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Abstract
In this paper, we study the nonequilibriumdynamics of the Bose–Hubbardmodel with the nearest-
neighbor repulsion by using time-dependent Gutzwiller (GW)methods. In particular, we vary the
hopping parameters in theHamiltonian as a function of time, and investigate the dynamics of the
system from the density wave (DW) to the superfluid (SF) crossing a first-order phase transition and
vice versa. From theDW to SF, we find scaling laws for the correlation length and vortex density with
respect to the quench time. This is a reminiscence of the Kibble–Zurek scaling for continuous phase
transitions and contradicts the common expectation.We give a possible explanation for this
observation.On the other hand fromSF toDW, the system evolution depends on the initial SF state.
When the initial state is the ground state obtained by the static GWmethods, a coexisting state of the
SF andDWdomains forms after passing through the critical point. Coherence of the SF order
parameter is lost as the system evolves. This is a phenomenon similar to the glass transition in classical
systems.When the state starts from the SFwith small local phase fluctuations, the systemobtains a
large sizeDWdomain structure with thin domainwalls.

1. Introduction

In recent years, dynamics of quantum-many-body systems is one of themost actively studied subjects in physics.
Process inwhich a system approach to an equilibrium is of fundamental interests, and also evolution of system
under a quench has attractedmany physicists. Nowadays, ultra-cold atomic gas systems play a very important
role for the study on these subjects because of their versatility, controllability and observability [1]. Theoretical
ideas proposed to understand transient phenomena are to be tested by experiments on ultra-cold atomic
systems. This is one of examples of so-called quantum simulations [2–5].

For the second-order thermal phase transition, time evolution of systems under a change in temperature has
been studied extensively so far. From the viewpoint of cosmology, Kibble [6, 7] claimed that the phase
transitions lead to disparate local choices of the broken symmetry state and as a result, topological defects called
cosmic strings are generated. Later, Zurek [8–10] pointed out that a similar phenomenon is realized in
laboratory experiments on the condensedmatter systems like the superfluid (SF) of 4He. After the above seminal
works,many theoretical and experimental studies on theKibble–Zurek (KZ)mechanismhave appeared [11].
Concerning to experiments onBose-condensed ultra-cold atomic gases, the correlation length of the SF and the
rate of topological defect formationweremeasured and theKZ scaling hypothesis was examined [12, 13].

To study dynamics of quantum-many-body systems, the parameters in theHamiltonian are varied through
a quantumphase transition (QPT), i.e., the quantumquench [13–26], and the system evolution is observed.
Experiments on this problemhave been already done using the various ultra-cold atomic gases [27–32]. Among
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them,works in [27, 28] questioned the applicability of the KZ scaling theory to theQPT, whereas [29, 30]
concluded that the observed results were in good agreement with theKZ scaling law.

In this paper, we focus on the two-dimensional (2D)Bose–Hubbardmodel (BHM) [33, 34], which is a
canonicalmodel of the bosonic ultra-cold atomic gas systems in an optical lattice. In particular, we add nearest-
neighbor (NN) repulsions between atoms. Then, the resultant system is described by an extended Bose–
Hubbardmodel (EBHM). As a result, a parameter region corresponding to the density wave (DW) appears in the
ground-state phase diagram, in addition to theMott insulator and SF.Near the halffilling, there exists afirst-
order phase transition between the SF andDW [35].We shall study the quench dynamics of the EBHMon
passing across the SF andDWphase boundary. There are only a fewworks for the dynamical properties of
quantum systems atfirst-order phase transitions under a quench [36–38], and therefore detailed study on that
problem is desired.

This paper is organized as follows. In section 2, we introduce the EBHMand explain theGutzwiller (GW)
methods, which are used in the present work. In section 3, quench dynamics of thefirst-order phase transition
from theDW to SF is studied. Behavior of SF andDWorders are investigated by solving the Schrödinger
equation bymeans of time-dependent GW (tGW)methods.We focus on the order parameters, correlation
length, vortex number, etc, in particular, scaling laws of these quantities with respect to the quench time τQ.
Contrary to the common expectation, wefind that scaling laws hold for the correlation length and vortex
density. In section 4, we give a possible explanation of the observed results from viewpoint of the SF-bubble-
nucleation process.We employ a time-dependent Ginzburg–Landau (GL) theory and show that scaling laws
with small deviations from theKZ scaling hold in the vicinity of a triple point in the phase diagram. Applicability
of theGWmethods is also discussed there. In section 5, we study the time evolution of the system from the SF to
DWcrossing the first-order phase transition.Wefind that even for very slow quench, a genuineDWdoes not
form if we start the time evolutionwith the ground state obtained by the static GWmethods. Numerical result
shows that a coexisting state of the SF andDWappears instead. On the other hand, if SF states with small
coherent phasefluctuations are employed as an initial state, the system acquires aDWdomain structure of large
sizewith thin domainwalls. Section 6 is devoted for conclusion. In the appendix, we show the results obtained
for the hard-core Bose–Hubbardmodel, inwhich thefirst-order phase transition between theDWand SF exists
as in the soft-core systemof the present work.We discuss the behavior of the correlation length and vortex
density compared to the soft-core case.

2. ExtendedBose–Hubbardmodel and slowquench

Weconsider the EBHMwhoseHamiltonian is given by [39]
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where i j,á ñdenotesNN sites of a square lattice, a ai i( )† is the creation (annihilation) operator of boson at site i,
n a ai i i= † , andμ is the chemical potential. J(>0) andU(>0) are the hopping amplitude and the on-site
repulsion, respectively.We also add theNN repulsionwith the coefficientV, which plays an important role in
the present work.

