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CHAPTER

ONE

Introduction

1.1 Hadrons and quantum chromodynamics

We perceive our surroundings because light from all around us, reaches our eyes. This
light, consisting of particles called photons, the quanta of the electro-magnetic field, are
emitted by atoms making transitions between states with different energies. These elec-
trically neutral atoms are composed of electrons, carrying negative electric charge, and
positively charged nuclei, both bound together by the electro-magnetic force that is me-
diated by these same photons.

Electrons are almost mass-less compared to the total mass of the atom, but are re-
sponsible for almost all of its volume, and therefore for almost all chemical properties of
the atom. The nucleus of the atom, on the other side, composed of protons and neutrons,
is of almost negligible size compared to the total size of the atom, but is responsible for
almost all of its mass. Protons carry electric charge that is equal in magnitude to that
of electrons, but is opposite in sign. Being packed, together with neutrons, which are
electrically neutral, in the small space occupied by the nucleus, a force much stronger
than the electro-magnetic force is necessary to overcome the electro-magnetic repulsion
between protons. This force is known as the strong force. Besides their different roles
in building up atoms, there is a more fundamental difference between electrons and nu-
cleons, the collective name given to protons and neutrons. Electrons, are examples of
particles known as leptons, which are, by definition, particles that are not sensitive to the
strong force. Protons and neutrons are sensitive to this force and are therefore examples
of particles called hadrons.

Our understanding of the leptons and hadrons is very different. The basic understand-
ing of the behavior of subatomic particles is contained in what is called the Standard

Model. It refers to a framework that unifies the principles of quantum mechanics and the
theory of special relativity, in which fundamental spin-1/2 particles interact by means
of exchange of integer-spin particles. All forces in nature, electro-magnetic-, weak- and
strong force, except for one, are described in the Standard Model. The remaining force,
gravity, has not been incorporated in the model, yet, but for the calculation purposes at
subatomic scales that are addressed in this thesis gravity plays a negligible role.

Leptons are included in the Standard Model. There are three families of leptons,
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that, to our knowledge, are fundamental. They have no inner structure. Moreover, due
to weak coupling strengths, their interactions are weak and the behavior of leptons can
be described to a very high degree of accuracy. This description is contained in the
electro-weak sector of the Standard Model.

Hadrons, in contrast, do not appear in the Standard Model as fundamental particles.
When enough energy is available, hadrons with different properties and with many spin
values can be formed. Furthermore, experimentally they appear to have a finite size and
an inner structure. Similarities among the many hadrons that can be formed, have led
to the hypothesis that all hadrons are mere combinations of a handful of quark species,
which are given the name flavors (up, down, strange, charm, bottom, top). The most
stable hadrons encountered are either composed of three quarks or a quark and anti-
quark pair, although more exotic combinations seem to be possible [Naka03, Barm03].
The role of fundamental particle is not played by hadrons but by the field-theoretical
object corresponding to these quarks.

On one side, this ”constituent” quark model brought order in a zoo of hadronic par-
ticles, but on the other side it brought a problem in relation with the Pauli exclusion

principle. This principle inhibits more than one quark to be in a specific state, while this
seemed necessary for some hadrons. In order to solve this problem, an additional degree
of freedom had to be introduced for quarks; color. The resulting color currents became
the natural sources for the forces among quarks that hold them together to form hadrons.
Starting as a mnemonic for cataloging the large number of hadrons, quarks have evolved
into the fermionic components of a very rich theory known as quantum chromodynamics
(QCD), the theory of quarks and gluons in which hadrons are its bound states.

QCD is a quantum field theory based on a local SU(Nc) gauge symmetry of quarks,
with Nc = 3 being the number of colors. The gauge field of QCD, that mediates the
interaction between charged quarks, is called the gluon field. As in most quantum field
theories, calculations involve infinities which have to be removed. In order to use the
theory, they have to be removed. This involves a subtraction of the infinities at a specific
scale. In this process, most relevant objects of the theory acquire a energy scale depen-
dence. One of these objects is αs(Q), a measure of the strength of the interaction between
quarks and gluons as a function of the scale Q. In the form that QCD takes care of the
hadronic sector of the standard model, the theory appears to be asymptotically free. This
means that the scale dependence of αs(Q) is such that the interaction strength vanishes
gradually as the energy scale is increased. This is of great value in what are called pertur-

bative calculations. In this type of calculation quarks are assumed to be free particles and
their mutual interaction by means of gluon exchange, is treated as a small correction to
this free state. The order of αs corresponds to the number of gluon exchanges taken into
account. The smallness of αs(Q) at sufficiently large scales, legitimates neglecting higher
orders in αs(Q). The property of asymptotic freedom is seen as a charm of the theory, as
high-energy experiments seem to be well described by models based on the notion of free
quarks.

In spite of the beauty of the theory and its ability to explain many hadronic phe-
nomena, the main players of the theory themselves, quarks and gluons, have never been
detected. This is accepted as a phenomenological aspect of the theory and carries the
name of confinement. How confinement comes about exactly in the theory, is not under-
stood yet. A complete understanding of this fact will probably encompass the description
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Figure 1.1: Examples of hard electro-weak processes. (a) An electron scatters off a nucleon.
(b) A lepton anti-lepton pair is created in the collision of two hadrons. (c) A lepton and an
anti-lepton annihilate into hadrons.

of hadrons as bound states of QCD. Until this happens, we will mainly rely on experiment
to gain knowledge about the constitution of hadrons in terms of quarks and gluons. For
this purpose, there is a class of processes that is very suitable which we will discuss in the
next section.

1.2 Hard electro-weak processes and hadrons

In this thesis an electro-weak process will refer to a scattering process in which a lep-
tonic system interacts with a hadronic system. Due to the nature of leptons, all their
interactions have to be mediated by electro-weak bosons. The best-known examples of
electro-weak bosons are photons, but they might as well be W+, W− or Z0 bosons.
Electro-weak interactions are characterized by a small coupling constant, meaning that
processes involving the smallest possible amount of boson exchanges gives the most im-
portant contributions. As we are interested in hard electro-weak processes, in which
momentum transfer will be large, the description in terms of a single boson exchange will
be a very good approximation.

Detecting the leptons, or extracting them from a beam with known energy, completely
fixes the leptonic system and therefore the momentum, say a momentum q, carried by the
electro-weak boson. This enables us to select only those events for which the relativistic
invariant Q2 = ±q2 is a large number compared to any of the masses of the hadrons under
study. When this is the case, we will call the electro-weak process hard. This large scale
compared to intrinsic hadronic scales, will be our theoretical handle for studying hadronic
structure.

There are several ways for effectuating hard processes that can be of use to us. A very
well-known example is the scattering of an electron off a proton and detecting the electron
after delivering the hard momentum. The proton is usually obliterated and many new
particles can be created. For this reason, this process is known as deep inelastic scattering
(DIS) and it is shown schematically in figure 1.1(a). Another example of a hard electro-
weak process is colliding two hadrons with a large center of mass energy and detecting a
lepton anti-lepton pair that carries a large fraction of this center of mass energy. This type
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of process is shown in figure 1.1(b) and is known as the Drell-Yan (DY) process. Similarly,
one could collide an electron and an anti-electron, at large center of mass energy and detect
hadrons emerging from the collision with a center of mass energy of the same order. This
lepton anti-lepton annihilation process is shown in figure 1.1(c).

Studying figures 1.1(a)-(c) one sees some similarity among the three examples. In all
cases a single (hard) boson connects the leptonic to the hadronic system. When writing
down the cross-section this is reflected in the fact that it can be written as a product of a
leptonic and a hadronic tensor. The leptonic tensor describes the emission or absorption
of the electro-weak boson by the leptons and can be simply calculated. The hadronic
tensor is the part that describes how the hadron deals with the hard boson. This object
is much more difficult to calculate.

In specifying the hadronic tensor we can find some help in the fact that out of the
quarks and gluons that make up hadrons, only quarks carry electro-weak charge and
thus couple to the electro-weak boson. At the origin of lepton-hadron scattering one
has lepton-quark scattering. Lepton-annihilation into hadrons has to be connected to
lepton-annihilation into a quark anti-quark pair. Hard lepton-pair production in hadron-
hadron scattering is connected to quark anti-quark annihilation. In fact, for each hard
lepton-hadron process one can point out a lepton-quark analogue. As the quark-lepton
sub-process is a hard process, we can apply perturbative QCD (pQCD) and calculate this
sub-process with high precision. A problem remains in connecting the hard sub-process
to our real-life hadron-lepton process.

An ad hoc connection is made in the surprisingly successful Parton Model [Bjor69,
Feyn72] in which a probability for finding the quark in the hadron, or a hadron in a quark,
is introduced. This probability is multiplied with the probability of the corresponding
quark-lepton sub-process to obtain a cross-section for the process. This model has been
very successful in explaining much of the phenomenology of hard scattering and played a
very important role in the consolidation of the concept of quarks. The introduction of this
two-step description of the scattering process can be motivated intuitively by assuming
that at the scales that characterize the hard sub-process, a hadron is not capable to react.
The reaction of the hadron to the hard sub-process is something happening at much slower
time-scale. Only the availability of the parton within the hadron is of relevance to the
cross-section.

This separation is known by the name of factorization and its realization in field theory
is not straight-forward. Its goal is to write the hadronic tensor as a product of a hard
part, which we can calculate accurately, and a soft part which summarizes the role played
by the hadron in the hard process.

1.3 QCD and hard processes

An exact QCD description of interactions involving hadrons is at present beyond our
capabilities. An infinite tower of equally important matrix elements of quarks and glu-
ons evaluated between hadronic states have all to be considered when calculating the
cross-section for the process. By looking at hard electro-weak processes substantial sim-
plification can be attained.

In hard electro-weak processes the description simplifies in two important ways. First,
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having a large scale available in the hard part, it makes sense to make an expansion of the
process cross-section in inverse powers of this large scale, Q. Restricting the description up
to a specific order in 1/Q, results in a significant reduction in the number of contributions
that have to be considered. Second, the fact that the hard scattering is dominated by a
large scale enables us to profit from the asymptotic freedom of the theory and we can apply
a perturbative approach in calculating the hard part. Limiting the accuracy to a specific
power in 1/Q and using the smallness of αs(Q), allows us to rearrange contributions in
such a way that the cross-section can be written as a single product, or a sum of products,
of hard and soft parts. The hard part is completely independent of all small-energy or
large-distance scales, while the soft parts contain dependence only on those scales.

The value of this procedure becomes apparent when, after contraction of the factorized
hadronic tensor with the leptonic tensor, a connection results between the experimentally
measured cross-section and the soft object. For unpolarized inclusive DIS, the process
for which the Parton Model was so successful, the emerging soft objects are the parton
distribution functions. In the model this object is introduced ad hoc, while in a field
theoretical framework, the object emerges in a much more intricate formulation in the
operator product expansion.

For hadrons in the initial state the soft parts result in parton distribution functions.
Depending on target polarization and nature of the hard process, all the ways in which
the hadron can contribute to the hard process are encoded in a complete, rather small, set
of functions. The functions depend on a particular momentum fraction, and are universal
depending only on the type of parton and the parent hadron involved. For hadrons in
the final state, a similar set of soft objects can be written down. In this case, they are
called parton fragmentation functions and they form a set analogous to that formed by
distribution functions. The appearance of these functions in the hard process referred to
in section 1.2, is summarized in figures 1.2(a)-(c)

The dependence of these functions on a single variable, corresponding to one particular
momentum fraction, reflects the relevance of a single direction in space-time for the hard
process. The information contained in these functions is related to correlations between
quark and gluon fields along this very specific direction. This direction corresponds to the
mass-less approximation of the parent hadron momentum that can be constructed from
the original hadron momentum and the hard boson momentum. Given the high virtuality
of the exchanged boson, hadrons can be considered as mass-less particles. For this reason,
the correlations encoded in the soft functions are often denoted as light-cone correlations.
We will refer to the set of functions that only takes light-cone correlations into account,
as the collinear set of functions.

In the same way as the hard boson momentum flowing through the hard part selects
correlations along a specific direction, the same mechanism suppresses correlations along
another direction. The two remaining dimensions of space-time are in fact unaffected and
denoted as transverse directions. When more that a single hadron is involved in the hard
process, it becomes possible to extract structural information in these directions.

A prerequisite for this is that the hadrons under study have momenta that are hard

with respect to each other. This is the case when the two hadron momenta have an in-
variant product of the order of the hard scale. If this is the case, it is an indication that
the two soft parts corresponding to each hadron, kinematically separated, are connected
by a hard partonic sub-process. The factorized cross-section has the form of a prod-
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uct of soft objects each involving one hadron but carrying some azimuthal dependence.
Both hadrons, having negligible masses compared to the hard boson scale, can again be
considered to be mass-less. The correlations encoded in their respective distribution or
fragmentation functions correspond to correlations along different light-cone legs.

This configuration, in which the partonic correlations of two hadrons on different

light-cone legs are connected by a hard sub-process, will give us a chance to extract more
information than is possible with a single hadron. In general, the parton momentum
will not be completely collinear with respect to the hadron momentum and will have
components along the transverse direction, when being struck or when fragmenting into
a hadron. This non-coplanarity that can be measured at the hadronic and hard boson
level, can be used to extract additional correlations off the light-cone, which otherwise
would average out. This additional information results in distribution and fragmentation
functions that now not only depend on the longitudinal momentum fraction, but also on
the parton momentum in the two transverse directions. The number of functions is larger
than in the collinear case.

Experimentally, it is not possible to extract the full transverse momentum depen-
dence of the new functions. By weighting the cross-section with a non-coplanar part of a
hadron momentum it is possible to extract an asymmetry in which transverse-momentum
weighted moments of these new functions can appear. The transverse moments also de-
pend on a single longitudinal momentum fraction. Though these functions depend on the
same variable as the old set they encode different information than the ones present in
the collinear set. This additional information can only appear suppressed with an extra
factor of 1/Q when azimuthal asymmetries are ignored.

The soft functions do not only depend on the single longitudinal momentum fraction
and possibly transverse momentum. On top of this dependence there is a logarithmic
dependence on the scale Q that is of perturbative origin. The dependence on the scale Q
can accurately be calculated as an expansion in the coupling constant αs. This dependence
is of importance for relating the values of these functions in different experiments, which
generally will involve measurements at different values of Q2.

In fact, some of the new non-collinear functions had been encountered in the past
in studies [Bukh84b] of the Q2-dependence of the collinear functions that appear in the
cross-section suppressed by factors of 1/Q. In general, the structure of this Q2-dependence
is complicated, due to many unknowns, and is of restricted applicability to experimental
situations. An important simplification takes place in the limit of large number of colors.
In this thesis we present, among other things, first results for the Q2-dependence of all new
non-collinear functions that parametrize additional structure and that appear at leading
order in 1/Q in the limit of large number of colors.

Outline

In chapter 2 we will discuss the separation of soft and hard parts in the cross-section for
hard electro-weak processes in which one and two hadrons are detected. In chapter 3 we
introduce the nomenclature and properties of the soft parts that we want to study in this
thesis. In chapter 4 we derive inequalities that hold between leading order distribution
functions at tree-level.

In chapter 5 we address the calculation of the scale dependence of distribution func-
tions. In chapter 6 we study the scale dependence of non-collinear soft functions by

6



Pin

Pout

Q2

PX

PX′

H H

(a)

Q2

PA

PB

PX

PX′

H

H

(b)

Q2

PA

PB

PX

PX′

H

H

(c)

Figure 1.2: (a) Schematic representation of semi-inclusive deep inelastic scattering.
(b)Schematic representation of lepton pair creation in hadron-hadron collision. (c)Schematic
representation hadron fragmentation from lepton pair annihilation.

combining the scale dependence of 1/Q suppressed collinear functions in the large Nc

limit, with relations following from the equations of motion and Lorentz-invariance. In
chapter 7 the results of an independent calculation of scale dependence for all polarization
states of the parent spin 1/2 hadron, are presented, taking into account quark transverse
momentum. In chapter 8 we discuss these results and present an outlook beyond these
investigations.
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CHAPTER

TWO

Factorization

2.1 Introduction

Factorization of the cross-section for a hard process in which hadrons are involved, refers
to the separation of the cross-section into hard and soft parts. A cross-section is said
to factorize to a specific order in 1/Q, where Q is the large scale characterizing the hard
process, when all contributions that are relevant up to this order, can be incorporated into
products of hard and soft parts. The hard part describes a short time-scale, small-distance
sub-process. It is characterized by the large momentum scale, Q, and is independent of
any small invariants such as masses. The soft parts, on the other side, contain all the
large-distance, long time-scale physics and summarize the role played by hadrons in the
hard process. The soft parts contain the physics that connects the parent hadron to a
specific parton, but is independent of the hard process.

The reason for pursuing a separation of hard and soft physics stems from the success
achieved by the naive parton model. The model was originally developed to describe
inclusive DIS and is based on incoherence between the hard scattering process and the
soft physics that controls the dynamics of the hadronic bound state. In the naive parton
model factorization is postulated. A hadron is regarded as a source of partons, whereas
the partons participate independently in the hard scattering. This simple assumption led
to results that explained experimental phenomena that were not understood at the time.
It also led to predictions, concerning the nature of these partons, that were confirmed
later. In a sense, experiment indicated that something like factorization was taking place
when hadrons took part in hard scattering processes.

Considering the fact that hadrons are subject to the strong force and therefore its
constituents as well, it is surprising that such incoherence is observed at all. One would
expect this incoherence to be invalidated by mutual interaction of the constituents of
hadrons. The property of asymptotic freedom of QCD provides a basis for sustaining a
separation of hard and soft physics. In a QCD bound state, partons can participate in a
hard sub-process being approximately insensitive to their hadronic surroundings, at least
over the short time-scales or across the small-distances that are characteristic to the hard
process.

The embedding of the ideas of the naive parton model in QCD, known by the name of
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the ”pQCD-improved parton model”, was extended to other processes besides inclusive
DIS, that had a partonic sub-process at their basis. Each detected hadron participating
in the hard process is described by a corresponding soft function. The hadron itself is
replaced by a parton in the hard process and the resulting cross-section is calculated
using perturbation theory in the coupling constant. Due to the inclusion of interactions,
the soft objects have to be redefined with respect to the soft objects in the naive parton
model. Although the soft objects remain unspecified, and have to be extracted from
experiment, they are defined consistently within a quantum field theoretic framework.
They are universal objects that summarize the role played by hadrons in hard processes
and can be extracted with systematically improvable accuracy.

A difficulty that was initially disregarded in the pQCD improved parton model is
the effect of soft momentum gluons when more than a single hadron participates in the
hard process. This type of contributions can lead to a break-down of factorization and
is therefore important. Studies of these contributions have led to factorization theorems

which enable one to write the cross-section in the desired factorized form under specific
circumstances.

When more than one hadron is detected in a hard process, it is possible to obtain in
the cross-section soft structure that has been disregarded in collinear treatments [Jaff91].
In chapter 3 we will define the nomenclature for this structure at tree level. In chapter
5, we will address the effect of including interactions in the hard part on these soft parts.
Results of these studies will be presented in the chapters 6 and 7. In this chapter we will
introduce the ideas of the naive parton model and discuss their extension to QCD.

