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ABSTRACT 
 

The Schwinger-Dyson equations (SDEs) are coupled integral equations for the 
Green's functions of a quantum field theory (QFT). The SDE approach is the 
analytic nonperturbative method for solving strongly coupled QFTs. When 
applied to QCD, this approach, also based on first principles, is the analytic 
alternative to lattice QCD. However, the SDEs for the n-point Green's functions 
involves (n+1)-point Green's functions (sometimes (n+2)-point functions as 
well). Therefore any practical method for solving this infinitely coupled system 
of equations requires a truncation scheme. When considering strongly coupled 
QED as a modeling of QCD, naive truncation schemes violate various 
principles of the gauge theory. These principles include gauge invariance, 
gauge covariance, and multiplicative renormalizability. The combination of 
dimensional regularization with the spectral representation of propagators 
results in a tractable formulation of a truncation scheme for the SDEs of QED 
propagators, which has the potential to preserve the aforementioned principles 
and renders solutions obtainable in the Minkowski space. This truncation 
scheme is the main result of this dissertation. 
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Chapter 1

Introduction

The formalism of quantum field theories (QFTs) is intended to describe the mechanics of rela-

tivistic quantum particles. One perfect, yet unsolved, example of such a system is the confine-

ment of quarks inside hadrons. Compared with the rest mass of nucleons and pions, the sums

of their valence quark current masses are tiny. Therefore the majority mass of a light hadron

is present in the form of binding energy, with their constituents moving at relativistic speeds.

Because the strong nuclear force dominates the dynamics at the hadron scale, quantum chro-

modynamics (QCD) is the fundamental theory to describe the stable structures of hadrons.

Decay phenomena are explained by the theory of electro-weak integrations in conjunction with

QCD. While the electro-weak interaction remains weak at the hadron scale, the strong cou-

pling constant is large, invalidating perturbative QCD expansions. Therefore nonperturbative

approaches to QCD are required to understand the structure of hadrons. Among these ap-

proaches there are effective field theories [1], QCD sum rules [2], lattice QCD [3, 4], light-front

quantization [5,6], and Schwinger-Dyson equations (SDEs) [7–9].

Although the lattice QCD approach requires a significant amount of computing power, algo-

rithm improvements combined with Moore’s law have allowed results to be computed more eas-

ily and with controlled systematic errors. Alternatively, the Schwinger-Dyson/Bethe-Salpeter-

Faddeev approach [10, 11] to hadronic physics is far less numerically demanding than lattice

QCD. Another known advantage of the SDE approach is that physics can be understood in the

spacetime continuum free from effects of discretization. Better intuition about physics behind

the theory can also be obtained when results are presented in analytic forms. However, the
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p p k p

q

= −
−1 −1

Figure 1.1: The diagrammatic representation of the SDE for the fermion propagator in mo-
mentum space. The fermion-photon vertex is unknown and an ansatz is required to solve this
equation.

requirement of truncations introduces unknown uncertainties propagating to the final results.

The SDE for the fermion propagator in momentum space is represented by Fig. 1.1. It has

been solved extensively using specific ansätze for the fermion-photon vertex [12,13] (also see

Ref. [14–25]). Solutions in Minkowski space have been obtained by [26] (also see Ref. [27–31]).

Alternatively, these equations can be solved using complex conjugate poles to represent the

propagator functions [32–35].

Previous calculations of loops in the SDEs for the fermion propagator and photon propa-

gator were often regularized by a cut-off. For different regularization schemes, comparisons

have been made in Refs. [17, 18]. Since the cut-off regulator violates translational invariance,

there is an ambiguity in the choices of loop momenta. One criterion on the correctness of the

loop momentum is maintaining the transversality of the vacuum polarization tensor. Another

improvement in the SDE approach is the introduction of the spectral representations of Green’s

functions, allowing SDEs to be solved directly in Minkowski space without the Wick rotation. In

contrast, lattice QCD is formulated in the discretized Euclidean spacetime. The spectral rep-

resentation also allows the direct application of Feynman parameterization and dimensional

regularization. This set of procedures ensures the removal of the ambiguities in choosing the

loop momenta.

To offset the most significant drawback of the SDE approach, the proper truncation of SDEs

should respect various principles of the theory under study. For QCD in particular, the SU(3)

gauge group with its non-Abelian nature renders gauge symmetries complicated to preserve.

While the U(1) symmetry is much easier to handle, at the same time QED has gauge invariance,

gauge covariance, and renormalizability built in. Therefore it is instructive to start with QED for

modeling QCD in order to develop truncation schemes that preserve common principles of both

gauge theories. The gauge invariance of QED manifests itself as Ward-Green-Takahashi iden-
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tities (WGTIs). The original WGTI relates the longitudinal fermion-photon three-point function

to the fermion propagator, which has been utilized to construct the Ball-Chiu vertex [36]. The

transverse WGTIs [37–39] should, in principle, determine the transverse pieces of the fermion-

photon vertex. However, these involve nonlocal terms and coupling to other QED vertices,

which renders them impractical to solve.

Because Green’s functions are not physical observables, they can depend on the gauge

fixing of the theory. The correct behavior of the Green’s functions with changes in gauge

fixing conditions is called gauge covariance. In covariant gauges, Green’s functions in one

gauge are related to themselves in another gauge by the Landau-Khalatnikov-Fradkin trans-

form (LKFT) [40, 41]. Being a renormalizable theory, QED in four-dimensions only contains

three primitive divergent diagrams. The ability to remove these divergences by multiplying the

corresponding renormalization constants is named multiplicative renormalizability. The trans-

verse supplement to the Ball-Chiu vertex can be constructed to satisfy multiplicative renormaliz-

ability [12]. Respecting these principles of QED helps control the systematics of any truncation

scheme of SDEs. Achieving so paves the path towards the nonperturbative truncation of QCD

SDEs.

Although Green’s functions are not directly observable through experiments, they are part

of the theory to understand the physical world, and therefore cannot be arbitrary objects. The

mathematical structures of the Green’s functions should reflect our theory’s understanding of the

physical phenomena. Specifically for the propagators, their behavior near the mass shell corre-

sponds to the asymptotic states observed by particle detectors. This can be seen through the

well known Lehmann-Symanzik-Zimmermann reduction formula [42]. For confined particles,

including quarks and gluons inside hadrons, their propagators should not have any on-shell

behavior. Therefore the momentum space propagators of a QFT should not be more singular

than the free-particle propagator. This observation lays the foundation of an integral representa-

tion of the momentum space propagators, namely the spectral representation. Specifically, the

propagator function can be written as a linear combination of free-particle propagators weighted

by the spectral function, which contains delta-functions and theta-functions. The delta-function

terms of the spectral function correspond to the on-shell terms of the propagator, while the

theta-function terms generate branch cuts along the positive real axis of the complex momen-

tum plane corresponding to the timelike region. The spectral representation of the propagators

3



is shown to be an elegant way to condense the analytic structures of the propagators into real

functions. It also allows SDEs to be solved in Minkowski space directly.

Chapter 2 discusses the path integral formulation of QED, where one derivation of the SDEs

for theQED generating functional is provided. The (longitudinal)Ward-Green-Takahashi identity

for the generating functional is also deduced from the path integral. The corresponding SDEs for

the propagators and the WGTI for the vertex are obtained as the leading expansions of these

functional identities. Additionally, the equivalence of SDEs to all-order perturbation theory in

QED is proved. Within this chapter, the real scalar ϕ4 theory is used as an example to explain

several general properties of the path integral formalism.

Chapter 3 introduces the spectral representation for the propagators based on their analytic

structures. The spectral representation allows the complete description of the propagator on

the complex momentum plane by its imaginary part on the positive real axis. This spectral

representation is the foundation of chapters that follow.

Chapter 4 is a review of various Ward-Green-Takahashi identities for QED vertices. Here

representations similar to the Gauge Technique are shown to include the fermion propagator

contributions in the WGTIs. Because knowledge aside from the fermion propagator is required

to solve WGTIs exactly, the WGTIs do not form a closed system. Additionally, the tensor WGTI

is re-derived using the functional approach, and is shown to be anomaly free.

Chapter 5 starts with requirement on the fermion-photon vertex to insure loop-divergences

from the fermion propagator SDE are removable by renormalization conditions. Although the

Gauge Technique ansatz does not meet such a requirement, with a minimal modification, the

spectral functions for the fermion propagator have been solved from their SDEs in the quenched

approximation in the Landau gauge. The solution of the photon SDE in the Minkowski space

with the Gauge Technique is also discussed.

Chapter 6 explores how the divergences in QED in different orders are closely related based

on the dimensional regularization and a mass-independent renormalization scheme. Recur-

rence relations for the expansions of QED primitive divergences are derived. Results in this

chapter aim to provide an insight into the multiplicative renormalizability of QED.

Chapter 7 establishes the group nature of the Landau-Khalatnikov-Fradkin transform for the

fermion propagator. The LKFT is then reformulated such that the exact dependences of the

fermion propagator spectral functions on the covariance gauge-fixing parameter are obtained.
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Results in this chapter are also presented in Ref. [43].

Chapter 8 employs both the spectral representation and the Ward identity to rewrite the mo-

mentum space SDEs for the fermion propagator into linear equations for the spectral functions.

Combined with results in Chapter 7, the necessary and sufficient condition for any truncation

scheme of the SDEs to respect the gauge covariance of the fermion propagator is derived.

A similar requirement to maintain the gauge independence of the vacuum polarization is also

obtained. Results in this chapter are also presented in Refs. [44,45].

Notations and conventions We adopt the natural unites where c = 1 and ~ = 1. Throughout

this article, the Bjorken-Drell metric for 4-vectors xµ = (x0, x1, x2, x3) is adopted. Therefore

the metric tensor is given by

gµν = diag{1, −1, −1, −1}. (1.1)

As a consequence, the momentum p2 is timelike if p2 > 0. While the Euclidean momentum is

defined as p2E = −p2. Dirac gamma matrices satisfy anti-commutation relations {γµ, γν} =

2gµν . The fermion-photon vertex Γµ(k, p) is defined as the QED vector vertex with k being the

momentum of fermion flowing in and p being the momentum of fermion flowing out. Meanwhile,

define q = k−p as the photon momentum. For notational convenience, we also define t = k+p.

The tensor gamma matrices are defined as σµν = i
2 (γ

µγν − γνγµ).

The uncial epsilon (ϵ) usually stands for how far the number of spacetime dimensions is

away from 4 through d = 4− 2ϵ. While the lowercase epsilon (ε) is specifically reserved for the

Feynman prescription.

We adopt the set of transverse bases in Ref. [36]. They are transverse with respect to photon

momentum qµ. Explicitly, these bases are defined as

Tµ1 (k, p) = pµ(k · q)− kµ(p · q) Tµ2 (k, p) = Tµ1 (k, p)/t

Tµ3 (k, p) = q2γµ − qµ/q Tµ4 (k, p) = Tµ1 (k, p)
kλpτ
i

σλτ

Tµ5 (k, p) =
1

i
σµνqν Tµ6 (k, p) = γµ(p2 − k2) + tµ/q

Tµ7 (k, p) =
1

2
(p2 − k2)(γµ/t − tµ) + tµkλpτ

1

i
σλτ

Tµ8 (k, p) = −γµkλpτ
1

i
σλτ + kµ/p− pµ/k. (1.2)
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Chapter 2

Path integral formulation of QFTs

2.1 The generating functionals

2.1.1 QED gauge fixing with the path integral

Let’s start with the QED Lagrangian

LQED(x) =
1

2
Aµ(x)

[
gµν∂2 − ∂µ∂ν

]
Aν(x) + ψ(x)(i/∂ −m)ψ(x) + eψ(x)γµψ(x)Aµ(x). (2.1)

Here ψ(x) is the fermion field, Aµ(x) is the photon field, e is the elementary charge, andm is the

bare fermion mass. This Lagrangian is constructed to be invariant under the following transform

of the U(1) gauge symmetry group:



ψ(x)→ eiθ(x)ψ(x)

ψ(x)→ ψ(x)e−iθ(x)

Aµ(x)→ Aµ(x) +
1

e
∂µθ(x).

(2.2)

The predictive power of a QFT is embedded within its correlation functions. To represent all

correlation functions, the generating functional is then defined with the introduction of external

6



sources. Explicitly, we define the generating function Z[η, η, Jµ] by

Z[η, η, Jµ] =

∫
DψDψDA exp

{
i

∫
d4x

[
L (x) + Jµ(x)A

µ(x) + ψ(x)η(x) + η(x)ψ(x)
]}

.

(2.3)

Effectively, the action that defines Z[η, η, Jµ] consists of two parts, S of the Lagrangian and SE

of the external sources. They are defined as

S =

∫
d4xL (x), SE =

∫
d4x

[
Jµ(x)A

µ(x) + ψ(x)η(x) + η(x)ψ(x)
]
. (2.4)

The functional measure DA covers all four components of the photon field. However, since a

shift does not modify the path-integral measure, we have

DAµ(x) = D

(
Aµ(x) +

1

e
∂µθ(x)

)
. (2.5)

Combined with Eq. (2.2), this means the functional integral over the photon field counts physi-

cally identical configurations of the photon field. As a direct result of this overcounting, the free-

photon propagator cannot be solved from the generating functional defined through Eq. (2.3),

with the Lagrangian given in Eq. (2.1).

One way to confine the functional integration into one gauge orbit (one physically unique

configuration of the photon field) is to apply the Faddeev-Popov procedure [46]. For covariant

gauges, this procedure starts by imposing a covariant gauge fixing condition, which is given by

G(A) = ∂µA
µ − w(x) = 0. (2.6)

Then, the following functional identity is inserted into the definition of Z[η, η, Jµ] in Eq. (2.3),

1 =

∫
Dθ det

(
δG(Aθ)

δθ

)
δ[G(Aθ)], (2.7)

where Aθµ = Aµ +
1

e
∂µθ, and δ[ ] is the functional version of the Dirac delta-function. While in

the case of QED, one immediately has δG(Aθ)/δθ = 1
e∂

2. The resulting determinant of ∂2 can
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be relocated onto the exponential by the Faddeev-Popov ghost;

det(∂2) =
∫

DcDc exp
[
−i
∫
d4x c(x)∂2c(x)

]
. (2.8)

After choosing a Gaussian weight function, we arrive at

∫
DθDw det(∂2/e)δ[∂µAµ − w(x)]exp

[
−i
∫
d4x

w2(x)

2ξ

]
=

∫
DcDc exp

{
i

∫
d4x

[
− 1

2ξ
(∂µA

µ)2 − c∂2c
]}

, (2.9)

as the gauge fixing modification to Z in Eq. (2.3). Here the parameter ξ is the covariant gauge

fixing parameter. Since in QED, the ghost fields do not couple to any other field, they are readily

integrated out. However, this is no longer true in non-Abelian gauge theories. The ghost field is

then an extra degree of freedom introduced by this particular gauge fixing procedure [46]. The

problem of Gribov ambiguities for gauge fixing non-Abelian fields is not covered in this article.

The net effect of Eq. (2.9) is that the QED generating functional is still defined by Eq. (2.3)

with the Lagrangian changed from Eq. (2.1) to

LQEDGF(x) =
1

2
Aµ(x)

[
gµν∂2 +

(
1

ξ
− 1

)
∂µ∂ν

]
Aν(x) + ψ(x)(i /D −m)ψ(x), (2.10)

where the covariant derivative is defined as Dµ(x) = ∂µ − ieAµ(x).

2.1.2 Taylor series of the generating functional

The generating functional as a collection of n-point functions

To explain the claim that the generating functional contains all the knowledge of the field theory

in terms of correlation functions, first consider the theory with one real scalar field ϕ. One of the

simplest interacting Lagrangian for this type of fields is the ϕ4 theory:

Lϕ4 =
1

2
ϕ(−∂2 −m2)ϕ− λ

4!
ϕ4, (2.11)
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where λ is the coupling constant. The generating functional is then a functional of only one

external source J defined by

Z[J ] =

∫
Dϕ exp

{
i

[∫
d4xLϕ4(x) + J(x)ϕ(x)

]}
. (2.12)

Meanwhile, the n-point correlation function is defined as

⟨Ω|Tϕ(x1)ϕ(x2) . . . ϕ(xn)|Ω⟩ =

∫
Dϕϕ(x1)ϕ(x2) . . . ϕ(xn)exp

{
i
∫
d4xLϕ4(x)

}
∫

Dϕexp
{
i
∫
d4xLϕ4(x)

} , (2.13)

where |Ω⟩ stands for the vacuum state of the theory. Taking the convention that the gener-

ating functional Z is always normalized by itself with vanishing external sources, the N-point

correlation function is apparently obtainable by

⟨Ω|T
N∏
n=1

ϕ(xn)|Ω⟩ = lim
J→0

[
N∏
n=1

(
−iδ

δJ(xn)

)]
Z[J ]. (2.14)

Therefore, once the generating functional Z[J ] is known explicitly, the theory is solved com-

pletely. Equivalently, we have the following functional Taylor series expansion of the generating

functional,

Z[J ] = 1 +

∫
d4x⟨Ω|Tϕ(x)|Ω⟩J(x) + 1

2

∫
d4x

∫
d4y⟨Ω|Tϕ(x)ϕ(y)|Ω⟩J(x)J(y)

+
1

3!

∫
d4x

∫
d4y

∫
d4z⟨Ω|Tϕ(x)ϕ(y)ϕ(z)|Ω⟩J(x)J(y)J(z) + . . .

= 1 +

+∞∑
N=1

1

N !

[
N∏
n=1

∫
d4xm J(xm)

]
⟨Ω|T

N∏
m=1

ϕ(xm)|Ω⟩. (2.15)

Here T is the time ordering operator.

For QED, the generating functional written as Z[η, η, Jµ] apparently depends on two spinor

and one vector external sources. The multivariable version of Eq. (2.15) exists as Eq. (2.3).

Unlike the real scalar field ϕ, the fermion fields ψ, ψ and their external sources η, η are an-

ticommuting Grassmann fields. The explicit correspondences between fields and functional

9



derivatives are given by

ψ(x)↔ −iδ
δη(x)

, ψ(x)↔ +iδ

δη(x)
, Aµ(x)↔ −iδ

δJµ(x)
(2.16)

while using Eq. (2.3) to define the QED generating functional. Derivatives in Eq. (2.16) are

understood as partial derivatives. However, unlike the differentials of functions, distinctions of

partial and full differentials of functionals are not made explicit. The reference of δ to either

partial or full differentials is understood by the context.

The perturbation expansions of QED

The perturbation expansions of a QFT manifest themselves as series expansions on the inter-

action term of the Lagrangian. In the case of QED, this term is

LQED int(x) = eψ(x)γµψ(x)Aµ(x). (2.17)

In practical calculations, the strength of the interaction is more conveniently described by α =

e2/(4π). With the absence of this interaction, the generating functional of QED is given exactly

by

lim
α→0

Z[η, η, Jµ] = exp
{∫

d4x

∫
d4y

[
η(x)S0

F (x− y)η(y)−
1

2
Jµ(x)D0

µν(x− y)Jν(y)
]}

,

(2.18)

which can be derived from Eq. (2.3) with L defined by Eq. (2.10) when α = e2/(4π) = 0. The

functional variable transforms required to derive Eq. (2.18) are


ψ′(x) = ψ(x) + i

∫
d4y S0

F (x− y)η(y),

ψ′(x) = ψ(x)− i
∫
d4y η(y)S0

F (x− y),

A′
µ(x) = Aµ(x)− i

∫
d4dy D0

µν(x− y)Jν(y),

(2.19)
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where S0
F (x− y) and D0

µν(x− y) are the free-particle propagators solved from

(i/∂x −m)S0
F (x− y) = −iδ(x− y), (2.20)[

gµν∂2x +

(
1

ξ
− 1

)
∂µx∂

ν
x

]
D0
νρ(x− y) = iδµρ δ(x− y). (2.21)

When interactions are present, applying Eq. (2.16) to the Lagrangian of the interaction, given

by Eq. (2.17) before the functional variable transforms, produces the following closed form of

Z[η, η, Jµ]:

Z[η, η, Jµ] = exp
{
i

∫
d4z e

iδ

δη(z)
γµ
−iδ
δη(z)

−iδ
δJµ(z)

}
× exp

{∫
d4x

∫
d4y

[
η(x)S0

F (x− y)η(y)−
1

2
Jµ(x)D0

µν(x− y)Jν(y)
]}

. (2.22)

Then the Taylor series expansion of the first exponential in Eq. (2.22) produces well-known

perturbative results.

2.1.3 The generating functional for connected diagrams

The generating functional for connected diagrams is given by the logarithm of Z;

W [η, η, Jµ] = lnZ[η, η, Jµ]. (2.23)

The generating functionalW can be viewed as the the collection of all Green’s functions when

the Taylor series expansions with respect to external sources are taken;

W [η, η, Jµ] =

∫
d4x

∫
d4y η(x)SF (x− y)η(y)−

1

2

∫
d4x

∫
d4y Jµ(x)Dµν(x− y)Jν(y)

+ i

∫
d4x

∫
d4y

∫
d4z η(x)Gµ(x, y, z)η(y)Jµ(z) + O(η, η, Jµ)4, (2.24)

where SF (x−y) is the coordinate space fermion propagator,Dµν is the photon propagator, and

Gµ(x, y, z) is the connected fermion-photon three-point function. The vanishing of the three-

photon vertex is given by the Furry’s theorem [46]. Such a Taylor series expansion of W has,

at least, a finite radius of convergence. Because when external sources vanish altogether,

Z becomes a nonzero constant. As a consequence, there is a finite distance between the
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functional Taylor series expansion point and any possible singularity of W [η, η, Jµ]. The main

topic of this chapter is to derive the SDEs relating SF , Dµν to Gµ in Eq. (2.24).

2.1.4 The generating functional for one-particle irreducible diagrams

When perturbative calculations are performed, a Feynman diagram is one-particle irreducible

(1PI) if cutting any internal line of the diagram does not result in two disconnected diagrams.

Straightforward one-loop perturbation calculation shows that connected fermion-photon three-

point function Gµ(x, y, z) contains information about the propagators. This implies that one

further step of reduction can be achieved through the definition of one-particle irreducible (1PI)

diagrams. The relation between a connected diagram and its 1PI counterpart is that the 1PI

diagram is obtained by truncating external lines of the connected diagram by factoring out prop-

agators.

The formulation of 1PI diagrams in the language of path integration is accomplished by the

Legendre transform on the generating functional W , depending on external sources η, η, and

Jµ. Then, one can define the first order derivatives ofW [η, η, Jµ] as classical fields:

ψc(x)[η, η, J
ρ] =

−iδ
δη(x)

W [η, η, Jρ], (2.25)

ψc[η, η, J
ρ] =

iδ

δη(x)
W [η, η, Jρ], (2.26)

Aµc (x)[η, η, J
ρ] =

−iδ
δJµ(x)

W [η, η, Jρ]. (2.27)

Notice that these classical fields are obtained without setting external sources to zero. Therefore

they are all functionals of the external sources, understood as the quantum field averaging

with the presence of external sources. For QED, in the limit where external sources vanish

simultaneously, the classical fields vanish as well.

The generating functional Γ is defined as a functional of the classical fields and obtained

through the following Legendre transform:

Γ[ψc, ψc, A
ρ
c ] =W [η, η, Jρ]− i

∫
d4x

[
η(x)ψc(x) + ψc(x)η(x) + Jµ(x)A

µ
c (x)

]
, (2.28)

where after the Legendre transform, the dependence on external sources are written in terms
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of classical fields by the inverse of Eqs. (2.25, 2.26, 2.27). With the definition of Γ[ψc, ψc, Aµc ]

by Eq. (2.28) and the chain rule of functional derivatives, one can obtain the following identities

for the first order derivatives of Γ:

δ

δψc(x)
Γ[ψc, ψc, A

ρ
c ] = −iη(x)[ψc, ψc, Aρc ], (2.29)

δ

δψc(x)
Γ[ψc, ψc, A

ρ
c ] = +iη(x)[ψc, ψc, A

ρ
c ], (2.30)

δ

δAµc (x)
Γ[ψc, ψc, A

ρ
c ] = −iJµ(x)[ψc, ψc, Aρc ]. (2.31)

These three equations, with external sources written as functionals of classical fields, are the

formal inverses of Eq. (2.25, 2.26, 2.27).

Setting all external sources to zero after taking another functional derivative with respect to

external sources on Eqs. (2.29, 2.30, 2.31) produces

lim
(η,η,J)→0

∫
d4y

δ2W [η, η, Jρ]

δη(x) δη(y)

δ2Γ[ψc, ψc, A
ρ
c ]

δψc(y) δψc(z)
= δ(x− z) (2.32)

lim
(η,η,J)→0

∫
d4y

δ2W [η, η, Jρ]

δη(x) δη(y)

δ2Γ[ψc, ψc, A
ρ
c ]

δψc(y) δψc(z)
= δ(x− z) (2.33)

lim
(η,η,J)→0

∫
d4y

δ2W [η, η, Jρ]

δJλ(x) δJµ(y)

δ2Γ[ψc, ψc, A
ρ
c ]

δAµc (y) δAνc (z)
= δλν δ(x− z). (2.34)

Together with Eq. (2.24), Eqs. (2.33, 2.33, 2.34) specify that the 1PI diagrams for propagators

are just the inverses of the corresponding connected diagrams.

The fermion-photon three-point function generated by Γ[ψc, ψc, A
µ
c ] can be calculated by

taking two other derivatives on any one of Eqs. (2.29, 2.30, 2.31). Explicitly, taking δ/δη(y) on

Eq. (2.29) produces

δ2Γ[ψc, ψc, A
λ
c ]

δη(y) δψc(x)
=

∫
d4w

[
δψc(w)

δη(y)

δ

δψc(w)
+
δψc(w)

δη(y)

δ

δψc(w)
+
δAλc (w)

δη(y)

δ

δAλc (w)

]
δΓ

δψc(x)

= −iδ(y − x), (2.35)

where the chain rule of derivatives has been applied. Utilizing δAB = AδB+BδA and the chain
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rule again, subsequently taking another derivative with respect to Aµc (z) generates

lim
(ψc,ψc,A

λ
c )→0

δ3Γ[ψc, ψc, A
λ
c ]

δAµc (z) δη(y) δψc(x)

= lim
(ψc,ψc,A

λ
c )→0

∫
d4w

[
δψc(w)

δη(y)

δ

δψc(w)
+
δψc(w)

δη(y)

δ

δψc(w)
+
δAλc (w)

δη(y)

δ

δAλc (w)

]
δ2Γ

δAµc (z) δψc(x)

+ lim
(ψc,ψc,A

λ
c )→0

{∫
d4v

[
δη(v)

δAµc (z)

δ

δη(v)
+

δη(v)

δAµc (z)

δ

δη(v)
+
δJρ(v)

δAµc (z)

δ

δJρ(v)

]

×
∫
d4w

[
δψc(w)

δη(y)

δ

δψc(w)
+
δψc(w)

δη(y)

δ

δψc(w)
+
δAλc (w)

δη(y)

δ

δAλc (w)

]}
δΓ

δψc(x)

= lim
(ψc,ψc,A

λ
c )→0

{∫
d4w

δψc(w)

δη(y)

δ3Γ

δψc(w) δA
µ
c (z) δψc(x)

+

∫
d4v

∫
d4w

δJρ(v)

δAµc (z)

−iδ3W
δJρ(v) δη(y) δη(w)

δ2Γ

δψc(w) δψc(x)

}

= lim
(ψc,ψc,A

λ
c )→0

∫
d4w

{
−iδ2W

δη(y) δη(w)

δ3Γ

δψc(w) δA
µ
c (z) δψc(x)

+

∫
d4v

iδ2Γ

δAµc (z) δAc ρ(v)

−iδ3W
δJρ(v) δη(y) δη(w)

δ2Γ

δψc(w) δψc(x)

}

= 0 (2.36)

Next, applying Eqs. (2.33, 2.34) to Eq. (2.36) produces

lim
(η,η,Jλ)→0

iδ3W [η, η, Jλ]

δJρ(z) δη(y) δη(x)
= lim

(η,η,Jλ)→0

∫
d4x′

∫
d4y′

∫
d4z′

δ2W

δη(y)δη(y′)

× δ3Γ

δψc(y′) δAνc (z
′) δψc(x

′)

δ2W

δη(x′) δη(x)

δ2W

δJρ(z)δJν(z′)
. (2.37)

Diagrammatically, Eq. (2.36) represents that the 1PI fermion-photon vertex is given by the con-

nected three-point function truncated, as illustrated in Fig. 2.1.

Applying chain rules to deduce Eqs. (2.36, 2.35) is necessary because only after setting

external sources or classical fields to zero are simple inverse relations in Eqs. (2.33, 2.32, 2.34)

valid. In general when the external sources or the classical fields are nonzero, the inverse

relations for second order derivatives of W and Γ can be deduced from the functional version

of the Jacobian matrix identity. Explicitly, consider a change of variable from external sources
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=

Figure 2.1: Relation between the connected fermion-photon three-point function and the 1PI
three-point function.

to classical fields. The functional integral measure changes according to

DηDηDJν = DψcDψcDA
µ
c det

{
δ[η, η, Jν ]

δ[ψc, ψc, A
µ
c ]

}
. (2.38)

where the functional Jacobian is defined as

δ[η(y), η(y), Jν(y)]

δ[ψc(x), ψc(x), A
µ
c (x)]

=



δη(y)

δψc(x)

δη(y)

δψc(x)

δJν(y)

δψc(x)
δη(y)

δψc(x)

η(y)

δψc(x)

δJν(y)

δψc(x)
δη(y)

δAµc (x)

δη(y)

δAµc (x)

δJν(y)

δAµc (x)

 . (2.39)

Then we have the following relations among functional derivatives



δ

δψc(x)
δ

δψc(x)
δ

δAµc (x)

 =

∫
d4y

δ[η(y), η(y), Jν(y)]

δ[ψc(x), ψc(x), A
µ
c (x)]


δ

δη(y)
δ

δη(y)
δ

δJν(y)

 . (2.40)

Similarly, we also have


δ

δη(x)
δ

δη(x)
δ

δJµ(x)

 =

∫
d4y

δ[ψc(y), ψc(y), A
ν
c (y)]

δ[η(x), η(x), Jµ(x)]



δ

δψc(y)
δ

δψc(y)
δ

δAνc (y)

 . (2.41)

Since there is no net effect of compounding two functional variable transforms which are the
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inverse of each other, we obtain

∫
d4y

δ[η(y), η(y), Jµ(y)]

δ[ψc(x), ψc(x), A
λ
c (x)]

δ[ψc(z), ψc(z), A
ν
c (z)]

δ[η(y), η(y), Jµ(y)]

=

∫
d4y

δ[ψc(y), ψc(y), A
µ
c (y)]

δ[η(x), η(x), Jλ(x)]

δ[η(z), η(z), Jν(z)]

δ[ψc(y), ψc(y), A
µ
c (y)]

= diag{1, 1, 1}δνλδ(x− z). (2.42)

Equation (2.42) relates all second order derivatives ofW [η, η, Jµ] to those of Γ[ψc, ψc, Aνc ] with-

out setting external sources or classical fields to zero. When there is only one active field, the

single variable version of Eq. (2.42) is expected.

2.2 The longitudinal Ward-Green-Takahashi identity for the

vector vertex

Recall that the original QED Lagrangian given by Eq. (2.1) is invariant under the local U(1)

gauge transformation given by Eq. (2.2). However, formulating QED in the language of path

integration requires the gauge fixing procedure and external sources to properly define the

generating functional Z[η, η, Jµ]. This results in the action consisting of the part with the gauge

fixed Lagrangian by Eq. (2.10) and another part from external sources as in Eq. (2.4).

While the invariance of Z[η, η, Jµ] under the U(1) gauge transform indicates certain rela-

tions among the correlation functions. Such a gauge invariant requirement results in what is

known as the Ward-Green-Takahashi identities. To derive such relations, one can consider the

infinitesimal version of Eq. (2.2):

ψ(x)→ (1+iθ(x))ψ(x)+O(θ2), ψ(x) = ψ(x)(1−iθ(x))+O(θ2), Aµ(x)→ Aµ(x)+
1

e
∂µθ(x).

(2.43)

The Jacobian of Eq. (2.43) is merely a constant, not affecting the action. Meanwhile, the total
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action for the generating functional changes according to

δ(S + SE)

δθ(x)
=

δ

δθ(x)

∫
d4y

{
1

ξ
Aµ(y)∂

2
y∂

µ
y θ(y) +

1

e
Jµ(y)∂

µ
y θ(y) + iθ(y)[η(y)ψ(y)− ψ(y)η(y)]

}
= −1

ξ
∂2∂µAµ(x)−

1

e
∂µJµ(x) + i[η(x)ψ(x)− ψ(x)η(x)]. (2.44)

The requirement of Z[η, η, Jµ] to be independent of θ(x) results in

i

ξ
∂2∂µ

δZ

δJµ(x)
− Z

e
∂µJµ + η(x)

δZ

δη(x)
+

[
δZ

δη(x)

]
η(x) = 0, (2.45)

where the definition of Z through Eq. (2.3) has been used. Eq. (2.45) is the Ward-Green-

Takahashi identity for the QED generating functional Z.

Next, with Eq. (2.23) and Eqs. (2.25, 2.26, 2.27) as the definitions of W and the classical

fields, Eq. (2.45) becomes

−1

ξ
∂2∂µA

µ
c (x)−

1

e
∂µJµ(x) + iη(x)ψc(x)− iψc(x)η(x) = 0. (2.46)

When external sources are viewed as functionals of classical fields as in Eqs. (2.29, 2.30, 2.31),

Eq. (2.46) is the Ward-Green-Takahashi identity for the generating functional Γ in Eq. (2.28).

The corresponding identity for the fermion-photon vector vertex can then be derived by taking

two derivatives on Eq. (2.46) with respect to the classical fermion fields followed by setting

classical fields to zero. Explicitly, we have

lim
(ψc,ψc,A

ρ
c)→0

{
− ∂µx

e

δ2Jµ(z)

δψc(y) δψc(x)
+ i

δη(z)

δψc(x)
δ(y − z)− iδ(x− z) δη(z)

δψc(y)

}
= 0. (2.47)

This translates into an equation for derivatives of Γ after substituting in Eqs. (2.29, 2.30, 2.31).

The resulting identity is

lim
(ψc,ψc,A

ρ
c)→0

{
− ∂

µ
x

e

δ3Γ

δψc(y) δψc(x) δA
µ
c (z)

+i
δ2Γ

δψc(z) δψc(x)
δ(y−z)−iδ(x−z) δ2Γ

δψc(y)δψc(z)

}
= 0.

(2.48)

After taking the Fourier transform, we obtain the (longitudinal) Ward-Green-Takahashi identity
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for the fermion-photon vector vertex as

qµΓ
µ(k, p) = S−1

F (k)− S−1
F (p). (2.49)

While longitudinal Ward-Green-Takahashi identities for the photon propagator and other

higher n-point functions can also be derived from Eq. (2.46). They are beyond the scope of

this chapter. Meanwhile, other types of Ward-Green-Takahashi identities can be deduced from

local U(1) transforms with Dirac structures other than the trivial identity matrix in Eq. (2.2).

These identities will be discussed in Subsection 4.1.2.

2.3 The Schwinger-Dyson equations for QED

2.3.1 The path integral derivation of SDEs

Aside from allowing the Lagrangian to differ up to 4-divergences, the asymptotically vanishing

requirement on the fermion and photon fields also allows the SDEs for QFT Green’s functions

to be derived from the path integral formalism. Specifically, after the functional integrations, the

divergences of a functional on the fermion and photon fields must vanish. As a result, we have

∫
Dψ

δ

δψ(x)
= 0,

∫
Dψ

δ

δψ(x)
= 0,

∫
DA

δ

δAµ(x)
= 0. (2.50)

Taking the complete differential of the action plus external sources results in

δ(S + SE) =

{[
gµν∂2 +

(
1

ξ
− 1

)
∂µ∂ν

]
Aν(x) + eψ(x)γµψ(x) + Jµ(x)

}
δAµ(x)

+ (δψ(x))
[
(i/∂ −m)ψ(x) + eγµAµ(x)ψ(x) + η(x)

]
+
[
ψ(x)

(
−i
←−
/∂ −m

)
+ eψ(x)γµAµ + η(x)

]
δψ(x). (2.51)
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Then, from
∫

DψDψDA iδ(S + SE)exp[i(S + SE)] = 0 we have the following functional differ-

ential equations for the generating functional Z[η, η, Jµ],

{[
gµν∂2 +

(
1

ξ
− 1

)
∂µ∂ν

]
−iδ

δJν(x)
+ e

iδ

δη(x)
γµ
−iδ
δη(x)

+ Jµ(x)

}
Z[η, η, Jµ] = 0, (2.52){[

(i/∂ −m) + eγµ
−iδ

δJµ(x)

]
−iδ
δη(x)

+ η(x)

}
Z[η, η, Jµ] = 0, (2.53){

iδ

δη(x)

[(
−i
←−
/∂ −m

)
+ eγµ

−iδ
δJµ(x)

]
+ η(x)

}
Z[η, η, Jµ] = 0. (2.54)

Here the highest order of derivative is 2 because the Lagrangian contains no higher powers of

fields. Next, as another result of the chain rule, we have

δ2Z = δ2eW = δeW δW = eW [(δW )2 + δ2W ]. (2.55)

Equations (2.52, 2.53, 2.54) then produce the functional differential equations forW , which can

be written as

{[
gµν∂2 +

(
1

ξ
− 1

)
∂µ∂ν

]
−iδ

δJν(x)
+

ie δ

δη(x)
γµ
−iδ
δη(x)

}
W [η, η, Jµ] + Jµ(x) = −e iδW

δη(x)
γµ
−iδ W
δη(x)

(2.56)[
(i/∂ −m) + eγµ

−iδ
δJµ(x)

]
−iδ
δη(x)

W [η, η, Jµ] + η(x) = −eγµ −iδ W
δJµ(x)

−iδ W
δη(x)

, (2.57)

iδ

δη(x)

[(
−i
←−
/∂ −m

)
+ eγµ

−iδ
δJµ(x)

]
W [η, η, Jµ] + η(x) = −e iδW

δη(x)
γµ
−iδ W
δJµ(x)

. (2.58)

Equations (2.56, 2.57, 2.58) are coupled nonlinear functional differential equations for the gen-

erating functionalW , once solved, specify the dynamics of QED. Their boundary conditions are

given by the leading two terms of Eq. (2.24), namely the fully dressed propagators.

To derive the SDEs for the propagators, take another derivative with respect to the external

sources on Eqs. (2.56, 2.57, 2.58) before setting external sources to zero. SDEs for higher

n-point correlation functions are obtained by taking extra derivatives with respect to external

sources. Such a procedure effectively substitutes Eq. (2.24) into Eqs. (2.56, 2.57, 2.58) to ob-

tain the recurrence relations for the Green’s functions. These recurrence relations form the infi-

nite towers of equations for the Green’s functions, collectively known as the Schwinger-Dyson

equations.
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Figure 2.2: The diagrammatic representation of the SDE for the fermion propagator spectral
functions.

The leading SDEs are for the fermion and photon propagators. Setting external sources

to zero after taking the functional derivative iδ/δη(y) on Eq. (2.57) results in the SDE for the

fermion propagator as

(i∂x −m)SF (x− y) + eγµGµ(x, y, x) + iδ(x− y) = 0, (2.59)

where Gµ(x, y, x) is the connected fermion-photon three point function defined in Eq. (2.24).

Subsequently, one can substitute Eq. (2.37) into Eq. (2.59) and perform the Fourier transform to

obtain the SDE for the fermion propagator in momentum space. Explicitly, these steps produce

1 = (/p−m)SF (p) + ie2
∫
dkγνSF (k)Γµ(k, p)SF (p)D

µν(q), (2.60)

where SF (p) is the fermion propagator in momentum space, Dµν(q) is the photon propagator in

momentum space, and Γµ(k, p) is the fermion-photon proper vertex, the Fourier transform of the

1PI vertex in Eq. (2.37). Recall for the proper vertex, k is the momentum of the fermion flowing

in, p is the momentum of fermion flowing out, and q = k − p is the photon momentum. The

momentum measure of the loop integral is defined by
∫
dk = µ4−d ∫ ddk/(2π)d, with d being the

number of spacetime dimensions and µ carrying the dimension of e2/(4π). The diagrammatic

representation of Eq. (2.60) is given by Fig. 2.2.

Similarly, taking −iδ/δJλ(y) on Eq. (2.56) and then setting external sources to zero gives

[
gµν +

(
1

ξ
− 1

)
∂µ∂ν

]
Dνλ(x− y)− eTr {γµGν(x, x, y)} − iδµλδ(x− y) = 0, (2.61)
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= −
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Figure 2.3: The diagrammatic representation of the SDE for the photon propagator.

where we have used

iδ

δη(x)
γµ
−iδ
δη(x)

W = Tr
{

iδ

δη(x)
γµ
−iδ
δη(x)

W [η, η, Jµ]

}
= −Tr

{
γµ

iδ

δη(x)

−iδ
δη(x)

W [η, η, Jµ]

}
.

(2.62)

Again, substituting Eq. (2.37) into Eq. (2.61) and subsequently taking the Fourier transform

produces

D−1
µν (q) =

[
gµνq

2 +

(
1

ξ
− 1

)
qµqν

]
− ie2Tr

∫
dk γνSF (k)Γµ(k, p)SF (p), (2.63)

as the SDE for the photon propagator in momentum space. The diagrammatic representation

of Eq. (2.63) is given by Fig. 2.3.

