values of ψ.

6.3.2 Estimation of A2
+, A2

×, and ψ

To further generalise PowerFlux to directly estimate ψ, we note that the
antenna patterns F+ and F× can be written in terms of two functions, a and
b, which are independent of ψ (Jaranowski et al. 1998):

F+(ψ, t) = sin ζ
(
a(t) cos 2ψ + b(t) sin 2ψ

)
, (6.10a)

F×(ψ, t) = sin ζ
(
b(t) cos 2ψ − a(t) sin 2ψ

)
. (6.10b)

where ζ is the angle between the interferometer arms. The normalised signal
power is then written as

2|h̃α|2
TSFT

=
Aa2

α + Bb2
α + Caαbα
2

TSFT , (6.11)

where the coefficients are

A = sin2 ζ
(
A2

+ cos2 2ψ + A2
× sin2 2ψ

)
, (6.12a)

B = sin2 ζ
(
A2

+ sin2 2ψ + A2
× cos2 2ψ

)
, (6.12b)

C = sin2 ζ
(
A2

+ − A2
×
)
2 cos 2ψ sin 2ψ . (6.12c)

Following the minimisation procedure again, we redefine

g =
∑
α

1

S2
α

[
Pα −

Aa2
α + Bb2

α + Caαbα
2

TSFT

]2

; (6.13)

the A, B, and C which minimise g are then found by solving

∂g

∂A = −
∑
α

1

S2
α

[(
Pα −

Aa2
α + Bb2

α + Caαbα
2

TSFT

)
a2
αTSFT

]
= 0 , (6.14a)

∂g

∂B = −
∑
α

1

S2
α

[(
Pα −

Aa2
α + Bb2

α + Caαbα
2

TSFT

)
b2
αTSFT

]
= 0 , (6.14b)

∂g

∂C = −
∑
α

1

S2
α

[(
Pα −

Aa2
α + Bb2

α + Caαbα
2

TSFT

)
aαbαTSFT

]
= 0 . (6.14c)
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It is then straightforward to solve equations 6.12a-6.12c for the amplitudes
A2

+, A2
×, and the polarisation angle ψ.

This method is referred to as generalised PowerFlux II. It requires com-
puting 4 times as many sums as the linear PowerFlux method; because a
search over discrete values of ψ is no longer required, however, the compu-
tational cost of this method may be less overall. An alternate method of
estimating A2

+, A2
×, and ψ, which uses the output of the linear PowerFlux

method at several fixed values of ψ, is given in Appendix A of Abbott et al.
(2008a).

6.4 Comparison of the methods

In this section, we compare the original PowerFlux methods presented in
section 6.2 to the generalised methods derived in section 6.3. Using Monte
Carlo simulations, we determine the distributions of the estimated parame-
ters (section 6.4.1) and the relative detection efficiencies (section 6.4.2). The
detection statistic used for each method is A2

+ + A2
×, with A2

× = 0 in the
case of linear PowerFlux. For simplicity, we do not restrict the estimations
of A2

+ and A2
× to the physical region A2

+ ≥ 0 and A2
× ≥ 0, nor check if the

actual minimum value of g is on the boundary of this region. An implemen-
tation of the StackSlide method (Abbott et al. 2008a) is also included in the
comparison.

We first perform searches on 10000 sets of SFTs, containing only ran-
domly generated Gaussian noise, and obtain, for each method, a distribution
of their detection statistic in the absence of a signal. From these distributions
we determine the thresholds for a 1% false alarm rate appropriate for each
method. We then search 3000 sets of SFTs, each containing noise plus a sim-
ulated periodic signal from an isolated source. The strength of the injected
signals are given by h0/H, where for convenience we define the normalisation
H = (S/TSFT)1/2, and S is the one-sided power spectral density of the noise.
The strain amplitude h0 and inclination angle ι are for a nonaxisymmetric
source (equation 2.3). For each of the 3000 simulated signals, cos ι was chosen
at random from the range [−1, 1], resulting in elliptically polarised signals;
ψ was also chosen at random from the range [−π/4, π/4].

Other parameters of the signal are its sky position (right ascension and
declination) and its frequency at the solar system barycentre. The right
ascension has a minimal effect and is thus set to zero; results are found for a
selection of values of the declination. The signal frequency is a constant, i.e.
there is no spindown of the source. We use the detector configuration of the
LIGO Hanford observatory, as given in Jaranowski et al. (1998). Finally, we
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(b) Circular PowerFlux
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(c) Generalised PowerFlux I
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(d) Generalised PowerFlux I
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(e) Generalised PowerFlux II
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(f) Generalised PowerFlux II
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Figure 6.1: Injected versus detected normalised squared amplitudes, for
h0/H = 4. The noise-only mean is first subtracted from the detected squared
amplitudes. The methods used to estimate the parameters are linear (red)
and circular (orange) PowerFlux, and generalised PowerFlux I (blue) and II
(purple).
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(a) δ = 0◦, 336 SFTs
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(b) δ = 90◦, 336 SFTs
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(c) δ = 45◦, 336 SFTs
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(d) δ = 45◦, 672 SFTs

Figure 6.2: Detection efficiency, versus the normalised injected amplitude,
of linear (red squares) and circular (orange circles) PowerFlux, generalised
PowerFlux I (blue triangles) and II (purple stars), and StackSlide (black
inverted triangles). The four plots differ in the declination of the injected
signals, and in the number of SFTs, as labelled. The solid curves are spline
fits to the data points. Errors in the determined efficiencies are less than 3%.
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vary the number of SFTs.
A realistic search would include a template bank of sky positions, fre-

quencies, spindowns, and (in some cases) polarisation angles. Here, we do
not consider any mismatch in sky position or spindowns, i.e. we assume that,
in these parameters, the search template is perfectly matched to the sim-
ulated signals. We do, however, include a random mismatch between the
frequencies of the template and of the signal of up to half an SFT bin width;
and, for searches requiring a value for ψ, we include a random mismatch in
ψ between the template and the signal of up to π/16. The mismatched fre-
quency and ψ (if needed) were used to compute the search template, along
with the perfectly matched sky position and spindown. Thus, the simulations
include losses due to mismatch between the template and the signal.

After searching the 3000 sets of SFTs, we obtain, for each method, a dis-
tribution of their detection statistic in the presence of a signal of normalised
amplitude h0/H. The detection efficiency is then calculated as the fraction
of the distribution of the detection statistic which falls above the appropriate
1% false alarm rate threshold. We repeat the above process of generating and
searching 3000 sets of SFTs for increasing values of the normalised ampli-
tude. The final result is the detection efficiency of each method as a function
of h0/H.

To verify the results presented in the section, the authors of Mendell &
Wette (2008) each independently wrote a MATLAB script to implement the
above procedure. The two scripts produce detection efficiency curves, for the
same input parameters, which are identical to within the uncertainties ex-
pected from the finite number of searches performed. This gives us confidence
that the two implementations, and the results they give, are correct.

6.4.1 Parameter distributions

Figure 6.1 shows, for a search of 3000 sets of SFTs injected with signals of
strength h0/H = 4, distributions of the injected versus the detected squared
amplitudes obtained by the methods presented in sections 6.2–6.3. The
mean value of the squared amplitudes estimated for noise alone is first sub-
tracted from the detected squared amplitudes; both the injected and detected
squared amplitudes are then normalised by H. The detected amplitudes
are typically smaller than the injected amplitudes, due to the loss of power
caused by the mismatch between the signal and the template used to find it.
The width of the distributions are due to noise; the circular PowerFlux and
generalised PowerFlux II methods have, by visual inspection, the narrowest
distributions.

Figure 6.1g shows the injected versus the detected polarisation angle as
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estimated by generalised PowerFlux II. The estimation can be quite poor, for
example, when noise causes the detected ψ to appear in the wrong quadrant.

6.4.2 Detection efficiencies

Figure 6.2 shows the detection efficiencies of the methods versus h0/H, for
a selection of values of the number of SFTs and of the declination. As the
source moves away from zero declination, the detection efficiencies increase,
and the differences between the methods become smaller. The relative ef-
ficiencies of StackSlide, linear PowerFlux, and the generalised PowerFlux
methods can change with respect to each other, but we note that circular
PowerFlux typically remains the most efficient method. This is good news,
since this method is already being used by the LSC. We note that the de-
tection efficiencies increase with the number of SFTs, as expected, but the
relative efficiencies of the methods do not change significantly.

One possible explanation for the efficiency of circular PowerFlux is as
follows. We note that the weights used by the Hough transform (Abbott
et al. 2008a) were proportional to F 2

+ + F 2
×; these weights were shown to

be optimal in an average sense (Sintes & Krishnan 2006, Krishnan & Sintes
2007). Next, we note that A2

+F
2
+ + A2

×F
2
×, when averaged over ψ, can be

factored as (F 2
+ + F 2

×)(A2
+ + A2

×)/2, i.e. as the antenna pattern for circular
polarisation multiplied by the sum of the squared amplitudes. This holds
true even for an elliptically polarised signal. Since our simulations perform
a Monte Carlo average over ψ, this may explain why circular PowerFlux
performs the best.

6.5 Summary

In this chapter, we generalised the PowerFlux semi-coherent method to es-
timate the amplitude and polarisation parameters of periodic gravitational
wave signals. We compared the parameter estimation and detection effi-
ciencies of the generalised PowerFlux methods, thus obtained, against the
standard PowerFlux methods, using simulated signals injected into Gaussian
noise. While the relative performance of the various methods depends on
the declination of the injected signals, in general we found that the standard
circular PowerFlux method is the most efficient.



Chapter 7

Template bank generation
using optimal lattices

In Chapter 6, we considered the use of semi-coherent data analysis methods
as an approach to mitigating the high computational cost of coherent searches
for periodic gravitational waves over large parameter spaces. In this chapter,
we consider a different approach to the same issue. We present an algorithm
that, given a space of template parameters, generates a bank of templates
with the following properties: that the number of templates is minimised,
reducing the computational cost of the search; and that any signal within
the space is matched, up to a certain tolerance, by a template in the bank.

We first introduce a number of important concepts, which form the basis
of the algorithm. In section 7.1, we review the mathematics of lattices and
sphere coverings; in section 7.2, we introduce the metric of the template
parameter space. The algorithm is presented in section 7.3. In section 7.4
we present an implementation of the algorithm, and test its performance.

The template bank generation algorithm is utilised in the gravitational
wave search for Cassiopeia A presented in Chapters 8 and 9. In particular,
section 8.4.1 discusses the application of the algorithm to the parameter space
of this search.

7.1 Lattices and sphere coverings

This section provides a brief introduction to the mathematics of lattices
and sphere coverings. For a comprehensive reference, see Conway & Sloane
(1988a). Many of the concepts described in this section are illustrated, using
the two-dimensional hexagonal lattice, in Figure 7.1.

89
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~u1

~u2

~v1

~v2

R

Figure 7.1: The hexagonal lattice (black points), and its covering spheres
(black circles). Two possible generators of the lattice are G =

(
~u1 ~u2

)
(green

vectors), and G′ =
(
~v1 ~v2

)
(orange vectors). The radius of the covering

spheres is R. Two choices for the fundamental region are the parallelograms
(red) and the hexagons (blue); both have the same area ≈ 2.6R2. The
hexagons are also the Voronoi cells.

7.1.1 Lattices

A lattice is a collection of points which are generated by tiling a single build-
ing block repeatedly across a space in all directions (Conway & Sloane 1988d).
Each copy of the building block either contains a single lattice point, or else
intersects multiple lattice points at its boundary, with the fractions of each
point within the building block adding up to a single lattice point. If two
points are in the lattice, then their sum and difference (computed using vec-
tors to each point, with respect to a common origin) will also be in the lattice.
In this way, lattices can be generated using only a minimal basis set of lattice
points.

More formally, we define a n-dimensional lattice L to be the set of points

L =
{

G~k
}
, (7.1)

where ~k is any n-dimensional vector with integer entries (Conway & Sloane
1988d). The lattice exists either in an n-dimensional space Rn (when m = n),
or else in an n-dimensional sub-space of a larger m-dimensional space Rm

(when m > n). The matrix G is known as the generator matrix, and has
dimensions m × n, where m ≥ n. The columns of G are the basis vectors
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~u1, . . . , ~un of the lattice.1

The building block is also known as the fundamental region. One possible
fundamental region is the parallelotope defined by the basis vectors of the
lattice. Another choice is the Voronoi cell, which is the region centred on each
lattice point that contains those points at least as close to the central lattice
point as to any other point in the lattice. The volume of the fundamental
region, regardless of its shape, is given by

V =
√

det GTG , (7.2)

where T denotes transpose. The quantity GTG is known as the (n×n) Gram
matrix of the lattice, and its determinant is known as the lattice determinant
or discriminant.

Two lattices L, L′ are equivalent if their respective generator matrices G,
G′ are related by

G′ = sQGZ (7.3)

where s is a non-zero constant, Q is a real orthogonal matrix, and Z is a
matrix with integer entries and determinant ±1. Equation 7.3 allows the
following operations to be performed on lattices: scaling (via s), rotations
(via Q), and reflections and basis vector permutations (via Z).

7.1.2 Sphere coverings

A sphere covering is a set of n-dimensional spheres, each centred on a member
of a set of points, denoted P , in an n-dimensional space Rn (Conway & Sloane
1988c). The radius of the spheres, known as the covering radius R, is chosen
to be the largest possible distance from any point in the space to its nearest
point in P . As a consequence, every point in Rn is contained in at least one
of the spheres; conversely, any set of spheres with radius less than R will not
contain every point in Rn.

An important property of a sphere covering is its thickness Θ, which is
defined to the average number of spheres enclosing any point in Rn. The
thickness is a measure of the efficiency of the covering: the closer Θ is to
1, the fewer the number of spheres per unit volume required to cover Rn.
Where the points P form a lattice L, the thickness of the associated sphere
covering is given by

Θ =
VnR

n

V
, (7.4)

1 This work uses column vectors to represent lattice points; Conway & Sloane (1988a)
uses row vectors. Thus, e.g. G in this work is GT in Conway & Sloane.
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Table 7.1: Thicknesses of a selection of lattice sphere coverings, up to
n = 6. The listed properties are with respect to other coverings of the same
dimension.

n Name Thickness Properties

Θ θ

1 A?1
∼= Z 1.000 0.500 Thinnest possible covering

2 A?2 1.209 0.385 Thinnest possible covering
Z2 1.571 0.500

3 A?3 1.464 0.349 Thinnest possible lattice covering
Z3 2.721 0.650

4 A?4 1.766 0.358 Thinnest possible lattice covering
Z4 4.935 1.000

5 A?5 2.124 0.404 Thinnest possible lattice covering
Z5 9.195 1.747

6 Lc6 2.465 0.477 Thinnest lattice covering known
A?5 2.551 0.494
Z6 17.44 3.375

where Vn is the volume of a n-dimensional unit sphere, and V is the volume
of the fundamental region (equation 7.2). The thickness is a property of the
lattice, and is therefore independent of any particular choice of G. It is often
convenient to use the normalised thickness

θ =
Θ

Vn
, (7.5)

which can be arranged to give the covering radius

R =
(
θ
√

det GTG
)1/n

. (7.6)

It is desirable to know what is the thinnest possible covering in any given
dimension; this is often referred to as the sphere covering problem. The
current state of knowledge, for n ≤ 6, is summarised in Table 7.1; for results
in higher dimensions, see e.g. Conway & Sloane (1988a), Prix (2007b), and
Schuermann & Vallentin (2009). The thinnest possible coverings are known
for n ≤ 2, and the thinnest possible lattice coverings are known for n ≤ 5
(Conway & Sloane 1988c); in each case they are the coverings of the A?n
lattices, which have normalised thicknesses

θ(A?n) =
√
n+ 1

[
n(n+ 2)

12(n+ 1)

]n/2
. (7.7)
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In two and three dimensions, A?2 and A?3 are more commonly known as the
hexagonal and body-centred cubic lattice respectively. For n = 1, A?1 is
equivalent to the integer lattice Z; as n increases, the A?n covering becomes
markedly thinner than that of Zn (Table 7.1). The thinnest possible coverings
are not known for n > 5. The A?n lattice remains one of the thinnest known
lattices for 5 < n < 23 (Prix 2007b), although a number of lattices exist that
are thinner, such as the Lc6 lattice (Schuermann & Vallentin 2008, 2009).

A sphere covering is similar to, but distinct from, a sphere packing. Every
point in Rn is contained in at least one covering sphere, but only in at most
one packing sphere (Conway & Sloane 1988d). As its name implies, a sphere
packing is obtained by e.g. packing ball bearings into a box.

A sphere covering can be thought of as representing the infinite number
of points of Rn by a finite subset, P , subject to some resolution determined
by R. To generate the template bank, we need to represent the infinite
number of possible templates in the parameter space by a smaller subset (the
template bank), subject to the requirement that any signal is matched (by a
template in the bank) with up to a maximum tolerated loss in its signal-to-
noise ratio. It seems likely, therefore, that a sphere covering could be utilised
in constructing a bank of templates. In particular, a sphere covering which
has the minimum possible thickness (which we shall refer to as optimal),
then the equivalent template banks will cover the parameter space with a
minimum number of templates, as desired.

7.2 The parameter space metric

To use a sphere covering to generate a template bank, we need to be able to
transform the spacing of the templates into distances between lattice points.
The template spacing is determined by how far apart in parameter space
a signal can be from its nearest template before the loss in signal-to-noise
ratio, due to the mismatch between signal and templates, exceeds a given
maximum. A useful way of quantifying this to introduce a metric (Bala-
subramanian et al. 1996, Owen 1996) on the parameter space, from which
distances between template points can be computed. The distance is cho-
sen to be proportional to the loss in signal-to-noise ratio, if we consider one
template to be a signal, against which the second template is being matched.
The metric may be derived from the detection statistic, used in the search, or
from another quantity proportional to the signal-to-noise ratio (see discussion
in Prix 2007a).

