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Introduction. 

In several recent papers [ 4 ], [ 5 ], [ 6 ], [ii], [15] quantum mechanics 

and quantum mechanical propagators on multiply connected spaces have been 

discussed. The quantum mechanics of a free particle moving on the Riemannian 

manifold M = G, a simple Lie group, was examined by J. S. Dowker in [ 5 ]. In 

this paper he showed that the quasi-classical approximation is "exact" and 

that the propagator may be calculated either by "the sum over classical paths' 

or by the stationary state method. In a later paper [ 6 ] Dowker suggested a 

natural framework (following [ii]) for quantum mechanical propagators on 

multiply connected, homogeneous spaces. 

In this paper we indicate the interconnections of Dowker's formulation 

and the yoga of the Selberg trace formula. The Selberg trace formula plays 

a very fundamental role in a broad cross section of mathematics. Below we 

demonstrate its vitality in modern physics. 

~i. ~uantum Mechanical Propagators. 

Various compact and noncompact homogeneous manifolds occur in the world 

of mathematical physics: e.g., the spherical top, the particle with spin, 

the classical energy level of the Kepler problem, etc. This leads naturally 

to the consideration of homogeneous manifolds of the form M = G/H, where 

initially G is a separable, locally compact unimodular group with compact 

isotropy subgroup H = {gE G I gm ° = mo}. Let Cc(G) denote the associative 

algebra over C of continuous functions with compact support, under the 
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multiplication (fl,f2)(g) = I fl(gx-l)f2(x)dx" The associated space of 
G 

spherical functions, Cc(H~G/H), is a subalgebra of Cc(G). If the convolution 

algebra of spherical functions is commutative, then (G,H) is a Gelfand pair. 

The quantum mechanical propagator for a homogeneous Riemannian manifold 

M = G/H, with Laplace-Beltrami operator A, is denoted by KG/H(t;x,y). It is 

characterized by the equations 

and 

~t 1 (i +~ Ax)KG/H(t;x,y) = 0 for t > 0 

~(x) = lim / K(t;x,y)~(y)dy 
t÷0 + G/H 

for ~ in a suitable class of functions on M. What is essential here is that the 

propagator is a two-point invariant function: 

KG/H(t;gxH,gyH) = KG/H(t;xH,yH), 

which follows from the invariance of AG/H by the action of G on M = G/H: 

G x M ÷ M, (g,xH) ÷ gxH. Any two-point invariant function, e.g., KG/H, defines 

a rotationally symmetric function on M, i.e., f(hm) = f(m) for all h in H. Viz,. 

f(m) = K(t;m,mo) (or m = zH ÷ KG/H(t;zH) = KG/H(t;y-lxH,H)). And conversely. 

Furthermore, any rotationally symmetric function f(m) may also be considered as 

a function on G, viz., f(g) = f(m) if gm ° = m. It is easily checked that f is 

H-bi-invariant on G; and conversely, every spherical function on G defines a 

r.s. function f on M. 

Under the Gelfand pair hypothesis, there is a special class of spherical 

functions on G which are "orthogonal and span" the space of all spherical 

functions. These spherical functions are the elementary or zonal spherical (z.s.) 

functions. The z.s. functions can be characterized in several ways: e.g., ~ in 

C(H~C/H) is a z.s. function iff ~(e) = i and f,~ = Xf~ for all f in Cc(H~G/H). 
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The relation to representation theory is well-known also. There is a one-one 

correspondence between the set of positive definite (p.d.) z.s. functions on G 

and the set G(1) of equivalence classes of class one representations of G 

The notion of spanning is in the sense of a Fourier expansion of a suitable 

spherical function f: 

f(g) = ~ f(%)S%d~(X) 
G(1) 

where f(%) = f f(g)$~ dg. 
G 

In the case G is compact and so G is discrete, then for every f in L2(H~G/H) 

there is a Fourier series expansion 

f = 
~(i) 

where d(l)f(k) = f f(g)$k(g) dg = f fS k = I fSk; and if U S is the (class one) 
G G/H H\G/H 

representation associated to the p.d.z.s, function 9, then S(gH) = ~XUs(g'h) dh 

where X is the character of the representation U~ of G on H(U~). 

Since KG/H(t;m,m o) gives a spherical function on G, we might consider an 

expansion in terms of the z.s. functions on G, viz., 

KG/H(t;m,n ) = ~(1)$x(g)d~t(X), gn = m, 

or = %~(1)$~(g)Fx(t) 

if G is compact. The function Fx(t) is the spectra ! densitz. 