OneWard-Green-Takahashi identity specifies that the dressing of the photon propagator can

only be transverse [46]. Therefore only one dressing function, G(q2), is required for Dµν(q);

Dµν(q) =
G(q2)

q2 + iε

(
gµν − qµqν

q2

)
+ ξ

qµqµ

q4 + iε
. (2.64)

Sometimes it is convenient to refer to the part of the photon propagator transverse to the mo-

mentum q as

∆µν(q) =
G(q2)

q2 + iε

(
gµν − qµqν

q2

)
, (2.65)

The inverse photon propagator in momentum space is given by

D−1
µν (q) =

1

G(q2)
(gµνq

2 − qµqν) +
1

ξ
qµqν . (2.66)
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The ξ dependent terms one on the left-hand side of Eq. (2.63) cancels the one from the inverse

of the bare propagator on the right-hand side. In fact, it can be shown exactly that the dressing

function G(q2) is independent of ξ to all orders in perturbation theory [47].

2.4 The equivalence of SDEs to all-order perturbation theory

In previous sections, we derived two types of equations for the generating functional, the Ward-

Green-Takahashi identity given by Eq. (2.46) and the Schwinger-Dyson equations given by

Eqs. (2.52, 2.53, 2.54). Two questions about the relations between these equations then arise.

1. Do these two types of equations contain information independently from each other?

2. Do these functional differential equations encode all knowledge of QED?

Recall that WGTIs are results of the gauge symmetry of the theory, while SDEs are deduced

from the more general presumption that the functional integrals over the total functional diver-

gences vanish. Intuitively we expect the SDEs to be more general than the WGTIs, indicating

that all the knowledge of WGTIs is already contained in the SDEs. Under certain scenarios, a

stronger statement can be made: the SDEs contain all the information of the theory. The proof

of this statement relies on the following two assumptions.

1. The perturbation calculation, when summed to all orders, contains all the knowledge of

the theory.

2. The generating functional can be adequately represented by a functional version of the

Fourier transform.

It will be shown, with Assumption #2, the SDEs for the generating functional are equivalent to

the perturbation theory to all orders. Then as a consequence of Assumption #1, the SDEs know

every aspect of the theory.

2.4.1 Equivalence of SDE to all order perturbation for real scalar ϕ4 the-

ory

The perturbative approach to ϕ4 theory Let us start by proving the equivalence of SDEs

for the real ϕ4 theory to all-order perturbation theory. The steps then generalize naturally to
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QED. The Lagrangian of a real scalar theory with only ϕ4 interaction is given by Eq. (2.11). The

generating functional for this theory is defined by Eq. (2.12). Recall that the functional version

of Taylor series expansion of Z[J ] gives every Green’s function of the theory. Therefore Z[J ]

contains all knowledge of the theory.

The formal solution to Eq. (2.12) can be written as

Z[J ] = exp
{
− iλ

4!

∫
d4z

[
−iδ
δJ(z)

]4}
exp

{
− 1

2

∫
d4x

∫
d4y J(x)D0(x− y)J(y)

}
, (2.67)

where D0(x− y) is the free-particle propagator solved from

(−∂2x −m2)D0(x− y) = iδ(x− y). (2.68)

After shifting the ϕ fields in the interacting term of the Lagrangian into functional derivatives,

Eq. (2.67) can be derived by applying the following functional variable transform

ϕ(x) = ϕ′(x) + i

∫
d4y D0(x− y)J(y) (2.69)

to Eq. (2.12). Perturbative results in the n-th order are obtained by Eq. (2.67) truncated toO(λn).

SDE for the ϕ4 theory generating functional The integral of a total divergence is zero when

there is no surface contribution. Since ϕ(x) is expected to vanish asymptotically, we have

∫
Dϕ

δ

δϕ(x)
exp

{
i

∫
d4x [L (x) + J(x)ϕ(x)]

}
= 0. (2.70)

Substituting Eq. (2.11) into Eq. (2.70) produces the following functional differential equation for

the generating functional Z[J ] defined by Eq. (2.12):

[
(−∂2x −m2)

−iδ
δJ(x)

− λ

3!

(
−iδ
δJ(x)

)3

+ J(x)

]
Z[J ] = 0. (2.71)

Equation (2.71) is the SDE for the generating functional of the real scalar ϕ4 theory. The initial

condition for Eq. (2.71) is apparently Z[0] = 1. The existence and uniqueness of solutions are

not apparent by Eq. (2.71) itself.

As for the existence of solutions, one naturally expects the perturbative solution given by
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Eq. (2.67) to satisfy Eq. (2.71). To show this explicitly, one functional operator relation needs to

be proved first. We start from the following simple operator identities:

δ

δJ(y)
J(x) = δ(x− y)+ J(x)

δ

δJ(y)
,

(
δ

δJ(y)

)2

J(x) = 2δ(x− y) δ

δJ(y)
+ J(x)

(
δ

δJ(y)

)2

, . . . .

(2.72)

Then by induction, this commutating relation holds:

[(
δ

δJ(y)

)n
, J(x)

]
= nδ(x− y)

(
δ

δJ(y)

)n−1

. (2.73)

Furthermore, since

exp
{
− iλ

4!

∫
d4z

[
−iδ
δJ(z)

]4}
= 1 +

+∞∑
N=1

1

N !

(
−iλ
4!

)n N∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4
, (2.74)

we have

{ N∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4}
J(x)

=

{N−1∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4}{
− 4i

[
−iδ
δJ(x)

]3
+ J(x)

∫
d4zN

[
−iδ

δJ(zN )

]4}

=

{N−1∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4}
(−4i)

[
−iδ
δJ(x)

]3
+

{N−2∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4}

×
{
− 4i

[
−iδ
δJ(x)

]3
+ J(x)

∫
d4zN−1

[
−iδ

δJ(zN−1)

]4}∫
d4zN

[
−iδ

δJ(zN )

]4
= . . . . . .

= −4iN
{N−1∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4}[ −iδ
δJ(x)

]3
+ J(x)

N∏
n=1

∫
d4zn

[
−iδ

δJ(zn)

]4
. (2.75)

Therefore the following commutation relation can be obtained:

[
exp

{
− iλ

4!

∫
d4z

[
−iδ
δJ(z)

]4}
, J(x)

]
= − λ

3!

(
−iδ
δJ(x)

)3

exp
{
− iλ

4!

∫
d4z

[
−iδ
δJ(z)

]4}
.

(2.76)

Here the commutation relations in Eqs. (2.73, 2.76) can be understood by analogy with the com-

mutation relations for coordinate operators and their conjugate momentum operator in quantum

mechanics. Effectively, when commutators are calculated, one acts as the derivative to another.
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Substituting Eqs. (2.67, 2.76) into Eq. (2.71) produces

[
(−∂2x −m2)

−iδ
δJ(x)

+ J(x)

]
exp

{
− 1

2

∫
d4x

∫
d4y J(x)D0(x− y)J(y)

}
= 0, (2.77)

which is apparently true considering Eq. (2.68). Therefore we have shown that the solution to

the SDE for the generating functional of the ϕ4 theory exists. One solution is Eq. (2.67), the

perturbation result.

Solving the SDE for the generating functional using functional Fourier transform The

definition of generating functional Z[J ] by Eq. (2.12) can be viewed as a functional version of the

Fourier transform on the functional ζ[ϕ] = exp[i
∫
d4xL (x)]. The functional Fourier transform

relies on the following functional representation of the identity element in the linear functional

operator space:

∫
Dϕexp

[
i

∫
d4xJ(x)ϕ(x)

]
= lim

∆x→0

∫ [∏
n

dϕ(xn)

]
exp

[
i
∑
m

J(xm)ϕ(xm)∆x

]

= lim
∆x→0

∫ +∞

−∞

∏
n

dϕ(xn)exp [iJ(xn)ϕ(xn)∆x]

= lim
∆x→0

∏
n

(2π)δ(J(xn)) ≡ δ[J ]. (2.78)

The linear functional operator (functional distribution) δ[J ] is recognized as a generalized func-

tional. As the Dirac delta-function is a distribution, a generalized function. The functional op-

erator δ[J ] is zero when there exist a measurable subset of {xn} such that J(xn) ̸= 0. The

functional operator δ[J ] diverges when ∀x ∈ {xn}, J(x) = 0. Meanwhile, δ[J ] is normalized

such that
∫

DJ δ[J ] = 1.

With δ[J ] defined, we have the following Fourier transform and its inverse

Z[J ] =

∫
Dϕ ζ[ϕ]exp

[
i

∫
d4xJ(x)ϕ(x)

]
, (2.79)

ζ[ϕ] =

∫
DJ Z[J ]exp

[
−i
∫
d4xJ(x)ϕ(x)

]
. (2.80)

One can easily verify that Eqs. (2.79, 2.80) are inverse of each other using the definition of δ[J ].
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Next, assuming that the solution to Eq. (2.71) can be written as the Fourier transform of J ,

we then have

[
(−∂2x −m2)

−iδ
δJ(x)

− λ

3!

(
−iδ
δJ(x)

)3

+ J(x)

]∫
Dϕ ζ[ϕ]eiJϕ = 0, (2.81)

Consequently, we obtain

[
(−∂2x −m2)ϕ(x)− λ

3!
ϕ3(x) +

iδ

δϕ(x)

]
ζ[ϕ] = 0, (2.82)

where we have used

∫
Dϕ

[
eiJϕ

δζ[ϕ]

δϕ(x)
+ iJ(x)ζ[ϕ]eiJϕ

]
=

∫
Dϕ

δ

δϕ(x)
ζ[ϕ]eiJϕ = 0. (2.83)

While the solution to Eq. (2.82) is apparently

ζ[ϕ] = exp
{
i

∫
d4x

[
1

2
ϕ(x)(−∂2x −m2)ϕ(x)− λ

4!
ϕ4(x)

]}
. (2.84)

Substituting Eq. (2.84) into Eq. (2.79) recovers Eq. (2.12).

Therefore under the assumption that Z[J ] is given by its functional Fourier transform, the

solution to the SDE for the generating functional is unique. Furthermore, it is identical to the

one obtained by the perturbation theory.

2.4.2 Equivalence of QED SDEs to all-order perturbation theory

The perturbation theory solves SDEs Similar to the proof in the ϕ4 theory, let us start by

showing that the perturbation theory generating functional given by Eq. (2.22) solves Eqs. (2.52)

and (2.53, 2.54) simultaneously. For Eq. (2.52), one starts with the commutation relation

[
exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
, Jµ(x)

]
= exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
e

iδ

δη(x)
γµ
−iδ
δη(x)

, (2.85)

which can be proved utilizing [δ/δJν(z), Jµ(x)] = δµν δ(x − z) and the series expansion of the

exponential. Here the derivation of Eq. (2.85) is simpler compared to that for Eq. (2.76), because
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in the argument of the exponential, δ/δJµ(z) is only raised to the first power. With the assistance

of Eq. (2.85), substituting Eq. (2.22) into Eq. (2.52) produces

{[
gµν∂2 +

(
1

ξ
− 1

)
∂µ∂ν

]
−iδ
Jν(x)

+ Jµ(x)

}
× exp

{∫
d4x

∫
d4y

[
η(x′)S0

F (x
′ − y)η(y)− 1

2
Jµ(x′)D0

µν(x− y)Jν(y)
]}

= 0, (2.86)

which is apparently true considering Eq. (2.21).

The following two commutation relations,

[
exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
, η(x)

]
= exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
e γµ

−iδ
δη(x)

−iδ
δJµ(x)

, (2.87)

[
exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
, η(x)

]
= exp

{
i

∫
d4z e

iδ

δη(z)
γν
−iδ
δη(z)

−iδ
δJν(z)

}
e

iδ

δη(x)
γµ
−iδ

δJµ(x)
, (2.88)

can be derived similar to Eq. (2.76). However, after expanding the exponentials, the anticom-

mutation relations

{
δ

δη(z)
, η(x)

}
= δ(x− z),

{
δ

δη(z)
, η(x)

}
= δ(x− z), (2.89)

apply. Therefore in the steps similar to Eq. (2.73), the anticommutative properties of Grassmann

numbers are used.

Next, with Eqs. (2.87, 2.88), substituting Eq. (2.22) into Eqs. (2.53, 2.54) produces

[
(i/∂ −m)

−iδ
δη(x)

+ η(x)

]
× exp

{∫
d4x

∫
d4y

[
η(x′)S0

F (x
′ − y)η(y)− 1

2
Jµ(x′)D0

µν(x− y)Jν(y)
]}

= 0, (2.90)

[
iδ

δη(x)
(−i
←−
/∂ −m) + η(x)

]
× exp

{∫
d4x

∫
d4y

[
η(x′)S0

F (x
′ − y)η(y)− 1

2
Jµ(x′)D0

µν(x− y)Jν(y)
]}

= 0, (2.91)

respectively. Eqs. (2.90, 2.91) are true because of Eq. (2.20). Combining Eqs. (2.86, 2.90, 2.91),
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we have shown that the perturbation solution given by Eq. (2.22) solves the SDEs for the QED

generating functional given by Eq. (2.52, 2.53, 2.54) simultaneously.

The uniqueness of the solution to SDEs To see that the solution of the SDEs for the QED

generating functional is uniquely equivalent to Eq. (2.22), consider taking the functional Fourier

transform pairs of the generating functional;

Z[η, η, Jµ] =

∫
DψDψDAν ζ[ψ,ψ,Aν ]exp

{
i

∫
d4x

[
Jµ(x)Aµ(x) + ψ(x)η(x) + η(x)ψ(x)

]}
,

(2.92)

ζ[ψ,ψ,Aν ] =

∫
DηDηDJν Z[η, η, Jν ]exp

{
− i
∫
d4x

[
Jµ(x)Aµ(x) + ψ(x)η(x) + η(x)ψ(x)

]}
.

(2.93)

Substituting Eq. (2.92) into Eq. (2.52, 2.53, 2.54) results in

{[
gµν∂2

(
1

ξ
− 1

)
∂µ∂ν

]
Aν(x) + eψ(x)γµψ(x) +

iδ

δAµ(x)

}
ζ[ψ,ψ,Aλ] = 0, (2.94){[

(i/∂ −m) + iγµAµ(x)
]
ψ(x) +

iδ

δψ(x)

}
ζ[ψ,ψ,Aλ] = 0, (2.95){

ψ(x)
[
(−i
←−
/∂ −m) + eγµAµ(x)

]
− iδ

δψ(x)

}
ζ[ψψ,Aλ] = 0, (2.96)

where

∫
DAλ

{
eiJ

νAν
δ

δAµ(x)
ζ[ψ,ψ,Aλ] + iJµ(x)ζ[ψ,ψ,Aλ]eiJ

νAν

}
=

∫
DAλ

δ

δAµ(x)
ζ[ψ,ψ,Aλ]eiJ

νAν = 0, (2.97)

∫
Dψ

{
eiψη

δ

δψ(x)
ζ[ψ,ψ,Aλ] + iη(x)ζ[ψ,ψ,Aλ]eiψη

}
=

∫
Dψ

δ

δψ(x)
ζ[ψ,ψ,Aλ]eiψη = 0, (2.98)

∫
Dψ

{
eiηψ

δ

δψ(x)
ζ[ψ,ψ,Aλ]− iη(x)ζ[ψ,ψ,Aλ]eiηψ

}
=

∫
Dψ

δ

δψ(x)
ζ[ψ,ψ,Aλ]eiηψ = 0, (2.99)

have been used. Eqs. (2.97, 2.98, 2.99) are valid because fieldsAµ, ψ, ψ vanish asymptotically.
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Equations (2.94, 2.95, 2.96) are coupled partial functional differential equations for ζ[ψ,ψ,Aλ].

The solution is apparently given by

ζ[ψ,ψ,Aλ] = exp
[
i

∫
d4xLQEDQF(x)

]
, (2.100)

with the gauge-fixed Lagrangian given by Eq. (2.10). The generating functional Z[η, η, Jµ] is

then calculated according to Eq. (2.92). Next, with the functional variable transform given by

Eq. (2.19), Eq. (2.100) reproduces the generating functional in perturbation theory given by

Eq. (2.22). Therefore, the solution to the SDEs for the QED generating functional is given by

Eq. (2.22).

In conclusion, we have proved that the QED SDEs given by Eqs. (2.52, 2.53, 2.54) are

equivalent to the perturbation theory to all orders.
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Chapter 3

The spectral representation of

propagators

3.1 TheKällén-Lehmann spectral representation of real scalar

propagators

Consider a scalar QFT with Lagrangian

L =
1

2
(∂µϕ)∂

µϕ− 1

2
m2ϕ2 + Lint.

One example of the interaction term is the ϕ4 theory in Eq. (2.11). While in the absence of any

interaction, the propagator in momentum space is given by

D0(p2) =
1

p2 −m2 + iε
,

which is also known as the free-particle propagator.

The interactionLint dresses up the scalar propagator. D(p2) is real for spacelikemomentum

(p2 < 0). When p2 > 0, D(p2) becomes complex due to the production of real particles through

loop corrections. The dressed propagator D(p2) can be written as a linear combination of free-
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0 Re(z)

Im(z)

Figure 3.1: Illustration of the analytic structure of propagator function with dimensionless vari-
ables on the complex plane. The contour corresponds to evaluating Eq. (3.1) using contour
integral.

particle propagators:

D(p2) =

∫ +∞

m2

ds
ρ(s)

p2 − s+ iε
, (3.1)

where the weight function ρ(s) is known as the spectral function of D(p2). For the bare spectral

function, canonical quantization requires
∫ +∞
m2 ds ρ(s) = 1 [48]. The renormalization for this

scalar propagator is given by DB(p
2) = ZDR(p

2), so that ρB(s) = ZρR(s), where ρR(s) is the

renormalized spectral function. One can then derive that
∫ +∞
m2 ds ρR(s) = Z−1. The integral

contour to prove Eq. (3.1) is illustrated in Fig. 3.1.

The propagator function D(p2) and its spectral function ρ(s) are interconnected. On one

hand, the spectral function ρ(s) is given by the imaginary part of the propagator function D(p2):

ρ(s) = − 1

π
Im{D(s+ iε)}. (3.2)

The iε modification to the argument of propagator function is essential because the propagator

is expected to develop a branch cut when p2 > m2. On the other hand, the spectral function

determines the propagator function everywhere on the complex momentum plane. Although

this is stated apparently in Eq. (3.1), with a specific ρ(s) we are still faced with the difficulty of

evaluating Eq. (3.1) directly when p2 is close to the branch cut.
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Alternatively, one can safely assume that the propagator function D(p2) is holomorphic ev-

erywhere on the complex p2 plane except for the branch cut and perhaps a finite number of

poles on the positive real axis. Meanwhile, the conjugation of p2 is equivalent to the complex

conjugation of D(p2), or D(p2∗) = D(p2) for any p2 ∈ C excluding where D(p2) is singular. The

combination of these two properties of D(p2) allows us to determine D(p2) itself from only its

imaginary part on the branch cut. Specifically, where D(p2) is holomorphic, the function sat-

isfies Cauchy-Riemann equations. Therefore the imaginary part of D(p2) satisfies its Laplace

equation. Once the imaginary part is known, the real part is given, up to a real constant, by

integrating the Cauchy-Riemann equations. Since the imaginary part of D(p2) on its branch cut

serves as the boundary condition for the Laplace equation, the imaginary part of D(p2) is com-

pletely determined by ρ(s) almost everywhere (excluding singularities) on the complex plane.

The arbitrary real integral constant is fixed by one specific evaluation of Eq. (3.1) on a given p2.

Hence D(p2) in Minkowski space is determined by spectral function ρ(s). Therefore solving for

D(p2) in Minkowski space is equivalent to finding out its spectral function.

Therefore, we have established that for any propagator function of a QFT, there is a unique

spectral function, and vice versa. For more detailed discussion on the spectral representation

of complex functions, see Appendix A.1. An alternative way to understand the relation between

a propagator function and its spectral function can be achieved through Mellin transforms dis-

cussed in Appendix A.2.

3.2 The spectral representation of the fermion propagator

In QED, due to the Dirac structure of the fermion field, the fermion propagator corresponds to

two spectral functions ρ1,2(s). Specifically, we have

SF (p) =
F (p2)

/p−M (p2)
= /pS1(p

2) + S2(p
2) = /p

∫ +∞

m2

ds
ρ1(s)

p2 − s+ iε
+

∫ +∞

m2

ds
ρ2(s)

p2 − s+ iε
. (3.3)

Following Ref. [49], after effectively taking the square root of the integration variable s, the

spectral functions ρ1 and ρ2 can be combined into one function;

ρ(W ) = sign(W )[Wρ1(W
2) + ρ2(W

2)].
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Then the spectral representation of the fermion propagator can be written as

SF (p) =

∫ +∞

|W |≥m
dW

sign(W )[Wρ1(W
2) + ρ2(W

2)]

/p−W + iε
. (3.4)

Sometimes it is convenient to decompose the inverse of the fermion propagator into two Dirac

components:

S−1
F (p) = /pA(p

2) +B(p2). (3.5)

However, neither A(p2) nor B(p2) is linear in ρ(W ).

The introduction of the spectral representation for the fermion propagator allows the con-

struction of a spectral representation for the fermion-photon vertex that respect the longitudinal

Ward-Green-Takahashi identity. This construction is known as the Gauge Technique of Del-

bourgo, Salam and Strathdee [49–52]. Explicitly, the Gauge Technique construction of fermion-

photon vertex is given by

U [γµ] = (SF (k)Γ
µ(k, p)SF (p))GT =

∫
dW

1

/k −W
γµ

1

/p−W
ρ(W ). (3.6)

Here the subscript GT stands for the Gauge Technique. Writing a spectral representation for

fermion propagator and relating it to the structure SFΓµSF rather than to the one particle irre-

ducible (1PI) vertex Γµ is shown to simplify manipulations of various WGTIs in Chapter 4.

The Gauge Technique construction of the (SF (k)Γ
µ(k, p)SF (p))GT corresponds to a Γµ(k, p)

that is free of kinematic singularity when q2 → 0. Furthermore, one can easily verify that Eq. (3.6)

satisfies Eq. (2.49). Explicitly since

qµ (Γ
µ(k, p)− U [γµ]) = 0, (3.7)

the Gauge Technique automatically satisfies the longitudinal Ward-Green-Takahashi identity.

Therefore it contains the Ball-Chiu vertex as its longitudinal part. Meanwhile, we can calculate

the additional transverse piece to Ball-Chiu vertex. Explicitly, one finds

U [γµ]−ΓµBC(k, p) =
A(k2)−A(p2)
2(k2 − p2)

Tµ3 (k, p)−
B(k2)−B(p2)

k2 − p2
Tµ5 (k, p)+

A(k2)−A(p2)
k2 − p2

Tµ8 (k, p),

(3.8)
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which agrees with the result obtained in Ref. [53] after setting all scalar functions Xi(k, p) to

zero (up to convention and metric differences).

One can imagine there exist generalizations of Källén-Lehmann spectral representation to

any Green’s functions (similar to the Nakanishi representation for scattering amplitudes [54]).

When solving SDEs for fermion and photon propagators, truncating SDEs is then equivalent to

finding out the spectral representation of fermion-photon vertex Γµ(k, p) in terms of propagator

spectral functions.

3.3 The spectral representation of the photon propagator

When the effects of vacuum polarization become significant, nonperturbative representations

of the photon propagator in Minkowski space are required. For such representations, one natu-

rally considers introducing a spectral function for the photon propagator. Similar to the fermion

case, the existence of photon spectral function depends on the analytic structures of the photon

propagator.

The analytic structures of the photon propagator are completely determined by Eq. (2.63),

the corresponding SDE. Notice that the vacuum polarization, defined by

Π(q2)(gµνq2 − qµqν) = Πµν(q) = ie2
∫
dk Tr{γµSF (k)Γν(k, p)SF (p)}, (3.9)

depends only on the fermion propagator and the vertex. Next, combining Eq. (2.63) with

Eq. (3.9), the photon propagator dressing function G(q2) can be written as

G(q2)

q2 + ε
=

1

(q2 + iε)[1 + Π(q2)]
. (3.10)

In the one-loop calculation, with dimensional regularization, the contribution to the vacuum po-

larization from the loop integral is given by

Π1−loop(q
2) = − α

4π

{
4

3

[
1

ϵ
− γE + ln

(
4πµ2

m2

)]
+

4

3

(
5

3
+

4

z

)
+

8(z + 2)

3z2

√
z(z − 4)arctanh

(√
z

z − 4

)}
+ O(ϵ1), (3.11)
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where m is the fermion mass and z = p2/m2. One can easily verify that for the finite part

lim
z→0

{
4

3

(
5

3
+

4

z

)
+

8(z + 2)

3z

√
z − 4

z
arctanh

(√
z

z − 4

)}
= 0. (3.12)

Because the photon is strictly massless, the only singular structure of Π(q2) is the branch cut

along q2 ≥ 4m2. Admittedly, Eq. (3.11) is only the result at one-loop. However, we expect it to

elucidate the general analytic structures of the photon propagator.

Notice that vacuumpolarizationΠ(q2) determines the photon dressing functionG(q2) through

Eq. (3.10), a nonlinear relationship. Consequently their analytic structures do not translate di-

rectly. However, the function G(q2)/q2 should behave similarly to a scalar propagator based on

the following observations.

1. It has a finite number of simple poles.

2. It has a branch cut similar to that of Π(q2) for q2 > 4m2.

3. Other than these singularities, the function is homomorphic everywhere else on the com-

plex momentum plane.

Observation #1 is apparent since the denominator on the right-hand side of Eq. (3.10) has one

zero at q2 = 0 and other possible zeros where 1+Π(q2) = 0 is satisfied. To recover Observation

#2, one starts with the polar decomposition of complex function

1 + Π(z) = 1 + u(x, y) + iv(x, y) = r(x, y)eiϕ(x,y), (3.13)

where z = x+ iy and u(x, y), v(x, y), r(x, y), ϕ(x, y) are real functions. Then

1

1 + Π(z)
=

1 + u(x, y)− iv(x, y)
[1 + u(x, y)]2 + [v(x, y)]2

=
e−iϕ(x,y)

r(x, y)
. (3.14)

For the Π(z) having a regular branch cut on the real axis with r(x, y) being finite and nonzero

along the branch cut, 1/[1 +Π(z)] also has a regular branch cut at the same position as that of

the Π(z). However, in the case that modulus function r(x, y) is divergent along the branch cut,

the corresponding branch cut for 1/(1 + Π(z)) vanishes.

Observation #3 relies on the fact that the composition of holomorphic functions is also holo-

morphic giving the derivative of the composition exists. This can be shown by considering the
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general properties of a complex function. Explicitly, the function f(z) = u(x, y) + iv(x, y) is

holomorphic if and only if the following Cauchy-Riemann equations are satisfied,

∂xu = ∂yv, ∂yu = −∂xv. (3.15)

Therefore

∂xf = ∂xu+ i∂xv = ∂yv − i∂yu = −i∂yf, (3.16)

which can also be shown equivalent to the Cauchy-Riemann equations.1 For a composite

function, the following identity holds when f(z) is holomorphic and g(ζ) is holomorphic at ζ →

f(z):

∂xg(f(z)) = g′(f(z))∂xf(z) = g′(f(z))(−i∂yf(z)) = −i∂yg(f(z)). (3.17)

Therefore the composite of holomorphic functions is holomorphic. In addition, the multiplication

of two holomorphic functions is also holomorphic because

∂xf(z)g(z) = (∂xf(z))g(z) + f(z)∂xg(z)

= −i(∂yf(z))g(z) + f(z)(−i)∂yg(z) = −i∂yf(z)g(z). (3.18)

Since the gauge-fixing term of the photon propagator in Eq. (2.64) is not affected by the

interaction of QED, we can postulate that only one scalar spectral function ργ(t) is required to

represent Dµν(q). Explicitly, we have

G(q2)

q2 + iε
=

∫
dt

ργ(t)

q2 − t+ iε
, (3.19)

which indicates

ργ(t) =
−1
π
Im
{
G(t)

t+ iε

}
=
−1
π
Im
{

1

(t+ iε)[1 + Π(t)]

}
. (3.20)

Under the assumption that the analytic structure of Π(q2) is adequately represented by the one-

loop calculation, Π(q2) is real and finite at q2 = 0. Therefore Eq. (3.20) becomes

ργ(t) =
1

1 + Π(0)
δ(t)− 1

πt
Im
{

1

1 + Π(t)

}
. (3.21)

1Employing Wirtinger derivative ∂/∂z = (∂x + i∂y)/2 gives ∂f/∂z = 0
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In addition, depending on the strength of the interaction, there may exists tk > 0 such that

1 + Π(tk) = 0, which corresponds to the point where 1 + Π(t) crosses zero. Considering this

possibility, the spectral function for the photon propagator is then calculated from the Π(q2)

through

ργ(t) =
1

1 + Π(0)
δ(t) +

0<tk<tth∑
k

δ(t− tk)
tk

Rest′→tk

{
1

1 + Π(t′)

}
− θ(t− tth)

πt
Im
{

1

1 + Π(t)

}
, (3.22)

where tth is the branch point of Π(q2).
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Chapter 4

Ward-Green-Takahashi identities

for transverse and non-vector

vertices

4.1 Relation between Ward-Green-Takahashi identities and

the Gauge Technique

4.1.1 Gauge Technique transformations

Although the Gauge Technique satisfies the longitudinal WGTI, it does not contain the correct

transverse vertex to respect renormalizability and gauge covariance, as will be shown in later

chapters. We therefore propose the following generalizations of the original Gauge Technique:

u[K ] =

∫
dW

1

/k −W
K (k, p,W 2)

1

/p−W
ρ(W ) (4.1)

z[K ] =

∫
dW

1

/k −W
WK (k, p,W 2)

1

/p−W
ρ(W ), (4.2)

which create functions of momenta k and p. One immediately realizes that both u[K ] and z[K ]

are linear in the kernel function K and the fermion spectral functions ρ(W ). Meanwhile, when
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K → γµ, Eq. (4.1) produces the original Gauge Technique.

To make a connection with the 1PI vertex, inverses of fermion propagator are multiplied both

to the left and to the right of Eqs. (4.1, 4.2), resulting in

U [K ] = S−1
F (k)

[∫
dW

1

/k −W
K (k, p,W 2)

1

/p−W
ρ(W )

]
S−1
F (p), (4.3)

Z[K ] = S−1
F (k)

[∫
dW

1

/k −W
WK (k, p,W 2)

1

/p−W
ρ(W )

]
S−1
F (p). (4.4)

Straightforward calculation shows that

U [K ] = C1K + C2/kK + C3K /p+ C4/kK /p (4.5)

Z[K ] = D1K +D2/kK +D3K /p+D4/kK /p. (4.6)

Specifically, when the kernel function K does not depend on W , the coefficient functions are

readily given by

C1 =
k2A(k2)− p2A(p2)

k2 − p2
C2 =

B(k2)−B(p2)

k2 − p2

C3 = C2 C4 =
A(k2)−A(p2)

k2 − p2
;

D1 =
p2B(k2)− k2B(p2)

k2 − p2
D2 =

p2[A(k2)−A(p2)]
k2 − p2

D3 =
k2[A(k2)−A(p2)]

k2 − p2
D4 =

B(k2)−B(p2)

k2 − p2
,

where the functions A and B are defined by the inverse of fermion propagator in Eq. (3.5).

Based on these results, one can easily derive that the original Gauge Technique construction

of Γµ(k, p) contains the Ball-Chiu vertex as its longitudinal part, plus three transverse pieces in

terms of transverse basis Tµi (k, p) as in Eq. (3.8).

4.1.2 Ward-Green-Takahashi identities

Wewill demonstrate that Gauge Technique transformations, i.e. Eqs. (4.1, 4.2), naturally include

the propagator parts of Ward-Green-Takahashi identities.
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LongitudinalWGTI The longitudinalWard identity qµΓµ(k, p) = S−1
F (k)− S−1

F (p) is well known

[36]. One derivation of Eq. (2.49) has been presented in Section 2.2. Since the right-hand side

of Eq. (2.49) only contains the propagator, we are prompted to introduce the spectral function

ρ(W ). Explicitly, we have

S−1
F (k)− S−1

F (p) = S−1
F (k) [SF (p)− SF (p)]S−1

F (p)

= S−1
F (k)

∫
dWρ(W )

1

/k −W
(
/k −W − /p+W

) 1

/p−W
S−1
F (p)

= qµU [γµ]. (4.7)

Therefore Eq. (2.49) is rewritten as

qµ (Γ
µ(k, p)− U [γµ]) = 0, (4.8)

a consequence of combining the longitudinal WGTI with the Gauge Technique. Equation (4.8)

implies that U [γµ] already contains the longitudinal vector vertex as described in Ref. [36]. In

fact, Eq. (4.7) is the original motivation for the Gauge Technique [49]. However, the longitudinal

WGTI is insufficient to specify the fermion-photon vector vertex because it leaves any vector

transverse to the photon momentum q undetermined.

Axial WGTI From Ref. [55], the axial WGTI reads

qµΓ
µ
A(k, p) = S−1

F (k)γ5 + γ5S
−1
F (p) + 2mΓ5(k, p) + i

g2

16π2
F (k, p), (4.9)

where Γ5(k, p) is the pseudoscalar vertex, and F (k, p) is the contribution from the axial anomaly.

Similar to Eq. (4.7), the propagator terms of the axial WGTI can be rewritten using our gen-

eralizations of the Gauge Technique given by Eqs. (4.3, 4.3). Let’s start with

S−1
F (k)γ5 + γ5S

−1
F (p) = S−1

F (k) (γ5SF (p) + SF (k)γ5)S
−1
F (p)

= S−1
F (k)

∫
dWρ(W )

1

/k −W
[
γ5
(
/p−W

)
+ (/k −W ) γ5

] 1

/p−W
S−1
F (p)

= qµU [γµγ5]− 2Z[γ5]. (4.10)
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Equation (4.9) then becomes

qµ (Γ
µ
A(k, p)− U [γµγ5]) = 2 (mΓ5(k, p)− Z[γ5]) + i

g2

16π2
F (k, p). (4.11)

Here the longitudinal part of axial-vector vertex couples to the pseudoscalar vertex, unless

the pseudoscalar vertex is identical to Z[γ5]/m. Meanwhile, the anomalous term F (k, p) is an

unknown element of the axial Ward identity. Therefore the longitudinal part of the axial-vector

vertex remains unknown except for the straightforward contribution from the fermion propagator.

Transverse WGTI From Ref. [55], the transverse WGTI for the vector vertex is given by

iqµΓν(k, p)− iqνΓµ(k, p) =S−1
F (k)σµν + σµνS−1

F (p) + 2mΓµνT (k, p)

+ tλϵ
λµνρΓAρ(k, p)−

∫
d4κ

(2π)4
2κλϵ

λµνρΓAρ(k, p;κ). (4.12)

If we rewrite the propagator part of this equation using Eqs. (4.3, 4.4), we obtain

S−1
F (k)σµν + σµνS−1

F (p) = S−1
F (k) [σµνSF (p) + SF (k)σ

µν ]S−1
F (p)

= S−1
F (k)

[∫
dWρ(W )

1

/k −W
(
σµν/p+ /kσµν − 2Wσµν

) 1

/p−W

]
S−1
F (p)

= U

[
1

2
{/t, σµν}+ 1

2

[
/q, σ

µν
]]
− 2Z[σµν ]

= −ϵλµνρtλU [γργ5] + U [iqµγν − iqνγµ]− 2Z[σµν ]. (4.13)

The transverse WGTI then becomes

iqµΓν(k, p)− iqνΓµ(k, p) =iqµU [γµ]− iqνU [γν ] + 2 (mΓµνT (k, p)− Z[σµν ])

+ tλϵ
λµνρ (ΓAρ(k, p)− U [γργ5])−

∫
d4κ

(2π)4
2κλϵ

λµνρΓAρ(k, p;κ)

(4.14)

Notice that except for the propagator terms, the tensor vertex, the axial-vector vertex, and a

nonlocal term are also known to contribute to this identity. The transverse part of the fermion-

photon vertex is, in principle, determined from Eq. (4.14). However in practice, other than those

already embedded in U [γµ], there is no more apparent transverse contribution from the fermion
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propagator. Equivalently speaking, the complete knowledge of ΓµνT (k, p), ΓAρ(k, p) and the

nonlocal term are also required to solve the transverse WGTI.

Similar to steps in Ref. [56], one way to eliminate the vector vertex terms of the transverse

WGTI is by contracting it with ϵαµνβqβ/2. The result is

(t · q δρα − tαqρ) (ΓAρ(k, p)− U [γργ5]) + 2ϵαµνβq
β (mΓµνT (k, p)− Z[σµν ])

=

∫
d4κ

(2π)4
2 (κ · qδρα − καqρ) ΓAρ(k, p;κ). (4.15)

Unlike Ref. [53], we do not parameterize the right-hand side of Eq. (4.15) by scalar functions.

Notice that Eq. (4.15) is an unexpected identity for the axial vertex.

Transverse Axial WGTI From Ref. [55], the transverse axial WGTI is given by

iqµΓνA(k, p)− iqνΓ
µ
A(k, p) =S

−1
F (k)σµνγ5 − σµνγ5S−1

F (p) + tλϵ
λµνρΓρ(k, p)

−
∫

d4κ

(2π)2
2κλϵ

λµνρΓρ(k, p;κ) +
g2

16π2
Fµν(T )(k, p), (4.16)

where Fµν(T )(k, p) comes from the transverse axial anomaly. We can rewrite the propagator part

of the equation by our generalization of the Gauge Technique. Doing so produces

S−1
F (k)σµνγ5 − σµνγ5S−1

F (p) = S−1
F (k) (σµνγ5SF (p)− SF (k)σµνγ5)S−1

F (p)

= U
[
/kσµνγ5 − σµνγ5/p

]
= U

[
1

2
{/t, σµν}γ5 +

1

2

[
/q, σ

µνγ5
]]

= −ϵλµνρtλU [γρ] + iqµU [γνγ5]− iqνU [γµγ5]. (4.17)

Then the transverse axial WGTI becomes

iqµΓνA(k, p)− iqνΓ
µ
A(k, p) =iq

µU [γνγ5]− iqνU [γµγ5] + tλϵ
λµνρ (Γρ(k, p)− U [γρ])

−
∫

d4κ

(2π)2
2κλϵ

λµνρΓρ(k, p;κ) +
g2

16π2
Fµν(T )(k, p). (4.18)

Similar to the transverse WGTI in Eq. (4.14), the transverse axial WGTI formally determines the

transverse components of the axial vector vertex. However, it couples to the vector vertex, a
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nonlocal term, and an anomalous term.

Following Ref. [53], contracting Eq. (4.18) with 1
2ϵαµνβq

β produces

(t · qδρα − tαqρ) (Γρ(k, p)− U [γρ]) =

∫
d4κ

(2π)4
2 (κ · qδρα − καqρ) Γρ(k, p;κ)

− g2

32π2
ϵαµνβq

βFµν(T )(k, p). (4.19)

Further substituting in Eq. (4.8), the projected transverse axial WGTI simplifies into

(k2 − p2) (Γα(k, p)− U [γα]) =

∫
d4κ

(2π)4
2 (κ · qδρα − καqρ) Γρ(k, p;κ)−

g2

32π2
ϵαµνβq

βFµν(T )(k, p).

(4.20)

If one follows Ref. [53], Eq. (4.20) is used to solve for the transverse part of the vertex with

a parametric representation of the nonlocal term together with the anomalous term. However,

unlike in Ref. [53], we do not parameterize the right-hand side of Eq. (4.20) by scalar functions.

Our analysis on this equation is further discussed in Section 4.2.

Tensor WGTI According to Ref. [57], The tensor WGTI is given by

qµΓναT (k, p) + qνΓαµT (k, p) + qαΓµνT (k, p)

= −S−1
F (k)ϵµναργργ5 + ϵµναργργ5S

−1
F (p) + tλϵ

λµναΓ5(k, p). (4.21)

Notice that unlike Eqs. (4.9, 4.18), there is no anomalous term in Eq. (4.21). Nor is there any

nonlocal term. Ref. [58] confirms that there is no anomaly for this tensor identity. However,

Ref. [59] produced the transverse axial WGTI with a missing term using the same approach

applied in Ref. [58]. Therefore Eq. (4.21) needs to be reexamined. The separation of the fermion

propagator from the tensor WGTI is then postponed to Subsection 4.3.3 when the ambiguities

about Eq. (4.21) are clarified.
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4.2 A projection of the transverse axial WGTI

4.2.1 The transverse axial WGTI after projection

We know from Eq. (4.20), a result following Ref. [53], that the transverse axial WGTI appears

to determine the vector vertex. This is counterintuitive because one expects an identity for the

axial vector vertex should specify the axial vector vertex itself. Our further investigation reveals

that the result of the projection given by Eq. (4.20) is in fact an identity for another vertex. Let’s

start by deriving the momentum factor from the contracted transverse axial WGTI in Eq. (4.20).

This gives

Γα(k, p)− U [γα] =
1

k2 − p2

[∫
d4κ

(2π)4
2 (κ · qδρα − καqρ) Γρ(k, p;κ)−

g2

32π2
ϵαµνβq

βFµν(T )(k, p)

]
.

(4.22)

Formally when k ̸= ±p, Eq. (4.22) specifies the difference between Γµ(k, p) andU [γµ] in terms of

transverse vectors. The transverse vector vertex can be parameterized by eight scalar functions

for eight transverse vectors. Therefore one could, in principle, specify all eight scalar functions

from Eq. (4.22), as in Ref. [53]. While in this section, we analyze the meaning of Eq. (4.22)

without a total parameterization of its right-hand side.

A curious observation of Eq. (4.22) is that both terms on the right-hand side involve the

Fourier transform of photon field Aµ. Equation (4.22) then indicates that Γµ(k, p) depends on

photon dressing function G(q2) as well. However, in the following definition1 of Γµ(k, p)

(2π)4δ4(k − p− q)iSF (k)Γµ(k, p)iSF (p) =
∫
d4xd4yd4zei(k·y−p·z−q·x)⟨Ω|Tjµ(x)ψ(y)ψ(z)|Ω⟩,

(4.23)

there is no apparent G(q2) dependence. Such a discrepancy can be understood by the non-

perturbative equations of motion for photons field that relates photon field to fermion field:

∂νF
νµ(x) = gψ(x)γµψ(x) = gjµ(x).