To illustrate the construction of a parameter space metric, we use the
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F -statistic (section 5.2.2) as an example. The expectation value of 2F ,

E
{

2F
[
x(t), h(t, ~Amax, ~λ)

]}
≡ 2F̄(~λ) (7.8)

indicates the likelihood of having detected, in the data stream x(t), a signal

matching the template h(t, ~Amax, ~λ), with maximised-over amplitude param-

eters ~Amax and searched-over Doppler parameters ~λ. We are interested in 2F̄
as a function only of the ~λ, and therefore suppress the appearance of other
parameters.

Suppose that the data contains a signal perfectly matching the template
h(~λ); then 2F̄(~λ) is clearly at a local maximum. At a nearby point ~λ′ =
~λ+ ∆~λ, the template h(~λ′) is no longer perfectly matched to the signal, and

thus 2F̄(~λ′) will decrease relative to 2F̄(~λ). If the difference ∆~λ is small,

the difference between 2F̄(~λ) and 2F̄(~λ′) can be written as a second-order
Taylor expansion:

2F̄(~λ′) ≈ 2F̄(~λ′) +
1

2
∆~λ ·H∆~λ . (7.9)

Because 2F̄(~λ) is at a local maximum, the first-order term, i.e. the gradient

of 2F̄ at ~λ, is zero, and the second-order term contains a negative-definite
Hessian matrix H(~λ), with entries

[
H(~λ)

]
ij

=
∂2(2F̄)

∂λi∂λj

∣∣∣∣
~λ

. (7.10)

Re-arranging equation 7.9, we define the mismatch

µ(~λ,~λ′) =
2F̄(~λ)− 2F̄(~λ′)

2F̄(~λ)
(7.11)

= (~λ′ − ~λ) ·M(~λ)(~λ′ − ~λ) (7.12)

to be the loss of signal-to-noise ratio, i.e. 2F̄ , due to the mismatch between
the Doppler parameters of the signal, ~λ, and the Doppler parameters of the
template, ~λ′. The mismatch is calculated from the difference in parameters,
∆~λ = ~λ′ − ~λ, and from the positive-definite matrix

M(~λ) = − H(~λ)

4F̄(~λ)
. (7.13)

Equation 7.12 is simply the expression for the distance µ between two points
~λ, ~λ′, given by the metric M.
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To construct the template bank, we require that the mismatch is bounded
by a maximum mismatch

µmax ≥ µ(~λ,~λ′) , (7.14)

to limit the loss in signal-to-noise ratio to any potential signal. The region
defined by equation 7.14 is an n-dimensional ellipse, centred on ~λ, with axes

~ai = v̂i

√
µmax

νi
, (7.15)

where v̂i are the unit vectors along the eigenvectors of M, and νi are the
corresponding eigenvalues. In order to enforce equation 7.14 across the entire
parameter space, one would choose a set of points P , such that every point
in the parameter space falls within at least one of the mismatch ellipses
surrounding one of the points in P ; this is precisely the definition of a sphere
covering.

In section 7.3.2 we demonstrate that the mismatch ellipses, under a suit-
able coordinate transformation, are mapped onto the covering spheres. This
completes the correspondence between the template bank and the sphere
covering we use to construct it. For this construction to work, however,
there is one further requirement; the value of M must be flat, i.e. it must
be independent of all parameter that are being searched over (i.e. ~λ in the
above derivation). This is generally not the case for the full metric of the
F statistic, although it is true for particular subspaces of the full space of
Doppler parameters.

7.2.1 The metric of the F statistic

The derivation of the F statistic metric presented above is a simplification
of the full metric derived in Prix (2007a). In particular, the full metric of the

F statistic depends on the amplitude parameters ~A, which leads to a family
of F statistic metrics parameterised by ~A. The ~A are, in general, unknown,
and the variation of the metric family over all possible ~A implies a range of
mismatches. The full metric can therefore be used to compute the extremum
of the range of mismatches, due to the unknown ~A; in practise, however, it
is more useful to marginalise over the ~A to obtain an average metric.

The metric of the F statistic typically scales with some power of Tspan,
the total time span of the data (see section 5.2.3). When Tspan is greater than
several days, the metric of the F statistic simplifies to a phase metric, where
the amplitude modulation of the signal is ignored, and the overall mismatch
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between signal and template is due only to the mismatch in their respective
phases. The phase metric is given by[

MΦ
]
ij

=

〈
∂Φ(t)

λi

∂Φ(t)

λj

〉
−
〈
∂Φ(t)

λi

〉〈
∂Φ(t)

λj

〉
, (7.16)

where the phase Φ(t) is given by equation 5.12. The first term is equal to
the Fisher information matrix; the second term arises from maximising the
metric over the initial phase φ0. The phase metric has been computed for the
single-detector F statistic by Whitbeck (2006), and since Prix (2007a) found
that the full F statistic metric does not scale with the number of detectors,2

the same metric can be used for the multi-detector F statistic. Prix (2007a)
also defines an orbital metric, which further neglects the phase modulation
due to the sidereal motion of the detector, which gives similar performance.

The phase metric is not flat (see above) over the space of Doppler pa-
rameters α, δ, f , ḟ , f̈ , etc. If the sky position is known, however, the phase
metric over the remaining parameters f , ḟ , f̈ , etc. is flat, and is given by
(Wette et al. 2008)

[
Mf,ḟ ,...

]
ij

=
4π2T i+j+2

span (i+ 1)(j + 1)

(i+ 2)!(j + 2)!(i+ j + 3)
, (7.17)

where the indices i, j take the values 0 for f , 1 for ḟ , etc. Thus, the tem-
plate bank generation algorithm presented in this chapter may be used to
search for gravitational waves from a periodic source with known sky position
but unknown frequency evolution; such a search, directed at the supernova
remnant Cassiopeia A, is presented in Chapters 8 and 9. Equation 7.17 is
sometimes referred to as the spindown-only metric.

Finally, we note that the metric, because it is the result of a truncated
Taylor expansion, is only a local approximation to the mismatch, and be-
comes less accurate as the difference between the parameters of signal and
template increase. Fortunately, the tendency is for the metric to over-
estimate the expected mismatch (Prix 2007a). We verify this behaviour,
for the spindown-only metric, in section 7.4.1.

7.3 A template bank generation algorithm

This section presents an algorithm for generating the minimal bank of tem-
plates to cover a given n-dimensional parameter space, subject to a maximum

2 The sensitivity of an F statistic search does, however, scale with the harmonic sum
of the noise floors of the detectors; see section 8.5.
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allowed mismatch (see also Prix 2007b). The algorithm uses a lattice to po-
sition points in the template parameter space. The order in which the lattice
points are generated guarantees that every part of the parameter space will
be visited (section 7.3.1). The transformation from the covering spheres of
the lattice to the mismatch ellipses given by the parameter space metric
is presented in section 7.3.2. In section 7.3.3 we show how to calculate the
number of templates required for a complete coverage of the parameter space.

An algorithm based on the sphere coverings of lattices is not the only
possible approach to the problem of template placement. A very different,
but simple and effective approach, described in Messenger et al. (2009), is
to simply place templates randomly in the parameter space. While com-
plete coverage is not assured, the mean fractional loss in coverage can be
controlled, through the number of generated templates, and the statistical
distribution of the worst possible mismatch can be determined (Messenger
et al. 2009, Manca & Vallisneri 2010). Control over the fractional loss only
applies, however, within the bulk of the parameter space; at its edges, the
coverage worsens considerably, and additional templates are required (Manca
& Vallisneri 2010). In higher dimensions, starting at n ∼ 6, and particularly
for n & 10, random template placement requires many fewer templates (by a
factor of ∼ 6 in n = 19 dimensions) than a lattice-based algorithm to cover
the bulk of a parameter space, at the cost of a small (∼ 1%) loss in coverage;
this trade-off may well be appealing for high-dimensional, computationally
expensive searches. Stochastic template placement (e.g. Harry et al. 2009)
is similar to random templates, except that that algorithm additionally re-
moves templates which, by chance, excessively overlap each other. Messenger
et al. (2009) also presented a relaxed lattice-based placement strategy, where
the mismatch µ is simply beyond the desired maximum µmax, again reducing
the number of required templates at the cost of some loss in coverage due to
µ > µmax. Manca & Vallisneri (2010) have presented a template placement
algorithm based on a triangulation of the local (possibly curved) geometry
of the parameter space; this approach does not require explicit knowledge of
the parameter space metric.

7.3.1 Iteration over the parameter space

The parameter space points

~p = G~k (7.18)

are calculated using the generator of the lattice G, and an n-dimensional
vector of integers k. To generate all the points needed to cover the parameter
space, an efficient method is needed of iterating over all possible integers k,
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so that every part of the space is visited, regardless of its shape. Such a
method is presented in this section.

We require that the bounds on the parameters ~p = (p1, . . . , pn) follow the
following pattern. The first parameter, p1, is bounded by two constants, pmin

1

and pmax
1 . The second parameter, p2, is bounded by pmin

2 and pmax
2 , which may

be functions only of p1. The third parameter, p3, is bounded by pmin
3 and

pmax
3 , which may be functions only of the preceding two parameters, p1 and
p2. This pattern is continued, until pn is reached. In short, the bounds on
any parameter may be functions only of the previous parameters, or constant
if the parameter is p1. Thus, the parameter space is defined by the following
region:

pmin
1 ≤ p1 ≤ pmax

1 ,

pmin
2 (p1) ≤ p2 ≤ pmax

2 (p1) ,

pmin
3 (p1, p2) ≤ p3 ≤ pmax

3 (p1, p2) ,

· · ·
pmin
n (p1, p2, . . . , pn−1) ≤ pn ≤ pmax

n (p1, p2, . . . , pn−1) .

(7.19)

To generate the parameter space points, via equation 7.18, we need to
transform the bounds on ~p, given by equation 7.19, into the equivalent bounds
on ~k. It would be convenient if the nested structure of the bounds on ~p,
evident in equation 7.19, was also true of the bounds on ~k, i.e.

kmin
1 ≤ k1 ≤ kmax

1 ,

kmin
2 (k1) ≤ k2 ≤ kmax

2 (k1) ,

kmin
3 (k1, k2) ≤ k3 ≤ kmax

3 (k1, k2) ,

· · ·
kmin
n (k1, k2, . . . , kn−1) ≤ kn ≤ kmax

n (k1, k2, . . . , kn−1) .

(7.20)

If so, the parameter space could be easily iterated over using a sequence of
nested loops. The outermost loop (over k1) would take constant bounds (kmin

1 ,
kmax

1 ); the first inner loop (over k2) would calculate the value of its bounds
(kmin

2 (k1), kmax
2 (k1)) using the current value of k1; the next inner loop (over

k3) would calculate the value of its bounds (kmin
3 (k1, k2), kmax

3 (k1, k2)) using
the current values of k1 and k2; and so the pattern would continue. For equa-
tion 7.20 to be true, however, the generator matrix G must have a particular
form. To see why, we transform the lower bound on pi, p

min
i (pi−1, pi−2, . . . ),
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p1

p 2

Figure 7.2: Edges effects at the boundary of a two-dimensional parameter
space in p1 and p2. Black template points are laid within the parameter
space (the region below the black line, pmax

2 ); the grey area indicates where
the space is covered by the mismatch ellipses of the black templates. The red
line, pmax

2 +∂p2, indicates an extension of the extent parameter space by half
the height of the bounding box, db.b.

2 , of a mismatch ellipse (red, dashed).
Additional template points (plotted in red, with their mismatch ellipses) are
laid within this boundary region. A hexagonal lattice is used; the generator
matrix used is that of Figure 7.3d.

into the equivalent lower bound on ki, using equation 7.18:

kmin
i (ki−1, ki−2, . . . ) = 1

Gii

{
pmin
i

( n∑
j=1

G(i−1)jkj,

n∑
j=1

G(i−2)jkj, . . .

)
−

n∑
j=1
j 6=i

Gijkj

} , (7.21)

where bc is the floor function; the upper bound on ki follows in a similar
fashion. For kmin

i to be a function only of ki−1, ki−2, etc., as implied by the
left-hand side of equation 7.21, we require G to be a lower triangular matrix,
i.e.

Gij = 0 for all j > i . (7.22)

In section 7.3, we show that a generator matrix in lower triangular form may
be constructed for any lattice; equation 7.22 does not therefore limit the
applicability of the algorithm.
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The iteration procedure, while guaranteeing coverage of the bulk of the
parameter space, will however fail to adequately cover the edges of the pa-
rameter space. This is illustrated in Figure 7.2. The geometry of how the
ellipses fit together leads to gaps below the boundary of the parameter space.
This is easily rectified, however, by adding a boundary layer around the edges
of the parameter space, such that parameter space bounds become

− ∂pi + pmin
i (pi−1, pi−1, . . . ) ≤ pi ≤ pmax

i (pi−1, pi−1, . . . ) + ∂pi , (7.23)

where ∂pi denotes3 the width of the boundary layer appropriate for the pa-
rameter pi. An appropriate width for the boundary layer is given by the
bounding box of the mismatch ellipse, which we define to be the smallest n-
dimensional rectangle, with sides parallel to the directions of the coordinates
pi, that completely encloses the mismatch ellipse. It is sufficient to choose
a boundary width ∂pi that is half the extent of the bounding box, dbb

i , in
the pi coordinate direction. This implies that a template should be included
in the bank whenever any part of its mismatch ellipse is within the original
bounds on the parameter space, given by equation 7.19.

An expression for the size of the bounding box in terms of the metric
can be derived as follows. Consider an n-dimensional ellipse, centred at
the origin, and given in terms of the coordinates ~x and the positive-definite
matrix M by

~x ·M~x = µ . (7.24)

We consider the intersection of the ellipse with a plane perpendicular to the
direction of one of the xi coordinates; without loss of generality, we choose
the x1 coordinate. We partition M and ~x into

M =

(
a ~bT

~b N

)
, ~x =

(
x1

~y

)
, (7.25)

where a and x1 are scalars,~b and ~y are n−1 vectors,~bT denotes the row vector
form of ~b, and N is a (n− 1)× (n− 1) positive-definite matrix. Substituting
equations 7.25 into equation 7.24 gives, after some rearrangement,(

~y − ~y0

)
·N
(
~y − ~y0

)
= ν (7.26)

where

~y0 = −N−1~bx1 , (7.27)

ν = µ− x2
1

(
a−~b ·N−1~b

)
. (7.28)

3 Here, the symbol ∂ does not mean partial differentiation, but is used in the spirit of
its meaning in topology, where it denotes the boundary of a set.
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With x1 constant, equation 7.26 describes the ellipse defined by the intersec-
tion of equation 7.24 with the constant–x1 plane. We note that when

x1 = ±
√
µ
(
a−~b ·N−1~b

)−1
, (7.29)

then ν = 0, by equation 7.28, and the intersection ellipse shrinks to a point.
This indicates that |x1| is at the furthest extent of the original ellipse (equa-
tion 7.24); if |x1| is increased further, ν < 0 and equation 7.26 has no solution,
i.e. there is no longer any intersection.

To simplify equation 7.29, we partition the inverse of M in the same
fashion as in equation 7.25, and equate

MM−1 =

(
a ~bT

~b N

)(
c ~dT

~d P

)
=

(
1 ~0T

~0 1n−1

)
= 1n , (7.30)

where 1 is the identity matrix. This results in four equations, two of which,

ac+~b · ~d = 1 , ~bc+ N~d = ~0 , (7.31)

can be rearranged to give4

(
a−~b ·N−1~b

)−1
= c = [M−1]11 . (7.32)

Thus, x1 = ±
√
µ[M−1]11, and it follows that the extent of the bounding box

in the xi coordinate direction is given by

dbb
i = 2

√
µ[M−1]ii . (7.33)

7.3.2 The lattice generator

In this section, we construct a generator matrix for the template bank lattice.
We start with the generator of a lattice with a optimally thin sphere covering,
and transform it, using equation 7.3, into an equivalent lattice whose covering
spheres are the mismatch ellipses of the metric. The generator will also be in
lower triangular form, to satisfy the requirements of the previous section. To
illustrate the transformation, we again use the hexagonal lattice, A?2, as an
example. Prix (2007b) derives a similar procedure, but does not explicitly
require that the generator be lower triangular.

4 Equation 7.32 gives the Schur complement c of the block N of the matrix M.
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x

y

z

(a) GA?
2
≡ G0

x

y

z

(b) G′1

x

y

(c) G2

f

ḟ

(d) G3 ≡ G

Figure 7.3: Transformation of the the original hexagonal lattice generator
GA?2

(a), through intermediate stages G′1 (b) and G2 (c), to the final genera-
tor for a 2-dimensional template bank G (d). One covering sphere/mismatch
ellipse is plotted in blue for illustration. The red arrows represent the ba-
sis vectors given by the columns of the generator matrix. See the text of
section 7.3.2 for details.
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The generator of the A?n lattices is most conveniently expressed by the
(n+ 1)× n matrix (Conway & Sloane 1988b)

GA?n =


1 · · · 1 −n

n+1

−1 · · · 0 1
n+1

...
. . .

...
...

0 · · · −1 1
n+1

0 · · · 0 1
n+1

 . (7.34)

In particular, the 3× 2 matrix

GA?2
=

 1 −2
3

−1 1
3

0 1
3

 ≡ G0 (7.35)

generates the A?2 lattice over a 2-dimensional plane embedded in 3 dimen-
sions, as shown in Figure 7.3a.

