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Abstract. To ascertain the uncertainties associated with the nuclear transition matrix
elements M (0ν) for the neutrinoless ββ decay of 94,96Zr, 98,100Mo, 104Ru, 110Pd, 128,130Te
and 150Nd isotopes in the case of 0+ → 0+ transition, a statistical analysis has been
performed by calculating eight (twelve) different nuclear transition matrix elements M (0ν) in the
projected Hartree-Fock-Bogoliobov (PHFB) model using four different parameterizations of a
Hamiltonian with pairing plus multipolar effective two-body interaction and two (three) different
parameterizations of Jastrow-type short range correlations. The averages in conjunction with
their standard deviations provide an estimate of the uncertainties associated the nuclear
transition matrix elements M (0ν) calculated within the PHFB model.

1. Introduction
The observation of lepton number violating neutrinoless double beta (ββ)0ν decay is a convenient
tool for establishing the Majorana nature of neutrinos. Once observed, it can provide information
on many a gauge theoretical parameters, namely effective mass of light as well as heavy
neutrinos, the effective coupling constants of left-right and right-right handed currents in the
left-right symmetric models, the intergeneration Yukawa coupling constants in the Rp-violating
minimal super-symmetric (SUSY) standard model, leptoquark-Higgs coupling constant, mixing
parameters of heavy sterile neutrinos with light Majorana neutrinos, the compositeness scale, the
brain-shift parameter of extradimensional models and Majoron-neutrino coupling constants in
addition to the violation of Lorentz invariance and weak equivalence principle. According to the
“black box theorem” [1], the observation of (ββ)0ν decay implies the non-zero mass of Majorona
neutrinos at the weak scale in any gauge theoretical model with spontaneous symmetry breaking
independent of underlying mechanisms. The extension of this “black box theorem” to SUSY
models [2], implies the existence of massive sneutrinos provided the (ββ)0ν decay is observed.

The reliability of extracted gauge theoretical parameters depends on the accuracy of
calculated model dependent nuclear transition matrix elements (NTMEs). The nuclear many-
body theory is quite complex as it deals with the nonperturbative region of quantum chromo
dynamics (QCD). Hopefully, the present attempts to develop the effective field theory (EFT)
as an alternative method for low energy QCD will emerge as a powerful technique for solving
nuclear many-body theory in the near future. The basic problem in the conventional nuclear
structure calculations is to solve the nuclear many body problem perturbatively to all orders
and the nuclear shell model is a prototypical nuclear many-body theory. However, most of the
ββ emitters are medium and heavy mass nuclei for which there is a necessity of large scale
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configuration mixing and the presently available computational facilities are limited for this
purpose. Therefore, one is forced to look for alternative models such as quasiparticle random-
phase approximation (QRPA) and their extensions, projected-Hartree-Fock-Bogoliobov model
(PHFB), deformed Hartree-Fock (DHF) and generator coordinate method plus particle number
and angular momentum projection (GCM+PNAMP), single state dominance hypothesis (SSDH)
as well as group theoretical methods.

In general, there are four main sources of uncertainties, namely the inclusion of pseudoscalar
and weak magnetism terms in the Fermi, Gamow-Teller (GT) and tensorial NTMEs [3, 4],
the effects due to finite size of nucleons (FNS) as well as short range correlations (SRC)
[5, 6, 7, 8, 9, 10, 11, 12], deformation and the use of two effective values of the axial-vector
coupling constant gA. In addition, different nuclear models produce different NTMEs even for
a given transition depending on the approximations involved and for a given model, NTMEs
also depend on the model space and effective two-body interaction selected. Based on these
observations, Vogel proposed that the spread between the calculated NTMEs can provide a
measure of the theoretical uncertainty [13]. In the case of the well studied 76Ge isotope, it was
observed that the calculated decay rates T 0ν

1/2 differ by a factor of 6–7 and hence, the uncertainty
in the effective neutrino mass 〈mν〉 is about 2–3. Experimental limit T 0ν

1/2 > 1.6 × 1025 yr [14]
imply upper limits on 〈mν〉 between 0.4 eV and 1.0 eV, depending on the NTMEs [15, 16, 17].

By performing a statistical analysis, the spread between the calculated NTMEs can be
translated into averages and standard deviations [18, 19]. According to Bilenky and Grifols
[20], the comparison of calculated ratios of the corresponding NTMEs-squared and the ratios of
half-lives could test the validity of nuclear structure calculations in a model independent way
once the (ββ)0ν decay would be observed in several nuclei. Rodin et al. [21] have estimated the
theoretical uncertainty employing QRPA and renormalized QRPA (RQRPA), with three sets of
basis states and three realistic two-body effective interactions. Different strategies to remove
the sensitivity of QRPA calculations on the model parameters have been also proposed [22, 23].
Further studies on uncertainties in NTMEs due to SRC using the unitary correlation operator
method (UCOM) [10] and self-consistent coupled cluster method (CCM) [11] have been carried
out by Tuebingen group.