2.1.1 The naive parton model

The naive parton model is best explained looking at the experiment it was introduced for,
inclusive DIS. The experiment involves the scattering of an energetic lepton off a target
proton and detecting the scattered lepton. As the lepton momentum is known both in the
initial and final state, the momentum delivered to the target hadron can be reconstructed.
This process, shown in figure 1.1(a), is determined by two momenta: The target hadron
momentum P , and the momentum transferred by the lepton, q. The hadronic tensor,
describing how a hadron deals with the momentum transfer by means of a single photon,
has for an unpolarized hadron with momentum P , the form

W µν(P, q) =
1

4π

∫

d4y ei q·y〈P | [Jµ(y), Jν(0)] |P 〉. (2.1)

It is symmetric in the current indices µ and ν, as the hadron is unpolarized, and due to
electro-magnetic charge conservation the tensor should satisfy W µνqν = 0. As the energies
involved increase, besides photons also weak vector-bosons can be exchanged between the
leptons and the hadron. Restricting to photon exchanges the hadronic tensor can be
parametrized in terms of two tensor structures multiplied by real functions that depend
on the invariants that can be formed from P and q. Introducing the vector P̃ µ for a
shorter notation

P̃ µ ≡ P µ − P · q
q2

qµ, (2.2)
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∫
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣
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∣
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∣
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2

︸ ︷︷ ︸

f(x)

× Tr

2 x










xP xP

xP + q
q q












︸ ︷︷ ︸

Hµν(x,xB ,Q2)

Figure 2.1: Schematic representation of the parton model description of unpolarized in-
clusive DIS. A probability density f(x) is convoluted with the spin-averaged scattering of a
spin-1/2 parton.

the hadronic tensor can be written as

W µν(P, q) =

(

qµqν

q2
− gµν

)

F1(xB, Q
2) +

P̃ µP̃ ν

P · q F2(xB, Q
2) (2.3)

As the hadron has a fixed mass P 2 = M2, where M is the mass of the hadron, the
functions can only depend on the invariants P · q and Q2. The former is traded in for the
so-called Bjorken scaling variable

xB =
Q2

2P · q . (2.4)

One of the physical phenomena that initially could not be explained [Bloo69] was the
scaling of the structure functions. At large enough values of Q2 the structure functions
F1(xB, Q

2) and F2(xB, Q
2), ceased to show dependence on Q2, retaining only dependence

on xB. This was an unexpected result. For a quantity, assumed to arise from a local
homogeneous distribution of matter, a decrease as 1/Q2 was expected.

This lack of dependence onQ2 of the structure functions F1 and F2 could be reproduced
in the parton model. The model introduces the notion of a parton that takes part in the
hard scattering. In a sense, factorization was postulated by describing the process in two
steps. There is the scattering of a parton that carries a momentum fraction 0 < x < 1 of
the parent hadron, and the hadron is described by a probability dx f(x) of a parton with
momentum fraction between x and x+dx is found. This division is shown schematically in
figure 2.1. The hard scattering part, chosen with hindsight, describes a spin-1/2 particle
with charge e absorbing the hard photon and fragmenting into the final state, without
interacting with the parent hadron. If the parent hadron mass is neglected, that is P 2 = 0,
one finds for the hadronic tensor

W µν(xB, Q
2) = e2

∫

dx f(x)
1

2
Tr [P/γµ(xP/+ q/)γν] θ(x− xB) δ

(

(xP + q)2
)

=

(

qµqν

q2
− gµν

)

e2 f(xB)
︸ ︷︷ ︸

F1

+
P̃ µP̃ ν

P · q 2 xB e
2 f(xB)

︸ ︷︷ ︸

F2

. (2.5)

Integrating over all parton momentum fractions x one finds that the structure functions

F1(xB, Q
2) = e2f(xB) (2.6)

F2(xB, Q
2) = 2 xB e

2 f(xB), (2.7)
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reflect the parton distribution functions f(xB) in which xB represents the parton mo-
mentum fraction. Besides the fact that the structure functions are independent of Q2, a
relation between the two functions,

F2(xB) = 2 xB F1(xB), (2.8)

known as the Callan-Gross relation [Call69], holds. This relation stems from the fact
that the partons are spin-1/2 particles, and its experimental verification is considered as
evidence for the reality of quarks.

Note that the structure functions F1 and F2 are only of relevance for unpolarized
inclusive DIS and meaningless for other hard electro-weak processes. In contrast, the
function f(x), an example of a distribution function, is independent of the process and of
broader applicability than inclusive DIS. It is a property of the hadron. It can appear in
the cross-section in any process in which a hadron of the same type plays a similar role.

Asymptotic freedom in QCD opens the door for embedding the ideas of the parton
model in a realistic theory of hadrons. The identification of the spin-1/2 partons of the
naive parton model, with the quarks of QCD leads to significant modification of the
concepts of the naive parton model.

2.2 Factorization in quantum chromodynamics

In a QCD framework, the probability density of the naive parton model, denoted by
f1(x), has to arise from hadronic matrix elements containing quark and gluon fields. The
longitudinal momentum dependence present in the object f1(x), indicates non-locality
being involved in its definition in terms of field operators. While the physical picture of
the parton model, promotes a non-local product of only quark fields as the source for
f1(x), this cannot be the complete picture, as a non-local product of only quark fields
is not color-gauge invariant, in general. The hadronic matrix element involving only
quark fields has to be supplemented with other hadronic matrix elements involving an
arbitrary amount of gluons, in order to construct a universal object like f1(x). It is only
for particular choices of the gauge, that it is possible to trace back a distribution function
to a matrix element involving only quark fields.

The inclusion of these interacting fields also has a profound impact on the notion
of factorization. Interactions among quarks and gluons lead to a necessary redefinition
of parton distribution functions which results in invalidation of exact scaling. Besides a
dependence on a momentum fraction x, parton distribution functions acquire an additional
dependence on a renormalization scale µ. Distribution and fragmentation functions are
said to evolve with the scale µ.

For some observables in which no distinction is made between different flavors of
quarks, flavor-singlet objects, it might be even inconsistent to consider a single scale-
dependent distribution function. A well-known example is the mixing under evolution of
the flavor-singlet unpolarized and longitudinally polarized quark and gluon distribution
functions.

The massless nature of quarks and gluons complicates the feasibility of factorization of
many interesting cross-sections. Divergences related to this massless nature of the fields
invalidate factorization in several cases when high enough inverse powers of the hard

12



scale are considered. Failure of factorization beyond 1/Q4 for Drell-Yan has been shown
[Dori80, Liet81, Basu84].

Although the degree of complexity rises by embedding the parton model in QCD,
there are many gains from this effort. It leads to a redefinition of the soft objects in a
way that they are consistent with field theory. The phenomenon of scaling violation, that
is necessary when defining parton distribution functions in an interacting field theory,
has been confirmed experimentally. This is often presented as strong evidence for the
reality of QCD. Knowing the scale dependence of soft objects allows us to relate soft
parts being measured in different events in the same experiment, or the same experiment
under different conditions, even in the case of different processes.

Another gain of a full field-theoretic treatment is that such a description allows us to
consider power corrections, contributions that are suppressed by powers of 1/Q, within
the same framework. By fully understanding these corrections, we can gain knowledge
about how partons interact with their parent hadron, and learn more about how QCD
bound states arise.

There are two approaches to factorization in QCD. The first is based on the operator
product expansion (OPE), and expands the non-local matrix elements in terms of local
ones. It has a firm base in perturbation theory but is assumed to work for non-local
operators between hadronic states as well. The second approach is the diagrammatic
one, and retains the non-locality of the matrix elements, though rearranges it into a
complete set of objects of specific relevance. Both approaches are equivalent when both
are applicable, but the second bears more similarity with the ideas of the parton model.

2.2.1 The operator product expansion

The traditional approach to factorization in QCD has been based on the OPE. The
hadronic tensor in equation (2.1) can be related to the forward Compton amplitude

W µν =
1

2π
Im {T µν} =

1

2π
Im

{

i
∫

d4x eiq·x〈P |T Jµ(x)Jν(0)|P 〉
}

, (2.9)

by making use of the optical theorem. The time-ordered product appearing in T µν is
subjected to a light-cone expansion around x2 = 0, which takes the form, deleting the
indices on the currents for clarity,

TJ(x)J(0) =
∑

i,n

C(i)
n (x2) xµ1 . . . xµn O(i)

µ1···µn
(0). (2.10)

The time-ordered product has taken the form of a sum of terms, of which each is a product
of a singular coefficient function C(i)

n (x2), multiple factors of the expansion variable xµi and
a local operator O(i)

µ1 ···µn
(0). In order for the operators to be in an irreducible representation

of the Lorentz group, they can be chosen symmetric in their (expansion) indices and
traceless. In contrast to a regular Taylor expansion all operators with equivalent Lorentz
structure and dimensionality have to be included. In the case of inclusive DIS there
are two classes of operators contributing to leading order in 1/Q. There are operators
involving quark fields, and covariant derivatives Dµ = ∂µ − igAµ,

Oq
µ1 ···µn

(0) = in−1S{}ψγ{µ1
Dµ2 . . .Dµn}ψ, (2.11)
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and operators involving gluon operators,

Og
µ1 ···µn

(0) = in−2S{}Fλ{µ1Dµ2 . . .Dµn−1F
λ
µn}, (2.12)

where the symbol S{} stands for symmetrization of all indices between curly brackets and
Fµν = i/g[Dµ, Dν] is the field strength. After evaluating these operators between hadronic
states, the operators take the form,

〈P |O(i)
µ1···µn

(0)|P 〉 = Θ(i) [Pµ1 . . . Pµn − traces] . (2.13)

The terms denoted by traces correspond to terms that include the metric tensor gµν and
contractions P 2, and receive additional suppression by powers of 1/Q. After Fourier
transformation, the forward Compton scattering amplitude can be written as,

T =
∑

i,n

C̃(i)
n (Q2, µ2)Θ(i)

n (M2, µ2)

[(
1

2 xB

)n

+ O
(

M2

Q2

)]

, (2.14)

where C̃(i)
n is the Fourier transform of the coefficient function C (i)

n . The expression for the
forward amplitude has taken a factorized form where C̃ only depends on the hard scale
Q2 and the renormalization scale µ2. The operator matrix element only depends on a
small scale M2 and the renormalization scale µ2.

Dimensional arguments determine the dependence on Q2 of the Fourier transform of
the coefficient function,

C̃(i)(Q2, µ2) = c(i)n (ln(Q2/µ2)) (Q2)2+n−d[O
(i)
n ], (2.15)

where c(i)n (ln(Q2/µ2)) is a dimensionless function of its argument, n is the number of
indices for a symmetric traceless operator, and d[O(i)

n ] stands for the canonical dimension
of the operator in the expansion, O(i)

n . An important quantity here, is what is called
the canonical twist, t = d[O(i)

n ] − n, of an operator, as it determines the magnitude of
its contribution in the cross-section for large values of Q2. The pQCD improved parton
model corresponds to taking into account all operators with t = 2.

Related by renormalization group invariance, the scale dependence of the soft parts
can be derived from the scale dependence of the coefficient functions C̃. In the limit of
µ2 → ∞, the function cn contributes effectively as some power of Q2,

c(i)n (ln(Q2/µ2)) ∝
(

Q2
)γ

(i)
n

. (2.16)

The quantity γ(i)
n is known as the anomalous dimension corresponding to the operator

O(i)
n , modifying the power behavior from the canonical expectation that has been made

explicit in equation (2.15). In the asymptotic limit, for QCD, the anomalous dimensions
γ(i)

n vanish. The behavior of the renormalized operators resembles what is expected based
on the canonical dimensions of the operators, a phenomenon referred to as the approximate
scaling in QCD. The first non-vanishing term of the anomalous dimension is of order αs,

γ(i)
n = d(i)

n

g2

16 π2
+ O(g4), (2.17)
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and leads to the slow logarithmic dependence of the coefficient functions in the large
energy limit,

C̃(i)(Q2, µ2) = N (i)
n (ln(Q2/µ2))

−d
(i)
n

2 β0 . (2.18)

which is typical of an asymptotically free theory.
The OPE cannot be applied in processes in which soft objects take part but no operator

product is present. An example of such a case is inclusive e+e−-annihilation into a hadron.
For this case, an extension can be devised in terms of cut vertices [Muel74].

Connection of OPE to the parton model

The results of the rather formal analysis above, can be put in a form more reminiscent of
the naive parton model. Once the scale dependence of the coefficient functions has been
calculated perturbatively, it is possible to rearrange all scale dependence into kernels.
These kernels connect the values of a structure function, generically denoted F , at a scale
equal to µ2 with its values at a scale µ2

0,

F (x, µ2) =
∫ 1

x

dy

y
K(

y

x
, µ2, µ2

0)F (y, µ2
0). (2.19)

The kernel function is given by the expression,

K(z, µ2, µ2
0) =

1

2π i

∫ c+i∞

c−i∞
dn zn−1 C̃n(µ2)

C̃n(µ2
0)
, (2.20)

while the structure functions are related to the coefficient functions and matrix elements
by means of inverse Mellin transforms,

F (x, µ2) =
1

2πi

∫ c+i∞

c−i∞
dn x1−n C̃n(µ2) Θn, (2.21)

and operator mixing has been neglected for simplicity.
By means of a rather formal detour of the OPE, one arrives at a more realistic picture

of parton distribution functions. Parton distribution functions acquire a scale depen-
dence that can be calculated perturbatively through calculation of the coefficient func-
tions C̃(i)

n (µ2). Although the Θn cannot be calculated and have to be extracted from
experiment, precise knowledge of their corresponding coefficient functions, makes it pos-
sible to reconstruct parton distribution functions with data from different experimental
conditions.

Furthermore, when flavor-singlet quantities are considered, operator mixing extends
the naive parton model notion of a quark distribution, to a hybrid system of quark and
gluon distributions that cannot be considered separately. The quark and gluon distri-
butions mix under evolution and cannot be considered separately without an artificial
factorization-scheme dependent distinction.

2.2.2 Diagrammatic approaches to factorization

An alternative to the expansion into local operators is found in the diagrammatic ap-
proaches. These methods stem from attempts to achieve a partonic treatment of soft
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q q

Φ(P, k1, . . . , kn)

Sµν(xB , Q2, k1, . . . , kn)

P P

. . .k1 kn

Figure 2.2: Generic diagram contributing to unpolarized inclusive DIS in which a hard
part is connected to a soft part by some number of partons.

parts that are suppressed by a single power of 1/Q with respect to the leading order
contribution. Seminal papers for this approach are those written by Ellis, Furmanski and
Petronzio [Elli82, Elli83] in which unpolarized DIS is studied, and papers by Qiu and
Sterman [Qiu91a, Qiu91b] in which order 1/Q contributions to polarized Drell-Yan are
considered.

These diagrammatic methods are based on manipulations of diagrams, in which the
relevant non-locality between the fields in hadronic matrix elements is retained, while less
relevant non-locality is eliminated in favor of matrix elements involving more partons.
Whether correlations are more or less relevant is determined by the suppression in powers
of 1/Q that accompanies those structures in the cross-section.

A generic contribution to the hadronic tensor in unpolarized DIS has the form shown
in figure 2.2, where an arbitrary number of quarks or gluons connect a hard and a soft
part. The hard part Sµν(k1, . . . , kn), describes how a number of partons with momenta
k1, . . . , kn, take part in the hard interaction. It consists of the high energy limit of all
diagrams that describe how the n + 1 partons take part in the hard process and can be
calculated using perturbative techniques. The soft part, denoted by Φ(P, k1, . . . , kn), refers
to a hadronic matrix element with quark and gluon fields carrying the momenta k1, . . . , kn.
This is the part that determines the availability of these partons and it is assumed that
all momenta connected to this soft part are soft. This means that all invariants that can
be formed from the parent hadron momentum P and the parton momenta ki are small
compared to Q2.

From the hard boson and parent hadron momentum it is possible to construct a
light-like approximation of the parent hadron momentum P 2 = 0. The softness of all
partonic momenta implies that they are all approximately aligned along this direction.
The parton momenta kµ

i can be decomposed into a part collinear to this direction xiP
µ

and non-collinear part (ki − xiP )µ.
The most relevant correlations are obtained by expanding the hard part around a

collinear alignment of all parton momenta,

Sµν(xB, Q
2, k1, . . . , kn) = Sµν

0 (xB, Q
2, x1P, . . . , xnP )
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+
∑

j

∂

∂(kj − xjP )αj
Sµν(xB, Q

2, k1, . . . , kn)

∣
∣
∣
∣
∣
∣
col

(kj − xjP )αj + . . . . (2.22)

For mass-less partons the only scale in the hard part is the hard scale Q2. From this, one
concludes that the decreasing mass-dimensionality of the expansion coefficients through
the differentiation, results in suppression by factors of 1/Q. The first term in the expansion
is therefore the leading one, and because of the collinear alignment of all the parton
momenta in this first term, all non-collinearity in the soft part can be integrated over.
After integration of all non-collinearity we are left with the object Φ(x1, . . . , xn) in which
the reference to the parent hadron through P has been dropped. The leading part of this
contribution to the hadronic tensor is given by,

wµν
n (xB, Q

2) =
∫

dx1 . . . dxn S
µν(xB, Q

2, x1, . . . , xi)][Φ(x1, . . . , xn) + O(
1

Q
) (2.23)

where the brackets ][ indicate that the parton spin components of hard and soft parts are
still intertwined.

The parton spin structures of the hard and soft parts are disentangled by introducing a
complete set of polarizers Γi such that Φ(x1, . . . , xi) is decomposed into a set of functions
fj(x1, . . . , xi) of the collinear momentum fractions,

Φ(x1, . . . , xi) =
∑

j

ΓjΛ
D−Djfj(x1, . . . , xi), (2.24)

where D denotes the dimension of Φ(x1, . . . , xi) given by

D = dim Φn =
3

2
nF + nG − 2, (2.25)

with nF being the number of fermion fields in the matrix element and nG the number of
gluon fields. The quantity Λ � Q denotes a scale of order of the hadronic mass. Dj is
the dimension of the corresponding polarizer Γj. Projecting the hard part also on this
basis of polarizers effectuates the separation of the parton polarization structures.