The first step is to reduce G0 to a 2× 2 matrix G1, thereby eliminating
the extra dimension. Prix (2007b) suggests obtaining G1 by finding the
components of the lattice vectors (the columns of G0) with respect to a basis
which spans the 2-dimensional plane of the lattice. An alternative is to rotate
the lattice plane to be perpendicular to one of the coordinate directions, e.g.
the z axis in figures 7.3a–7.3b. The value of the z coordinate will then always
be zero, and thus the z dimension may be discarded. The desired rotation is
given by a QR decomposition (Golub & Loan 1983):

G0 = QR , (7.36)

where Q is a 3 × 3 orthogonal matrix and R is a 3 × 2 upper triangular
matrix. If we take

G′1 = R = QTG0 , (7.37)

then G′1 is equivalent to G0, as equation 7.37 satisfies equation 7.3. The
generator

G′1 = QTG0 =


1√
2
− 1√

6
1

− 1√
2
− 1√

6
1

0
√

2
3

1


T

G0 =


√

2 − 1√
2

0 1√
6

0 0

 (7.38)

is plotted in Figure 7.3b. The plane of the lattice has no extent in the z
direction, and thus the last row of G′1 is zero. We remove this row to obtain

G1 = JG′1 =

(
1 0 0
0 1 0

)
√

2 − 1√
2

0 1√
6

0 0

 =

(√
2 − 1√

2

0 1√
6

)
. (7.39)
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Next, we transform G1 to a lower triangular matrix

G2 = KG1L =

(
1√
6

0

− 1√
2

√
2

)
, (7.40)

where

K =

(
0 sign([G1]22)

sign([G1]11) 0

)
, L =

(
0 1
1 0

)
(7.41)

are anti-diagonal matrices. The sign expressions in K ensure that the diago-
nal elements of G2 are always positive (although this is not required for the
example hexagonal lattice considered here). This is convenient for a practi-
cal implementation (see section 7.4) as it ensures that the parameters pi are
always incremented in a consistent direction: from the lower bound pmin

i to
the upper bound pmax

i . We note that G2 is equivalent to G1 by equation 7.3.
Finally, we perform a coordinate transformation so that the covering

spheres of G2 are mapped to the mismatch ellipses of the metric M, as
required for the template bank. Let ~q = G2

~k be a lattice point generated by
G2. If we take any point ~q ′ on the surface of the covering sphere surround-
ing ~q, of radius R, then the square of the distance between ~q and ~q ′ is, by
definition,

(~q − ~q ′) · (~q − ~q ′) = R2 . (7.42)

Now consider the points ~p = T~q and ~p ′ = T~q ′, where the transformation T
is defined by

T =

√
µmax

R
D , (7.43)

and the matrix D has the property that its columns are orthonormal with
respect to the metric, i.e.

DTMD = 1 . (7.44)

The square of the metric distance between ~p and ~p ′ is

(~p− ~p ′) ·M(~p− ~p ′) =
µmax

R2

[
(~q − ~q ′) ·DTMD(~q − ~q ′)

]
= µmax ; (7.45)

in other words, ~p ′ is on the surface of the metric mismatch ellipse surrounding
~p. Thus, the transformation T maps the covering spheres of the lattice to
the mismatch ellipses of the template bank, as required. The generator of
the template bank points is

G3 = TG2 ≡ G . (7.46)
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We note that equation 7.46 does not need to satisfy equation 7.3; we take the
view that T is a transformation acting on the space containing the lattice (by
changing the coordinate), and is not acting on the lattice itself (within some
fixed space). Therefore, the lattice generated by G3 has the same properties
of the lattice generated by G2, in particular whether the coverage is optimal
(see section 7.1.2).

For the example hexagonal lattice, and using the spindown-only metric
(equation 7.17, with an arbitrary Tspan),

T =

√
µmax√
2/3

(
8√
3π

0
−10√

3π
2
√

5
3π

)
; (7.47)

the generator

G3 = TG2 =
√
µmax

( 4
π

0

−5+
√

5
π

2
√

5
π

)
(7.48)

is plotted, for an arbitrary µmax, in Figure 7.3d.
It remains to check that the transformation T is lower triangular, so that

it preserves the lower triangular form of G2. The matrix D may be found
using Gram-Schmidt orthogonalisation (Golub & Loan 1983), where vectors
~ui are considered orthogonal if ~ui ·M~uj = δij, where δij is the Kronecker delta.
The order of operations can be arranged so that D is lower triangular; thus
the final generator G is lower triangular, and the parameter space bounds
on the integers ~k are of the form given by equation 7.20.

In summary, the n × n generator matrix G of the template bank for an
n-dimensional parameter space, given the metric M, and starting from any
m× n lattice generator GL, is given by

G =

√
µmax

R
DKJQTGLL , (7.49a)

where

GL = QR , (7.49b)

Q = m×m, orthogonal, (7.49c)

R = m× n , upper triangular, (7.49d)

J = n×m, [J]ij = δij , (7.49e)

K = n× n , [K]ij = δ(n−i+1)j sign([R]jj) (7.49f)

L = n× n , [L]ij = δ(n−i+1)j (7.49g)

D = n× n , lower triangular,DTMD = 1 , (7.49h)

R = θ1/n(det GT
LGL)1/(2n) . (7.49i)
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7.3.3 Number of templates required for coverage

The number of templates the algorithm requires to cover the parameter space
can be estimated by dividing the volume of the parameter space by the
volume covered by a single template point (see Prix 2007b). This approach
is accurate if the extent of the parameter space is always much larger than
a single template, so the the parameter space edges are not important. If,
however, the edges of the parameter space do become important, in particular
if the parameter space becomes smaller than the extent of a single template,
the calculation will assume that only fractions of a template are needed,
and the sum of those fractions will underestimate the total number of whole
templates actually required. Fortunately, the measures taken in section 7.3.1
to ensure proper coverage of the edges can also be used here to arrive at an
accurate estimate of the number of templates.

The parameter space of the gravitational wave search for Cassiopeia A
(Chapters 8 and 9) is a particular case where the edge effects of the parameter
space are significant. The application of the template bank algorithm to this
parameter space is discussed in section 8.4; in particular, we show that the
estimate for the number of templates presented here accurately predicts the
number of templates generated by the algorithm.

Given the parameter space of equation 7.19, with the additional coverage
of the edges given by equation 7.23, the coordinate volume of the parameter
space V is found by integrating over the space, starting with pn and ending
with p1:

V =

pmax
1 +δp1∫

pmin
1 −δp1

dp1

pmax
2 (p1)+δp2∫

pmin
2 (p1)−δp2

dp2

pmax
3 (p1,p2)+δp3∫

pmin
3 (p1,p2)−δp3

dp3 · · ·
pmax
n (p1,...,pn−1)+δpn∫

pmin
n (p1,...,pn−1)−δpn

dpn (7.50)

The volume of a single template,
√

det GTG, is simply the volume of the
fundamental region (equation 7.2) of the lattice generated by G. It follows
from equations 7.49 that the determinant of GTG is

det GTG =
(√µmax

R

)2n

(det D)2(det GT
LGL) . (7.51)

Deducing the determinant of D from equation 7.44, and substituting equa-
tion 7.6 for the normalised thickness of the lattice, this simplifies to

det GTG =
µnmax

θ2 det M
. (7.52)

The estimate of the number of templates required for coverage is therefore

N =
V√

det GTG
= θµ−n/2max

√
det M V . (7.53)
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Aside from the inclusion of the parameter space edges in V , this expression
agrees with Prix (2007b).

7.4 Implementation

The template bank algorithm, presented above, was implemented in the C
programming language, and integrated in the ComputeFStatistic v2 imple-
mentation of the F statistic (see section 8.3). The implementation is named
FlatLatticeTiling, and is available as part of LAL/LALApps (see bibliog-
raphy), a collection of libraries and applications for gravitational wave data
analysis.

The implementation is broken into four parts:

• FlatLatticeTiling.c, and associated header FlatLatticeTiling.h,
are located in the LAL tools package. It contains the implementation
of the template bank.

• FlatLatticeTilingPulsar.c, and associated header FlatLattice-

TilingPulsar.h, are located in the LAL pulsar package. It provides
a few functions specific to periodic gravitational wave searches.

• testFlatLatticeTilingPulsar.c is located in LALApps under src/
pulsar/templateBanks. It is a stand-alone testing and debugging ap-
plication.

• DopplerFullScan.c, and associated headers DopplerFullScan.h and
DopplerScan.h, are located in the LAL support package. They were
written by Reinhard Prix to connect a number of template bank im-
plementations to ComputeFStatistic v2 through a common interface.
Code was added to include the FlatLatticeTiling template bank.

7.4.1 Testing the implementation

In this section, we verify that the FlatLatticeTiling implementation of
the template bank algorithm provides complete coverage over three example
parameter spaces. We also confirm that the spindown-only metric provides
a satisfactory, if conservative, estimator of the mismatch of the F statistic
(see also Prix 2007a). In section 8.4.1, we also show that the implementation
generates the correct number of templates, as predicted by equation 7.53.

The example parameters spaces are subspaces of the parameter space of
the Cassiopeia A search; this parameter space, as discussed in section 8.4, is
dominated by edge effects from the second spindown (f̈) dimension. For this
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reason, it is a suitable parameter space with which to test the algorithm’s
ability to account for the parameter space edges. We choose three frequency
slices through the parameter space, with starting frequencies of 100, 200, and
300 Hz, and bandwidths of 10−4 Hz. The remaining parameters of the space
are as described in section 8.4. The FlatLatticeTiling implementation
generates ∼ 1.8×106, 3.7×106, and 5.8×106 templates respectively to cover
the three subspaces.

To test whether the template bank covers a particular slice, we perform
the following procedure. We generate injection points by selecting random
locations within the parameter space under test; approximately 10 injection
points are generated for each template in the bank. For each injection point,
we compute the distance, using the spindown-only metric (equation 7.17),
from it to each template in the bank, and record the minimum distance,
which we denote µ. This distance must always be less than the maximum
mismatch µmax supplied to the algorithm. Figure 7.4a shows histograms of
µ/µmax for the three subspaces. In each case, no injection points were found
where µ > µmax, confirming that the template bank completely covered each
subspace. The histograms are also identical, indicating the coverage does not
change with the frequency-dependent size of the parameter spaces. The shape
of the histograms reflects the geometry of the A?3 lattice used to generate
the template bank, and agree with the results of equivalent simulations by
Messenger et al. (2009).

The above test assumed that the spindown-only metric M is a reliable
estimator of the mismatch behaviour of the F statistic; we now confirm
that this assumption is valid. We use two LALApps applications; Com-

puteFStatistic v2, the implementation of the F statistic, and Makefake-

data v4, which generates SFTs containing simulated periodic gravitational
wave signals and, optionally, Gaussian noise.

We first use Makefakedata v4 to generate noise-free SFTs with a time
span of Tspan = 12 days. The SFTs contain a single simulated periodic signal
with a fixed h0, and the remaining parameters chosen at random: values for
cos ι, ψ, and φ0 are chosen from their maximum possible ranges; a value for
f is chosen from a range of 10−5 Hz, starting at 100 Hz; a value for ḟ is
chosen from the range −1× 10−8 to −5× 10−9 Hz s−1; and a value for f̈ is
chosen from the range −1× 10−18 to −5× 10−19 Hz s−2. We then use Com-

puteFStatistic v2 to search for the signal at its known Doppler parameters
~λsignal = (f, ḟ , f̈), thereby obtaining the maxima of the F statistic, which we
denote 2Fmax. Finally we use ComputeFStatistic v2 to perform a search
for the signal, over the same ranges of f , ḟ , and f̈ from which the random
parameters of the signal were chosen. The search uses FlatLatticeTiling,
with a maximum mismatch of µmax = 0.2. We find the template with the
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Figure 7.4: Testing the FlatLatticeTiling implementation of the tem-
plate bank algorithm. (a) Testing the coverage: histograms of µ/µmax for
the three subspaces of the Cassiopeia A search parameter space, with start-
ing frequencies of (top to bottom) 100, 200, and 300 Hz. (b) Testing the
spindown-only metric: the mismatch according to the metric, µM, versus the
mismatch according to the F statistic, µ2F .

maximum value of 2F , which we denote 2Fsearch, and its Doppler parameters,
which we denote ~λsearch. From this we record the mismatch according to the
F statistic:

µ2F =
2Fmax − 2Fsearch

2Fmax

. (7.54)

We also record, using the Doppler parameters of the signal and of its closest
match, the mismatch according to the metric:

µM = (~λ− ~λ0) ·M(~λ− ~λ0) . (7.55)

Figure 7.4b plots µ2F , µM; each point represents one of the ∼ 7400 rep-
etitions of the above procedure. We expect µ2F . µM, if the spindown
metric is a conservative estimator of the F statistic mismatch, and this is
indeed the case. We note that ∼ 10% of the points do fall below the red line
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µ2F = µM, but in these cases the deviation is small: the average value of
|µ2F − µM| . 10−4. The slight curve of the black points away from the red
line is due to the quadratic nature of the metric, which at high µ begins to
significantly over-estimate the F statistic mismatch.

7.5 Summary

This chapter presented an efficient template bank generation algorithm for
coherent periodic gravitational wave searches. We introduced optimal lattices
and sphere coverings, which are used to minimise the number of templates
required to cover the template parameter space of the search. A metric on the
parameter space is used to find the correct template spacing, such that any
potential gravitational wave signal will only suffer a prescribed maximum loss
in signal-to-noise ratio when matched to its nearest template. We presented
each step in the template bank algorithm, showing how to efficiently iterate
over the parameter space (and how to correctly account for its edges), how
to construct the lattice generator used to position the templates, and how to
estimate the number of templates required for complete coverage. Finally, we
presented an implementation of the algorithm and validated its performance.
This algorithm will be used in the search for periodic gravitational waves from
Cassiopeia A presented in the next two chapters.



Chapter 8

A search for gravitational
waves from Cassiopeia A

This chapter, and Chapter 9, present a search for gravitational waves targeted
at the young Galactic supernova remnant Cassiopeia A (Cas A). This search
is the first search by the LIGO Scientific Collaboration (LSC) to target a
non-pulsing isolated neutron star. We discuss the motivation for a search
targeting Cas A in section 8.1. We then derive an indirect upper limit on the
strength of gravitational waves from Cas A, based on energy conservation, in
section 8.2. Sections 8.3 and 8.4 present the proposed search, including the
choice of analysis method, the time span of the data set, and the parameter
space of frequencies and spindowns to search. Section 8.5 calculates the
sensitivity of the search, and section 8.6 calculates its computational cost
and the upper limits it is expected to attain. Finally, section 8.7 computes
the expected distribution of the largest value of the detection statistic that
will be found by the search, assuming that there is no gravitational wave
signal.

See section 1.1 for author contributions and publications, a disclaimer, and
acknowledgements relevant to this chapter.

8.1 The central compact object

Cas A is a core-collapse supernova remnant (Krause et al. 2008). It is
3.4+0.3
−0.1 kpc distant (Reed et al. 1995), and is estimated to have occurred

in the year 1681 ± 19 (Fesen et al. 2006a). The supernova was possibly ob-
served by the first Astronomer Royal, John Flamsteed (Hughes 1980). It
is the second youngest supernova remnant in the Galaxy, after G1.9+0.3
(Reynolds et al. 2008), and is one of the strongest radio sources in the sky

111
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(Baade & Minkowski 1954, McLaughlin et al. 2001). At the centre of the
remnant is a bright x-ray point source, first identified in first-light images
taken by the Chandra x-ray satellite (Tananbaum 1999), and retro-actively
identified in archival data from the Röntgen (ROSAT) and Einstein satellites
(Pavlov et al. 2000). The point source, designated CXOU J232327.8+584842,
is almost certainly associated with the remnant (Pavlov et al. 2000, Kaplan
et al. 2001). Its right ascension α = 23h 23m (27.943 ± 0.05)s and its dec-
lination δ = 58◦ 48′ (42.51 ± 0.4)′′ (Fesen et al. 2006b). The point source
is included as a member of the class of central compact objects (CCOs), of
which it is the youngest (De Luca 2008).

The nature of the Cas A CCO remains uncertain, although a number
of possibilities have been ruled out. A black hole is excluded (Pavlov &
Luna 2009), due to the lack of observed x-ray variability which would arise
from accretion (Pavlov et al. 2000). This leaves an accreting or isolated
neutron star as the most likely possibilities (e.g. Murray et al. 2002, Pavlov
& Luna 2009). The transverse velocity of the CCO, assuming an initial
position coincident with the centre of expansion, is ∼ 350 km s−1 (Fesen et al.
2006a). Accretion by the CCO, due to its motion, of remnant SNR material
or the inter-stellar medium is, however, inconsistent with the observed x-
ray flux (Pavlov et al. 2000, Fesen et al. 2006b). Optical and near-infrared
observations by Ryan et al. (2001), Kaplan et al. (2001), Fesen et al. (2006b),
and Wang et al. (2007) found no counterpart to the CCO. Upper limits in
these bands constrain the absolute magnitude of any binary companion to
less than any main-sequence star or known x-ray binary companion (Fesen
et al. 2006b). A residual accretion disk, formed from fallback material from
the SNR, was not detected by Wang et al. (2007), but a cool passive disk is
still a possibility.

McLaughlin et al. (2001) searched for radio pulsations from the CCO with
frequencies between ∼ 0.1 Hz and ∼ 2 kHz (depending on the dispersion
measure), and found no credible signal. This is evidence against the CCO
being an active pulsar, although it may simply be beamed away from Earth.
The upper limits on radio pulsations derived by McLaughlin et al. are lower
than for any known pulsar younger than 104 yr. The absence of a pulsar
wind nebula (Hwang et al. 2004) is also evidence against an active pulsar.
X-ray pulsations from the CCO have been searched for by Chakrabarty et al.,
Murray et al. (2002), Mereghetti et al. (2002), and most recently by Pavlov
& Luna (2009); together these searches have covered frequencies between
30 µHz and 500 Hz. No pulsations were observed1; a weakly-significant

1 According to Pavlov & Luna (2009): ”A 300 ks observation with the Chandra HRC-S
detector, aimed at the search for the CCO period, has been carried out recently (2009
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candidate at∼ 83 Hz (∼ 12 ms), reported by Murray et al., was not confirmed
by Ransom (2002).