In this study, we are interested in cases near the half filling, i.e.,
N

n
1

1 2
s

i ir º å á ñ » , whereNs is the total

number of the lattice sites, andwe takeNs=64×64 or 100×100 for the practical calculation.We setU=1
as the energy unit, and time t ismeasured in the unit ÿ/U.We investigated the system in equation (1) by using the
staticGWapproximation and showobtained ground-state phase diagram infigure 1 forV/U=0.05. There
exist three phases, i.e., theDW, SF and supersolid (SS) although the area of the SS in the phase diagram is small
forV/U=0.05.We also show the system energy, particle density and amplitude of the SF order parameter,

N

1

s
i iY º å Y∣ ∣ ∣ ∣, where ai iY º á ñ, in figure 2 forμ/U=0.1. From the results infigure 2, it is obvious that the

system exists near the halffilling ρ≈1/2, and afirst-order phase transition between theDWand SF takes place
at Jc/U;0.022 as afinite jump in Y∣ ∣ indicates. The existence of the first-order phase transition is quite
plausible as theDWand SF have both the own long-range order. In recent paper [40], we studied the EBHM for
V/U=0.375 and near the unitfilling ρ≈1. There exists a substantially finite region of the SS in addition to the
DWand SF. These three phases are separated by two second-order phase transitions. This result is in agreement
with the quantumMonte-Carlo (MC) study [41].

In the following, we shall study dynamics of the systemunder ‘slow quenchs’. To this end, we employ the
tGWmethods [42–48]. In the tGWapproximation, theHamiltonian of the EBHM in equation (1) is
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approximated by a single-siteHamiltonianHi, which is derived by introducing the expectation value ai iY = á ñ
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where iNN denotes theNN sites of site i, andHartree–Fock type approximation has been used for the hopping
andNN repulsion. To solve the quantum systemHGW in equation (2), we introduceGWwave function
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where nc is themaximumnumber of particle at each site, andwemostly take nc=6 in the present work. Some
quantities are calculatedwith nc=10 to verify that nc=6 is large enough for the study of the half filling case.
See figures 3 and 7. In terms of f t

n
i{ ( )}, the order parameter of the SF is given as

Figure 1.Ground-state phase diagramof the extended Bose–Hubbardmodel forV=0.05 obtained by the staticGWmethods. There
exist three phases, the density wave (DW), superfluid (SF) and supersolid (SS).Mean particle density ρ≈1/2.

Figure 2.Physical quantities in theDWand SF critical region in various system sizes; the hopping J-term energy, amplitude of SF
order (Y∣ ∣), andmean density (ρ). The obtained results show that the phase transition is of first-order as dictated by Landau–
Ginzburg–Wilson paradigm. Critical point is estimated as Jc/U≈0.022.
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and f t
n
i{ ( )}are determined by solving the following Schrödinger equation for various initial states
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The timedependence ofHGW(t) in equation (5) comes from the quench J→J(t)withfixedU andV as explained in
the following section. Practically, the time evolution above is calculatedby the fourth-order Runge–Kuttamethod.

3.Dynamics of phase transition fromDWto superfluid

Wefirst study the dynamics from theDW to SF. In this section, the hopping amplitude is varied as

J t J

J
t

t
, 6c

c Q


t

-
º =

( ) ( ) ( )

where Qt is the quench time, which is a controllable parameter in experiments.We employed 10 samples as the
initial state at t=−τQ (i.e., J 0Qt- =( ) ), which have theDWorder with small local density fluctuations from
the perfectDW.Then, we solve equation (5) to obtain GWF ñ∣ . Physical quantities for which scaling lows are
examined are obtained by averaging over samples. The linear quench in equation (6) is terminated at t=tf with
J t J0.044 cf = >( ) ( ) in the numerical study. Subsequent behavior of the system is also observed to see how the
system approaches to an equilibrium.

We show the typical behavior of Y∣ ∣as a function of t infigure 3 for τQ=300. At t=0, the system crosses
the critical point at Jc/U;0.022. After crossing the critical point, Y∣ ∣ remains vanishingly small for some
period, and then it develops very rapidly. After the rapid increase, Y∣ ∣ starts tofluctuate and coarsening of the

Figure 3. (Upper panel)Phase of the SF order parameterΨi for τQ=300 as a function of time. (Middle panel)Amplitude of the SF
order parameterΨi for τQ=300 as a function of time. Relevant times t̂ and teq are t 70»ˆ and teq≈120, respectively. On the other
hand, tex≈400, at which the oscillation of Y∣ ∣ terminates. From teq to tex, coarsening process of the phase ofΨi takes place in large
scales [26]. (Lower panel)Calculation of Y∣ ∣ in the nc=10 case is also shown. It is in good agreement with that of nc=6.
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phase of the SF order parameter takes place there [26]. t̂ infigure 3 is defined as t 2 0Y = Y∣ (ˆ)∣ ∣ ( )∣, and teq is the
time at which the oscillation of Y∣ ∣ starts. Similarly, tex is the time at which that oscillation terminates.