In order to give an example, we introduce two light-like, dimension-less vectors ζµ and
ηµ such that

ζ2 = η2 = 0, (2.26)

ζ · η = 1. (2.27)

The light-like nature of these vectors reflects the softness of the physics connected with
hadrons, and we will identify the direction ηµ with the direction of the hadron momentum
P µ, such that

P µ = P · ζ ηµ. (2.28)

A soft parton momentum is then be represented by

kµ
i = xi P · ζηµ +

(k2 − k2
T
)

2P · ζxi
ζµ + kT , (2.29)

where the transverse part of the momentum k is defined by

kµ
T

= gµν
T
kν ≡ (gµν − ζµην − ζνηµ)kν. (2.30)
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The invariants k2 and k2
T

are small compared to Q2, in order for the parton momentum to
be soft. The properties (2.26) and (2.27) indicate that the vector ζµ can be used to project
momentum components along the direction η. The longitudinal momentum fraction is
defined in terms of this direction, absorbing a dimensional factor into the projector,

xi = kα
i

(

1

P · ζ ζα
)

≡ kα
i ζ̃α. (2.31)

Returning to our example, the contribution to the distribution function f1(x) from a
matrix element Φ(k), containing only a quark field carrying momentum k, as shown in
figure 2.3(a), can be written as

f1(x) =
∫

d4k δ(k · ζ̃ − x) Tr
[

Φ(k)
1

2
ζ̃/
]

. (2.32)

All parton momentum dependence in the hadronic matrix element Φ(k) is restricted by
the delta function to the direction projected out by ζ̃ and determined by the momentum
fraction x. The polarizer Γi that extracts the function f1 from Φ(k) is given by ζ̃//2.

The light-like directions ζ and η, in inclusive DIS, are constructed from the hadron
momentum, P , and the hard boson momentum, q. A soft parton with momentum along η
absorbs the hard momentum q resulting in a quark with momentum along ζ going into the
final state. In an arbitrary gauge, matrix elements with two quark fields and any number
of gluon operators contribute at leading order in 1/Q. In particular, matrix elements
with any number of the operator A · ζ contribute at leading order of 1/Q. This infinity
of matrix elements can be resummed into a gauge-link operator between the two quark
fields, rendering a color-gauge invariant expression for the distribution function f1(x).

An important simplification can be achieved in the case of inclusive DIS by choosing
a physical gauge in which the components present in the gauge-link operator, vanish.
Choosing η as the hadronic correlation direction, the gauge condition

A · ζ = 0 (2.33)

make the infinity of additional matrix elements vanish and the gauge-link operator reduce
to unity. The only matrix element that then contributes to the distribution functions
f1(x) is a matrix element containing two quark fields1. In this case, one gets rid of the
infinity of matrix elements with gluons polarized along η, and the gauge-link operator
reduces to the identity. We will return to this subject in the next chapter.

With this choice of gauge, the suppression by a factor (Λ/Q)τ in the cross-section of
a specific soft part, is given by the formula

τ =
3

2
nF + nG − 2 − max {Di} . (2.34)

For unpolarized inclusive DIS, setting the quark mass equal to zero, this expression be-
comes [Furm81b, Elli82],

τ = nF + nG − 2 +
1

2
[1 − (−1)nG ] , (2.35)

1Strictly speaking, this is only true when the contribution of a single quark flavor is considered.

18



ht

P P

k k

Φ(k)

Sµν(q, k)

(a)

P P

k k1

ΦA(k, k1)

Sµν(q, k, k1)

(b)

Figure 2.3: In a light-cone gauge all leading order in 1/Q contributions will come from
diagram (a). Sub-leading contributions originate in diagram (a) and (b).

from which one can see that only even powers of τ appear. We will call this power τ corre-
sponding to a specific non-local structure in a correlator, (non-local) twist. Although the
term differs from the one with the same name in the OPE, this non-local twist determines
the minimal suppression in powers of 1/Q that a soft parts receives in the cross-section,
based on the mass dimension of the soft part. For some soft functions, in particular
collinear leading order functions, non-local twist-two can be made to correspond, by tak-
ing moments of the momentum fraction

∫

dx xnf(x), (2.36)

to an infinite number of matrix elements containing only local twist two operators. For
the non-collinear leading order functions, the relation is more complicated and is under
investigation. Whenever we use in this thesis the term twist we will assume this ’working
redefinition of twist’ [Jaff95], and refer to the original term twist explicitly as local twist.

The consideration of polarized inclusive DIS, leads to Dirac and Lorentz structures in
hadronic matrix elements that are not present in unpolarized scattering. Some of these
structures are of such mass dimension, that they allow for contributions of order 1/Q in
the cross-section, even in the case of vanishing quark mass. From such a diagrammatic
analysis follows, that, in a suitable light-like gauge and only considering flavor non-singlet
contributions, a calculation of the cross-section to order 1/Q, only involves two diagrams.
All leading order contributions arise from the diagram shown in figure 2.3(a). Sub-leading
contributions, suppressed by a power of 1/Q, arise in the diagram of figure 2.3(a) and in
the diagram of figure 2.3(b) containing an additional gluon field. Due to the choice of
gauge, it is the transverse components of the gluon field that have to be considered and
are selected by the polarizer.

Perturbative corrections

In order to define the hard and soft parts in a way consistent with an interacting field
theory, an analysis beyond tree level is necessary. The contribution shown in figure 2.4,
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P P
Φ(p)

Figure 2.4: Example of a perturbative correction to inclusive DIS.

for instance, has to be taken into account as it contributes at leading order in 1/Q.
One could argue, due to asymptotic freedom and the fact that this diagram is order
αs, that its contribution is not very important. On the other side, due to the mass-
less nature of quarks and gluons, divergences are generated in specific loop momentum
integration regions leading to the appearance of large logarithmic contributions. Such a
large logarithm that accompanies each occurrence of αs can spoil an expansion in orders
of αs.

The solution of this problem is known as the factorization of mass singularities [Elli79a]
and involves a redefinition of the soft parts. These corrections, containing logarithmic
divergences connected to the mass-less nature of partons, not belonging in the hard part,
are absorbed in the soft parts. A treatment to all orders in αs for the case of unpolarized
DIS is investigated in [Curc80b]. The redefinition of the soft parts leads to a logarithmic
scale dependence,

d

d lnµ2
f(x, µ2) =

αs(µ
2)

2 π

∫ 1

x

dy

y
P (

y

x
, αs(µ

2))f(y, µ2), (2.37)

in which the kernel, P (y, αs(µ
2)), can be calculated order by order in αs with increasing

accuracy. We will return to the calculation of this dependence in chapter 5.

2.3 Factorization theorems

A consistent separation of hard and soft physics within an interacting field theory descrip-
tion, of the description of how hadrons participate in hard electro-weak processes, leads
to a substantial modification of the concepts of the naive parton model, which formed
the motivation for the separation. The soft parts are renormalized in order to absorb the
mass divergences generated by perturbative corrections in the hard parts, and results in
a perturbatively calculable scale dependence. Theorems exist that allow one to write the
cross section for several processes in terms of these soft and hard parts.

The leading order in 1/Q contributions to the cross-section for inclusive unpolarized
DIS can be written in the following form,

dσ

dxB dQ2
=
∫ 1

xB

dx

x

∑

a

fa(x, µ
2)Ha(

xB

x
,
Q

µ
, αs(µ

2)), (2.38)
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where a sum over parton types a is performed. The soft functions fa denote parton
distribution functions that depend on a longitudinal momentum fraction x and some
scale µ2. The hard part Ha is characteristic for the type of parton a. Here, in order to
concentrate on the physics of the hadronic tensor, the leptonic tensor has been contracted
into the hard part and redundant leptonic degrees of freedom have been integrated over.
The hard part depends on xB, on the factorization scale Q, the renormalization scale
µ and the coupling constant αs. Note that the µ-dependence is artificial, introduced
by renormalization, and the full derivative to µ of the left side vanishes. In practice,
renormalization and factorization scales are set equal in order to obtain a more transparent
description. Here we keep them different to reflect the different meaning of both scales.
A factorization scale should be large enough compared to hadronic scales in order to
be useful. The factorization scale is usually taken to be the scale characterizing a hard
process.

Similarly, the leading order contribution to the cross-section for lepton anti-lepton
annihilation into a single hadron, can be written in the form

dσ

dzh dQ2
=
∫ 1

zh

dz

z

∑

a

H ′
a(
zh

z
,
Q

µ
, αs(µ

2))Da(z, µ
2), (2.39)

but where now the momentum fraction of the parton with respect to the fragmenting
hadron is given by the expression

zh =
2Ph · q
Q2

, (2.40)

and the soft object Da(z, µ
2) denotes a scale dependent fragmentation function.

The symbols fa(x) and Da(z) are often used to denote the distribution and fragmen-
tation functions respectively, of unpolarized quarks in and into an unpolarized hadron.
Experimental conditions can give a handle on parton and hadron polarization, allowing
for the extraction of different soft parts than only the fully unpolarized functions men-
tioned above. The unpolarized functions are used here in a generic way in order to write
down the factorization theorems. Identical theorems apply for polarized functions.

In principle, when only a single hadron is present, there are three distribution func-
tions at leading order in 1/Q for a spin-1/2 hadron, that encode parton and hadron
polarization. Two functions, f1(x, µ

2) and g1(x, µ
2), describe unpolarized quarks in an

unpolarized hadron and the longitudinal polarization asymmetry of quarks in a longi-
tudinally polarized hadron. A third function, h1(x, µ

2), also describes the polarization
asymmetry of quarks in a polarized hadron, but now along a direction transverse to the
longitudinal direction determined by the hard process, while the hadron is also polarized
in this direction. The last function h1(x, µ

2) differs from the first two in being chiraly

odd. Any finite order diagram contributing to the hard part, disregarding quark masses,
conserves chirality. As a consequence h1(x, µ

2) can only appear with a suppression factor
m/Q in the cross-section equation (2.38).

Analogously, sets of distribution and fragmentation functions can be defined for hadronic
matrix elements involving only gluon fields. In general, both quark and gluon distribution
and fragmentation functions have to be considered on the same footing. Simplification
occurs when only flavor non-singlet quantities or chiral odd objects are considered. Disre-
garding quark masses, the hard parts cannot change quark chirality and furthermore they
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Figure 2.5: Schematic representation of the Drell-Yan process in a collinear approximation

preserve total quark flavor. As a consequence, pure gluonic contributions are of no rele-
vance in these cases. In this thesis, we will only look at flavor non-singlet soft structure,
allowing us to discard pure gluonic contributions and therefore simplify the description
needed.

2.4 Two-hadron processes

The factorized form of the cross-sections in the last section can be extended to processes
that depend on the soft physics of two hadrons. In order to separate soft and hard physics
it is necessary that the hadrons are hard with respect to each other. Two hadrons are
hard with respect to each other when the invariant product of the momenta of the two
hadrons is of O(Q2), where Q is the large scale characterizing the hard process. When
this is this case, the contributions to the cross-section that are leading order in 1/Q, arise
from contributions in which a single parton emerges from each hadron and takes part in
the hard process.

As in the single hadron case, a picture in which each hadron is replaced by a quark
that takes part in the hard process, is complicated by the presence of soft gluons. The
diagrams in which they appear contribute at the leading orders in 1/Q and thus cannot
be disregarded. Careful analysis of all possible contributions of this type leads in several
cases to either their cancellation or leads to a regrouping of these contributions, such that
the cross-section can be written in the desired factorized form.

Considering the Drell-Yan process to be more specific, the large scale Q originates
from the large center of mass energy with which two hadrons collide. A quark from one
hadron annihilates with an anti-quark in the other hadron, while both partons carry a
momentum fraction of O(1). The boson resulting from the annihilation decays into a
lepton anti-lepton pair with a total momentum squared equal to Q2. In a frame in which
xA

~PA + xB
~PB = 0, one could picture the lepton-pair to originate in the center of figure

2.5. In this figure the parton originating from hadron A has momentum xA PA and the
parton originating from hadron B has momentum xB PB. The partons are represented in
the figure as if they were collinear to their parent hadrons. In general, this is not the case.
The two hadron momenta and the hard boson momentum will not lie in the same plane.
On the other side, if the cross-section is measured only in terms of the scaling variables
xA and xB and Q2, in other words, all non-coplanarity is averaged over, the leading order
contribution arises from this approximation. The cross-section can be put in the following
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form,

dσ

dxA dxB dQ2
=

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

∑

ab

H ′′′
ab(
xA

ξA
,
xB

ξB
,
Q

µ
, αs(µ))fa(ξA, µ)fb(ξB, µ). (2.41)

Although the analysis is more complex than the situation including only one hadron, the
above expression looks like a straight-forward extension of equation (2.38). In the same
manner, factorization theorems can be written down for other hard processes involving
two hadrons. For one-particle inclusive DIS the cross-section can be written as,

dσ

dxB dzh dQ2
=

∫ 1

xB

dx

x

∫ 1

zh

dz

z
∑

ab

H ′′
ab(
xB

x
,
zh

z
,
Q

µ
, αs(µ

2))fa(x, µ)Db(z, µ). (2.42)

The cross-section for lepton anti-lepton annihilation into hadrons would be analogous to
equation (2.42) but with a second fragmentation function in the place of the distribution
function,

dσ

dzA dzB dQ2
=

∫ 1

zA

dz

z

∫ 1

zB

dz′

z′

∑

ab

H ′′
ab(
zA

z
,
zB

z′
,
Q

µ
, αs(µ

2))Da(z, µ)Db(z
′, µ). (2.43)

Although the proofs of factorization are complicated by the presence of a second detected
hadron, the soft parts appearing in equations (2.42), (2.41) and (2.43) are, except that
now chiral odd structures can appear unsuppressed, not different to those appearing in
equations (2.38), and (2.39). In both the single hadron as the case involving two hadrons,
the same correlations along light-like directions are relevant.

In general the two parent hadron momenta and the hard boson momentum will not be
co-planar and in contrast to the single-hadron case, this additional direction protruding
from the collinear plane can be used to define and extract additional soft parts at leading
order in 1/Q. This momentum components protruding from the collinear plane are called
the transverse directions. Studies have shown the important role of transverse momentum
of partons in hard processes involving more than one hadron [Rals79]. This will be
illustrated in the next section considering the DY process at tree level.

Beyond collinearity

The presence of a second hadron enables us to go beyond the collinear approximation
mentioned above. The two hadron momenta and the hard boson momentum will in
general not be coplanar. In figure 2.6 the situation for Drell-Yan is depicted in a frame in
which the two hadrons have no transverse momentum, but the boson has. This transverse
momentum is transferred to the lepton pair and can be measured.

After definition of the momentum fractions xA and xB, the transverse part of the hard
boson, qT , in unambiguously specified

qµ ≈ xAP
µ
A + xbP

µ
B + qµ

T
. (2.44)
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Figure 2.6: Schematic representation of the Drell-Yan process extended to include intrinsic
momentum of quarks in the parent hadrons

The magnitude of this transverse part, Q2
T

= −q2
T
, determines the type of factorization

theorem that applies.
A first possibility is that the degree of non-coplanarity is comparable in magnitude

to the hard scale, Q2
T
≈ Q2. In this case, the transverse components of the hard boson

cannot originate from intrinsic transverse momentum in the parent hadrons, and has to
be attributed to the emission of hard gluons. Inclusion of this type of corrections leads
to a factorization theorem of the same form as the one shown in equation (2.41).

The degree of non-coplanarity of the three momenta can be much smaller than the hard
scale, but still much larger that a typical hadronic scale, that is Λ2 � Q2

T
� Q2. There

is a theorem that applies in this case [Coll85b], and has been worked out for unpolarized
hadrons. Although more complicated, the theorem can be extended to the polarized case.

The case that is most interesting to us, is the case in which the transverse component of
the hard boson is soft, that is Q2

T
≈ Λ2. In this case the boson transverse momentum can

be attributed to intrinsic transverse momentum of partons in hadrons and to soft gluon
emission. For the case of measured soft transverse momentum a factorization theorem
exists of the following form

dσ

dQ2 dx1 dx2d2qT

=
∑

a,b

∫ 1

x1

dx′
∫ 1

x2

dx′′
∫

d2kT d
2pT

∫
d2b

(2π)2

×e−i b·(pT +kT−qT )ΦA
a(x

′,kT )Hab(x′, x′′;Q) e−S(b,Q) ΦB
b(x

′′,pT )

+Y (x1, x2, Q,QT ), (2.45)

in which an additional factor e−S(b) appears, arising from soft gluon emission. This factor
is called the Sudakov factor, which is of soft nature. It cannot be completely computed
using perturbation theory, but partially has to be extracted from experiment. It is an
important factor because it leads to suppression of the cross-section at larger values of qT

as investigated in [Boer01]. The last term Y (x1, x2, Q,QT ) is negligible at small values of
transverse momentum, Q2

T
≈ Λ2, but grows as Q2

T
approaches Q2. This term makes the

connection with the collinear form of equation (2.41) when integrating over all qT .

Drell-Yan at tree-level

The factorized form of equation (2.45) suffices as a theoretical basis for the extraction of
transverse momentum related structure from two colliding hadrons in Drell-Yan [Rals79].
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Figure 2.7: Diagrammatic representation of the leading order in 1/Q contribution to Drell-
Yan.

The extraction of transverse momentum related additional structure, can be accomplished
by weighting the cross-section with odd-powers of qT and integrating over it.

The appearance of new soft parts in the cross-section can be illustrated looking at the
tree level diagram shown in figure 2.7, and comparing the case in which the cross-section
is multiplied by a single factor of qT and the case in which it is not, before integration
over qT .

Hadron A, with momentum PA collides with hadron B with momentum PB and a
lepton-pair with invariant mass Q2, that is created in the collision, is detected disregarding
lepton polarization. In a frame in which the lepton-pair center of mass is at rest, the
trajectories of the two colliding hadrons form the collision axis. The polarization of
hadron A is longitudinal, approximately along the collision axis, and the polarization of
hadron B is transverse, more or less transverse to the collision axis.

The contribution of figure 2.7 to the unweighted cross-section is given by the expression

wµν
0 =

∫

d4k d4p d4q δ4(q + k − p) Tr [ΦA(k)γµΦB(p)γν] . (2.46)

Due to the soft nature of the quark momenta k and p it is possible to approximate the
momentum conserving δ-function in the hadronic tensor in the following way

δ4(q + k − p) ≡ δ((q + k − p) · ζ) δ((q + k − p) · η) δ2(qT + kT − pT )

= δ(xA − x) δ(xB − y) δ2(qT + kT − pT ) + O(
1

Q2
). (2.47)

Here the vectors ζµ and ηµ are light-like vectors, that satisfy ζ2 = η2 = 0 and ζ · η = 1.
Each of these directions correspond to one of the parent hadrons. The hard photon
momentum q is the only hard momentum, and therefore the only momentum with both
ζ and η components large.

P µ
A =

1

xB

Q√
2
ηµ (2.48)

P µ
B =

1

xA

Q√
2
ζµ (2.49)
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qµ =
xA

xB

Q√
2
ηµ +

xB

xA

Q√
2
ζµ (2.50)

The parton momenta are soft themselves and predominantly a fraction of the parent
hadron momentum, k ≈ xPA and p ≈ yPB. Partons have additional momentum com-
ponents with respect to their parent hadrons, but the magnitude of these components is
small compared to Q.