A power-law fit to the CCO’s x-ray spectrum is considerably steeper than
expected for a classical young pulsar; a blackbody fit yields a temperature
too high, and a radius too low, to be consistent with x-ray emission from the
whole surface of a cooling neutron star with a uniform temperature (Pavlov
et al. 2000, Chakrabarty et al. 2001). Better fits are provided by more so-
phisticated neutron star atmosphere models (Pavlov & Luna 2009), but are
still inconsistent with the parameters of a standard neutron star. Pavlov
et al. and Chakrabarty et al. suggested that the CCO might possess a very
strong magnetic field (∼ 1014–1015 G), which would produce a non-uniform
temperature distribution. Pavlov et al. proposed a two-component spectral
model of a neutron star with hot polar caps; a problem is that the model
predicts (as-yet unobserved) x-ray pulsations at the rotation frequency.

Two possible models for the Cas A CCO are magnetars and anti-mag-
netars. Magnetars possess very strong magnetic fields and rotate slowly at
∼ 0.1–0.5 Hz, while anti-magnetars are weakly magnetised (. 1011 G) and
rotate relatively quickly at ∼ 10 Hz (Pavlov & Luna 2009). To date, there
is no observational evidence which conclusively favours either model (Pavlov
et al. 2000, Gotthelf & Halpern 2008, Pavlov & Luna 2009). Magnetars in-
clude the anomalous x-ray pulsars (AXPs) and soft γ-ray repeaters (SGRs),
both of which emit occasional energetic outbursts (Fesen et al. 2006b). Anti-
magnetars are those CCOs which do not show any pulsar- or magnetar-like
activity (Gotthelf & Halpern 2008, Pavlov & Luna 2009). Using infrared
echoes from the inter-stellar medium, Krause et al. (2005) claimed to have
detected a ∼ 60-year-old high-energy flare from the CCO, similar to those
seen from SGRs; the claim was, however, not supported by subsequent ob-
servations (Kim et al. 2008, Dwek & Arendt 2008). The lack of any observed
bursts or flares from the Cas A CCO is evidence against the magnetar model;
although the CCO may be at an early, weakly-magnetised stage of develop-
ment, when outbursts does not occur, this is a difficult scenario to distinguish
observationally (Pavlov & Luna 2009). The Cas A CCO’s low x-ray lumi-
nosity is also inconsistent with the spindown luminosity expected if the CCO
were a young magnetar (Gotthelf & Halpern 2008, Pavlov & Luna 2009).

8.1.1 Motivation for a gravitational wave search

From the perspective of detecting gravitational waves from the CCO, an anti-
magnetar model is more promising, as it implies a more rapid rotation rate.

March; PI: D. Chakrabarty), but no results have been published yet.”
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Three of the known CCOs have confirmed spin frequencies (2.3–9.5 Hz); a
fourth measured period is possibly due to binary orbital motion (De Luca
2008, Gotthelf & Halpern 2009). The upper limits on their spindowns are
low, implying near-constant rotation rates over the stars’ lifetimes; they also
suggest weak magnetic fields consistent with the magnetar model (Pavlov &
Luna 2009). Non-axisymmetric gravitational radiation at twice the known
CCO spin frequencies, i.e. . 20 Hz, would be undetectable by LIGO, due to
the steep seismic noise floor below ∼ 50 Hz. Nevertheless, given the lack of a
definite model for the CCOs, it is premature to suggest that the small sample
of known CCOs are representative of the class in general. For example, the
Cas A CCO is much younger than the other known CCOs (De Luca 2008),
and therefore it may be true that Cas A exhibits different physics, such as
r-modes melting the crust (Owen et al. 1998, Lindblom et al. 2000, Wu et al.
2001).

In short, the wealth of multi-wavelength observations and theoretical
modelling of the Cas A CCO suggests the possibility that it might be a
gravitational wave source. If so, it may indeed be detectable even before ad-
vanced interferometers come online, as we show in the next section. Such a
detection would provide the rotational frequency and spindown of the CCO,
resolving its ambiguous classification (Pavlov et al. 2000, Chakrabarty et al.
2001, Gotthelf & Halpern 2008, Pavlov & Luna 2009). There is, therefore, a
wealth of information which may be potentially gained by the gravitational
wave search presented below.

8.2 Indirect upper limits

It is possible to determine an a priori, indirect upper limit on periodic grav-
itational waves from Cas A2 (Wette et al. 2008). We first assume that the
gravitational wave luminosity (i.e. the energy radiated in gravitational waves
per unit time) is bounded by the loss of rotational kinetic energy:

Lgw =
32G

5c5
I2
zzε

2(πf)6 . − d

dt

(
1

2
π2Izzf

2

)
= −Ėrot , (8.1)

where Lgw is the gravitational wave luminosity (e.g. Zimmermann & Sze-
denits 1979), Erot is the rotational kinetic energy, f is the gravitational wave
frequency (which is, assuming non-axisymmetric emission, twice the rotation
frequency), Izz is the principal moment of inertia, and ε is the equatorial el-

2 Hereafter, for brevity, we mean “Cas A” to refer to “the CCO in Cas A”.
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lipticity. Equation 8.1 can be rearranged to give an upper limit on

ε .

√
5c5

32π4GIzz

−ḟ
f 5

, (8.2)

and on the strain amplitude

h0 .
1

D

√
5GIzz

2c3

−ḟ
f

(8.3)

by substituting equation 2.4; here, D is the distance to the source. Equa-
tions 8.2 and 8.3 are known as spindown upper limits. They are used to
derive upper limits on known pulsars (e.g. Abbott et al. 2010), where the
frequency and spindown are known from electromagnetic observations of the
pulsar.

For Cas A, the frequency and spindown are unknown, so the spindown
upper limits cannot be used directly. If we assume, however, that the CCO
was born spinning at a substantially higher rate than at present, and that
its spindown since then has been primarily due to quadrupolar gravitational
wave emission, we can relate the unknown frequency and spindown to the
known age τ of the CCO as follows (Ostriker & Gunn 1969, Palomba 2000,
Abbott et al. 2007b):

τ ≈ 1

n− 1

(
f

−ḟ

)
. (8.4)

The quantity
n = ff̈/ḟ 2 (8.5)

is known as the braking index. A neutron star spins down according to f̈ ∝
fn, where the constant of proportionality and n depend on the mechanism
by which energy is lost; for example: electromagnetic (dipolar) radiation
(n = 3), gravitational (quadrupolar) radiation (n = 5), or a saturated r-
mode (n = 7). Substituting equation 8.4 into equations 8.2–8.3 gives the
age-based upper limits

ε .

√
5c5

32π4GIzzf 4(n− 1)τ
, (8.6)

h0 .
1

D

√
5GIzz

2c3(n− 1)τ
. (8.7)

While the age-based upper limits are similar to the spindown upper limits,
they rely on less information, and are therefore less solid. Like the spindown
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Figure 8.1: Histograms of the probability distributions of the upper limits
on (a) the ellipticity ε, assuming f = 100 Hz, and (b) the strain h0. The ε
and h0 are plotted in units of their respective fiducial values for Cas A.

upper limits, they are most useful as a relative indicator of which astronomi-
cal objects would be interesting to target with a gravitational wave search, as
opposed to a rigourous estimator of the expected gravitational wave strength.

Using n = 5, the known age and distance, and a fiducial value for Izz, we
arrive at the following age-based upper limits on Cas A:

ε . 3.9× 10−4

(
100 Hz

f

)2
√

4

n− 1

300 yr

τ

1045 g cm2

Izz
, (8.8)

h0 . 1.2× 10−24

(
3.4 kpc

D

)√
4

n− 1

300 yr

τ

Izz
1045 g cm2

. (8.9)

Note that the fiducial upper limit on h0 is independent of frequency. We
adopt a fiducial value for the age τ at the lower end of the estimated range
(Fesen et al. 2006a); this choice gives more conservative bounds on the search
parameter space (section 8.4), as well as a higher upper limit. The upper
limit on ε is at the speculative end of the range of theoretical predictions (see
section 2.4).

8.2.1 Uncertainty in the upper limits

There are a number of sources of uncertainty in the age-based upper limits
on Cas A (equations 8.8 and 8.9), aside from the validity of the assumptions
used in their derivation. In addition to the measured uncertainties in the age
(Fesen et al. 2006a) and distance (Reed et al. 1995), the principal moment
of inertia could conceivably be three times the fiducial value assumed here
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(see discussion in Abbott et al. 2007e). Since the CCO is observed in x-
rays, the true braking index will at least include electromagnetic radiation,
and possibly other mechanisms. Furthermore, the relative weighting of the
mechanisms spinning down the star, and thus the braking index, are likely
to change over its lifetime. Therefore, instead of the assumed n = 4, the
appropriate quantity for the upper limits is the braking index averaged over
the lifetime of the star, which is unknown.

Here, we present a rough estimate of the effect of the above uncertain-
ties in τ , D, Izz, and n on the value of the indirect upper limit; we do not
attempt a more sophisticated treatment such as, for example, modelling dif-
ferent spindown histories of the CCO. We evaluate equations 8.6–8.7 using
random values for the parameters τ , D, Izz, and n drawn from the following
distributions: for τ , a Gaussian distribution with a mean of 328 yr and a
standard deviation of 19 yr; for D, a Gaussian distribution with a mean of
3.4 kpc and a standard deviation of 0.2 kpc (i.e. the average of the upper
and lower errors in Reed et al. 1995); for Izz, a uniform distribution over the
range 1–3× 1045 g cm2; and for n, a uniform distribution over the range 2–7
(see section 8.4).

Figure 8.1 shows histograms, computed using 106 trials, of the probability
distributions on the upper limits on ε (assuming f = 100 Hz) and h0. Due
to the uncertainties in τ , D, Izz, and n, the upper limit on ε is ∼ 70% likely
to be less than its fiducial value of 3.9× 10−4. On the other hand, the upper
limit on h0 is only ∼ 3% likely to be less than its fiducial value of 1.2×10−24.
The fiducial upper limit on Cas A is comparable to the spindown upper limit
on the Crab pulsar of h0 = 1.4 × 10−24, which has been beaten by a search
of LIGO S5 data (Abbott et al. 2008c).

8.3 Choice of analysis method and time span

of data set

Both coherent (e.g. Abbott et al. 2007b) and semi-coherent (e.g. Abbott et al.
2008a) analysis methods have been used to search for periodic gravitational
waves. Semi-coherent methods are in practice more sensitive than coherent
methods for many searches of large data sets, when computational limits are
taken into account (see section 5.2.3). For Cas A, however, the integration
time required to beat the indirect limit is short enough that a simpler and
more sensitive coherent method can be used for reasonable computational
cost (Wette et al. 2008). In section 8.6, we show that a F statistic search
of data, at the design sensitivity of LIGO, can beat the indirect limit if the
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span of the data set is
Tspan ≈ 12 days , (8.10)

and that the computational cost of such a search is feasible.
The implementation of the F statistic used by the search is named Com-

puteFStatistic v2, and is available as part of the LALApps (see bibliog-
raphy) software package.3 The implementation (Prix 2008) takes SFTs as
input, and computes the multi-detector F statistic of Cutler & Schutz (2005)
in the frequency domain. ComputeFStatistic v2 has previously been used
in a wide-parameter search for the Crab pulsar (Abbott et al. 2008c), and is
also being used in Einstein@Home searches. It is the successor to the single-
detector F statistic implementation used in Abbott et al. (2007b, 2009d).

8.4 The frequency and spindown parameter

space

The parameters of a periodic gravitational wave search include the sky posi-
tion and frequency evolution of the source (section 5.2.2). The sky position
of Cas A is known to sufficiently high precision that it need not be searched
over. On the other hand, because Cas A is younger than objects consid-
ered in previous LSC multi-template searches, a second spindown derivative
is required (Wette et al. 2008). Over the chosen length of the Cas A data
set (12 days), the maximum shift in frequency, over the range of second
spindowns presented below (equation 8.11c) is ∼ 1.3 × 10−5 Hz, which is
larger than the frequency extent of the mismatch ellipse (equation 7.33) of
∼ 4.8×10−6. Thus, if the second spindown was omitted, a gravitational wave
signal from Cas A could potentially be lost due to decoherence between signal
and template. For this reason, previous and contemporary all-sky searches
for periodic gravitational waves using PowerFlux (Abbott et al. 2009b) and
Einstein@Home (Abbott et al. 2009d) were not sensitive to the complete
range of frequency evolution parameters possible for Cas A. Indeed, Cas A
is young enough that the range of first spindowns of these searches may
not cover all possibilities; the parameter space of (Abbott et al. 2009d) is
restricted to search for objects with spindown ages greater than 8000 years.

The parameter space of the Cas A search thus covers frequency f , first
spindown ḟ , and second spindown f̈ . A search of this type of parameter
space is often referred to as a directed search. Previous directed searches by
the LSC have targeted Scorpius X-1 (see section 5.1.4); the search for Cas A
is the first to target a non-pulsing neutron star. Figure 8.2 visualises the

3 The version of the code used here is tagged with the identifier “S5CasASearch”.
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Figure 8.2: Visualisation of the Cas A search parameter space, defined by
equations 8.11. The red surfaces show the bounds on ḟ and f̈ , at constant
f from (dark to light) 100 to 300 Hz, in 50 Hz intervals. The green surface
shows the lower bound on ḟ as a function of f , while the blue surface shows
the lower bound of f̈ as a function of f and ḟ . (The upper bounds on ḟ and
f̈ are not shown.)

bounds on the parameter space, which are chosen as follows (Wette et al.
2008). The frequency band is chosen to be

100 Hz ≤ f ≤ 300 Hz (8.11a)

which surrounds the frequencies where the LIGO interferometers are most
sensitive. It roughly corresponds to the band over which the search is ex-
pected to beat the indirect upper limit. The bounds on the spindowns are
chosen to be

−f
(minn− 1)τ

≤ ḟ ≤ −f
(maxn− 1)τ

, (8.11b)

(minn)ḟ 2

f
≤ f̈ ≤ (maxn)ḟ 2

f
, (8.11c)

where τ is the age of Cas A. The bounds on the first spindown come from re-
arranging equation 8.4, while the bounds on the second spindown come from
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re-arranging equation 8.5; in both cases the lower and upper bounds result
from assuming a range of possible braking indices. The choice of τ = 300 yr
(section 8.2) results in conservative bounds on the first spindown.

The range of braking indices is chosen to be 2 ≤ n ≤ 7. This range covers
all known pulsars except the Vela pulsar, which is visibly interacting with its
wind nebula, and thus does not follow the spindown-only evolution assumed
here. We note that the braking index in equation 8.11b is a lifetime average
(as in the upper limits), while in equation 8.11c it is its present-day value.
We therefore allow the lifetime-average and present-day braking indices to
take independent values, which are then searched for over the ranges of ḟ and
f̈ respectively. Finally, we note that the bounds fit the form of equation 7.19,
as required by the template bank algorithm of Chapter 7.

8.4.1 Application of the template bank algorithm

The search for Cas A uses the template bank algorithm of Chapter 7 to cover
the parameter space of equations 8.11. The three-dimensional A?3 (also known
as body-centred cubic) lattice is used; the maximum mismatch µmax = 20%.
Figures 8.3 and 8.4 illustrate the tiling produced by the algorithm. They
show cross-sections through the tiling over a subspace of the Cas A parameter
space, where (for the sake of illustration) f and ḟ take restricted ranges, but
f̈ takes its full range.

It is important to emphasise that the ellipses plotted in these figures
are not the (3-dimensional) mismatch ellipses of the tiling, but instead are
the intersection of the 3-dimensional ellipses with the cross-section plane,
which yield 2-dimensional ellipses. This is the reason why, for example, the
black ellipses in Figure 8.3, which originate from template points where f
is exactly in the cross-section plane, need not completely cover the space.
The intervening gaps are covered by the grey ellipses, which originate from
template points outside of the cross-section plane, but whose 3-dimensional
ellipses nevertheless intersect it. Conversely, the reason why some of the
black ellipses in Figure 8.3 do not intersect the tiled region is because the
full three-dimensional ellipse will intersect the parameter space in some other
f = constant cross-section. These extra templates are needed to completely
cover the edges of the parameter space (see section 7.3.1), particularly in
the f̈ dimension, where the extent of the parameter space is clearly much
smaller than the size of the metric ellipses. Indeed, the parameter space is
so much smaller than the metric ellipses in f̈ that it seems possible that this
dimension could be flattened to a single point; we delay further discussion
until Chapter 10.

The properties of the tiling in Figure 8.3 are similar to the tiling in Fig-
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Figure 8.3: ḟ–f̈ cross-section through the template tiling of the Cas A
parameter space, at f = 200 Hz. The plotted ellipses are the intersections
of the 3-dimensional metric ellipse with the cross-section plane. The range
of ḟ is restricted to the braking indices 4.50 ≤ n ≤ 4.51. The red box
indicates the tiled range of ḟ and f̈ . Intersection ellipses from templates
where f = 200 Hz are plotted in black, with the template points plotted in
blue; all other intersection ellipses are plotted in grey.
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Figure 8.4: f–ḟ cross-section through the template tiling of the Cas A
parameter space, at f̈ = 8.38×10−19 Hz s−2, the mid-point of the f̈ parameter
space range. As in Figure 8.3, the plotted ellipses are the intersections of the
3-dimensional metric ellipse with the cross-section plane. The range of ḟ
is restricted to the braking indices 4.50 ≤ n ≤ 4.51, and the range of f is
restricted to (200 ± 6 × 10−7) Hz. The red box indicates the tiled range of
f and ḟ . Intersection ellipses from templates where (f, ḟ) is inside the red
box are plotted in black, with the template points plotted in blue; all other
intersection ellipses are shaded in grey with a white border. The three blue
template points in this figure correspond to the three lines of template points
in Figure 8.3.
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Figure 8.5: Cumulative number of templates required to cover the Cas A
search parameter space, as a function of the maximum frequency searched
fmax. The number of templates used in the search (blue) is plotted against
the estimate of equation 7.53 (red), including the parameter space edges
(solid), and excluding the parameter space edges (dashed). The blue line is
partially obscured by the solid red line.

ure 8.4; the f–ḟ region is covered either by templates laid within the region
(black ellipses) or templates laid outside the region by whose 3-dimensional
mismatch ellipses nevertheless intersect in a different f̈ = constant plane.

