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Transient oscillating modes in a relativistic

expanding gas

Dennis Bazow

Department of Physics, The Ohio State University, Columbus, OH 43210

Abstract. We show that a transient effective theory for rapid anisotropically expanding
systems based on the Boltzmann equation exhibits transient oscillatory behavior.

1. Introduction and setup
The many-body dynamics of a weakly interacting, dilute system where two-particle correlations
can be neglected is governed by the Boltzmann equation,

kµ∂µf(x, k) = C[f ](x, k). (1)

The complete description of the microscopic dynamics involves an infinite number of
nonhydrodynamic modes contained in the linearized collision term C[f ]; the virtual infinite
complexity is reduced by systematically truncating these. (In general the collision term is non-
linear, but in this work we will only considered the linearized collision term.) Hydrodynamics
is an effective theory for the evolution of the conserved macroscopic quantities where only the
so-called hydrodynamic modes, those that satisfy the dispersion relation limk→0 ωn(k) = 0,
are included. It has always been previously thought that the nonhydrodynamic modes of the
Boltzmann equation are exponentially damped on microscopic time scales [1]. This is in stark
contrast to strongly coupled systems [2, 3] where the nonhydrodynamic modes are damped in
an oscillatory manner.

In this proceedings we show that the former only holds when all local momentum anisotropies
are treated perturbatively by expanding the Boltzmann equation around its local equilibrium
value. This assumption is relaxed by considering a system that expands stronger in the
longitudinal rather than transverse directions, such as the quark-gluon plasma created during
relativistic heavy-ion collisions [4], where these local momentum anisotropies can become large
and must be treated nonperturbatively. Here we do so by expanding the distribution function
around a local “quasi-equilibrium” state fk = fa,k + δf̃k by introducing a non-hydrodynamic
degree of freedom ξ(x) describing the deviation from momentum isotropy [5]:

fa,k = feq

(
βa

√
k2⊥+(1+ξ)k2z

)
. (2)

βa(x) is a temperature-like parameter that is varied on macroscopic time scales related to energy
conservation while the anisotropy parameter ξ is not constrained by conservation laws, but
controlled by the expansion of the system and by microscopic time scales associated with the
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Boltzmann collision term. In a procedure that closely follows [6], but now resums and truncates
the moment hierarchy according to a modified power counting scheme based on the Knudsen and
residual inverse Reynolds numbers from which the largest contributions arising from the local
momentum anisotropy have been eliminated, we derive a new type of transient relativistic fluid
dynamics in which the slowest non-hydrodynamic mode (associated with the local momentum
anisotropy) turns out to exhibit transient oscillations. It should not be surprising that the
physical phenomena emerging from this situation is analogous to that of a plasma placed in an
external field; here ξ plays the role, in this loose analogy, of a fictitious external (gravitational)
field that causes momentum space inhomogeneities.

2. Main ingredients
For a gas of massless particles the only conserved current is the energy-momentum tensor which
is decomposed for anisotropic systems as [7]

Tµν ≡ Euµuν − P⊥∆µν + (PL − P⊥)zµzν + π̃µν , (3)

where E is the LRF energy density, PL,⊥ are the longitudinal and transverse pressures, and π̃µν

is the residual shear stress tensor arising from δf̃ effects. uµ is the fluid velocity, zµ is the z
unit vector in the LRF, and ∆µν ≡ gµν − uµuν . We now replace the Boltzmann equation by a
hierarchy of moment equations. The solution to the Boltzmann equation is now equivalent to
solving the dynamical equations for the moments ρ̃µνr [6, 8]:

˙̃ρµνr (x) ≡ ∆µν
αβDρ̃

αβ
r (x) ≡ ∆µν

αβD

∫
dK(u·k)rk〈αkβ〉δf̃k , (4)

where D ≡ u·∂ is the time derivative in the local rest frame (LRF). The angle brackets around
any two Lorentz indices denote a tensor that is transverse to u and traceless. Linearizing the
collilsion term and using the Boltzmann equation (1) in the form

˙
δf̃k = −ḟa,k −

1

k·u

(
k·∇

(
fa,k+δf̃k

)
− Ck[f ]

)
, (5)

results in

∆µν
αβ

˙̃ραβr +

N2∑
n=0

(A(2)
rn )µναβ ρ̃

αβ
n = Lµνr ξ̇ +Mµνλ

r żλ +
(
α
(2)
θr

)µν
θ +

(
α(2)
σr

)µνλρ
σλρ +

(
α(2)
ωr

)µνλρ
ωλρ

+
Bµνr
J̃2,0,−1

π̃αβσαβ −
2

7
(2r+5)ρ̃λ〈µr σ

ν〉
λ + 2ρ̃λ〈µr ω

ν〉
λ −

1

3
(r+4)ρ̃µνr θ. (6)