Integration over all small and transverse momentum components, leads, with the po-
larizations chosen for the parent hadrons, to the following soft parts in the hadronic
tensor,

∫

d4k d4p δ(xA − x) δ(xB − y) Tr [ΦA(k)γµΦB(p)γν] ∝

lµν

(

MB

Q
g1(xA) gT (xB) +

MA

Q
hL(xA) h1(xB)

)

, (2.51)

where lµν denotes the structure to be contracted with the leptonic tensor, and the Mi

denote the hadron masses. The relevant part in this expression is the soft part, the two
products of distribution functions, g1(xA) gT (xB) and hL(xA) h1(xB). Although the exact
meaning of these functions will not be clarified until the next chapter, it now matters that
each function in a product, corresponds to each hadron involved, and that the type of
function appearing indicates the role played by the hadron in the hard process. There are
two terms because, with these specific hadron polarizations chosen, two different quark
polarization configurations can contribute to the leading term of the cross-section. In
this unweighted case, in which only collinear functions appear in the cross section, two
functions g1 and h1 are leading order while the remaining two are sub-leading order. The
presence of a leading order function in each product leads to an overall suppression factor
of 1/Q in the cross-section.

If we weight the cross-section with an extra factor of qT the contribution of the diagram
in figure 2.7 to the hadronic tensor now is given by an expression of the form

aµν
0 ≡

∫

d2qT (q · n)wµν
0

=
∫

d4k d4p d4q qT · n δ4(q + k − p) Tr [ΦA(k) γµ ΦB(p) γν]

=
∫

d2kT d
2pT (pT − kT ) · n Tr [ΦA(xA,kT ) γµ ΦB(xB,pT ) γν]

∝ l′
µν
(

g1(xA) g
⊥(1)
1T (xB) + h

⊥(1)
1L (xA) h1(xB)

)

(2.52)

where we see the appearance of transverse moments f (1)(x), defined as

f (1)(x) ≡
∫

d2kT

k2
T

2M2
f(x,k2

T
) (2.53)

of non-collinear functions from the soft parts, contributing to the cross-section. The object
l′µν is just the tensor structure to be contracted with the leptonic tensor.

This example was aimed at clarifying two things. First, the weighting of the cross-
section with an odd factor of qT allows the extraction of additional non-collinear soft
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information from the participating hadrons. Second, by considering a qT -weighted cross-
section, no suppression factor of 1/Q accompanies the soft part. A detailed treatment of
both collinear and non-collinear functions will follow in chapter 3.

In this section, the role of parton transverse momentum was illustrated using a rather
restricted example. More elaborate treatments of the role of parton transverse momentum
in Drell-Yan [Tang95], 1-particle inclusive deep-inelastic electro-production [Muld96], and
e+e−-annihilation [Boer97a] exist. An extensive characterization of the soft structure in
hadrons is necessary to treat the role played by hadrons when quark transverse momentum
is taken into account. In the next chapter we will discuss the parametrization of non-
collinear soft parts and its relation to the collinear set of distribution and fragmentation
functions.

In the factorized forms of the cross-sections in equation (2.42) and equation (2.41),
the same notation was used for a distribution function. The reappearance of the function
in another factorized cross-section, reflects the fact that the hadron plays an identical role
in the two processes. This identification of soft parts in different processes is an example
of universality of distribution and fragmentation functions, and is known by the name
of strong factorization [Coll83]. The least stringent extreme of factorization is known as
weak factorization, only stating the feasibility of the separation into soft and hard parts.
Strictly speaking, scale dependence of soft functions can be seen as a degradation of strong
factorization to weak factorization as for each value of Q2 the separation of hard and soft
parts differs. However, perturbation theory provides us with a differential equation for
connecting the factorized soft parts at different values of Q2. As a result, scale dependent
soft parts regain their universal status in several processes. There is also the possibility
of a restricted universality in which, for instance, factorized soft parts are universal only
for a specific initial state and can be identified between processes involving different final
states.

How strong factorization turns out in the case of kT -dependent functions is under
study. The presence of the soft Sudakov factor in equation (2.45) indicate a more sub-
tle situation when transverse momentum is included. The more complicated gauge-link
operators when including transverse momentum, can generate additional factors, depend-
ing on the processes under consideration [Coll02, Metz02, Coll04, Bomh04] affecting the
universality of non-collinear functions.
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CHAPTER

THREE

Distribution and fragmentation functions

3.1 Introduction

In this chapter we introduce the set of quark distribution and fragmentation functions
that summarize the role played by hadrons in hard electro-weak processes. The distribu-
tion functions describe the hadron-to-quark transition, while the fragmentation functions
describe the quark-to-hadron transition. They depend on the hadron and on specific
components of the quark momentum.

In our case, the set takes into account intrinsic transverse momentum of quarks with
respect to the parent hadron, or the hadron they fragment into, and leads therefore to
a larger number of distribution and fragmentation functions than the usual collinear set,
that neglects or averages out this transverse momentum. When more than one hadron
takes part in a hard process and azimuthal asymmetries are considered, transverse mo-
mentum dependent functions are required to fully describe the cross-section, making the
study of these functions relevant.

In this chapter we introduce the nomenclature of the functions and discuss their prop-
erties. We will restrict ourselves to the structure that can contribute to leading and
sub-leading terms in an expansion of the cross-section in powers of 1/Q, where Q is the
large scale that characterizes the hard process. Furthermore, we will limit ourselves to
spin-1/2 and spin-0 hadrons, although this approach can straightforwardly be extended
to spin-1 hadrons [Bacc00].

In this chapter the functions will be considered at tree-level, assuming that the fac-
torization program can be completed without problems and disregarding the scale depen-
dence that results from that program. In chapter 5 we will address the calculation of the
Q2-dependence that the functions necessarily develop in the process of factorization.

We will start by introducing the hadronic matrix elements that are relevant when
considering structure that appears at leading and sub-leading order in 1/Q. Next we will
discuss the parametrization of all structure that is relevant for the study of non-collinear
distribution and fragmentation functions. This parametrization results in a redundant
base of functions. We will also discuss relations that reduce the set of functions into an
independent set.
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3.2 Relevant hadronic matrix elements

Which hadronic matrix elements are relevant in a hard process when only contributions
up to a specific order in 1/Q are considered, is determined by dimensional arguments.
In general, the answer counts an infinite number of matrix elements. Although including
more fields in a matrix elements usually leads to more suppression by powers of 1/Q,
specific components of the gluon field contribute without giving rise to suppression. The
resulting infinity of matrix elements can be resummed into gauge-invariant objects that
can be put into their simplest form by a judicious choice of gauge.

If we restrict ourselves momentarily to target hadrons, the extension of the parton
model ideas to QCD, leads to consideration of non-local matrix elements of quark fields
evaluated between their parent hadron states. To consider in a gauge theory a non-local
product of quark fields, disregarding gluons, clearly leads to trouble if we want to assign
them the same degree of universality as that of the parton model’s distribution functions.
The correlations among quark fields that end up in the cross-section, the QCD analog of
the parton distribution function, should be extracted from an object defined as

Φij(P, S; k) ≡ Φij(k) =
∫

d4y

(2π)4
eik·y〈P, S|ψj(0)U(0, y;X )ψi(y)|P, S〉, (3.1)

where P and S denote the parent hadrons momentum and polarization respectively, and
specify its state, and k is the momentum carried by the quark. Besides quark fields, one
also encounters in equation (3.1) a gauge-link operator

U(0, y;X ) = P exp

[

−ig
∫ 1

0
dτAµ(X )

dX µ(τ)

dτ

]

, (3.2)

which is necessary to make the non-local matrix element gauge-invariant in a gauge theory.
The path X µ runs from X (0) = 0 to X (1) = y, and connects the two quark field operators,
along some trajectory. The symbol P denotes path-ordering of all the gluon color fields
along the trajectory. The object in equation (3.1) is the fundamental soft object considered
in this thesis and will be usually referred to by the shorthand Φ(k), in which all reference
to the parent hadron state is dropped. A diagrammatic representation of this object is
shown in figure 3.1(a).

Also of relevance in studying transverse momentum or sub-leading order distribution
functions, is the matrix element that includes a gluon field operator at an additional
space-time point and is defined as,

ΦA
µ
ij(P, S; k, k1) =

∫
d4y

(2π)4

d4y1

(2π)4
ei k1·y+i (k−k1)·y1

×〈P, S|ψj(0)U(0, y1;X ) g Aµ(y1)U(y1, y;X1)ψi(y)|P, S〉. (3.3)

Note that the above matrix element is not gauge-invariant, in spite of two gauge-link
operators running along the paths X and X1, compensating for gauge variance originating
from the non-locality of the matrix element. A gauge invariant matrix element is easily
constructed by replacing the gluon field operator by a covariant derivative, Dµ,

Φα
D(k, k1) =

∫
d4yd4y1

(2π)4
ei(k·y+(k−k1)·y1)

×〈P, S|ψ(0)U(0, y;X )Dα(y)U(y, y1;X1)ψ(y1)|P, S〉. (3.4)
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Figure 3.1: Diagrammatic representation of hadronic matrix elements in which non-local
gauge variance is canceled by inclusion of gauge link operators. (a)) The matrix element
Φ(k) involving only quark fields. (b)) A matrix element Φµ

A(k, k1) involving quark fields and
an additional gluon.

Alternatively, a matrix element containing the field strength tensor Fµν,

Φαβ
F (x, y) =

∫
d4yd4y1

(2π)4
ei(k·y+(k−k1)·y1)

×〈P, S|ψj(0)U(0, y;X )F αβ(y)U(y, y1;X1)ψ(y1)|P, S〉. (3.5)

is gauge-invariant. As correlations between quark-spin and parent hadron spin are of
interest to us, both Φ(k)ij and Φµ

A(k, k1)ij are 4 × 4-matrices in Dirac space. The quark-
gluon correlator carries an additional Lorentz-index from the gluon field.

Both objects Φ(k) and Φµ
A(k, k1) imply a summation over color components of the

fields involved. In the case of Φ(k), this summation is of the form ψa Uab ψb, in which Uab

represents the effective color matrix resulting from the gauge link operator. In the case of
the matrix element Φµ

A(k, k1), the summation can be written as ψa Uab Abc U ′
cd ψd, where

besides summing over two gauge-link operator color structures, the color matrix of the
gluon field, Abc, is involved.

The expressions introduced in this section are the most important in considering in-
trinsic transverse momentum of quarks in their parent hadrons. It should be noted that
these matrix elements are defined in terms of renormalized operators, and this fact will
be manifest in the scale dependence of the distribution and fragmentation functions that
will parametrize the relevant structures in hard processes. In this section we will restrict
ourselves to tree level, in order to define these structures.

In hard process not all possible correlations over space-time are of equal importance.
The most relevant correlations are most easily described in terms of light-cone vectors. In
the next section we will introduce the use of these directions and their meaning in hard
processes.

3.2.1 Light-like correlations

Correlations between different space-time points in the matrix element of equation (3.1)
are not of equal importance in hard processes. This can be seen by looking at the handbag
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Figure 3.2: The most important contribution to the simplest of all hard processes: Inclusive
DIS

diagram contribution to inclusive DIS. This contribution, shown in figure 3.2, is given by
the expression

wµν
0 = 2π

∫

d4k δ((k + q)2) θ((k + q) · ζ) Tr [Φ(k)γµ(k/+ q/)γν] . (3.6)

In this analysis it is convenient to use light-cone vectors η and ζ with properties (2.26) and
(2.27), to describe the parton momenta. Choosing again the parent hadron momentum
and all related partonic momenta along η, the light-cone vectors can be chosen such that
the parent hadron momentum P , quark-momentum k and hard boson momentum q are
decomposed in the following way

P µ = P · ζ ηµ +
M2

2P · ζ ζ
µ (3.7)

qµ = −xBP · ζ ηµ +
Q2

2xB P · ζ ζ
µ (3.8)

kµ = xP · ζ ηµ +
(k2 − k2

T
)

2xP · ζ ζµ + kµ
T
, (3.9)

where xB is defined as in equation (2.4) and M denotes the parent hadrons mass. The de-
composition of the quark momentum shows that after specifying ζµ and ηµ the transverse
sub-space, in which kT resides, is determined according to equation (2.30). The invariants
M2, k2 and k2

T
are all of order of some hadronic scale Λ2, which is small compared to Q2.

One obtains the collinear approximation of the parton model if the scales k2 and k2
T

are
set to zero in the hard part, and these variables are integrated over in the soft part. In
that case, both the parent hadron and quark momentum lie on a light-cone, P 2 = k2 = 0,
and are proportional to each other, k = xP , so that they lie on the same light-cone
leg. The inclusion of quark transverse momentum is a small deviation from this collinear
alignment of parent hadron and quark momenta.

A parton model result is obtained by taking the first term in the collinear expansion of
the hard part as shown in equation (3.6). It is also possible to study the full expression for
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P P

k k1

k + q k1 + q

Figure 3.3: In a general gauge this diagram contains parts that contribute at leading order
in 1/Q. Leading parts from this diagram an analogous diagrams involving more gluons, can
be summed into gauge-link operators.

wµν
0 and track down the terms of O(1). Our starting point is the assumption that when

any of the invariants k2 or k2
T

reaches a magnitude of order Q2, the soft matrix element
Φij(k) vanishes. Under this assumption the tree-level contribution to the hadronic tensor
in inclusive DIS is given by

2π
∫

d4k δ((k + q)2) θ((k + q) · ζ) Tr [Φ(k)γµ(k/+ q/)γν] =

∫

dx δ(x− xB)
∫ dk2

2xP · ζ
∫

d2kT Tr
[

Φ(k)γµζ̃/γν
]

+ O(
1

Q2
). (3.10)

where the shorthand ζ̃/ = ζ//P · ζ is used to indicate the absorption of a dimensionful
quantity.

The important thing here is that the leading part in powers of 1/Q2 of the hard part
is independent of k2 and kT . As a result of this, these variables can be integrated over,
resulting in a soft part contributing at leading order in 1/Q, that only depends on the
longitudinal momentum fraction x,

Φij(x) ≡
∫

d4k δ(k · ζ − xP · ζ) Φij(k). (3.11)

Inserting the definition of Φ(k) in equation (3.11) exposes the space-time correlations
between the two quark fields that contribute at leading order in 1/Q. The correlations
have y · ζ = 0 and yT = 0, and thus lie on a straight line along the light-cone.

Another relevant tree-level diagram is shown in figure 3.3, and is given by the following
expression,

wµν
1 =

∫

d4kd4k1
Tr [Φα

A(k, k1)γ
µ(k/1 + q/)γα(k/+ q/)γν]

((k + q)2 + iε)((k1 + q)2 + iε)
(3.12)

The leading order contribution in this diagram is given by

wµν
1 =

∫

d4kd4k1

Tr
[

Φα
A(k, k1)γ

µζ̃/γαζ̃/γ
ν
]

(x− xB + iε)(x1 − xB + iε)
+ O(1/Q)

=
∫

dxdx1

Φζ
A(x, x1)Tr

[

γµζ̃/γν
]

(x− xB + iε)(x1 − xB + iε)
+ O(1/Q), (3.13)
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where the last line follows from the identity ζ/k/ζ/ = 2k · ζ ζ/, and

Φζ
A(x, x1) ≡

∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ) Φα
A(k, k1)ζα. (3.14)

is the first term in the expansion of the gauge-link operator in a color-gauge invariant
Φ(x).

As a consequence of all relevant correlations laying on a straight line along the light-
cone, it is possible to choose a gauge satisfying A · ζ = 0, in which the component of the
gauge field that is picked up by the hard interaction, vanishes. In this case the gauge
link in equation (3.1) reduces to the unit matrix in color space. This is easily realized in
the case of a single hadron, like the example of inclusive DIS discussed here. In that case
all leading order in 1/Q contributions arise from a single matrix element, the light-cone
correlation function [Sope77, Sope79, Jaff83, Mano90],

Φij(x) =
∫
dλ

2π
ei λ x 〈P, S|ψj(0)ψi(λ ζ̃)|P, S〉 (3.15)

When more than one hadron, that are hard with respect to each other, are taken into
account, this cannot be done in general and gauge-link operators have to be considered.

3.2.2 Collinear structure

In the collinear approximation, the most general parametrization of the soft structure for
a spin-1/2 hadron in leading order in 1/Q, in accordance with the required symmetries
(hermiticity, parity, time reversal), is given by three distribution functions,

Φtwist−2(x) =
1

2
{f1(x) η/+ SLg1(x) γ5η/+ +h1(x) γ5S/T

η/} . (3.16)

The spin vector of the hadron has been decomposed into the following components,

Sµ =
SL

M

P · ζ
M

ηµ − SL

M

M2

2P · ζ ζ
µ + Sµ

T
. (3.17)

Denoting these functions as twist-two makes sense because the local operators connected
to the Mellin moments of these functions are related to the matrix elements of local
twist-two operators, like ψ ζ/(D · ζ)n ψ.

Being in this thesis mainly interested in flavor singlet hadronic structure, all distribu-
tion and fragmentation functions should be considered to correspond to a specific quark
flavor. In order to simplify the notation of the functions we will suppress the flavor
specification 1 and assume it to be understood.

A calculation of the hadronic tensor up to order 1/Q, requires the introduction of
additional soft structure that is accompanied by a factor of M/P · ζ. The quantity P · ζ
reflects our choice of frame, in particular boosts along the ηµ direction. When these soft
parts are combined with their corresponding hard parts, the factors of M/P ·ζ are canceled
by a factor of P · ζ/Q, giving rise to suppression in powers of 1/Q in the cross-section.

1Common quark flavor q assignments are f q

1
(x) = q(x), gq

1
(x) = ∆q(x) and hq

1
(x) = ∆T q(x) = δq(x).
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The parametrization of the sub-leading order structure in the quark-quark correlator, now
requiring only the correct behavior under hermitian conjugation and parity reversal,

Φtwist−3(x) =
M

2P · ζ

{

e(x) + gT (x) γ5S/T
+ SL hL(x) γ5

[η/, ζ/]

2

}

+
M

2P · ζ

{

−i SL eL(x)γ5 − fT (x) εT
ρσγρSTσ + i h(x)

[η/, ζ/]

2

}

. (3.18)

where the quantity εT
µν is the projection of the Levi-Civita tensor off the light-cone and

will be defined in this thesis by,

εT
µν = εσρµνζσηρ. (3.19)

We have not imposed time-reversal invariance in order to study also the time-reversal odd
(T-odd) functions.

The functions e, gT and hL are time-reversal even (T-even), the functions eL, fT and
h are time-reversal odd (T-odd). We will not concern ourselves with the formal problems
related to T-odd distribution functions [Coll93, Boer98]. Our goal is to also study the
scale dependence of non-collinear T-odd distribution functions, and in in light of recent
developments in making their existence plausible [Brod02a, Brod02b]), we will assume
these functions are non-vanishing.

A treatment up to order 1/Q without considering quark-gluon correlations is not
consistent, and leads for instance to violation of electro-magnetic gauge invariance of
the hadronic tensor. This is evident from the equations of motion connecting quark
matrix elements and quark-gluon matrix elements. In a A · ζ = 0 gauge quark-gluon
matrix elements start contributing to the cross-section at order 1/Q through the transverse
components of the gluon field. For a color-gauge invariant parametrization one considers
the collinear remnant of the matrix element in equation (3.4),

Φα
D ij(x, y) ≡

∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − yP · ζ) Φα
D ij(k, k1) (3.20)

where x = k · ζ/P · ζ and y = k1 · ζ/P · ζ. This sub-leading collinear object is parameter-
ized, requiring only the correct behavior under parity reversal, in terms of two-argument
functions [Jaff92].