We use the equations in section 7.3.3 to estimate the number of templates
required for the search. We use the normalised thickness of an A?3 or body-
centred cubic lattice (Table 7.1), and the spindown-only metric of the F
statistic (equation 7.17). Importantly, we also take account of the number
of templates required to cover the edges of the parameter space. Figure 8.5
shows the number of templates required to cover the parameter space, plotted
cumulatively as a function of the maximum frequency searched. The number
of templates at fmax = 300 Hz is the number required to cover the Cas A
parameter space. The number of templates generated by the template bank
algorithm is accurately estimated when the edges of the parameter space are
taken into account, whereas ignoring the parameter spaces edges results in
an estimate an order of magnitude too small, as calculated by Wette et al.
(2008).

This indicates that the majority of the templates are used to cover the
parameter edges. We deduce from Figure 8.3 that the small extent of the
parameter space in the f̈ direction is responsible for this. To confirm, we
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expand equation 7.53, which gives the total number of templates in terms of
the edge widths ∂f , ∂ḟ , and ∂f̈ , which are given by extent of the bounding
box of the mismatch ellipses (see section 7.3.1). The largest 3 terms read:

N ≈ 5.823× 1012︸ ︷︷ ︸
∂f̈

+ 6.91× 1011︸ ︷︷ ︸
1

+ 7× 109︸ ︷︷ ︸
∂ḟ∂f̈

+ . . . , (8.12)

where the under-braces indicate the origin of each term. The largest term
arises from ∂f̈ , and is thus the number of templates required to covering the
f̈ boundary, i.e. it would be zero if the f̈ boundary were ignored. It is an
order of magnitude larger than the next term, which is a constant, and is
therefore the number of templates required to cover the bulk of the parameter
space. This agrees with the order-of-magnitude difference between including
and neglecting the boundary seen in Figure 8.5.

8.5 Sensitivity of the search

The sensitivity of a periodic gravitational wave search is an estimate of the
upper limits that can be set by the search, in the absence of a detection. Up-
per limits are always given with respect to a certain confidence; for periodic
gravitational wave searches, a 95% confidence is typically chosen. The mean-
ing of an 95% confidence upper limit, denoted h95%

0 , is that if a large popu-
lation of signals with amplitude h95%

0 were injected into the search pipeline,
we would expect 95% of them to be detected. The sensitivity is also set by
the false alarm rate (see below).

For a coherent search, the estimated upper limit at the level of confidence
C is given by

hC0 = Θ

√
Sn
Tobs

, (8.13)

where Sn is the one-sided power spectral densities of the noise in each de-
tector, and Tobs is the amount of data available from each detector. For a
multiple-detector search, the ratio Sn/Tobs is harmonically summed over the
detector network. Strictly speaking, the ratio Sn/Tobs is also multiplied by a
factor accounting for the orientation of each detector; in practice, however,
this can usually be safely neglected (see Fig. 4 of Jaranowski et al. 1998). The
sensitivity factor, denoted Θ, is determined by the following two equations:

pα = 1−
[

cdf
(
χ2

4; 2Fα
)]N

, (8.14)

1− C = pβ =
〈

cdf
(
χ2

4(Θ2R2); 2Fα
)〉
, (8.15)



8.5. Sensitivity of the search 125

where pα = 1% is the false alarm rate, and pβ = 5% is the false dismissal
rate (see section 5.2.2), which is the complement of the confidence. Other
parameters are explained below.

A central χ2 distribution with 4 degrees of freedom is denoted χ2
4; a

non-central χ2 distribution with 4 degrees of freedom and non-centrality pa-
rameter ρ2 is denoted χ2

4(ρ2), where cdf denotes the cumulative distribution
function (see section 5.2.2). Using equation 5.51, the optimal signal-to-noise
ratio is

ρ2 ≈
(
hC0

√
Tobs

Sn

)2 [ 2∑
n=−2

(
h̄[1, n]

hC0

)2

+

(
h̄[−1, n]

hC0

)2
]

(8.16)

= Θ2R2 ; (8.17)

the function R is independent of hC0 , Tobs, and Sn. For multiple detectors,
whose noise densities Sn can be regarded as equal, R2 is averaged over the
detector network.

In equation 8.14, N denotes the number of searched templates from which
the upper limit is derived. Upper limits are typically set by partitioning
the parameter space into small (. 1 Hz) frequency bands, over which the
noise floor of the detectors can be regarded as constant; a single hC0 is then
calculated for each band. Therefore, N is the number of templates4 in a
particular upper limit band, and therefore may be a function of frequency,
depending on the parameter space.

Finally, the brackets 〈〉 in equation 8.15 imply marginalisation over the
unknown parameters in R2: the right ascension α, declination δ, inclination
angle ι, and polarisation angle ψ. For an object with a known sky position
(e.g. known pulsars, and Cas A), the marginalisation then takes the form

〈f〉 =

[
1

2

∫ 1

−1

d(cos ι)

][
2

π

∫ π/4

−π/4
dψ

]
f(cos ι, ψ) . (8.18)

The average sensitivity factor of a single-template search for a known
pulsar is Θ ≈ 11.4 (e.g. Abbott et al. 2007b, Prix 2009). In contrast to the
method presented here, this factor is derived by taking a fixed non-centrality
parameter to be the average; Monte Carlo simulations were used to confirm
that this factor is approximately correct. The sensitivity factor is, as we shall
see, significantly larger for multi-templates searches.

To determine the sensitivity, we solve equation 8.14 to obtain 2Fα, sub-
stitute into equation 8.15, and solve for Θ. We set pα = 1%, pβ = 5%, and

4 A small caveat: we have assumed that the templates are statistically independent.
See the extensive discussion in section 8.7.1.
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Figure 8.6: (a) False alarm rate pα versus detection threshold 2Fα. The
target pα = 1% is plotted in red. The black and purple curves plot pα for
the lowest and highest values of N respectively. (b) False dismissal rate pβ
versus sensitivity Θ. The target pβ = 5% is plotted in blue. The black and
grey curves plot pβ for the lowest and highest values of 2Fα respectively, and
correspond to the like-coloured curves in figure (a).

adopt the range 8.1 × 109 < N < 2.8 × 1010, which encompasses the actual
number of templates used in each upper limit band (see section 9.5). The
marginalisation of the cumulative distribution function is more easily com-
puted5 using a series expansion of the non-central χ2 distribution (Johnson
& Kotz 1970):

〈
cdf
(
χ2

4(ρ2); 2Fα
)〉

=
∞∑
i=0

〈
e−

1
2
ρ2 (1

2
ρ2)i

i!

〉
cdf
(
χ2

4+2i; 2Fα
)
. (8.19)

The series is a weighted sum of central χ2 distributions with 4 + 2i degrees
of freedom, where the weights are Poisson distributions of i with mean ρ2/2.

Figure 8.6a plots pα against 2Fα, using equation 8.14; the desired de-
tection threshold takes the range 61.8 . 2Fα . 64.3. Substituting into
equation 8.15, Figure 8.6b plots pβ against Θ. Thus, we see that the sensi-
tivity factor for the Cas A search is ∼ 35, in agreement with Wette et al.
(2008).
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Figure 8.7: Expected upper limits obtainable by the Cas A search. Plotted
in black are estimated 95% confidence upper limits on h0 (left) and ε (right);
plotted in red are the indirect upper limits of equations 8.9 and 8.8.

8.6 Computational cost and expected upper

limits

Finally, we estimate the computational cost of a coherent search of 12 days
of LIGO data (section 8.3) over the parameter space of section 8.4, and the
sensitivity (section 8.5) we can expect from such a search.

The initial estimate of the computational cost (Wette et al. 2008) was
20 days on 200 nodes of the ac cluster6 of the Australian NCI National
Facility (see bibliography). The search was, instead, run on the ATLAS
cluster.7 We measure the performance of ComputeFStatistic v2 on ATLAS
to be ∼ 2.4× 10−7 seconds per template per SFT. The estimated number of
templates, N ≈ 6.5 × 1012, is given by equation 8.12. Finally, the data set
selected for the Cas A search (see section 9.1.1) contains 934 SFTs, implying
a duty cycle Tobs/Tspan ≈ 80%. Multiplying these quantities together the
total computational cost of the Cas A search:

3.3 days

(
fmax

300 Hz

)3(
300 years

τ

)3(
Tspan

12 days

)7(
5000

nodes

)3

, (8.20)

where the scalings are from Wette et al. (2008). The fiducial number of nodes
was the approximate capacity of ATLAS at the time the search was run.

5 For example, Mathematica has difficulty integrating equation 8.15 directly, but is
able to numerically integrate each term in equation 8.19.

6 Such is the relentless march of technology that this cluster has since been de-
commissioned!

7At the Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Hanover, Germany.
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Figure 8.7 plots the 95% confidence upper limits achievable by the search,
using equations 8.13 and 8.10. For Sn, we use the initial LIGO design sen-
sitivity curve (LIGO Laboratory 2009b), divided by

√
2 for two identical

detectors. The search is clearly expected to beat the indirect upper limit on
h0 over 100-300 Hz, and by up to ∼ 40% at f ≈ 160 Hz. The estimated up-
per limits plotted here are slightly better than plotted in Wette et al. (2008),
which assumed a more conservative duty cycle of 70%. The estimated up-
per limits intersect the indirect upper limit at f ≈ 97 and 340 Hz, which is
approximately the band chosen for the Cas A search (Wette et al. 2008).

8.7 The expected largest 2F
Finally, we consider the potential outcome of the Cas A search, before pre-
senting the results in Chapter 9. We expect the search to be sensitive to
only one (potential) gravitational wave source, i.e. Cas A. Therefore, we are
interested in only one template, from the ∼ 7×1012 templates searched: that
with the largest value of 2F . If we adopt the hypothesis that no gravitational
wave signal will be detected, we can derive (and do so in this section) the
distribution of expected values for the largest value of 2F . If the largest 2F
found by the search is significantly larger than its expected value, it would
be a first step towards claiming a detection.

In the absence of any signal, and assuming Gaussian noise, the probability
distribution of a single value of 2F is a χ2 distribution with 4 degrees of
freedom (section 5.2.2). The probability distribution of the largest of N
values of 2F is derived as follows. Let i = 1, . . . , N index the N values of
2F . Assume that the jth value is the largest, and denote its value 2F?; the
probability of its occurrence is p

(
χ2

4; 2F?
)
. For 2F? to be the largest, the

N − 1 remaining 2F values must be less than 2F?; the probability of this
occurring is

p

 N⋂
i=1
i6=j

(
2Fi ≤ 2F?

) =
N∏
i=1
i6=j

p
(
2Fi ≤ 2F?

)
(8.21)

=
[

cdf
(
χ2

4; 2F?
)]N−1

. (8.22)

Finally, any of the N values of 2F may have been the largest 2F , so we
multiply by N possible combinations. In short, the probability of 2F? being
the largest of a collection of N values of 2F is

p(N ; 2F?) = N p
(
χ2

4; 2F?
)[

cdf
(
χ2

4; 2F?
)]N−1

. (8.23)
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We note, however, the following important subtlety. Equation 8.21 as-
sumes, by definition, that each of the N values of 2F are statistically inde-
pendent, i.e. the probability of the i value of 2F being less than 2F? depends
only on the values of 2Fi and 2F?, and not on the values of i and j (the index
of the 2F? value). This is not necessarily true. To see why, we recall that the
value of 2F , in the absence of a signal, is given by the sum of the squares of
4 Gaussian-distributed random variables (Jaranowski et al. 1998). For each
value of 2F , the value of the 4 Gaussian random variables are computed from
the SFT data; there are, however, many more values of 2F than there are
SFT data samples. For example, at 100 Hz, ∼ 108 templates are required to
cover a ∼ 2 × 10−2 Hz band (section 9.2), whereas the number of spectral
bins x̃(f) in this band is approximately 2× 10−2 Hz× TSFTNSFTs ≈ 3× 104

bins. Assuming that the spectral bins are all independent random samples
of the detector noise, there are nevertheless an insufficient number of them
from which to generate ∼ 4 × 108 independent random values. Therefore,
the values of the Gaussian variables will, to some degree, be statistically cor-
related, and it follows that the N values of 2F will also be correlated. We
note that this statistical correlation between 2F values is separate from the
mismatch between the corresponding templates in parameter space; as there
is no signal present, it is unlikely that the parameter space metric remains
an accurate descriptor of this mismatch between templates.

The approach we adopt to this problem is to assume that the 2F values
are statistically independent, so that equation 8.23 holds, but that the total
number of templates N is substituted with the total number of equivalent
statistically independent templates N̄ ≤ N . Note that N̄ is not the size
of the subset of 2F values which are statistically independent, implying a
complementary subset of N−N̄ 2F values which are statistically dependent.
Instead, all N values of 2F are mutually statistically dependent, and N̄ is
simply the number with which to replace N in order for equation 8.23 to be
valid.

The degree of mutual statistical dependence between the N values of 2F
is a mathematical problem which we do not attempt to investigate further.
Instead, we present below an empirical method to determine N̄ . We demon-
strate that, for the purpose of determining the expected distribution of the
largest 2F for the entire search, the N values of 2F may be assumed to be
statistically independent.

8.7.1 Number of statistically independent templates

In section 9.2, the search frequency band was partitioned into smaller job
frequency bands, such that each job band is covered by approximately the
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Figure 8.8: (a) Distribution of the largest 2F in each search job fre-
quency band. The histogram of 2F values, in black, is closely fitted by
p(N̄job ≈ 1.39Njob; 2F?) in red, and by P (N̄job ≈ 0.88Njob; 2F?) in blue.
For comparison, p(Njob; 2F?) is plotted in orange. (b) Distribution of the
largest 2F for the entire search. Plotted are p(N̄ ≈ 1.39N ; 2F?) in red,
P (N̄ ≈ 0.88N ; 2F?) in blue, and p(N ; 2F?) in orange. For illustration,
p(0.1N ; 2F?), left, and p(10N ; 2F?), right, are plotted in black (dotted).

same number of templates. As a consequence, the largest 2F in each job band
should be drawn from the same distribution: p(N̄job; 2F?), given by equa-
tion 8.23, where N̄job is the number of statistically independent templates
per job band. Therefore, we can determine N̄job by fitting p(N̄job; 2F?) to a
histogram of the largest 2F values found by the 21439 jobs. This gives the
ratio N̄job/Njob = N̄/N , and so N̄ is determined.

The fit to determine N̄job is shown in Figure 8.8a. The histogram of the
largest 2F values is plotted in black, and the fitted curve p(N̄job; 2F?) is over-
plotted in red. The fitted ratio N̄job/Njob ≈ 1.39 is clearly wrong, as we expect
N̄job ≤ Njob, with equality holding if all 2F values were indeed statistically
independent. In Figure 8.8a we also plot p(Njob; 2F?) (i.e. N̄job/Njob = 1);
the histogram is shifted to the right relative to this curve, indicating that
the 2F values are being positively biased.

The reason for this bias is that ComputeFStatistic v2 is not an exact
implementation of the F statistic. Small modifications to the algorithm,
designed to decrease the computational cost (Prix 2008), introduce small
differences between the distribution of 2F , as computed by ComputeFStat-

istic v2, and a χ2 distribution with 4 degrees of freedom. There are also
additional biases in the noise estimation (Prix 2006), which have not been
taken into account here. Figure 8.9a shows the fractional difference between
theoretical distribution p(χ2

4; 2F), and a histogram P (2F) of all 2F values
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Figure 8.9: Fractional difference between the theoretical distribution of
the F statistic and the distribution of the F statistic as implemented
by ComputeFStatistic v2. The latter is derived from a histogram of
all 2F values produced by the Cas A search, after the removal of out-
liers as described in section 9.3. (a) Fractional difference | p(χ2

4; 2F) −
P (2F)|/ p(χ2

4; 2F) between the theoretical distribution, p(χ2
4; 2F), and

the ComputeFStatistic v2 distribution, P (2F). (b) Fractional difference
| cdf(χ2

4; 2F)N − C(2F)N |/ cdf(χ2
4; 2F)N between the theoretical cumulative

distribution, cdf(χ2
4; 2F), and the ComputeFStatistic v2 cumulative distri-

bution, C(2F), for (dark to light grey) N = 1, 104, and 108.

produced by the Cas A search. All outliers identified in the post-processing
described in section 9.3 are removed prior to computing P (2F), which thus
represents the distribution of the F statistic, as implemented by Compute-

FStatistic v2, in the absence of any non-Gaussian features. The fractional
difference increases from a minimum at 2F = 4, where both distributions
are approximately at their maxima; at higher 2F , the histogram contains
increasingly fewer samples and the difference increases, becoming noisy at
2F & 45. While the fractional difference between the equivalent cumulative

distributions, cdf(χ2
4; 2F) and C(2F) =

∫ 2F
0

P (2F ′)d(2F ′), is also small, this
difference is rapidly magnified when both distributions are raised to large
powers, as shown in Figure 8.9b. Thus, the computation of equation 8.23
magnifies small differences between the theoretical and practical distributions
of the F statistic.

To account for these differences, we also fit a modified version of equa-
tion 8.23 to the histogram of the largest 2F values from each job band (Fig-
ure 8.8a), where the histogram P (2F) is substituted for the theoretical F
statistic distribution:

P (N ; 2F?) = NP (2F?)C(2F?)N−1 (8.24)
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The fitted curve P (N̄job; 2F?) is plotted in blue in Figure 8.8a; the fitted
ratio N̄job/Njob ≈ 0.88. Thus, we empirically estimate that the equivalent
statistically independent templates is N̄ = 0.88N ≈ 6.2× 1012.

Figure 8.8b plots the expected distribution of the largest 2F value found
by the Cas A search. The three curves, which represent different choices for
N̄ of ∼ 0.88N , N , and ∼ 1.39N , are nonetheless very similar; they predict
that the largest 2F value found by the Cas A search, in the absence of a
signal, is mostly likely to lie in the range 62 . 2F? . 75.