1For QED, it has been argued that the definition of Γµ(k, p) in Eq. (2.37) is identical to that in Eq. (4.23) [60].
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Contribution from the tensor anomaly From Ref. [55], the anomalous term Fµν(T )(k, p) is

defined by the following Fourier transform:

∫
d4xd4yd4zei(k·y−p·z−q·x)⟨Ω|Tψ(y)ψ(z)

[
ϵαβµρF νρ(x)− ϵαβνρFµρ(x)

]
Fαβ(x)|Ω⟩

= (2π)4δ4(k − p− q)iSF (k)Fµν(T )(k, p)iSF (p). (4.24)

Since taking a Fourier transform is linear, we suggest evaluating the anomalous term in coor-

dinate space. Doing so bypasses the difficulty of not knowing ⟨Ω|Tψ(y)ψ(z)F νρ(x)Fαβ(x)|Ω⟩

directly. Explicitly, we have

ϵλµνσF
µν
(T )(k, p) = F{ϵλµνσ⟨Ω|Tψ(y)ψ(z)

[
ϵαβµρF νρ(x)− ϵαβνρFµρ(x)

]
Fαβ(x)|Ω⟩}, (4.25)

where F stands for taking the Fourier transform in this subsection. Additionally, straightforward

tensor algebra shows that

ϵλµνσ
[
ϵαβµρF νρ(x)− ϵαβνρFµρ(x)

]
Fαβ(x) = 2ϵλµνσϵ

αβµρF νρ(x)Fαβ(x). (4.26)

Notice both ϵλννσ and the tensor inside the square bracket are antisymmetric upon exchanging

µ ν. Next, since Fαβ = ∂αAβ − ∂βAα is also antisymmetric, we obtain

2ϵλµνσϵ
αβµρF νρFαβ = 4ϵλµνσϵ

αβµρF νρ∂αAβ = 4ϵµνλσϵ
µαβρF νρ∂αAβ . (4.27)

From this contraction identity of ϵµνλσ

ϵµνλσϵ
µαβρ = −δαβρνλσ + δαρβνλσ − δ

βρα
νλσ + δβαρνλσ − δ

ραβ
νλσ + δρβανλσ , (4.28)
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where δαβρνλσ = δαν δ
β
λδ

β
σ , we can show

2ϵλµνσϵ
αβµρF νρFαβ = 4(−δαβρνλσ + δαρβνλσ − δ

βρα
νλσ + δβαρνλσ − δ

ραβ
νλσ + δρβανλσ )F

ν
ρ∂αAβ

= 4(−δαβρνλσ + δαρβνλσ − δ
βρα
νλσ + δβαρνλσ )F

ν
ρ∂αAβ

= 4(−Fασ∂αAλ + Fαλ∂αAσ − F
β
λ∂σAβ + F βσ∂λAβ)

= 4(−Fασ∂αAλ + Fαλ∂αAσ − Fαλ∂σAα + Fασ∂λAα)

= 4[Fασ(−∂αAλ + ∂λAα) + Fαλ(∂αAσ − ∂σAα)]

= 4(FασFλα + FαλFασ) = 4Fασ(Fλα + Fαλ) = 0 (4.29)

Thus we obtain

ϵλµνσF
µν
(T )(k, p) = F{0} = 0. (4.30)

Therefore combined with Eq. (4.22), we have shown that the tensor term does not contribute to

the projected transverse axial WGTI.

Contribution from the Wilson line Known through its definition [46], the Wilson line is given

by

UP (x
′, x) = P exp

[
−ig

∫ x′

x

dyλAλ(y)

]
. (4.31)

Its Fourier transform defines Γρ(k, p;κ) through [55]

∫
d4xd4x′d4yd4zei(k·y−p·z+(p−κ)·x−(k−κ)·x′)⟨Ω|Tψ(x′)γρUP (x′, x)ψ(x)ψ(y)ψ(z)|Ω⟩

= (2π)4δ4(k − p− q)iSF (k)Γρ(k, p;κ)iSF (p). (4.32)

At the same time we rewrite the kernel of the κ integral in Eq. (4.22) as

(κ · qδρα − καqρ)Γρ(k, p;κ) = −qβ [καΓβ(k, p;κ)− κβΓα(k, p;κ)] . (4.33)

We are only interested in the κ dependence of Γρ(k, p;κ) in order to get rid of the κ integral.

Therefore, let’s consider the most general decomposition of vectors generated by two vectors

κρ, uρ(k, p) and two scalars 1, /κ, where uρ(k, p) involves some combination of vectors kρ and
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pρ. We then have, in general,

Γρ(k, p;κ) = κρf(κ
2; k, p) + uρ(k, p)g(κ

2) + /κuρ(k, p)g̃(κ
2) + /κκρf̃(κ

2; k, p). (4.34)

We can show that first two terms do not contribute to the κ integral due to symmetry. Because

it is an odd integral over an even domain, apparently the second term of Γρ(k, p;κ) does not

contribute to the integral. While the first term of Γρ(k, p;κ) vanishes due to the following sym-

metry: ∫
d4κ

(2π)4
(κακβ − κβκα) f(κ2; k, p) ∝ gαβ − gβα = 0. (4.35)

The last term does not contribute also because we are integrating an odd function over an even

domain: ∫
d4κ

(2π)4
κα/κκβ f̃(κ

2; k, p) =

∫
d4κ

(2π)4
κακλκβγ

λf̃(κ2; k, p) = 0. (4.36)

However, the third term does not have to vanish after the integral:

∫
d4κ

(2π)4
(κα/κuβ(k, p)− κβ/κuα(k, p))g̃(κ2) ∝ γαuβ − γβuα. (4.37)

So if the coefficient functions g̃(κ2) did not vanish, they would have contributed to the transverse

part of K µ to represent the 1PI vertex through Eq. (4.3), adding more terms to the Gauge

Technique construction of the fermion-photon vertex.

In this subsection, we have shown by Eq. (4.30) that the tensor anomaly does not contribute

to the projected axial WGTI in Eq. (4.22). We have also demonstrated that the nonlocal term in

Eq. (4.22) is nonzero. These two results supplement discussions made in Ref. [53].

4.2.2 Variable transform analysis

We have demonstrated in the Subsection 4.2.1 that one contraction the transverse axial WGTI

leads to a closed equation that formally specifies the transverse part of the vector vertex, which

confirms Eqs. (12, 13) in Ref. [53]. It was also demonstrated that the nonlocal term Γα(k, p;κ)

contributes essentially to the contracted identity. Realizing that explicitly knowing the nonlocal

term with the Wilson line is not required; only the integral over the momentum κ matters, we

are motivated to investigate further into this term.
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The contracted axial WGTI considering we have established that the anomalous term does

not contribute, Eq. (4.22) is reduced to

Γα(k, p)− U [γα] =
1

k2 − p2

∫
d4κ

(2π)4
2qβ (κβΓα(k, p;κ)− κβΓβ(k, p;κ)) , (4.38)

where the nonlocal term Γα(k, p;κ) is defined by Eq. (4.32). The gauge link in Eq. (4.32) is

defined through Eq. (4.31). Let’s assume that we know nothing about this nonlocal term. For

the interest of solving for the transverse part of the vector vertex, according to Subsection 4.2.1,

only one component of the nonlocal term, /κvρ(k, p)g̃(κ2), contributes to the overall integral.

However, without knowing this component exactly, our analysis ends here in this direction.

Localization Because for QED the gauge field is Abelian, we can ignore the path ordering

in Eq. (4.31). Since the vertex function Γµ is local, so is its transverse part. There must exist

localization procedures to finalize the κ integral. Doing so will generate a delta-function whose

argument is integrated.

First, let’s look at the phase factor eiϕ of Eq. (4.32). This factor is given by

ϕ = k · y − p · z + (p− κ) · x− (k − κ) · x′. (4.39)

The following substitution of variables,

u = x′ − x, v =
x′ + x

2
, η = y − v − u

2
, ζ = z − v + u

2
, (4.40)

has a unit Jacobian:

abs
(
det
(
∂(x′, x, y, z)

∂(u, v, η, ζ)

))
=

∥∥∥∥∥∥∥∥∥∥∥∥∥

1/2 −1/2 1/2 −1/2

1 1 1 1

0 0 1 0

0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥∥∥
= 1. (4.41)
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With this change of variables, we obtain

(2π)4δ4(k − p− q)iSF (k)Γρ(k, p;κ)iSF (p)

=

∫
d4ud4vd4ηd4ζei(k·η−p·ζ+κ·u)⟨Ω|Tψ(v + u/2)γρUP (v + u/2, v − u/2)

× ψ(v − u/2)ψ(η + v + u/2)ψ(ζ + v − u/2)|Ω⟩. (4.42)

Subsequently, κµ in momentum space can be converted into i ∂

∂uµ
in coordinate space, af-

ter which there will be no κ dependence except for a pure phase in the κ part of the Fourier

transform. We then use the following identity for the delta-function:

∫
d4κ

(2π)4
eiκ·u = δ4(u). (4.43)

Meanwhile, taking the derivative with respect to the variable u in coordinate space produces six

terms. Explicitly, we have

i
∂

∂uµ
UP (v + u/2, v − u/2) = i

∂

∂uµ
exp

[
−ig

∫ v+u/2

v−u/2
dyλAλ(y)

]

= UP i
∂

∂uµ

[
−ig

∫ v+u/2

v−u/2
dyλAλ(y)

]

= UP
g

2
[Aµ(v + u/2) +Aµ(v − u/2)] . (4.44)

For notational convenience, define the following rule of partial derivative to fermion field as the

derivative acting on the natural argument of the field operator only2:

∂µψ(x) =
∂ψ(x)

∂xµ
, (4.45)

such that
∂

∂uµ
ψ(v ± u/2) = ±1

2
∂µψ(v ± u/2). (4.46)

2This rule only applies in this subsection.
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Within this notation, we obtain

∫
d4uδ4(u)i

∂

∂uβ
⟨Ω|Tψ(v + u/2)γαUP (v + u/2, v − u/2)

× ψ(v − u/2)ψ(η + v + u/2)ψ(ζ + v − u/2)|Ω⟩

=
−1
2
⟨Ω|T

(
ψ(v)γα

(
−i
←−
∂ β + i

−→
∂ β − 2gAβ(v)

)
ψ(v)

)
ψ(η + v)ψ(ζ + v)|Ω⟩

+
i

2
⟨Ω|Tψ(v)γαψ(v) (∂βψ(η + v))ψ(ζ + v)|Ω⟩

− i

2
⟨Ω|Tψ(v)γαψ(v)ψ(η + v)

(
∂βψ(ζ + v)

)
|Ω⟩. (4.47)

Next, we perform the change of integral variables going back into the original coordinate vari-

ables:

v = x, η = y − x, ζ = z − x, (4.48)

again with a unit Jacobian. Next, after recognizing

−i
←−
∂ β + i

−→
∂ β − 2gAβ = i

−→
Dβ − i

←−
Dβ = i

←→
D β , (4.49)

we get

(2π)4δ4(k − p− q)iSF (k)
∫

d4κ

(2π)4
κβΓα(k, p;κ)iSF (p)

=

∫
d4xd4yd4zei(k·y−p·z−q·x)

{−1
2
⟨Ω|T

(
ψ(x)γαi

←→
D βψ(x)

)
ψ(y)ψ(z)|Ω⟩

+
i

2
⟨Ω|Tψ(x)γαψ(x) (∂βψ(y))ψ(z)|Ω⟩ −

i

2
⟨Ω|Tψ(x)γαψ(x)ψ(y)

(
∂βψ(z)

)
|Ω⟩
}
. (4.50)

For notational convenience, define the vertex function Ξαβ(k, p) through

(2π)4δ4(k − p− q)iSF (k)Ξαβ(k, p)iSF (p)

=

∫
d4xd4yd4zei(k·y−p·z−q·x)⟨Ω|T

(
ψ(x)γαi

←→
D βψ(x)

)
ψ(y)ψ(z)|Ω⟩. (4.51)
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After converting i ∂

∂yβ
− i ∂

∂zβ
into kβ + pβ in momentum space, we obtain

∫
d4κ

(2π)4
2qβ (κβΓα(k, p;κ)− (α↔ β))

= qβ (−Ξαβ + tβΓα(k, p)− (α↔ β)) = q · tΓα(k, p)− tαq · Γ(k, p)− qβ(Ξαβ − Ξβα)

= (k2 − p2)Γα(k, p)− tαU [/q]− qβ(Ξαβ − Ξβα). (4.52)

Then Eq. (4.38), the projected transverse axial WGTI, becomes

Γα(k, p)− U [γα] = Γα(k, p)−
tα

k2 − p2
U [/q]−

qβ

k2 − p2
(Ξαβ − Ξβα), (4.53)

which is recognized as an identity for Ξαβ(k, p) only, because Γα(k, p) on both sides apparently

cancel out. After the cancellation, we have

qβ (Ξαβ(k, p)− Ξβα(k, p)) = U [q · tγα − tα/q] = qβU [γαtβ − γβtα], (4.54)

as a Ward-Green-Takahashi type of identity for Ξαβ . Eq. (4.54) may indicate

Ξαβ − Ξβα = U [γαtβ − γβtα]. (4.55)

However, there may also be other transverse components in Ξαβ . Based on the analysis in this

subsection, we conclude that knowing the nonlocal term Γρ(k, p, ;κ) exactly, the /κuρ(k, p)g̃(κ
2)

component in particular, is required to determine the vector vertex directly from Eq. (4.22). Oth-

erwise, our localization procedures indicate Eq. (4.22) only contains information about another

vertex that is Ξαβ in Eq. (4.51).
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4.3 Functional integral derivation of tensor Ward-Green-

Takahashi identity

4.3.1 Does the tensorWard-Green-Takahashi identity contain anomalies?

Following the scheme described in Ref. [60], Ward-Green-Takahashi identities are deduced by

requiring the generating functional to be invariant under gauge transforms. The usual (longitu-

dinal) WGTI is the result of the following transform:

ψ′(x) = eiθ(x)ϕ(x) = [1 + iθ(x)]ψ(x) + O(θ2), (4.56)

which gives rise to Eq. (2.43), as in the beginning of Section 2.2. Meanwhile Eq. (4.9), the axial

WGTI, is derived based on another transform, which is explicitly given by


ψ′(x) = [1 + iθ(x)γ5]ψ(x)

ψ
′
(x) = ψ(x)[1 + iθ(x)γ5].

(4.57)

Equations (4.56, 4.57) are known to Ref. [60]. In the case of Eq. (4.57), the functional integral

measure is modified by Eq. (4.57), resulting in a non-trivial (not just a number) Jacobian [60].

This Jacobian leads to the Adler-Bell-Jackiw anomalous term in the axial WGTI [61]. This non-

trivial Jacobian can be calculated according to the Fujikawa approach [62].

Based on Ref. [60], the gauge transform leading to the transverse WGTI is


ψ′(x) =

[
1 +

g

4
θ(x)ϵµνσµν

]
ψ(x)

ψ
′
(x) = ψ(x)

[
1 +

g

4
θ(x)ϵµνσµν

]
.

(4.58)

where ϵµν is an arbitrary constant tensor without any Dirac structures. Here in Eq. (4.58), the

symmetric part of epsilon, (ϵµν + ϵνµ)/2, does not contribute. Meanwhile, Eq. (4.58) produces

no anomalous term to the transverse Ward-Green-Takahashi identity because it keeps the func-

tional measure invariant.
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The transform leading to the transverse axial WGTI is also given by Ref. [60] as


ψ′(x) =

[
1 +

g

4
θ(x)ϵµνσµνγ5

]
ψ(x)

ψ
′
(x) = ψ

′
(x)
[
1− g

4
θ(x)ϵµνσµνγ5

]
,

(4.59)

which gives rise to an anomalous term as the last term on the right-hand side of Eq. (4.16).

The tensor WGTI is derived by in Ref. [57] using the canonical operator approach, through

which the existence of anomalous terms was unclear. Quantum anomalies of WGTI can be

investigated by carefully taking derivatives with respect to locally gauge invariant operators [59].

It has been shown, through perturbative calculation, that the tensorWGTI identity for U(1) gauge

theory is free of anomalies [58]. We will verify this statement about the anomalous term in the

tensor WGTI through the functional approach.

We propose that the gauge transform on fermion fields to derive tensor WGTI is

ψ′(x) = [1 + iΘ(x)]ψ(x), ψ
′
(x) = ψ(x)[1− iΘ(x)], (4.60)

with

Θ(x) = θ(x)τµναϵ
µναργργ5. (4.61)

Here τµνα is an arbitrary antisymmetric constant tensor without any Dirac structures. The ef-

fectiveness of Eq. (4.60) will be demonstrated in Subsection 4.3.2.

Based on the discussion in Ref. [61], anomalous terms in various Ward-Green-Takahashi

identities come from the Jacobian of functional measure as a result of the gauge transforms

on the fermion fields. Explicitly, when the gauge transform on the fermion fields is given by

Eq. (4.60), we have the following change in the functional measure:

Dψ
′
Dψ′ = DψDψ exp

[
−2i

∫
d4x lim

M→+∞
⟨x|Tr Θ(x)ei /D

2/M2

|x⟩
]
. (4.62)

meanwhile, we have (i /D)2 = −D2 − e

2
σµνF

µν . The background field Aµ can be ignored.
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Substituting Eq. (4.61) into Eq. (4.62) results in

lim
M→+∞

⟨x|Tr Θ(x)ei /D
2/M2

|x⟩

= θ(x)τµναϵ
µναρ lim

M→+∞
Tr
{
γργ5 exp

(
− e

2M2
σ : F

)}
⟨x|e−∂

2/M2

|x⟩

= θ(x)τµναϵ
µναρ lim

M→+∞

iM4

(4π)2
Tr
{
γργ5 exp

(
− e

2M2
σ : F

)}
, (4.63)

where σ : F = σµνF
µν . The trace operated term vanishes because there are only terms with

odd number of gamma matrices in the arguments of the trace. Alternatively, since γ5 commutes

with σµν ,

γ5 exp
(
− e

2M2
σ : F

)
= exp

(
− e

2M2
σ : F

)
γ5,

we arrive at

Tr
{
γργ5 exp

(
− e

2M2
σ : F

)}
= Tr

{
γρ exp

(
− e

2M2
σ : F

)
γ5

}
= Tr

{
γ5γρ exp

(
− e

2M2
σ : F

)}
= −Tr

{
γργ5 exp

(
− e

2M2
σ : F

)}
. (4.64)

Therefore Tr
{
γργ5 exp

(
− e

2M2
σ : F

)}
= 0. So the gauge transform given by Eq. (4.61)

does not modify the functional integral measure. Since only the Jacobian of functional measure

contributes to the anomalous terms in the WGTIs, there is no anomaly in the tensor identity.

4.3.2 Tensor Ward-Green-Takahashi identity from the functional integral

approach

The Ward-Green-Takahashi identity for the generating functional can be derived following pro-

cedures discussed in Section 2.2. When deriving the identity for one specific n-point function,

an alternative method also based on the functional integral is well documented in Refs. [60–62].

Specifically, to derive the WGTIs for the three-point functions, let’s start from the fermion two-

point function being invariant under the local gauge transform given by Eq. (4.60), with an ap-

propriate local phase function Θ. Therefore considering an infinitesimal transform, the following
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equation must hold:

∫
Dψ

′
Dψ′DAµ ψ′(y)ψ

′
(z)eiS

′
=

∫
DψDψDAµ ψ(y)ψ(z)eiS , (4.65)

where S =
∫
d4xL (x). Here one immediately notices that external sources are not introduced.

For QED, prior to gauge fixing, we have

L = ψ(i /D −m)ψ − 1

4
FµνF

µν , (4.66)

L ′ = ψ
′
(i /D −m)ψ′ − 1

4
FµνF

µν , (4.67)

with Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ. For the purpose of deducing the identity for the

fermion-photon vertex, only fermion terms of the Lagrangian matter.

Since we have established in Subsection 4.3.1 that the Jacobian of a gauge transform given

by Eq. (4.61) is a constant, we only need to work out the implication of the gauge invariance

requirement fromEq. (4.65) implied by the local gauge transform on the action. First, the fermion

part of the Lagrangian transforms in the following manner:

ψ
′
(i /D −m)ψ′ = ψ(1− iΘ)(i /D −m)(1 + iΘ)ψ = ψ(i /D −m)ψ + ψ[Θ, /D]ψ + O(Θ2). (4.68)

Next, because Dµ(x) has a differential piece and Θ(x) is a local function, we have

− /DΘ = −τµναϵµναρ(/∂ + ie /A)θ(x)γργ5 = −τµναϵµναρ[(/∂θ) + θ(/∂ + ie /A)]γργ5

= −τµναϵµναρ[(/∂θ) + θ /D]γργ5. (4.69)

Then we obtain the following identity for the commutator [Θ, /D]:

[Θ, /D] = τµναϵ
µναρ[θγργ5 /D−(/∂θ)γργ5−θ /Dγργ5] = τµναϵ

µναρ[−θ(γρ /D+ /Dγρ)γ5−(∂λθ)γλγργ5].

(4.70)

Combining

γλγρ =
1

2
{γλ, γρ}+

1

2
[γλ, γρ] = gλρ − iσλρ (4.71)
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with Eq. (4.70) gives

ψ[Θ, /D]ψ = τµναϵ
µναρψ[−2θDργ5 − (∂ρθ)γ5 + i(∂λθ)σλργ5]ψ. (4.72)

Since everything is under the integral over x, applying integration by parts produces

ψ[−2θDργ5 − (∂ρθ)γ5]ψ

→ θ(−2ψDργ5ψ + ψ∂ργ5ψ + ψ
←−
∂ ργ5ψ)

= θ(ψ
←−
∂ ργ5ψ − ψ

−→
∂ ργ5ψ − 2ieAρψγ5ψ)

= −θ(ψ
←→
D ργ5ψ)

= θ(x) lim
x′→x

(∂x′ − ∂x)ρψ(x′)UP (x′, x)γ5ψ(x), (4.73)

where the Wilson line UP (x′, x) = P exp
[
−ie

∫ x′

x
dy ·A(y)

]
is introduced to ensure local gauge

invariance.

For the remaining term of Eq. (4.70), recall the following commutation relations for triple

gamma matrices:

[γµ, σνρ] = 2i(gµνγρ − gµργν), {γλ, σµν} = −2ϵλµνργργ5. (4.74)

We then have

ϵµναρi(∂λθ)σλργ5

= − (∂λθ)

2
(γλϵ

µναργργ5 + ϵµναργργ5γλ) =
(∂λθ)

4
{γλ {γµ, σνα}}

=
(∂λθ)

4
(γλγµσνα + γλσναγµ + γµσναγλ + σναγµγλ)

=
(∂λθ)

4

{
γλγµσνα + σναγλγµ + 2i(gλνγα − gλαγν)γµ + γµγλσνα

− 2iγµ(gλνγα − gλαγν) + σναγµγλ
}

=
(∂λθ)

4
[4gλµσνα + 4gλνσαµ + 4gλασµν ]

= (∂µθ)σνα + (∂νθ)σαµ + (∂αθ)σµν . (4.75)
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Therefore, the action part of the gauge transform becomes, up to higher orders in θ,

eiS
′
=eiS

{
1 + i

∫
d4x
{
τµναψ(x) [(∂

µθ)σνα + (∂νθ)σαµ + (∂αθ)σµν ]ψ(x)

+ θ(x)τµναϵ
µναρ lim

x′→x
(∂x′ − ∂x)ρψ(x′)UP (x′, x)γ5ψ(x)

}
+ O(θ2)

}
. (4.76)

The remaining part is trivial and can be calculated according to

ψ′(y)ψ
′
(z) = [1 + iΘ(y)]ψ(y)ψ(z)[1− iΘ(z)]

= ψ(y)ψ(z) + iΘ(y)ψ(y)ψ(z)− iψ(y)ψ(z)Θ(z)

= ψ(y)ψ(z) + iθ(y)τµναϵ
µναργργ5ψ(y)ψ(z)− iθ(z)τµναϵµναρψ(y)ψ(z)γργ5. (4.77)

Substituting Eqs. (4.76, 4.77) into Eq. (4.65), expanding up-to linear orders in θ, and then tak-

ing the functional derivative with respect to θ(x) yields the tensor WGTI in coordinate space.

Explicitly, the tensor identity is

∂µ⟨Ω|Tjνα(x)ψ(y)ψ(z)|Ω⟩+ ∂ν⟨Ω|Tjαµ(x)ψ(y)ψ(z)|Ω⟩+ ∂α⟨Ω|Tjµν(x)ψ(y)ψ(z)|Ω⟩

= δ(4)(y − x)ϵµναργργ5⟨Ω|Tψ(y)ψ(z)|Ω⟩ − δ(4)(z − x)ϵµναρ⟨Ω|Tψ(y)ψ(z)|Ω⟩γργ5

+ ϵµναρ lim
x′→x

(∂x′ − ∂x)ρ⟨Ω|Tψ(x′)UP (x′, x)γ5ψ(x)ψ(y)ψ(z)|Ω⟩, (4.78)

where the tensor current jµν(x) is defined by jµν(x) = ψ(x)σµνψ(x). Notice there is a sign

difference between Wilson line terms in Eq. (4.78) and the corresponding term in Eq. (6) of

Ref. [57].

The tensor WGTI was previously derived in Ref. [57] by the canonical approach. So far in

this section we have adapted the method in Refs. [60–62] to derive the tensor WGTI based on

the functional approach. Our analysis of the functional Jacobian confirms that the tensor WGTI

given by Eq. (4.78) is free from any anomaly.

4.3.3 Tensor Ward-Green-Takahashi identity in momentum space

In order to obtain the tensor WGTI in momentum space, we need to carry out the Fourier trans-

form of Eq. (4.78). The only nontrivial term is the one with the Wilson line. Following Ref. [57],
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let us first define Γ5(k, p;κ) through

∫
d4xd4x′d4yd4zei[k·y−p·z+(p−κ)·x−(k−κ)·x′]⟨Ω|Tψ(x′)UP (x′, x)γ5ψ(x)ψ(y)ψ(z)|Ω⟩

= (2π)4δ(4)(k − p− q)iSF (k)Γ5(k, p;κ)iSF (p). (4.79)

Considering lim
x′→x

=
∫
dx′δ(4)(x− x′) =

∫
dx′
∫
dκe−iκ·(x−x

′), we obtain

∫
dxdydz ei(k·y−p·z−q·x) lim

x′→x
(∂x′ − ∂x)ρ⟨Ω|Tψ(x′)UP (x′, x)γ5ψ(x)ψ(y)ψ(z)|Ω⟩

=

∫
dκ

∫
d4xd4x′d4yd4zei[k·y−p·z+(p−κ)·x−(k−κ)·x′]⟨Ω|Tψ(x′)UP (x′, x)γ5ψ(x)ψ(y)ψ(x)|Ω⟩

= (2π)4δ(4)(k − p− q)iSF (k)
[∫

dκ i(t− 2κ)ρΓ5(k, p;κ)

]
iSF (p). (4.80)

Further applying the obvious relation,
∫
dκΓ5(k, p;κ) = Γ5(k, p), results in

qµΓνα(k, p) + qνΓαµ(k, p) + qαΓµν(k, p)

= ϵµναρ
[
−S−1

F (k)γργ5 + γργ5S
−1
F (p) + tρΓ5(k, p)−

∫
dκ2κρΓ5(k, p;κ)

]
. (4.81)

If we ignore the possible κ odd terms in Γ5(k, p;κ), as is in Ref. [57], we obtain Eq. (9) of Ref. [57]

with a minus sign difference in the pseudoscalar term. The term
∫
dκκρΓ5(k, p;κ) only vanishes

if Γ5(k, p;κ) has no κµ dependence, or equivalently, Γ5(k, p;κ) = Γ5(k, p;κ
2). In general, this is

not true.

Next, Eq. (4.3) rewrites Eq. (4.81) into

qµ(Γνα(k, p)− U [σνα]) + (ναµ) + (αµν) = ϵλµνα
[
tλ (U [γ5]− Γ5(k, p)) +

∫
dκ2κλΓ5(k, p;κ)

]
.

(4.82)

Eq. (4.82) is the Ward-Green-Takahashi identity for the tensor vertex deduced from the gauge

transform specified by Eqs. (4.60, 4.61). We derive, for the first time, theWard-Green-Takahashi

identity for the pseudoscalar vertex:

(k2 − p2)(Γ5(k, p)− U [γ5]) =

∫
dκ2q · κΓ5(k, p;κ). (4.83)

Equation (4.83) is obtained by projecting Eq. (4.82) with ϵµναβqβ .
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Chapter 5

Solving the SDEs for the

Minkowski propagators

5.1 General discussions

Having derived the SDEs for QED propagators in Chapter 2 as Eqs. (2.60, 2.63), we imme-

diately encounter the question of how to truncate them. Specifically, the construction of an

ansatz for the fermion-photon three-point function is required. The gauge symmetry of QED

relates this vertex to the fermion propagator in the form of the Ward-Green-Takahashi identity

as in Eq. (2.49), which specifies the longitudinal part of the vertex. Unfortunately, as shown in

Chapter 4, the transverse WGTI couples to other identities and contains unknown terms, ren-

dering it difficult to solve for the transverse vertex exactly from the transverseWGTI. Meanwhile,

combining the spectral representation for the fermion propagator with the WGTI produces the

original Gauge Technique discussed in Chapter 3. Although the Gauge Technique is missing

crucial transverse terms, it is still worthwhile to solve for the spectral functions from the SDEs

using this ansatz.

Since for QED, electrons are particles visible to detectors, there has to be an on-shell com-

ponent within the QED fermion propagator, based on the Lehmann-Symanzik-Zimmermann

reduction theorem. In this chapter, the original Gauge Technique is modified such that on-

shell renormalization of the fermion propagator SDE can be accomplished. After the on-shell
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renormalization, the spectral functions for the fermion propagator are solved analytically in the

quenched approximation in the Landau gauge. Next, the unquenching of photons by introducing

a spectral representation for the photon propagator is also briefly discussed.

The analytic properties of propagators have been discussed in Chapter 3. They are required

to solve for the propagators in Minkowski space from their SDEs. Just as the fermion propagator

itself, the spectral function ρ(W ) is also renormalization scheme dependent. FromRef. [49], one

renormalization scheme is based on

1 = Z2

∫
dWρ(W ), mZm = Z2

∫
dW Wρ(W ).

Within this scheme, the spectral functions for the fermion propagator, when written as ρ(W ) =

δ(W −m) + r(W ), can be solved with the original Gauge Technique. As given by Eq. (20) of

Ref. [49], the result is

r(W ) = −sign(W )θ(W 2 −m2)
2a

W

(
W 2 −m2

µ2

)−2a
m2

W 2 −m2

×

{
2F1

(
−a,−a;−2a; 1− W 2

m2

)
+
W

m
2F1

(
−a, 1− a,−2a, 1− W 2

m2

)}
(5.1)

where a = 3α/(4π). The singular behavior of hypergeometric functions in Eq. (5.1) near the

mass shell results in functions more singular than the free-particle propagators. This can be

verified by applying Eq. (15.3.6) of Ref. [63] to Eq. (21) in Ref. [49] in the p2 → m2 limit. Since

physical propagators for electrons should not behave more singular than the free-particle prop-

agator, we are motivated to solve the SDE for the fermion propagator within the on-shell renor-

malization scheme. Additional modifications to the divergent parts of the fermion equations are

required by renormalizability, after which a different set of solutions to rj(s) can be obtained.

5.2 Loop-renormalizability of the the fermion equation

TheSDE for the fermion propagator is given by Eq. (2.60). With theGauge Technique, Eq. (2.60)

becomes

1 = (/p−m)SF (p) + ie2
∫
dk

∫
dWγν

1

/k −W
γµ

1

/p−W
Dµν(q)ρ(W ). (5.2)
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Next, for notational convenience, define the following functions of p2 also linear in the spectral

function ρ(W ):

σ(p) = σ1(p
2) + /pσ2(p

2) = ie2
∫
dk

∫
dWγν

1

/k −W
γµ

1

/p−W
Dµν(q)ρ(W ). (5.3)

They are related to the fermion self-energy by merely a factor of fermion propagator.

On one hand, the divergent part of Eq. (5.3) can be calculated. Specifically in the quenched

approximation, the dressing functionG(q2) of Eq. (2.64) is set to unity as for a free photon. Then

after adopting dimensional regularization, explicit calculation shows that the divergent part of

Eq. (5.3) is given by

σ(p) = − α

4πϵ

[
3p2S1(p

2)− (ξ + 3) + 3S2(p
2)/p
]
+ O(ϵ0). (5.4)

On the other hand, based on the multiplicative renormalization of QED [46], Eq. (5.2) becomes

Z−1
2 +mZmS2(p

2) = p2S1(p
2) + σ1(p

2) (5.5)

mZmS1(p
2) = S2(p

2) + σ2(p
2). (5.6)

Equations (5.5, 5.6) are coupled identities for fermion propagator functions Sj(p2) with j = 1, 2.

In order to derive the corresponding equations for spectral functions ρj(s), naturally we should

proceed in finding out how to generate these p2 dependences from the free-particle propagator.

However, we are faced with a more immediate problem that the Gauge Technique ansatz for

the fermion-photon vertex produces divergences in σj(p
2) not completely removable by the

renormalization conditions1, as will be demonstrated later in this section.

It is well known that the ability to remove the loop divergences in the SDEs constrains the

fermion-photon vertex [64]. To distinguish this from multiplicative renormalizability discussed

in Chapter 6, we name it loop-renormalizability. The principle of loop-renormalization is best

illustrated going back to the SDE for the propagator functions. With the conventional definitions

of dressing functions F (p2) and M (p2) given by Eq. (3.3), the relations among Sj(p2) and

F (p2), M (p2) can be immediately worked out. Meanwhile, the fermion self-energy is defined
1Compare Eq. (5.5) and Eq. (5.6) with themselves at any renormalization point.
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as

Σ1(p
2)/p+Σ2(p

2) = (σ1 + /pσ2)S
−1
F =

σ1S1 − σ2S2

p2S2
1 − S2

2
/p+

p2S1σ2 − σ1S2

p2S2
1 − S2

2

. (5.7)

Notice that p2S2
1(p

2)− S2
2(p

2) = F (p2)S1(p
2). Within the Gauge Technique in the quenched ap-

proximation, divergent parts of fermion self-energy can then be calculated according to Eq. (5.4).

Explicitly, we have

Σ1(p
2) = − 3α

4πϵ

[
p2S2

1 − S2
2 −

(
ξ

3
+ 1

)
S1

]
1

FS1
+ O(ϵ0)

= − 3α

4πϵ

[
1−

(
ξ

3
+ 1

)
1

F (p2)

]
+ O(ϵ0) (5.8)

Σ2(p
2) = − 3α

4πϵ

[
p2S1S2 −

(
p2S1 −

(
ξ

3
+ 1

))
S2

]
1

FS1
+ O(ϵ0)

= − 3α

4πϵ

(
ξ

3
+ 1

)
M (p2)

F (p2)
+ O(ϵ0). (5.9)

The renormalized SDEs for the fermion propagator dressing functions are written as

Z−1
2

F (p2)
= 1 + Σ1(p

2), (5.10)

Z−1
2 M (p2)

F (p2)
= mRZm − Σ2(p

2). (5.11)

Since with the Σ1(p
2) given by Eq. (5.8), Eq. (5.10) cannot be renormalized when compared to

itself at p2 = µ2, the Gauge Technique fails the loop-renormalizability requirement. Explicitly,

this ratio of equations,
F (µ2)

F (p2)
=

1 + Σ1(p
2)

1− Σ1(µ2)
, (5.12)

contains divergences not taken care of.

Consider instead of Eqs. (5.8, 5.9), the divergences in the fermion self-energy are given by

Σ1(p
2) =

αξ

4πϵ

Z−1
2

F (p2)
+ O(ϵ0), (5.13)

Σ2(p
2) = − αξ

4πϵ

Z−1
2 M(p2)

F (p2)
+ O(ϵ0). (5.14)

Here in Eq. (5.13), the divergent part of Σ1 is homogeneous with respect to Z−1
2 /F (p2), i.e.

the propagator term in the renormalized SDE. Satisfying Eq. (5.13) ensures Eq. (5.10) to be
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loop-renormalizable. Because Eq. (5.13) allows us to rewrite Eq. (5.10) as

(
1− αξ

4πϵ

)
Z−1
2

F (p2)
= 1 + Σ1(p

2), (5.15)

where Σ1(p
2) is Σ1(p

2) with its divergent terms subtracted. Now we can apply the renormaliza-

tion condition to eliminate the [1− αξ/(4πϵ)]Z−1
2 term and obtain

F (µ2)

F (p2)
=

1 + Σ1(p
2)

1 + Σ1(µ2)
, (5.16)

which is free from divergences.

As for the other component of the renormalized SDE, combining Eq. (5.10) with Eq. (5.11)

produces,

mRZm = M (p2) + Σ1(p
2)M (p2) + Σ2(p

2), (5.17)

Next, with the help of Eqs. (5.13, 5.14), the loop divergence is given by

Σ1(p
2)M (p2) + Σ2(p

2) =
αξ

4πϵ

[
Z−1
2 M

F
− Z−1

2 M

F

]
+ O(ϵ0) = 0 + O(ϵ0). (5.18)

Therefore, comparing Eq. (5.17) with itself at µ2 produces

M (p2) =
1 + Σ1(µ

2)

1 + Σ1(p2)
M (µ2) +

Σ2(µ
2)− Σ2(p

2)

1 + Σ1(p2)
, (5.19)

which means that the divergence in Eq. (5.11) can also be removed.

Based on the previous discussion, in order to ensure Eqs. (5.10, 5.11), namely the renor-

malized SDE for fermion propagator, being renormalizable by eliminating renormalization con-

stants Z2 and Zm at µ2, divergent parts of the fermion self-energy Σ1 and Σ2 are required to

be homogeneous with respect to the propagator contribution in the SDE. This also ensures that

divergences cancel after decoupling M (p2) from the equation for the Dirac scalar component.

These loop-renormalizability conditions are then formulated as

Σ1(p
2) =

λα

4πϵ

Z−2
2

F (p2)
+ Σ1(p

2), Σ2(p
2) =

−λα
4πϵ

Z−1
2 M (p2)

F (p2)
+ Σ2(p

2), (5.20)

where Σj(p
2) are finite, therefore at O(ϵ0). In order to agree with one-loop perturbation calcula-
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tion, the homogeneous coefficient is given by λ = ξ. Notice again that the fermion self-energy

differs from the Gauge Technique loop counterpart simply by the fermion propagator:

[/pΣ1(p
2) + Σ2(p

2)][/pS1(p
2) + S2(p

2)] = /pσ2(p
2) + σ1(p

2). (5.21)

Because the fermion propagator can be viewed as a linear transform with finite matrix elements,

renormalizability conditions written as Eq. (5.20) indicate for σj(p2) we have

σ1(p
2) = p2Σ1(p

2)S1(p
2) + Σ2(p

2)S2(p
2) =

λα

4πϵ
Z−1
2 + σ1(p

2), (5.22)

σ2(p
2) = Σ1(p

2)S2(p
2) + Σ2(p

2)S1(p
2) = σ2(p

2), (5.23)

where σj(p2) are the finite parts of σj(p2).

In this section, we have proposed the loop-renormalizability requirement in Eqs. (5.8, 5.9)

for the fermion propagator SDE. This condition has been translated into Eqs. (5.22, 5.23) as the

loop-renormalizability requirements for σj(p2).

5.3 Solving for the fermion spectral functions

5.3.1 A renormalizable modification to the Gauge Technique

Consider the Gauge Technique in the quenched approximation. The loop integral of the fermion

propagator SDE can be easily calculated applying the well established perturbative procedures.

After Feynman parameterization and dimensional regularization, we obtain

σ1(p
2) = −3α

4π

∫
ds
sK(p2, s)

p2 − s
ρ1(s) +

αξ

4π

∫
ds

(
Cdiv + 1 + ln ν2

s− p2

)
ρ1(s) (5.24)

σ2(p
2) = −3α

4π

∫
ds
K(p2, s)

p2 − s
ρ2(s) +

αξ

4π

∫
ds

1

p2

(
−1 + s

p2
ln s

s− p2

)
ρ2(s), (5.25)

where

K(p2, s) = Cdiv +
4

3
+ ln ν2

s− p2
− s

p2
ln s

s− p2
, (5.26)

and Cdiv = 1/ϵ− γE + ln 4π, with d = 4− 2ϵ.

Apparently, this result does not satisfy the loop-renormalizability requirements specified by
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Eqs. (5.22, 5.23). We therefore propose a minimal modification to meet this criterion, which

replaces K(p2, s) by

K(p2, s) =
4

3
+

(
1− s

p2

)
ln s

s− p2
. (5.27)

This represents a scenario where transverse pieces additional to the Guage Technique only

accomplish Eq. (5.27) by canceling the divergence in K(p2, s). Within the modified minimum

subtraction scheme (MS), 1/ϵ− γE + ln 4π terms in σj are removed altogether. Based on the

definition of σj by Eqs. (5.22, 5.23), Eqs. (5.5, 5.6) then become

(
1− λα

4πϵ

)
Z−1
2 +mZmS2 = p2S1 + σ1 (5.28)

mZmS1 = S2 + σ2. (5.29)

Next, we introduce the renormalization conditions to specify values of the propagator functions

at the renormalization point. With these conditions mZm, Z−1
2 and λα/(4πϵ) are eliminated

altogether;

S2(p
2) + σ2(p

2)

S1(p2)
=
S2(µ

2) + σ2(µ
2)

S1(µ2)
, (5.30)

p2S1(p
2) + σ1(p

2)− S2(p
2)
S2(µ

2) + σ2(µ
2)

S1(µ2)
= µ2S1(µ

2) + σ1(µ
2)− S2(µ

2)
S2(µ

2) + σ2(µ
2)

S1(µ2)
.