Φα
D(x, y) =

1

2

{

GD(x, y) iεT
αβST βη/+ G̃D(x, y)ST

α γ5η/

+HD(x, y)SL γ5γT
αη/+ ED(x, y) γT

αη/

}

. (3.21)

Hermiticity determines the symmetry under interchange of the arguments

G∗
D(x, y) = −GD(y, x), (3.22)

G̃∗
D(x, y) = G̃D(y, x), (3.23)

H∗
D(x, y) = HD(y, x), (3.24)

E∗
D(x, y) = −ED(y, x). (3.25)

Time reversal invariance requires these functions to be real.
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3.3 Quark transverse momentum

In the example of inclusive DIS in the last section, the δ-function that originates from
the Cutkovsky rule [Cutk60] for the handbag diagram, fixes the quark momentum in the
final state to also be light-like (neglecting quark masses). The absorption of the hard
momentum q has knocked a quark from one leg of a light-cone into the other leg. The
hadronic correlations, soft by nature, only describe the physics close to the light-cone
leg that corresponds to the parent hadron momentum. This picture of light-like hadrons
and constituents, that can only flip to an opposite light-cone leg under influence of a
hard interaction, applies to all hard processes we are interested in. This picture together
with the perturbative calculation of the ”light-cone leg flipping mechanism” is in fact the
essence of factorization.

The collinear set of functions suffices for inclusive DIS, due to the form of the hard
part in equation (3.6). This is different, if a hard hadron with respect to the target
hadron is detected in the final state. The same simple light-cone leg flipping picture
applies, but it is now possible to construct more complex cross-sections. In some of these
cross-sections quark transverse momentum off the light-cone is relevant and leads to soft
structure appearing at leading order in 1/Q in the cross-section, that is not contained
in the collinear approximation. We will now review the determination of this additional
structure and its nomenclature.

3.3.1 Quark transverse momentum

Our treatment of quark transverse momentum starts with the characterization of the
most general Lorentz-invariant structure in Φ(k). From its definition in equation (3.1),
one finds the behavior of the correlator under conjugation and space inversion,

Φ†(P, S; k) = γ0Φ(P, S; k)γ0 [Hermiticity] (3.26)

Φ(P, S; k) = γ0Φ(P̄ ,−S̄; k̄)γ0 [Parity], (3.27)

where the notation k̄ = (k0,−k) is used for brevity.
Writing down all possible structures that are compatible with behavior (3.27) under

parity, leads to the following decomposition into amplitudes depending on k2 and P · k
[Rals79, Muld96],

Φ(k) = A1M + A2P/+ A3k/+ (A4/M)σµνPµkν + iA5(k · S)γ5 +MA6S/γ5 +

(A7/M)(k · S)P/γ5 + (A8/M) (k · S)k/γ5 + iA9σ
µνγ5SµPν +

iA10σ
µνγ5Sµkν + i

(

A11/M
2
)

(k · S)σµνγ5kµPν +

(A12/M)εµνρσγ
µP νkρSσ. (3.28)

Condition equation (3.26) requires all amplitudes Ai in equation (3.28) to be real.
Special attention should be paid to the amplitudes A4, A5 and A12. In the case of

a quark distribution in a target hadron that we are considering, the state |P, S〉 can be
taken to be a plane wave. In that case, an additional symmetry restricts the number of
amplitudes Ai. This restriction follows from time-reversal invariance and is given by the
expression,

Φ∗(P, S; k) = γ5CΦ(P̄ , S̄; k̄)C†γ5 [Time Reversal]. (3.29)
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In the above C denotes the charge conjugation matrix with the properties,

CT = C† = −C (3.30)

and,
CC† = C†C = 1. (3.31)

Imposing the restriction of equation (3.29) leads to the condition A∗
i = Ai for the ampli-

tudes A4, A5 and A12, hence they vanish.
Note that time-reversal invariance cannot be applied when states are present that

cannot be described by plane waves, or when non-trivial gauge-links are present [Coll02].
One can still use relation (3.29), which in that case is sometimes referred as naive time-
reversal, to distinguish time reversal even (T-even), A∗

i = A1, and time-reversal odd
(T-odd), A∗

i = −Ai, amplitudes. A hadron created by quark fragmentation cannot be
described by a plane wave, so one cannot discard the amplitudes A4, A5 and A12 ab initio.

All Dirac structures that accompany the amplitudes are decomposed into collinear and
transverse components. The parent hadron and quark momentum according to equation
(3.7) and the parent spin vector according to equation (3.17).

Next, one has to integrate over the k · η-component of the quark momentum. This is
done by integrating over both k2 and P · k and introducing quark transverse momentum
through a δ-function.

Φ(x,kT ) ≡
∫

dk · η Φ(k)

=
∫

dk2 d(k · P ) δ
(

(xP − k)2 − k2
T

)

Φ(k)

≡
∫

σ(x,kT )
Φ(k) (3.32)

The result is the following parameterization of the quark-correlator including transverse
quark momentum, that does not vanish if equation (3.29) is imposed,

Φ(x,kT )|TE =
1

2

{

η/ f1(x,k
2
T
) + γ5η/ g1s(x,kT ) − iγ5 [η/, S/

T
] h1T (x,k2

T
)

−iγ5[η/,
k/

T

M
] h⊥1s(x,kT )

}

+
M

P · ζ

{

e(x,k2
T
) +

k/
T

M
f⊥(x,k2

T
) + γ5S/T

g′T (x,k2
T
)

+γ5
k/

T

M
g⊥s (x,kT ) − iγ5[S/T

,
k/

T

M
]h⊥T (x,k2

T
) − iγ5 [η/, ζ/] hs(x,kT )

}

, (3.33)

where

f ...
...s(x,kT ) = SLf

...
...L(x,k2

T
) +

kT · ST

M
f ...

...T (x,k2
T
) (3.34)

is shorthand for a frequently occurring combination of functions. The time-reversal odd
part, that vanishes if equation (3.29) can be used,

Φ(x,kT )|TO =
1

2

{

f⊥
1T (x,k2

T
)
εkT ST

T

M
η/
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+fT (x,k2
T
)ερST

T
γρ + SL f

⊥
L (x,k2

T
)
ερkT

T

M
γρ

−es(x,kT )iγ5 + h⊥1 (x,k2
T
)
σµνk

µ
T
ην

M
+ h(x,k2

T
)σµνη

µζν
}

, (3.35)

where we have used the following notation for the contracted form of the transverse Levi-
Civita tensor,

εkT β
T

= εkβ
T

≡ εαβ
T
kα. (3.36)

The connection of these functions to the amplitudes Ai is, defining the shorthand,

Σ =
k · P − xM2

M2
, (3.37)

given by

f1(x,k
2
T
) =

∫

σ(x,kT )
[A2 + xA3] (3.38)

g1L(x,k2
T
) =

∫

σ(x,kT )
[−A6 − Σ (A7 + xA8)] (3.39)

g1T (x,k2
T
) =

∫

σ(x,kT )
[A7 + xA8] (3.40)

h1T (x,k2
T
) =

∫

σ(x,kT )
[−(A9 + xA10)] (3.41)

h⊥1L(x,k2
T
) =

∫

σ(x,kT )
[A10 − ΣA11] (3.42)

h⊥1T (x,k2
T
) =

∫

σ(x,kT )
[A11] (3.43)

e(x,k2
T
) =

∫

σ(x,kT )
[A1] (3.44)

f⊥(x,k2
T
) =

∫

σ(x,kT )
[A3] (3.45)

g′T (x,k2
T
) =

∫

σ(x,kT )
[−A6] (3.46)

g⊥L (x,k2
T
) =

∫

σ(x,kT )
[−ΣA8] (3.47)

g⊥T (x,k2
T
) =

∫

σ(x,kT )
[A8] (3.48)

h⊥T (x,k2
T
) =

∫

σ(x,kT )
[−A10] (3.49)

hL(x,k2
T
) =

∫

σ(x,kT )

[

−(A9 + xA10) − ΣA10 + Σ2A11

]

(3.50)

hT (x,k2
T
) =

∫

σ(x,kT )
[−ΣA11] (3.51)

(3.52)

and for the T-odd functions,

f⊥
1T (x,k2

T
) =

∫

σ(x,kT )
[A12] (3.53)
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h⊥1 (x,k2
T
) =

∫

σ(x,kT )
[−A4] (3.54)

eL(x,k2
T
) =

∫

σ(x,kT )
[−ΣA5] (3.55)

eT (x,k2
T
) =

∫

σ(x,kT )
[A5] (3.56)

f⊥
L (x,k2

T
) =

∫

σ(x,kT )
[−A12] (3.57)

fT (x,k2
T
) =

∫

σ(x,kT )
[−ΣA12] (3.58)

h(x,k2
T
) =

∫

σ(x,kT )
[ΣA4] . (3.59)

After integrating equation (3.33) over quark transverse momentum kT , one recovers the
collinear parametrization in equation (3.16), for leading order functions, and the first line
of equation (3.18) for sub-leading functions. Integrating over transverse momentum in
the T-odd part, shown in equation (3.35), leads to the reduced structure to the last line
in equation (3.18). It should be stressed that including transverse momentum leads to
T-odd structure at leading order in 1/Q in the cross-section, while such structures are
absent in the collinear case (at least, for spin 0 and spin 1/2).

The introduction of transverse momentum allows, on one side, more detailed study of
the collinear structure, to which the more elaborate kT -dependent structure reduces after
integration,

f1(x) =
∫

d2kT f1(x,k
2
T ), (3.60)

g1(x) =
∫

d2kT g1L(x,k2
T ), (3.61)

h1(x) =
∫

d2kT

[

h1T (x,k2
T ) +

k2
T

2M2
h⊥1T (x,k2

T )

]

, (3.62)

(3.63)

but, more importantly, also introduces additional functions which are called kT -odd func-
tions because of the way they contribute to the hadronic tensor. One needs a specially
constructed cross-section, as in several azimuthal asymmetries, in order to find these
functions in the cross-section, instead of averaging them out as happens in the collinear
approximation. We are interested in the leading order kT -odd functions in equations 3.33
and 3.35, which are present in the kT -weighted quark-quark matrix element, given by,

Φρ
∂(x) ≡

∫

d2kT

kρ
T

M
Φ(x,kT )

= −M
2
P · ζ

[

if
⊥(1)
1T (x)iερST

T
η/− g

(1)
1T (x)Sρ

T
γ5η/

+h
⊥(1)
1L (x)SLγ5γ

ρ
T
η/+ ih

⊥(1)
1 (x)γρ

Tη/
]

+ Higher twist, (3.64)

in which one encounters the transverse moments, defined generally,

f (n)(x) =
∫

d2kT

(

k2
T

2M2

)n

f(x,k2
T
). (3.65)
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3.3.2 Lorentz-invariance relations

At this point one can invoke Lorentz-invariance as a possibility to rewrite some func-
tions. All functions in Φ(x) and Φα

∂ (x) involve non-local matrix elements of two quark
fields, although involving different gauge-links. Before constraining the matrix elements
to the light-cone or light-front only a limited number of amplitudes can be written
down [Muld96]. This leads to the following Lorentz-invariance relations [Bukh83a, Bukh83b,
Bukh84a, Bukh84b, Muld96, Boer98]

gT (x) = g1(x) +
d

dx
g

(1)
1T (x) (3.66)

g⊥L (x) = − d

dx
g
⊥(1)
T (x) (3.67)

hL(x) = h1(x) −
d

dx
h
⊥(1)
1L (x) (3.68)

hT (x) = − d

dx
h
⊥(1)
1T (x) (3.69)

h
⊥(1)
1L (x) = h

(1)
T (x) − h

⊥(1)
T (x) (3.70)

Also for the T-odd sector there are too many functions originating from too few amplitudes
leading to the following relations

fT (x) = − d

dx
f
⊥(1)
1T (x), (3.71)

h(x) = − d

dx
h
⊥(1)
1 (x), (3.72)

eL(x) = − d

dx
e
(1)
T (x), (3.73)

f⊥
1T (x) = −f⊥

L (x). (3.74)

From these relations, it is clear that the transverse moments of the kT -dependent functions,
appearing in Φα

∂ (x), involve both local twist-two and local twist-three operators.
The relations in this section are currently under criticism [Goek03, Bacc04, Boer03].

Allthough no consensus has been reached yet on the validity of these relations, we will
use these relations in chapter 6 in the derivation of evolution equations for leading order
kT -odd functions.

3.3.3 Equation of motion relations

A different source of relations among different functions is found in the equation of motion
of the fields. The equation of motion allows one to split up order 1/Q functions found
in the quark-quark correlator, into a Wandzura-Wilczek (WW) part that only involves
leading order in 1/Q functions, and a pure interaction part that arises from a quark-gluon
matrix element. For the T-even functions one finds the following decomposition,

e(x) =
m

M

1

x
f1(x) +

2

x

∫

dy Re {EA(x, y)}
︸ ︷︷ ︸

ẽ(x)

(3.75)
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hL(x) =
m

M

1

x
g1(x) −

2

x
h
⊥(1)
1L (x) +

2

x

∫

dy Re {HA(x, y)}
︸ ︷︷ ︸

h̃L(x)

(3.76)

gT (x) =
m

M

1

x
h1(x) +

1

x
g

(1)
1T (x) +

1

x

∫

dy Re
{

GA(x, y) + G̃A(x, y)
}

︸ ︷︷ ︸

g̃T (x)

(3.77)

and for the T-odd functions one finds,

fT (x) = −1

x
f
⊥(1)
1T (x) +

1

x

∫

dy Im
{

GA(x, y) + G̃A(x, y)
}

︸ ︷︷ ︸

f̃T (x)

(3.78)

eL(x) = −2

x

∫

dy Im {HA(x, y)} = ẽL(x) (3.79)

h(x) = −2

x
h
⊥(1)
1 (x) +

1

x

∫

dy Im {EA(x, y)}
︸ ︷︷ ︸

h̃(x)

(3.80)

In the above expressions the pure-interaction parts involving two-argument functions and
the integration of a momentum fraction are often indicated the corresponding single ar-
gument function name with a tilde.

3.4 Fragmentation functions

When considering the fragmentation of a quark into a hadron, the momentum fraction
plays the inverse role compared to the case of distribution functions. Although the treat-
ment is completely analogous, some differences result in the expressions that are given
here for further reference in this thesis.

The relevant part of the quark-quark correlator in the case of fragmentation is given
by [Coll82a]

∆ij(z,kT ) =
∑

X

∫ dy · ζ d2yT

(2π)3
eik·y

× 〈0|U(∞, y)ψi(y)|Ph, X〉〈Ph, X|ψj(0)U(0,∞)|0〉
∣
∣
∣
∣
∣
y·η=0

. (3.81)

Note that because of the use of fragmentation functions together with distribution func-
tions, it is convenient to interchange the role of the vectors ζµ and ηµ for fragmentation
functions with respect to distribution functions. For the production of unpolarized or
spin-1/2 hadrons h in semi-inclusive hard scattering processes one needs to leading order
in 1/Q the correlation function [Muld96]

∆(z,kT ) =

{

zD1(z,k
′2
T
) ζ/− zG1s(z,k

′
T
) ζ/γ5

+zH⊥
1s(z,k

′
T
)

[6k
T
, ζ/] γ5

2Mh

+ zH1T (z,k′2
T
)
[6ShT

, ζ/] γ5

2

}

41



+

{

− zD⊥
1T (z,k′2

T
)
εT

kT ShT

Mh
+ i zH⊥

1 (z,k′2
T
)

[6k
T
, ζ/]

2Mh

}

Mh

Ph · η

{

E(z,k′2
T
) +D⊥(z,k′2

T
)
k/

T

Mh

−G′
T (z,k′2

T
)S/

T
γ5 −G⊥

s (z,kT )
k/

T
γ5

Mh

−H⊥
T (z,k′2

T
)
iσµνγ5S

µ
Tk

ν
T

Mh
−Hs(z,k

′2
T
)iσµνγ5ζ

µην

}

+
Mh

Ph · η
{

−Es(z,k
′2
T
)iγ5 +H(z,k′2

T
)σµνζ

µηη −DT (z,k′2
T
)εT

ρShT

}

+O
(

M2
h

(Ph · η)2

)

. (3.82)

We used the shorthand notation

G1s(z,kT ) ≡ ShL G1L(z,k′2
T
) +

(kT · ShT )

Mh
G1T (z,k′2

T
), (3.83)

etc. The arguments of the fragmentation functions are z = Ph · η/k · η and k′
T

= −zkT .
The first is the (light-cone) momentum fraction of the produced hadron, the second is
the transverse momentum of the produced hadron with respect to the quark. The kT -
integrated results are, using

F (z) ≡
∫

d2k′
T
F (z,k′2

T
) (3.84)

and

F (n)(z) ≡
∫

d2k′
T

(k2
T
/2M2

h)n F (z,k′2
T
)

=
∫

d2k′
T

(k′2
T
/2z2M2

h)n F (z,k′2
T
), (3.85)

separating contributions at different orders in 1/Q,

∆twist−2(z) =
D1(z)

z
ζ/+ ShL

G1(z)

z
γ5ζ/+

H1(z)

z
γ5 6ShT

ζ/ (3.86)

∆twist−3(x) =
Mh

Ph · η

{

E(z)

z
+
GT (z)

z
γ5 6ShT

+ ShL

HL(z)

z
γ5

[ζ/, η/]

2

}

+
Mh

Ph · η

{

−i ShL

EL(z)

z
γ5 −

DT (z)

z
ερσ

T
γρShTσ + i

H(z)

z

[ζ/, η/]

2

}

, (3.87)

∆α
∂ (z) = − G

(1)
1T (z)

z
Sα

hT
ζ/γ5 − ShL

H
⊥(1)
1L (z)

z

[γα, ζ/]γ5

2

− D
⊥(1)
1T (z)

z
εαST

T
η/− i

H
⊥(1)
1 (z)

z

[γα, ζ/]

2
. (3.88)

An alternative notation [Jaff96] for the fragmentation functions is f̂ , ĝ, ê and ĥ instead
of D, G, E and H.
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In the sub-leading order functions one can again isolate the interaction-dependent
parts as done for the distribution functions. They are now given by

G̃T (z) = GT (z) − z G
(1)
1T (z) − m

Mh
zH1(z), (3.89)

H̃L(z) = HL(z) + 2z H
⊥(1)
1L (z) − m

Mh

zG1(z), (3.90)

Ẽ(z) = E(z) − m

Mh

zD1(z), (3.91)

D̃T (z) = DT (z) + z D
⊥(1)
1T (z), (3.92)

H̃(z) = H(z) + 2z H
⊥(1)
1 (z), (3.93)

ẼL(z) = EL(z). (3.94)

For the kT -integrated or the k2
T
/2Mh-weighted fragmentation functions all results are

obtained from the distribution functions by replacing x → 1/z and f...(x) −→ D...(z)/z,
g...(x) → G...(z)/z and h...(x) → H...(z)/z. The same applies to the relations from Lorentz-
invariance [Muld96, Jako97]

GT (z) = G1(z) − z3 d

dz




G

(1)
1T (z)

z



 , (3.95)

HL(z) = H1(z) + z3 d

dz




H

⊥(1)
1L (z)

z



 , (3.96)

DT (z) = z3 d

dz




D

⊥(1)
1T (z)

z



 , (3.97)

H(z) = z3 d

dz




H

⊥(1)
1 (z)

z



 . (3.98)
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CHAPTER

FOUR

Bounds

4.1 Partonic densities

The notion of a positive definite object, as the probability density f1(x) in the parton
model, can be maintained in a field theory. In a suitable light-cone gauge and restricting
to the flavor singlet part, the probability density f1(x) stems from correlations between
quark fields along a light-cone direction ζµ. Furthermore, only specific components of the
quark field are relevant for the function f1(x). Defining the projections ψζ(y) and ψη(y),
of the quark field ψ at space-time point y,

ψ(y) = ψζ(y) + ψη(y) (4.1)

ψζ(y) = Pζ ψ(y) =
1

2
η/ζ/ψ(y) (4.2)

ψη(y) = Pη ψ(y) =
1

2
ζ/η/ψ(y) (4.3)

(4.4)

called good and bad fields [Kogu70] respectively, the expression, can be written, after the
insertion of a complete set of intermediate states,

f1(x) ≡
∫
dλ

2π
eiλx〈P |ψ(0)ζ̃/ψ(λζ̃)|P 〉

=
∑

n

〈P |(ψ†
ζ(0))i|Pn〉〈Pn|(ψζ(0))i|P 〉 δ(Pn · ζ − (1 − x)P · ζ), (4.5)

as a manifestly positive definite quantity.
A generalization of the above expression to include the full spin structure of the parent

hadron is given by,

(Φζ/)ij,s′s =
∫
dλ

2π
ei λx 〈P, s′|(ψ†

ζ(0))j(ψζ(λζ))i|P, s〉
=
∑

n

〈Pn|(ψζ(0))j|P, s′〉∗〈Pn|(ψζ(0))i|P, s〉 δ (Pn · ζ − (1 − x)P · ζ) , (4.6)

where s′ and s denote the (possibly non-diagonal) hadron spins. The above matrix,
mapping from product space i× s space to the product space j × s′, clearly has positive
diagonal elements.
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We will use a representation of the matrix in equation (4.6) in the hadron rest-frame
and in a suitable basis for the quark field, to derive a set of inequalities among non-
collinear leading order functions analogous to the Soffer-bound [Soff95] that applies to
collinear leading order functions. First, we will illustrate the method re deriving the
Soffer bound and we will proceed by showing the results when non-collinear functions are
taken into account.