Specifically, the PHFB model is unique in allowing the description of the ββ decay in medium
and heavy mass nuclei by projecting a set of states with good angular momentum, while treating
the pairing and deformation degrees of freedom simultaneously and on equal footing. The
PHFB model, in conjunction with pairing plus quadrupole-quadrupole (PQQ) interaction [24]
has been successful in the study of the 0+ → 0+ transition of (β−β−)2ν decay, and it was
possible to describe the lowest excited states of the parent and daughter nuclei along with
their electromagnetic transition strengths, as well as to reproduce the measured ββ decay rates
[25, 26]. However, the structure of the intermediate odd Z-odd N nuclei and hence, the single β
decay rates and the distribution of GT strength can not be studied in the present version of the
PHFB model. In spite of this limitation, it is quite convenient for examining the explicit role of
deformation on the NTMEs [27, 28]. The effects of pairing and quadrupolar correlations on the
NTMEs of (β−β−)0ν decay has been also studied in the interacting shell model (ISM) [9, 29].

Presently, two different parameterizations of the QQ interaction have been employed, with
and without the HH correlations. Further, the NTMEs M (0ν) are calculated with three different
parametrizations of Jastrow SRC employing the four sets of wave functions. The twelve NTMEs
provide a reasonable sample for estimating the associated uncertainties. In Sec. 2, the reliability
of HFB wave functions has been discussed briefly. In Sec. 3, the effects due to the four different
parameterizations of the pairing plus multipole Hamiltonian and three different parametrizations
of SRC on the calculated NTMEs are analyzed, and in Sec. 4, their average values as well as
standard deviations are estimated. Subsequently, the latter are employed to obtain upper limits
on the effective mass of light Majorana neutrinos. Conclusions are given in Sec. 5.
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2. Reliability of HFB wave functions
The HFB wave functions were generated using an effective Hamiltonian [28] given by

H = Hsp + V (P ) + V (QQ) + V (HH), (1)

where Hsp, V (P ), V (QQ) and V (HH) denote the single particle Hamiltonian, the pairing,
quadrupole-quadrupole (QQ) and hexadecapole-hexadecapole (HH) parts of the effective two-
body interaction, respectively. The model space and single particle energies (SPE’s) have been
already given in Refs. [25, 26, 27]. In the quadrupole-quadrupole part of the effective two-body
interaction, the V (QQ) has three terms for proton-proton, neutron-neutron and the proton-
neutron interaction with coefficients χ2pp, χ2nn and χ2pn, respectively. The strengths of the
like particle components of the QQ interaction were taken as χ2pp = χ2nn = 0.0105 MeV b−4.
By fitting the experimental excitation energy of the 2+ state, E2+ , the strength of proton-
neutron component of the QQ interaction χ2pn was fixed [25, 26, 27]. Alternatively, one can
also employ an isoscalar parametrization of the quadrupole-quadrupole interaction, by taking
χ2pp = χ2nn = χ2pn/2. and the three parameters were varied together to fit E2+ . These two
parameterizations of the quadrupole-quadrupole interaction are refereed as PQQ1 and PQQ2
with PQQ [24] type of effective two-body interaction.

The experimental excitation energies of 2+ state E2+ [30] can be reproduced within about
2% accuracy in both methods. By employing the PQQ1 parametrization, the maximum change
in E4+ and E6+ energies with respect to PQQ1 interaction [25, 26] is about 5% and 18%,
respectively. By employing either parametrizations, the reduced B(E2:0+ → 2+) transition
probabilities, deformation parameters β2, static quadrupole moments Q(2+) and gyromagnetic
factors g(2+) are in an overall agreement with the experimental data [31, 32]. With respect to
PQQ1 parametrization, the maximum change in the calculated NTMEs M2ν for the 0+ → 0+

transition in the case of PQQ2 parametrization, is about 21% but for 94Zr isotope. By including
the hexadecapolar term HH, we end up with four different parameterizations of the effective
two-body interaction, namely PQQ1, PQQHH1, PQQ2 and PQQHH2.