Here σµν ≡ ∇〈µuν〉 is the velocity shear tensor, ωµν ≡ (∇µuν − ∇νuµ)/2 is the vorticity

tensor, and θ ≡ ∂·u the scalar expansion rate. The matrix A(2) contains all of the microscopic
information of the linearized Boltzmann equation. Appearance of time derivatives (in the LRF)
of the anisotropy parameter ξ and zµ is due to the fact that ḟa ⊃ β̇a, u̇

µ, ξ̇, żµ. β̇a and u̇µ

are replaced with the conservation laws in terms of only spatial (in the LRF) gradients of the
local thermodynamic fields. However, the anisotropy parameter ξ does not evolve on purely
macroscopic time scales and thus is not constrained by the conservation laws. We refer the
reader to Ref. [9] for further details.

In order to close the system of equations (6), we need to identify and separate the microscopic
times scales by determining the eigenmodes of A(2) by introducing the matrix Ω(2) that
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diagonalizes A(2). This process results in an asymptotic “Navier-Stokes” limit for all microscopic
eigenmodes except for the slowest one (r = 0):

ρ̃µνi = (Ω
(2)
i0 )µναβπ̃

αβ + ˆ̀µν
i ξ̇ + m̂µνλ

i żλ + (η̂
(2)
θi )µνθ + (η̂

(2)
σi )µνλρσλρ + (η̂

(2)
ωi )µνλρωλρ + h.-o. terms. (7)

The tensors ˆ̀, m̂, η̂
(2)
θ , η̂

(2)
σ and η̂

(2)
ω are built from uµ, zµ, ∆µν and the microscopic relaxation

scales. The fact that all higher order tensor moments are expressed in terms of the lowest-
order one that appears in Tµν , ρ̃µν0 ≡ π̃µν , Eq. (6) can be completely decoupled from higher
order moments. This is achieved by multiplying Eq. (6) by the microscopic relaxation times

(τ
(2)
nr )µναβ = [(A(2))−1nr ]µναβ and then using Eq. (7). But the asymptotic “Navier-Stokes” limit (7)

involves time derivatives (in the LRF) of the anisotropy parameter. This is the main ingredient.
Since ξ ∼ O(1) in our power counting scheme and does not evolve according to the conservation
laws it cannot be neglected as a higher order term thus leading to second order comoving time
derivatives ξ̈. (When ˙̃ρµνr in Eq. (6) is approximated according to (7) the ˆ̀µν

i ξ̇ term generates ξ̈
terms.) The result is a set of equations that take the following form:

(τ (n)π )µναβ
˙̃παβ + (Ω

(2)
n0 )µναβπ̃

αβ + (τ
(n)
ξ )µν ξ̇ + (λ(n)z )µνλżλ + (D(n)

2 )µν + (D(n)
1 )µν

= (η
(2,n)
θ )µνθ + (η(2,n)σ )µναβσαβ + (η(2,n)ω )µναβωαβ + (J (n))µν + (K(n))µν . (8)

See Ref. [9] for the explicit expressions for the coefficients. The main result is that the tensors

(D(n)
2 )µν contain second-order time derivatives ∼ ξ̈. Fig. 1 shows the result of the dispersion

relations in the long wavelength limit k → 0 for the eigenmodes of the linearized equations of
motion (i.e. linear perturbations around a static background). The equal and opposite real and
the negative imaginary parts of the frequencies of the nonhydrodynamic modes indicate that
the momentum anisotropy parameter ξ undergoes transient (damped) oscillations.

3. Conclusions
We showed here that transient oscillations of the slowest nonhydrodynamic modes arise
generically in the weakly coupled Boltzmann equation from large deviations from local
momentum isotropy in rapidly expanding anisotropically expanding systems. If the distribution
function is instead expanded around its local equilibrium value when deriving the macroscopic
equations of motion from the Boltzmann equation, all nonhydrodynamic modes are found to be
exponentially damped [1].
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Figure 1. Shear channel eigenmodes in the zero wavenumber limit. Shown are the two
degenerate hydrodynamic modes at ω0 = 0 and the first two non-hydrodynamic modes at ω±
that exhibit transient oscillatory behavior.