4.2 Target spin structure

In order to study the correlation function in a spin-1/2 target, one introduces a spin
vector Sµ that parametrizes the spin density matrix ρ(P, S). It satisfies P · S = 0 and
it is space-like, having a negative norm. Its norm, S2, ranges from −1 for a pure state,
to zero for a mixed state. Using SL ≡ MS · ζ/P · ζ and the transverse spin vector ST ,
the condition becomes S2

L
+ S2

T
≤ 1, as can be seen from the rest-frame expression S =

(0,ST , SL). The precise equivalence of a 2 × 2 matrix M̃ss′ in the target spin space and
the S-dependent function M(S) is

M(S) = Tr
[

ρ(S) M̃
]

. (4.7)

Explicitly, the S-dependent function M(S) = MO +SL ML +S1
T
M1

T
+S2

T
M2

T
, corresponds

to a matrix, which in the target rest-frame with as basis the spin 1/2 states with SL = +1
and SL = −1 becomes

M̃ss′ =





MO +ML M1
T
− iM2

T

M1
T

+ iM2
T

MO −ML



 . (4.8)

The corresponding expression for the density matrix ρ is the rest-frame value of

ρ(S) = 1 + σ3 SL + σT · ST (4.9)

From equation (4.6) follows that after transposing in Dirac space, and subsequently ex-
tending the matrix M(S) = (Φ ζ/)T to the target spin space gives a matrix in the combined
Dirac ⊗ target spin space which satisfies v†Mv ≥ 0 for any vector v in that combined
space.

4.3 Quark spin structure

Taking only collinear structure into account, the quantity Φ ζ/ for a spin-1/2 target in
terms of the spin vector is

Φ(x)ζ/ =
{

f1(x) + SL g1(x) γ5 + h1(x) γ5 S/T

}

Pζ , (4.10)

where the functions f1, g1 and h1 are the leading order quark distribution functions. By
tracing over the Dirac indices one projects out f1, which is the quark momentum density
(see equation (4.6)). By writing γ5 as the difference of the chirality projectors PR/L =
1
2
(1±γ5) it follows that in a longitudinally polarized target (SL 6= 0) g1 is the difference of

densities for right-handed and left-handed quarks. By writing γiγ5 as the difference of the
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transverse spin projectors P↑/↓ = 1
2
(1 ± γiγ5), it follows that in a transversely polarized

target (ST 6= 0) h1 is the difference of quarks with transverse spin along and opposite the
target spin [Artr90, Cort92, Jaff92]. Since f1(x) is the sum of the densities it is positive
and gives bounds |g1(x)| ≤ f1(x) and |h1(x)| ≤ f1(x).

By considering the combined Dirac ⊗ target-spin space, stricter bounds can be found.
As mentioned above, we need to consider the function M(S) = (Φ ζ/)T in Dirac space.
For this we use a chiral representation. In that representation the good projector Pζ only
leaves two (independent) Dirac spinors, one right-handed (R), one left-handed (L). On
this (2-dimensional) basis of good R and L spinors the matrix M = (Φ(x) ζ/)T obtained
from equation (4.10) is given by

Mij =





f1(x) + SL g1(x) (S1
T

+ i S2
T
) h1(x)

(S1
T
− i S2

T
) h1(x) f1(x) − SL g1(x)



 . (4.11)

Next, we make the spin-structure of the target explicit as outlined in equation ( 4.8),
yielding on the basis +R, −R, +L and −L

M̃ =





f1 + g1 0 0 2 h1

0 f1 − g1 0 0
0 0 f1 − g1 0

2 h1 0 0 f1 + g1





. (4.12)

From the positivity of the diagonal elements one recovers the trivial bounds f1(x) ≥ 0
and |g1(x)| ≤ f1(x), but requiring the eigenvalues of the matrix to be positive gives the
stricter Soffer bound [Soff95],

|h1(x)| ≤
1

2
(f1(x) + g1(x)) . (4.13)

4.3.1 Quark-spin structure including transverse momentum

Separating the terms corresponding to unpolarized (O), longitudinally polarized (L) and
transversely polarized targets (T ), the most general parametrizations with pT -dependence,
relevant at leading order in 1/Q, are

ΦO(x,pT ) ζ/ =

{

f1(x,p
2
T
) + i h⊥1 (x,p2

T
)
p/

T

M

}

Pζ (4.14)

ΦL(x,pT ) ζ/ =

{

SL g1L(x,p2
T
) γ5 + SL h

⊥
1L(x,p2

T
)γ5

p/
T

M

}

Pζ (4.15)

ΦT (x,pT ) ζ/ =

{

f⊥
1T (x,p2

T
)
εT ρσp

ρ
T
Sσ

T

M
+ g1T (x,p2

T
)
pT · ST

M
γ5

+ h1T (x,p2
T
) γ5 S/T

+ h⊥1T (x,p2
T
)
pT · ST

M

γ5 p/T

M

}

Pζ. (4.16)

To put bounds on the transverse momentum dependent functions, we again make the
matrix structure explicit. One finds, defining for short hand the following azimuthal
phase factors

c =
|pT |
M

eiφ (4.17)
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and its complex conjugate c∗, for M = (Φ(x, pT ) ζ/)T the full spin matrix M̃ to be





f1 + g1L c
(

g1T +i f⊥
1T

)

c∗
(

h⊥1L+i h⊥1
)

2 h1

c∗
(

g1T −i f⊥
1T

)

f1 − g1L (c∗)2 h⊥1T −c∗
(

h⊥1L−i h⊥1
)

c
(

h⊥1L−i h⊥1
)

c2 h⊥1T f1 − g1L −c
(

g1T −i f⊥
1T

)

2 h1 −c
(

h⊥1L+i h⊥1
)

−c∗
(

g1T +i f⊥
1T

)

f1 + g1L





, (4.18)

where φ is the azimuthal angle of pT . First of all, this matrix is illustrative as it shows the
full quark helicity structure accessible in a polarized nucleon [Bogl99], which is equivalent
to the full helicity structure of the forward anti-quark-nucleon scattering amplitude.

Note that although distribution functions are used, a complete analogous treatment
can be performed on fragmentation functions.

4.4 The bounds

Bounds to assure positivity of any matrix element can for instance be obtained by looking
at the 1-dimensional subspaces, giving the trivial bounds f1 ≥ 0 and |g1L| ≤ f1. From the
2-dimensional subspace one finds, omitting the (x,p2

T
) dependences for the distribution

functions, and using here the pT -moment notation in an unintegrated sense,

f (1) ≡ p2
T

2M
f(x,pT ) (4.19)

the following bounds,

|h1| ≤
1

2
(f1 + g1L) ≤ f1, (4.20)

|h⊥(1)
1T | ≤ 1

2
(f1 − g1L) ≤ f1, (4.21)

(

g
(1)
1T

)2
+
(

f
⊥(1)
1T

)2 ≤ p2
T

4M2
(f1 + g1L) (f1 − g1L) ≤ p2

T

4M2
f 2

1 , (4.22)

(

h
⊥(1)
1L

)2
+
(

h
⊥(1)
1

)2 ≤ p2
T

4M2
(f1 + g1L) (f1 − g1L) ≤ p2

T

4M2
f 2

1 . (4.23)

Besides the Soffer bound, show in equation (4.20) but now holding for each value of pT , new
bounds for the distribution functions are found. In particular, one sees that functions like
g

(1)
1T and h

⊥(1)
1L appearing in azimuthal asymmetries in leptoproduction are proportional to

|pT | for small pT . In the case of the T-odd fragmentation functions, the Collins function,

H
⊥(1)
1 , describing fragmentation of a transversely polarized quark into an unpolarized

or spin-less hadron, for instance a pion, is bounded by (|Pπ⊥|/2zMπ)D1(z,P
2
π⊥) while

the other T-odd function D
⊥(1)
1T describing fragmentation of an unpolarized quark into a

polarized hadron such as a Λ, is given by (|PΛ⊥|/2zMΛ)D1(z,P
2
Λ⊥).

Before sharpening these bounds via eigenvalues, it is convenient to introduce two
positive definite functions F (x,p2

T
) and G(x,p2

T
) such that f1 = F + G and g1 = F −G

and define

h1 = αF, (4.24)
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Figure 4.1: Allowed region (shaded) for α and β depending on γ and δ.

h
⊥(1)
1T = β G, (4.25)

g
(1)
1T + i f

⊥(1)
1T = γ

|pT |
M

√
FG, (4.26)

h
⊥(1)
1L + i h

⊥(1)
1 = δ

|pT |
M

√
FG, (4.27)

where the x and p2
T

dependent functions α, β, γ and δ have absolute values in the interval
[−1, 1]. Note that α and β are real-valued but γ and δ are complex-valued, the imaginary
part determining the strength of the T-odd functions. Actually, one sees that the T-odd
functions f⊥

1T and h⊥1 could be considered as imaginary parts of g1T and h⊥1L, respectively.
Next we sharpen these bounds using the eigenvalues of the matrix, which are given by

e1,2 = (1 − α)F + (1 + β)G±
√

4FG|γ + δ|2 + ((1 − α)F − (1 + β)G)2, (4.28)

e3,4 = (1 + α)F + (1 − β)G±
√

4FG|γ − δ|2 + ((1 + α)F − (1 − β)G)2. (4.29)

Requiring them to be positive can be converted into the conditions

F +G ≥ 0. (4.30)

|αF − β G| ≤ F +G, i.e. |h1T | ≤ f1 (4.31)

|γ + δ|2 ≤ (1 − α)(1 + β), (4.32)

|γ − δ|2 ≤ (1 + α)(1 − β). (4.33)

4.5 Discussion

It is interesting for the phenomenology of deep inelastic processes that a bound for the
transverse spin distribution h1 is provided not only by the inclusively measured functions
f1 and g1, but also by the functions g1T and h⊥1L, responsible for specific azimuthal asym-
metries [Muld96, Boer98]. This is illustrated in Fig. 4.1. The same goes for fragmentation
functions, where for instance the magnitude of H⊥

1 constrains the magnitude of H1.
The bounds presented in this chapter involve only a treatment at tree level. The

question arises about the effect of including interactions to these bounds. For guidance,
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at leading order (LO) in αs, the collinear Soffer bound was found to be stable [Baro97,
Bour98] for evolution towards larger values of Q. Beyond LO, scheme dependence allows
one to invalidate this inequality [Gold95], but forMS and Drell-Yan factorization schemes,
the inequality seems to be preserved even at next-to-leading order (NLO). One would, at
best, expect a similar situation for the bounds derived here for non-collinear distribution
functions.

Performing an analysis similar to those mentioned in this section, on the bounds pre-
sented, is complicated. The number of functions entering the equations and the functional
form in which they enter, combined with the non-autonomous evolution of the functions
involved, as we will discuss in later chapters, has prevented us from resolving the question
of stability under evolution.

Although a thorough investigation of the effect of scale dependence on the bounds
presented here still should be performed, the elementary bounds presented in this chapter
can serve as important guidance to estimate the magnitudes of asymmetries expected in
the various processes.
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CHAPTER

FIVE

Scale dependence

5.1 Introduction

The main achievement of factorization is that the cross-section for a hard process involv-
ing hadrons is written as the product of a part of which we can systematically improve
its accuracy, and an interesting soft part that bears the details of hadronic bound states.
The part that we can calculate, corresponds to the high energy limit of a partonic hard
scattering sub-process. Due to the hard nature of the partonic sub-process, the property
of asymptotic freedom can be exploited, and we can systematically improve the determi-
nation of the hard part using an expansion in powers of the coupling constant. Improving
the accuracy with which we determine the hard part directly improves the accuracy with
which we can extract knowledge of the soft parts from experiment.

Straightforward application of perturbation theory to calculations of hard partonic
sub-processes leads to divergences. Specific loop momentum integration regions lead to
these divergences due to the massless nature of quarks and gluons. These divergences
manifest themselves in the presence of large logarithms that accompany each order of αs,
and prevent taking advantage of the smallness of the coupling constant.

The solution of this problem is known as the factorization of mass singularities [Elli79a]
and involves the absorption of the divergences into the soft parts. The result of this
procedure is that the soft parts acquire a scale dependence. This scale dependence of the
soft parts, often denoted by the name of scale-evolution of the soft parts, can be calculated
using perturbative techniques.

5.2 Calculation of scale dependence

There are several methods for determining the scale dependence of distribution and frag-
mentation functions. A successful factorization program requires, an order by order in
αs, cancellation of mass-divergences, arising in the hard part, and ultra-violet (UV) di-
vergences, which have their origin in the soft part. As a result the scale dependence
of distribution and fragmentation functions can be either extracted from the study of
perturbative corrections to the hard parts or to the soft parts.
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Calculations of scale dependence can also differ depending on whether matrix ele-
ments of local or non-local operators are considered. Traditionally, calculations involved
the study of hard partonic sub-processes, and involved taking longitudinal momentum
moments of the objects involved. These are the approaches based on the OPE and they
result in the perturbative determination of the anomalous dimensions of corresponding
local matrix elements and, therefore, of their scale dependence. This approach to the
calculation of scale dependence involves a nomenclature of its own, which we want to
summarize in the coming section as it will be used further in this thesis in chapter 6.

A completely different, but equivalent, approach is in terms of non-local process-
independent objects. This method is used in [Bukh83a] to calculate the scale dependence
of sub-leading order in 1/Q functions. Working with non-local objects remains closer to
a partonic interpretation of the soft parts. By introducing a projection operation on a
hadronic matrix element, that summarizes how the hard process picks up a contribution
from the soft part, we avoid making reference to the process in question.

In this thesis we want to study the effect of perturbative corrections to the distribution
and fragmentation functions that are introduced by taking quark transverse momentum
into account. To extend the analysis beyond tree level we start by looking at corrections
of order αs. To this order in αs the leading logarithmic approximation (LLA) suffices
to obtain the scale dependence of soft objects, and is the approximation we will use.
The LLA amounts to collecting all contributions that involve the product of αs and a
single large logarithm, so that the scale dependence generated by all terms with a factor
(αs ln(Q2/µ2))n, that have been absorbed into the soft part are obtained.

5.2.1 The local approach

The first calculations of scale dependence of soft object involved structure functions in-
stead of distribution and fragmentation functions and were performed using this method.
The method starts by studying the partonic equivalent of a specific process in which the
hadrons are replaced by on-shell partons. Depending on the order in αs up to which the
calculation is performed, all possible perturbative corrections are taken into account. The
moments in the longitudinal momentum fraction are taken in order to obtain a sum of
products of moments of coefficient functions as given in equation (2.15), and hadronic
matrix elements involving only local operators. It boils down to the calculation of the
anomalous dimensions of the moments of coefficient functions up to a specific order in αs.

Considering all possible perturbative corrections up to a specific order of αs, and tak-
ing moments, one obtains an expression for the coefficient function up to this order in αs.
Concentrating on the perturbatively generated part cn and in particular in its Q2 depen-
dence, the anomalous dimension γn gives the behavior for large Q2 of the perturbatively
acquired logarithmic scale dependence. To leading order in αs this behavior is given by

cn(Q2) = Nn

(

ln
Q2

µ2

)− γn
2β0

, (5.1)

where Nn is independent of Q and,

β0 =
1

(4π)2

11CA − 4CF TR

3
. (5.2)
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Figure 5.1: Diagrammatic representation of the projection of functions out of soft matrix
elements. (a) Shows the projection of a single-argument distribution function as defined in
equation (5.3). (b) Shows the projection of two-argument distribution functions as formu-
lated in equation (5.4)

is the first order in αs derivative of the coupling constant to the scale, a valid approxima-
tion in the asymptotic regime.

5.2.2 The non-local approach

We will follow an approach that was already used in [Bukh84a] in the context of obtaining
the evolution equations for a polarized target in QED in a light-cone gauge. In spite of
issues as gauge invariance and over-completeness of the set of soft functions appearing in
the calculations, this approach is preferred due to its resemblance to the parton model.

To obtain all scale dependence in a soft part up to some order in αs, one operates in
the following way. As all perturbative corrections that give large logarithms have been
absorbed into the soft parts, one can regard all this type of contributions to be included
in the soft part.