(5.31)

The resulting Eqs. (5.30, 5.31) appear nonlinear in the spectral functions ρj(s). We will see in

Subsection 5.3.2 that the on-shell renormalization will linearize them.

5.3.2 On-shell renormalization conditions

The on-shell renormalization stipulates that propagator functions evaluated near the mass shell

are dominated by their free-particle counterparts [46]. Mathematically, we translate this state-

ment into

lim
µ2→m2

(µ2 −m2)S1(µ
2) = 1, lim

µ2→m2
(µ2 −m2)S1(µ

2) = m, (5.32)

where the parameter µ is the renormalization scale, which is eventually set to m by the limits.

Equivalently for the propagator functions, when the free-particle contributions are subtracted
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according to

S1(p
2) =

1

p2 −m2
+ P1(p

2) (5.33)

S2(p
2) =

m

p2 −m2
+ P2(p

2). (5.34)

The remaining functions must be less singular than the free-particle propagator in the vicinity of

m2. Therefore we have the following identities for Pj(p2):


lim

µ2→m2
(µ2 −m2)P1(µ

2) = 0,

lim
µ2→m2

(µ2 −m2)P2(µ
2) = 0.

(5.35)

Consequently, the spectral functions ρj(s) cannot bemore singular than the δ-function in the limit

s→ m2. For the multipliers to the θ-function terms in ρj(s), they should not result in behaviors

of the propagator functions more singular than the free-particle either. Therefore too strong

singularities in the multipliers of the θ-function in the s→ m2 limit are not allowed.

With these requirements in mind, Eqs. (5.33, 5.34) indicate

ρ1(s) = δ(s−m2) + r1(s)θ(s−m2), (5.36)

ρ2(s) = mδ(s−m2) + r2(s)θ(s−m2), (5.37)

where θ(x) is the Heaviside step function, and rj(s) are supposed to be regular functions instead

of distributions with exotic features. The δ-functions contribute to the (µ2 −m2)−1 singular parts

of Sj(µ2) while rj(s) give rise to Pj(µ2), which are expected to be at most ln(m2−µ2) divergent

when µ2 → m2. This requirement can be understood by the observation that for regularly

behaving functions, the interchange of limits and integrations is allowed. Therefore we have

lim
µ2→m2

(µ2 −m2)

∫ +∞

m2

ds
r(s)

µ2 − s
=

∫ +∞

m2

ds r(s) lim
µ2→m2

µ2 −m2

s−m2
= 0. (5.38)

Meanwhile, δ-functions in the spectral functions ρj contribute to free-propagator terms within
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σj(p
2) as well:

σ1(p
2) =

−λ1α
4π

m2

p2 −m2
+ q1(p

2), (5.39)

σ2(p
2) =

−λ2α
4π

m

p2 −m2
+ q2(p

2), (5.40)

with

lim
ν2→m2

(µ2 −m2)q1(µ
2) = 0, lim

ν2→m2
(µ2 −m2)q2(µ

2) = 0.

Parameters λ1 and λ2 characterize the contribution to the free-particle terms from the loop

diagram in Fig. 2.2.

Having separated the on-shell behavior of propagator functions Sj and loop functions σj at

p2 = m2, the renormalized Eqs. (5.30, 5.31) simplify. Explicitly, the on-shell conditions simplify

renormalization constants in the following way:

lim
µ2→m2

S2(µ
2) + σ2(µ

2)

S2(µ2)
=

(
1− λ2α

4π

)
m, (5.41)

and

lim
µ2→m2

{
µ2S1(µ

2) + σ1(µ
2)− S2(µ

2)

S1(µ2)
[S2(µ

2) + σ2(µ
2)]
}

= lim
µ2→m2

{
(λ2 − λ1)

α

4π

m2

µ2 −m2

}
+ 1 +

(
2− λ2α

4π

)
[m2P1(m

2)−mP2(m
2)]

+ q1(m
2)−mq2(m2). (5.42)

As a consequence, Eqs. (5.30, 5.31) both become linear in ρj :

p2S1(p
2) + σ1(p

2) =

(
1− λ2α

4π

)
mS2(p

2) + lim
µ2→m2

{
(λ2 − λ1)

α

4π

m2

µ2 −m2

}
+ 1

+

(
2− λ2α

4π

)
[m2P1(m

2)−mP2(m
2)] + q1(m

2)−mq2(m2) (5.43)

S2(p
2) + σ2(p

2) =

(
1− λ2α

4π

)
mS1(p

2). (5.44)
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The next step is to separate the free-propagator terms, which can be accomplished through

p2P1(p
2) + q1(p

2) + (λ2 − λ1)
α

4π

m2

p2 −m2

=

(
1− λ2α

4π

)
mP2(p

2) + lim
µ2→m2

{
(λ2 − λ1)

α

4π

m2

µ2 −m2

}
+

(
2− λ2α

4π

)
[m2P1(m

2)−mP2(m
2)] + q1(m

2)−mq2(m2) (5.45)

and

P2(p
2) + q2(p

2) =

(
1− λ2α

4π

)
mP1(p

2). (5.46)

Since the spectral functions rj(s) are effectively the spectral functions of Pj , we have

rj(s) =
−1
π
Im{Pj(s+ iϵ)}. (5.47)

Although at s = m2, ρj(s) are dominated by the δ-functions, this does not forbid rj(m2) being

nonzero but finite.

5.3.3 SDEs for the fermion propagator spectral functions

To derive the equations from which ρj are solved, consider Eq. (5.27), the minimum loop-

renormalizable modification to the original Gauge Technique in the quenched approximation.

In the case of MS, the loop integral in the fermion propagator SDE becomes

σ1(p
2) =

−3α
4π

∫ +∞

m2

ds
sK(p2, s)

p2 − s
ρ1(s) +

αξ

4π

∫ +∞

m2

ds

(
1 + ln µ2

s− p2

)
ρ1(s) (5.48)

σ2(p
2) =

−3α
4π

∫ +∞

m2

ds
K(p2, s)

p2 − s
ρ2(s) +

αξ

4π

∫ +∞

m2

ds
1

p2

(
−1 + s

p2
ln s

s− p2

)
ρ2(s). (5.49)
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FromEq. (5.27) one immediately sees λ1 = λ2 = 4 . Then straightforwardly fromEqs. (5.39, 5.40),

we obtain

q1(p
2) = σ1(p

2) +
λ1α

4π

m2

p2 −m2

= −3α

4π

m2

p2
ln m2

m2 − p2
+
αξ

4π

(
1 + ln m2

m2 − p2

)
− 3α

4π

∫ +∞

m2

ds
sK(p2, s)

p2 − s
r1(s) +

αξ

4π

∫ +∞

m2

ds

(
1 + ln m2

s− p2

)
r1(s), (5.50)

q2(p
2) = σ2(p

2) +
λ2α

4π

m

p2 −m2

= −3α

4π

m

p2
ln m2

m2 − p2
+
αξ

4π

m

p2

(
−1 + m2

p2
ln m2

m2 − p2

)
− 3α

4π

∫ +∞

m2

ds
K(p2, s)

p2 − s
r2(s) +

αξ

4π

∫ +∞

m2

ds
1

p2

(
−1 + s

p2
ln s

s− p2

)
r2(s). (5.51)

The following relations are useful in order to obtain the imaginary part of q1:

s′K(s, s′)

s− s′
=

s′

s− s′

(
Cdiv +

4

3
+ ln ν

2

s′

)
+
s′

s
ln s′

s′ − s
(5.52)

− 1

π
Im
{ 1

s− s′ + iϵ

}
= δ(s− s′) (5.53)

− 1

π
Im

{∫
ds′
(
Cdiv + 1 + ln ν

2

s′

)
ρ1(s

′)

}
= 0. (5.54)

After defining z = s/s′, the logarithmic terms of σ1 can be reparameterized by introducing an

intermediate spectral function κ(ζ) for the nontrivial imaginary parts of kernel functions with the

help of

s′

s
ln s′

s′ − s
=

1

z
ln 1

1− z
=

∫
dζ

−1

ζ
θ(ζ − 1)

z − ζ + iϵ
(5.55)

ln s′

s′ − s
= ln 1

1− z
=

∫
dζ
−θ(ζ − 1)

z − ζ + iϵ
. (5.56)
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Then f(s/s′) =
∫
dζ κ(ζ)/(s/s′ − ζ + iε). Therefore R1(s), the spectral function of q1(p2), is

given by2,

R1(s) = −
1

π
Im{q1(s+ iϵ)}

=
3α

4π

m2

s
θ(s−m2)− αξ

4π
θ(s−m2)

− 3α

4π

[
4

3
sr1(s)−

∫ s

m2

ds′
s′

s
r1(s)

]
− αξ

4π

∫ s

m2

ds′r1(s
′). (5.57)

Similarly with the help of

1

s

(
−1 + s′

s
ln s′

s′ − s

)
=

1

s′z

(
−1 + 1

z
ln 1

1− z

)
=

1

s′

∫
dζ

−1
ζ2
θ(ζ − 1)

z − ζ + iϵ
,

the spectral function of q2(p2) is given by

R2(s) = −
1

π
Im{q2(s+ iϵ)}

=
3α

4π

m

s
θ(s−m2)− αξ

4π

m3

s2
θ(s−m2)

− 3α

4π

[
4

3
r2(s)−

∫ s

m2

ds′
1

s
r2(s

′)

]
− αξ

4π

∫ s

m2

ds′
s′

s2
r2(s

′). (5.58)

Before deriving the SDE for functions rj(s), we need to calculate the imaginary parts of inhomo-

geneous terms in Eq. (5.45). Although the value of θ-functions at the threshold for the θ(s−m2)

remains undetermined, the linear combination R1(m
2)−mR2(m

2) is free from such ambiguity;

R1(m
2) = lim

s→m2

[
3α

4π
θ(s−m2)− αξ

4π
θ(s−m2)

]
− α

π
m2r1(m

2),

R2(m
2) = lim

s→m2

[
3α

4π

1

m
θ(s−m2)− αξ

4π

1

m
θ(s−m2)

]
− α

π
r2(m

2),

R1(m
2)−mR2(m

2) = −α
π
[m2r1(m

2)−mr2(m2)]. (5.59)

2Notice
−1

π
Im

{∫+∞
m2 ds′ ln

m2

s′
r1(s′)

}
= 0.

70



Therefore, taking the imaginary parts of Eqs. (5.45, 5.46) produces

sr1(s) +R1(s) =
(
1− α

π

)
mr2(s) + 2

(
1− α

π

)
[m2r1(m

2)−mr2(m2)], (5.60)

r2(s) +R2(s) =
(
1− α

π

)
mr1(s). (5.61)

While at s = m2, we have

[m2r1(m
2)−mr2(m2)]

(
1− α

π

)
+

(3− ξ)α
4π

lim
s→m2

θ(s−m2) = 2[m2r1(m
2)−mr2(m2)]

(
1− α

π

)
(5.62)

[r2(m
2)−mr1(m2)]

(
1− α

π

)
+

(3− ξ)α
4π

1

m
lim
s→m2

θ(s−m2) = 0, (5.63)

or equivalently,

(
1− α

π

)
[m2r1(m

2)−mr2(m2)] =
(3− ξ)α

4π
lim
s→m2

θ(s−m2), m ̸= 0. (5.64)

Adopting lim
s→m2

θ(s−m2) = 1 produces non-trivial solutions. The choice of this particular limit

of the θ-functions will be explained later in Eq. (5.84). The equations for functions rj(s) then

become 
sr1(s) +R1(s) =

(
1− α

π

)
mr2(s) +

(3− ξ)α
2π

r2(s) +R2(s) =
(
1− α

π

)
mr1(s)

. (5.65)

The terms (3 − ξ)α/(2π) on the right-hand side of Eq. (5.65) is then implicitly proportional to

lim
s→m2

θ(s−m2), which needs to be recovered in Eq. (5.84).

Explicitly, we obtain the following integral equations for rj(s):



(
1− α

π

)
[s2r1(s)−msr2(s)] +

3α

4π

[
m2θ(s−m2) +

∫ s
m2 ds

′s′r1(s
′)
]

=
(3− ξ)α

2π
s+

αξ

4π

[
sθ(s−m2) + s

∫ s
m2 ds

′r1(s
′)
]

(
1− α

π

)
[−msr1(s) + sr2(s)] +

3α

4π

[
mθ(s−m2) +

∫ s
m2 ds

′r2(s
′)
]

=
αξ

4π

[
m3

s
θ(s−m2) +

1

s

∫ s
m2 ds

′s′r2(s
′)

]
.

(5.66)

We have derived Eq. (5.66) as the coupled SDE for fermion spectral functions ρj(s) with a
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loop-renormalizable modification to the Gauge Technique in the quenched approximation. Be-

cause spectral variables s and s′ are separable, these integral equations can be converted into

differential equations by taking derivatives with respect to s.

5.3.4 Solutions in the Landau gauge

For simplicity, consider Eq. (5.66) in the Landau gauge. For notational convenience, define

coupling parameter a as

a =
3α/(4π)

1− α/π
. (5.67)

After setting ξ = 0 and taking one derivative with respect to s, Eq. (5.66) becomes


 s −ms

−m s

 d

ds
+

a+ 1 −m

0 a+ 1



sr1(s)
r2(s)

 =

2a

0

 . (5.68)

Straightforwardly as a first step to solve Eq. (5.68), one can eliminate diagonal matrix ele-

ments for the coefficient matrix for the non-differentiating terms through the following decompo-

sitions sr1(s) = f1(s)g1(s), and r2(s) = f2(s)g2(s).

Utilizing the inverse relation,

 s −ms

−m s


−1a+ 1 −m

0 a+ 1

 =
1

s−m2

 a+ 1 am

(a+ 1)m/s a+ 1−m2/s

 ,

coverts Eq. (5.68) into

g1(s)
g2(s)

 d

ds

f1(s)
f2(s)

+

g′1(s)
g′2(s)


f1(s)
f2(s)


+

1

s−m2

 a+ 1 am

(a+ 1)m/s a+ 1−m2/s


g1(s)

g2(s)


f1(s)
f2(s)

 =


2a

s−m2

2am

s(s−m2)

 . (5.69)

Next, after multiplying diag{g−1
1 (s), g−1

2 (s)}we obtain the coupled differential equations for fj(s)
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as

d

ds

f1(s)
f2(s)

+


g′1(s)

g1(s)
+

a+ 1

s−m2

am

s−m2

g2(s)

g1(s)
(a+ 1)mg1(s)

(s−m2)sg2(s)

g′2(s)

g2(s)
+
a+ 1−m/s

s−m2


f1(s)
f2(s)

 =


2a

(s−m2)g1(s)
2am

s(s−m2)g2(s)

 .

(5.70)

When diagonal elements of thematrix in Eq. (5.70) vanish, taking another derivative with respect

to the spectral variable s decouples fj(s). In this scenario, gj(s) are required to satisfy their

differential equations;

g′1(s)

g1(s)
+

a+ 1

s−m2
= 0,

g′2(s)

g2(s)
+
a+ 1−m2/s

s−m2
= 0. (5.71)

One set of solutions for gj(s) is

g1(s) =

(
m2

s−m2

)a+1

, g2(s) =

(
m2

s−m2

)a
m

s
, (5.72)

where the integration constants are chosen such that fj(s) are dimensionless. Eq. (5.70) then

becomes

d

ds
f1(s) +

a

s
f2(s) =

2a

m2

(
s−m2

m2

)a
(5.73)

d

ds
f2(s) +

(a+ 1)m2

(s−m2)2
f1(s) =

2a

s−m2

(
s−m2

m2

)a
. (5.74)

Next, taking another derivative with respect to s yields

d

ds
s
d

ds
f1(s)−

a(a+ 1)m2

(s−m2)2
f1(s) =

2a(a+ 1)

m2

(
s−m2

m2

)a
, (5.75)

d

ds
(s−m2)2

d

ds
f2(s)−

a(a+ 1)m2

s
f2(s) = 0. (5.76)

Components in Eq. (5.68) are now decoupled.

The homogeneous part of Eq. (5.75) can be solved using the Frobenius method. Refer

to Appendix A.3 for details. The homogeneous solution to Eq. (A.44) inspires the following

decomposition

f1(x) = xa+1ϕ1(x), (5.77)
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where x = s/m2 − 1. Eq. (5.75) then becomes

x(x+ 1)
d2

dx2
ϕ(x) + [2a+ 2 + (2a+ 3)x]

d

dx
ϕ(x) + (a+ 1)2ϕ(x) = 2a(a+ 1). (5.78)

The homogeneous part of Eq. (5.78) is the hypergeometric differential equation for ϕ on the vari-

able −x. After finding out one particular solution to the inhomogeneous equation, the general

solution to Eq. (5.78) with a finite initial condition is

ϕ(x) = a0 2F1(a+ 1, a+ 1; 2a+ 2;−x) + 2a

a+ 1
. (5.79)

Therefore, the solution for Eq. (5.75) is

f1(x) = xa+1

[
a0 2F1(a+ 1, a+ 1; 2a+ 2,−x) + 2a

a+ 1

]
. (5.80)

There is no need to solve Eq. (5.76) separately because substituting Eq. (5.80) into Eq. (5.73)

generates the solution for Eq. (5.76) directly. The result is

f2(x) = −a0
(a+ 1)

a
xa 2F1(a, a+ 1; 2a+ 2;−x). (5.81)

Based on Eqs. (5.80, 5.81) for functions fj(x), the following solutions are obtained,

r1(s) =
a0
s

2F1

(
a+ 1, a+ 1; 2a+ 2;−s−m

2

m2

)
+

2a

(a+ 1)s
, (5.82)

r2(s) = −a0
(1 + a)

am
2F1

(
a+ 1, a+ 2; 2a+ 2;−s−m

2

m2

)
. (5.83)

The parameter a0 can be determined by the the initial condition specified in Eq. (5.64). Given

that 2F1(a+ 1, a+ 1; 2a+ 2, 0) = 1, and 2F1(a+ 1, a+ 2; 2a+ 2; 0) = 1, we have

a0 +
2a

a+ 1
lim
s→m2

θ(s−m2) + a0
a+ 1

a
= 2a lim

s→m2
θ(s−m2), (5.84)

where the implicit dependence of the inhomogeneous term on the limit of θ-functions has been

restored.

When the boundary values of θ-function are chosen as lim
s→m2

θ(s −m2) = 0, only homoge-
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neous parts of Eqs. (5.82, 5.83) survive. As a result, the only viable choice of parameter a0 is

0, which produces trial solutions.

Therefore in order to obtain nontrivial solutions, the consistent limit is lim
s→m2

θ(s−m2) = 1.

In this case, a0 can be solved from Eq. (5.84) as

a0 =
2a3

(2a+ 1)(a+ 1)
. (5.85)

With this expression for a0, we obtain the following set of solutions for Eq. (5.66) in the Landau

gauge:


r1(s) =

2a

(a+ 1)s

[
1 +

a2

(2a+ 1)
2F1

(
a+ 1, a+ 1; 2a+ 2;−s−m

2

m2

)]
r2(s) = −

2a2

(2a+ 1)m
2F1

(
a+ 1, a+ 2; 2a+ 2;−s−m

2

m2

) . (5.86)

Equation (5.86) specifies the theta-function parts of the fermion propagator spectral function

ρj(s), with our interpretation of the on-shell renormalization conditions given by Eq. (5.32). Be-

cause Eq. (5.75) is a second order ordinary differential equation, there is another solution lin-

early independent of Eq. (5.80). The corresponding r1(s) is

r1(s) =
2a

(a+ 1)s
+
c

s
(s/m2 − 1)−2a−1

2F1(−a,−a;−2a; 1− s/m2). (5.87)

An interesting observation is that apart from the difference in the definitions of coupling param-

eter a, the homogeneous part in Eq. (5.87) is identical to the corresponding r1(s) from Eq. (5.1),

the result based on the renormalization scheme in Ref. [49]. However, Eq. (5.87) does not

agree with the on-shell renormalization scheme because it fails to satisfy the finite boundary

condition given by Eq. (5.64). Specifically, it corresponds to a propagator function having a

different p2 → m2 behavior from the on-shell propagators.

5.3.5 The Padé approximation of hypergeometric functions

The nontrivial parts of the fermion propagator spectral functions given by Eq. (5.86) are the

hypergeometric functions. Representing these nontrivial factors with elementary functions sim-

plifies calculations where the fermion propagator spectral functions are used as input conditions.
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Since for positive a, the hypergeometric functions in Eq. (5.86) are monotonous and asymptoti-

cally vanishing, one natural approximation to such functions is the Padé approximation with the

denominator polynomial at least one degree higher than the numerator polynomial. Since the

Maclaurin series of a hypergeometric function is well defined, the natural variable for the Padé

polynomials is x = s/m2 − 1. However, the asymptotic behaviors of the hypergeometric func-

tions in Eq. (5.86) cannot be well reproduced by the direct application of the Padé approximation

procedures with the variable x, as shown in Fig. 5.1.

The asymptotic behavior of a hypergeometric functions in Eq. (5.86) can be calculated using

linear transformation formulae given by Eqs. (15.3.3) through (15.3.9) of Ref. [63]. However, for

hypergeometric functions in r1(s) and r2(s) of Eq. (5.86), these integer differences in the first

two parameters require Eq. (15.3.13) and Eq. (15.3.14) of Ref. [63] to be apply respectively.

Since asymptotically s/m2 − 1 ≃ s/m2, we have the following limiting behaviors:

lim
s→+∞ 2F1

(
a+ 1, a+ 1; 2a+ 2; 1− s

m2

)
=

Γ(2a+ 2)

[Γ(a+ 1)2]

( s

m2

)−a−1

×
[
ln
( s

m2

)
+ 2γE − 2ψ(a+ 1)

]
, (5.88)

lim
s→+∞ 2F1

(
a+ 1, a+ 2; 2a+ 2; 1− s

m2

)
=

Γ(2a+ 2)

Γ(a+ 1)Γ(a+ 2)

( s

m2

)−a−1

. (5.89)

Then directly from Eq. (5.89), the asymptotic behavior of r2(s) in Eq. (5.86) is given by s−a−1.

While due to the existence of the logarithm, the behavior described by Eq. (5.88) is only weaker

than s−a. Therefore the asymptotic behavior of the second term of r1(s) in Eq. (5.86) can be

approximated by s−a−1.

Our analysis above for the asymptotic behaviors motivates the following approximations for

rj(s):

r1(s) ≃
2a

(a+ 1)s
+

1

m2

( s

m2

)−a N1(x)

Q1(x)
, (5.90)

r2(s) ≃
1

m

( s

m2

)−a N2(x)

Q2(x)
, (5.91)

where Nj(x) are polynomials of degree n− 1 while Qj(x) are polynomials of degree n. Equa-

tions (5.90, 5.91) then allow rj(s) in Eq. (5.86) to be well approximated using the following equa-

tions representing Padé approximations, after factoring out the asymptotic behaviors. Base on
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Figure 5.1: Padé approximations to rj(s) in Eq. (5.86). The blue crosses represent the exact
functions. The blue solid lines on the left figures are Padé approximations directly applied to
functions in Eq. (5.86). The red solid lines are approximations using Eqs. (5.90, 5.91). They
are indistinguishable from the plots on the left. Figures on the right are relative errors defined
by ∆ = |[r(s)− p(s)]/r(s)|, where r(s) is the exact function while p(s) is the approximation.

Eqs. (5.86, 5.90, 5.91), we have

N1(x)

Q1(x)
≃ 2a3

(2a+ 1)(a+ 1)
(x+ 1)a−1

2F1 (a+ 1, a+ 1; 2a+ 2;−x) , (5.92)

N2(x)

Q2(x)
≃ − 2a2

2a+ 1
(x+ 1)a 2F1 (a+ 1, a+ 2; 2a+ 2;−x) , (5.93)

where the semiequal signs stand for taking the Padé approximations. Since theMaclaurin series

for terms on the right-hand sides of Eqs. (5.92, 5.93) are well defined, the standard procedure of

Padé approximations applies. To see how well this approximation shceme works, the example

with α = 3 and quartic Qj(x) is given by Fig. 5.1.
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5.4 SDE for the photon spectral function

5.4.1 The Gauge Technique contribution to the vacuum polarization with

arbitrary dimensions

Similar to the SDE for the fermion propagator, the SDE for the photon propagator also depends

on the fermion-photon vertex through SF (k)Γµ(k, p)SF (p). The dependence of the structure

SF (p)Γ
µ(k, p)SF (p) on the spectral representations of the fermion propagator is only known up

to the longitudinal components through the Gauge Technique. Through our limited knowledge

of the vertex, we explore how the photon equation characterizes the nonlinear aspect of the

SDEs for QED propagators.

Within the original Gauge Technique, the vacuum polarization can be calculated by

Π(q2) =
−α
4π

∫
ds

∫
dF 2Γ(ϵ)

(
4πµ2

s

)ϵ
8xy

(1− xyz)ϵ
ρ1(s), (5.94)

where z = q2/s. The integral over the Feynman parameters is defined as
∫
dF 2 =

∫
dxdy δ(1−

x − y). In this subsection, ϵ = 2 − d/2 is kept finite and explicit when required. Therefore

Eq. (5.94) needs to be evaluated directly. A straightforward transform to simplify the integration

of the Feynman parameter in Eq. (5.94) is difficult to find. Alternatively, knowing its analytic

structure, specifically the branch cut along z > 4, allows us to evaluate the imaginary part of

Π(q2) first.

Let’s start with a variable transform

ξ = x− 1/2 = 1/2− y,

where ξ in this subsection is not the gauge parameter but just a convenient parameter label.

Together with the following identities,

−1
π
Im
{

1

[1− (1/4− ξ2)z − iε]ϵ

}
=

− sin(πϵ)
π[(1/4− ξ2)z − 1]ϵ

θ
(
z −

(
1/4− ξ2

)−1
)

(5.95)

∫ 1
2

√
z−4
z

− 1
2

√
z−4
z

dξ
8(1/4− ξ2)

[(1/4− ξ2)z − 1]ϵ
=
−2
√
π[−2 + (ϵ− 1)z]Γ(1− ϵ)

Γ(5/2− ϵ)z3/2

(
z − 4

4

)1/2−ϵ

, (5.96)
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the imaginary part of Eq. (5.94) can be calculated according to

−1
π
Im
{
Π(q2 + iε)

}
=
−α
4π

∫
dsΓ(ϵ)

(
4πµ2

s

)ϵ
ρ1(s)

−1
π
Im
{∫ 1/2

−1/2

dξ
8(1/4− ξ2)

[1− (1/4− ξ2)z − iε]ϵ

}

=
−α
4π

∫
dsΓ(ϵ)

(
4πµ2

s

)ϵ
ρ1(s)

− sin(πϵ)
π

θ(z − 4)

∫ 1
2

√
z−4
z

− 1
2

√
z−4
z

dξ
8(1/4− ξ2)

[(1/4− ξ2)z − 1]ϵ

=
−α
4π

∫
ds

(
4πµ2

s

)ϵ
ρ1(s)θ(z − 4)

2
√
π[−2 + (ϵ− 1)z]

Γ(5/2− ϵ)z3/2

(
z − 4

4

)1/2−ϵ

. (5.97)

We presume that the analytic structure of Π(q2) is not altered discontinuously by changing the

number of spacetime dimensions. Therefore for any ϵ where the integration over Feynman

parameters in Eq. (5.94) converges, Π(q2) is holomorphic in the complex q2 plane except for

a branch cut along the positive real axis. With the imaginary part of Π(q2) along this branch

cut calculated, one can determine its real part, up to at most a real constant, from the spectral

representation of Π(q2).

To calculate Π(q2) from its imaginary part using the spectral representation, the following

integral identity is helpful,

pn(z) ≡
∫ +∞

4

dζ

(
ζ

4
− 1

)1/2−ϵ
ζn−3/2

z − ζ + iε
= 4n−3/2

∫ 1

0

dη
ηϵ−n(1− η)1/2−ϵ

ηz/4− 1 + iε

=
−4n−3/2Γ(ϵ− n+ 1)Γ(3/2− ϵ)

Γ(5/2− n) 2F1(1, ϵ− n+ 1; 5/2− n; z/4), (5.98)

where ϵ < 3/2 to ensure convergence. Next with the substitution of integral variable η = 1/ζ,

one specifically obtains

p0(z) =
−ϵ
6
√
π
Γ(ϵ)Γ(3/2− ϵ) 2F1(1, ϵ+ 1; 5/2; z/4), (5.99)

p1(z) =
−1√
π
Γ(ϵ)Γ(3/2− ϵ) 2F1(1, ϵ; 3/2; z/4). (5.100)
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As a result, we have

Π(z) =

∫
dζ

−1
π
Im
{
Π(ζ + iε)

}
z − ζ + iε

=
−α
4π

∫
ds

(
4πµ2

s

)ϵ
ρ1(s)

2
√
π

Γ(5/2− ϵ)
[−2p0(z) + (ϵ− 1)p1(z)]

=
−α
4π

∫
dsρ1(s)

(
4πµ2

s

)ϵ
Γ(ϵ)

2

3/2− ϵ
×[

ϵ

3
2F1

(
1, ϵ+ 1;

5

2
;
z

4

)
+ (1− ϵ) 2F1

(
1, ϵ;

3

2
;
z

4

)]
, (5.101)

up to a real constant, which can be shown to be zero by matching Π(0).

To further simplify the expression for Π(z), Eq. (15.2.24) of Ref. [63] with

b = ϵ, c = 5/2, a = 1, z → z/4 is applied. Doing so produces

(3/2− ϵ) 2F1(1, ϵ; 5/2; z/4) + ϵ 2F1(1, ϵ+ 1; 5/2; z/4) = 3/2 2F1(1, ϵ; 3/2; z/4). (5.102)

Therefore, we have

ϵ

3
2F1

(
1, ϵ+ 1;

5

2
;
z

4

)
+ (1− ϵ) 2F1

(
1, ϵ;

3

2
;
z

4

)
= ϵ

(
1− 2ϵ

3

)
2F1

(
1, ϵ+ 1;

5

2
;
z

4

)
+ (ϵ− 1)

(
1− 2ϵ

3

)
2F1

(
1, ϵ;

5

2
;
z

4

)
. (5.103)

Meanwhile, with a = ϵ, b = 1, c = 5/2, z → z/4, Eq. (15.2.14) of Ref. [63] becomes

(1− ϵ) 2F1(ϵ, 1; 5/2; z/4) + ϵ 2F1(ϵ+ 1, 1; 5/2; z/4) = 2F1(ϵ, 2; 5/2; z/4). (5.104)

Finally we obtain

Π(q2) =
−α
4π

∫
dsρ1(s)

(
4πµ2

s

)ϵ
Γ(ϵ)

4

3
2F1

(
ϵ, 2;

5

2
;
q2

4s

)
. (5.105)

Equation (5.105) is the original Gauge Technique contribution to the QED vacuum polarization

in d = 4− 2ϵ dimensions.
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Specifically in the case of small ϵ, we have

2F1(ϵ, 2; 5/2; z/4) = 1 + ϵ

[
5

3
+

4

z
+

2(z + 2)

z3/2
√
z − 4 arccsc

(
2√
z

)]
+O(ϵ2), (5.106)

Therefore in this limit, Eq. (5.105) reproduces Eq. (3.11) with ρ1(s) = δ(s−m2), as expected.

5.4.2 The θ-function term of ργ(t)

Equation (3.9) states that with a specific ansatz for the fermion-photon vertex, the vacuum

polarization Π(q2) can be calculated. In the case of the Gauge Technique, Π(q2) is given

by Eq. (5.105). The δ-function terms of ργ(t) can be calculated by finding out the zeros of

q2[1 + Π(q2)]. The remaining part of ργ(t) should only consist of θ-functions. When the δ-

functions are subtracted, denote the remaining term of ργ(t) to rγ(t). In general, rγ(t) is a

functional of the fermion propagator spectral functions ρj(s) with j = 1, 2. It is desired to be

able to write such dependences of rγ(t) on ρj(s) explicitly. Because doing so solves the SDE

for the photon propagator.

When Π(q2) is given by Eq. (5.105), rγ(t) is obtained by calculating the imaginary part of the

Landau gauge photon propagator above the 4m2 threshold;

rγ(t) = −
1

π
Im
{

θ(t− 4m2)

t(1 + Π(t+ iε))

}
. (5.107)

Above this real-particle production threshold, Π takes complex values, therefore we have the

decomposition Π(t+ iε) = ΠR(t) + iΠI(t). Then, ργ is straightforwardly given by

rγ(t) =
1

πt

ΠI(t)

[1 + ΠR (t)]
2
+ [ΠI(t)]2

. (5.108)

The next task to find out ΠR and ΠI as linear functionals of ρj(s).

Specifically whenΠ(q2) is given by Eq. (5.105), according to Eq. (15.3.7) of Ref. [63] together

with (−z − iε)−ϵθ(z) = z−ϵ[cos(πϵ) + i sin(πϵ)], when z > 1 we have

2F1(ϵ, 2; 5/2; z) =
3
√
πΓ(2− ϵ)

4Γ(5/2− ϵ)
z−ϵ[cos(πϵ) + i sin(πϵ)] 2F1(ϵ, ϵ− 3/2; ϵ− 1; 1/z)

+
3Γ(ϵ− 2)

4Γ(ϵ)
z−2

2F1(2, 1/2; 3− ϵ; 1/z). (5.109)
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Consequently, with z = t/(4s),

ΠR(t) = −
α

4π

∫
ds

(
4πµ2

s

)ϵ{√
πΓ(ϵ)Γ(2− ϵ)
Γ(5/2− ϵ)

(
4s

t

)ϵ
cos(πϵ) 2F1

(
ϵ, ϵ− 3

2
; ϵ− 1;

4s

t

)

+ Γ(ϵ− 2)

(
4s

t

)2

2F1

(
2,

1

2
; 3− ϵ; 4s

t

)}
θ(t− 4s)ρ1(s), (5.110)

ΠI(t) = −
α

4π

∫
ds

(
16πµ2

t

)ϵ √
πΓ(ϵ)Γ(2− ϵ)
Γ(5/2− ϵ)

sin(πϵ) 2F1

(
ϵ, ϵ− 3

2
; ϵ− 1;

4s

t

)
θ(t− 4s)ρ1(s).

(5.111)

In this section, we have derived Eqs. (5.110, 5.111) to specify two linear functionals of ρ1(s),

which completely determine rγ(t) through Eq. (5.108). Since ρ1(s) starts from s = m2, the

integrals in Eqs. (5.110, 5.111) only sample the region wherem2 ≤ s ≤ t/4. When t < m2, ργ(t)

and ΠI(t) vanish while ΠR(t) is given directly by Eq. (5.105). Meanwhile, Eqs. (5.110, 5.111)

are real functionals because hypergeometric functions inside the integrals are real when t ≥ 4s.

Therefore, through Eqs. (3.22, 5.108), the SDE for the photon propagator as an equation

on the complex q2 plane has been reduced to two real integrals and finding a finite number of

roots. Here Eqs. (5.110, 5.111) are obtained with the Gauge Technique. In general they will be

different with different ansätze.
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Chapter 6

Primitive divergences of QED

6.1 Minimumsubtractionmass-independent renormalization

scheme

Recall that in order to preserve the longitudinal Ward-Green-Takahashi identity for the fermion-

photon three-point function, the Ball-Chiu vertex was proposed [36]. It has the correct longitu-

dinal (with respect to photon momentum) part of Γµ(k, p) but does not contain any transverse

pieces [36]. One insufficiency of the Ball-Chiu vertex can be illustrated by the fact that solutions

from the SDE for the fermion propagator with this vertex do not maintain the correct leading

logarithmic divergence in the renormalizing the fermion field. Therefore the Ball-Chiu vertex

violates the principle of multiplicative renormalizability of QED.

Multiplicative renormalizability of the fermion propagator can be maintained by the introduc-

tion of transverse pieces in addition to the Ball-Chiu vertex [36]. In the quenched approxima-

tion with leading logarithm divergences, this transverse part is given by the Curtis-Pennington

vertex [64]. In the massless unquenched case, the transverse part is given by the Kizilersu-

Pennington vertex [65]. There exist various other transverse vertices to maintain multiplicative

renormalizability in different scenarios [64, 65]. Because we do not know the exact transverse

vertex, guidance for building ansätze is provided by various principles of the gauge theory.

Recall theGauge Technique ansatz [49] for the fermion-photon vertex translates into Eq. (3.8)

for Γµ(k, p). We already know from the discussion in Section 5.2 that the Gauge Technique do
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not satisfy loop-renormalizability. Note that loop-renormalizability is a weaker condition than the

multiplicative renormalizability, because only divergences from the loop integrals of SDEs are

removed. Consequently these transverse pieces in Eq. (3.8) do not to preserve the multiplica-

tive renormalizability of the fermion propagator. A similar statement can be made based on the

SDE for the photon propagator as well.

Both QED and QCD are renormalizable QFTs, meaning that there are only a finite number

of primitive divergent diagrams by the means of counting superficial degrees of divergence

[46]. For QED, these diagrams are the fermion self-energy, the vacuum polarization, and the

fermion-photon 1PI vertex. Both the fermion self-energy and the fermion-photon 1PI vertex are

logarithmic divergent by this power counting. Although the vacuum polarization has a superficial

degree of divergence corresponding to the quadratic divergence, its Ward identity requires the

vacuum polarization tensor to be transverse, reducing its divergence to logarithmic.

These primitive divergences correspond to the divergent parts of renormalization constants

Z1, Z2, Z3 and Zm. While the Ward identity specifies Z1 = Z2 [66]. All divergences in QED

can then be absorbed into the three bare parameters: Z2, αB and mB . The mass function of

fermion propagator has its divergence only coming from the bare mass. After treating the mass

term in the QED Lagrangian as only perturbative, the divergence contributed by the mass term

can only occur at most by one insertion of the bare mass operator. As a result, the divergence

from the bare mass can always been handled separately from those of Z2 and αB , allowing

mass-independent renormalization schemes to be formulated.

When calculating loop diagrams, dimensional regularization treats the number of space-

time dimensions as a continuous parameter to separate divergent pieces from finite parts. De-

fine the number of space-time dimensions as d = 4 − 2ϵ. The minimum subtraction (MS)

scheme removes divergences in loop diagrams by subtracting terms proportional to αl/ϵm, with

l ≥ m ≥ 1. Next, when all divergent loop integrals are regularized by dimensional regular-

ization, the combination of this dimensional regulator, the minimum subtraction, and the mass-

independent renormalization constitutes the minimum-subtraction mass-independent renormal-

ization scheme (MSm0). Within MSm0, using the fact that bare Green’s functions are indepen-

dent of renormalization scale µ, an analysis can be made through the Taylor expansion in the

coupling constant α and the Laurent expansion in ϵ, the regularization parameter. Recurrence

relations for expansion coefficients can then be obtained.
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With dimensional regularization, divergences are represented as 1/ϵn terms. At a certain

level of divergence, αm+n/ϵn terms are summed up for all integer n with a fixed integerm. The

leading level of divergence corresponds to m = 0. We will show that in the leading level of

divergence,

Z2 = 1 in the Landau gauge (6.1)

Zm = m0/mR =

(
1− αb1

2ϵ

)γ1/b1
(6.2)

Z−1
3 =

(
1− αb1

2ϵ

)−1

, (6.3)

with α being the renormalized coupling constant. While bi, γi are expansion coefficients given

later in this chapter.

We follow the mass-independent renormalization scheme developed by Weinberg [67]. In-

stead of using a momentum space cut-off regulator, we use the method developed in Ref. [68]

to apply dimensional regularization to Weinberg’s mass-independent scheme. Elias and McK-

eon [69] showed that by requiring the bare coupling constant to be independent of renormal-

ization scale, summing contributions from all orders of the renormalized coupling α to the bare

coupling αB is possible.

However, instead of solving differential equations for contributions from different orders in

1/ϵ, we expand divergent parts of the bare quantities in a double series expansions of the

renormalized couping α and the regularization parameter 1/ϵ. For simplicity, we limit ourselves

to the Landau gauge (ξ = 0) so that there is no need to renormalize the gauge parameter ξ.

Moving towards other gauges only affects Z2, which can be calculated through the Landau-

Khalatnikov-Fradkin transform.
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6.2 A matrix representation of the double parameter expan-

sion

Equivalent definitions For an arbitrary function f(α, ϵ) with a well defined Taylor expan-

sion in α and a Laurent expansion in ϵ, we can write

f(α, ϵ) =

∞∑
i=0

∞∑
j=−∞

fijα
iϵj . (6.4)

A similar expansion for the bare charge has been provided by Eq. (1) of Ref. [69]. Since the

part of ϵn with n ≥ 0 for the bare quantities is of no interest for the discussion of renormalization,

we truncate the Laurent expansion in ϵ to only keep the main branch. While the O(ϵ0) part of

f(α, ϵ) is usually specified by renormalization conditions, they are ignored here since we are

interested in the divergent behavior only. Instead of using differential equations as in Ref. [69],

we propose an algebraic approach based on matrix multiplications. The part of f(α, ϵ) we are

interested in is then given by

f(α, ϵ) =

∞∑
i=1

i∑
j=1

fijα
i 1

ϵj
(6.5)

=

(
α1 α2 α3 . . .

)


f11 0 0 · · ·

f21 f22 0 · · ·

f31 f32 f33 · · ·
...

...
...

. . .





1/ϵ1

1/ϵ2

1/ϵ3

...


. (6.6)

Denoting by f the coefficient matrix in the middle of Eq. (6.5). While f(α, ϵ) with variables

specified represents the function we are interested in. Imagine perturbation calculation to all

orders has been performed. Therefore knowing the coefficient matrix f is equivalent to having

the complete knowledge of all divergences in f(α, ϵ).

Operations in the matrix space Matrix multiplications are well understood as row and

column operations. While several relevant operations on f(α, ϵ) include differentiation with

respect to α, multiplication by ϵ, and multiplication by the Taylor series of α. We will translate

these operations into matrix multiplications in the coefficient space. Taking the derivative with
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respect to α becomes

α
∂

∂α
f(α, ϵ)⇐⇒



1

2

3

. . .





f11 0 0 · · ·

f21 f22 0 · · ·

f31 f32 f33 · · ·
...