Similar behavior to the abovewas observed in theMott to SF quench dynamics and examined carefully [26].
Comparedwith theMott to SF dynamics, the SF amplitude Y∣ ∣ is smaller, e.g., for t teq> , 0.8 0.9Y ~∣ ∣ ( – ) in the
Mott to SF transition, whereas 0.5Y ~∣ ∣ in the present case. This difference simply comes from the difference of
themean particle density, i.e., ρ∼1 in theMott to SF transition case.

TheDWorder parameters
N

n
1

s
i

i
iDWD º å - á ñ( ) ,

N
n n

1

2 s
i j i jDW

C
,D º å á - ñá ñ∣ ( ) ∣, and the even–odd

deference of the SF order parameter defined as
N

1

2 s
i j i jSF ,D º å Y - Yá ñ∣∣ ∣ ∣ ∣∣are shown infigure 4. These

quantities exhibit fluctuations as a function of time until J≈0.045. Thesefluctuations are getting smaller, i.e.,
the system is approaching to a homogeneous SF. The systemwith other vales of τQ exhibits a similar behavior,
although the reaction of the system starts at larger value of J/U for smaller value of the quench time τQ.

It is interesting to study the correlation length ξ of the SF order parameter and the vortex densityNv as a
function of the quench time τQ. These quantities are defined as follows;
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where θi is the phase ofΨi ( ei i
i iY = Y q∣ ∣ ) and x yˆ ( ˆ) is the unit vector in the x (y) direction. For continuous

second-order phase transitions, theKZhypothesis predicts a scaling law such as b
Qx tµ and N d

v Qtµ - .
Recently, applicability of the aboveKZ scaling law for second-order QPThas been discussed for several quantum
systems.On the other hand forfirst-order phase transitions, it is commonly expected that such a scaling law does
not hold as the relaxation-time cannot be defined properly. For a classical statisticalmodel, another type of
scaling lawwas proposed forfirst-order phase transitions [36]. It should be also noted that off-equilibrium
dynamics of a quantum Ising ringwas investigated recently and finite-size scaling laws forfirst-order phase
transitionswere proposed [49]. There, off-equilibrium scaling variables were given in terms of an energy gap and
quench time, and physical quantities were obtained as a function of time.

To see if scaling law exists or not, wemeasured ξ andNv at t t= ˆ and t teq= . In the original KZ hypothesis
for continuous phase transitions [11], t̂ is the time at which the system re-enters an equilibrium after the
freezing (or impulse) period. On the other hand, teq is the time at which a coarsening process of the SF phase
coherence starts [26].

Figure 4.ΔDW, DW
cD andΔSF as a function of time for τQ=300. After passing the equilibrium critical point Jc/U;0.022, the both

quantities start to evolve with oscillations.
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We show the obtained results infigures 5 and 6. The results show that at t t= ˆ, both ξ andNv satisfy the
scaling lawwith exponents b=0.25 and d=0.26, respectively, and also t Q

0.45tµˆ . On the other hand at t teq= ,
data at each Qt exhibits slightly largefluctuations but scaling laws for the correlation length,Nv and teq seem to

Figure 5. Scaling laws observed for the correlation length ξ, vortex numberNv at t t= ˆ , and t̂ with respect to τQ.

Figure 6. Scaling lows observed for the correlation length, vortex number at t teq= , and teq with respect to Qt .

6

New J. Phys. 20 (2018) 083006 K Shimizu et al



exist for 20Qt > . The above results indicate that besides theKZmechanism, there exists anothermechanism to
generate the scaling laws. Possible explanation is given in section 4.

It should be noted that after passing the critical point,ΔDW andΔSF have even–odd site fluctuations, and
therefore, the system is not homogeneous.We think that because of this inhomogeneity, the critical exponents
of ξ andNv at t t= ˆ do not satisfy the expected relation such as b=d/2.On the other hand at t teq= , the system
is rather homogeneous, and therefore b∼d/2.

In the appendix, we consider the hard-core version of the EBHMand show the calculations of the scaling
lawswith respect to Qt infigure A2. There, tx (ˆ) and N tv (ˆ) fluctuate rather strongly. This behavior comes from
the fact that fluctuations of the particle number at each site is smaller comparedwith the soft-core case, and as a
result, the stability of the phase degrees of freedomof the SF order parameter is weakened.

We terminate the linear quench at t 300f Qt= = . After tf, the system approaches to an equilibrium as the
results in figures 3 and 4 indicate. It is interesting to see how the correlation length of the SF develops. As the
results in figure 7 show, the correlation length increases after passing the critical point as it is expected.
However, its increase gets weak at t teq~ , and it saturates at t∼500 and keeps a finite value. To study the
resultant phase, wemeasuredNv and found that there exist no vortices at t>500. Onemay expect that the
system settles in a finite-temperature (T) SF phase for sufficiently large twith an effectiveT,Teff. The finite-T
SF in 2D has a quasi-long-range order and the correlation length diverges, i.e., the Kosterlitz–Thouless (KT)
phase. The above result seems to indicate that some other state is realized in the final stage of the present
process. However, the system behaviormay strongly depend on the average particle density ρ. Further study
is needed to clarify this interesting problem. In fact, we studied this problem in the case of themean particle
density ρ≈1 andV/U=0.375 [40]. In the quench process such as the DW→SS→SF, the correlation

Figure 7. (Upper-left panel) For a typical initial state at t Qt= - , the correlation length is calculated as a function of time. After
passing t teq= , increase of the correlation length becomesweak. (Upper-right panel)Wealso show the results for the nc=10 case.