3. Short range correlations and NTMEs
Considering the finite size of nucleons, the inverse half-life of the (β−β−)0ν decay due to the
exchange of light Majorana neutrinos for the 0+ → 0+ transition is given by [5, 15, 33]

[
T 0ν

1/2(0
+ → 0+)

]−1
=

(〈mν〉
me

)2

G01|M (0ν)|2, (2)

and the model dependent NTME M (0ν) is given by

M (0ν) =
∑
n,m

〈
0+

F

∥∥∥∥∥

[
σn · σm −

(
gV

gA

)2
]

H(r12)τ+
n τ+

m

∥∥∥∥∥ 0+
I

〉
, (3)

where

H (r12) =
4πR

(2π)3

∫
d3q

exp (iq · r12)

q
(
q + A

)
(

Λ2

Λ2 + q2

)4

, (4)

with A = 〈EN 〉 − 1
2 (EI + EF ). The cutoff momentum Λ= 850 MeV [27].

Recently, Šimkovic et al. [11] have shown that it is possible to parametrize the SRC effects
of Argonne V18 and CD-Bonn two nucleon potentials by the Jastrow type of correlations within
a few percent accuracy. Explicitly, the effects due to the SRC can be incorporated in the
calculation of M (0ν) through the prescription Ok → fOkf , where

f(r) = 1− ce−ar2
(1− br2), (5)
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with a = 1.1, 1.59 and 1.52 fm−2, b = 0.68, 1.45 and 1.88 fm−2 and c = 1.0, 0.92 and 0.46
for Miller-Spencer [34], Argonne V18 and CD-Bonn NN potentials, respectively. Presently, the
NTMEs M (0ν) are calculated in the PHFB model by employing these three sets of parameters
for the SRC, denoted as SRC1, SRC2 and SRC3, respectively. The three functions f(r) have
similar forms, but differ in their values at the origin, and at the position of their maximum,
which lie at 1.54, 1.15 and 1.09 fm for SRC1, SRC2 and SRC3, respectively. As discussed below,
they have clear influence on the calculated NTMEs and radial evolution of the (β−β−)0ν decay
matrix elements.

We present the twelve NTMEs M (0ν) in Table 1, evaluated using the HFB wave functions
in conjunction with PQQ1, PQQHH1, PQQ2, PQQHH2 interactions and three different
parametrizations of the Jastrow type of SRC for the nuclei 94,96Zr, 98,100Mo, 104Ru, 110Pd,
128,130Te and 150Nd. Following Haxton’s prescription [15], the average energy denominator
A has been taken as A = 1.12A1/2 MeV . In Ref. [12], the NTMEs were calculated in the
approximations of point nucleons (P), FNS, point nucleons with SRC (P+SRC), and finite
size plus SRC (FNS+SRC). The NTMEs M (0ν) were also calculated for A/2 in the energy
denominator in the case of point nucleons to obtain information on the validity of closure
approximation. The following observations are worth mentioning [12].

(i) It was observed that the relative change in NTMEs M (0ν) is of the order of 10 %, when
the energy denominator was taken as A/2 instead of A. It confirms that there is a weak
dependence of NTMEs on average excitation energy A for the (β−β−)0ν decay and the
closure approximation is quite valid.

(ii) Due to the different parameterizations of the Hamiltonians, the variation in M (0ν) lies
between 20–25%. In general, it was noticed that the NTMEs but for 128Te isotope evaluated
for both parameterizations of the quadrupolar interaction are quite close. The inclusion of
the hexadecapolar term tends to reduce them by amounts which strongly depend on the
specific nuclei.

(iii) In the approximation of point nucleons, the inclusion of SRC induces an extra quenching
in the NTMEs M (0ν), which is of the order of 18–23% for SRC1 and negligible for SRC3.

(iv) The dipole form factor always reduces the NTMEs by 12–15% in comparison to the point
nucleon case.

(v) Adding SRC can further reduce the transition matrix elements, for SRC1, or slightly
enhance them, partially compensating the effect of the dipole form factor. It was interesting
to note that the effect of FNS+SRC2 is almost negligible, i.e., nearly the same as FNS.

The radial evolution of M (0ν) has been studied by Šimkovic et al. [10] by defining

M (0ν) =
∫

C(0ν) (r) dr. (6)

In the QRPA by Šimkovic et al. [10] and ISM by Menéndez et al. [35], it has been observed that
the contributions of decaying pairs coupled to J = 0 and J > 0 almost cancel beyond r ≈ 3 fm
and the magnitude of C(0ν) for all nuclei undergoing (β−β−)0ν decay are the maximum about
the internucleon distance r ≈ 1 fm.