Suppose we want to study the evolution of a function f(x) that is defined in terms of
a projection operation on a quark-correlator as follows

f(x) =
∫

d4k δ(k · ζ − xP · ζ) Tr [Φ(k)Γf ] (5.3)

where the object Γf is a Dirac structure multiplied by a tensor such that it projects out
of a soft part exactly that function. This operation can be depicted as shown in figures
5.1(a) and (b)

The study of the evolution of non-collinear leading order functions involves sub-leading
order functions. The structure parametrized by these functions involves correlations in
matrix elements including an additional gluon. In a similar manner, we will define a spe-
cific function in terms of a projection operation. In this case two longitudinal momentum
fractions are involved as shown in figure 5.1(b), which is the diagrammatic representation
of

F (x, y) =
∫

d4k d4p δ(k · ζ − xP · ζ) δ(p · ζ − y P · ζ) Tr [Φα
A(k, p)(ΓF )α] . (5.4)
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Figure 5.2: Examples of perturbative corrections to first order in αs to functions defined in
terms of quark-quark correlators. (a) Example of a real correction that changes longitudinal
momentum fraction. (b) Example of a virtual correction that only contributes at an end-
point in the kernel longitudinal momentum fraction integration.

Aiming for an accuracy of one order in αs, and for the case that a function is defined
in terms of a quark-quark correlator, one starts writing down all diagrams of order αs.
These contributions constitute what is called the evolution kernel to order αs.

We will be interested in first order kernels, that is kernels that only contain a single
power of αs. This is the simplest case that can be considered. Still in this simplest case
this first order analysis involves several diagrams. There are two types of diagrams.

The first type of diagrams are called real diagrams and correspond to real gluon emis-
sion, that is additional jet formation. These are diagrams in which the initial momentum
fraction of the parton changes. An example of this type of diagram is shown in figure
5.2(a) The second type of diagrams are the virtual diagrams. This type of diagram does
not change initial momentum fraction of the quark. An example of this type of diagram
is shown in figure 5.2(b)

5.3 A simple case

In this section we will show the steps in the calculation of the flavor non-singlet evolution
of the unpolarized quark momentum distribution in an unpolarized hadron, the function
f1(x, µ

2).
The evolution of the function f1(x, µ

2) to this accuracy is certainly not new, but
because of its simplicity we would like to use it to introduce a calculational method that
will be extended to non-collinear functions, and also to introduce notations used elsewhere
in this thesis.

To obtain the function f1(x, µ
2) we need the projector ζ//2, in the sense that the

function can be defined, in a light-cone gauge A · ζ = 0, in the following way

f1(x, µ
2) =

∫

d4k δ (k · ζ − xP · ζ)Tr
[

Φ(k; lnµ2)
1

2
ζ/
]

. (5.5)

In order to find the scale dependence of the function f1(x, µ
2) to first order in αs one

differentiates the expression in equation (5.5) with respect to τ = lnµ2, exposing the
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interactions included in Φ(k; τ) up to this order.

∂

∂τ







x






=

∂

∂τ







x

+
1

2






x

+

x












+ O(α2
s) (5.6)

The factor 1/2 accompanying the self-energy contributions arises from the fact that these
interactions reside in a factor of Z1/2

q that is included in each renormalized quark field
that appears in the definition of Φ(k; τ) in equation (3.1).

Written explicitly, the contributions up to first order in αs and considering only the
flavor non-singlet sector, come from a single real diagram

x

=
−ig2

(2π)4

∫

d4k δ (k · ζ − xP · ζ)

×
∫

d4p
Tr
[

Φ(p; τ) γµ k/ 1
2
ζ/ k/ γν

]

dµν(p− k)

(k2 + iε)2((p− k)2 + iε)
, (5.7)

also known as the gluon-rung diagram. Additional scale dependence arises in the self-
energy diagrams for the quark field, and contribute according to the following expression

1

2






x

+

x




 =

1

2

∫

d4k δ (k · ζ − xP · ζ)

×Tr

[

Φ(k; τ)

{

1

2
ζ/

ik/

(k2 + iε)
Σ(k) + Σ(k)

ik/

(k2 + iε)

1

2
ζ/

}]

, (5.8)

where the quark self-interaction part Σ(k) is a Dirac matrix and given by

Σ(k) = − g2

(2π)4

∫

d4l
γµ (k/− l/) γν dµν(l)

(l2 + iε)((k − l)2 + iε)
. (5.9)

The calculations are performed in the gauge A · ζ = 0, in which the gluon polarization
sum, dµν, in the gluon propagator has the form

dµν(l) =

(

gµν −
(lµζν + lνζµ)

l · ζ

)

. (5.10)

5.3.1 Real diagram

The object that is traced with Φ(k; τ) in equation (5.7) only contains three different Dirac
structures

1

2
γµk/ζ/k/γνdµν(p− k) =

ζ/









LL
︷ ︸︸ ︷

4k · η (k · ζ)2 + k2
T (k · ζ + p · ζ)−2k · ζ pT · kT

(p− k) · ζ









(5.11)

−2η/ (k · ζ)2 − 2γTα

[

(k · ζ)2

(p− k) · ζ (pα
T − kα

T )

]

, (5.12)
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where all momenta and indices have been split up into collinear and transverse parts, as
e.g.

kµ = k · ζ ηµ + k · η ζµ + kµ
T
. (5.13)

In order to obtain the LLA contribution we will make the following variable transformation

k · η → α|kT |2
2P · ζ (5.14)

where |kT |2 = −k2
T and P · ζ is the large component of the parent hadron momentum.

Now up to O(1/|kT |2) we can write the denominators in equation (5.7) as

1

((p− k)2 + iε)(k2 + iε)2
=

1

|kT |6
1

(α (x− y) − 1 + iε)(αx− 1 + iε))2
(5.15)

The logarithmic divergence arises in the |kT | integration and considering the Jacobian due
to equation (5.14) and the denominator above, one sees that only the over-braced terms
in equation (5.11) can lead to large logarithms. Keeping these terms, the α-integration
can be performed introducing generalized θ-functions defined in the following way,

Θn
i1...ik

(x1, . . . , xk) ≡ −i
∫ dα

2π

αn

(αx1 − 1 + iε)i1 . . . (αxk − 1 + iε)ik
. (5.16)

Taking into account only the leading terms the real contribution, is

x

=
αs

2π
τ
∫

dy

[

x+ y

x− y
Θ0

21(x, x− y) +
2 x2

y − x
Θ1

21(x, x− y)

]

f1(y, µ
2)

=
αs

2π
τ
∫

dy
x2 + y2

y(y − x)
Θ0

11(x, x− y)f1(y, µ
2), (5.17)

where in the last line the reduction relations (5.49) and (5.51), contained in an appendix at
the end of this chapter, are used to obtain an expression involving only regular θ-functions,

Θ0
11(x, y) =

θ(x)θ(−y) − θ(−x)θ(y)
x− y

. (5.18)

The real contribution, due to the support properties of distribution and fragmentation
functions, is given by the expression

x

=
αs

2π
τ
∫ 1

x
dy

x2 + y2

y2(y − x)
f1(y, µ

2). (5.19)

Note that this contribution contains an integration end-point divergence corresponding
to the emission of gluons with zero longitudinal momentum by the initial quark.
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5.3.2 The virtual contributions

The UV divergences in the self-energy contributions all arise in the self-interaction loop.
Considering this object separately, and only keeping the terms that contain a large loga-
rithm τ , on obtains

(k − l) l ≡ Σ(k) = iτ
αs

4π

[

k/+ 2
k2

k · ζ ζ/
(

1 −
∫ dy

y
Θ0

11(y, y − x)

)]

. (5.20)

where x is the longitudinal momentum fraction of the quark momentum that flows through
the correction. The above expression for the quark self-energy is more general than just
hard processes, and shows that renormalization in a light-like gauge is very different to
that in covariant gauges. The renormalization constants for the quark field will not be
just constants but matrices in Dirac space, acting on spinor indices. It is clear from
equation (5.20) that the Dirac structure of the quark fields that is proportional to ζ/ is
affected differently by self interaction than the remaining components. Furthermore the
renormalization constant also depends on the longitudinal momentum fraction carried by
the quark.

Inserting this expression in equation (5.8) gives for the contribution from virtual dia-
grams

1

2






x

+

x




 =

αs

2π
τf1(x, µ

2)

(

3

2
− 2

∫ dy

y
Θ0

11(y, y − x)

)

=
αs

2π
τf1(x, µ

2)

(

3

2
− 2

x

∫ 1

0

dz

1 − z

)

(5.21)

which is also divergent.
The divergences in both the real and virtual contributions should have been regulated

from the start. Supposing this has been done from the start by some regulator ε > 0, for
instance the inclusion of a mass for the gluon, it is possible to define a +-prescription for
the denominator in the sense of distributions

f(z)

(1 − z)+
= lim

ε↓0

[

f(z)

1 − z
− δ(1 − z)f(z)

∫ ε

0
dw

1

1 − w

]

. (5.22)

Combining the two contributions and taking the derivative to τ gives

∂

∂τ

{
x

+
1

2

[
x

+
x

]}

=
αs

2π
cF

∫ 1

x

dy

y




1 + (x

y
)2

(1 − (x
y
))+

+
3

2
δ(1 − x

y
)



 f1(y, µ
2)

=
αs

2π

∫ 1

x

dy

y
Pqq(

x

y
) f1(y, µ

2) (5.23)

Note that the complete expression for the kernel Pqq(z) is finite and furthermore that the
total number of quarks is conserved under evolution.

∫ 1

0
dz Pqq(z) = 0 (5.24)
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Figure 5.3: Examples of diagrams that introduce sub-leading functions into the scale
dependence of non-collinear leading order in 1/Q distribution functions. (a) This diagram
survives the limit of large number of colors. (b) This is an example of a non-planar diagram
that vanishes in the limit of large number of colors.

5.4 Non-collinear functions

The evolution of non-collinear functions is more involved than that of f1(x, µ
2). In this

section we would like to sketch the calculation of the scale dependence of the function
g

(1)
1T .

An operational definition of this function can be given by the following expression

g
(1)
1T (x, µ2) =

∫

d4k δ (k · ζ − xP · ζ)Tr

[

Φ(k; lnµ2)
1

2
ζ/γ5

kT · ST

S2
T

]

. (5.25)

The calculation of the contributions to g
(1)
1T (x, µ2) from 2 particle irreducible (2PI) soft

parts, as we will denote the soft part that gives rise to single argument functions, is similar
to that described in the preceding section for the case of f1(x, µ

2), although more care is
necessary in obtaining all leading logarithms. The results are very different. Calculating
the gluon-rung diagram with the projector corresponding to the function g

(1)
1T (x, µ2) leads

to the perturbative generation of the following scale dependence

∂

∂τ
g

(1)
1T (x, τ) =

αs

2π
cF

∫ 1

x

dy

y

[

x(2 x2 − x y + y2)

y2(y − x)
g

(1)
1T (x, τ) +

x2

y
gT (y, τ).

]

(5.26)

which indicates possible mixing of the function g
(1)
1T (x) with sub-leading order functions

in contrast to the f1 case. Also different to the f1 case is the contribution of non-partonic
functions in its evolution. If one considers the contribution of the diagram shown in figure
5.3(a), denoting the contribution by the subscript UR, and performing the calculation in

the gauge A · ζ = 0, one finds no additional contributions to f1, but the function g
(1)
1T does

receive contributions from the sub-leading order functions GA and G̃A,

g
(1)
1T (x)

∣
∣
∣
UR

=
αs

2 π
lnµ2

∫ 1

0
dy

∫ 1

0
dy1

{

Θ0
11(x, x− y)

[

GA(y, y1)A(x, y, y1) + G̃A(y, y1)B(x, y, y1)
]

+Θ0
11(x, x− y1)

[

−GA(y, y1)A(x, y1, y) + G̃A(y, y1)B(x, y1, y)
]
}

, (5.27)
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where the kernel functions are given by the expressions,

A(x, y, y1) =
− (−x2 − 2 x y + y2 + x y1 + y y1)

2 y (x− y1)
(5.28)

B(x, y, y1) =
−2 x3 + x2 y + y3 + x2 y1 − 3 x y y1 + x y1

2 + y y1
2

2 y (x− y1) (y − y1)
, (5.29)

where the two-argument functionsGA and G̃A are defined as in equation (3.21), parametriz-
ing a matrix element involving an additional soft gluon. Note that these function can have
imaginary parts, while g

(1)
1T is a real function. The kernels that results from calculation,

shown in equation (5.27) possess exactly the symmetry necessary, with respect to the
symmetries of these functions, shown in equations (3.22) and (3.23) to only couple the

real parts of these functions to g
(1)
1T .

This mixing of the distribution functions g
(1)
1T , gT , the real part of GA and G̃A forces

one to study the evolution of these functions as well. This is not necessary, as these
four functions are not independent due to a relation following from equations of motion
and Lorentz-invariance. On the other side, the relations are not always of great use, or
complicate the calculation. It was to us preferable to calculate the mixing without use of
these relations and apply the relations afterward as a check.

The calculation of the evolution of the functions GA and G̃A demands the calculation
of virtual diagrams involving the gluon self-energy. The gluon self-energy contributions
lead to the following form for the gluon propagator

Gµν(k) = (1 + Π0(k))Uµρ(k)
dρσ

k2 + iε
Uσν(k) (5.30)

where

Uµν(k) = gµν −
1

2
Π1(k)

kµζν + kνζµ
k · ζ (5.31)

and the quantities

Π0(k) =
αs

2π
τ

[

cA

∫

dz
(z2 − z x + x2)2

z(z − x)x2
Θ0

11(z, z − x) − Nf

3

]

(5.32)

Π1(k) =
αs

4π
τcA

∫

dz
(5 z x2(z − x) + 6 z2 (z − x)2 + 2 x4)

z(z − x)x2
Θ0

11(z, z − x) (5.33)

5.4.1 Closed evolution system

The evolution of non-collinear leading order in 1/Q distribution and fragmentation func-
tions cannot be seen separately from the evolution systems of sub-leading order collinear
functions. The calculation of the evolution of leading order non-collinear functions is per-
formed in a redundant basis of non-local objects. Of each of these functions is determined
how it mixes with other functions under evolution. The result is that the evolution equa-
tions can be put in a matrix structure, in which a set of functions at one scale, mix with
each other by means of the found evolution system, to form the same set of functions at
a different scale. This system takes its simplest form in a light-cone gauge.
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Performing the calculations in the gauge A · ζ = 0, where ζµ also denotes the hard
direction probing the hadron, the coupled set of evolution equations have a four by four
matrix structure. The mixing under evolution can be shown diagrammatically as follows

∂

∂ lnµ2







































=



















2PI 2PI

3PI 3PI

























































(5.34)

where the boxes labeled 2PI and 3PI denote two-particle and three-particle irreducible
kernels respectively, and the lower lines on the kernels have been truncated. In this
diagram is implicit that the gauge A ·ζ = 0 has been chosen. In this case the polarizations
of the gluon that have to be considered are only the transverse ones.

Inclusion of a quark mass in the calculation of scale dependence increases the number
of functions that mix under evolution. The presence of a quark mass operator introduce
mixing from chiral-odd and chiral even sector of functions. Interactions in mass-less
QCD cannot connect these sectors. The mixing of single argument functions into the
evolution of two-argument functions is in identical proportions to those in which the
single argument functions enter in the equations of motion relations (3.75), (3.76) and
(3.77). Their presence can be eliminated through the use of these relations. This cross-
talk between chiral-even and chiral-odd sectors of functions is trivial and we will discard
it in our calculations by setting the quark mass to zero.

Although of limited applicability, we concentrate on the scale dependence of the flavor
non-singlet distribution and fragmentation functions. For this case the structure of the
mixing fits into the diagram in equation (5.34). When flavor singlet combinations of
the functions are considered a more general kernel in which quark legs are replaced by
gluons, has to be considered together with the mixing of gluon distribution functions
under evolution.

5.5 Large number of colors

As the evolution of sub-leading order in 1/Q functions is rather complicated and seems
to become more transparent when considering the limit of large number of colors, we will
perform the calculation neglecting corrections of order 1/Nc. In this limit all non-planar
diagrams vanish as these diagrams are accompanied by a factor

cF − 1

2
cA → 0 (5.35)

as the color constants cF and cA obtain their limiting values

cF → 1

2
Nc (5.36)

cA → Nc (5.37)
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Figure 5.4: Contributions that have to be taken into account in first order in αs to calculate
the Q2-dependence of a single longitudinal momentum distribution function in a light-cone
gauge in the large Nc limit.
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Figure 5.5: These are the first order in αs contributions to two-argument functions in a
light-cone gauge in the large Nc limit.

The diagrams that have to be considered in order to calculate the Q dependence of single
argument distribution functions are shown in figure 5.4. Even in this limit the evolution
systems will not be simple as also two-argument functions have to be considered. The
diagrams that have to be taken into account to calculate the corrections to these functions
are shown in figure 5.5.

5.6 Calculation of the large-Nc contributions

In this section we define for further reference all contributions that are relevant for the
calculation of the evolution equations of transverse momentum dependent distribution
functions at first order in αs. In all expressions color factors have been taken into account
and the large Nc limit has been taken. The projectors Γ and Γα are kept general in order
to use these definitions to more evolution sectors than only that of g

(1)
1T (x).
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5.6.1 Real contributions

The ladder diagram contribution will be defined by

x

= −i g2Nc

∫ d4k d4p

(2π)4
δ(k · ζ − xP · ζ)

×
Tr
[

Φ(p) γα k/Γ k/γβ
]

(k2 + iε)2((p− k)2 + iε)
dαβ(p− k) (5.38)

where the gluon polarizer in the light-cone gauge has the form of equation (5.10). An
additional contribution to 2PI soft parts is defined as

x

= −i g2Nc

∫
d4k d4p

(2π)4
δ(k · ζ − xP · ζ)

×
Tr
[

Φρ
A(p, p1) γ

α k/Γ k/γβ
]

(k2 + iε)2

×dασ(p− k) dλβ(p1 − k)V σλρ(k − p, p1 − k, p− p1),

((p− k)2 + iε)((p1 − k)2 + iε)
(5.39)

where now also the 3-gluon vertex enters the equations,

V αβγ(k, l, p) = i g
(

gαβ(k − l)γ + gβγ(l − p)α + gγα(p− k)β
)

(5.40)

5.6.2 Virtual contributions

There are virtual diagrams contributing to the evolution of 2PI soft parts. The only
diagrams that contribute are the quark self-energy diagrams and will always appear in
the following combination, defined as

1

2

{
x

+

x
}

=
∫ d4k

(2π)4
δ(k · ζ − xP · ζ)

×δ4(p− k)
1

2

Tr [Φ(k) Σ(k) k/Γ + Φ(k) Γ k/Σ(k)]

(k2 + iε)
(5.41)

5.6.3 Evolution of 3PI soft parts

For the projection of 3PI structure in the form of 2-argument functions, the following two
diagrams have to be taken into account. One diagram emitting a gluon from the right
quark leg,

x

= −i g2Nc

∫
d4k d4k1 d

4p

(2π)4
δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ)
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×δ4(k − p)
Tr [Φ(p) γα k/1 Γτ ]

(k2
1 + iε)((p− k1)2 + iε)

dατ (p− k) (5.42)

and a a diagram in which the gluon is emitted from the left leg
x

= −i g2Nc

∫
d4k d4k1 d

4p

(2π)4
δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ)

×δ4(k1 − p)
Tr [Φ(p) γα k/1 Γτ ]

(k2
1 + iε)((p− k1)2 + iε)

dατ (p− k) (5.43)

There are two real diagrams that determine the contribution from two-argument functions
to the evolution of two-argument functions. The first of these diagrams is

x

= −i g2Nc

∫
d4k d4k1 d

4p d4p1

(2π)4
δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ)

×δ4(p− k)
Tr
[

Φρ
A(p, p1) γ

α k/Γβ
]

(k2 + iε)

dασ(p1 − k − 1) dλβ(k1 − k)V σρλ(p1 − k, p− p1, k1 − k),

((p1 − k1)2 + iε)((k1 − k)2 + iε)
, (5.44)

and the second
x

= −i g2Nc

∫
d4k d4k1 d

4p d4p1

(2π)4
δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ)

×δ4(p1 − k)
Tr [Φρ

A(p, p1)Γτ k/γ
α]

(k2 + iε)

dασ(k − p) dλβ(k1 − k)V σλρ(k − p, k1 − k, p− p1)

((k − p)2 + iε)((k1 − k)2 + iε)
. (5.45)

The quark and gluon self-energy contributions to 3PI-function were not included in this
section.