When M = G is a compact connected Lie group, it is easy to calculate the 

spectral density. Knowing AGX k = hxXx, then Fx(t) = d(X) exp(-ihkt) (where 

FX(0) = lim /K (t;g)xk(g)* dg = xl(e) = d(%)) 
t÷0 + G G 
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Thus KG(t;g ) = ~ d(%) exp(-ih%t)xx(g) , (i.e., eq. (19) in [ 5 ]). 
~C(1) 

As sketched by Dowker [ 6 ] if KG(t;g) is the propagator on G, then 

KG/H(t;zH), = / KG(t;zh) dh. Viz., if 7: G ÷ M = G/H is the natural projection 
H 

then AM(f)~ = AG(fo~). Thus (AMKM)(gH) = [A G ~ KG(t ;-,h -1) dh](g) = 

[fAGKG(t;',h-I) dh](g) = -i ~/~t If KG(') dh] = -i [~/~t KM](gH); and 
H H 

lim / fo~(g) K G (t;g) dg = f=v(e) = f(H). Thus ~i--~'(t;gH) = 
t÷0 + 

d(%) exp(-ih%t)~%(gH), or KM(t;xH,xH) = ~ d(%) dim Z (H(X)) exp(-ih~t) (i.i) 
~ (i) ~ (i) 

whereZ~(~)) = {v(Hkl U k(h)v = v for all h in H}, where H(%) is the representation 

space of %, d(%) = dim H(I). 

We now turn our attention to the relation between the propagator K M on 

M = G/H and the propagator K M on ~{ = F\G/H, where F is a discrete subgroup of G. 

The best way to look at this question is as follows. Suppose the propagator is 

known only over the subspace ym ° where y varies over F. Then what is the relation 

of the spectral density of the propagator we observe to that of the unobserved 

propagator on the whole space M? The connection is given by the Selberg trace 

formula which we review next. 

§2. The Selberg Trace Fromula. 

Let F be a closed subgroup of finite index of a separable locally compact 

group G. Let L be a finite dimensional unitary representation of F. The induced 

representation U L acting on H(~), [12]. Let XL, resp XuL, denote the associated 

L 
characters g÷TrL(g), resp. g + TrUL(g). For f in LI(G), define Uf by 

(U~ al,~2) = f f(g)(uL(g) ~l,~2)dg for ~. in H(uL). Then Tr(U~) = 
G i 
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/ XuL(g)f(g) dg can be computed: 
G 

Tr(U L) = i 
o (F\G) y~r \ G 

fr f(y-iTY)XL(¥) d¥ 

or / [f f(y-lyy)xL(Y) d¥] x d~(y) (*) 
F\G F 

If U L decomposes discretely as U L = ~ ~ n(~) U ~ with multiplicity n(~), then 
G 

= ~ (**) Tr(Uf) Z~£(~)Tr Uf = / Tr Uf d~(M) 

The Selberg trace formula (STF) in its first version is that (*) = (**). These 

hypotheses are met when F is a discrete subgroup of G such that F \G is compact. 

The induced representation ~ is a discrete direct sum of IUR of G, each occurring 

with finite multiplicity nF(%,L); so [U L] = I^ nr(X,L)k where G is the set of 
X~G 

equivalence classes of IUR's. If f is an admissable function--i.e., (a) the 

series ~ f(y-iyx)L(T) converges absolutely, uniformly on compacts of G × G, 
y~F 

to a continuous function F(x,y,L) and (b) Uf is of trace class, then the STF holds 

nF(%,L) Tr ~f = f Tr F(x,x,L) dx = ~ XL(T) VoI(Fy~Gy) Jy(f) 
X( G F\G ¥ ( C F 

where C F is a complete set of representatives in F of G-conjugacy classes of 

elements of F, G is the centralizer of y in G, r¥ = F~G,¥ YJ(f) = Gy\FGf(X-ITx) dx 

The connection of the STF with class one representations is as follows. A 

= 0 unless % 'is of Cl-spherical function f has the property that ~%(f) = Tr Uf 

type one in which case @%(f) = f(%). Thus if f is also admissable and if 

nF(~,L)f(~) converges absolutely then the Selberg-Tamagawa trace formula 
k~ (i) 

(STTF) states that 
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XL(Y) V°l(FykG Y) Jy(f). 
yGCp 

3. Back to Propagators. 

In the situation above where r is a discrete subgroup of G with F~G 

compact, F acts on G/H by left translation and the quotient space F\G/H is 

compact. As above with L = I, L2(F\G/H) = ~H(I) where the Laplacian 

A 6~(G/H) acts on H(%) by the scalar h%(A). Formally the sum I d(%)exp(-ith%(A)) 
~,¢-c(i) 

is the trace of the operator exp(-itA) on L2(F \G/H). Of course exp(-itA) for 
dlX) 

< t < ~ is a group with distributional kernel ~k j=l exp(-ith%(A))$lj(x)$kj(y) 

where {$%j}, j=l,...,d(l) is an ONB for H(%). 