(Lower panels)The correlation functions G r
N

a a
1

2 s
i i i r= å á ñ+( ) † exhibit very close behavior in the nc=6 and nc=10 cases.
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length continues to increase even for large t. This result seems to indicate that a KT phase of the SF is realized
there.

4. Consideration by theGL theory

In the previous section, we showed that the results obtained by theGWmethods indicate the scaling laws of t̂ , teq

and the correlation lengthwith respect to the quench time Qt . It is interesting and also important to study the
origin of these observations frommore universal and intuitive point of view. To this end, theGL theory is quite
useful. In fact very recently, it was pointed out that theGL theory can drive the scaling laws for the second-order
phase transition by analytical transformation of the associated equations ofmotion [50]. In this section, we first
review the above derivation of the scaling laws for the ordinary second-order phase transition, and then give an
intuitive picture of the scaling laws by using a classical solution representing decay of the false vacuum. Then, we
extend themethods to the present case involving the SF andDWorder parameters. This consideration also gives
an insight about the physicalmeaning and limitation of theGWmethods.

4.1. Second-order phase transition
Let us start with the stochastic GL equation for a complex order parameter (condensate) r t,f ( )

t

t
r t

2

1

2
, , 8r

2 2f
f f f f

¶
¶

=  - - + Q ( ) ∣ ∣ ( ) ( )

where r t,Q ( ) represents theuncorrelatedwhite-noise variableswith r t r t T r r t t, , d dáQ  Q ¢ ¢ ñ =  - ¢ - ¢( ) ( ) ( ) ( )
andT is the temperatureofparticles ensemblenotparticipating theBose–Einstein condensate.As in [50],we consider
the critical parameter ò(t) suchas

t
t

tsgn , 9
Q


t

= -
l

( ) ( ) ( )

whereλ is a parameter for the quench protocol. Then, let us change variables as follows

t r, , , 101 2 1 2h a a f f a=


=  =ℓ ( ) ˜ ( ) ( )

where Q
1a t= l l- +( ). In terms of the new variables, the equation ofmotion (8) leads to

1

2
sgn

1

2

1
, . 112 2f

h
f h h f f f

a
h

¶
¶

=  - - + Q
l ℓ

˜ ˜ ∣ ∣ ( ) ˜ ∣ ˜ ∣ ˜ ( ) ( )ℓ

In equation (11), the Qt -dependence in equation (9) disappears except the last white-noise term. From the
above fact, it is concluded in [50] that the Qt -dependence of t̂ and tx (ˆ) are expected to follow the transformation
in equation (10), and they are given as follows for sufficiently lowT

t t, . 121
Q

1 1 2
Q

2 1a t x a tµ = µ =l l l l- + - +ˆ (ˆ) ( )( ) ( )

For the linear quench 1l = , t Q
1 2tµˆ and t Q

1 4x tµ(ˆ) . The above estimations agreewith those of theKZ
scalingwith themean-field exponents such as 1 2n = and z=2.

Aswe show, the above scaling transformation gives an intuitive picture that derives theKZ scaling law. To
this end, we put r t, 0Q  =( ) in equation (8) and consider a static potential such as ò(t)=−ò0<0. In this case,
the static ground state is given as 0f = . To study the sudden quench dynamics, we consider the decay of the
false vacuumf=0 to the true ground state 0f = . In 1D case, a classical solution representing the decay is
obtained as follows [38]

t x x v t, 1 exp
2

, 130
0

0

1




f = + -
-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( ) ( )

where v
3

2
0

0= , and t , 0f -¥ =( ) and t , 0f ¥ =( ) . The solution equation (13) obviously represents

the situation inwhich the true vacuum 0f = born in the false vacuumexpandswith the speed v0.
Let us consider the ‘slow’quenchdynamics and study bubble-nucleation-evolutionprocess in the SF

formation.Weexpect that this process corresponds to thenumerical studies in theprevious sections.Wehave to
find the solution to equation (8) that describes a single SF-bubble evolution in the false vacuumf=0, butwe
cannotfindan exact solution.However, the above solution in equation (13) suggests that a spherically symmetric
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solution inhigher dimensions and also for the time-dependent ò(t)has the following form for ò(t)<03

r t t F t r v t r, , 0, 14s t f  = - >( ) ∣ ( )∣ ( ∣ ( ) ∣( )) ( )

where v C tt 0 = ∣ ( )∣ with a certain constantC0, and F(x) is a decreasing function such as F 1-¥ =( ) and
F 0¥ =( ) . In fact, we can show that the function r t,sf

( ) in equation (14) satisfies the scaling transformation
in equation (10) for the time-dependent ò(t) in equation (9), i.e.

F v v C, , , 15s s
1 2

0f h f a h h h h h h


= = - =l l lℓ ℓ˜ ( ) ( ) ( ( ( ) )) ( ) ( )

does not depend on Qt . As far as the above picture holds in the time evolution of the system, equation (15)
implies that typical events and phenomena are observed similarly in systemswith various Qt ʼs, and
corresponding times have Qt -dependence such as Q

1tl l+( ). For example, we numerically obtained t̂ and teq for
various Qt ʼs in section 3 by startingwith qualitatively the same initial states. These values are related to

Qt -independent ĥ and eqh that are obtained by the rescaled picture from equation (15), i.e., t̂ and teq in the

Qt -system are given by t Q
1t h= l l+ˆ ˆ( ) and teq Q

1
eqt h= l l+( ) 4. Furthermore, a typical linear size of the bubble at

t, i.e., the correlation length at t, ξ(t), is given as

t v t td
1

, 16
t

t
0 Q

2
2 1òx

t
= µ l

l +( ) ( )

and therefore, t Q
2 1 2 2x t hµ l l l+ +(ˆ) ( ) ˆ( ) ( ) and teq Q

2 1
eq

2 2x t hµ l l l+ +( ) ( ) ( ) ( ) .After teq, themerging and
coarsening process of SF bubbles takes place [26], and therefore the above picture and also the resultant scaling laws do
not hold anymore.