The similarity of the distributions can be explained by the following ob-
servations: at high 2F values, cdf(χ2

4; 2F)N and C(2F)N remain relatively
similar (see the light grey curve in Figure 8.9b), and the position of the dis-
tributions is only weakly dependent on N . To increase the position of the
maximum of p(χ2

4; 2F) from ∼ 61 to ∼ 71, N must be increased by 2 orders
of magnitude (see Figure 8.8b). We conclude, therefore, that for the purpose
of estimating the largest 2F value likely to be found by the Cas A search,
templates can be regarded as statistically independent.

8.8 Summary

In this chapter, we presented the motivation for a periodic gravitational wave
search targeting Cas A. We first reviewed astronomical observations of Cas A
conducted since the discovery of its CCO, and suggested that the CCO might
be a gravitational wave source. We derived an indirect upper limit, based on
energy conservation, on the strength of gravitational waves from Cas A. We
then presented the proposed search, including the choice of analysis method,
the time span of the data set, and the frequency and spindown parameter
space to be searched. We determined the computational cost of the search,
demonstrated that the search will beat the indirect upper limit, and predicted
the largest value of 2F that will be found by the search in the absence of a
detection. Chapter 9 will present the results of this search.



Chapter 9

Upper limits on gravitational
waves from Cassiopeia A

In Chapter 8, we motivated a search for gravitational waves targeting the su-
pernova remnant Cassiopeia A (Cas A), and demonstrated that such a search
would beat the indirect limit on the strength of gravitational waves based on
energy conservation. In this chapter, we present the results of this search.
We start by describing the LIGO S5 science run, and the selection from it
of the data set used in the search (section 9.1). We then describe the search
pipeline (section 9.2). We show how the results of the search may become
contaminated by instrumental noise artifacts, present a method which iden-
tifies where this occurs, and apply it to the search (section 9.3). From the
remaining results, we find the largest value of the detection statistic, and dis-
cuss whether they indicate that we have detected a gravitational wave signal
(section 9.4); we conclude that they do not. Finally, we present upper limits
derived from the search on gravitational waves from Cas A (section 9.5).

See section 1.1 for author contributions and publications, a disclaimer, and
acknowledgements relevant to this chapter.

9.1 The LIGO S5 science run

The S5 science run is LIGO’s fifth and most recently completed science run.
It commenced at UTC 16:00 November 4, 2005 (GPS1 815155213) at Han-
ford, and exactly 10 days later at Livingston; it ended at UTC 00:00 October

1 The Global Positioning System (GPS) is used to time-stamp LIGO data (Abbott
et al. 2009e). GPS times give the number of seconds (excluding UTC corrections) since
UTC 00:00:00 January 6, 1980.

133
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1, 2007 (GPS 875232014; Abbott et al. 2009b). The S5 run collected over a
year of science-quality data coincident between i) all three detectors, and ii)
the two detector sites (Lazzarini 2007). The duty cycle of triple-coincident
science data rose from 48% to 67%, and averaged 54%, over the course of
the run. Interruptions by a wide variety of environmental and anthropogenic
disturbances, as well as scheduled breaks for maintenance and commissioning
of equipment, account for the downtime. During S5, the detectors were oper-
ating at very near their design sensitivities; the strain noise of the two 4-km
detectors was, on average, less than 3× 10−23 Hz−1/2 at their most sensitive
frequencies (around 140 Hz) and less than 5×10−23 Hz−1/2 over 100–300 Hz.
The S5 run successfully met the goal of the initial phase of LIGO: to collect
a year of science data at design sensitivity.

Acquired science data passes through a number of post-acquisition proce-
dures. Times when the data may be unsuitable for analysis, for a number of
reasons (Riles et al. 2009, Zweizig et al. 2009), are marked with data quality
flags, which are then used to exclude undesired data segments. The remain-
ing data is calibrated (Abbott et al. 2009e) to produce a non-contiguous time
series of gravitational wave strain, h(t). Finally, the time series are broken
into segments of length TSFT = 30 min which are used to create SFTs.

9.1.1 Selection of data for the search

The Cas A search uses S5 data from the two 4-km arm-length interferometers
at Livingston and Hanford, denoted L1 and H1 respectively. During S5,
LIGO also operated a third, 2-km arm-length interferometer at Hanford,
denoted H2, and co-located with H1; its data was not analysed. Data from
H2 has roughly twice the strain noise density of data from L1 and H1, due the
halved arm length, but its analysis would still carry the same computational
cost. The SFTs used in the search are selected from those generated from
data acquired before GPS 861000000 (approx. UTC April 19, 2007); the
first SFTs generated from data acquired after this time were subsequently
found to have used incorrect data segments (Betzwieser et al. 2008), and had
not been re-generated at the time the search was conducted. The S5 run
collected approximately 9525 hours of H1 and 7959 hours of L1 science data
before GPS 861000000 (Riles et al. 2009). The data quality flags applied to
this data are shown in Table 9.1. From the remaining data, 17309 H1 and
13784 L1 SFTs2 were generated. The fraction of available science data not
included in the SFTs, either due to data quality vetoes or to losses during

2 The number of H1 and L1 S5 SFTs before GPS 861000000 was determined from the
SFTs on the ATLAS cluster on September 4, 2009, using the ligo data find software.
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Table 9.1: Data quality flags applied to the L1 and H1 science data, up to
GPS 861000000, before generation of the S5 SFTs (Landry & Mendell 2007,
Betzwieser et al. 2008). Descriptions are derived from Riles et al. (2009) and
Zweizig et al. (2009).

Name Description

AS TRIGGER Saturation of output photodiodes
CALIB BAD COEFFS 60 Bad calibration coefficients
CALIB DROPOUT 1SAMPLE Calibration waveform generator dropouts
CALIB DROPOUT 1SEC · · ·
CALIB DROPOUT AWG STUCK · · ·
CALIB GLITCH ZG · · ·
INVALID DARMERR Data acquisition system errors
MISSING RDS C03 L2a Short gaps due to h(t) finite impulse filters
OUT OF LOCK Corrections to end-of-lock times
PRE LOCKLOSS 10 SEC Noisy data 10 seconds prior to lock-loss
PRE LOCKLOSS 30 SEC Noisy data 30 seconds prior to lock-loss
Wind Over 30MPHb High winds measured by weather stations

a This flag appears not to have been applied to the L1 data before GPS 846374414
(Landry & Mendell 2007). Nevertheless, the only flagged segment in this interval (GPS
838066816–838066848; Mendell 2008) spans only 32 seconds, and does not appear in the
list of L1 segments used to generate SFTs (Landry & Mendell 2007).

b This flag is defined for H1 only.

the 30-minute segmentation, totals ∼ 9% for H1 and ∼ 13% for L1.
The time span of the Cas A search data set is Tspan = 12 days (section 8.3).

To choose the start time t0 of the data, we consider all intervals [t0, t0 +Tspan]
contained with the time span of the available SFTs, and compute a figure of
merit F (t0) for each interval. The figure of merit is chosen to favour intervals
containing as many SFTs as possible, and SFTs with the lowest strain noise
possible; it is given by

F (t0) =
TSFT

NIFOTspan

∑
SFTs in

[t0,t0+Tspan]

min
all SFTs

SSFT

SSFT

, (9.1)

where NIFO = 2 is the number of interferometers and, for each SFT,

1

SSFT

=
300 Hz∑

f=100 Hz

1

Sn(f)
, (9.2)
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Figure 9.1: Figure of merit F (t0) for all 12-day intervals containing SFTs
before GPS 861000000, as a function of the interval start time t0. The arrow
indicates the start time of the interval chosen for the Cas A search. GPS
times of tick marks are abbreviated to their first 3 digits.

where Sn(f) is the noise power spectral density of each SFT. The normali-
sation of equation 9.1 is chosen so that 0 ≤ F ≤ 1.

Figure 9.1 plots the figure of merit F (t0) for all possible 12-day intervals
within the time span of the available SFTs. The maximum value of F is
achieved by the interval beginning at t0 = GPS 858459411 (UTC 20:56:37
March 20, 2007), and ending at GPS 859495818 (UTC 20:50:04 April 1 2007).
This interval is chosen as the Cas A search data set. It contains 934 SFTs
in total, 445 from L1 and 489 from H1. The average amount of data from
each detector is ∼ 9.7 days, giving a duty cycle of ∼ 81% over the 12-day
interval. Figure 9.2 shows spectrograms of the SFTs. The lowest strain noise
level is at ∼ 150 Hz; at the extremes of the search band, the strain noise is
a factor of ∼ 2–3 higher. The occasional red/green horizontal stripe denotes
SFTs of data acquired when the detectors were unusually noisy. The vertical
red/green bands correspond to lines (i.e. narrow-band, constant-frequency,
non-Gaussian noise) in the data; the three most prominent lines, at 120, 180,
and 240 Hz, are harmonics of the 60 Hz frequency of the U.S. A.C. mains
power. There also appears to be a wandering noise feature in the H1 data
between 180 and 230 Hz; this feature is unlikely to impact upon the search,
as it changes frequency too rapidly to overlap with a search template for any
significant length of time.
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Figure 9.2: Spectrograms of the H1 (top) and L1 (bottom) SFTs compris-
ing the Cas A search data set. The vertical axes give the first 4 digits of the
GPS starting times of each SFTs; white gaps in the spectrograms denotes
times where no SFTs exist. Note that the colour scales for each spectrogram
are different from each other, and are non-linear.
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9.2 The search pipeline

We search the data set, selected in section 9.1.1, for periodic gravitational
waves signals at the sky position of Cas A, and over the frequency and spin-
down parameter space of section 8.4. To distribute the search over the AT-
LAS cluster, we partition the full search frequency band (100–300 Hz) into
21439 job frequency bands. The widths of the job bands are chosen so that
roughly the same number of templates is required to cover each band; that
number is Njob = (3.27± 0.02)× 108 templates. Because the size of the spin-
down parameter space increases with frequency, the widths of the job bands
decrease from ∼ 2.0× 10−2 Hz (at 100 Hz) to ∼ 1.8× 10−3 Hz (at 300 Hz).

For each job band, a separate Condor (see bibliography) job is submitted
to the ATLAS cluster. Each job calls ComputeFStatistic v2 (section 8.3),
which uses the algorithm of Chapter 7 to generate a bank of templates over
the given job band, and the full range of first and second spindowns. The
maximum mismatch µmax is set to 20%. ComputeFStatistic v2 then com-
putes the value of 2F for each template in the bank; to limit the size of the
output files, only the top 0.01% templates with the largest values of 2F are
recorded.

Because the jobs are given the same number of templates to search, they
take approximately the same time (∼ 20 hours) to complete. Thus, the total
computational cost of the search is 21439 × 20 hours ≈ 3.5 days, in good
agreement with the prediction of equation 8.20.

9.3 Vetoing of spuriously large 2F
Figure 9.3 shows the raw output of the Cas A search: the largest value of
2F found in each of the job frequency bands, prior to the post-processing de-
scribed in this section. The majority of 2F values lie in the range 40 . 2F .
60; there are, however, a number of 2F significantly above the background
level. Since we expect the search to be sensitive to at most one gravitational
wave source, i.e. Cas A, it is unlikely that these outliers are gravitational
wave signals. Indeed, a careful inspection of the spectrograms in Figure 9.2
reveals that many of the 2F outliers appear to be at the same frequencies
as visible line features. For example, the 2F ∼ 90 outlier is close to the 120
Hz mains power harmonic, and the 2F ∼ 95–110 outliers appear to coincide
with a faint line at ∼ 145 Hz.

In section 9.3.1, we describe how it is possible for the computation of
2F to be contaminated by lines. In section 9.3.2, we describe a procedure
which identifies narrow line features which may result in unreasonably large
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Figure 9.3: Largest 2F found in each search job frequency band, before
the post-processing described in section 9.3. The thin vertical lines mark the
divisions between groups of 500 search job frequency bands.

values of 2F . The application of this procedure to the Cas A search results
is described in section 9.3.3

9.3.1 Contamination of the F statistic by lines

We start with the F statistic as expressed by equation 5.42, using the A, B,
C, and D coefficients of equation 5.43. Ignoring the difference between the hi
components of the signal waveform, A ∼ B ∼ C ∝ (h‖h), while D ∝ (h‖h)2.
Noting that, from equation 5.33, (x‖y) ≈ x̃(f)ỹ(f)?/Sn(f) over a narrow
frequency band centred on f , we find that

2F ∝ 1

(h‖h)2

{
(h‖h)(x‖h)2

}

=

[
x̃(f)h̃(f)?/Sn(f)

]2[
h̃(f)h̃(f)?/Sn(f)

]
=
|x̃(f)|2
Sn(f)

.

(9.3)

In other words, the value of the F statistic is, very roughly, proportional to
the SFT power, |x̃(f)|2, divided by the noise power spectral density, Sn(f),
at the same frequency. Any outlying non-Gaussian noise in x̃(f), such as



140 9. Upper limits on gravitational waves from Cassiopeia A

Frequency

P
ow

er

Figure 9.4: The action of a spectral running median (blue), with a window
size of 50 bins, on a discrete spectrum (black) containing lines with widths
of (left to right) 100, 26, 25, 24, and 1 bin.

an instrumental line, will therefore result in a spuriously large value of 2F ,
unless it is removed by an accurate estimation of the noise floor Sn(f).

A robust method of estimating Sn(f), used by ComputeFStatistic v2,
is the spectra running median (Mohanty 2003, Abbott et al. 2007b). The
noise spectral density Sn(f) is given by the median value of the periodogram

sn(f) =
1

NSFTs

∑
SFTs

2
∣∣x̃(f)

∣∣2
TSFT

(9.4)

within a frequency window of N bins centred on f :

Sn(f) = median

{
sn(f ′)

∣∣∣∣ |f ′ − f |TSFT

≤ N

2

}
. (9.5)

The use of the median makes the method robust against outlying non-
Gaussian noise; because using the median to estimate the mean introduces
a systematic bias, Sn(f) is also divided by a normalisation factor. A typical
window size, used in this analysis and elsewhere (Abbott et al. 2007b), is
N = 50, which for 30-minute SFTs gives a bandwidth of ∼ 27.8 mHz.

The running median will track any spectral features in the SFT power
|x̃(f)|2, provided that such features are wider than half the running median
window. Spectral features smaller than this size will be removed from Sn(f).
This behaviour is illustrated in Figure 9.4. For the large 100-bin feature, 2F
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Figure 9.5: Histograms (blue) of the StackSlide power P(f), 100 Hz ≤ f ≤
300 Hz, of the Cas A search SFTs. Gaussian distributions with unit means
and standard deviations, calculated from the number of SFTs, of ∼ 0.045 for
H1 (left), and ∼ 0.047 for L1 (right) are plotted in black. The veto threshold
Pthr is plotted in red.

would remain unchanged as the feature remains in both |x̃(f)|2 and Sn(f); the
1-bin narrow line, however, remains in |x̃(f)|2 but is removed by the running
median. As a result, at the frequency of the narrow line feature, |x̃(f)|2
increases while Sn(f) remains constant, and hence 2F increases despite no
signal being present.

9.3.2 Identification of narrow line features

We first compute the power in the search SFTs, normalise by the running
median, and averaged over time:

P(f) =
2

NSFTsTSFT

∑
SFTs

|x̃(f)|2
Sn(f)

. (9.6)

This quantity is simply the StackSlide power (Abbott et al. 2007b); thus, we
essentially perform a StackSlide search for constant-frequency, un-Doppler
modulated signals. For SFTs containing only Gaussian noise, P(f) is Gaus-

sian distributed, with unit mean and standard deviation N
−1/2
SFTs .

We identify frequency bands where P exceeds a threshold Pthr = 1.5 in
either H1 or L1. The threshold is chosen to be far above the expected mean
of P , so we can confidently assume that it will identify only non-Gaussian
features in the SFTs. To confirm, Figure 9.5 plots histograms of P , computed
from the search SFTs over the search frequency band. The distributions of
P are close to their expected Gaussian distributions, with slight positive bias
(see section 8.7.1), and the threshold is well above the mean.
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Table 9.2: Vetoed frequency bands identified by the threshold on P(f).
The first column gives the figure detailing each band. The remaining columns
give: the lower (fL) and upper (fU) frequencies defining the band; the max-
imum values of P and 2F found in each band; and a description of the
instrumental line or other phenomenon that triggered the veto.

Fig. fL / Hz fU / Hz Pmax 2Fmax Description

9.7a 108.842 108.877 1.8 89.97 Pulsar hardware injection no. 3
9.14a 119.858 119.896 5.3 71.62 Associated with 60 Hz harmonic
9.14b 127.983 128.018 4.4 55.67 16 Hz harmonic
9.15 139.167 139.283 3.9 69.56 Definite L1-only line
9.8a 139.493 139.528 9.4 71.75 Probable L1-only line
9.16 144.696 144.807 4.6 108.40 Definite L1-only line
9.14c 179.794 179.829 1.6 51.36 Associated with 60 Hz harmonic
9.17 185.575 185.684 1.9 58.78 Definite L1-only line
9.18 192.959 193.052 2.2 66.12 Definite L1-only line
9.7b 193.373 193.408 2.2 73.37 Pulsar hardware injection no. 8
9.8b 209.248 209.283 2.1 53.92 Probable L1-only line

We refer to the frequency bands, identified as above, as veto bands. The
veto bands are centred on the SFT frequency bin where P exceeds the thresh-
old, and the widths of the bands are equal to the running median window.
Veto bands which overlap are merged together. Templates whose instan-
taneous frequency f(t) (including spindown and Doppler modulation; see
section 5.2.1), at any time during the time span of the search SFTs, falls
within any of the veto bands are excluded from the search results.

The above procedure does not necessarily identify all narrow line features
in the Cas A search SFTs, nor is it guaranteed to identify all instances
where line features contaminate the F statistic. Provided that the procedure
identified and removes all instances of contaminated values of 2F , so that
the loudest remaining value of 2F = 2F? shows no sign of contamination,
then all remaining values of 2F < 2F? are irrelevant, since contamination
can only increase the value of 2F .