If the Euclidean case is mimicked one expects that on L2(H\G/H) the operator 

exp(-itA) has an integral kernel k(t;y-lx) = g(it;y-lx) where gt(m), m G/H, is 

the fundamental solution of the heat equation Au = ~u/~t on G/H. The analogous 

integral operator on L2(T \G/H) should then be obtained by "periodizing" k by 

wrapping it around" r G/H along the orbits of r on G/H, i.e., (for L nontrivial) 

~,K~\GIH(t;y'x ) = ~ L(y)kt(y-iyx) with trace being [ nr(l,L)exp(-ithk(A)) = 
yet ¥~(i) 

/r\G/HK(t;x,x)dx. (Requiring the wave functions to transform according to 

9(ym) = L(y)@(m), one is led to ~ k(t;x,y)9(y)= / K(t;x,y)@(y) where K(t;x,y) = 
M r\M 

L(y)k(t;x,yy) as observed by Selberg [16]. Later this was the motivation for 
y6r 

eq. (5') of [ 6] and [ii].) 

This leads naturally to the conjecture that K t has a trace / K (x,x)dx = 
I~G/H t 

nr(X,L)exp(-ithk(A)) = {\G/H ~ XL(Y)kt(x-iyx)dx = ~ XL(Y)/F kG/H(t;x-Iyx) dx 
Xec(1) y r y~r 

(3.1) 
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where F is a measurable fundamental domain for F in G/H. In this generalized 

STF we emphasize that everything is understood only formall~ I. 

The conjecture crystallizes the status of the remarks in [ 4 ], [ 5 ], [ 6 ], 

[ii ], and elsewhere. The evidence which leads us to expect a GSTF to be true 

is as follows. 

Of course (3.1) reduces to (i.i) in the case F = id and G compact. Further- 

more, it was observed by Schulman [15] for SU(2) and Dowker [ 5] for a compact 

Lie group G that the propagator is formally 

KG(t ; x) = ~ k(t ;yx) 
classical 

paths 

where k(t;exp H) satisfies the "radial equation" 

n ~2 

i ~ j - (k~=l ~h 2 + 472 IpI2)j = 0 

for H regular, where: T is the maximal torus in G; the Lie algebra of T is T 

1 N-n 
with basis HI,...,Hn; P = ~ ~ --~-- e r where e r are the positive roots of G 

r=l 

(N = dim G); l'J is the Cartan-Killing norm; j(H) = H [exp(~i6r(H) - exp(-~i0r(H))] 
r 

for H in T; T' is the set of regular (i.e., j(H) # 0) points of T; H = ~ hkH k. This 
k 

fits precisely in our framework as hinted by Dowker. Viz., the propagator 

K(t;x,y) on G satisfies K(t;x,y) = K(t;y-lx,e) = K(t;y-lx); and the map z + K(t,z) 

is invariant by inner automorphisms of G. Thus it is determined by the restriction 

to the maximal torus TCG and K(t;exp ) satisfies the radial equation for 

h = exp H~T'. The positive roots ~ of G are linear forms on T which take 
r 

integral values on a discrete subgroup P of T. The function 

( 4~2i IPl 2 t) ~ [L(h) exp(-ilhI2/4t)](h) 
r'~ h + b(t;h) = exp j(h) 

(it) n/2 y~F 

is a W-invariant solution of the radial equation (where W is the Weyl group 
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with order IwI). Then f K(t;g) dg = ~ f lj(u) l 2 x [f K(t;gug -I) dg] du = 
G T G 

1 
VoI(T/F)IW ~ / ~ lj(h+~)I 2 kT(h+y) dh. 

T/r y~r 
This is given by (16-(18) in [ 5 ]. 

~ote that Ipl 2 = R/6 where R is the scalar curvature of G.) 

For the heat equation on these spaces, the analogous formulae have been 

proven in [ i], [ 7 ], and elsewhere. 

In the simple case that G = R, H = {e}, and F = Z, the GSTF reduces to the 

following analogue of the Poisson-Jacobi (theta) formula 

-itn 2 ~ -iT 
e = ~7~ ~ exp[ ] exp(-~--) 

n~Z m~Z 
(3.2) 

1 R/Z and 2~m is the length of the iterated where n 2 is the spectrum of -A on S 1 = 

closed geodesic (length 27 on S~). 