4.2. GL theory, GWmethods andquantumMC simulation
Here, it is suitable to comment on theGWapproximation. TheGL theory and also theGross–Pitaevskii (GP)
equation consider only themeanfield and totally ignore fluctuations around it. On the other hand in theGW
approximation, we focus on awave function of site factorization, andwave function at each site is obtained by
solving the site-factorizedHamiltonian inwhich theNNoperators are replacedwith their expectation values
[26]. The uncertainty relation between the particle number and phase at each site is faithfully taken into account
although an equation ofmotion similar to theGL (GP) equation is derived by theGWmethods. This is an
advantage of theGWapproximation over theGL andGP theories.

Asmore reliablemethods, let us consider the quantumMC simulations of the coherent-state path-integral
in the imaginary-time formalism. In thisMC simulations, quantumoperators are reduced into classical
variables and the quantum superpositions are treated by the fluctuations in the imaginary-time direction. Large
number of configurations are generated by theMCupdates and physical quantities are calculated by averaging
themover generated configurations. In theMetropolisMC algorithm, the local updates are applied to variables
at each site by calculation a local energy around that site. In the vicinity of a phase transition point, a large
number of configurations contribute equally, and calculations by large CPU times are required in order to take
into account all relevant configurations. On the other hand away from the critical point, the number of
important configurations is not so large. From the viewpoint of theMC simulationwith the local update, we can
get an interesting insight into theGWapproximation. That is, let us imagine that we perform aGWcalculation
for a systemwith size 104×104.Whenwe calculate expectation values, we divide the 104×104 system into 104

number of 102×102 subsystems.We obtain the expectation values by averaging values calculated in each
subsystem. Comparedwith the path-integralMC simulation, thismethod ismore reliable as the uncertainty
relation is faithfully respected. (In the path-integralMC simulation, this relates to the problemhow accurately
effects of the Berry phase are taken into account. See for example, [51].)However in the vicinity of the phase
transition, 104 configurations are not sufficient to obtain physical quantities closely related to the singularities of
the phase transition. The above consideration suggests that theGWmethods are a fairly good approximation for
calculating physical quantities that arefinite even for the critical regime, e.g.,finite order parameters. In other
words, the estimation of the critical exponents by theGWmethods is not reliable even for using very large
systems.

The above considerationmay over estimate the reliability and applicability of theGWmethods, but it
explains why theGWmethods often succeed in obtaining correct results such as the phase diagrams, etc.We

3
Solution in equation (14)might be regarded a solution in the slow quench limit, in which the time-derivative of ò(t) is small. However, it

also satisfies the scaling transformationwith ò(t) in equation (9). See the discussion below.
4
Rough estimation of ĥ and ηeq are the followings. As t̂ is determined by the condition such as t 2 0Y = Y∣ (ˆ)∣ ∣ ( )∣, v 2h h h =lˆ ( ( ˆ ) ˆ ) constant

for the 2D case. On the other hand, as teq is the time at which the overlap of SF bubbles starts [26], v eq eqh h =( ) constant. Simulation for
variousλ’s is a futurework.
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expect that theGWmethods alsoworks for the correlation functions as far as the correlation length is finite as
the quantumMC simulations do, although at present there are noways to verify it in the quench dynamics.

4.3. First-order phase transition in vicinity of triple point
As the phase diagram infigure 1 shows, the present first-order phase transition is located in the vicinity of the
triple point of theDW, SF and SS. TheGL theory for the quench dynamics in section 4.1 can be applied to this
case with somemodification. Besides the SF order parameter, we introduce a coarse-grained real DWorder
parameter, D r t n, i

i
 ~ -( )[ ( ) ]. GL equations are given as

t
t g g D , 17r

2
1

2
3

2f
f f f f f

¶
¶

=  - - -( ) ∣ ∣ ( )

D

t
D m t D g D g D2 , 18r

2
2

3
3

2f
¶
¶

=  + - -( ) ∣ ∣ ( )

where the positive parameters g1, g2 and g3 are phenomenological ones, which are to be determined by the
parametersU andV. The positivity of g3 comes from the fact that the SF andDWare competing orders in the
original EBHM.On the other hand, ò(t) andm(t) are parameters that are determined by J(t),U andV. In the
quench from theDW to SF, both ò(t) andm(t) are decreasing functions of t.