9.3.3 Application to the search results

Table 9.2 shows the eleven veto bands identified by the procedure described
above. In each figure references in the table are two veto band plots, one each
for H1 and L1 (as indicated in their upper left hand corner), which show
why the veto was triggered, the extent of the veto band, and the templates



9.3. Vetoing of spuriously large 2F 143

removed by the post-processing as a result of the veto: see the top row of
plots in Figures 9.7a and 9.7b, and all the plots in Figure 9.14. The veto
band plots, which are identical in form, are described below.

The veto band plots show the StackSlide power P(f) in blue, and the noise
power spectral density Sn(f) in purple; the scales of both these quantities
are given on the right hand axis, that of P(f) by the un-bracketed numbers,
and that of Sn(f) by the bracketed numbers. The vertical red lines delimit
the extent of the veto band. The StackSlide power threshold Pthr is plotted
in blue, dashed, where appropriate. It can be seen from these plots that,
for each veto band, P(f) exceeds Pthr in either H1 or L1, as required. The
largest value of 2F found in each for the search job frequency bands are
plotted as horizontal red or black bars; the scale for these is given on the
left hand axis. The bars are identical in both the H1 and L1 plots. The
horizontal extent of the bars gives the total range of frequencies covered by
the template, corresponding to the value of 2F , during the Cas A search
data set; the sidereal Doppler modulation is included. Red bars indicates
templates which overlap the veto band; black bars indicate templates which
never intersect it. For each search job band, the post-processing eliminates
all templates in the job band which intersect the veto band, in order of
decreasing value of 2F , until a non-intersecting template is found. In this
case, the template with the largest 2F value in the job band prior to vetoing
is plotted as a red bar, the non-intersecting template (which is the template
with the largest 2F value after vetoing) is plotted as a black bar, and the
two bars are linked with a shaded grey quadrilateral. If no non-intersecting
template is found, the entire job band is removed from the search; its loudest
2F template is plotted as a single red bar. Single black bars are the largest
2F templates of job bands unaffected by the post-processing.

Seven of the eleven bands are triggered by instrumental lines that were
either well known prior to the search, or else readily identified by follow-up
investigations. They are briefly discussed in Appendix 9.A.1. The remaining
four veto bands are discussed below.

During the S5 run, ten simulated periodic gravitational wave signals were
injected into the LIGO interferometers at the hardware level, by physically
manipulating the position of the end mirrors (Abbott et al. 2009d). The
injections were turned alternately on and off approximately every two weeks
(see Figure 9.6). Four of the injections, nos. 0, 3, 6, and 8 (Riles et al. 2008),
have frequencies within the band searched for Cas A. None of the injections
are at the sky position of Cas A. It is well established, however, that the sky
position and frequency parameters are globally correlated (Prix & Itoh 2005,
Pletsch 2008), and so it is possible for a strong signal, injected at a given
sky position, to be visible at a different sky position, with an accompanying
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Figure 9.6: Times during which pulsar hardware injections were injected
into L1 (green) and H1 (red) during the S5 “try3” epoch (Riles et al. 2008).
The time span of the Cas A search data set is indicated in blue. Tick marks
are the first 3 digits of GPS times. (Framed) A close-up of the injection times
at the beginning of the Cas A search data set.

Table 9.3: Doppler parameters of the two pulsar hardware injections strong
enough to be seen by the Cas A search, despite the limited overlap between
the search data set and the injection times. Nominal indicates the nominal
parameters of each injection (Riles et al. 2008), Found indicates the param-
eters of the injection found by the search, and the start and end times of the
search data set are t0 = GPS 858459411 and t1 = GPS 859495818.

α δ f(t0)
Hz

f(t1)
Hz

ḟ(t0)
Hz s−1

f̈(t0)
Hz s−1

Pulsar hardware injection no. 3

Nominal 3.113 -0.584 108.857 108.857 −1.5× 10−17 0
Found 6.124 1.026 108.862 108.860 −2.5× 10−9 −6.2× 10−19

Pulsar hardware injection no. 8

Nominal 6.133 -0.583 193.385 193.376 −8.7× 10−9 0
Found 6.124 1.026 193.396 193.389 −6.5× 10−9 1.5× 10−17
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(a) Pulsar hardware injection no. 3
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(b) Pulsar hardware injection no. 8

Figure 9.7: Veto bands triggered by pulsar hardware injections (a) no. 3,
and (b) no. 8. In Figures (a) and (b): (top) Veto band plots, see section 9.3.3
for a description; (bottom) Sky map of 2F from follow-up searches at the
nominal injection frequency and spindown of each injection (left), and the
frequency and spindown at which each injection was found by the search
(right). The black circle is sky position of the respective injection; the white
circle is the sky position of Cas A.
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shift in frequency.
The Cas A search data set was not chosen with regard to when the hard-

ware injections were active, and as a result only ∼ 4.2% of the selected
H1 data and ∼ 9.2% of the selected L1 data contains the hardware injec-
tions. Since the expectation value of 2F is linear in ρ2 ∝ Tobs, we expect
the strength of the injections to be reduced by a factor of & 10. Taking
this reduction into account, injections no. 0 and 6 have respective strengths
h0 ∼ 2.5 × 10−26 and ∼ 6.9 × 10−26, and are thus too weak to be detected
by the search performed here (see Figure 8.7). Injections no. 3 and 8, on the
other hand, have strengths h0 ∼ 1.63×10−24 and ∼ 1.59×10−24 respectively,
and thus should be detectable; this is indeed the case.

Table 9.3 shows the nominal parameters of pulsar hardware injections no.
3 and 8 (Riles et al. 2008), the parameters at which the injections were found
by the search. The frequencies at which the injections are found are slightly
higher than the nominal frequencies. The very small ḟ of injection no. 3 is
poorly recovered, but the nominal and recovered ḟ of injection no. 8 agree
to within ∼ 25%. The hardware signals were injected with zero f̈ ; the range
of recovered f̈ is consistent with the extent of the metric mismatch ellipses
for the time span of the Cas A data set.

Indeed, the two injections are strong enough to have been detected by the
StackSlide power P(f), and thus were flagged during the post-processing.
Figure 9.7 shows veto band plots (top row of plots in Figures 9.7a and 9.7b)
for the two hardware injections. Injection no. 3 is a visible spike P(f) in both
H1 and L1, and exceeds the threshold Pthr. Injection no. 8, however, is only
seen in L1, although again P(f) exceeds Pthr. It is not entirely clear why
injection no. 8 is not seen in H1, but the following explanation seems possible.
First, note that injection no. 8 possesses a high spindown, so that it moves
in frequency by half a SFT frequency bin width in (TSFT/2)−1/8.7× 10−9 ≈
8 hours. In the framed close-up in Figure 9.6, we see that the total overlap
of the Cas A data set with the H1 injection times consists of two segments
separated by ∼ 11 hours; in this intervening time, injection no. 8 will have
moved more than half an SFT bin. Since P(f) is calculated from a single
SFT bin |x̃(f)|2, the injection signal in the two segments will no longer be
summed together, and instead will effectively be split into two signals with
reduced signal-to-noise ratios. In addition, as the total H1 injection is spread
over less than a day, the modulation of the beam patterns F+ and F× (see
section 5.2.1) become important. It may be the case that the H1 injection is
active at times when the interferometer is unfavourably oriented to the sky
position of the signal, which implies that the beam patterns are small and, as
a result, the signal-to-noise is reduced during these times (see equation 5.20).
We do not, however, investigate this further.
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To confirm that the spikes found in P(f) are indeed the pulsar hardware
injections, we perform two searches, for each injection, of the Cas A data set
over right ascension α and declination δ, using ComputeFStatistic v2. We
use the default sky position template bank generator of ComputeFStatis-

tic v2 (i.e. not the template bank algorithm used in the search and presented
in Chapter 7), with a large mismatch of 7.0 to reduce the number of data
points for plotting purposes. The first search is performed at the nominal
frequency and spindown parameters of each injection; the second search is
at the frequency and spindowns at which each injection was found by the
Cas A search.

The results are shown in the bottom rows of plots in Figures 9.7a and 9.7b;
plotted are sky maps of 2F as a function of α and δ. Circles in the sky (Prix &
Itoh 2005) are distinguishable in all four sky maps. In the leftmost sky maps,
which were produced at the nominal injection parameters, the circles pass
through the sky position of the respective injection (black circle), showing
that this signal is very probably the hardware injection. In the rightmost sky
maps, which were conducted at the parameters of the injections, the circles
pass through the Cas A sky position, explaining why these signals were seen
by the search. Note that, in Figure 9.7a, the circles in the leftmost sky maps
pass reasonably close to the Cas A sky position, and conversely the circles
in the rightmost sky maps pass reasonably close to the sky position of the
injections; the same is likely true in Figure 9.7b but is more difficult to see
due to the fainter circles.

The displacement of the circles is consistent with the signals in the left and
right sky maps being one and the same, and the movement being due to the
different frequencies at which the signal is searched for. For each injection,
and between the leftmost and rightmost sky maps, the circles moves upward
in the sky map, which corresponds to a movement in the direction of the
approximate orbital velocity vector of the Earth at the observation time;
see Figure 1 of Prix & Itoh (2005). The positive sign of the accompanying
change in frequencies (see Table 9.3) is consistent with the behaviour found
by Prix & Itoh (see their Figure 2). In summary, we are confident that the
veto bands of Figures 9.7a and 9.7b contain the pulsar hardware injections
no. 3 and 8 respectively, and therefore we exclude the 2F values in these
bands (the loudest of which was 2F ∼ 90) from the remainder of the search.

We are now left with nine veto bands. Three veto bands are readily
identified with well-known instrumental lines (see Appendix 9.A.1). The
six remaining veto bands were investigated by Nelson Christensen and col-
leagues, as part of an ongoing effort to identify and understand long-term
instrumental coherence in the S5 data (Christensen et al. 2008). The coher-
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Figure 9.8: Veto bands triggered by probable instrumental lines in L1, at
(a) ∼ 139.5 Hz, and (b) ∼ 209.3 Hz. In Figures (a) and (b): (top) Veto band
plots, see section 9.3.3 for a description. In Figure (a): Coherence between
the channels L1:LSC-DARM ERR and L0:PEM-RADIO LVEA during (bottom left)
March 2007, and (bottom right) May 2007. In Figure (b): Coherence between
the channels L1:LSC-DARM ERR and L0:PEM-LVEA MAGZ during (bottom left)
March 2007, and (bottom right) October 2006.
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ence

C[x, y](f) =

〈 |x̃(f)?ỹ(f)|2
|x̃(f)|2|ỹ(f)|2

〉
(9.7)

is computed between two data channels x and y, where 〈〉 implies averaging of
many suitably-sized blocks of data. One channel is always L1:LSC-DARM ERR,
which is the un-calibrated gravitational wave channel of the L1 detector, and
the other channel is chosen to be a physical environmental monitoring (PEM)
channel. PEM channels that were found to be of interest are (LSC 2009):

• L0:PEM-BSC4 MIC, a microphone on Beam Splitter Chamber #4;

• L0:PEM-EX MAGZ, the Z axis of a magnetometer at the end station of
the X arm;

• L0:PEM-ISCT4 ACCZ, the Z axis of a accelerometer on Instrument Sens-
ing and Control Table #4;

• L0:PEM-LVEA MAGZ, the Z axis of a magnetometer in the Laser Vacuum
Equipment Area; and

• L0:PEM-RADIO LVEA a wire in the Laser Vacuum Equipment Area used
to look for radio signals.

Of the six veto bands, four are definitely identified with instrumental noise
(see Appendix 9.A.1). The case is not, however, as strong for the remaining
two veto bands (shown in Figure 9.8) as there is no significant coherence be-
tween L1:LSC-DARM ERR and any PEM channels during the month containing
the Cas A search data set (March 2007). Coherence is seen, however, during
other months between L1:LSC-DARM ERR and a number of PEM channels; the
coherence between L1:LSC-DARM ERR and representative channels are plotted
in Figure 9.8. A transitory or wandering noise source may be responsible.
Nonetheless, there are additional reasons for excluding these two veto bands.
In both bands, P(f) exceeds the threshold Pthr only in L1. In particular, the
P(f) spike at ∼ 139.5 Hz exceeds the threshold by a factor of ∼ 6, or ∼ 60
standard deviations of P ; it is very unlikely that such a strong signal, if it
were a gravitational wave, would be visible so clearly only in one detector.
Finally, we note that the largest values of 2F in each veto band, ∼ 71 (Fig-
ure 9.8a) and ∼ 54 (Figure 9.8b) are not particularly significant candidates,
considering the distribution of the largest value of 2F for the entire search
(see Figure 9.11). Therefore, we also exclude the 2F values in these bands
from the remainder of the search.
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Figure 9.9: Largest 2F found in each search job frequency band, after the
post-processing described in section 9.3. The thin vertical lines mark the
divisions between groups of 500 search job frequency bands.

9.4 The largest 2F
Figure 9.9 shows the largest value of 2F found in each of the Cas A search
job frequency bands, after the removal of spuriously large 2F values detailed
in section 9.3. In contrast to Figure 9.3, the post-processed results show no
obvious outliers. The largest non-vetoed value is 2F? ≈ 65.2. Figure 9.10
show plots, in the style of the veto band plots in section 9.3.3, of the job
band containing 2F?. No significant spikes are seen in the StackSlide power
P(f), and the range of P(f) is consistent with its expected Gaussian noise
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Figure 9.10: The search job band containing the largest non-vetoed value
of 2F . The form of the plots are as described in section 9.3.3, except that
the vertical red lines now indicate the extent of the search job band. The
value of the largest 2F is ∼ 65.2.
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Figure 9.11: The largest value of 2F found by the Cas A search, 2F? (red),
and its expected distribution (black), assuming no signal and independent
templates.

distribution (see Figures 9.5). We conclude that 2F? is not due to an instru-
mental line or other non-Gaussian noise, and is therefore the best candidate
for a detection of gravitational waves from Cas A produced by this search.

Figure 9.11 plots 2F? against its expected distribution, assuming that
no signal is found. As discussed in section 8.7, we also assume that the
searched templates are statistically independent, and so the distribution in
Figure 9.11 is calculated using the full number of templates. It is evident
that the 2F? found by this search is consistent with the hypothesis that no
signal has been detected; its value would need to be much greater than the
spread of the distribution in order for the possibility of a detection to be
seriously considered.

We conclude, therefore, that the results of the search presented here show
no evidence of a detected periodic gravitational wave signal from the central
compact object in Cas A.

9.5 Upper limits

Having concluded that we have not detected a gravitational waves from
Cas A, we proceed to use the results of the search to set 95% confidence up-
per limits on the strength of gravitational waves from Cas A. The full search
frequency band (100–300 Hz) is partitioned into 400 upper limit bands, each
of width 0.5 Hz; upper limits are set individually in each upper limit bands.
The width of the bands is chosen to be small enough so that the noise floor of
the detectors is roughly constant over the band, and large enough to limit the
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number of bands for computational reasons. No upper limits are set within
2 Hz either side of harmonics of 60 Hz (i.e. within 118–122 Hz, 238–242 Hz,
and 298–300 Hz), due to strong non-Gaussian contamination from the 60 Hz
mains power harmonics.

In previous periodic gravitational wave searches (e.g. Abbott et al. 2007b,
2008c), the 95% confidence upper limit of the gravitational wave strain, h95%

0 ,
in each upper limit band was determined using software injections, as fol-
lows. First, Makefakedata v4 (see section 7.4.1) is used to generate SFTs,
with time stamps matching the time stamps of the searched SFTs, and fre-
quencies limited to the upper limit band under consideration. The generated
SFTs contain simulated Gaussian noise, of the same amplitude as the noise
in the searched SFTs, and a simulated periodic gravitational wave signal
with fixed amplitude, h0 (whose value is initially guessed), and randomly
chosen inclination angles cos ι, polarisation angles ψ, and initial phases φ0.
The signal is injected into the generated SFTs at a random frequency, and
with random first (and second, if applicable) spindowns drawn from the orig-
inal parameter space of the search. The generated SFTs are then searched,
using the same software (e.g. ComputeFStatistic v2) and parameter space
as the original search, in order to find the injected signal. For the sake of
computational efficiency, only a small subset of the original parameter space
is searched, surrounding the (known) frequency and spindown of the injected
signal. Care must be taken, however, to ensure that there remains a ran-
dom mismatch between the injected signal and the searched template closest
to it. The maximum value of 2F found by the search for the injection is
compared to 2Ful, the largest value of 2F found in the upper limit band
under consideration. If 2F > 2Ful, the injection is considered to have been
detected. The above procedure is performed many times. The number of
detected injections, as a fraction of the total, is the confidence C(h0) at h0.
This confidence is then compared to the desired confidence C = 95%. If
C(h0) < C, the injected amplitude h0 is too small; if C(h0) > C, h0 is too
large. In either case, the value of h0 is adjusted, and the entire procedure
repeated, until finally the C(h0) = C, whereupon h0 = h95%

0 is the desired
95% confidence upper limit on strain.

9.5.1 Analytic estimation of upper limits

To expedite the derivation of the upper limits, we instead use an analytic
model of the software injection procedure, described above, to quickly arrive
at an estimate of h95%

0 . The strain upper limit on h0 at confidence C is
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Figure 9.12: Confidence of the upper limits in each upper limit band (black
points), as determined by software injections. The target confidence of 95%
is plotted in red.

modelled by the following equation:

1− C =

∫ 2Ful

0

d(2F)

∫ 1

−1

d(cos ι)

∫ π
4

−π
4

dψ

∫ µmax

0

dµ

p
(
χ2

4

[
(1− µ)ρ2

]
; 2F

)
p(cos ι) p(ψ) p(µ) , (9.8)

where µ is the mismatch, and p(cos ι), p(ψ), and p(µ) are the probabilities of
particular values of cos ι, psi, and µ respectively. The optimal signal-to-noise
ratio is most conveniently given by (e.g. Prix 2007a)

ρ2(hC0 ) = A
(
A2

1 + A2
3

)
+B

(
A2

2 + A2
4

)
+ C

(
2A1A2 + 2A3A4

)
, (9.9)

where the A, B, and C coefficients (equation 5.43) include the noise spectral
density Sn, and the Ai parameters (equations 5.39) are functions of hC0 .