Colin de Verdiere has generalized the classical Poisson-Jacobi formula 

exp(-n2/z) = ~ ~ exp(-~2m2z) Re z > 0 
n~Z m~Z 

for certain Riemannian manifolds with negative sectional curvature to 

exp(-%k/Z) = ~ f~(z) expG~2/4) (F) 
k>0 ~ L~u{0} ~ 

where F denotes the techniques of nonlinear Fourier transform, 0 = %0 < ~i ! %2 ! "'" 

are the eigenvalues of the Laplacian -A on the compact connected Riemannian 

manifold M, L = set of lengths (and their opposites) of periodic geodesics on M. 

Note also Chazarain's formula [ 2 ]. 

The author is unable at present to prove the GSTF in the most general case. 

(Perhaps via techniques of Nelson and Ray it has been suggested.) However in the 

case in [ii], G = R, H = {e} and F = Z, the GSTF can be proven. The dynamics of 
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I ~2, 
the situation here is the fixed axis rigid rotator with Lagrangian L = 

0 _< ~ < 2~, on M = SO(2); a CONB for the wave functions is given by 

{~m(~) = 1 eim~}, m£ Z, with E 
2~ m 

= 1 
m2/21. Then K(t,#) ~ ~ exp(i+n)exp(-in2/2y) 

= 127 @3 (~2' - 2y~l ) where y = I {  t and @3(z,t~.. = 
i~tn 2 2inz 

~e e 
nE Z 

For Imt > 0, the 

Poisson summation formula gives 

_%__ 1/2 eiY(~-2n~)2/2 = ~ k(t;#+y) 
K(t,+) = £2~i ) yeF 

neZ 

where k is the free particle propagator. The GSTF is just the case ~ = O. 

Theorem. The GSTF is true for the case G = R, H = {e} and F = Z, i.e., (3.2) 

holds in the sense of Wiener's fourier transform. 

The proof is straight forward. 

~4. Geodesics and Propagators. 

As noted above the philosophy in Schulman, Dowker and elsewhere is to express 

the propagator as a "sum over all classical paths." If M is a compact Riemannian 

manifold, then each closed path g (distinct from the identity) of ~I(M) corresponds 

to a closed geodesic y g of class g whose length is minimal among the closed curves 

of the same class as g. If M is of negative sectional curvature then there is 

only one closed geodesic of each homotopy type and every closed geodesic is so 

obtained. So there is a biunique correspondence between closed geodesics and 

nontrivial elements of NI(M), or between the free homotopy classes of closed paths 

and the set C F of conjugacy classes of elements of F. 

In the situation above we have F a discrete torsion-free subgroup of Lie 

group G with F G compact. Then M = F G/H is a compact Riemannian with simply 

connected covering space G/H and F = fit(M). From these remarks, if M has negative 
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sectional curvature the GSTFOl) is modified by writing 

k(t;y-iyx) 
KF\G/H(t;y'x)\ = "all closed 

geodesics y" 

A large class of manifolds of negative sectional curvature in this form are 

F \G/H where G is a noncompact connected simple Lie group of R-rank one and 

finite center, H is a m~ximal compact subgroup of G, F is a discrete subgroup 

of G acting freely on G/H; and G/H is a rank one symmetric space of noncompact 

type. This is an extremely interesting case for then the length spectrum 

(lengths of the periodic geodesics yg and their multiplicities) is determined 

by the (harmonic) spectrum of A on M. (Huber [i0], Atiyah and Duistermaat (to 

appear), Gangolli (to appear)) and a "generalized" length spectrum plus 

VoI(F\ G) determines the (harmonic) spectrum. 

§5. STF and Geometric Quantization. 

As we know, an important object in geometric quantization is the quantized 

Hilbert space associated with a Kahlerian polarization F, H°(M,0(E)) where 

E + M is a holomorphic line bundle over (M,~) with the curvature of the connection 

on E being ~, etc. This situation arises when M = G/H is a bounded symmetric 

domain with cocompact F acting freely; then M = F \ G/H is an algebraic manifold. 

In this case the first version of the STF applies. E.G., if E l ÷ M is the bundle 

corresponding to the holomorphic discrete series of Harish Chandra then the multi- 

plicity of the "energy levels" for the "energy manifold" M is 

nF(~) = dim H°(M,0(E~)) = ~ Vol(Fy\ Gy)J~(y) = dimension 
Y 

of the space of automorphic forms for such a representation. (Cf. Hotta- 

Parthasarathy, et al.) 

In general in the situation at the end of §5 if F has no elliptic elements 

nv(% ) = Vol(F~G)d(%) when ~ is integrable. (Cf. Langlands, Schmid, et al.) 
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