The study of radial dependence of C(0ν) in the PHFB model due to PQQ1 parametrization
of the effective two body interaction for six nuclei, namely 96Zr, 100Mo, 110Pd, 128,130Te and
150Nd [12], provide following observations.

(i) In case of point nucleons, it was noticed that the C(0ν) are peaked at r = 1.0 fm and with
the addition of SRC1, the peak shifts to 1.25 fm. However, the magnitude of C(0ν) are
increased for SRC2 and SRC3 with unchanging peak position.
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Table 1. Calculated NTMEs M (0ν) in the PHFB model with four different parameterizations of
the effective two-body interaction, three different parameterizations of SRC along with average
NTMEs M

(0ν) and uncertainties ∆M
(0ν) for the (β−β−)0ν decay of 94,96Zr, 98,100Mo, 104Ru,

110Pd, 128,130Te and 150Nd isotopes.

Nuclei M (0ν) gA M
(0ν)

SRC1 SRC2 SRC3 Case I Case II

94Zr PQQ1 4.0690 4.6639 4.8383 1.254 4.2464±0.3883 4.4542±0.2536
PQQHH1 3.7315 4.2820 4.4441 1.0 4.6382±0.4246 4.8668±0.2759
PQQ2 3.9802 4.4818 4.6259
PQQHH2 3.5424 4.0708 4.2266

96Zr PQQ1 2.9068 3.3590 3.4923 1.254 3.1461±0.2778 3.3181±0.1243
PQQHH1 2.8507 3.3192 3.4578 1.0 3.4481±0.3085 3.6376±0.1424
PQQ2 2.7758 3.2103 3.3385
PQQHH2 2.6745 3.1182 3.2497

98Mo PQQ1 6.7322 7.6297 7.8884 1.254 7.1294±0.6013 7.4656±0.3635
PQQHH1 6.1984 7.0618 7.3114 1.0 7.8398±0.6826 8.2099±0.4358
PQQ2 6.7630 7.6695 7.9307
PQQHH2 6.1344 6.9925 7.2406

100Mo PQQ1 6.5036 7.4282 7.6920 1.254 6.8749±0.6855 7.2163±0.4977
PQQHH1 6.1597 7.0654 7.3248 1.0 7.5660±0.7744 7.9419±0.5769
PQQ2 6.5534 7.4838 7.7493
PQQHH2 5.5520 6.3756 6.6113

104Ru PQQ1 4.6942 5.3989 5.5975 1.254 4.8464±0.4840 5.1004±0.3280
PQQHH1 4.2809 4.9548 5.1454 1.0 5.3599±0.5533 5.6396±0.3926
PQQ2 4.4137 5.0777 5.2647
PQQHH2 3.9648 4.5931 4.7708

110Pd PQQ1 7.6982 8.7783 9.0850 1.254 7.8413±0.8124 8.2273±0.6167
PQQHH1 6.3963 7.3535 7.6262 1.0 8.6120±0.9184 9.0370±0.7128
PQQ2 7.3842 8.4187 8.7128
PQQHH2 6.7982 7.7816 8.0621

128Te PQQ1 3.2499 3.7258 3.8639 1.254 4.0094±0.4194 4.2175±0.3074
PQQHH1 3.4994 4.0740 4.2401 1.0 4.4281±0.4601 4.6571±0.3355
PQQ2 3.8893 4.4374 4.5956
PQQHH2 3.7336 4.3172 4.4860

130Te PQQ1 4.4319 5.0103 5.1753 1.254 4.4458±0.5231 4.6633±0.4269
PQQHH1 3.6277 4.1964 4.3595 1.0 4.9065±0.5837 5.1459±0.4802
PQQ2 4.3610 4.9320 5.0951
PQQHH2 3.6218 4.1879 4.3503

150Nd PQQ1 3.2316 3.6375 3.7514 1.254 3.1048±0.4649 3.2431±0.4434
PQQHH1 2.4208 2.7447 2.8359 1.0 3.4334±0.5181 3.5856±0.4952
PQQ2 3.1574 3.5546 3.6661
PQQHH2 2.5031 2.8311 2.9234
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(ii) In the case of FNS, the C(0ν) are peaked at r = 1.25 fm, which remains unchanged with
the inclusion of SRC1, SRC2 and SRC3. However, the magnitudes of C(0ν) change in the
latter three cases.

The above observations also remain valid with the other three parametrizations of the effective
two-body interaction.