Equation 9.8 is very similar to equation 8.15, for the false dismissal rate,
except that we explicitly account for the loss in signal-to-noise ratio due
to the mismatch between a software-injected signal and the nearest search
template. The quantities cos ι and ψ are uniformly distributed, i.e. p(cos ι)
and p(ψ) are constants. The probability distribution p(µ) is given by the
properties of the template bank; here, we use the template bank algorithm
of Chapter 7, and p(µ) is identical to the distributions plotted in Figures 7.4a.
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We solve equation 9.8 for hC0 numerically. Its right hand side is evaluated
using the technique of Monte Carlo integration, which asserts that∫

S
d(x, y, . . . ) f(x, y, . . . ) ≈

〈
f(random x, y, . . . )

〉
× volume(S) , (9.10)

where 〈〉 imply averaging. The strain h0 is initially guessed to be an ad hoc
combination of the A, B, and C coefficients, and is updated using the
Newton-Raphson root-finding method:

hnew
0 = hold

0 − f(hold
0 )

[
∂f

∂h0

(hold
0 )

]−1

, (9.11)

where

f(h0) = RHS of equation 9.8− LHS of equation 9.8 . (9.12)

When f(h0) is sufficiently close to zero, the upper limit hC0 has been found.
This procedure has been implemented by the author in LALApps, in the file
ComputeFStatAnalyticMonteCarloUpperLimit.c under src/pulsar/FDS_

isolated.
Once an upper limit h95%

0 is arrived at for each upper limit band, one
round of software injections (described in section 9.5) are then used to confirm
that the estimated h95%

0 is correct. Figure 9.12 plots the confidence C(h0)
for each upper limit band, as determined by the software injections. With a
few exceptions (corresponding to noisy bands) the confidences of the upper
limits are higher than the targeted 95%. This implies that, according to
the software injections, the upper limits arrived at by solving equation 9.8
understate their true confidence, and are therefore conservative estimates of
the strain upper limit.

9.5.2 Upper limits on h0 and ε

Figure 9.13 presents the 95% confidence upper limits on the strain h0 of
gravitational waves from the neutron star in Cas A, and on the star’s ellip-
ticity ε. As stated above, no upper limits are set within 2 Hz of the 60 Hz
harmonics. The indirect upper limits, and the predicted observable upper
limits (see Chapter 8) are plotted for comparison; the observational upper
limits beat the indirect limits, as expected. The upper limits on h0 derived
from the search perform slightly better than was predicted; for example, at
∼ 150 Hz, the search places an upper limits of ∼ 7× 10−25, compared to the
predicted ∼ 7.5 × 10−25. This small improvement is likely due to improved
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Figure 9.13: Upper limits at 95% confidence derived from the search (black
points), the indirect limits derived in section 8.2 (red lines), and the predicted
upper limits of section 8.6 (grey lines), on (a) the strain of gravitational waves
from Cas A h95%

0 , and (b) the ellipticity of Cas A ε95%.
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performance of the LIGO detectors, relative to the design sensitivity curve
used in the predictions. The deterioration in the upper limits between 230
and 240 Hz, and at 280 Hz, are due to excessive broadband noise in H1 (see
Figure 9.2). The noise in these bands has been investigated and their sources
identified.3

The upper limits on ellipticity range from approximately 4 × 10−5 to
4 × 10−4 over the frequencies searched. Various models of quark or hybrid
stars, combined with the increased breaking index of Horowitz & Kadau
(2009), predict maximum ε within this range, as reviewed in section 2.4.
This search would therefore have been able to detect a maximally deformed
neutron star in Cas A whose equation of state was at the speculative end
of theoretical possibilities. Since, however, this search has not detected any
convincing gravitational wave signal, we can make no statement regard the
internal physics of the Cas A CCO, since its ellipticity may simply be much
less than maximum.

Abbott et al. (2010) has recently set upper limits on known pulsars using
the entire LIGO S5 data set. New strain upper limits were set on the Crab
pulsar of at best ∼ 2 × 10−25 (depending on how the data is analysed to
account for a timing glitch in the pulsar), which is 13–15% of the Crab
indirect upper limit. Abbott et al. (2010) also set an upper limit on the pulsar
PSR J0537-6910 which is very close to its indirect limit. The PowerFlux
search of the early S5 data (Abbott et al. 2009b) set all-sky upper limits
below 10−24 over the Cas A search band, and a first search of the S5 data
using Einstein@Home (Abbott et al. 2009d) set an all-sky upper limit of
3× 10−24 between 125 and 225 Hz, for 90% confidence.

The observed strain upper limit on the Crab, ∼ 2× 10−25 (Abbott et al.
2010), is ∼ 3.5 times lower than our best upper limit on Cas A, at ∼ 150 Hz.
It was obtained using ∼ 50 times more data from H1 and L1 than was used
in the Cas A search; the Crab search also used a similar amount of data from
the Hanford 2-km interferometer H2. The gravitational wave frequency of
the Crab (assumed to be twice the rotation frequency) is very near to 60 Hz;
at that frequency, the strain noise in the LIGO detectors is, very roughly,
an order of magnitude worse than at 150 Hz (Abbott et al. 2009e); thus, the
ratio Sn/Tobs is about a factor of 5 larger for Cas A than for the Crab. To
compare the upper limits, we take the ratio Sn/Tobs to be unity for Cas A,
and assume that the sensitivity factor for Cas A (∼ 35) is roughly 3 times the
sensitivity factor for the Crab search; the F statistic sensitivity factor for a
single template search is ∼ 11 (Abbott et al. 2007b), although Abbott et al.
(2010) uses a different search method. We then average the ratio Sn/Tobs

3 N. Christensen and R. Schofield, private communications.



9.6. Summary 157

over the detectors used in each search (H1 and L1 for Cas A; H1, L1, and H2
for the Crab); the upper limit is then proportional to the sensitivity factor
times the square root of this average (see equation 8.13). The ratio of the
upper limits on Cas A (at 150 Hz) and the Crab is then

Cas A

Crab
≈ 35

√
(1 + 1)/2

11
√

1/5× (1 + 1 + 2)/3
≈ 6 ; (9.13)

we assume the noise strain in H2 is twice that of H1 and L1. This ratio is
in very rough agreement with the ratio of the actual upper limits (∼ 3.5);
thus, our upper limits on Cas A are at least consistent, to within an order
of magnitude, with those of other periodic gravitational wave searches, given
the length and sensitivity of the data analysed.

Because Cas A is a young neutron star, it is worth considering interpreting
the upper limits obtained here in terms of r-mode emission (see section 2.4).
The r-mode emission mechanism is different in a number of ways to the
nonaxisymmetric deformation mechanism targeted by this search, and these
differences are not explicitly reflected in the implementation of the F statis-
tic. Nevertheless, it may be possible to account for these differences after
the fact, and in so doing derive the first observational upper limits on gravi-
tational waves from r modes. Further details are presented in Abadie et al.
(2010).

9.6 Summary

This chapter presented the results of the search for gravitational waves from
Cas A proposed in Chapter 8. We selected the search data set from the LIGO
S5 run, performed the search, and detailed the post-processing of the results,
including the vetoing of some results due to contamination by instrumental
noise. We presented the largest value of the F statistic, 2F? ≈ 65.2, found by
the search, and concluded from it that we had not detected a gravitational
wave signal from Cas A. Finally, we presented observational upper limits
for Cas A on the gravitational wave strain and ellipticity, which beat their
respective indirect upper limits.

9.A Additional material

This appendix includes additional material pertaining to this chapter.
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(b) ∼ 128.0 Hz
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Figure 9.14: Veto bands trigged by instrumental lines at (a) ∼ 119.9 Hz,
(b) ∼ 128.0 Hz, and (c) ∼ 179.8 Hz. Figures (a) and (c) are associated with
harmonics of 60 Hz, while Figure (b) is a harmonic of 16 Hz.
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Figure 9.15: Veto band triggered by an instrumental L1 line at ∼ 139.2 Hz.
(top) Veto band plots, see section 9.3.3. (bottom) Coherence during March
2007 between L1:LSC-DARM ERR and: (left) L0:PEM-ISCT4 ACCZ, and (right)
L0:PEM-LVEA MAGZ.
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Figure 9.16: Veto band triggered by an instrumental L1 line at ∼ 144.8 Hz.
(top) Veto band plots, see section 9.3.3. (bottom) Coherence during March
2007 between L1:LSC-DARM ERR and: (left) L0:PEM-BSC4 MIC, and (right)
L0:PEM-EX MAGZ.
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Figure 9.17: Veto band triggered by an instrumental L1 line at ∼ 185.6 Hz.
(top) Veto band plots, see section 9.3.3. (bottom) Coherence during March
2007 between L1:LSC-DARM ERR and: (left) L0:PEM-LVEA MAGZ, and (right)
L0:PEM-RADIO LVEA.

H1

192.95 193. 193.05
33.2

39.8

46.4

53.0

59.5

66.1

0.90
@6.79D

0.98
@6.89D

1.06
@6.99D

1.13
@7.09D

f / Hz

2F

P
[S

n
H
z/
10

−
4
6
]

L1

192.95 193. 193.05
33.2

39.8

46.4

53.0

59.5

66.1

0.87
@7.70D

1.31
@8.36D

1.75
@9.01D

2.19
@9.67D

f / Hz

2F

P
[S

n
H
z/
10

−
4
6
]

192.8 192.9 193. 193.1 193.2
0.

0.1

f / Hz

C

192.8 192.9 193. 193.1 193.2
0.

0.1

0.2

0.3

0.4

0.5

f / Hz

C

Figure 9.18: Veto band triggered by an instrumental L1 line at ∼ 193.0 Hz.
(top) Veto band plots, see section 9.3.3. (bottom) Coherence during March
2007 between L1:LSC-DARM ERR and: (left) L0:PEM-BSC4 MIC, and (right)
L0:PEM-EX MAGZ.
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9.A.1 Known instrumental lines

Figures 9.14–9.18 present veto band trigged by seven instrumental lines. The
lines in Figure 9.14 are well-known harmonics of the 60 Hz AC mains power
and of the 16 Hz data acquisition frequency (Abbott et al. 2004a). The lines
in Figures 9.15–9.18 were found by Nelson Christensen and colleagues; see
section 9.3.3 for further information. In each veto band, coherence (equa-
tion 9.7) is clearly seen between L1:LSC-DARM ERR and a PEM channel. The
physical origins of the coherent noise were not investigated further.





Chapter 10

Conclusion

This thesis considered a number of problems relevant to the physics of neu-
tron stars and gravitational waves. We performed simulations of magnetic
mountains on accreting neutron stars, explored methods for reducing the
computational cost of periodic gravitational wave searches, and presented
a search for periodic gravitational waves targeting the supernova remnant
Cassiopeia A. Below, the achievements of this thesis are reviewed, and rec-
ommendations for further work are proposed.

Chapter 2 introduced the physics of neutron stars and gravitational waves,
and an important link between them. In Chapters 3–4, we studied the prob-
lem of the burial of the magnetic field of accreting neutron stars, and the
formation of magnetically confined mountains. In Chapter 3, we reviewed
previous work on magnetic burial; we then presented a numerical procedure
capable of building magnetic mountains with realistic masses. We justified
the injection of the accreted matter from below, which is (with some sub-
tleties) equivalent to injection from above in ideal magnetohydrodynamics.
In Chapter 4, we presented the results of simulations of magnetically con-
fined mountains, with masses up to ∼ 0.1M�, grown on a hard surface, as
well as sinking into a soft fluid base. We presented an illustrative example of
the growth of a mountain, and compared in detail the final configurations of
hard- and soft-surface mountains. We found that the ellipticity of a moun-
tain grown on a hard surface approaches ∼ 2 × 10−4 for accreted masses
greater than ∼ 10−3M�, and that sinking reduces the ellipticity by between
25% and 60%. We compared our simulations to the work of Choudhuri &
Konar (2002), and discussed the consequences for gravitational waves from
low-mass x-ray binaries.

This work should be seen as one step in a progression of refinements to our
numerical model of magnetic burial, which have included the self-consistent
calculation of the mass-flux distribution (Payne & Melatos 2004), the hydro-
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magnetic stability of the equilibrium state in axisymmetric (Payne & Melatos
2007) and three-dimensional (Vigelius & Melatos 2008) simulations, and the
addition of resistive relaxation (Vigelius & Melatos 2009b). The next key
refinement would be to incorporate a more realistic equation of state; the
assumption of an isothermal equation of state breaks down during the later
stages of accretion, where Ma & 10−3M� (Vigelius & Melatos 2009a). The
equation of state also determines the equilibrium density profile of the star,
which is important in determining to what depth the mountain sinks before
stabilising. The simulations performed here suggest that the sinking of the
mountain, while substantial, does not obliterate it; this is encouraging for the
prospect of detecting gravitational waves generated by magnetic mountains.

Chapter 5 summarised results from the searches for gravitational waves
conducted to date, and reviewed the analysis of the periodic gravitational
waves expected from spinning neutron stars. In Chapter 6, we generalised
the PowerFlux semi-coherent data analysis method to estimate the ampli-
tude and polarisation parameters of periodic gravitational wave signals. We
used simulated signals injected into Gaussian noise to compare the parameter
estimation and detection efficiencies of the generalised PowerFlux methods
we obtained against the standard PowerFlux methods. We found that, in
general, the standard circular PowerFlux method is the most efficient; the
relative performance of the remaining methods is dependent on the declina-
tion of the injected signals.

While we were unsuccessful in inventing a more efficient semi-coherent
search method, it is good to know that the most efficient variety of PowerFlux
(at least from within the methods examined here) is that already being used
in all-sky searches of LIGO data. It would be interesting to understand more
fully why circular PowerFlux is the most efficient, and under what conditions.
The PowerFlux maximum likelihood statistic, mentioned in Mendell & Wette
(2008), is another intriguing possibility for further research.

In Chapter 7, we presented a template bank generation algorithm for co-
herent periodic gravitational wave searches. We demonstrated how a sphere
covering on an optimally thin lattice, together with a metric on the search
parameter space, is used to construct a template bank with a minimum num-
ber of points. We also show how to place templates along the edges of the
parameter space to ensure complete coverage, and how to estimate the total
number of required templates. The performance of an implementation of the
algorithm was successfully tested. The algorithm was utilised in the search
for gravitational waves from Cassiopeia A presented in Chapters 8–9.

There are a number of improvements that could be made to the algo-
rithm. For instance, we refer to the slice through a three-dimensional tiling
over f , ḟ , and f̈ shown in Figure 8.3. We see that the extent of the param-
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eter space in the f̈ direction is small compared to the bounding box of the
mismatch ellipse of a single template; it seems likely, therefore, that in this
instance the tiling in f̈ could be compressed to a single template. Templates
laid over a two-dimensional f–ḟ space would still extend into the f̈ dimen-
sion, and the mutual overlap of their mismatch ellipses could be sufficient
to give complete coverage of the f̈ dimension. The maximum size of the f̈
dimension for which this would be possible would depend on the geometry of
the sphere covering. It would also be interesting to extend the algorithm to
cover non-flat parameter spaces, such as the parameter space of sky positions
for periodic gravitational wave signals. A coarse covering could be used to
divide the parameter space into patches where the metric can be considered
locally flat; each patch would then be covered by a lattice-based template
bank. It remains to be seen whether such an algorithm would provide a more
efficient coverage than existing methods.

In Chapters 8–9, we presented a search for periodic gravitational waves
targeting the central compact object in the supernova remnant Cassiopeia A.
In Chapter 8 we reviewed the wealth of astronomical observations of the rem-
nant, and motivated a gravitational wave search targeting the young neutron
star at its centre. We presented the proposed search of 12 days of LIGO S5
data using the ComputeFStatistic v2 implementation of the F statistic,
estimated the sensitivity of the search, and demonstrated that the search
would beat an indirect upper limit on gravitational waves based on energy
conservation. We also predicted the distribution of the largest value of the
F statistic found by the search assuming a signal is not detected. In Chap-
ter 9 we presented the implementation of the search: from the selection of
data from the S5 run, and the division of the search into multiple jobs for
distribution over a computer cluster, to the post-processing of the results,
including the removal of some values of the F statistic due to contamination
by instrumental noise. The largest value of the F statistic found by the
search, after post-processing, was consistent with the expected distribution
assuming no signal; we conclude, therefore, that we have not detected grav-
itational waves from Cassiopeia A. Finally, we present the upper limits on
gravitational waves derived from the search, which beat the indirect limit as
expected.

Cassiopeia A now belongs to a select collection of astronomical objects
(including, notably, the Crab pulsar) for which this has been achieved. Even
with its initial design configuration, LIGO is already producing scientifically
interesting results; this bodes well for the gravitational wave astronomy ex-
pected to be achievable by advanced interferometers. In addition, there are
a number of possible improvements to the Cassiopeia A search. First, the
coherent F statistic method in this search is not the most sensitive possi-
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ble; a hierarchical search combining coherent and semi-coherent stages would
provide a significant improvement in sensitivity. Second, more sensitive data
is now available: in July 2009, LIGO began its sixth science run (S6), fea-
turing instrumental improvements (many of them brought forward from the
advanced LIGO design), which are expected to yield a twofold improvement
in strain sensitivity (LIGO Laboratory 2009c). Third, more computational
power may be utilised; in particular, Einstein@Home would be an inter-
esting platform on which to consider conducting a future search targeting
Cassiopeia A. The methodology developed for the Cassiopeia A search may
also be applied to other promising targets, such as the supernova remnant
Vela Junior.

Advanced LIGO plans to begin observations in 2015 (LIGO Laboratory
2009a). This date is closely followed by two interesting anniversaries: the one-
hundredth anniversary of general relativity (Einstein 1916), and the fiftieth
anniversary of the discovery of pulsars (Hewish et al. 1968). By then, we
may very well possess new, and potentially revolutionary, insights into the
unknown physics of neutron stars, and a complete validation of the general
theory of relativity. The next few years promise to be interesting times for
both fields.
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