Let us consider a slowquench, anddenote thephase transition time from theDWtoSFby tc. At

t t 0c d d= -  +( ), the system is in theDWand then, t g D t t
g

g
m t 0c c c c3

2 3

2

 + = + >( ) ( ) ( ) ( ) ,f=0

and D
m t

g
c2

2

=
( )

. On the other hand at t t 0c d d= +  +( ), the system is in the SF, and m t g2c 3
2f- =( ) ∣ ∣

m t
g

g
t2 0c c

3

1

+ <( ) ( ) ,
t

g
c2

1


f = -∣ ∣ ( )

andD=0. From the above equations, weobtain the constraint for the

occurrence of the directDWto SF transition such as g g g2
3
2

1 2> , and t m t0, 0c c < >( ) ( ) . The critical time, tc, is

determinedby the condition that the potential energyV t
g

g D m t
D g

D
2 2 4

2 1 4
3

2 2
2

2 4 f f f= + + - +( )∣ ∣ ∣ ∣ ∣ ∣ ( )

has the same value in theDWandSF states at t=tc. This condition gives t
g

g
m t

2
c c

2 1

2

2 =( ) ( ). On theother hand,

the triple point is realized by t m t 0c c = =( ) ( ) or g g g2
3
2

1 2= .
Let us focus on the SF for t tc . In this case,D=0 andwe only consider theGL equation in equation (17)

withD=0.We assume the same protocol with equation (9) and then, the transformation in equation (12) can
be applied as in the case of the second-order phase transition. Correlation length at time t is estimated as

t v t t td
1

. 19
t

t

t c
Q

2
2 1 2 1

c
òx

t
= = -l

l l+ +( ) ( ) ( )

The second termon the rhs in equation (19) comes from thefinite jumpoff at the critical point and indicates
the deviation from the genuine second-order phase transition. However for sufficiently small tc such as
t t t,c eq ˆ , the correlation length satisfies almost the same scaling lawwith theKZone.

5.Dynamics of phase transition from superfluid toDW

This section considers the temporal evolution of the systemunder a quench from the SF toDW.We found that
behaviors of the system strongly depend on the initial state.We shall show the results in the following two
subsections.

5.1. Evolution from theGWground state of SF
Let us consider the dynamics of the phase transition from the SF toDW.The hopping amplitude is varied as
follows in the linear quench

J J t

J
t

t
. 20c

c Q


t

-
º - =

( ) ( ) ( )

In order to clarify the quench dynamics, we shall consider three cases in this subsection. In thefirst case, Case A,
we start with configurations at J t J2 0.044cQt= - = =( ) and terminate the quench at t Qt= with J 0Qt =( ) .
We employ the tGWmethods to study the system. InCase A, aswell as Cases B andC in the later study in this
subsection, the initial state is the lowest-energy state obtained by the static GWmethods.

The obtained results of Y∣ ∣,ΔDW andΔSF are shown infigure 8 for 300Qt = . Y∣ ∣exhibitsfluctuations in the
SF for t<0, whereas it becomes stable in the region J<Jc (i.e., t>0). This behavior comes from the fact thatΨi
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has a phase coherence in the SF, which induces amplitude fluctuations, as the amplitude and phase of the SF
order parameter are quantum conjugate variables with each other. On the other hand in thewould-beDW
region for t>0, the phase coherence is lost, and then the SF amplitude is stable. TheDWorder parameterΔDW

does not have a stable finite value even after passing through the critical point at t=0. These results indicate that
some kind of domain structure forms there, i.e., small DWdomainsmay coexist with local SF regions.
Calculations of the amplitude ofΨi and the particle density at t Qt= are shown infigure 9. As expected above,
DWdomains and regionswithfinite SF amplitude coexist without overlappingwith each other.

InCase A, the quench stopswith J 0Qt =( ) , and therefore nomovement of particles occurs after the
quench, and the particle density snapshot infigure 9 continues to describe the states for t Qt> . Similarly, we
expect that the coherence of the phase ofΨi is destroyed at t Qt= because J 0Qt =( ) and also 300Qt = is a slow
quench. See figure 9. In order to verify the expected behavior ofΨi, wemeasured the vortex density as a function
of time. At t Qt= ,Nv∼300 is sufficiently large. In summary, inCase Awith 300Qt = , an inhomogeneous
state with local DWand SF domains forms after quench. SF order parameter gradually loses its phase coherence
during the slow quench.

On the other hand for cases of smaller 100Qt = and 50, the SF order parameterΨi isfinite even at t Qt= ,
and it varies after t Qt= . The phase ofΨi gradually loses its long-range coherence by the existence of the
repulsive interactions for t Qt> .

Figure 8.Transition fromSF toDWwith J(tf)=0, Case A. The systempasses through the critical point Jc at t=0. Even for t>0,
both the SF amplitude andDWorder parameter do not exhibit the typical behaviors of theDW.

Figure 9. Snapshots of SF local density (amplitude), particle density, SF phase degrees of freedom, and vortex density at t Qt=
(J/U=0). Global coherence ofΨi does not exist, and finite-size domains of theDWpartially form as indicated by the red circles.
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AsCase B, we consider a quench such as J 0.044Qt- =( ) and J(0)=Jc=0.022 as before but it terminates
at t=tfwith J t 0.01f =( ) , i.e., t 0.55f Qt= (seefigure 10).We also study how the system evolves after tf.
Observed quantities are shown infigure 10 for 50Qt = . TheDWorder parameterΔDWdevelops but its value
fluctuates in rather long period after passing Jc as inCase A. The total energy slightly decreases until tf, and the
kinetic and on-site energies exhibitfluctuating behavior for t<tf although theNN interaction energy is rather
stable. This behaviormostly originates from the local density fluctuations, and the stability of theNN interaction
comes from the cancellationmechanismbetweenNN sites j iNNÎ . After passing the critical point at t=0, the
Ψi keeps a coherent SF order for some period as the calculation of the vortex numberNv indicates. At t≈100, it
starts to lose the coherence and the SF is destroyed as the increase inNv indicates. The state at t∼tf is a
supercooled state, and a coexisting phase of local domains of theDWand SF is realized there. The observed
phenomenon after t>tf, therefore, has very similar nature to the glass transition, inwhich the phase coherence
and superfluidity are getting lost as the supercooled state evolves after the quench.We call it quantum glass
transition (QGT) as the hopping amplitude J, instead of temperature, is the controlled physical quantity and the
relevant transition is quantummechanical one instead of thermal one.We have verified that similar
phenomenon is observed for other values of Qt , e.g., 20Qt = and 200.