...
...

. . .


≡ Df. (6.7)

Multiplication by ϵ is given by

ϵf(α, ϵ)⇐⇒



f11 0 0 · · ·

f21 f22 0 · · ·

f31 f32 f33 · · ·
...

...
...

. . .





0

1 0

1 0 · · ·
...

. . .


≡ fE. (6.8)

Consider a function b(α) expanded as the Taylor series of α:

b(α) = b0 + b1α+ b2α
2 + · · · =

∞∑
i=0

biα
i. (6.9)

Then, one can easily show that

b(α)f(α, ϵ)⇐⇒



b0 0 0 · · ·

b1 b0 0 · · ·

b2 b1 b0 · · ·
...

...
...

. . .





f11 0 0 · · ·

f21 f22 0 · · ·

f31 f32 f33 · · ·
...

...
...

. . .


≡ Bf. (6.10)

Notice that operation matrices are represented by uppercase letters, while coefficient matrices

remain lowercase letters in this representation.

6.3 Bare quantities associated with primitive divergences

Renormalization group equations can be derived based on the independence of bare propa-

gators on the renormalization scale. Instead of studying the scale dependence of renormal-

ized quantities, we investigate the divergent parts of primitive divergent quantities by the more
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tractable scale independence of bare quantities.

6.3.1 The β-function in d=4-2ϵ dimensions

In QED, the bare coupling constant carries a mass dimension depending on the number of

spacetime dimensions. Explicitly, we have

αB = µ2ϵ
[
α+ O(α2)

]
, (6.11)

where αB is the bare coupling in d = 4−2ϵ dimensions, and α is the renormalized dimensionless

coupling. Meanwhile, we know that the Ward identity allows us to match divergences of the 1PI

three-point function to those of the fermion propagator. Divergences in the photon propagator

are then associated with the bare coupling. We are allowed to write

α = Z3αBµ
−2ϵ. (6.12)

Define β̂(α) as the beta function in d dimensions. Based on ∂ αB/∂ lnµ = 0, we obtain

β̂(α) =
∂

∂ lnµ
Z3αBµ

−2ϵ = µ−2ϵ

(
−2ϵZ3αB + αB

∂

∂ lnµ
Z3

)
(6.13)

= −2ϵα+ α
µ∂Z3

Z3∂µ
.

While in practical renormalization calculations, the renormalization constant Z3 is expanded as

the Taylor series of α and the Laurent series of ϵ. As a result, µ∂Z3

Z3 ∂µ
=
β(α)

α
, where β(α) is the

usual β-function in the ϵ→ 0 limit.

Therefore to maintain consistency, in the intermediate steps of renormalization where ϵ is

nonzero, we should use

µ
∂α

∂µ
= β̂(α) = −2ϵα+ β(α) (6.14)

as the derivative of the coupling constant with respect to the renormalization scale. Such a

treatment is also consistent with the β-function used in Ref. [69].
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6.3.2 Divergences in the bare coupling constant αB

Similar to discussions in Ref. [69], we can expand the bare coupling constant in its double series

expansion. Define a(α, ϵ) such that

αB = µ2ϵα[1 + a(α, ϵ)], (6.15)

with the coefficient matrix a defined by

a(α, ϵ) =

∞∑
i=1

i∑
j=1

aijα
i 1

ϵj
⇐⇒ a. (6.16)

Here “⇔” means that the information in the double series expansion of function a(α, ϵ) is equiv-

alently contained in the matrix a. Since the bare coupling is independent of the renormalization

scale, we have µ∂αB/∂ µ = 0. Consequently, we obtain

2ϵα [1 + a(α, ϵ)] + β̂(α)

[
1 + a(α, ϵ) + α

∂

∂α
a(α, ϵ)

]
= 0, (6.17)

or equivalently,

[1 + a(α, ϵ)]β(α) + [β(α)− 2ϵα]α
∂

∂α
a(α, ϵ) = 0. (6.18)

Next, define b(α) = b1α
1 + b2α

2 + · · · = β(α)/α. Notice that for the notational convenience,

coefficients bi are trivially different from their usual definitions for the QED β-function. We then

write the renormalization group equations for a(α, ϵ) as

b(α) [1 + a(α, ϵ)] + [b(α)− 2ϵ]α
∂

∂α
a(α, ϵ) = 0. (6.19)

Such an equation should be satisfied to all orders in the double expansion of a(α, ϵ).

Notice that the only inhomogeneous term b(α) is atO(1/ϵ0). While the lowest order of a(α, ϵ)

is at O(1/ϵ1). Therefore in order to match coefficients of the αi terms, at O(1/ϵ0), we must have

b(α) = 2ϵα
∂

∂α
a(α, ϵ) + O(1/ϵ1), (6.20)
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or equivalently

bi = 2iai1, i ≥ 1. (6.21)

With the inhomogeneous term cleaned out, we then have

b(α)a(α, ϵ) + [b(α)− 2ϵ]α
∂

∂α
a(α, ϵ) = 0. (6.22)

Equation (6.22) translated into matrix form becomes

B(1+D)a = 2DaE, (6.23)

or explicitly



0

b1 0

b2 b1 0

...
...

...
. . .





2

3

4

. . .





a11

a21 a22

a31 a32 a33
...

...
...

. . .


(6.24)

=



2

4

6

. . .





a11

a21 a22

a31 a32 a33
...

...
...

. . .





0

1 0

1 0 · · ·
...

. . .


.

Because the existence of the B matrix on the left-hand side of Eq. (6.23) and the E matrix on

the right-hand side, we obtain a matrix identity with only the triangle region below the diagonal.

Therefore to the n-th order of perturbation calculation, we have Ua = n(n + 1)/2 unknown pa-

rameters aij , Ub = n unknown parameters bi, withKα,h = n(n− 1)/2 equations from Eq. (6.23)

and Kα,i = n equations from Eq. (6.22). As a result, the net number of unknown parameters is

given by

uα = (Ua + Ub)− (Kα,h +Kα,i) = [n(n+ 1)/2 + n]− [n(n− 1)/2 + n] = n. (6.25)

These parameters are related by the recurrence relations. Explicit calculation shows that
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for the leading level of divergences,

ann =
b1
2
an−1,n−1. (6.26)

Given b1 = 2a11, from Eq. (6.21) we have

∞∑
n=1

ann

(α
ϵ

)n
=

1
2ϵ

b1α
− 1

. (6.27)

Beyond the leading order, by induction, we obtain the following recurrence relations

2nan,n−1 = nan−1,n−2b1 + (n− 1)an−2,n−2b2 (for n ≥ 3), (6.28)

2nan,n−2 = nan−1,n−3b1 + (n− 1)an−2,n−3b2 + (n− 2)an−3,n−3b3 (for n ≥ 4), (6.29)

. . . . . .

2nan,n−m =

m∑
j=0

(n− j)bj+1an−j−1,n−m−1 (for n ≥ m+ 2, m ≥ 0). (6.30)

6.3.3 Divergences in the fermion wavefunction renormalization

The dimension of fermion propagator in coordinate space is given by

[SF (y − x)] = [ψψ] = d− 1. (6.31)

Since the fermion propagator in momentum space is related to its coordinate space counterpart

by the Fourier transform in d-dimensions, its dimension is calculated according to

[SF (p)] = [SF (y − x)]− d = −1, (6.32)

a result independent of ϵ.

Therefore the fermion field renormalization F (p2), given by Eq. (3.3), is strictly dimension-

less. Meanwhile, in Weinberg’s mass-independent scheme, the divergent part of F (p2) does

not depend on the fermion mass [67]. After denoting by FB(α, ϵ) the divergent part of F (p2),
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we have

FB(α, ϵ) = 1 + f(α, ϵ) = 1 +
∞∑
i=1

i∑
j=1

fi,jα
i 1

ϵj
. (6.33)

Since the divergent part of this bare quantity is renormalization scale independent,

µ
d

dµ
FB(α, ϵ) = µ

d

dµ
f(α, ϵ) = β̂(α)

∂

∂α
f(α, ϵ) = 0. (6.34)

After substituting Eq. (6.14) into, Eq. (6.34), we obtain

[b(α)− 2ϵ]α
∂

∂α
f(α, ϵ) = 0. (6.35)

Notice that the resulting Eq. (6.35) is homogeneous. By evaluating its O(1/ϵ0) part, we obtain

fi1 = 0, (6.36)

which agrees with the one-loop calculation in the Landau gauge when i = 1.

Next, translating Eq. (6.35) into matrix form produces

BDf = 2DfE, (6.37)

or written explicitly as



0

b1 0

b2 b1 0

...
...

...
. . .





1

2

3

. . .





f11

f21 f22

f31 f32 f33
...

...
...

. . .


(6.38)

=



2

4

6

. . .





f11

f21 f22

f31 f32 f33
...

...
...

. . .





0

1 0

1 0 · · ·
...

. . .


.

Analysis on the divergences of FB(α, ϵ) introduces Uf = n(n+ 1)/2 unknown fij with

Kf = n(n− 1)/2 + n equations. So the net increase in the number of unknown parameters is

92



∆uf = 0.

Recurrence Relations Explicit calculation shows that in the leading level of divergence,

2nfnn = (n− 1)b1fn−1,n−1 (for n ≥ 2), (6.39)

which indicates
∞∑
n=1

fnn

(α
ϵ

)n
=

2f11
b1

ln

 1

1− αb1
2ϵ

 . (6.40)

Since f11 = 0, we know that fnn = 0 for n ≥ 2.

Furthermore, induction reveals that

2nfn,n−1 = (n− 2)b2fn−2,n−2 + (n− 1)b1fn−1,n−2 (n ≥ 3) (6.41)

2nfn,n−2 = (n− 3)b3fn−3,n−3 + (n− 2)b2fn−2,n−3 + (n− 1)b1fn−1,n−3 (n ≥ 4) (6.42)

. . . . . .

2nfn,n−m =

m∑
j=0

(n− j − 1)bj+1fn−j−1,n−m−1 (n ≥ m+ 2, m ≥ 0). (6.43)

We will see that such recurrence relations, together with Eq. (6.36), result in f(α, ϵ) = 0. There-

fore there is no divergence associated with the fermion field renormalization in the Landau

gauge.

6.3.4 Divergences in the bare mass

The renormalization constant for the mass parameter is defined as Z−1
m = mR/mB . In Wein-

berg’s scheme, Zm is independent of the renormalized mass [67], therefore

Zm = Zm(α, ϵ) = 1 + ζ(α, ϵ), (6.44)

where there exists a matrix representation ζij for the function ζ(α, ϵ).

Meanwhile, the renormalized mass depends on the renormalization scale µ. Such a depen-

dence requires the introduction of the anomalous dimension γm for the mass parameter. Since
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the bare mass is renormalization scale independent, we have

γm = − µ

mR

dmR

dµ
= −d lnZ

−1
m

d lnµ
=

µ

Zm

dZm
dµ

=
1

Zm
β̂
∂

∂α
Zm. (6.45)

Because γm is dimensionless, it can only depend on α. Based on this observation, we have the

following Taylor series expansion of γm:

γm(α) = γ1α+ γ2α
2 + · · · =

∞∑
i=1

γiα
i. (6.46)

Equation (6.45) then becomes

γm(α)Zm(α, ϵ) = [−2ϵα+ β(α)]
∂

∂α
Zm(α, ϵ). (6.47)

Writing in terms of ζ(α, ϵ), Eq. (6.47) becomes

γm(α)[1 + ζ(α, ϵ)] = [−2ϵ+ b(α)]α
∂

∂α
ζ(α, ϵ). (6.48)

Since the inhomogeneous terms in Eq. (6.48) only contribute to O(1/ϵ0), we obtain

γm(α) = −2ϵα ∂

∂α
ζ(α, ϵ) + O(1/ϵ1), (6.49)

or equivalently,

γi = −2iζi1, i ≥ 1. (6.50)

Next, when Eq. (6.49) is satisfied, the inhomogeneous terms can be removed, resulting in

γm(α)ζ(α, ϵ) = [−2ϵ+ b(α)]α
∂

∂α
ζ(α, ϵ). (6.51)

After translated into the matrix form, Eq. (6.51) becomes

Γζ = BDζ − 2DζE, (6.52)
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or written explicitly as



0

γ1 0

γ2 γ1 0

...
...

...
. . .





ζ11

ζ21 ζ22

ζ31 ζ32 ζ33
...

...
...

. . .


(6.53)

=



0

b1 0

b2 b1 0

...
...

...
. . .





1

2

3

. . .





ζ11

ζ21 ζ22

ζ31 ζ32 ζ33
...

...
...

. . .



−



2

4

6

. . .





ζ11

ζ21 ζ22

ζ31 ζ32 ζ33
...

...
...

. . .





0

1 0

1 0 · · ·
...

. . .


.

Similar to the analysis before, we have a net amount of n unknown parameters for the divergent

part of the bare mass.

Recurrence Relations Explicit calculation shows that, by induction, parameters of Zm are

related by

2nζnn = [(n− 1)b1 − γ1]ζn−1,n−1, (n ≥ 2), (6.54)

2nζn,n−1 = [(n− 2)b2 − γ2]ζn−2,n−2 + [(n− 1)b1 − γ1]ζn−1,n−2, (n ≥ 3) (6.55)

. . . . . .

2nζn,n−m =

m∑
j=0

[(n− j − 1)bj+1 − γj+1]ζn−j−1,n−m−1 (n ≥ m+ 2, m ≥ 0). (6.56)

6.4 An alternative matrix representation

6.4.1 Definition of the alternative representation

In the previous section, the matrix form defined by Eq. (6.6) is utilized to represent divergences

of the bare quantities. Such a representation is convenient for the purpose of counting free
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parameters and consistently truncating to a certain order in perturbation theory. However, this

representation is cumbersome in obtaining the coefficient vector at a specified level of diver-

gence. Therefore the following expansion is proposed as an alternative. This rearrangement

of expansions will be used in order to analyze recurrence relations obtained in the previous

section. Keep in mind that truncation to a specific perturbation order will involve projection

operations to eliminate higher order terms.

Alternative to Eq. (6.5), we expand the divergent part of a bare quantity f(α, ϵ) in the following

way

f(α, ϵ) =

∞∑
i=1

∞∑
k=0

(α
ϵ

)j
Fjkα

k. (6.57)

While the previous version of expansion is given by

f(α, ϵ) =

∞∑
i=1

i∑
j=1

fijα
i−j
(α
ϵ

)j
. (6.58)

Comparing these two equations produces

Fjk = fj+k−1,j . (6.59)

Therefore, the alternative expansion by Eq. (6.57), explicitly in the matrix form, is written as

f(α, ϵ) =

((α
ϵ

)1
,
(α
ϵ

)2
,
(α
ϵ

)3
, · · ·

)


f11 f21 f31 · · ·

f22 f32 f42 · · ·

f33 f43 f53 · · ·
...

...
...

. . .





α0

α1

α2

...


. (6.60)

We have, in the alternative representation, f(α, ϵ)⇐⇒ F . Notice that the first column of F is the

coefficient for the leading ϵ divergence, the second column for the next-to-leading divergence,

etc.

It is then straightforward to verify the following correspondences between operations on
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f(α, ϵ) and those on F . Explicitly, we have

α
∂

∂α
f(α, ϵ)⇐⇒ DF + F (D − 1) ≡ Fα, (6.61)

ϵf(α, ϵ)⇐⇒ ETFET , (6.62)

b(α)f(α, ϵ)⇐⇒ FBT , (6.63)

where “T ” on the superscript stands for the matrix transpose. Operator matrices are otherwise

defined identical to those in Section 6.2.

Furthermore, Eq. (6.22) can be rewritten as

(A+Aα)BT = 2ETAαET , (6.64)

or explicitly



0 2a11b1 2a11b2 + 3a21b1 · · ·

0 3a22b1 3a22b2 + 4a32b1 · · ·

0 4a33b1 4a33b2 + 5a43b1 · · ·
...

...
...

. . .


=



0 4a22 6a32 · · ·

0 6a33 8a43 · · ·

0 8a44 10a54 · · ·
...

...
...

. . .


, (6.65)

which agrees with the recurrence relation given by Eq. (6.30).

Similarly, we can rewrite equations for fermion field renormalization f(α, ϵ) and mass renor-

malization Zm(α, ϵ) in the alternative representation. They are given by

FαBT = 2ETFαET , (6.66)

ZαBT − ZΓT = 2ETZαET . (6.67)

6.4.2 Solutions in the alternative representation

Realize that Eqs. (6.30, 6.43, 6.56) are solutions to Eqs. (6.64, 6.66, 6.67), respectively. We

then divide the coefficient matrix in the alternative representation into its column vectors:

F = (F0, F1, F2, · · · ), (6.68)
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where F0 is the coefficient vector for the leading divergent piece, F1 for the next-to-leading part,

etc.

Then based on Eq. (6.30), we have

2[D + (m+ 1)1]ETAm =

m∑
j=0

bj+1[D + (m+ 1− j)1]Am−j . (6.69)

Specifically we obtain, for m = 0

2(D + 1)ETA0 = b1(D + 1)A0; (6.70)

for m = 1

2(D + 2)ETA1 = b1(D + 2)A1 + b2(D + 1)A0; (6.71)

and for m = 2

2(D + 3)ETA2 = b1(D + 3)A2 + b2(D + 2)A1 + b3(D + 1)A0. (6.72)

By observation, the equation for A0 is a homogeneous linear equation, while other algebraic

equations for Am, (m ≥ 1) contain inhomogeneous terms depending on coefficient vectors for

lower order divergences. While as long as the determinant of the linear operator

OA = 2ET − b11 (6.73)

is non-vanishing, we can always find its inverse and solve for A∗
m from the inhomogeneous

linear equation.

As for the homogeneous part of the solution, it is determined by

[D + (m+ 1)1](2ET − b11)Ãm = 0. (6.74)

Because homogeneous equations for all m ∈ N are identical, we only need to solve one of

them. In order to satisfy Eq. (6.21), the following identity holds

ã1+m,1 =
bm+1

2(m+ 1)
− a∗m+1,1, (6.75)
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where a∗m+1,1 is the first coefficient of the solution vector A∗
m to the inhomogeneous equation.

Consequently, we have

ãn+m,n =
b1
2
ãn+m−1,n−1 (for n ≥ 2) (6.76)

from Eq. (6.74). The solution is therefore given by

Am = Ãm +A∗
m. (6.77)

We have formally constructed the coefficient matrix A, with n unknown coefficients if truncated

to αn. At the same time we have showed that the equation counting given by Eq. (6.25) is

correct; there are n(n− 1)/2 linearly independent equations for aij .

Next, based on the recurrence relation in Eq. (6.43), we obtain

2[D + (m+ 1)1]ETFm =

m∑
j=0

bj+1[D + (m− j)1]Fm−j . (6.78)

The linear operator for Fm is recognized as

OFm
= 2[D + (m+ 1)1]ET − b1(D +m1) = (D +m1)(2ET − b11) + 2ET . (6.79)

We can show that

det(OFm
) ̸= 0. (6.80)

Meanwhile, having established that F0 = 0 and fi1 = 0, by the same procedures used to

construct Am, we find out that Fm = 0 for all m ∈ N . Therefore f(α, ϵ) has been proved to be

zero.

Similar analysis based on Eq. (6.56) shows that

2[D + (m+ 1)1]ETZm =

m∑
j=0

{bj+1[D + (m− j)1]− γj+11}Zm−j , (6.81)

for the divergence of the mass renormalization.
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6.5 Summary of QED divergences

By working in the Landau gauge, we have demonstrated that adapting the mass-independent

renormalization scheme in Ref. [67] to dimensional regularization strongly constrains primitive

divergences in QED by expanding the bare parameters in the Taylor series expansion in the

renormalized coupling constant and the Laurent expansion in the dimensional regularization

parameter. Our result in the leading level divergence for the coupling constant in the form

of Eq. (6.27) agrees with Eq. (13) of Ref. [69]. We have derived additionally the recurrence

relations for the primitive divergences of QED in the Landau Gauge at any level of divergence

as Eqs. (6.30, 6.43, 6.56).

Naively counting the total number of independent coefficients of these three QED primitive

divergences at n-th order in perturbation theory gives 3n(n+1)/2 unknown parameters. While in

the Landau gauge, combining MSm0 with analytical requirements, the total number of indepen-

dent coefficients for primitive divergences is reduced to 2n. Specifically, because f(α, ϵ) = 0,

the fermion renormalization has no divergence.

Explicit calculation through the matrix representation shows that the leading divergent result

agrees with the result in Ref. [69] for αB , which works as both a cross-check and an indication

that the double expansion approach is equivalent to the analytical approach.

Once we know βi, γi and fi,1 for i ≥ 1, the inhomogeneous relations in Eqs. (6.21, 6.50)

and the recurrence relations in Eqs. (6.30, 6.43, 6.56) determine all coefficients associated with

divergences using the MSm0 scheme, as shown in Section 6.4. Generalization of the MSm0 to

arbitrary covariant gauge can be accomplished by introducing another expansion parameter that

is the renormalized gauge parameter. However, this is not required as going to other covariant

gauges only influences the divergence of the FB , which can be calculated through Landau-

Khalatnikov-Fradkin transform in Chapter 7 in a more elegant fashion.
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Chapter 7

The Landau-Khalatnikov-Fradkin

transformation

The relation between QED Green’s functions evaluated in different covariant gauges is speci-

fied by the Landau-Khalatnikov-Fradkin transformation (LKFT) [40,41,70,71]. Differential forms

of LKFT are also known as Nielsen identities [47,72,73]. Incorporating LKFT into the construc-

tion of vertices in scalar QED has been studied in Refs. [74, 75]. While in Ref. [76], assuming

the propagator is bare in one gauge, Fourier transforms have been used to show explicitly how

the LKFT specifies the momentum space propagator in any other gauge. The gauge depen-

dence for the momentum space fermion propagator has been recently shown calculable using

diagrammatic cancellation identities [77].

QED in 4D being renormalizable, its divergences are best captured as long known by dimen-

sional regularization [78], which have been discussed in Chapter 6. Dimensional regularization

also preserves gauge symmetry and translational invariance. Here we solve the LKFT for the

gauge covariant behavior of fermion propagator independently from the form of the Landau

gauge propagator using the spectral representation discussed in Chapter 3. We demonstrate

that continuing in the number of spacetime dimensions provides a convenient way to regularize

behaviors more singular than free-particle propagators at the real particle production thresh-

olds. Moreover keeping the number of spacetime dimensions explicit also allows simultaneous

calculation of results in 3D and 4D, both of which are of current interest. As we will see the
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LKFT for fermion propagator in 3D is simpler than that in 4D. Explicit solutions to LKFT in 3D

will be used to illustrate properties of the LKFT made in the general case. What is more the

dependence of the solutions on ϵ = 2 − d/2 provides insights into how gauge covariance of

QED in different dimensions are connected explicitly.

7.1 LKFT as group transforms

7.1.1 LKFT in differential form

To derive the LKFT for the QED fermion propagator in the momentum space, first consider

that under two gauge fixing conditions the coordinate space photon propagator changes from

Dµν(z) to D′
µν(z);

D′
µν(z) = Dµν(z) + ∂µ∂νδM(z). (7.1)

According to Zumino [70], coordinate space fermion propagators evaluated with the correspond-

ing gauge fixing conditions are related by

S′
F (x− y) = exp

{
ie2 [δM(x− y)− δM(0)]

}
SF (x− y). (7.2)

Specifically for our interest, starting from the Landau gauge to any other covariant gauge, func-

tion δM(z) becomes [76]

δM(z) = ξM(z) = −ξ
∫
dl

e−il·z

l4 + iϵ
, (7.3)

where dl denotes the d-dimensional momentum measure dl ≡ ddl/(2π)d. Substituting Eq. (7.3)

into Eq. (7.2) produces the LKFT for the covariant gauge fermion propagator in coordinate

space. In principle, taking the Fourier transform of Eq. (7.2) gives the LKFT for fermion propa-

gators in momentum space. In practice this is difficult to accomplish because of the exponential

factor in Eq. (7.2) defined byM(z) in Eq. (7.3) remaining illusive. However, it has been shown

that if the fermion propagator takes its free-particle form in the Landau gauge, the Fourier trans-

form of Eq. (7.2) can be calculated [76].

While we are interested in the scenario where the fermion propagator in the Landau gauge

is more than the free-particle propagator, to circumvent the difficulty of performing Fourier trans-

forms of implicit functions, consider taking a first order derivative with respect to ξ of Eq. (7.2).
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Noting that SF (x− y) on the right of Eq. (7.2) is in a specific gauge, we have the result,

∂

∂ξ
S′
F (x− y) = ie2[M(x− y)−M(0)]S′

F (x− y). (7.4)

Notice that the exponential factor has been absorbed into the Landau gauge propagator using

Eq. (7.2), giving rise to the S′
F (x − y) factor on the right-hand side of Eq. (7.4). Now that all

propagators in Eq. (7.4) are primed, the prime notation can be dropped. We use SF (p; ξ) to

denote the propagator in momentum space in any covariant gauge. Since there are no implicit

functions left, taking the Fourier transform of Eq. (7.4) gives

∂

∂ξ
SF (p; ξ) = ie2

∫
dl

1

l4 + iϵ
[SF (p; ξ)− SF (p− l; ξ)]. (7.5)

Eq. (7.5) is the LKFT for the momentum space fermion propagator, in differential form. Unlike

Eq. (7.2), differentiating means there is no explicit dependence on the initial condition. Eq. (7.5)

also agrees with the corresponding Nielsen identity given by Eq. (11) of Ref. [72].

However, when the propagator goes to a constant while p2 → ∞, the following rewriting

might be required

SF (p; ξ) = RF (ξ) + S̃F (p; ξ). (7.6)

Since the Fourier transform of a constant is δ-function, Eq. (7.6) indicates, in the coordinate

space,

SF (x− y; ξ) = RF (ξ)δ(x− y) + S̃F (x− y; ξ). (7.7)

Substituting it into Eq. (7.2) gives RF (ξ) = RF (0) and

S̃F (x− y; ξ) = exp
{
ie2[δM(x− y)− δM(0)]

}
S̃F (x− y; 0). (7.8)

Therefore the LKFT for the subtracted propagator is identical to Eq. (7.2). Effectively we have

confirmed that when the QED fermion propagator vanishes asymptotically, its Nielsen identity

is equivalent to its LKFT.

As with any first order differential equations, solving for the fermion propagator from Eq. (7.5)

cannot be achieved without knowing initial conditions. However, the ξ dependence of SF (p; ξ)

can be deduced independently of the propagator itself at any specific gauge. In the next two
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ρ(s; ξ)

D(p2; ξ) P (x2; ξ)
∫ ds

1
p
2
−
s
+
iε

−
1

π
Im
{} ...

...
F−1

F

Figure 7.1: Scalar particles propagators in coordinate space P (x2; ξ), momentum space
D(p2; ξ) and its spectral function ρ(s; ξ) with bijective relations among them illustrated. The
Fourier transform is bijective. For momentum space propagators with branch cuts and poles as
their singularities, the spectral representation is also bijective. Consequently there must be a
bijective relation between the coordinate space propagator and its spectral function.

subsections we expand on these properties.

7.1.2 Various representations of LKFT

Substituting the spectral representation of fermion propagator, Eq. (3.3), into Eq. (7.5) allows

the effective one-loop integral to be evaluated explicitly. However, the spectral representation

alone is not sufficient for us to solve for the dependence of fermion propagator on the gauge

parameter ξ from LKFT.

Observations about Eq. (7.2) will provide insight into a more useful mathematical aspect of

LKFT for a gauge covariant fermion propagator. Formally, Eq. (7.2) states that the LKFT for the

fermion propagator in coordinate space is simply a phase factor, which bears close resemblance

to elements of a Lie group. One can further verify that, when group multiplication is defined as

function multiplication, this phase factor satisfies closure, associativity, and the existence of

identity element and inverse elements. Therefore when considered as a linear transformation

on coordinate space functions, the LKFT is indeed a group transform for coordinate space

fermion propagators.

Fourier transforms are known to be one-to-one and onto. Since we have established in

Chapter 3 that with certain assumptions about the analytic structure of the fermion propagator,
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the spectral representation is also one-to-one and onto. These correspondences, illustrated in

Fig. 7.1, clearly indicate that, just as with the LKFT for coordinate space propagator, LKFT for

momentum space propagators and for spectral functions should both be group transforms. In

fact, the coordinate space representation, the momentum space representation and the spectral

representation of LKFT are isomorphic representations of the same group. Additionally, since

ξ parameterizes the LKFT as a continuous group, the starting gauge of LKFT does not matter;

only the difference in ξ enters in calculation. Though the default initial gauge for LKFT can be

conveniently chosen to be the Landau gauge, for calculations with the initial value of gauge

parameter that is ξ0, one simply replaces Landau gauge quantities by those at ξ0 and replaces

ξ by ξ − ξ0.

Our observation that the LKFT in its spectral representation is a group transformation en-

ables us to develop schemes for solving Eq. (7.5). As illustrated in Fig. 7.1, the correspondence

between the fermion propagator in momentum space and its spectral function is linear, as a con-

sequence of which LKFT in spectral form is also required to be linear. However, instead of a

simple phase factor, we expect the LKFT in its spectral form to involve more complicated linear

operations. Therefore, without loss of generality, we can write

ρj(s; ξ) =

∫
ds′ Kj(s, s

′; ξ) ρj(s
′; 0), (7.9)

where distributions Kj(s, s
′; ξ) work as the Green’s function for Eq. (7.5). They represent lin-

ear operations that encode ξ dependences of ρj(s; ξ) to be determined by the LKFT, and so

respect all group properties. Explicitly, denote K the set of distribution K (s, s′; ξ), with group

multiplication defined as integration over spectral variables. To verify that K is indeed a group,

for any K (s, s′; ξ) ∈ K the following properties have to be satisfied:

1. Closure
∫
ds′K (s, s′; ξ)K (s′, s′′; ξ′) is also an element of K;

2. Associativity

∫
ds′K (s, s′; ξ)

∫
ds′′K (s′, s′′; ξ′)K (s′′, s′′′; ξ′′)

=

∫
ds′′

[∫
ds′K (s, s′; ξ)K (s′, s′′; ξ′)

]
K (s′′, s′′′; ξ′′);
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3. Identity Element ∃ KI(s, s
′) ∈ K such that

∫
ds′KI(s, s

′)K (s′, s′′; ξ) =

∫
ds′K (s, s′; ξ)KI(s

′, s′′) = K (s, s′′; ξ);

4. Inverse Element ∃ Kinv(s, s
′; ξ) such that

∫
ds′ Kinv(s, s

′; ξ)K (s′, s′′; ξ) =

∫
ds′ K (s, s′; ξ)Kinv(s

′, s′′; ξ) = KI(s, s
′′).

Substituting Eqs. (3.3 ,7.9) into Eq. (7.5) gives

∂

∂ξ

∫
ds

Kj(s, s
′; ξ)

p2 − s+ iϵ
= − α

4π

∫
ds

Ξj(p
2, s)

p2 − s+ iϵ
Kj(s, s

′; ξ), (7.10)

where the Ξj(p
2, s) are determined by the effective one-loop integral, which can be evaluated

using Feynman parameterization for combining denominators, together with dimensional reg-

ularization. Apparently from Eq. (7.9), the initial condition for distributions Kj is Kj(s, s
′; 0) =

δ(s − s′). In the remaining part of this subsection, two methods for solving Eq. (7.10) will be

presented.

Method 1: analogue to first-order ordinary differential equations Operations with respect

to ξ in Eq. (7.10) are only present on the left-hand side, which resemble homogeneous first-order

ordinary differential equations. In order to solve for Kj(s, s
′; ξ), consider the original definition

of partial derivative:

∂

∂ξ
K (s, s′; ξ) ≡ lim

∆→0

K (s, s′; ξ +∆)−K (s, s′; ξ)

∆
. (7.11)

Next, applying Eq. (7.9) many times gives

ρ(s, s′; ξ +∆) =

∫
ds′′K (s, s′′;∆)ρ(s′′, s′; ξ)

=

∫
ds′′

∫
ds′′′K (s, s′′;∆)K (s′′, s′′′; ξ)ρ(s′′, s′; 0).
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Since the LKFT is independent of initial conditions,

K (s, s′; ξ +∆) =

∫
ds′′K (s, s′′;∆)K (s′′, s′; ξ). (7.12)

Eq. (7.12) should not come as a surprise given that the LKFT for the fermion propagator in a

spectral representation is isomorphic to coordinate space LKFT. Eq. (7.10) then becomes

∂

∂ξ

∫
ds

K (s, s′; ξ)

p2 − s+ iϵ

= lim
∆→0

∫
ds

∫
ds′′

K (s, s′′;∆)− δ(s− s′′)
(p2 − s+ iϵ)∆

K (s′′, s′; ξ)

= − α

4π

∫
ds

Ξ(p2, s)

p2 − s+ iϵ
K (s, s′; ξ). (7.13)

Taking the limit ξ → 0 where K (s, s′; ξ) becomes a delta-function simplifies Eq. (7.13) into

lim
∆→0

1

∆

∫
ds

K (s, s′;∆)− δ(s− s′)
p2 − s+ iϵ

= − α

4π

Ξ(p2, s′)

p2 − s′ + iϵ
. (7.14)

Eq. (7.14) specifies how the distribution K (s, s′; ξ) departs from its initial form (a delta-function)

with infinitesimal ξ. Solving Eq. (7.14) is sufficient to obtain K (s, s′; ξ) with finite ξ, which, in

principle, can be written as an infinite number of steps of distribution multiplication. Explicitly,

this procedure is

K (s, s′; ξ) = lim
N→+∞

[
N−1∏
n=0

∫
dsn+1 K

(
sn, sn+1;

ξ

N

)]
×K (sN , s

′; 0) , (7.15)

with s0 = s. Formally Eq. (7.15) gives distributions Kj(s, s
′; ξ) with finite ξ, solving LKFT for

ρj(s; ξ). In practice one may prefer a closed form for the Kj with group multiplications in a

minimal number of steps. Realizing Eq. (7.15) is the analogue of

lim
N→+∞

(
1 +

x

N

)N
= ex,

and Eq. (7.10) is very similar to d
dxf(x) = af(x), we can assume the following form forK (s, s′; ξ),

Kj = exp
(
−αξ
4π

Φj

)
, (7.16)
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where distributions Φj are independent of ξ. The exponential of a distribution is defined by

exp
{
λΦ
}
=

+∞∑
n=0

λn

n!
Φn = δ(s− s′) + λΦ+

λ2

2!
Φ2 + . . . , (7.17)

with distribution exponentiation given by

Φn(s, s′) =

∫
ds′′Φ(s, s′′)Φn−1(s′′, s′), (7.18)

for n ≥ 1. AndΦ0(s, s′) = δ(s− s′). One can check thatKj given by Eq. (7.16) satisfy Eq. (7.10)

with initial conditionsKj(s, s
′; 0) = δ(s− s′) given distributionsΦj satisfy their own identities. To

verify the exponential of distributions indeed solves Eq. (7.10) and find the identities Φj have to

satisfy, let us start with

∂

∂ξ
K =

∂

∂ξ
exp

{
− αξ

4π
Φ

}
= − α

4π
Φexp

{
− αξ

4π
Φ

}
= − α

4π
ΦK ,

then using Eq. (7.16), the left hand side of Eq. (7.10) can be written as

∂

∂ξ

1

p2 − s+ iϵ
K = − α

4π

Φ

p2 − s+ iϵ
K . (7.19)

Comparing with its right hand side, one obtains after restoring the integration variables,

∫
ds ds′

Φ(s, s′)

p2 − s+ iϵ
K (s′, s′′; ξ) =

∫
ds′

Ξ(p2, s′)

p2 − s′ + iϵ
K (s′, s′′; ξ), (7.20)

which indicates (or by multiplying K (s′′, s′′′;−ξ) to the right)

∫
ds

Φj(s, s
′)

p2 − s+ iϵ
=

Ξj(p
2, s′)

p2 − s′ + iϵ
. (7.21)

Therefore Eq. (7.10) is solved by Eq. (7.16) given Φj satisfy Eq. (7.21). One can easily identify

that distributions Φj are the generators for continuous groups defined by Kj .

Method 2: differential equations solved by multiplying inverse elements From the group

property of K = {K (s, s′; ξ)}, the inverse element of K (s, s′; ξ) is K (s, s′;−ξ). This can be

seen most easily from the isomorphic representation of LKFT in coordinate space. Or, in the
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language of distribution multiplication,

K −1(s, s′; ξ) = K (s, s′;−ξ).

Multiplying this inverse element to the right of differential equation Eq. (7.10) gives

∫
ds

∫
ds′

1

p2 − s+ iϵ

[
∂

∂ξ
K (s, s′; ξ)

]
K (s′, s′′;−ξ)

= − α

4π

∫
ds

∫
ds′

Ξ(p2, s)

p2 − s+ iϵ
K (s, s′; ξ)K (s′, s′′;−ξ), (7.22)

or equivalently,

∫
ds

1

p2 − s+ iϵ

∂

∂ξ
ln K (s, s′′; ξ) = − α

4π

∫
ds

Ξ(p2, s′′)

p2 − s′′ + iϵ
, (7.23)

where the logarithm of distributionK (s, s′′; ξ) is taken in distributional sense, hence when spec-

tral variables are omitted

ln(K ) = (K − δ)− 1

2
(K − δ)2 + 1

3
(K − δ)3 + · · · =

+∞∑
n=1

(−1)n−1

n
(K − δ)n, (7.24)

with distribution exponentiations defined by Eq. (7.18). To see that (∂ξ K )K −1 is indeed

∂ξ ln K , denote u = lnK K = eu. Then ∂ξK = (∂ξu)e
u = (∂ξu)K . Therefore

∂ξ lnK = ∂ξu = (∂ξK )K −1.

After clarifying the meaning of distribution logarithm, the null space of the spectral repre-

sentation is supposed to be empty for the function space defined as the set of functions with

analytic structures discussed in Chapter 3. Therefore Eq. (7.23) indicates that when

∂ξ ln K (s, s′′; ξ) = − α

4π
Φ(s, s′′), (7.25)

with distribution Φ satisfying Eq. (7.21), Eq. (7.5) is solved by Eq. (7.16).

Either through group operations or analogy with ordinary differential equations, we have

formally found the Green’s function specifying the ξ dependence of the fermion propagator
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spectral functions. Because there are no dimension-odd operators in the LKFT for the fermion

propagator, the Dirac vector and Dirac scalar components do not mix. The representation of

linear operations by integrating distributions with spectral functions closely resembles matrices

multiplying vectors as linear transforms.

7.2 LKFT in the spectral representation with arbitrary num-

bers of dimensions

Before applying these solutions to the LKFT in the form of Eq. (7.16) to calculate the ξ depen-

dence of the fermion propagator, we need to determine the distributions Φj from Eq. (7.21). To

do so requires explicit expressions for the functions Ξj(p
2, s).

We use standard perturbative techniques including the Feynman method for combining de-

nominators and dimensional regularization. Then substituting the spectral representation of

the fermion propagator Eq. (3.3) into the LKFT for the momentum space fermion propagator,

Eq. (7.5), and comparing the resulting equation with the definition of Ξj(p2, s) in Eq. (7.10) gives,

Ξ1(p
2, s) =

∫ 1

0

dx 2x

[
1− ϵ+ ϵ

1− xz

]
Γ(ϵ)(4πµ2/s)ϵ

[(1− x)(1− xz)]ϵ
(7.26)

Ξ2(p
2, s) =

∫ 1

0

dx 2x

[
1− ϵ+ ϵ

2

z + 1

1− xz

]
Γ(ϵ)(4πµ2/s)ϵ

[(1− x)(1− xz)]ϵ
, (7.27)

where z = p2/s and the number of spacetime dimensions d = 4−2ϵ. Meanwhile, the dimension

of e2/(4π) is carried by µ such that the coupling constant α remains dimensionless.

Results given in Eqs. (7.26, 7.27) characterize how the LKFT behaves in Minkowski space.

Using the spectral representation there is no need to make a Wick rotation to perform the loop-

type integral. This eliminates any ambiguity of which loop momentum should be integrated in

Euclidean space. We use dimensional regularization (required when close to four dimensions)

in one of two ways. We can follow Feynman and integrate the time component of the loop

momentum to infinity first. We then have spherical symmetry in the (d− 1) spatial dimensions

and use dimensional regularization only on the space components. Of course, we could instead

Wick rotate, assuming this is valid and picks up no new singularities. One then has spherical

symmetry in d dimensions and regularize à la ’t Hooft and Veltman [78]. The results are the
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same with or without Wick rotation, as discussed in Appendix B.1.

Extensive use of definitions and properties of hypergeometric functions allows us to evaluate

integrals over Feynman parameters in Eqs. (7.26, 7.27). Explicitly, we have

Ξ1

p2 − s
=

Γ(ϵ)

s

(
4πµ2

s

)ϵ −2
(1− ϵ)(2− ϵ) 2F1(ϵ+ 1, 3; 3− ϵ; z) (7.28)

Ξ2

p2 − s
=

Γ(ϵ)

s

(
4πµ2

s

)ϵ −1
1− ϵ 2F1(ϵ+ 1, 2; 2− ϵ; z). (7.29)

Since results given by Eqs. (7.29, 7.29) do not exist in the literature, their derivations are doc-

umented in Appendix B.2. Hypergeometric functions occurring in Eqs. (7.28, 7.29) are under-

stood to be given by the integral definition Eq. (15.3.1) in Abramowitz and Stegun [63]. For

ϵ > 0, this integral definition is the analytic continuation of the series definition Eq. (B.17) with a

branch cut [63] on the real axis of z from 1 to +∞, a property one would expect for corrections

to the fermion propagator. The scenario where ϵ < 0 is beyond the scope of this article.