4. Uncertainties in NTMEs
We have performed a statistical analysis for estimating the uncertainties associated with the
NTMEs M (0ν) for (β−β−)0ν decay calculated in the PHFB model by evaluating the mean and
the standard deviation, defined as

M
(0ν) =

∑N
i=1 M

(0ν)
i

N
(7)

and

∆M
(0ν) =

1√
N − 1

[
N∑

i=1

(
M

(0ν) −M
(0ν)
i

)2
]1/2

. (8)

Based on the observation by Šimkovic et al. [11] that the Miller-Spenser parametrization of
the Jastrow correlation is a major source of uncertainty and it is better to consider SRC2 or
SRC3 due to the Argonne V18 and CD-Bonn NN potentials, respectively, we have calculated
the averages and variances for two cases. In case I, the statistical analysis has been performed
for twelve NTMEs listed in Table 1, for the bare and quenched values of axial vector coupling
constant gA = 1.254 and gA = 1.0, respectively. Similarly, the averages and standard deviations
are calculated for eight NTMEs M (0ν) due to SRC2 and SRC3 in case II. In Table 1, the
averages M

(0ν) and uncertainties ∆M
(0ν) have been displayed. It is noticed that the exclusion

of Miller-Spencer parametrization reduces the uncertainty by about 55% in 96Zr to 4% in 150Nd.
In Fig. 1, we have plotted the average NTMEs M

(0ν) with the uncertainties ∆M
(0ν)

along with the recently available results obtained by employing the ISM [9], QRPA, RQRPA
[11], IBM [36] and GCM+PNAMP [37]. It is observed that in all the models, the NTMEs
M (0ν) have a weak or no dependence on the mass number A. Further, upper limits on the
effective mass of light neutrinos 〈mν〉 have been extracted from the largest observed limits on
half-lives T 0ν

1/2 of (β−β−)0ν decay [38, 39, 40, 41, 42, 43, 44] using the phase space factors
of Boehm and Vogel [45]. The extracted limits on 〈mν〉 for 100Mo and 130Te nuclei are
0.51+0.06

−0.05 − 0.73+0.08
−0.07 eV and 0.31+0.04

−0.03 − 0.45+0.06
−0.05 eV, respectively. Assuming 〈mν〉 = 50

meV, the predicted half-lives of (β−β−)0ν decay of 96Zr, 100Mo, 128,130Te and 150Nd isotopes
for gA = 1.254(1.0) are 1.60+0.13

−0.11×1026 (3.29+0.27
−0.24×1026) yr, 4.32+0.66

−0.54×1025 (8.83+1.44
−1.15×1025)

yr, 3.18+0.52
−0.42×1027 (6.44+1.04

−0.84×1027) yr, 1.07+0.23
−0.17×1026 (2.17+0.47

−0.35×1026) yr and 4.69+1.60
−1.06×1025

(9.49+3.29
−2.16×1025) yr, respectively.

5. Conclusions
In our previous works [25, 26, 28], the reliability of wave functions generated with PQQ1 and
PQQHH1 interactions was tested by calculating the yrast spectra, reduced B(E2:0+ → 2+)
transition probabilities, static quadrupole moments Q(2+) and g-factors g(2+) of participating
nuclei in (β−β−)2ν decay as well as M2ν and comparing them with the available experimental
data. It was observed that the PHFB wave functions generated by fixing χpn or χpp to reproduce
the E2+ are reasonably reliable in reproducing an overall agreement between the calculated and
observed spectroscopic properties as well as M2ν .
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Figure 1. NTMEs calculated in ISM [9], QRPA, RQRPA [11], PHFB [12], IBM [36] and
GCM+PNAMP [37] in the mass range A = 90− 150.

Presently, eight (twelve) NTMEs M (0ν) for (β−β−)0ν decay of 94,96Zr, 98,100Mo, 104Ru, 110Pd,
128,130Te and 150Nd isotopes were calculated by employing four different parameterizations of
the pairing plus multipolar type of effective two body interaction, FNS and two (three) different
parameterizations of Jastrow SRC. The mean and standard deviations were evaluated for the
eight (twelve) NTMEs M (0ν) for both gA = 1.254 and gA = 1.0 to estimate the uncertainties
in the NTMEs M (0ν) calculated in the PHFB model. The largest theoretical uncertainty, turns
out to be of the order of 15% in the case of 150Nd isotope. Also, limits have been extracted on
the effective mass of light Majorana neutrinos 〈mν〉 from the available limits on experimental
half-lives T 0ν

1/2 using average NTMEs M
(0ν). In the case of 130Te isotope, one obtains the best

limit on the effective neutrino mass 〈mν〉 < 0.31+0.04
−0.03 − 0.45+0.06

−0.05 eV from the observed limit on
the half-lives T 0ν

1/2 > 3.0× 1024 yr of (β−β−)0ν decay [43].
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