In bothCase A andCase B, the abovementionedQGT is observed dynamically as a nonequilibrium
phenomenon, i.e., theQGTpoint is passed through as the system evolves. Therefore as the next problem, it is
interesting to seewhether there exits a genuine glass transition point, J Jcg <( ). Below Jg, the supercooled state is
meta-stable or at least has a long life time, and the SF survives without losing its phase coherence. For Cases A
andB, J<Jg. Then asCase C, we studied the quenchwhose finial point is J(tf)=0.02, i.e., very close to the
equilibrium critical point. Obtained order parameter Y∣ ∣and vortex numberNv are shown infigure 11 for

50Qt = , and time evolution of the particle density, amplitude and phase ofΨi are shown in figure 12. After
passing the critical point J=Jc at t=0, the domain formation of theDWstarts as shownby the particle density
snapshot infigure 12, whereas the long-range coherence of the SF order parameterΨi exists there. Compared
with the cases of J(tf)=0 and J(tf)=0.01, the destruction of SF and formation of theDWregion are slow, but

Figure 10.Transition from SF toDWwith J t 0.01f =( ) , Case B. Genuine globalDWorder does not form. After passing Jc at t=0,Nv

keeps a small value for awhile, and the SF order survives there. After passing t 0.55 27.5f Qt= = , the total energy of the systemkeeps a
constant value as the system is an isolated one.

Figure 11.Transition from SF toDWwith J(tf)=0.02, Case C. Increase ofNv is slow compared to the cases J(tf)=0 and J(tf)=0.01.
SF amplitude Y∣ ∣ also keeps a finite value even for t→large.However,Nv increases smoothly, and therefore, the supercooled state
formed in the quench is not ameta-stable state.
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after t>450, the quantum glass state forms. LocalDWdomains develop but also empty regions (voids) form.
SF order loses a long-range coherence. This result indicates that Jg cannot be observed. Similar results are
obtained for the case of 20Qt = and 200Qt = .

5.2. Evolution fromSF statewith small phasefluctuations
In section 5.1, we studied dynamical evolution of the system from the SF toDW. In that study, the initial state is
set to the ground state obtained by the equilibriumGWmethods. It is interesting to see how the dynamical
phenomena depend on the initial state as we are considering the first-order phase transition. In order to study
this problem,we consider a SF state that is uniform andhas almost perfect phase coherence with very small
randomfluctuations. For the practical calculation, we employ an initial state GWwave function in equation (3)
corresponding to ej

i jrY = dq with randomnumbers {δθj} from a uniformdistribution [−0.005, 0.005]×π.
The other condition is the samewith theCase A, (please refer to the left panel infigure 8).We call the present
studyCaseD.

We investigated the time evolution of the systemby the tGWmethods, and obtained results are shown in
figure 13. Interestingly enough, the systembehavior after passing across the critical point Jc is substantially
different from that inCases A. The SF order parameter Y∣ ∣decreases afinite amount at t∼100, and the density
difference at even–odd sublattice increases there. On the other hand, the vortex number starts to increase rapidly
at t∼150.

Snapshots of the particle density, SF amplitude and SF phase are shown infigure 13. Contrary toCase A, the
DWpattern starts to form at t∼115 and it develops to thewhole system at t∼300, even though there exist
domainwalls. It should be noticed that a similar behavior was observed for the classical first-order phase
transition in [36]. On the other hand, the SF phase coherence exists at t<115, whereas it is destroyed at t∼300.

The initial state of CaseDhas higher energy than that of Case A. The above numerical result indicates that
there exists an energy barrier between the supercooled SF state and the genuineDW, and some amount of energy

Figure 12. (Upper-left)Vortexnumber as a functionof time. Eachpoint denotes the following time; (a) t=−50, (b) t=0, (c) t=150,
and (d) t=450. (Upper-right)Particle density snapshot inCaseC.At t = 0, a typicalDWdomain appears as indicated in the red circle.
(Lower-left) SFdensity snapshot inCaseC. (Lower-right) Snapshot of phase degrees of freedomof SForder parameter inCaseC.
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is need to overcome the barrier. Furthermore, the above result also indicates that the existence of the SF phase
coherence in large spatial regions prevents the formation of large sizeDWdomains. In other words, local
fluctuations of the superfluidity coherence substantially develops under a quench even if they are initially tiny,
and theDW is preferred as a result.

We expect that the above interesting phenomenon is observed by experiments on ultra-cold atomic gases in
the near future.

Figure 13. (First) SF order parameter as a function of time. Each point denotes the following time; (a) t=−300, (b) t=115, and
(c) t=300. (Second)Particle density snapshot inCaseD. (Third) SF density snapshot inCaseD. (Lowest) Snapshot of phase of SF
order parameter inCaseD. At t=300, a large scale DWdomain structurewith thin domainwalls forms. Coherence of SF phase is
lost there.
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6. Conclusion

In this work, we studied dynamical behavior of the EBHM in 2Dby using the tGWmethods. In the ground-state
phase diagram, there are three phases, the SF, DW, and SS. In particular, we are interested in thefirst-order phase
transition between the SF andDWunder a slow quench of the hopping amplitude.