Explicit calculation shows that in three dimensions

lim
ϵ→1/2

Ξ1(p
2, s) = 2π

√
µ2

s

{
− z + 1

(z − 1)z
+
z − 1

z3/2
arctanh(

√
z)

}
(7.30)

lim
ϵ→1/2

Ξ2(p
2, s) = − 4π

z − 1

√
µ2

s
, (7.31)

while for small ϵ, i.e. approaching four dimensions:

Ξ1(p
2, s) =

1

ϵ
− γE + ln

(
4πµ2

s

)
+ 1− 1

z
−
(
1 +

1

z2

)
ln(1− z) + O(ϵ1) (7.32)

Ξ2(p
2, s) =

1

ϵ
− γE + ln

(
4πµ2

s

)
−
(
1 +

1

z

)
ln(1− z) + O(ϵ). (7.33)

The ϵ→ 1/2 limits can be calculated using identities listed in Chapter 15 of Abramowitz and Ste-

gun [63]. While the small ϵ expansions can be calculated according to Appendix B.4. Therefore

d = 3 and 4 results have been recovered.

With loop integrals Ξj(p
2, s) calculated, the right-hand side of Eq. (7.21) is elegantly repre-

sented by Eqs. (7.28, 7.29). The remaining task is to find the corresponding distributions Φj

that solve Eq. (7.21). Since the distributions Φj are only allowed to be linear operators on the

spectral variable s, solving Eq. (7.21) is equivalent to generating convoluted p2 dependences
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embedded in hypergeometric functions from that of a free-particle propagator. For ϵ > 0, the

behavior of functions Ξj/(p
2 − s+ iε) in the limit p2 → s is more singular than the free-particle

propagator. In fact, this singularity behaves as

lim
p2→s

Ξj(p
2, s)

p2 − s+ iε
= Γ(ϵ)

(
4πµ2

s

)ϵ
4ϵ√
π
Γ(1− ϵ)Γ(1/2 + ϵ)

(
1− p2

s
− iε

)−1−2ϵ

, (7.34)

based on Eq. (15.3.6) of Ref. [63]. Therefore one can expect distributionsΦj to bemore singular

than δ-functions.

7.2.1 Exponent-preserving operations

Our task is to find out how to generate p2 dependences in hypergeometric functions given by

Eqs. (7.28, 7.29) from the free-particle propagator with only linear operations on the spectral

variable s. It appears that the variable z = p2/s is more convenient than the spectral variable

s itself. In the process of finding the distributions Φj , multiplication by s can be regarded as a

trivial linear operation. Therefore we are allowed to apply it as needed to make the remaining

operations transparent. Meanwhile, having decided to work with the variable z rather than the

dispersive variable s, we are obligated to ensure that the net effect of operations on z does not

result in any operation on p2.

Starting with the observation that the p2 dependence of a free-particle propagator can be

represented by
−s

p2 − s
=

1

1− z
= 2F1(1, b; b; z) ,

for any b. The factor −s does not matter in this scenario because it is merely a multiplication

factor. In addition, for any linear operation on the variable z, as long as the net effect does not

act as multiplication by the variable z or zλ, such transforms can be written in terms of spectral

variable s independently of p2.

To quantify this criterion, define the exponent λ for linear transforms on the variable z. Start-

ing with a simple multiplication factor zλ, this has an exponent λ, because it raises the index by

λ for every term in the series expansion of a function of z. Thus the operation zmdn/dzn has

an exponent λ = m− n.

An identity involving transformations on the variable z is called exponent-preserving if the
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exponent of the transform on the left-hand side is identical to that on the right-hand side. For

example, Eq. (15.2.2) in Ref. [63] is exponent-preserving for transformations on variable z be-

cause exponents on both sides are identical. An identity that does not preserve exponents is

called exponent-violating. Exponent-violating transforms on variable z cannot be translated into

operations on the spectral variable s only (not involving p2).

Next we need to determine the exponent-preserving linear transforms that generate any

hypergeometric function 2F1(a, b; c; z) from 2F1(1, b; b; z) = 1/(1 − z). To accomplish this,

one immediately thinks of Gauss’ relations for contiguous functions. However, they only relate

hypergeometric functions with integer differences of parameters a, b and c. Meanwhile, not all

of them are exponent-preserving. Another category of candidates is the differential relation for

hypergeometric functions. These relations Eqs. (15.2.3, 15.2.4) in Ref. [63] are promising since

they are exponent-preserving. However Eqs. (15.2.3, 15.2.4) in Ref. [63] can not be applied

without generalization because they, similar to relations for contiguous functions, only raise or

lower parameters a, b or c by integers.

7.2.2 Fractional calculus

To be able to solve LKFT in arbitrary dimensions, we need to overcome the limitation that

Eqs. (15.2.3, 15.2.4) in Ref. [63] only work for integer differences in parameters for hypergeo-

metric functions. Consequently we consider generalizing these to fractional orders of deriva-

tives. We need to find out a version of fractional derivatives that applies to these differential

relations for 2F1(a, b; c; z). To do this, it is natural to consider the Riemann-Liouville definition

of fractional calculus [79]:

Iαf(z) =
1

Γ(α)

∫ z

ζ

dz′(z − z′)α−1f(z′). (7.35)

For α > 0, the Riemann-Liouville fractional derivative is defined as

Dαf(z) =

(
d

dz

)⌈α⌉

I⌈α⌉−αf(z), (7.36)
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where ⌈α⌉ is the smallest integer larger than α, i.e. the ceiling function. Specifically for α ∈ (0, 1),

⌈α⌉ = 1 and

Dαf(z) =
1

Γ(1− α)
d

dz

∫ z

ζ

dz′(z − z′)−αf(z′). (7.37)

The lower limit ζ should be selected to reproduce Eqs. (15.2.3, 15.2.4) in Ref. [63] if the Riemann-

Liouville formulation of fractional calculus is the expected version of fractional calculus that suc-

cessfully generalizes them.

To make an informed selection of ζ, consider Eq. (B.17), the Taylor series expansion of

hypergeometric functions. For α ∈ (0, 1),

Dαzβ =
1

Γ(1− α)
d

dz

∫ z

ζ

dz′(z − z′)−α(z′)β . (7.38)

Since mixing among terms of the Taylor expansion after derivative operations is undesirable,

we choose ζ = 0 and obtain

Dαzβ =
1

Γ(1− α)
d

dz

Γ(1− α)Γ(1 + β)

Γ(2− α+ β)
z1−α+β =

Γ(1 + β)

Γ(1− α+ β)
z−α+β , (7.39)

which applies when α < 1, β > −1 and z > 0. Since directly from the definition of Pochhammer

symbol

(1− α+ β)α = Γ(1 + β)/Γ(1− α+ β),

we have

Dαzβ = (1− α+ β)αz
−α+β . (7.40)

Notice that derivatives generalized this way to fractional orders also agree with integer order

derivatives when α in Eq. (7.40) is an integer. This will be taken as the default definition of

fractional calculus in this article. Eqs. (7.35) through (7.40) are the standard formalism of the

Riemann-Liouville fractional calculus. They form the bases of our solutions to Eq. (7.21) in the

following half of this section.

Showing Eqs. (15.2.3, 15.2.4) in Ref. [63] apply to fractional orders is straightforward starting

with the application of Taylor series expansions of hypergeometric functions. Explicitly,

Dαza+α−1
2F1(a, b; c; z) = Dα

+∞∑
n=0

(a)n(b)n
(c)nn!

zn+a+α−1 =

+∞∑
n=0

(b)n
(c)nn!

(a)n(n+ a)αz
n+a−1
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Since

(a)n(n+ a)α =
Γ(a+ n)Γ(a+ n+ a)

Γ(a)Γ(n+ a)
=

Γ(a+ α)Γ(a+ n+ α)

Γ(a)Γ(a+ α)
= (a)α(a+ α)n,

we have

Dαza+α−1
2F1(a, b; c; z) =

+∞∑
n=0

(a)αz
a−1 (a+ α)n(b)n

(c)nn!
zn = (a)αz

a−1
2F1(a+ α, b; c; z). (7.41)

Therefore Eq. (15.2.3) in Ref. [63] has been generalized to accommodate fractional orders of

derivatives. Meanwhile, Eq. (7.41) is exponent-preserving as one would expect. Therefore it

is the generalization of Eq. (15.2.3) we are seeking. Similar steps can be used to prove that

Eq. (15.2.4) in Ref. [63] generalizes to fractional orders using our definition of fractional calculus

as well;

Dαzc−1
2F1(a, b; c; z) = Dα

+∞∑
n=0

(a)n(b)n
(c)nn!

zn+c−1

=

+∞∑
n=0

(a)n(b)n
(c)nn!

(n+ c− α)αzn+c−1−α =

+∞∑
n=0

(a)n(b)n
n!

Γ(c)

Γ(c+ n)

Γ(n+ c)

Γ(n+ c− α)
zn+c−1−α

=

+∞∑
n=0

(a)n(b)n
n!

Γ(c)

Γ(c− α)
Γ(c− α)

Γ(n+ c− α)
znzc−α−1 = (c− α)αzc−α−1

2F1(a, b; c− α; z), (7.42)

because the hypergeometric function 2F1(a, b; c; z) is symmetric in parameters a and b. Equipped

with Eqs. (7.41, 7.42), any hypergeometric function 2F1(a, b; c; z) can be linearly generated from

the free-particle propagator with only a finite (up to two) steps of exponent-preserving linear op-

erations. Explicitly, to generate the z dependences of 2F1(ϵ+ 1, n;n− ϵ; z) from a free particle

propagator, consider the following linear operations

Dϵzϵ 2F1(1, n;n; z) = (1)ϵ 2F1(1 + ϵ, n;n; z) (7.43)

and

Dϵzn−1
2F1(1 + ϵ, n;n; z) = (n− ϵ)ϵzn−ϵ−1

2F1(1 + ϵ, n;n− ϵ; z). (7.44)
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Therefore

2F1(1 + ϵ, n;n− ϵ; z) = Γ(n− ϵ)
Γ(n)Γ(1 + ϵ)

zϵ+1−nDϵzn−1Dϵzϵ 2F1(1, n;n; z), (7.45)

which after setting n = 2, 3 for j = 2, 1 respectively, recovers the exponent-preserving linear

transforms required to generate the hypergeometric functions in Ξj(p
2, s)/(p2 − s+ iε) from the

free-particle propagator. To see explicitly how such a linear transform on z can be written as

that on s not involving p2, refer to Appendix B.5 for an example. In addition, the exact order of

component transforms given by Eqs. (7.43, 7.44) should not matter because of the commutation

relations for the hypergeometric function 2F1(1, n;n; z)

[zϵ+1−nDϵzn−1, Dϵzϵ] 2F1(1, n;n; z) = 0. (7.46)

This commutation relation is true for 2F1(1, n;n; z) because Eqs. (7.43, 7.44) acts on parame-

ters a and c of the hypergeometric function 2F1(a, b; c; z) independently.

7.2.3 Operator Exponentials

The combination of exponent-preserving requirement and fractional calculus allows us to solve

for distributions Φj from Eq. (7.21). The solution for the fermion propagator LKFT in spectral

form is given by the exponential of distributions written formally as Eq. (7.16). Using the defini-

tion of the distribution exponential in Eq. (7.17), one can calculate Kj(s, s
′; ξ) to any order in ξ.

However, such expansions only converge well for small αξ, and it is difficult to calculate at high

orders.

The result for the distributions Kj(s, s
′; ξ) acting on an arbitrary function of spectral vari-

ables might be difficult to calculate. However, for massive fermion propagators, because their

singularities do not occur before the mass threshold, Taylor expansions of such functions about

p2 = 0 always have finite radii of convergence. Therefore for the purpose of finding the gauge

covariance condition for the fermion propagator, once we know how distributions Kj act on zβ ,

sufficiently with any β ∈ Z, we know the distribution completely.
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To start, let us consider the following identity:

1

p2 − s+ iε
= − z

p2
2F1(1, b; b; z) , (7.47)

where recall z ≡ p2/s. Because exponent-preserving operations on z do not have any net effect

on p2, we are allowed to multiply by p2 on both sides of Eq. (7.21), which then becomes

∫
ds′ Φ

z

z − 1 + iε
=
p2 Ξ(p2, s)

p2 − s+ iε
. (7.48)

We define the dimensionless operator ϕ such that at the operator level
∫
ds′Φ = ϕ. Then

ϕ
z

z − 1 + iε
=

p2 Ξ

p2 − s+ ε
. (7.49)

Next, substituting Eq. (7.47) into Eq. (7.49) and combining the result with Eqs. (7.28, 7.29) and

Eq. (7.45) gives

−ϕnz 2F1(1, n;n; z) = Γ(ϵ)

(
4πµ2

p2

)ϵ −Γ(2− ϵ)
(1− ϵ)Γ(1 + ϵ)

z2ϵ+2−nDϵzn−1Dϵzϵ−1z 2F1(1, n;n; z),

(7.50)

from which we have

ϕn = Γ(ϵ)

(
4πµ2

p2

)ϵ
Γ(1− ϵ)
Γ(1 + ϵ)

z2ϵ+2−nDϵzn−1Dϵzϵ−1. (7.51)

The distributions ϕn in Eq. (7.51) correspond to Φj with j = 1, 2 when n = 3, 2 respectively.

With the explicit form of Φj known as Eq. (7.51), we can proceed to calculate their exponen-

tials. For convenience, define the operational part of ϕn as

ϕn ≡ z2ϵ+2−nDϵzn−1Dϵzϵ−1 (7.52)

The action of ϕn on zβ can be calculated directly;

ϕnz
β = z2ϵ+2−nDϵzn−1Dϵzβ+ϵ−1 = (β)ϵz

2ϵ+2−nDϵzn+β−2

= (β)ϵ(n+ β − ϵ− 1)ϵz
β+ϵ =

Γ(n+ β − 1)Γ(β + ϵ)

Γ(n+ β − ϵ− 1)Γ(β)
zϵzβ . (7.53)
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For the purpose of finding out how distributionsKj act on zβ , we need an explicit expression

for ϕmn zβ , which can be obtained by applying Eq. (7.53) recursively,

ϕ
m
zβ =

Γ(n+ β − 1)Γ(β + ϵ)

Γ(n+ β − ϵ− 1)Γ(β)
ϕm−1zβ+ϵ

=
Γ(n+ β − 1)Γ(β + ϵ)

Γ(n+ β − ϵ− 1)Γ(β)

Γ(n+ β + ϵ− 1)Γ(β + 2ϵ)

Γ(n+ β − 1)Γ(β + ϵ)
. . .

× Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

Γ(n+ β + (m− 2)ϵ− 1)Γ(β + (m− 1)ϵ)
zβ+mϵ

= zβ+mϵ
m∏
k=1

Γ(n+ β + (k − 1)ϵ− 1)Γ(β + kϵ)

Γ(n+ β + (k − 2)ϵ− 1)Γ(β + (k − 1)ϵ)

=
Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

Γ(n+ β − ϵ− 1)Γ(β)
zβ+mϵ. (7.54)

Alternatively, the calculation is more transparent by substituting u = zϵ, λ = β/ϵ.

ϕ
m

n u
λ = uλ+m

m∏
k=1

Γ(n+ (λ+ k − 1)ϵ)Γ((λ+ k)ϵ)

Γ(n+ (λ+ k − 2)ϵ− 1)Γ((λ+ k − 1)ϵ)

=
Γ(n+ (λ+m− 1)ϵ− 1)Γ((λ+m)ϵ)

Γ(n+ (λ− 1)ϵ− 1)Γ(λϵ)
uλ+m. (7.55)

After defining

α ≡ αξ

4π

Γ(ϵ)Γ(1− ϵ)
Γ(1 + ϵ)

(
4πµ2

p2

)ϵ
, (7.56)

we obtain

Kjz
β = exp

(
−αξ
4π
ϕn

)
zβ = exp

(
−αϕn

)
zβ =

+∞∑
m=0

(−α)m

m!
ϕ
m

n z
β

=

+∞∑
m=0

(−α)m

m!

Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

Γ(n+ β − ϵ− 1)Γ(β)
zβ+mϵ, (7.57)

with n = 3, 2 for j = 1, 2 respectively. Eq. (7.57) specifies how Kn transforms one function

of the spectral variable s into another. Notice α always combines with zϵ to produce a factor

of (µ2/s)ϵ, rendering Kj exponent-preserving. Therefore the action of Kj on any function can

now be calculated as long as this function can be written as a linear combination of s−β . This

can be best understood through Mellin transforms. Effectively Eq. (7.57) tells us what the Mellin

transform of Kj is. Since a Mellin transform disentangles multiplicative convolutions, the action

of Kj on any function of spectral variable s can be reconstructed though the inverse Mellin

118



transform.

Combining the spectral representation for the fermion propagator, Eq. (3.3), with the LKFT

as a linear transform on spectral functions Eq. (7.9) produces

Sj(p
2; ξ) =

∫
ds

∫
ds′

1

p2 − s+ iε
Kj(s, s

′; ξ) ρj(s
′; 0). (7.58)

Because the group multiplication of K is associative, it does not matter which spectral integral

in Eq. (7.58) is evaluated first. Looking only at the s′ integral, once the spectral functions of

a fermion propagator at one covariant gauge is known, their counterparts at other covariant

gauge can be calculated, which explains the meaning of Eq. (7.9).

Alternatively when considering Kj acting on the free-particle propagator 1/(p2 − s + iε), it

transforms the free propagator into a function of both p2 and ξ. Directly applying Eq. (7.57)

gives

Kj
1

p2 − s+ iε
= − 1

p2

+∞∑
β=1

+∞∑
m=0

(−α)m

m!

Γ(n+ β + (m− 1)ϵ− 1)

Γ(n+ β − ϵ− 1)

Γ(β +mϵ)

Γ(β)
zβ+mϵ. (7.59)

Substituting Eq. (7.59) into Eq. (7.58) then produces

Sj(p
2; ξ) = −

∫
ds

1

p2

+∞∑
β=1

+∞∑
m=0

(−α)m

m!

Γ(n+ β + (m− 1)ϵ− 1)

Γ(n+ β − ϵ− 1)

Γ(β +mϵ)

Γ(β)
zβ+mϵρj(s; 0), (7.60)

where as always z = p2/s. Because for a given ϵ, the imaginary part of Eq. (7.60) can be

calculated, the result reveals to what linear operations Kj correspond.

Eq. (7.60) is our solution to dependence on the covariant gauge-fixing parameter ξ of the

momentum space fermion propagator. For a specific number of dimensions, the function de-

fined by Eq. (7.59) as a double series could potentially be simplified. Special cases of 3D and

4D will be discussed in the following two sections.

7.3 LKFT for the fermion propagator in 3D

When d = 3, ϵ = 1/2, the effective one-loop integral in Eq. (7.5) is finite. Without the ambiguity

caused by infinite renormalization, LKFT in 3D can be solved directly, serving as an example to
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test claims about the general properties of LKFT in Sections 7.1 and 7.2.

Starting with Eq. (7.5), after evaluating the effective loop-integral using the Feynman param-

eterization method, we obtain

∂

∂ξ

∫
ds

ρ1(s; ξ)

p2 − s+ iϵ
= αµ

∫
ds

{ √
s

(p2 − s)2
−

√
s

2p2(p2 − s)
− 1

2(p2)3/2
arctanh(

√
p2/s)

}
ρ1(s; ξ)

(7.61)

∂

∂ξ

∫
ds

ρ2(s; ξ)

p2 − s+ iϵ
= αµ

∫
ds

√
s

(p2 − s)2
ρ2(s; ξ). (7.62)

Since Eq. (7.62) appears much simpler than Eq. (7.61), let us consider its solution first.

Utilizing Eq. (7.9), the dependence of ρ2(s; ξ) on the covariant gauge parameter ξ can be

written as ρ2(s; ξ) =
∫
ds′K2(s, s

′; ξ)ρ2(s
′; 0). Since to generate (p2−s)−2 from (p2−s)−1 linearly

involves a first order derivative, the distribution K2 should be given by

K2(s, s
′; ξ) = δ

(
s−

(√
s′ + αµξ/2

)2)
, (7.63)

which corresponds to operations that shift and rescale the spectral function ρ2. It is straight-

forward to show that the distribution K2(s, s
′; ξ) satisfies its differential equation required by

Eq. (7.62). Meanwhile, it reduces to a simple δ-function when ξ = 0. Therefore Eq. (7.63) in-

deed specifies how ρ2 changes from one covariant gauge to another. Additionally, K2 given by

Eq. (7.63) satisfies group properties trivially.

While Eq. (7.61) is more complicated than Eq. (7.62), Bashir and Raya [76] have solved the

LKFT in coordinate space assuming that in the Landau gauge propagator is free. They deduced

using Fourier transforms, that under this assumption the Dirac vector part of fermion propagator

in any covariant gauge is given by Eq. (13) of Ref. [76]

S1(p
2; ξ) = B(pE ; ξ)/p

2
E

=
−1

p2E + (m+ αµξ/2)2
− αµξ

2

m+ αµξ/2

p2E [p
2
E + (m+ αµξ/2)2]

+
αµξ

2p3E
arctan

(
pE

m+ αµξ/2

)
=

1

(m+ αµξ/2)2
1

x− 1
− αµξ/2

(m+ αµξ/2)3

(
1

x− 1
− 1

x

)
− αµξ/2

(m+ αµξ/2)3
1

x
√
−x

arctan(
√
−x)

=
m

(m+ αµξ/2)
3

1

x− 1
− αµξ/2

(m+ αµξ/2)
3

1

x

[
1√
x
arctanh(

√
x)− 1

]
, (7.64)
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where pE =
√
−p2, x = p2/(m+ αµξ/2)2, and arctanh(u) = (1/2) ln[(1 + u)/(1− u)]. Mean-

while, since

arctan(
√
−x)√

−x
=

arctanh(
√
x)√

x
, (7.65)

− 1

π
Im
{ 1

x− 1 + iϵ

}
= δ(x− 1), (7.66)

and

− 1

π
Im

{
1

x+ iϵ

[
arctanh(

√
x+ iϵ)√

x+ iϵ
− 1

]}
= −θ(x− 1)

2x3/2
, (7.67)

we can take a shortcut of solving Eq. (7.61) by finding out the spectral function of Eq. (7.64) as

− 1

π
Im{S1} =

m

(m+ αµξ/2)
3 δ(x− 1) +

αµξ

(m+ αµξ/2)
3

θ(x− 1)

2x3/2
, (7.68)

with x = s/(m+αµξ/2)2. The δ-function term in Eq. (7.68) corresponds to the free-particle term

in Eq. (7.64). While the θ-function term in Eq. (7.68) comes from the inverse hyperbolic tangent

function that generates a branch cut.

Since Eq. (7.68) reduces to a δ-function when ξ = 0, it also satisfies the differential equation

Eq. (7.61). Because its Fourier transform satisfies the coordinate equivalent of Eq. (7.61). While

Eq. (7.61) specifies exactly what conditions the distribution K1(s, s
′; ξ) has to meet, K1 is given

by Eq. (7.68) with the modification that m→
√
s′. Explicitly,

K1(s, s
′; ξ) =

√
s′

√
s′ +

αµξ

2

δ

(
s−

(√
s′ +

αµξ

2

)2
)

+
αµξ

4s3/2
θ

(
s−

(√
s′ +

αµξ

2

)2
)
. (7.69)

We therefore obtain the LKFT for ρ1 in 3D with ρ1(s; ξ) =
∫
ds′K1(s, s

′; ξ)ρ1(s
′; 0). The direct

proof that Eq. (7.69) is the distribution we are seeking is lengthy. The detailed calculation is

given in Appendix B.6.1.

Compared with K2 given by Eq. (7.63), linear operations given by Eq. (7.69) are more con-

voluted. The δ-function term in Eq. (7.69) corresponds to shift and rescale operations on ρ1.

The operation brought by the θ-function term corresponds to a convolution with the spectral

function ρ1. It is trivial to show that K2 given by Eq. (7.63) meets the group properties listed

in Section 7.1. While for K1 given by Eq. (7.69), the associativity property is obvious. The
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identity element is found exactly when ξ = 0. The closure property is proved in detail in Ap-

pendix B.6.2. Once the closure property is satisfied, the inverse element of K1(s, s
′; ξ) is just

K2(s, s
′;−ξ). Therefore we have shown that the sets of functions by Kj with multiplication de-

fined for distributions are indeed continuous groups with the gauge parameter ξ working as the

group parameter. Up until now, the LKFT for the fermion propagator in 3D has been obtained

without using the general solution in the form of Eq. (7.16).

Since in the special scenario when n = 2 and ϵ = 1/2, Eq. (7.53) simplifies to

lim
ϵ→1/2

ϕ2z
β = βzβ+1/2 = z3/2

d

dz
zβ , (7.70)

where we have written the action of ϕ2 on zβ as an operator independent of β. Then ϕ2 given

by Eq. (7.51) reduces to

lim
ϵ→1/2

ϕ2 =
4πµ√
p2
z3/2

d

dz
= −2πµ d

ds1/2
, (7.71)

which, when combined with Eq. (7.16), produces

lim
ϵ→1/2

K2 = exp
(
αξµ

2

d

ds1/2

)
. (7.72)

After identifying Eq. (7.72) as the shifting operator for functions of
√
s by αξµ/2, the result

agrees with Eq. (7.63). In principle, a similar calculation can be carried out for K1 in 3D as

well. However, in practice, multiple operations are required to obtain the corresponding ϕ1, the

calculation of whose exponential is nontrivial.

Alternatively, to verify that Eq. (7.16) with Φj given by Eq. (7.51) solves LKFT in 3D, we only

need to show that the imaginary part of Eq. (7.60) corresponds to distributions Kj in Eq. (7.69)

and Eq. (7.63) in the limit ϵ→ 1/2.

In the case n = 2 and ϵ = 1/2, which leads to α = αξµ/
√
p2, because of the duplication

formula Eq. (6.1.18) in Ref. [63],

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z + 1/2),
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Gamma functions in Eq. (7.51) simplify to

Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

m!Γ(n+ β − ϵ− 1)Γ(β)
=

Γ(2β +m)

2mΓ(2β)m!
. (7.73)

Next,
+∞∑
m=0

Γ(2β +m)

2mΓ(2β)m!
(−α
√
z)m =

(
1 +

α

2

√
z

)−2β

, (7.74)

and so we have

K2
1

p2 − s+ iε
= − 1

p2

+∞∑
β=1

(
1 +

α

2

√
z

)−2β

zβ =
−1
p2

z

(1 + α
√
z)2 − z

=
1

p2 − (
√
s+ αµξ/2)2

.

(7.75)

Since when operating on the free-particle propagator produces identical results, K2 given by

Eq. (7.16) with Φ2 given by Eq. (7.51) agrees with K2 given by Eq. (7.63).

Similarly for K1, when n = 3 and ϵ = 1/2, the Gamma functions in Eq. (7.51) simplify by

firstly noting

Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

m!Γ(n+ β − ϵ− 1)Γ(β)

=
Γ(β +m/2 + 3/2)Γ(β +m/2)

Γ(β + 3/2)Γ(β)m!

=
β +m/2 + 1/2

β + 1/2

Γ(β +m/2 + 1/2)Γ(β +m/2)

Γ(β + 1/2)Γ(β)m!

=

(
1 +

m

2β + 1

)
Γ(2β +m)

2mΓ(2β)m!
. (7.76)

In addition since

+∞∑
m=0

m

2β + 1

Γ(2β +m)

2mΓ(2β)m!
(−α
√
z)m =

−β
1 + 2β

α
√
z

(
1 +

α

2

√
z

)−1−2β

and

+∞∑
β=1

−β
1 + 2β

α
√
z

(
1 +

α

2

√
z

)−1−2β

zβ =
α

2


−
√
z

(
1 +

α

2

√
z

)
(
1 +

α

2

√
z

)2

− z
+ arctanh

( √
z

1 + α
√
z/2

) ,
(7.77)
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we have

K1
1

p2 − s+ iε
= − 1

p2

+∞∑
β=1

{(
1 +

α

2

√
z

)−2β

− β

1 + 2β
α
√
z

(
1 +

α

2

√
z

)−1−2β
}
zβ

=
1

p2 − (
√
s+ αµξ/2)2

− αξµ

2p2

{ √
s+ αξµ/2

p2 − (
√
s+ αξµ/2)2

+
1√
p2
arctanh

( √
p2√

s+ αξµ/2

)}
,

(7.78)

which agrees with Eq. (7.64). Consequently it also agrees with Eq. (7.69), as seen simply by

taking the imaginary part of Eq. (7.64).

Through this analysis of the LKFT for the fermion propagator in 3D, we have established

that solutions of Kj(s, s
′; ξ) directly from their differential equations satisfy group properties

postulated in Section 7.1 and agree with the general solution obtained in Section 7.2. In Bashir

and Raya [76], LKFT for the fermion propagator is solved through Fourier transforms to and

from coordinate space assuming the propagator is the free-particle one in the Landau gauge.

Therefore Eqs. (16, 17) of Ref. [76] only apply under this assumption. However, through the

spectral representation, any propagator function can be represented as a linear combination of

free-particle propagators with different mass. Since the LKFT is also linear, results in Ref. [76]

can be generalized to accommodate any initial conditions having spectral representations them-

selves. Consequently, Eq. (7.78) holds regardless of the assumed behavior of the propagator in

the initial gauge. In our reduction of the exact solution to LKFT in any dimensions by Eq. (7.16)

and Eq. (7.51) to the special case of 3D, gauge covariance of the fermion propagator is solved

directly in Minkowski momentum space through the language of spectral representation, and

therefore is independent of the initial conditions specified in any one gauge.

7.4 LKFT for the fermion propagator in 4D

The group properties of LKFT for the fermion propagator spectral functions are maintained by

Eq. (7.16), for any positive ϵ. However when d → 4, only the leading expansions in ϵ are

required. Therefore one expects distributions Kj to become simpler than Eq. (7.59) in this

particular limit, as they did in 3D. However, to obtain the correct expansions, knowledge of

the divergent part for the fermion propagator is required. By analyzing divergences alone, the
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LKFT specifies that the fermion propagator wavefunction renormalization [71, 80] is Z2(ξ) =

Z2(0)exp [−αξ/(4πϵ)]. The same result can also be obtained by considering only the divergent

parts in Eq. (7.5). Additionally, based on Subsection 6.3.3 there is no ultraviolet divergence

for the fermion self-energy in the Landau gauge, so we can take Z2(0) = 1. After dimensional

regularization, any term atO(ϵ1) is regarded as higher order in the exponential. When Eq. (7.59)

is convergent, the LKFT for the fermion propagator in 4D is found once the proper limit of ϵ→ 0

is taken.

To proceed to evaluating Eq. (7.59) with small ϵ, consider the original definition of the Gamma

function

Γ(s) =

∫ +∞

0

dx xs−1e−x. (7.79)

After reparameterizing Gamma functions in the numerator of the double series expansion of

Eq. (7.57), we obtain

+∞∑
m=0

Γ(n+ β + (m− 1)ϵ− 1)Γ(β +mϵ)

Γ(n+ β − ϵ− 1)Γ(β)

(−αzϵ)m

m!

=

+∞∑
m=0

∫ +∞

0

dx

∫ +∞

0

dy
e−x−y

Γ(n+ β − ϵ− 1)Γ(β)
xn+β−ϵ−2yβ−1 [−(xyz)ϵα]m

m!

=

∫ +∞

0

dx

∫ +∞

0

dy
xn+β−ϵ−2yβ−1

Γ(n+ β − ϵ− 1)Γ(β)
exp [−x− y − α (xyz)

ϵ
] (7.80)

Eq. (7.80) is an alternative to Eq. (7.57). For any fermion propagator function Sj(p2) in 4D,

having established that its divergent part is merely Z2 = e−αξ/(4πϵ), it must also be the only

divergence for Knz
β for small ϵ. With the renormalization factor in mind, Knz

β is properly

renormalized once its logarithm is truncated to O(ϵ0). Furthermore, integrals over parame-

ters x and y do not modify the 1/ϵ divergences of Knz
β because the integral definition of the

Gamma function by Eq. (7.79) extends into the complex plane. Then for each integral element
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of Eq. (7.80),

ln

{
xn+β−ϵ−2yβ−1

Γ(n+ β − ϵ− 1)Γ(β)
exp[−x− y − α(xyz)ϵ]

}

= −x− y + (n+ β − ϵ− 2) lnx+ (β − 1) ln y − αξ

4π

Γ(ϵ)Γ(1− ϵ)
Γ(1 + ϵ)

(
4πµ2

p2
xyz

)ϵ
− lnΓ(n+ β − ϵ− 1)− lnΓ(β)

= −x− y + (n+ β − 2) lnx+ (β − 1) ln y − lnΓ(n+ β − 1)− lnΓ(β)

− αξ

4π

[
1

ϵ
+ γE + ln

(
4πµ2

p2
xyz

)]
+ O(ϵ1). (7.81)

After regularization,

z−βKjz
β

= exp
[
−αξ
4π

(
1

ϵ
+ γE + ln 4π + O(ϵ1)

)]
× (µ2z/p2)−αξ/(4π)

Γ(n+ β − 1)Γ(β)

∫ +∞

0

dx

∫ +∞

0

dye−x−y × xn+β−2−αξ/(4π)yβ−1−αξ/(4π)

=

Γ

(
n+ β − 1− αξ

4π

)
Γ

(
β − αξ

4π

)
Γ(n+ β − 1)Γ(β)

(
µ2z

p2

)−αξ/(4π)

× exp
[
−αξ
4π

(
1

ϵ
+ γE + ln 4π + O(ϵ1)

)]
. (7.82)

While from the series definition of hypergeometric functions, we have

+∞∑
β=1

Γ

(
n+ β − 1− αξ

4π

)
Γ

(
β − αξ

4π

)
Γ(n+ β − 1)Γ(β)

zβ

=
z

Γ(n)
Γ

(
n− αξ

4π

)
Γ

(
1− αξ

4π

) +∞∑
β=0

Γ

(
n+ β − αξ

4π

)
Γ

(
β + 1− αξ

4π

)
Γ

(
n− αξ

4π

)
Γ

(
1− αξ

4π

) Γ(n)

Γ(n+ β)

zβ

β!

=
z

Γ(n)
Γ

(
n− αξ

4π

)
Γ

(
1− αξ

4π

)
2F1

(
1− αξ

4π
, n− αξ

4π
;n; z

)
. (7.83)
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Therefore for Kj acting on the free-particle propagator, Eq. (7.59) becomes

Kj
1

p2 − s+ iε

=
−1
p2

(
µ2z

p2

)−αξ/(4π)

exp
[
−αξ
4π

(
1

ϵ
+ γE + ln 4π + O(ϵ1)

)]

×
+∞∑
β=1

Γ

(
n+ β − αξ

4π

)
Γ

(
β − αξ

4π

)
Γ(n+ β − 1)Γ(β)

zβ

=
−z

p2Γ(n)

(
µ2z

p2

)−αξ/(4π)

Γ

(
n− αξ

4π

)
Γ

(
1− αξ

4π

)
× exp

[
−αξ
4π

(
1

ϵ
+ γE + ln 4π + O(ϵ1)

)]
2F1

(
1− αξ

4π
, n− αξ

4π
;n; z

)
. (7.84)

This is our general result. In the special case when the propagator is assumed to be free in the

Landau gauge, i.e. ρj are δ-functions, Eq. (7.84) reduces to the results found by Bashir and

Raya [76] up to differences in renormalization schemes.

To generate Eq. (7.84) from the free-particle propagator, consider a positive change in ξ.

Naturally adopting the convention ν = αξ/(4π) used in Ref. [76], for instance, we have from

Eq. (7.42)

Iνz−ν 2F1(1, n;n; z) = Γ(1− ν) 2F1(1− ν, n;n; z), (7.85)

and

Iνzn−1−ν
2F1(1− ν, n; b; z) =

Γ(n− ν)
Γ(n)

zn−1
2F1(1− ν, n− ν;n; z), (7.86)

since the hypergeometric 2F1(a, b; c; z) is symmetric in parameters a and b, and where the frac-

tional differential operation in Eq. (7.42) becomes fractional integration for positive ξ. Combining

these two identities gives

zn−1Iνzn−1−νIνz−ν 2F1(1, n;n; z) =
Γ(n− ν)Γ(1− ν)

Γ(n)
2F1(1− ν, n− ν;n; z). (7.87)

After representing the free-particle propagator as a hypergeometric function using Eq. (7.47),

comparing Eq. (7.84) with Eq. (7.87) yields

Kj(ξ) =

(
µ2z

p2

)−ν

exp
{
− ν

[
1

ϵ
+ γE + ln 4π + O(ϵ1)

]}
z2−nIνzn−1−νIνz−ν−1, (7.88)
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again with n = 3, 2 for j = 1, 2. While for negative ξ, the fractional integration operators Iν are

replaced by derivative operators D|ν|. Eq. (7.88) then becomes

Kj(ξ) =

(
µ2z

p2

)|ν|

exp
{
|ν|
[
1

ϵ
+ γE + ln 4π + O(ϵ1)

]}
z2−nD|ν|zn−1+|ν|D|ν|z|ν|−1. (7.89)

One can verify that from Eqs. (7.88, 7.89), by acting on zβ , that Kj(ξ1)Kj(ξ2) = Kj(ξ1 + ξ2)

and K −1
j (ξ) = Kj(−ξ). Therefore the simplified form of LKFT for fermion propagator spectral

functions in 4D also maintains group properties explicitly.

7.5 Summary of LKFT

Working in covariant gauges we have shown here that the Landau-Khalatnikov-Fradkin trans-

formation (LKFT) defines a group of transformations parametrized by the gauge label ξ. These

transformations define how a propagator in one covariant gauge is related to that in any other.

These transformations are readily studied if we assume the propagator satisfies a spectral

reprsentation. As an explicit example we have investigated the fermion propagator in QED,

which is expected to have the analytic properties required for such a representation. The LKFT

then demands the spectral functions obey exact transformation properties to be gauge covari-

ant. These hold in any dimension d < 4, naturally involving fractional calculus. In three di-

mensions when the calculus is of integer order, we show how our results generalize those

obtained earlier in a special case by Bashir and Raya [76]. As we approach four dimensions,

the general results can be expanded in powers of ϵ = 2 − d/2. The complexity of fractional

calculus then becomes apparent. The solutions inevitably involve distributions with fractional

orders of delta-functions and theta-functions. Nevertheless, considering arbitrary (non-integer)

dimensions provides insights into how gauge covariance connects the properties of field theory

Green’s functions in different dimensions.
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Chapter 8

The gauge covariance

requirements on SDEs for the QED

propagators

Simple truncations schemes are known to violate gauge covariance. As an illustration let us

consider a purely bare fermion-boson vertex in QED. This produces a mass function in the

Landau gauge shown as the solid line in Fig. 8.1. The qualitative behavior of the QED mass

function is very like that for a light quark in QCD in the Maris-Tandy model [81]. Solving the QED

Schwinger-Dyson equation for the fermion in 4D with the same bare γµ vertex in the Feynman

gauge (for instance) changes the mass function as in Fig. 11 of Ref. [25]. The corresponding

3D results are illustrated by Fig. 3.2 of Ref. [82].

However, the gauge covariance of the fermion propagator is exactly specified by the Landau-

Khalatnikov-Fradkin transformation discussed in Chapter 7. If one applies this to the 4D fermion

mass functions shown in Fig. 2 of Ref. [84] for the Landau gauge, one obtains the behavior in two

other covariant gauges plotted here in Fig. 8.1. One sees that themass function moves between

gauges to produce what appears to be a node. This in fact ensures that any fermion condensate

is gauge independent. The corresponding 3D results are given by Fig. 3.4 of Ref. [82]. How-

ever, solving the fermion Schwinger-Dyson equation in different gauges as shown in Fig. 11 of

Ref. [25] gives mass functions that simply move up or down as the gauge changes. There is
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Figure 8.1: The dependence of the fermion propagator mass function M(p2) on ξ. The black
solid line is the parametric form of M(p2) given by Eq. (2.1) of Ref. [83] with M0 = 3 MeV,
c = 1.239 and ΛQCD = 401 MeV. The red dashed line and the blue dash-dot line correspond
to what the mass function should be when αξ = 3 and αξ = 6 respectively. The red dashed
line and the blue dash-dot line are obtained by the LKFT for the fermion propagator in 4D within
the MS renormalization scheme at the scale µ = Λ, with F (p2) = 1 and M(p2) given by the
black line as the initial conditions in the Landau gauge. Notice that gauge covariance produces
a node-like feature, in this case at p2 ≃ −0.3 GeV2. Though this example is motivated by QCD
in the choice of parameters, the calculations are from QED.

no hint of the nodal behavior required by the LKFT and seen in Fig. 8.1. This not surprisingly

indicates that a vertex as simple as γµ cannot be appropriate in both the Landau and Feynman

gauges in QED. Indeed, it may not hold in any covariant gauge.

In this chapter, the conditions that ensure the solutions of the Schwinger-Dyson equation

(SDE) for the fermion propagator are gauge covariant will be presented [44].

8.1 SDE for fermion propagator spectral functions

The SDE for the fermion propagator spectral functions can be most conveniently obtained from

Eq. (2.60). After decomposing this equation into its two Dirac components, the identity in Fig. 2.2

becomes

p2S1(p
2)−mS2(p

2) + σ1(p
2) = 1 (8.1a)

S2(p
2)−mS1 + σ2(p

2) = 0, (8.1b)
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where σj(p2) are the Dirac scalar and vector components of the loop integral. Equation (8.1) is

the bare version of Eqs. (5.5, 5.6). For the second term on the right-hand side of Fig. 2.2, recall

the Ward identity states that for QED, Z1 = Z2 [66]. Therefore the fermion propagator SF (p; ξ)

shares the same renormalization constant with the fermion-photon vertex structure defined as

SF (k)Γ
µ(k, p)SF (p), which indicates that the latter is also linear in ρj(s; ξ).