First, we investigated the dynamics of the EBHM in the transition from theDW to SF. In the practical
calculation, we fix the strength of the one-site andNN repulsions, and vary the hopping parameter J. After
passing through the equilibrium critical point Jc, the amplitude of the SF order parameter, Y∣ ∣, remains
vanishingly small until t t= ˆ. After t̂ , it develops quite rapidly. Therefore, t̂ has themeaning of the re-entry time
to the adiabatic region passing from the frozen regime although the present phase transition is offirst-order. At
t teq >( ˆ), Y∣ ∣ stars to oscillate until t=tex. This behavior is quite similar to that in the second-order phase
transition from theMott insulator to SF, whichwe observed in the previous work [26]. Thenwe are interested in
whether some kind of scaling laws between the correlation length/vortex number and the quench time Qt exist.

Our numerical study shows that the scaling laws such as b
Qx tµ and N d

v Qtµ - in fact hold. This result is against
to the simple expectation that such scaling laws do not exist in the first-order phase transitions because the
simple relaxation-time picture and the concept of the (dynamical) critical exponents are not applicable. From
this result, we think that there exists anothermechanism, besides theKZmechanism, to generate the scaling
laws. As a possible explanation, we studied the present systemby using theGL-type theory suggested by [50].
This consideration indicates that the observed scaling laws come from the fact that the present phase transition
point is located in the vicinity of the triple point.

In the second half, we studied the dynamics of the EBHM in the quench of the opposite direction, i.e., from
the SF toDW.We focused on how thefinal value of the hopping amplitude of the quench, J(tf), influences the
dynamics of the systemduring and after the quench.

Our numerical study showed very interesting phenomena. First, in the case for theGWground state as the
initial state, the genuineDWstate does not form even for very slow quench 300Qt = . Instead, the coexisting
state composed ofDWand SF domains appears and spatially inhomogeneous structure of that state is stable after
the quench. In cases with J(tf)>0, the SF order parameter has a phase coherence at t=tf, and after the quench,
the SF order is gettingweak by the generation of vortices. Obviously, the quench produces a supercooled state in
which the domain structure of theDWand SF local (i.e., short-range) coherent state forms. These two domains
have an off-set structure with each other. Then, after termination of the quench, the SF is destroyed. This
phenomenon is a reminiscent of the glass transition in classical polymers etc, andwe call the observed
phenomenonQGT.

On the other hand, if we start with the uniform SF statewith tinyfluctuations in the phase of the SF order, the
system evolves into theDWwith thin domainwalls.

In the phase diagramof the EBHMnear the halffilling shown infigure 1, there is the SS phase, and the SS has
two phase boundaries with theDWand SF. In the case of themean particle density ρ=1 and strongNN
repulsion, the region of the SS is large and two second-order phase transitions are observed clearly from the SS to
theDWand SF, respectively. It is interesting to study the dynamics in that region, that is, how the system
develops crossing through two second-order phase boundaries. Some related problemwas recently studied in
classical systems, and amodifiedKZ scaling lawwas proposed [52].We studied the above problem in the EBHM
byusing tGWmethods, and results are published in [40].
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Appendix.Hard-core BHM

In this work, we study the EBHMof the soft-core boson.Hard-core extended Bose–Hubbardmodel
(HCEBHM) is also an interestingmodel and its relationship to the s=1/2 quantum spinmodel is often
discussed.Hamiltonian of theHCEBHMon the square lattice is given as

H J a a V n n nh.c. , A.1
i j

i j
i j

i j
i

iHC
, ,
å å åm= - + + -
á ñ á ñ

( ) ( )†

where the on-site interaction terms do not exist by the hard-core nature. Phase diagramof themodel in
equation (A.1)was studied by the quantumMC simulations [53, 54], and it was verified that afirst-order phase
transition between theDWand SF exists at half filling ρ=1/2 as in the soft-core case. Then, it is interesting to
study the quench dynamics of theHCEBHMby theGWmethods.
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In this appendix, we shall give numerical calculations of the physical quantities concerning to the static
properties of themodel infigure A1, and also the Qt -dependence of t̂ , etc in the quench dynamics infigure A2.
The results infigure A1 obviously show that there is afirst-order phase transition from theDW to SF for
increasing J/V as the quantumMC simulations in [53, 54] proved. On the other hand, the correlation length ξ
and vortex densityNvfluctuate rather strongly compared to the soft-core cases. This result comes from the fact
that theHCEBHMhas a smallfluctuations in the particle number at each site, and as a result, the phase of the SF
order parameter fluctuates rather randomly.

Figure A1.Equilibriumphysical quantities obtained by theGWmethods. ρ=1/2 andV=1. The results show the existence of a
first-order phase transition as the quantumMonte-Carlo simulations in [53, 54] proved.

Figure A2.Quench dynamics of theHCEBHMwith ρ=1/2 and 300Qt = . The correlation length ξ and vortex densityNv fluctuate
rather strongly compared to the soft-core cases. This result comes from the fact that particle-number fluctuation at each site is
restricted by the hard-core constraint, and as a result, fluctuation in the phase of the SF order parameterΨi is getting large.
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