The gauge covariance of the solutions to the fermion and boson propagator Schwinger-

Dyson equations will constrain the allowed forms of the fermion-boson vertex Γµ(k, p). How-

ever the vertex in its full complexity with its 11 non-zero components is not required. Only the

projections implied by the Schwinger-Dyson equation of Figs. 1.1, 2.2, and the correspond-

ing equation for the inverse photon propagator (i.e. for the vacuum polarization) Fig. 2.3 are

constrained. Thus it is this effective vertex that is restricted.

One specific spectral construction of the vertex structure linear in ρj(s; ξ) and satisfying

the longitudinal Ward-Green-Takahashi identity is the Gauge Technique [49], which makes the

ansatz

SF (p)Γ
µ(k, p)SF (p) =

∫
dW

1

/k −W
γµ

1

/p−W
ρ(W ), (8.2)

where ρ(W ) = sign(W )[ρ1(W
2)+Wρ1(W

2)], resulting in Eq. (5.3). Transverse supplements to

theGauge Technique are required tomeet various principles of QED, including renormalizablility

[64, 65], gauge covariance [85] and transverse Ward-Green-Takahashi identities [37–39, 59].

However, from the equality Z1 = Z2 [66] we can further assume that such modifications are also

linear in ρj(s; ξ), and once known, allow us to calculate the loop integral in Fig. 2.2, resulting in a

function of p as a linear functional of ρj(s; ξ). Since this one-loop integral reduces to corrections

to the fermion propagator in perturbative calculations, such p2 dependences must be linearly

generated from the free-particle propagator, as discussed in Subsection 5.3.3. Therefore after

taking the imaginary part of Fig. 2.2, or equivalently that of Eq. (8.1), we obtain

sρ1(s; ξ)−mBρ2(s; ξ)−
1

π
Im
{
σ1(s+ iε; ξ)

}
= 0, (8.3a)

ρ2(s; ξ)−mBρ1(s; ξ)−
1

π
Im
{
σ2(s+ iε; ξ)

}
= 0. (8.3b)

The real constant term on the left-hand side disappears. After dividing Eq. (8.3a) by s, Eq. (8.3)
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can be rewritten as

∫
ds′

Ω11(s, s
′; ξ) Ω12(s, s

′; ξ)

Ω21(s, s
′; ξ) Ω22(s, s

′; ξ)


ρ1(s′; ξ)
ρ2(s

′; ξ)

+

ρ1(s; ξ)
ρ2(s; ξ)

 =

0

0

 , (8.4)

where the Ωij(s, s
′; ξ) encode all required linear operations on the spectral functions ρj(s; ξ),

which are obtained by functional derivatives similar to

Ω(s, s′) = − δ

δρ(s′)

1

π
Im
{
σ(s+ iε)

}
. (8.5)

The bare mass coupling in Eq. (8.3) is explicitly included in the off-diagonal terms of Ωij(s, s′; ξ).

When the fermion-photon vertex is given by the Gauge Technique the resulting σj is given by

Eq. (5.3). Then mB is the only coupling between equations for ρ1 and ρ2. However, when

dimension-odd operators are allowed to enter the expression for SF (k)Γµ(k, p)SF (p), they will

contribute additionally to off-diagonal elements of Ωij .

For a given ansatz for the fermion-photon vertex that ensures SF (k)Γµ(k, p)SF (p) being

linear in ρj(s; ξ), there is a corresponding Ω. It is the matrix Ω that is constrained by gauge

covariance. Regardless of the photon being quenched or not, the SDE for fermion propagator

spectral functions takes the form of Eq. (8.4). Solutions to Eq. (8.4) found in different covariant

gauges are, of course, different because the fermion propagator is not a physical observable.

However any ansatz for the fermion-photon vertex that respects Eq. (8.4) is expected to be

gauge covariant. Satisfying the Ward-Green-Takahashi identity, a consequence of gauge in-

variance, however, is not sufficient to ensure the gauge covariance of solutions to Eq. (8.4), as

we will see explicitly later on. In order to explore the conditions on the Ωij(s, s
′; ξ) that ensure

gauge covariance of solutions to Eq. (8.4), results in Chapter 7 on the LKFT for the fermion

propagator spectral function will be applied.
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8.2 Gauge covariance requirements for the propagator SDEs

8.2.1 Gauge covariance requirement for the fermion propagator SDE

For notational convenience, when two distributions are multiplied together, the integration over

the spectral variable is implied. This convention agrees with the group multiplication defined in

Subsection 7.1.2. After adopting this notation, only dependences on ξ are required to be written

explicitly. Therefore Eq. (8.4) becomes

ρ1(ξ)
ρ2(ξ)

+

Ω11(ξ) Ω12(ξ)

Ω21(ξ) Ω22(ξ)


ρ1(ξ)
ρ2(ξ)

 =

0

0

 . (8.6)

Since LKFT does not couple ρ1 with ρ2, we have the following abbreviated versions of Eq. (7.9),

ρj(ξ) = Kj(ξ)ρj(0). (8.7)

Substituting Eq. (8.7) into Eq. (8.6) gives

K1(ξ)

K2(ξ)


ρ1(0)
ρ2(0)

+

Ω11(ξ) Ω12(ξ)

Ω21(ξ) Ω22(ξ)


K1(ξ)

K2(ξ)


ρ1(0)
ρ2(0)

 =

0

0

 . (8.8)

Since obviously

(diag{K1(ξ), K2(ξ)})−1 = diag{K1(−ξ), K2(−ξ)}

with matrix inversion defined by regular matrix multiplication and distribution inversion defined

by distribution multiplication that gives a δ-function. Combining this result with Eq. (8.6) in the

Landau gauge, ρ1(0)
ρ2(0)

+

Ω11(0) Ω12(0)

Ω21(0) Ω22(0)


ρ1(0)
ρ2(0)

 =

0

0

 , (8.9)

yields

Ω11(0) Ω12(0)

Ω21(0) Ω22(0)

 =

K1(−ξ)

K2(−ξ)


Ω11(ξ) Ω12(ξ)

Ω21(ξ) Ω22(ξ)


K1(ξ)

K2(ξ)

 . (8.10)
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Since for different ansatz the Landau gauge solutions ρ(s; 0) are allowed to be different, Eq. (8.10)

is the necessary condition for solutions to the SDE for the fermion propagator to be consistent

with its LKFT.

Meanwhile, when Ω(0) is given by Eq. (8.10), Eq. (8.9) becomes Eq. (8.8), which, when

viewed as equations forK1(ξ)ρ1(0) andK2(ξ)ρ2(0), is identical to Eq. (8.6). Therefore Eq. (8.10)

is also the sufficient condition for solutions to the fermion propagator SDE to be consistent with

LKFT. Therefore solutions of the SDE for fermion propagator are consistent with LKFT if and

only if Eq. (8.10) is satisfied.

8.2.2 Gauge covariance requirement for the photon propagator SDE

After gauge fixing, the photon propagatorDµν(q) takes the form of Eq. (2.64). While the Landau

gauge photon propagator ∆µν(q) is given by Eq. (2.65). The dressing function G(q2) is deter-

mined by the SDE for the photon propagator. As illustrated in Fig. 2.3, the same vertex structure

SF (k)Γ
µ(k, p)SF (p) appears in the SDE for the photon propagator. This allows us to derive the

gauge covariance requirement on the photon propagator SDE. Meanwhile, the spectral repre-

sentation ensures the transversality of the vacuum polarization tensor through the translational

invariance of the loop momentum. To start with, the dependence of the photon propagator

Dµν(q) on the covariant gauge parameter ξ is completely specified by the ξqµqν/q4 term, as a

direct consequence of which, G(q2) of Eq. (2.64) and the transverse vacuum polarization tensor

Πµν(q2) = (gµνq2 − qµqν)Π(q2) are required to be independent of ξ.

Based on the analytic structures ofΠ(q2), the spectral representation of the photon propaga-

tor is covered in Section 3.3. The SDE for the photon propagator spectral function is discussed

in Section 5.4. Although the analytic structures of the photon propagator differ from those for

the fermion propagator, we can still proceed by keeping the external momentum dependence

explicit without introducing a spectral function for the photons. Therefore the consistency re-

quirement for the photon propagator SDE is simply given by ∂ξΠ(q2) = 0. Since the vacuum

polarization function Π(q2) is linear in the fermion propagator spectral functions. One can write

Π(q2) =

∫
dW Ωγ(q2,W ; ξ) ρ(W ; ξ) =

∫
ds (Ωγ1(q

2, s; ξ), Ωγ2(q
2, s; ξ))

ρ1(s; ξ)
ρ2(s; ξ)

 . (8.11)
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With the ξ dependence of ρj(s; ξ) given by Eq. (7.16), the ξ independence of Π(q2) specifies

Ωγj (q
2, s; ξ) =

∫
ds′ Ωγj (q

2, s′; 0) exp
[
αξ

4π
Φj(s

′, s)

]
, (8.12)

or at the operator level Ωγξ = Ωγ0e
νΦ. This is the consistency requirement between the photon

SDE and the LKFT.

8.3 The decomposition of Ω

The operator Ω can be decomposed into components from the fermion mass, and the longi-

tudinal and transverse parts of the photon propagator. Some of these contributions can be

calculated exactly. In the quenched approximation, G(q2) = 1 and the photon propagator is

known exactly. When photons are unquenched, the vacuum polarization produces a nontrivial

G(q2) in Eq. (2.64). Meanwhile, since the longitudinal part of the fermion-photon vertex is fixed

by the Ward-Green-Takahashi identity, contributions from the ξqµqν/q4 term to Ω are known

exactly regardless of either the dressing of the photon propagator or the transverse part of the

fermion-photon vertex.

While the bare mass mB contributes to off-diagonal terms of Ωij containing terms at most

linear in mB , allowing the following decomposition of Ω,

Ω = Ωm +Ωξ +Ω∆, (8.13)

where

Ωm(s, s′) =

 −mB

s
δ(s− s′)

−mBδ(s− s′)

 (8.14)

stands for the operation linear in mB that is also independent of ξ. Furthermore, denoting by

Ωξ the contribution from the longitudinal component of the photon propagator ξqµqν/q4, this

can be readily computed exactly. While Ω∆ is calculated with the ∆µν(q) term of the photon

propagator in Eq. (2.64), which remains unknown without either the photon dressing function or

the transverse part of the fermion-photon vertex.

Ωξ, being linear in ξ, vanishes in the Landau gauge. While Ω∆ depends on the gauge
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because of the transverse aspects of SF (k)Γµ(k, p)SF (p). These need not be zero in the Landau

gauge, despite this being commonly assumed.

8.3.1 Exact expressions for Ωξ

In order to calculate Ωξ in any dimensions, based on Eq. (8.5) we need to calculate the contribu-

tion to σj(p2; ξ) as functionals of ρj(s; ξ) with explicit dependence on the number of spacetime

dimensions d = 4− 2ϵ. We denote by σξj the contribution to σj from the longitudinal component

of the photon propagator. After replacing Dµν(q) by ξqµqν/q4, we have

σξ1(p
2) + /pσ

ξ
2(p

2) = ie2ξ

∫
dW

∫
dk /q

1

/k −W /q
1

q4
ρ(W )

/p−W

=
−αξ
4π

∫
dW

∫ 1

0

dy Γ(ϵ)

(
4πµ2

s

)ϵ{−ϵ(1− y)y
(1− yz)Dϵ /p+

y[3ϵ− 4 + (3− 2ϵ)y]

Dϵ /p+
W

Dϵ

}
ρ(W )

/p−W
,

(8.15)

with y being the Feynman parameter, z = p2/s and the combined denominator given by

D = (1− y)(1− yz). After applying the integral definition of hypergometric functions [63], we

have ∫ 1

0

dy
yp(1− y)q

(1− yz)a
=

Γ(p+ 1)Γ(q + 1)

Γ(p+ q + 2)
2F1(a, p+ 1; p+ q + 2; z). (8.16)

Then the loop-integral factor of Eq. (8.15) becomes

ie2
∫
dk /q

1

/k −W
/q

q4

= − α

4π
Γ(ϵ)

(
4πµ2

s

)ϵ{ −ϵ/p
(3− ϵ)(2− ϵ) 2F1(1 + ϵ, 2; 4− ϵ; z) +

(3ϵ− 4)/p

(2− ϵ)(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z)

+
2(3− 2ϵ)/p

(3− ϵ)(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 4− ϵ; z) +
W

1− ϵ 2F1(ϵ, 1; 2; z)

}
. (8.17)

Since σξj are properly formulated Feynman diagrams corresponding to loop-corrections to the

fermion propagator where the ρj(s; ξ) are given by δ-functions, one expects that linear combi-

nations of hypergeometric functions in Eq. (8.17) are finite (at least in 4D) when z → 1 such that

there are contributions to fermion propagator functions no more singular than those of a free

particle.
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After numerous applications of contiguous relations for hypergeometric functions 2F1(a, b; c; z),

Eq. (8.15) becomes

σξ1(p
2) =

αξ

4π

∫
ds

(
4πµ2

s

)ϵ
Γ(ϵ)

1− ϵ 2F1(ϵ, 2; 2− ϵ; z) ρ1(s), (8.18a)

σξ2(p
2) =

αξ

4π

∫
ds

(
4πµ2

s

)ϵ
ϵΓ(ϵ)

(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z)1
s
ρ2(s). (8.18b)

Details of the intermediate steps can be found in Appendix C.1.

Next, since Ωξ is only linear in ξ, we define Θ as

Θ = −ν−1Ωξ , (8.19)

(recalling ν ≡ αξ/4π) such that the distribution Θ is independent of ξ. Apparently only diagonal

elements of Θij survive, therefore

− νΘ11(s, s
′; ξ) = −1

s

δ

δρ1(s′; ξ)

1

π
Im
{
σξ1(s+ iε; ξ)

}
. (8.20a)

− νΘ22(s, s
′; ξ) = − δ

δρ2(s′; ξ)

1

π
Im
{
σξ2(s+ iε; ξ)

}
. (8.20b)

Let us define at the operator level
∫
dsΘ = diag

{
θ1, θ2

}
. Since

1

p2 − s+ iε
= − 1

p2

+∞∑
β=1

zβ ,

Equations (8.18, 8.20) imply

−νθ1
1

p2 − s+ iε
= νΓ(ϵ)

(
4πµ2

p2

)ϵ
1

p2
1

1− ϵ

+∞∑
β=1

(ϵ)β−1(2)β−1

(2− ϵ)β−1(β − 1)!
zβ+ϵ (8.21a)

−νθ2
1

p2 − s+ iε
= νΓ(ϵ)

(
4πµ2

p2

)ϵ
1

p2
ϵ

(2− ϵ)(1− ϵ)

+∞∑
β=1

(ϵ+ 1)β−1(2)β−1

(3− ϵ)β−1(β − 1)!
zβ+ϵ. (8.21b)

Therefore we have the following identities for θj ,

θ1z
β =

(
4πµ2

p2

)ϵ
Γ(1− ϵ)Γ(β + ϵ− 1)β

Γ(1 + β − ϵ)
zβ+ϵ, (8.22a)

θ2z
β =

(
4πµ2

p2

)ϵ
Γ(1− ϵ)Γ(β + ϵ)β

Γ(2 + β − ϵ)
zβ+ϵ, (8.22b)
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which completely specify Θ, and consequently Ωξ.

8.3.2 Consistency requirement as recurrence relations

Based on previous analysis, for a given ansatz for the fermion-photon vertex that ensures the

vertex structure SF (k)Γµ(k, p)SF (p) being linear in ρ(W ), the corresponding distributions Ωij

can be calculated. Such an ansatz is consistent with LKFT if and only if Eq. (8.10) is satisfied.

Independent of any ansatz, two terms Ωm and Ωξ are now known exactly.

In this subsection we explore how Eq. (8.10) is satisfied incorporating Ω∆, i.e. with Ωm and

Ωξ explicitly included. Straightforwardly, one could substitute Eq. (8.13) with known components

into the consistency requirement Eq. (8.10), and obtain

Ω∆ = e−νΦ(Ωm +Ω∆
0 )e

νΦ − Ωm + νΦ, (8.23)

as the consistency requirement on Ω∆. Alternatively, with LKFT for fermion propagator spectral

functions given by Eq. (7.16), we have

Ωξ = e−νΦΩ0e
νΦ, (8.24)

where the subscript of Ωξ highlights the ξ dependent Ω in Eq. (8.13), therefore Ω0 = lim
ξ→0

Ωξ.

To see how infinitesimal changes in ξ affect Ω∆, consider taking the derivative with respect to ν

(effectively ξ) of Eq. (8.24),

∂νΩξ = −Φe−νΦΩ0e
νΦ + e−νΦΩ0e

νΦΦ = [Ωξ,Φ].

Substituting in Eq. (8.13) and Eq. (8.19) produces

∂νΩ
∆ + [Φ,Ω∆] = −[Φ,Ωm] + Θ + ν[Φ,Θ]. (8.25)

In order to recover the corresponding terms using the spectral representation for the fermion

propagator, one calculates

∫
ds ds′

1

p2 − s+ iε
Ω(s, s′) ρ(s′). (8.26)
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Since the zβ expansion is in fact the p2/s expansion of the free-particle propagator, commu-

tators of operations on zβ should be calculated with zβ to the left. There exists an alternative

convention to Eq. (8.26) that locates the free-particle propagator to the right of the operation,

which subsequently modifies Eq. (8.10). The net effect of adopting the alternative convention

to solutions of Eq. (8.25) is, however, zero compared with the convention given by Eq. (8.26)

because deriving Eq. (8.10) using the alternative convention for the location of free-particle

propagator leads to exchanging K ξ
j with K −ξ

j .

Within this convention of locations, the right-hand side of Eq. (8.25), operating on zβ can be

calculated according to Eqs. (C.15, C.16).

Since physicalΩ∆ are generated by loop-corrections to the fermion propagator, the following

criteria apply:

• while the dependence ofΩ∆ on ν = αξ/(4π) is allowed to be any order, Ω∆ cannot depend

on the bare coupling alone because of the renormalizability of fermion propagator SDE,

the bare and renormalized forms of αξ being identical.

• for diagonal elements of Ω∆, a trivial solution exists with Ω∆ = νΘ = −Ωξ. However, in

this case there is no correction to the free-particle propagator.

More generally, we define

Ω∆ =

 Ω∆
11 −mB

p2
Ω∆

12

−mBΩ
∆
21 Ω∆

22

 (8.27)

such that Ω∆
ij correspond to dimensionless transforms. In addition, from Eq. (7.16), one can

easily verify ∂νKξ +ΦKξ = 0. The similarity of Eq. (8.25) to this differential equation for Kξ

indicates the following expansions for Ω∆
ij ,

Ω∆
ij z

β =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)mϵ
ωij(β,m) zβ+mϵ for (ij) ̸= (12), (8.28a)

Ω∆
12 z

β =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)mϵ
ω12(β,m) zβ+mϵ+1. (8.28b)

where the expansion coefficients ωij(β,m) are allowed to implicitly depend on ϵ. The ‘12’

component of Ω∆ is expanded differently from other components to ensure that Ω∆ given by

Eq. (8.27) translates into operations solely on the spectral variables.
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With Eq. (8.28), the left-hand side of Eq. (8.25) can be calculated according to Eq. (C.17).

Then recurrence relations for ωij(β,m) are obtained by the comparison of O(νm) terms in

Eq. (8.25). As a result, we have

− ω11(β,m+ 1) + Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
ω11(β + ϵ,m)

− ω11(β,m)
Γ(2 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β +mϵ)

}

=



Γ(1− ϵ)Γ(β + ϵ− 1)Γ(β + 1)

Γ(1 + β − ϵ)Γ(β)
for m = 0,

−Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
β + 1

β + 2ϵ
− 1 + β + ϵ

β + 1

)
Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 2)Γ(β)
for m = 1,

0 for m ≥ 2.

(8.29a)

− ω12(β,m+ 1) + Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
ω12(β + ϵ,m)

− ω12(β,m)
Γ(2 + β +mϵ)Γ(β + 1 + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β + 1 +mϵ)

}

=


Γ(1− ϵ) Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β + 1)
for m = 0,

0 for m ≥ 1.

(8.29b)

− ω21(β,m+ 1) + Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(1 + β)Γ(β + ϵ)

Γ(1 + β − ϵ)Γ(β)
ω21(β + ϵ,m)

− ω21(β,m)
Γ(2 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β +mϵ)

}

=


Γ(1− ϵ)Γ(1 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
for m = 0,

0 for m ≥ 1.

(8.29c)

140



− ω22(β,m+ 1) + Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(1 + β)Γ(β + ϵ)

Γ(1 + β − ϵ)Γ(β)
ω22(β + ϵ,m)

− ω22(β,m)
Γ(1 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(1 + β + (m− 1)ϵ)Γ(β +mϵ)

}

=



Γ(1− ϵ)Γ(β + ϵ)Γ(β + 1)

Γ(2 + β − ϵ)Γ(β)
for m = 0,

−Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
1

β + 1
− 1

1 + β − ϵ

)
Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 1)Γ(β)
for m = 1,

0 for m ≥ 2.

(8.29d)

These recurrence relations specify how gauge covariance is satisfied when distributions Ω∆
ij are

expanded as Taylor series in ν = αξ/4π written in Eq. (8.28). On one hand, when the Ω∆
ij are

only known in the Landau gauge, Eq. (8.29) can be used to calculate Ω∆
ij in any other covariant

gauge. On the other hand, when an ansatz for SF (k)Γµ(k, p)SF (p) is known, the operations of

Ω∆
ij on zβ can be calculated. Eq. (8.29) then works to verify if this ansatz ensures that solutions

to fermion propagator SDE are consistent with LKFT.

8.3.3 Example: The Gauge Technique in the quenched approximation in

4D

In the quenched approximation with the Gauge Technique ansatz for SF (k)Γµ(k, p)SF (p) [49],

based on Eqs. (5.24, 5.25) we deduce the Ωij to be

Ω11(s, s
′; ξ) = −3α

4π

{(
1

ϵ
− γE + ln 4π +

4

3
+ ln µ

2

s

)
δ(s− s′)

− s′

s2
θ(s− s′)

}
− αξ

4π

1

s
θ(s− s′),

Ω12(s, s
′; ξ) = −mB

s
δ(s− s′),

Ω21(s, s
′; ξ) = −mBδ(s− s′),

Ω22(s, s
′; ξ) = −3α

4π

{(
1

ϵ
− γE + ln 4π +

4

3
+ ln µ

2

s

)
× δ(s− s′)

− 1

s
θ(s− s′)

}
− αξ

4π

s′

s2
θ(s− s′), (8.30)
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wheremB is the bare mass and d = 4− 2ϵ. Equivalently written as operators on z, Ωij become

Ω11(ξ) = −
3α

4π

[
C̃ + ln(z)− z−1I

]
− αξ

4π
Iz−1,

Ω12 = −mB

p2
z,

Ω21 = −mB ,

Ω22(ξ) = −
3α

4π

[
C̃ + ln(z)− Iz−1

]
− αξ

4π
z−1I, (8.31)

where C̃ = 1/ϵ− γE + ln(4πµ2/p2) + 4/3.

Meanwhile, since in 4D the LKFT for the fermion propagator reduces to Eq. (7.88), we have,

zβK1(ξ) =

(
µ2

p2

)−ν

exp
{
− ν

[
1

ϵ
+ γE + ln(4π)

]}
Γ(β − ν)Γ(2 + β − ν)

Γ(β)Γ(2 + β)
zβ−ν , (8.32a)

zβK2(ξ) =

(
µ2

p2

)−ν

exp
{
− ν

[
1

ϵ
+ γE + ln(4π)

]}
Γ(β − ν)Γ(1 + β − ν)

Γ(β)Γ(1 + β)
zβ−ν . (8.32b)

For the consistency requirement, it is more convenient to write Eq. (8.10) as

Ω11(ξ) Ω12(ξ)

Ω21(ξ) Ω22(ξ)

 =

K1(ξ)Ω11(0)K1(−ξ) K1(ξ)Ω12(0)K2(−ξ)

K2(ξ)Ω21(0)K1(−ξ) K2(ξ)Ω22(0)K2(−ξ)

 . (8.33)

With the assistance of the following four identities for fractional calculus,

Iαzβ =
Γ(β + 1)

Γ(α+ β + 1)
zα+β , (8.34a)

Dαzβ =
Γ(β + 1)

Γ(−α+ β + 1)
z−α+β , (8.34b)

Iαzβ ln(z) = Γ(β + 1)

Γ(α+ β + 1)

{
ψ(β + 1)− ψ(α+ β + 1) + ln(z)

}
zα+β , (8.34c)

Dαzβ ln(z) = Γ(β + 1)

Γ(−α+ β + 1)

{
ψ(β + 1)− ψ(−α+ β + 1) + ln(z)

}
z−α+β , (8.34d)

where ψ(β) is the digamma function, one then obtains

zβK1(ξ)Ω11(0)K1(−ξ)

= −3α

4π

{
C̃ − 1

β − ν + 1
+ ψ(β)− ψ(β − ν) + ψ(β + 2)− ψ(β + 2− ν) + ln z

}
zβ , (8.35a)
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zβK1(ξ)Ω12(0)K2(−ξ) = −
mB

p2
β

β − ν
zβ+1, (8.35b)

zβK2(ξ)Ω21(0)K1(−ξ) = −mB
β + 1

β + 1− ν
zβ , (8.35c)

zβK2(ξ)Ω22(0)K2(−ξ)

= −3α

4π

{
C̃ − 1

β − ν
+ ψ(β)− ψ(β − ν) + ψ(β + 1)− ψ(β + 1− ν) + ln z

}
zβ . (8.35d)

While from Eq. (8.31), we have

zβΩ11(ξ) =

{
− 3α

4π

[
C̃ − 1

β + 1
+ ln z

]
− ν

β

}
zβ , (8.36a)

zβΩ12(ξ) = −
mB

p2
zβ+1, (8.36b)

zβΩ21(ξ) = −mBz
β , (8.36c)

zβΩ22(ξ) =

{
− 3α

4π

[
C̃ − 1

β
+ ln z

]
− ν

β + 1

}
zβ (8.36d)

Observe that the digamma functions only occur in Eq. (8.35), not in Eq. (8.36). Additionally,

the dependence on ν is only linear in Eq. (8.36), but not in Eq. (8.35). Therefore the consis-

tency requirement given by Eq. (8.33) is not satisfied by the Gauge Technique in 4D. The same

conclusion has been realized by Delbourgo, Keck and Parker [86] in a completely different ap-

proach.

8.4 Summary of gauge covariance requirements

In this chapter we have formulated the fermion propagator SDE in terms of propagator spec-

tral functions. With the fermion-photon vertex structure SF (k)Γµ(k, p)SF (p) being linear in the

ρj(s; ξ) as implied by the equality of renormalization factors Z1 = Z2, we have derived the

necessary and sufficient condition for the solutions of the fermion propagator SDE to be con-

sistent with LKFT in covariant gauges. With known contributions to the fermion propagator

SDE calculated, this reduces the consistency requirement to that for the contribution to Ω in

Eq. (8.4) from the Landau gauge photon propagator. Next, an expansion of the operator Ω∆
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(defined in Eq.(8.13)), similar to that of Kj in Eq. (7.57), has been postulated in Eq. (8.28). The

consistency requirements can then be converted into the form of recurrence relations of this

expansion, shown in Eq. (8.29). The requirement on SF (k)Γµ(k, p)SF (p) to ensure the gauge

invariance of Π(q2) was also derived.

We observe that the Gauge Technique [49–52] does not ensure gauge covariance for the

fermion propagator in QED. In fact, when fermions are massive, dimension-odd operators are

required in SF (k)Γµ(k, p)SF (p) to ensure gauge covariance. Our formalism for the SDEs using

a spectral representation allows propagators to be solved in Minkowski space, one attemp of

which has been made in Chapter 5. Furthermore, our consistency requirements can be used

as criteria for truncating the SDEs for QED propagators.

Importantly, our calculations have been performed in arbitary dimensions. Keeping ϵ =

2 − d/2 explicit to the end turns out to give concise and meaningful results in the case of the

σξj in Eq. (8.15), the fermion Schwinger-Dyson equation, as well as the LKFT for the fermion

propagator. Results are concise in the sense that one hypergeometric function describes the p2

dependence for each Dirac component of every loop integral. Meaningful in the sense that the

results apply to any number of spacetime dimensions as long as hypergeometric functions con-

verge. Based on these two merits, one might suspect that dimensional regularization evaluated

by keeping ϵ explicit to the last step is intrinsic to QED itself.

This work marks a path towards ensuring consistent truncations of the Schwinger-Dyson

equations for the fermion and boson propagators yield gauge covariant fermion mass functions

like that in Fig. 8.1: an essential requirement for validating any truncation scheme used.
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Chapter 9

Conclusions and outlook

We started with the path integral formulation and deduced the SDEs for the generating func-

tionals. We have seen that SDEs for Green’s functions are recurrence relations for the Taylor

series expansions of the generating functional. Unlike recurrence relations for the expansions

of a function, solving such recurrence relations for a functional requires a truncation scheme.

Insights into the proper truncations of SDEs for the propagators are expected from the WGTIs.

However other than the longitudinal one, these identities do not form a closed system because

they relate the QED vertices not only to the fermion propagator, but also to other unknowns.

Alternatively, we have seen that the analytic structures of the propagators promote the spectral

representations. Combined with the longitudinal WGTI, this representation results in the Gauge

Technique. Although the Gauge Technique ansatz violates renormalizability, it maintains the an-

alytic structures of the propagators. Furthermore, the spectral representation allows us to solve

the LKFT and the SDEs in Minkowski space. Based on these solutions, the requirements to

maintain gauge covariance for any truncation scheme have been derived. The next step would

be to construct an ansatz that respects these gauge covariance requirements. At the same

time, this anzatz also needs to preserve the analytic structures of the propagators.

The divergences of a renormalizable theory like QED observe their own patterns. With di-

mensional regularization and a mass-independent scheme, these patterns are given explicitly

as recurrence relations. Multiplicative renormalizability of QED is preserved once these recur-

rence relations are satisfied by the truncation of SDEs. This renormalizability constraint and the

gauge covariance requirements supplement each other. Hopefully the truncation scheme that
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satisfies both conditions represents closely to the true vertex projected onto the SDEs for the

propagators. The equivalence of SDEs for the generating functional to all-order perturbation

theory may provide further insight into the proper truncation of SDEs for the Green’s functions.

The analytic structures of QCD propagators form another interesting topic. Because of con-

finement, quark and gluon propagators are not allowed to contain free-particle poles in the

timelike region. Therefore their spectral functions, if they exist, are not allowed to have delta-

function components. It is likely that the analytic structures of the QCD propagators are limited

to branch-cuts in the timelike region only. However, the exact mechanism responsible for such

structures requires better understandings of the quark-gluon interaction, the gauge fixing and

the self-coupling of gluons. Exploring this topic is also likely to involve the renormalization of

QCD.

After solving the SDEs for QCD propagators, the phenomenology of QCD bound states is

then given by the Bethe-Salpeter equations and the Faddeev equations. Formulating SDEs in

the Minkowski space may suggest that Bethe-Salpeter and Faddeev equations are also better

understood in Minkowski space. However, the multivariable nature of these two types of equa-

tions complicates the spectral representations of their solutions. One promising candidate is

the Nakanishi representation for the Bethe-Salpeter amplitude [54]. With the Nakanishi repre-

sentation, the formulations and solutions of the Bethe-Salpeter equations in Minkowski space

can be found in Refs. [29,87–89].
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Appendix A

Mathematical Methods

A.1 The spectral representation of complex functions

A.1.1 Uniqueness of the spectral representation

When solving for D(p2) from its SDE using the spectral representation of Green’s functions, we

are motivated to understand the mathematical properties of Källén-Lehmann spectral represen-

tation given by Eq. (3.1). Specifically,

• how does spectral function ρ(s) uniquely determine its propagator function in theMinkowski

space of p2, or p2 ∈ {z|z = x± iϵ, x ∈ R, ϵ ≥ 0};

• how to extract spectral function ρ(s) when D(p2) is known.

Before moving to calculations, there are some assumptions to be made on propagator func-

tion D(p2). First, consider the dimensionless function f(z) = µDD(p2/µ2), with an arbitrary

scale µ and D being the dimension of propagator function D. Since the word “analytic” has

been abused in the literature, a more rigorous description on properties of f(z) is required.

Here are several assumptions on f(z):

• The function f(z) is defined on the complex plane with at most a branch cut and at a finite

number of poles.

• The function f(z) has a branch cut on the non-negative real axis.
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• The function f(z) is real on the real axis except for the branch cut and at most a finite

number of poles.

• The conjugation of the argument of f(z) is equivalent of the complex conjugation of f(z)

itself: f(z∗) = f(z).

• f(z) is holomorphic within the domain of its definition.

The branch cuts and poles correspond to the production of real particles within quantum loop

corrections of the propagator. The conjugation property and the holomoerphic requirement

allow us to determine f(z), up to a real constant, once the imaginary part of f(z) along the

branch cut is known.

Recall the decomposition of a complex function

f(x+ iy) = u(x, y) + iv(x, y).

When f(z) is holomorphic on some domain z ∈ D, the following Cauchy-Riemann equation

applies { ∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x

, (A.1)

or written in polar coordinates ρeiϕ = x+ iy, ρ ∈ [0,+∞), ϕ ∈ [0, 2π],

{
ρ
∂

∂ρ
u =

∂

∂ϕ
v

∂

∂ϕ
u = −ρ ∂

∂ρ
v
. (A.2)

Because of Cauchy-Riemann equation, both u and v satisfy two-dimensional Laplace equations

∇2u = 0, ∇v2 = 0. (A.3)

A.1.2 Example: eigenfunction expansion of the spectral representation

If the only known of f(z) is the imaginary part of itself close to the branch cut, how should we

proceed to solve for f(z) in its holomorphic domain D? The answer is given by the boundary
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value problems of Laplace equations. Since f(z∗) = f(z), we know

lim
ϕ→0

v(ρ, ϕ) = − lim
ϕ→2π

v(ρ, ϕ). (A.4)

Meanwhile, we need the knowledge of the asymptotic behavior of v when ρ → +∞. For sim-

plicity, consider lim
ρ→+∞

v(ρ, ϕ) = 0.

Notice boundary conditions at the branch cut are inhomogeneous, in order to solve for v(ρ, ϕ)

that satisfies its Laplace equation

∇2v =
1

ρ
∂ρρ∂ρv(ρ, ϕ) +

1

ρ2
∂2ϕv(ρ, ϕ) = 0, (A.5)

we need to find out a specific solution V (ρ, ϕ) that satisfies the Laplace equation with the bound-

ary condition given by Eq. (A.4) and combine it with a solution to the Laplace equation with

homogeneous boundary conditions. The inclusion of the homogeneous solution is to provide

extra free parameters to match at boundaries when the domain D of f(z) is naturally separated

into subsets.

Using the standard technique of variable separation, the homogeneous solution of the Laplace

equation is

v{a,b}(ρ, ϕ) =

+∞∑
n=1

(
anρ

n +
bn
ρn

)
sin(nϕ). (A.6)

We cannot proceed without the specific knowledge of v(ρ, ϕ) in the vicinity of the branch cut.

Therefore, consider a simple example where v(ρ, 0) = πθ(ρ− 1) with θ(x) being the Heaviside

step function. We know this corresponds to a polylogarithm function f(z) = − ln(1− z). In this

example, domain D is naturally separated into ρ < 1 and ρ ≥ 1 subsets.

Consider ρ ≥ 1, the specific solution V (ρ, ϕ) can be easily found because dependences on

ρ and ϕ variables naturally separate;

V (ρ, ϕ) = R(ρ)Φ(ϕ). (A.7)

When such separation does not happen, the expansion of R(ρ) in terms of eigenfunctions of

the differential equation

ρ
d

dρ
ρ
d

dρ
R(ρ) + λR(ρ) = 0
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is required.

Assuming R(ρ) = π, from the Laplace equation we obtain

1

R(ρ)
ρ
d

dρ
ρ
d

dρ
R(ρ) +

1

Φ(ϕ)

d2

dϕ2
Φ(ϕ) = 0, (A.8)

which indicates

Φ(ϕ) = aϕ+ b. (A.9)

Parameters a and b are determined by boundary conditions for Φ: Φ(0) = 1, Φ(2π) = −1.

Therefore when ρ ≥ 1,

V (ρ, ϕ) = 1− ϕ/π. (A.10)

Next, homogeneous solutions are added on;

v(ρ, ϕ) =

{
π − ϕ+

∑+∞
n=1

bn
ρn

sin(nϕ) (ρ ≥ 1)∑+∞
n=1 anρ

n sin(nϕ) (0 ≤ ρ < 0)

. (A.11)

To match boundary conditions at ρ = 1, we need the following Fourier expansion

π − ϕ =

+∞∑
n=1

2

n
sin(nϕ) (ϕ ∈ [0, 2π]). (A.12)

Therefore

v(ρ, ϕ) =

{ ∑+∞
n=1

(
2

n
+
bn
ρn

)
sin(nϕ) (ρ ≥ 1)∑+∞

n=1 anρ
n sin(nϕ) (0 ≤ ρ < 0)

. (A.13)

From

lim
ρ→1+

v = lim
ρ→1−

v (A.14)

lim
ρ→1+

ρ∂ρv = lim
ρ→1−

ρ∂ρv, (A.15)

we get

2/n+ bn = an an + bn = 0, (A.16)

or an = −bn = 1/n.

150



Then, the corresponding solution of u(ρ, ϕ) is needed. First, consider the corresponding

un(ρ, ϕ) of

vn(ρ, ϕ) =

{ bn
ρn

sin(nϕ) (ρ ≥ 1)

anρ
n sin(nϕ) (0 ≤ ρ < 1)

. (A.17)

From one of the Cauchy-Riemann equations ρ∂ρun = ∂ϕvn, we have

un(ρ, ϕ) =

{
− bn
ρn

cos(nϕ) + g(ϕ) (ρ ≥ 1)

anρ
n cos(nϕ) + h(ϕ) (0 ≤ ρ < 1)

. (A.18)

And from the other Cauchy-Rieman equation ∂ϕu = −ρ∂ρv we obtain

d

dϕ
g(ϕ) = 0,

d

dϕ
h(ϕ) = 0, (A.19)

or g(ϕ) = g̃, h(ϕ) = h̃, where g̃ and h̃ are real numbers.

Similarly using Cauchy-Riemann equations, the corresponding real part function to the in-

homogeneous solution V (ρ, ϕ) is

U(ρ, ϕ) = − ln ρ+ k̃, (A.20)

with k̃ ∈ R. Finally, using
+∞∑
n=1

xn

n
= − ln(1− x)

to sum up homogeneous terms, we have

f(ρ, ϕ) = u(ρ, ϕ) + iv(ρ, ϕ) =

{
− ln ρ+ i(π − ϕ)− ln

(
1− 1

ρeiϕ

)
+ k̃ + g̃ (ρ ≥ 1)

− ln(1− ρeiϕ) + h̃ (0 ≤ ρ < 1)

.

(A.21)

After applying the default branch cut for logarithm and taking the continues requirement at ρ = 1,

we obtain

f(z) = − ln(1− z) + h̃. (A.22)

In summary, we have shown that the imaginary part of function f(z) at ϕ = 0+ given by πθ(ρ−1)

specifies a function f(z) = − ln(1− z) + h̃ based on assumptions of f(z) made in Chapter 3.
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Figure A.1: The comparison of two functions defined in Eq. (A.23). They are identical for z < 1
(z ∈ R), but different else where on the complex plane.

A.2 The Mellin transform and its relation to the analytic con-

tinuation

Consider the propagator function of a scalar field, its spectral representation is given by Eq. (3.1).

For massive particles, their spectral functions contain δ-function terms as the on-shell compo-

nents and θ-function terms corresponding to real-particle productions through quantum loop

corrections.

For the propagator function with simple poles and branch cuts in the timelike region as

its singularities, there exists a unique ρ(s) given by Eq. (3.2). In this scenario, the spectral

representation is bijective.

In general, knowing the propagator D(p2) only in the spacelike region (p2 < 0) is insufficient

to uniquely determine ρ(s) because there are infinite ways to perform analytic continuations.
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One simple example is given by

f1(z) =
1

z
ln(1− z), f2(z) =

1

2z
ln
[
(1− z)2

]
, (A.23)

illustrated in Fig. A.1. Functions f1(z) and f2(z) are identical in the Euclidean space (z < 0

and real), but different else where on the complex plane. However, when singularities of D(p2)

are only allowed to exist in the timelike region and nowhere else, spectral functions ρ(s) can be

constructed with the assistance of Mellin transform.

First, consider the Mellin transform of the free-particle propagator. After defining ζ = −p2 =

p2E , we then have

∫ +∞

0

dζ
ζβ−1

−ζ − s+ iε
= −πsβ−1 csc(πβ), Re{β} ∈ (0, 1). (A.24)

The inverse transform is given by

D(−ζ) = −1
2πis

∫ c+i∞

c−i∞
dβ ζ−βsβπ csc(πβ), c ∈ (0, 1). (A.25)

When |ζ| < 1, ζ−β = exp(−β ln ζ)→ 0 when Re{β} → −∞. Therefore, D(−ζ) is obtained with

contributions from residuals of −β ∈ Z poles. In this case we have

D(−ζ) = −1
s

+∞∑
n=0

(−ζ/s)n =
1

−ζ − s
. (A.26)

When |ζ| > 1, ζ−β = exp(−β ln ζ) → 0 when Re{β} → +∞. Notice in this case the contour

direction is clockwise, resulting in an extra minus sign. Therefore we have

D(−ζ) = 1

s

+∞∑
n=1

(−s/ζ)n =
1

−ζ − s
. (A.27)

We have seen that the Mellin transform successfully reconstructed the free-particle propagator

by only sampling the spacelike region. This is done correctly by using the variable ζ = −p2

such that during the inverse transform, singularities are allowed to occur in the timelike region

only. The importance of ensuring the correct positioning of singularities is more apparent when

the propagator is more complicated than the free-particle propagator. As we will see in the next
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example.

In some scenarios the propagator functions can be written as hypergeometric functions:

D(p2) =
1

µ2 2F1

(
a, b; c;

p2

µ2

)
, (A.28)

where µ is a mass scale. Parameters a, b and c cannot be arbitrary because only when

Re{c} > Re{c} > 0 does the integral representation given by Eq. (B.19) converge. This in-

tegral representation ensures the branch cut of 2F1 lays along z > 1. Therefore it is the desired

analytic continuation of the hypergeometric series given by Eq. (B.17), which is only convergent

for |z| < 1.

The Mellin transform for the kernel function of this integral representation is given by

∫ +∞

0

dζ
ζβ−1

(1 + tζ/µ2)a
= t−βµ2β Γ(a− β)Γ(β)

Γ(a)
, Re{β} ∈ (0,Re{a}). (A.29)

While ∫ 1

0

dt tb−β−1(1− t)c−b−1 =
Γ(b− β)Γ(c− b)

Γ(c− β)
, Re{β} < Re{b}, (A.30)

we have the following representation of Eq. (A.28),

1

µ2 2F1

(
a, b; c;

p2

µ2

)
=

1

2πiµ2

Γ(c)

Γ(a)Γ(b)

∫ c̃+i∞

c̃−i∞
dβ

(
−p2

µ2

)−β
Γ(a− β)Γ(b− β)

Γ(c− β)
Γ(β), (A.31)

with c̃ ∈
(
0,min

{
Re{a}, Re{b}

})
, and Re{c} > Re{b}. One can easily verify that when

|p2/µ2| < 1, Eq. (A.31) reduces to Eq. (B.17). Meanwhile, since Eq. (A.31) ensures the branch

cut to be located on the positive real axis, it also agrees with Eq. (B.19).

When the spectral representation is applied to solve QFT equations for propagators, the

question on how to reduce p2 dependences of these equations into that of the free-particle

propagator naturally arises. To answer this question, consider the following identity

∫
ds

Φ(s, s′)

p2 − s+ iε
=

1

s′
K(p2, s′), (A.32)

where K(p2, s) is a dimensionless known function and Φ(s, s′) is the distribution one tries to
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solve. After applying Eq. (A.24), we have the Mellin transform of Eq. (A.32) as

1

2πi

∫ c0+i∞

c0−i∞
dβ ζ−β

∫
dsΦ(s, s′)sβ−1(−π) csc(πβ) = 1

2πi

∫ c1+i∞

c1−i∞
dβ ζ−β(s′)β−1κ(β), (A.33)

where

(s′)βκ(β) =

∫ +∞

0

dζ ζβ−1K(−ζ, s′). (A.34)

Therefore κ(β) is recognized as the Mellin transform of K(−ζ, s′). Eq. (A.32) is solved by

−π csc(πβ)
∫
dsΦ(s, s′)sβ−1 = (s′)β−1κ(β), (A.35)

as long as the holomorphic region of κ(β) overlaps with Re{β} ∈ (0, 1). When this condition is

satisfied, the Mellin transform of Φ(s, s′) is obtained readily from Eq. (A.35). Then through the

inverse transform, Eq. (A.35) determines Φ(s, s′).

A.3 Frobenius method for homogeneous equations

In this section of the appendix, define x = (s−m2)/m2. Eq (5.75) then becomes

[
(x+ 1)

d2

dx2
+

d

dx
− a(a+ 1)

x2

]
f1 = 0. (A.36)

Since Eq. (A.36) is regularly singular when x→ 0, the following series expansions of solutions

exist:

f1(x) =

+∞∑
n=0

anx
n+r. (A.37)

Straightforwardly, we have

d

dx
f1(x) =

+∞∑
n=0

(n+ r)anx
n+r−1, (A.38)

d2

dx2
f1(x) =

+∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2. (A.39)
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Substituting these expansions into Eq. (A.36) give

+∞∑
n=−1

(n+ r + 1)(n+ r)an+1x
n+r +

+∞∑
n=−2

(n+ r + 1)(n+ r + 2)an+2x
n+r

+

+∞∑
n=−1

(n+ r + 1)an+1x
n+r − a(a+ 1)

+∞∑
n=−2

an+2x
n+r = 0. (A.40)

At the order of xr, (r − 1)ra0 − a(a+ 1)a0 = 0. The indicial equation,

(r + 1)(r − a− 1) = 0, (A.41)

has two solutions r = −a and r = a+ 1.

Assuming s r1(s) is finite at s = m2, given g2(s) = [m2/(s −m2)]a+1, the root is chosen to

be r = a+ 1. In this case, the recurrence relation for an is

an =
(n+ a)2

a(a+ 1)− (n+ a)(n+ a+ 1)
an−1, n ≥ 1, (A.42)

which gives
an
a0

=
(−1)n(a+ 1)((a+ 2)n−1)

2

2(2)n−1(2a+ 3)n−1
, n ≥ 0. (A.43)

Then we obtain the solution

f1(x) = xa+1
+∞∑
n=0

anx
n = a0x

a+1
2F1(a+ 1, a+ 1; 2a+ 2;−x). (A.44)
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Appendix B

Identities for loop integrals,

hypergeometric functions, and

Landau-Khalatnikov-Fradkin

transformation

B.1 Evaluating Loop Integrals in Minkowski Space

For a given loop integral in quantum field theory, after Feynman parameterization, one possible

form of the integral is,

L0n(∆, ϵ) =

∫
dl

1

(l2 −∆+ iε)n
, (B.1)

with dl ≡ ddl/(2π)d. Here ∆ is the mass function for the combined denominator, and ε denotes

the Feynman prescription for timelike integrals. The textbook version of evaluating L0n is to

apply Wick rotation directly as l0 = il4, then evaluate L0n using dimensional regularization (or

other regularization schemes). We want to explore the possibility of evaluating loop integrals

directly in Minkowski space without Wick rotation, while still employing dimensional regulariza-

tion.

Since l2 = l20−
−→
l 2 = l20−

−→
l ·
−→
l , where l0 is the time component of loop momentum while

−→
l
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Figure B.1: Illustrations of different scenarios for the loop integration in the time component.

represents all spatial components. The number of components described by
−→
l is related to the

number of spacetime dimensions. We take the convention that dimensional regularization is

only allowed to change spatial dimensions, leaving the time component alone. As illustrated on

the left figure of Fig. B.1, when evaluating the contour for the time component of loop integral,

the Feynman prescription tells us that when the contour is closed above, only the l0 = −E−→
l
=

−(
−→
l 2+∆)1/2 pole is included, the residue of which is the result of the time integral. As expected,

an identical result is obtained if instead the contour is closed from below, encircling the pole at

l0 = +E−→
l
. Alternatively, one is allowed to close the contour from below and incorporate the

l0 = +E−→
l
pole, the result of which agrees with that obtained by closing the contour from above.

With Wick rotation l0 = il4, one can easily verify that the contour for time integration is rotated

90◦ counterclockwise around the origin, rendering the same pole encompassed in the contour

as required by Feynman prescription for Minkowski space time integrals, therefore producing

identical results. However, when the two poles locate on the same side of the imaginary l0

axis, Wick rotation incorporates different poles than evaluating the time integral directly. In this

scenario, the results with and without Wick rotation will be different. When the loop integral is

spherical symmetric, these two poles always locate symmetrically about the imaginary l0 axis.

To see how to evaluate L0n in Minkowski space directly, consider its time integration first.

Because contributions from the infinite radius arc vanish for large enough n, we have

∫
dl0

1

(l20 − E2−→
l
)n

= 2πi Resl0→−E−→
l

1

(l0 + E−→
l
)n(l0 − E−→

l
)n
, (B.2)
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where E−→
l
= (
−→
l 2 +∆)1/2. Next, since the order of the pole at −E−→

l
is n,

Resl0→−E−→
l

1

(l0 + E−→
l
)n(l0 − E−→

l
)n

= lim
l0→−E−→

l

1

(n− 1)!

(
d

dl0

)n−1

(l0 + E−→
l
)n

1

(l20 − E2−→
l
)n

= lim
l0→−E−→

l

1

(n− 1)!

(
d

dl0

)n−1

(l0 − E−→
l
)−n

= lim
l0→−E−→

l

(−1)n−1

(n− 1)!

Γ(2n− 1)

Γ(n)
(l0 − E−→

l
)−2n+1

= (−1)n2−2n+1 Γ(2n− 1)

[Γ(n)]2E2n−1
−→
l

. (B.3)

While for the spatial integration, dimensional regularization is applied such that

∫
d
−→
l =

∫
dΩd−1

∫ +∞

0

d|
−→
l | |
−→
l |d−2,

where |
−→
l | =

√−→
l 2 and for spherical symmetric kernels

∫
dΩd−1 = 2π(d−1)/2/Γ((d− 1)/2).

Therefore

L0n(∆, ϵ) =
1

(2π)d

∫
d
−→
l

∫
dl0

1

(l20 − E2−→
l
)n

=
2πi

(2π)d

∫
d
−→
l
(−1)n2−2n+1Γ(2n− 1)

[Γ(n)]2
(−→
l 2 +∆

)n−1/2

=
i(−1)n2−2n+1Γ(2n− 1)

(2π)d−1[Γ(n)]2
π(d−1)/2

Γ

(
d− 1

2

) ∫ +∞

0

d
−→
l 2

(−→
l 2
)(d−3)/2

(−→
l 2 +∆

)n−1/2
. (B.4)

Substituting x = (
−→
l 2/∆ + 1)−1 for the integration variable, we have

L0n(∆, ϵ) =
i(−1)n2−2n+2−dΓ(2n− 1)

π(d−1)/2[Γ(n)]2∆n−d/2
1

Γ

(
d− 1

2

) ∫ 1

0

dx xn−d/2−1(1− x)(d−1)/2−1. (B.5)

This integral over x is then just the Euler Beta function B(n− d/2, (d− 1)/2). Noting that

Γ(2n− 1)

Γ(n)Γ(n− 1/2)
=

22n−2

√
π
,
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we arrive at

L0n(∆, ϵ) =
i(−1)n

(4π)d/2
Γ(n− d/2)
Γ(n)∆n−d/2 , (B.6)

which agrees with (A.44) of Ref. [46] for the Wick-rotated result.

The more general integrals

Lmn(∆, ϵ) =

∫
dl l2m/(l2 −∆+ iε)n

are determined by combinations of L0r(∆, ϵ). Consequently, the result for Lmn(∆, ϵ) is

Lmn(∆, ϵ) =
i(−1)n−m

(4π)d/2
Γ(n− d/2−m)

Γ(n)∆n−d/2−m

m∏
m′=1

(
d

2
+m′ − 1

)
, (B.7)

with m ≥ 1 and n ≥ m + 1 to ensure the convergence of the l0 integral. This also agrees with

Ref. [46].

While in the special case of ∆ = 0, singularities of l0 integrals are modified from the case

of ∆ ̸= 0. Therefore integrations for the massless case require a separate discussion, which is

not needed in this article.

To see how Eq. (B.7) is obtained, considerm = 1 first. For the time integral, we can calculate

the corresponding residue with a similar approach to that for L0n. However, the l2 term on the

numerator makes the process of finding the residue cumbersome. To circumvent this difficulty,

consider separating the numerator such that

L1,n(∆, ϵ) =

∫
dl

l2

(l2 −∆+ iε)n
=

∫
dl

l2 −∆+∆

(l2 −∆+ iε)n
= L0,n−1(∆, ϵ) + ∆L0,n(∆, ϵ). (B.8)

We have reduced our integral into those solved before. Next, applying properties of Gamma

functions, we obtain

L1,n(∆, ϵ) =
i(−1)n−1

(4π)d/2
Γ(n− d/2− 1)

Γ(n− 1)∆n−d/2−1
+
i(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)∆n−d/2−1

=
i(−1)n−1

(4π)d/2
Γ(n− d/2− 1)

Γ(n)∆n−d/2−1

d

2
, (B.9)

which agrees with (A.45) of Ref. [46]. In this case, the l0 integral is convergent only if the

integer n ≥ 2. Otherwise contributions from the infinite radius arcs do not vanish. Applying the
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procedure of separating the numerator once more, one obtain

L2,n(∆, ϵ) = L1,n−1(∆, ϵ) + ∆L1,n(∆, ϵ) =
i(−1)n−2

(4π)d/2
Γ(n− d/2− 2)

Γ(n)∆n−d/2−2

d

2

(
d

2
+ 1

)
, (B.10)

which agrees with (A.47) of Ref. [46].

B.2 Ξj(p
2, s) with d = 4− 2ϵ as hypergeometric functions

From the Euler type integral definition of hypergeometric functions [63],

∫ 1

0

dx xb−1(1− x)c−b−1(1− zx)−a =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z), (B.11)

we express the following two integrals as hypergeometric functions,

I0(z, ϵ) ≡
∫ 1

0

dx
2x

(1− x)ϵ(1− xz)ϵ
=

2 2F1(ϵ, 2; 3− ϵ; z)
(1− ϵ)(2− ϵ)

, (B.12)

I1(z, ϵ) ≡
∫ 1

0

dx
2x

(1− x)ϵ(1− xz)1+ϵ
=

2 2F1(ϵ+ 1, 2; 3− ϵ; z)
(2− ϵ)(1− ϵ)

=
−2

(1− ϵ)(z − 1)
+

2[1− ϵ(z + 1)]

(2− ϵ)(1− ϵ)(z − 1)
2F1(1, 1 + ϵ; 3− ϵ; z). (B.13)

Applying this result to Eqs. (7.26, 7.27) gives

Ξ1(p
2, s) = Γ(ϵ)

(
4πµ2

s

)ϵ
[(1− ϵ)I0(z, ϵ) + ϵI1(z, ϵ)]

Ξ2(p
2, s) = Γ(ϵ)

(
4πµ2

s

)ϵ{
(1− ϵ)I0(z, ϵ) +

ϵ(z + 1)

2
I1(z, ϵ)

}
. (B.14)

Using Eq. (15.2.10) in Ref. [63], with a = ϵ+ 1, b = 2, c = 3− ϵ, we obtain,

(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z)

= −ϵ+ 1

2
(z − 1) 2F1(ϵ+ 2, 2; 3− ϵ; z)− 1

2
[3ϵ− 1 + (1− ϵ)z] 2F1(1 + ϵ, 2; 3− ϵ; z).

While applying Eqs. (15.2.14, 15.2.17) with a = ϵ+ 1, b = 2 and c = 3−ϵ respectively, we have,

2 2F1(ϵ+ 1, 3; 3− ϵ; z) = (1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z) + (ϵ+ 1) 2F1(ϵ+ 2, 2; 3− ϵ; z)
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and

(2− ϵ) 2F1(ϵ+ 1, 2; 2− ϵ; z) = (1− 2ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z) + (ϵ+ 1) 2F1(ϵ+ 2, 2; 3− ϵ; z).

Therefore

(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z) + ϵ 2F1(ϵ+ 1, 2; ϵ− 2; z)

= −ϵ+ 1

2
(z − 1) 2F1(ϵ+ 2, 2; 3− ϵ; z)− (1− ϵ)

2
(z − 1) 2F1(ϵ+ 1, 2, 3− ϵ, z),

= (1− z) 2F1(ϵ+ 1, 3; 3− ϵ; z),

and

(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z) +
ϵ

2
(z + 1) 2F1(ϵ+ 1, 2; 3− ϵ; z)

= −ϵ+ 1

2
(z − 1) 2F1(ϵ+ 2, 2; 3− ϵ; z)− 1− 2ϵ

2
(z − 1) 2F1(ϵ+ 1, 2; 3− ϵ; z)

= (1− z)2− ϵ
2

2F1(ϵ+ 1, 2; 2− ϵ; z).

Then the z dependences of Ξj/(p2 − s) combine as

Ξ1

p2 − s
=

Γ(ϵ)

s(z − 1)

(
4πµ2

s

)ϵ
2

(1− ϵ)(2− ϵ)

{
(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z) + ϵ 2F1(ϵ+ 1, 2; 3− ϵ; z)

}
=

Γ(ϵ)

s

(
4πµ2

s

)ϵ −2
(1− ϵ)(2− ϵ) 2F1(ϵ+ 1, 3; 3− ϵ; z) (B.15)

Ξ2

p2 − s
=

Γ(ϵ)

s(z − 1)

(
4πµ2

s

)ϵ
2

(1− ϵ)(2− ϵ)

{
(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z)

+
ϵ(z + 1)

2
2F1(ϵ+ 1, 2; 3− ϵ; z)

}
=

Γ(ϵ)

s

(
4πµ2

s

)ϵ −1
1− ϵ 2F1(ϵ+ 1, 2; 2− ϵ; z). (B.16)

Using results in Abramowitz and Stegun [63] and Appendix B.4, one can verify that Eq. (7.28)

and Eq. (7.29) reduce to results by the direct calculation of integrations over Feynman param-

eters after taking the ϵ = 1/2 limit and the ϵ→ 0 expansion, respectively.
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B.3 Useful identities for hypergeometric functions 2F1

B.3.1 Definitions

We collect identities we have used from Abramowitz and Stegun [63]. The series definition of

the hypergeometric function 2F1 is

2F1(a, b; c; z) = 2F1(a, b, c, z) = F (a, b; c; z) =

+∞∑
n=0

(a)n(b)b
(c)nn!

zn, (B.17)

where (a)n is the Pochharmer symbol given by

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
. (B.18)

Additionally, the Gamma function definition of Pochharmer symbol applies even when n is not

an integer.

B.3.2 Identities for 2F1(a, b; c; z)

Identities listed in this subsection are selected equations from Abramowitz and Stegun [63].

Equations numbered from the left are labeled by their the original numbers in Ref. [63].

Special Elementary Cases of Gauss Series

(15.1.4) F

(
1

2
, 1;

3

2
; z2
)

=
1

2z
ln
(
1 + z

1− z

)
=

arctanh(z)
z

(15.1.5) F

(
1

2
, 1;

3

2
; z2
)

=
arctan(z)

z

(15.1.8) F (a, b; b; z) = (1− z)−a
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Differentiation Formulas

(15.2.3)
dn

dzn
[za+n−1F (a, b; c; z)] = (a)nz

a−1F (a+ n, b; c; z)

(15.2.4)
dn

dzn
[zc−1F (a, b; c; z)] = (c− n)nzc−n−1F (a, b; c− n; z)

Gauss’ relations for contiguous functions

(15.2.10) (c− a)F (a− 1, b; c; z) + (2a− c− az + bz)F (a, b; c; z) + a(z − 1)F (a+ 1, b; c; z) = 0

(15.2.14) (b− a)F (a, b; c; z) + aF (a+ 1, b; c; z)− bF (a, b+ 1; c; z) = 0

(15.2.17) (c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z)− (c− 1)F (a, b; c− 1; z) = 0

Integral Representations and Transformation Formulas

(15.3.1) F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt tb−1(1− t)c−b−1(1− tz)−a (B.19)

with Re{c} > Re{b} > 0.

(15.3.5) F (a, b; c; z) = (1− z)−bF (b, c− a; c; z/(z − 1))

(15.3.6) F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; 1− z) (B.20)

+ (1− z)c−a−bΓ(c)Γ(a+ b+ c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z),

with c− a− b /∈ N. When b− c = m ∈ N∗, we have

(15.3.14) F (a, a+m; c; z) = F (a+m, a; c; z)

=
Γ(c)(−z)−a−m

Γ(a+m)Γ(c− a)

+∞∑
n=0

(a)n+m(1− c+ a)n+m
n!(n+m)!

z−n
{
ln(−z)

+ ψ(1 +m+ n) + ψ(1 + n)− ψ(a+m+ n)− ψ(c− a−m− n)
}

+ (−z)−a Γ(c)

Γ(a+m)

m−1∑
n=0

Γ(m− n)(a)n
n!Γ(c− a− n)

z−n

(for |arg(−z)| < π, |z| > 1, (c− a) ̸= Z).
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B.4 Leading expansions on small parameters

The definition of derivatives on parameters is given by

2F
(l,m,n,0)
1 (α, β; γ; z) ≡ lim

(a,b,c)→(α,β,γ)

∂l+m+n

∂al∂bm∂cn
2F1(a, b; c; z). (B.21)

For the purpose of calculating ϵ→ 0 limits, only first order derivatives are required. One simple

example that is relevant to the ϵ→ 0 limit of the LKFT is

2F
(1,0,0,0)
1 (1, n;n; z) = lim

a→1

∂

∂a
(1− z)−a = − ln(1− z)

1− z
. (B.22)

A straightforward way to calculate these leading derivatives is to use the following series

definition in Eq. (B.17). First, consider the derivative of the Pochhammer symbol

∂

∂a
(a)n =

∂

∂a

Γ(a+ n)

Γ(a)
=

Γ(a+ n)

Γ(a)

[
∂

∂a
lnΓ(a+ n)− ∂

∂a
lnΓ(a)

]
= (a)n [ψ(a+ n)− ψ(a)] ,

(B.23)

where ψ(z) = d lnΓ(z)/dz is the digamma function, and

ψ(z + 1) = ψ(z) + 1/z. (B.24)

For integer n, ψ(n) = Hn−1 − γE , where the harmonic number is defined by Hn−1 =
∑n−1
m=1

1
m .

Then

ψ(a+ n)− ψ(a) = 1

a+ n− 1
+

1

a+ n− 2
+ · · ·+ 1

a

=

n−1∑
m=0

1

a+m
, for n ∈ N∗. (B.25)

In order to calculate 2F
(0,0,1,0)
1 (1, 3; 3; z) and 2F

(0,0,1,0)
1 (1, 2; 2; z), consider the following se-

ries expansion:

lim
c→b

∂

∂c
2F1(1, b; c; z) = lim

c→b

∂

∂c

+∞∑
n=0

(b)n
(c)n

zn =

+∞∑
n=1

[ψ(b)− ψ(b+ n)]zn. (B.26)
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Then we have

2F
(0,0,1,0)
1 (1, 3; 3; z) = −z + z2/2 + ln(1− z)

z2(z − 1)
(B.27)

2F
(0,0,1,0)
1 (1, 2; 2; z) = −z + ln(1− z)

z(z − 1)
, (B.28)

from which we finally obtain

2F1(1− ϵ, 3; 3− ϵ; z) =
−1
z − 1

+ ϵ

[
ln(1− z)
z − 1

+
z + z2/2 + ln(1− z)

z2(z − 1)

]
+ O(ϵ1) (B.29)

2F1(1− ϵ, 2; 2− ϵ; z) =
−1
z − 1

+ ϵ

[
ln(1− z)
z − 1

+
z + ln(1− z)
z(z − 1)

]
+ O(ϵ1). (B.30)

B.5 Example: the exponent-preserving effect of Eq. (7.45)

Operations constructed to generate p2 dependences from the free-particle propagator using

exponent-preserving linear transforms are free from operations on momentum variable p2, an

essential criterion for the application of spectral representation of propagators to solve the LKFT.

If all operations are exponent-preserving on the variable z = p2/s, after the integral variable

transform dz = −p2s−2ds there is no residual p2 multiplication factors. This can be verified by

the following example corresponding to the linear transform in Eq. (7.45). Explicitly, consider

the operation

zϵ+1−nDϵzn−1Dϵzϵ

=
zϵ+1−n

Γ(1− ϵ)
d

dz

∫ z

0

dz′(z − z′)−ϵ (z
′)n−1

Γ(1− ϵ)
d

dz′

∫ z′

0

dz′′(z′ − z′′)−ϵ(z′′)ϵ

=

(
p2

s

)ϵ+1−n
s2

Γ(1− ϵ)p2
d

ds

∫ +∞

s

ds′
p2

(s′)2

(
p2

s
− p2

s′

)−ϵ(
p2

s′

)n−1
(s′)2

Γ(1− ϵ)p2

× d

ds′

∫ +∞

s′
ds′′

p2

(s′′)2

(
p2

s′
− p2

s′′

)−ϵ(
p2

s′′

)ϵ
=

s1+n−ϵ

(Γ(1− ϵ))2
d

ds

∫ +∞

s

ds′(s′)1−n+ϵ
(
s′

s
− 1

)−ϵ
d

ds′

∫ +∞

s′
ds′′(s′′)−2

(
s′′

s′
− 1

)−ϵ

, (B.31)

which being exponent-preserving is independent of p2.
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B.6 Properties of the distribution K1 in 3D

B.6.1 As the solution to its differential equation

Apparently Eq. (7.69) reduces to a simple delta-function when ξ = 0. To see Eq. (7.69) also

satisfies its differential equation, namely Eq. (7.10) for Kj with j = 1 and ϵ = 1/2, which is

explicitly written as

∂

∂ξ

∫
ds

K1(s, s
′; ξ)

p2 − s+ iϵ

= αµ

∫
ds

{ √
s

(p2 − s)2
−

√
s

2p2(p2 − s)
− 1

2(p2)3/2
arctanh(

√
p2/s)

}
K1(s, s

′; ξ), (B.32)

we start with the following helpful relations,

∫ +∞

sth

ds
1

(p2 − s)s3/2
=

2

(p2)3/2

[√
p2/sth − arctanh

√
p2/sth

]
, (B.33)

and

∫ +∞

sth

ds

[
1√
s
− 1√

p2
arctanh

√
p2

s

]
1

s3/2
=

1

sth
− 2√

sthp2
arctanh

√
p2

sth
− 1

p2
ln
(
1− p2

sth

)
,

(B.34)

where sth = (
√
s′ + αµξ/2)2. Next, applying Eq. (7.69) and writing 1 + αµξ

2
√
s′

=
√
sth√
s′

produce

∫
ds

[ √
s

(p2 − s)2
−

√
s

2p2(p2 − s)
− 1

2(p2)3/2
arctanh(

√
p2/s)

]
K1(s, s

′; ξ)

=

(
1 +

αµξ

2
√
s′

)−1
 √

sth
(p2 − sth)2

− 1

2
√
sth(p2 − sth)

+
1

2p2

 1
√
sth
− 1√

p2
arctanh

√
p2

sth


+
αµξ

4

{
−1

sth(p2 − sth)
+

1

sthp2
+

1

p4
ln
(
1− p2

sth

)
− 1

2

[
1

sthp2
+

1

p4
ln
(
1− p2

sth

)]

+
1

2p2

 1

sth
− 1

p2
ln
(
1− p2

sth

)
− 2√

sthp2
arctanh

√
p2

sth

}

=

√
s′

(p2 − sth)2
− 1

2
√
sth(p2 − sth)

+
1

2
√
sthp2

− 1

2(p2)3/2
arctanh

√
p2

sth
. (B.35)
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Meanwhile, since ∂
∂ξ

√
sth = αµ

2 ,

∂

∂ξ

∫
ds

1

p2 − s
K1(s, s

′; ξ) =
∂

∂ξ

 √
s′

√
sth(p2 − sth)

+
αµξ

2p2

 1
√
sth
− 1

p2
arctanh

√
p2

sth


= − αµ

√
s′

2sth(p2 − sth)
+

√
s′

√
sth

αµ
√
sth

(p2 − sth)2
+
αµ

2p2

 1
√
sth
− 1√

p2
arctanh

√
p2

sth



− αµξ

2p2

 αµ

2sth
− 1√

p2

√
p2

αµ

2sth

1− p2

sth


= αµ

 √
s′

(p2 − sth)2
− 1

2
√
sth(p2 − sth)

+
1

2p2
√
sth
− 1

2(p2)3/2
arctanh

√
p2

sth

 . (B.36)

The combination of Eq. (B.36) with Eq. (B.35) explicitly shows thatK1(s, s
′; ξ) given by Eq. (7.69)

indeed satisfies Eq. (B.32).

B.6.2 The closure property

While for the group K defined by Eq. (7.69),

∫
ds′K1(s, s

′; ξ)K1(s
′, s′′; ξ′)

=

∫
ds′

{(
1 +

αµξ

2
√
s′

)−1

δ

(
s−

(√
s′ +

αµξ

2

)2
)(

1 +
αµξ′

2
√
s′′

)−1

δ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)

+

(
1 +

αµξ

2
√
s′

)−1

δ

(
s−

(√
s′ +

αµξ

2

)2
)

αµξ′

4(s′)3/2
θ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)

+
αµξ

4s3/2
θ

(
s−

(√
s′ +

αµξ

2

)2
)(

1 +
αµξ′

2
√
s′′

)−1

δ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)

+
αµξ

4s3/2
θ

(
s−

(√
s′ +

αµξ

2

)2
)

αµξ′

4(s′)3/2
θ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)}

. (B.37)

Integrals for the first and third terms on the right-hand side of Eq. (B.37) are obvious. While for

the second term, since
√
s′ > 0 and

√
s > αµξ/2

δ

(
s−

(√
s′ +

αµξ

2

)2
)

=

(
1 +

αµξ

2
√
s′

)−1

δ

(
s′ −

(√
s− αµξ

2

)2
)
, (B.38)
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and the theta-function is not zero only when
√
s′ ≥

√
s′′ + αµξ′/2. Therefore

∫
ds′
(
1 +

αµξ

2
√
s′

)−1

δ

(
s−

(√
s′ +

αµξ

2

)2
)

αµξ′

4(s′)3/2
θ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)

=
αµξ′

4s3/2
(
1− αµξ

2
√
s

) θ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2)
. (B.39)

For the fourth term, two theta-functions overlap only if s ≥ [
√
s′′ + αµ(ξ + ξ′)/2]2. Then

αµξ

4s3/2
θ

(
s−

(√
s′ +

αµξ

2

)2
)

αµξ′

4(s′)3/2
θ

(
s′ −

(√
s′′ +

αµξ′

2

)2
)

= θ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2)∫ (
√
s−αµξ/2)2

(
√
s′′+αµξ′/2)2

ds′
(αµ)2ξξ′

16(ss′)3/2

= −ξξ
′(αµ)2

8s3/2

[(√
s− αµξ

2

)−1

−
(√

s′′ +
αµξ′

2

)−1
]
. (B.40)

Therefore in the end, we obtain

∫
ds′K1(s, s

′; ξ)K1(s
′, s′′; ξ′)

=

[
1 +

αµ

2
√
s′′

(ξ + ξ′)

]−1

δ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2)
+ θ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2){ αµξ′

4s3/2

(
1− αµξ

2
√
s

)−1

+
αµξ

4s3/2

(
1 +

αµξ′

2
√
s′′

)−1

− ξξ′(αµ)2

8s3/2

[(√
s− αµξ

2

)−1

−
(√

s′′ +
αµξ′

2

)−1
]}

=

[
1 +

αµ

2
√
s′′

(ξ + ξ′)

]−1

δ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2)
+
αµ(ξ + ξ′)

4s3/2
θ

(
s−

[√
s′′ +

αµ

2
(ξ + ξ′)

]2)
= K1(s, s

′′; ξ + ξ′). (B.41)

So K defined by K1(s, s
′; ξ) given by Eq. (7.69) satisfies the closure property of a group.
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Appendix C

Known contributions to the

fermion propagator SDE

C.1 Simplification of σξj (p2; ξ)

To simplify Eq. (8.17), we will need contiguous relations for hypergeometric functions from

Ref. [63] and the following identity

(A/p+BW )(/p+W ) = s(Az+B)+(A+B)/pW = s(z−1)
[(
A+

A+B

z − 1

)
+

A+B

s(z − 1)
/pW

]
. (C.1)

Equations referred to by Eq. (15.2.XX) are identities in Ref. [63]. With a = 3, b = 1 + ϵ, c = 4− ϵ,

Eq. (15.2.19) becomes

2(3− 2ϵ)

(3− ϵ)(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 4− ϵ; z) =
2

(3− ϵ)(2− ϵ) 2F1(2, 1 + ϵ; 4− ϵ; z)

+
2(1− z)

(3− ϵ)(1− ϵ) 2F1(3, 1 + ϵ; 4− ϵ; z). (C.2)
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Explicitly then,

A =
−ϵ

(3− ϵ)(2− ϵ) 2F1(1 + ϵ, 2; 4− ϵ; z) + 3ϵ− 4

(2− ϵ)(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z)

+
2(3− 2ϵ)

(3− ϵ)(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 4− ϵ; z)

=
2(1− z)

(3− ϵ)(1− ϵ) 2F1(1 + ϵ, 3; 4− ϵ; z) + 1

3− ϵ 2F1(1 + ϵ, 2; 4− ϵ; z) (C.3)

+
3ϵ− 4

(2− ϵ)(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z),

where Eq. (C.2) is used to derive Eq. (C.3). From Eq. (15.2.17) with a = 1, b = ϵ, c = 3− ϵ we

have

B =
1

1− ϵ 2F1(ϵ, 1; 2− ϵ; z) =
1

2− ϵ 2F1(ϵ, 1; 3− ϵ; z) +
1

(2− ϵ)(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z). (C.4)

Next, with a = ϵ, b = 2, c = 3− ϵ, Eq. (15.2.15) becomes

1

2− ϵ 2F1(ϵ, 1; 3− ϵ; z) =
1− 2ϵ

(2− ϵ)(1− ϵ) 2F1(2, ϵ; 3− ϵ; z) +
ϵ(1− z)

(2− ϵ)(1− ϵ) 2F1(2, ϵ+ 1; 3− ϵ; z).

(C.5)

With a = ϵ, b = 3, c = 4− ϵ, Eq. (15.2.17) becomes

−1
1− ϵ 2F1(ϵ, 2; 3− ϵ; z) =

−(3− 2ϵ)

(3− ϵ)(1− ϵ) 2F1(ϵ, 2; 4− ϵ; z) +
−ϵ

(3− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 4− ϵ; z).

(C.6)

With a = 2, b = 1 + ϵ, c = 4− ϵ, Eq. (15.2.15) becomes

−(3−2ϵ) 2F1(ϵ, 2; 4−ϵ; z)+(1−2ϵ) 2F1(ϵ+1, 2; 4−ϵ; z) = −2(1−z) 2F1(ϵ+1, 3; 4−ϵ; z). (C.7)
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Therefore

A+B

=
2(1− z)

(3− ϵ)(1− ϵ) 2F1(1 + ϵ, 3; 4− ϵ; z) + ϵ(1− z)
(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z) (C.8a)

+
−1
1− ϵ 2F1(ϵ, 2; 3− ϵ; z) +

1

3− ϵ 2F1(1 + ϵ, 2; 4− ϵ; z)

=
2(1− ϵ)

(3− ϵ)(1− ϵ) 2F1(1 + ϵ, 3; 4− ϵ; z) + ϵ(1− z)
(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z) (C.8b)

+
−(3− 2ϵ)

(3− ϵ)(1− ϵ) 2F1(ϵ, 2; 4− ϵ; z) +
1− 2ϵ

(3− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 4− ϵ; z)

=
ϵ(1− z)

(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z), (C.8c)

where Eqs. (C.5, C.6, C.7) are used to derive Eqs. (C.8a, C.8b, C.8c), respectively. In addition,

with a = ϵ, b = 2, c = 4− ϵ, Eq. (15.2.14) becomes

ϵ 2F1(ϵ+ 1, 2; 4− ϵ; z) = 2 2F1(ϵ, 3; 4− ϵ; z)− (2− ϵ) 2F1(ϵ, 2; 4− ϵ; z). (C.9)

With a = ϵ, b = 2, c = 3− ϵ, Eq. (15.2.14) becomes

ϵ 2F1(ϵ+ 1, 2; 3− ϵ; z) = 2 2F1(ϵ, 3; 3− ϵ; z)− (2− ϵ) 2F1(ϵ, 2; 4− ϵ; z). (C.10)

With a = ϵ, b = 2, c = 4− ϵ, Eq. (15.2.24) becomes

(1− ϵ) 2F1(ϵ, 2; 4− ϵ; z) + 2 2F1(ϵ, 3; 4− ϵ; z) = (3− ϵ) 2F1(ϵ, 2; 3− ϵ; z). (C.11)

With a = ϵ, b = 2, c = 3− ϵ, Eq. (15.2.24) becomes

−ϵ 2F1(ϵ, 2; 3− ϵ; z) + 2 2F1(ϵ, 2; 3− ϵ; z) = (2− ϵ) 2F1(ϵ, 2; 2− ϵ; z). (C.12)
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Then

A+
A+B

(z − 1)
=

−ϵ
(3− ϵ)(2− ϵ) 2F1(1 + ϵ, 2; 4− ϵ; z) + 3ϵ− 4

(2− ϵ)(1− ϵ) 2F1(ϵ, 2; 3− ϵ; z)+

2(3− 2ϵ)

(3− ϵ)(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 4− ϵ; z) +
−ϵ

(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z)

=
1

(3− ϵ)(2− ϵ)

{
2(2− ϵ)
1− ϵ 2F1(ϵ, 3; 4− ϵ; z) + (2− ϵ) 2F1(ϵ, 2; 4− ϵ; z)

}
(C.13a)

+
1

(2− ϵ)(1− ϵ)
{
− 2 2F1(ϵ, 3; 3− ϵ; z) + 2(ϵ− 1) 2F1(ϵ, 2; 3− ϵ; z)

}
=

2

(3− ϵ)(1− ϵ) 2F1(ϵ, 3; 4− ϵ; z) +
1

3− ϵ 2F1(ϵ, 2; 4− ϵ; z) (C.13b)

+
−2

(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 3− ϵ; z) +
−2
2− ϵ 2F1(ϵ, 2; 3− ϵ; z)

=
ϵ

(1− ϵ)(2− ϵ) 2F1(ϵ, 2; 3− ϵ; z) +
−2

(2− ϵ)(1− ϵ) 2F1(ϵ, 3; 3− ϵ; z) (C.13c)

=
−1
1− ϵ 2F1(ϵ, 2; 2− ϵ; z), (C.13d)

where Eqs. (C.9, C.10, C.11, C.12) have been utilized to derive Eqs. (C.13a, C.13b, C.13c) and

(C.13d), respectively. Finally we obtain,

ie2ξ

∫
dk/q

1

/k −W
/q

q4
1

/p−W
=
−αξ
4π

Γ(ϵ)

(
4πµ2

s

)ϵ{ −1
1− ϵ 2F1(ϵ, 2; 2− ϵ; z)

+
−ϵ

(2− ϵ)(1− ϵ) 2F1(ϵ+ 1, 2; 3− ϵ; z) /p

W

}
. (C.14)

C.2 Operations on zβ from terms in Eq. (8.25)

For commutators on the right-hand side of Eq. (8.25), explicit calculation shows that

zβϕ3θ1 =
Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
4πµ2

p2

)2ϵ
β + 1

β + 2ϵ

Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 2)Γ(β)
zβ+2ϵ, (C.15a)

zβθ1ϕ3 =
Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
4πµ2

p2

)2ϵ
1 + β + ϵ

β + 1

Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 2)Γ(β)
zβ+2ϵ, (C.15b)

zβϕ2θ2 =
Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
4πµ2

p2

)2ϵ
1

β + 1

Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 1)Γ(β)
zβ+2ϵ, (C.15c)

zβθ2ϕ2 =
Γ(ϵ)[Γ(1− ϵ)]2

Γ(1 + ϵ)

(
4πµ2

p2

)2ϵ
1

1 + β − ϵ
Γ(β + 2ϵ)Γ(β + ϵ+ 1)

Γ(β − ϵ+ 1)Γ(β)
zβ+2ϵ, (C.15d)
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and

zβ(ϕ3z − zϕ3) = Γ(ϵ)

(
4πµ2

p2

)ϵ
Γ(1− ϵ)
Γ(1 + ϵ)

[
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
− Γ(2 + β)Γ(β + 1 + ϵ)

Γ(2 + β − ϵ)Γ(β + 1)

]
zβ+ϵ+1

= −Γ(1− ϵ)
(
4πµ2

p2

)ϵ
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β + 1)
zβ+ϵ+1 (C.16a)

zβ(ϕ2 − ϕ3) = Γ(ϵ)

(
4πµ2

p2

)ϵ
Γ(1− ϵ)
Γ(1 + ϵ)

[
Γ(1 + β)Γ(β + ϵ)

Γ(1 + β − ϵ)Γ(β)
− Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)

]
zβ+ϵ

= −Γ(1− ϵ)
(
4πµ2

p2

)ϵ
Γ(1 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
zβ+ϵ. (C.16b)

Up until now all terms on the right-hand side of Eq. (8.25) are explicit. For the left-hand side,

we have

zβ∂νΩ
∆
ij =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

[−ωij(β,m+ 1)]zβ+(m+1)ϵ (i, j) ̸= (1, 2), (C.17a)

zβ∂νΩ
∆
12 =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

[−ω12(β,m+ 1)] z1+β+(m+1)ϵ (C.17b)

zβ(ϕ3Ω
∆
11 − Ω∆

11ϕ3) =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
ω11(β + ϵ,m)

− ω11(β,m)
Γ(2 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β +mϵ)

}
zβ+(m+1)ϵ (C.17c)

zβ(ϕ3Ω
∆
12 − Ω∆

12ϕ2) =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(2 + β)Γ(β + ϵ)

Γ(2 + β − ϵ)Γ(β)
ω12(β + ϵ,m)

− ω12(β,m)
Γ(2 + β +mϵ)Γ(β + 1 + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β + 1 +mϵ)

}
z1+β+(m+1)ϵ (C.17d)

zβ(ϕ2Ω
∆
21 − Ω∆

21ϕ3) =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(1 + β)Γ(β + ϵ)

Γ(1 + β − ϵ)Γ(β)
ω21(β + ϵ,m)

− ω21(β,m)
Γ(2 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(2 + β + (m− 1)ϵ)Γ(β +mϵ)

}
zβ+(m+1)ϵ (C.17e)

zβ(ϕ2Ω
∆
22 − Ω∆

22ϕ2) =

+∞∑
m=0

(−ν)m

m!

(
4πµ2

p2

)(m+1)ϵ

Γ(ϵ)
Γ(1− ϵ)
Γ(1 + ϵ)

{
Γ(1 + β)Γ(β + ϵ)

Γ(1 + β − ϵ)Γ(β)
ω22(β + ϵ,m)

− ω22(β,m)
Γ(1 + β +mϵ)Γ(β + (m+ 1)ϵ)

Γ(1 + β + (m− 1)ϵ)Γ(β +mϵ)

}
zβ+(m+1)ϵ. (C.17f)
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