This chapter shows the necessary steps for the calculation of the evolution equations
of leading order non-collinear functions and shows that this is much more involved that
that of their collinear counterparts. We show the diagrams that have to be taken into
account for a first order in αs calculation in the large-Nc limit. The calculation resembles
the calculation of evolution equations of sub-leading order functions [Bukh83a], except
that in those calculations equations of motion relations and Lorentz-invariance relations
are used to reduce the number of functions and eliminate the non-collinear functions. The
fact that the latter relations are under discussion in the recent years, makes us be careful
in applying them in the case of kT -odd functions.

In the next chapter we will use these relations to reconstruct the evolution of kT -odd
functions from collinear evolution in the large Nc limit. In chapter 7 we will show the
results from explicit calculation to the same accuracy without using these relations.
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5.A Generalized Θ-functions

When performing a calculation of the evolution equations of kT -odd distribution and frag-
mentation functions in the large Nc limit, the following set of relations among generalized
Θ-functions, defined as in equation (5.16), suffices, in order to reduce all results in terms
of regular θ-functions and δ-functions.

By explicit evaluation of the integrals for these specific cases one finds,

Θ0
1(x) = 0, (5.46)

Θ0
2(y) = δ(x), (5.47)

Θ0
11(x, y) =

1

x− y
(θ(x)θ(−y) − θ(−x)θ(y)) . (5.48)

All other Θ-functions encountered in a first order in αs calculation of real diagrams can
be reduced with the help of the following relations,

Θ0
21(x, y) =

y

x− y
Θ0

11(x, y) −
x

(x− y)
Θ0

2(x), (5.49)

Θ0
22(x, y) = − 2 x y

(x− y)2
Θ0

11(x, y) +
y2

(y − x)2
Θ0

2(y) +
x2

(y − x)2
Θ0

2(x), (5.50)

Θ1
21(x, y) =

1

x− y
Θ0

11(x, y) −
1

x− y
Θ0

2(x), (5.51)

Θ1
22(x, y) = − (x + y)

(x− y)2
Θ0

11(x, y) +
y

(y − x)2
Θ0

2(y) +
x

(y − x)2
Θ0

2(x), (5.52)

Θ0
111(x, y, z) =

y

z − y
Θ0

11(x, y) +
z

y − z
Θ0

11(x, z), (5.53)

Θ1
111(x, y, z) =

1

z − y
Θ0

11(x, y) +
1

y − z
Θ0

11(x, z), (5.54)

Θ0
211(x, y, z) =

y2

(z − y)(x− y)
Θ0

11(x, y) +
z2

(y − z)(x− z)
Θ0

11(x, z)

+
x2

(z − x)(y − x)
Θ0

2(x), (5.55)

Θ0
221(x, y, z) = − x z2

(y − z)(x− z)(x − y)
Θ0

11(x, z) +
yz2

(x− y)(x− z)(y − z)
Θ0

11(y, z)

+
2 y2 x2 − x y z (x+ y)

(z − x)(z − y)(x− y)2
Θ0

11(x, y), (5.56)

Θ1
211(x, y, z) =

y

(z − y)(x− y)
Θ0

11(x, y) +
z

(y − z)(x− z)
Θ0

11(x, z)

+
x

(z − x)(y − x)
Θ0

2(x), (5.57)

Θ1
221(x, y, z) =

z2

(x− y)(x− z)(y − z)
Θ0

11(y, z) −
z2

(x− y)(y − z)(x− z)
Θ0

11(x, z)

+
x y (x+ y) − z (x2 + y2)

(z − x)(z − y)(x− y)2
Θ0

11(x, y), (5.58)

Θ2
211(x, y, z) =

1

(z − y)(x− y)
Θ0

11(x, y) +
1

(y − z)(x− z)
Θ0

11(x, z)
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+
1

(z − x)(y − x)
Θ0

2(x), (5.59)

Θ2
221(x, y, z) =

z

(x− y)(x− z)(y − z)
Θ0

11(y, z) −
z

(y − z)(x− y)(x− z)
Θ0

11(x, z)

− z (x + y) − 2 x y

(z − x)(z − y)(x− y)2
Θ0

11(x, y) (5.60)
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CHAPTER

SIX

A local-operator approach

6.1 Introduction

The logarithmic scale dependence acquired by distribution and fragmentation due to per-
turbative corrections is of considerable importance in extracting these functions from
experimental data. In the past, studies have led to the determination of the scale depen-
dence of the functions that compose the collinear set of distribution and fragmentation
functions. The precision in order of αs to which this scale dependence is known varies
from next-to-next-to leading order (NNLO) (of order α3

s) for f1(x, µ
2) [Vogt04], to only

leading order (LO) (order αs) [Ali91, Bali96, Ji99] for sub-leading order functions. An
important reason for this difference in accuracy, besides the additional suppression in
powers 1/Q in the cross-section and therefore diminished relevance, is the complicated
evolution structure. Sub-leading order functions mix under evolution, introducing much
uncertainty for practical applications.

Very significant simplification in the evolution of sub-leading order functions, is ob-
tained in the limit of a large number of colors. In this limit, the evolution of pure inter-
action parts, as can be obtained from equation of motion relations, becomes diagonal.

In contrast to the study presented in this thesis, the attention has always been directed
towards a restricted set of distribution and fragmentation functions that describe partons
with collinear momenta to their parent hadrons. Functions involving quark transverse
momentum are usually eliminated by the use of equation of motion relations and relations
following from Lorentz-invariance.

In this chapter we want to use the large Nc results together with the equations of
motion and Lorentz-invariance relations, in order to construct Q2-evolution equations for
leading order kT -odd functions.

6.2 Large number of colors

We will use the evolution equations for the collinear set of functions in the large Nc

limit. Starting with the leading order functions of the collinear set, repeating the well
known results of [Alta77, Bald81, Artr90] adapted to the limit of large number of colors
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cF → Nc/2. Denoting by a dot the logarithmic scale derivative of a function

ḟ(µ2) ≡ 1

µ2

d

dµ2
f(µ2), (6.1)

the evolution equations for the leading order sector are given by,

ḟ1(x, µ
2) =

αs

4π
Nc

∫ 1

x

dy

y




1 + (x

y
)2

(1 − x
y
)+

+
3

2
δ(1 − x

y
)



 f1(y, µ
2), (6.2)

ġ1(x, µ
2) =

αs

4π
Nc

∫ 1

x

dy

y




1 + (x

y
)2

(1 − x
y
)+

+
3

2
δ(1 − x

y
)



 g1(y, µ
2), (6.3)

ḣ1(x, µ
2) =

αs

4π
Nc

∫ 1

x

dy

y




2(x

y
)

(1 − x
y
)+

+
3

2
δ(1 − x

y
)



h1(y, µ
2). (6.4)

The +-prescription used above stands for the regularized form of the end-point divergence
as defined in equation (5.22).

The connection to the evolution of non-collinear functions will be made in terms of
moments, defined by

[f ]n ≡
∫

dx xn−1 f(x). (6.5)

The autonomous evolution equations shown in expressions (6.2)-(6.4) are of the form

d

dτ
f(x, τ) =

αs(τ)

2π

∫ 1

x

dy

y
P [f ]

(

x

y

)

f(y, τ), (6.6)

where f is any of the leading order functions, τ = lnµ2 and P [f ] are the splitting functions.
Using moments A[f ]

n of these splitting functions, equal to the anomalous dimensions of the
moments of the corresponding distribution function, this is

d

dτ
[f ]n(τ) =

αs(τ)

2π
A[f ]

n [f ]n(τ). (6.7)

The relation between the moments of the splitting function and the anomalous dimension
can be seen by rewriting equation (6.7) as,

[f ]n(τ1)

[f ]n(τ2)
=

[

αs(τ1)

αs(τ2)

]−2 A
[f ]
n

β0

. (6.8)

where τ1 and τ0 denote scale integration limits, and comparing this expression with the
scale dependence following form a renormalization group analysis

A[f ]
n = −1

4
dn (6.9)

where dn is proportional to the leading coefficient in an expansion in the coupling constant
of the anomalous dimension (2.17).
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Applying this to the splitting functions in equations (6.2), (6.2) and (6.2), this results
in the following anomalous dimensions for the leading order functions

A[f1]
n = A[g1]

n =
Nc

2




3

2
+

1

n(n+ 1)
− 2

n∑

j=1

1

j



 , (6.10)

A[h1]
n =

Nc

2




3

2
− 2

n∑

j=1

1

j



 , (6.11)

6.2.1 Twist-3 distribution functions

In the large Nc limit the evolution of the pure interactions parts of the collinear sub-
leading order functions takes an autonomous form. To first order in αs, the evolution
equations for the collinear sub-leading order functions is known [Ali91, Bali96, Ji99]. The
evolution equations in the large Nc limit for the pure interaction parts, as defined in
equations (3.75)-(3.77), can summarized by [Brau00]

˙̃gT (x,Q2) =
αs

2π
Nc

∫ 1

x

dy

y




1

2
δ(1 − x

y
) +

2

(1 − x
y
)+

− 1



 g̃T (y,Q2), (6.12)

˙̃
hL(x,Q2) =

αs

2π
Nc

∫ 1

x

dy

y




1

2
δ(1 − x

y
) +

2

(1 − x
y
)+

− 3



 h̃L(y,Q2), (6.13)

˙̃e(x,Q2) =
αs

2π
Nc

∫ 1

x

dy

y




1

2
δ(1 − x

y
) +

2

(1 − x
y
)+

+ 1



 ẽ(y,Q2), (6.14)

where the autonomous evolution attributed to the pure interaction part of the function
g2 = g1 + gT , has been replaced by the interaction part of the function gT (x). Translating
the above to moments gives,

A[g̃T ]
n =

Nc

2




1

2
+

1

n
− 2

n∑

j=1

1

j



 , (6.15)

A[h̃L]
n =

Nc

2




1

2
− 1

n
− 2

n∑

j=1

1

j



 , (6.16)

A[ẽ]
n =

Nc

2




1

2
+

3

n
− 2

n∑

j=1

1

j



 . (6.17)

6.3 Connection to the light-front

Using the equations of motion relations in equations (3.75) - (3.80) and the relations based
on Lorentz-invariance in equations (3.66) - (3.74), it is straightforward to relate the various
sub-leading order functions and the transverse moments of kT -dependent functions. The
results, grouping relevant combinations, are

gT (x) =
∫ 1

x
dy

g1(y)

y
+
m

M

[

h1(x)

x
−
∫ 1

x
dy

h1(y)

y2

]
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+

[

g̃T (x) −
∫ 1

x
dy

g̃T (y)

y

]

, (6.18)

g
(1)
1T (x)

x
=

∫ 1

x
dy

g1(y)

y
− m

M

∫ 1

x
dy

h1(y)

y2
−
∫ 1

x
dy

g̃T (y)

y
, (6.19)

hL(x) = 2x
∫ 1

x
dy

h1(y)

y2
+
m

M

[

g1(x)

x
− 2x

∫ 1

x
dy

g1(y)

y3

]

+

[

h̃L(x) − 2x
∫ 1

x
dy

h̃L(y)

y2

]

, (6.20)

h
⊥(1)
1L (x)

x2
= −

∫ 1

x
dy

h1(y)

y2
+
m

M

∫ 1

x
dy

g1(y)

y3
+
∫ 1

x
dy

h̃L(y)

y2
, (6.21)

e(x) = ẽ(x) +
m

M

f1(x)

x
, (6.22)

fT (x) =

[

f̃T (x) −
∫ 1

x
dy

f̃T (y)

y

]

, (6.23)

f
⊥(1)
1T (x)

x
=

∫ 1

x
dy

f̃T (y)

y
, (6.24)

h(x) =

[

h̃(x) − 2x
∫ 1

x
dy

h̃(y)

y2

]

, (6.25)

h
⊥(1)
1 (x)

x2
=

∫ 1

x
dy

h̃(y)

y2
, (6.26)

eL(x) = ẽL(x). (6.27)

Note that often the combinations of tilde functions between brackets are denoted by a
single ‘interaction-dependent’ function.

In order to study the evolution of these functions, we consider the moments, giving

[gT ]n =
1

n
[g1]n +

n− 1

n
[g̃T ]n +

m

M

n− 1

n
[h1]n−1 , (6.28)

[g
(1)
1T ]n =

1

n + 1

(

[g1]n+1 − [g̃T ]n+1 −
m

M
[h1]n

)

, (6.29)

[hL]n =
2

n+ 1
[h1]n +

n− 1

n+ 1
[h̃L]n +

m

M

n− 1

n+ 1
[g1]n−1 , (6.30)

[h
⊥(1)
1L ]n = − 1

n + 2

(

[h1]n+1 − [h̃L]n+1 −
m

M
[g1]n

)

, (6.31)

[e]n = [ẽ]n +
m

M
[f1]n−1 , (6.32)
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[fT ]n =
n− 1

n
[f̃T ]n , (6.33)

[f
⊥(1)
1T ]n =

1

n+ 1
[f̃T ]n+1 , (6.34)

[h]n =
n− 1

n+ 1
[h̃]n , (6.35)

[h
⊥(1)
1 ]n =

1

n + 2
[h̃]n+1 , (6.36)

[eL]n = [ẽL]n . (6.37)

Actually, we need not consider the five T-odd functions separately. They can be simply
considered as imaginary parts of other functions, when we allow complex functions. In
particular, one can expand the correlation functions into matrices in Dirac space [Bacc00b]
to show that the relevant combinations are (g1T −i f⊥

1T ) which we can treat together as one
complex function g1T . Similarly, we can absorb the imaginary parts into new functions

(h⊥1L + i h⊥1 ) → h⊥1L, (6.38)

(gT + i fT ) → gT , (6.39)

(hL + i h) → hL, (6.40)

(e + i eL) → e. (6.41)

6.3.1 Evolution equations

Using the moment analysis of the previous section one can arrive at a set of evolution
equations for kT -odd distribution functions [Henn02]. The evolution of g

(1)
1T is driven not

only by this function itself but also by a higher moment of g1 and a similar situation for
h
⊥(1)
1L . In the large Nc limit (CF → Nc/2) one obtains (omitting mass terms)

d

dτ
[g

(1)
1T ]n =

αs(τ)

4π
Nc










1

2
− 1

n+ 1
− 2

n∑

j=1

1

j



 [g
(1)
1T ]n

+
1

n + 2
[g1]n+1






, (6.42)

d

dτ
[h

⊥(1)
1L ]n =

αs(τ)

4π
Nc










1

2
− 3

n+ 1
− 2

n∑

j=1

1

j



 [h
⊥(1)
1L ]n

− 1

n + 1
[h1]n+1






, (6.43)

or in terms of the functions of light-cone momentum fractions

d

dτ
g

(1)
1T (x, τ) =

αs(τ)

4π
Nc

∫ 1

x
dy

{[

1

2
δ(y − x) +

x2 + xy

y2(y − x)+

]

g
(1)
1T (y, τ)

+
x2

y2
g1(y, τ)






, (6.44)
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d

dτ
h
⊥(1)
1L (x, τ) =

αs(τ)

4π
Nc

∫ 1

x
dy

{[

1

2
δ(y − x) +

3x2 − xy

y2(y − x)+

]

h
⊥(1)
1L (y, τ)

− x

y
h1(y, τ)






. (6.45)

Next we note that apart from a γ5 matrix the operator structures of the T-odd functions
f
⊥(1)
1T and h

⊥(1)
1 are in fact the same as those of g

(1)
1T and h

⊥(1)
1L (they can be considered as

the imaginary part of these functions [Bacc00b]). This implies that for the non-singlet
functions, one immediately can obtain the evolution of the T-odd functions,

d

dτ
[f

⊥(1)
1T ]n =

αs(τ)

4π
Nc




1

2
− 1

n+ 1
− 2

n∑

j=1

1

j



 [f
⊥(1)
1T ]n, (6.46)

d

dτ
[h

⊥(1)
1 ]n =

αs(τ)

4π
Nc




1

2
− 3

n + 1
− 2

n∑

j=1

1

j



 [h
⊥(1)
1 ]n. (6.47)

Furthermore, for the chiral-odd functions, which do not mix with a gluon distribution,
there is no difference between the non-singlet and the singlet evolution.

In the large Nc limit, the evolution equations for the non-singlet T-odd functions are
of simple diagonal form with splitting functions

P [f
⊥(1)
1T

](β) =
Nc

2

[

1

2
δ(1 − β) +

β + β2

(1 − β)+

]

, (6.48)

P [h
⊥(1)
1 ](β) =

Nc

2

[

1

2
δ(1 − β) +

3β2 − β

(1 − β)+

]

. (6.49)

Actually, we also obtain the anomalous dimensions (and splitting functions) of the T-odd

sub-leading order functions using A[fT ] = A[f̃T ] = A[g̃T ], A[h] = A[h̃] = A[h̃L] and A[eL] =
A[ẽL] = A[e] = A[ẽ].

6.3.2 Fragmentation functions

Combining relations following from Lorentz-invariance and equations of motion, one can
construct the following relations,

GT (z)

z
= −

∫ 1

z
dy

G1(y)

y2
+

m

Mh

[

H1(z) +
∫ 1

z
dy

H1(y)

y

]

+

[

G̃T (z)

z
+
∫ 1

z
dy

G̃T (y)

y2

]

, (6.50)

G
(1)
1T (z) = −

∫ 1

z
dy

G1(y)

y2
+

m

Mh

∫ 1

z
dy

H1(y)

y
+
∫ 1

z
dy

G̃T (y)

y2
, (6.51)

HL(z) = −2
∫ 1

z
dy

H1(y)

y
+

m

Mh

[

zG1(z) + 2
∫ 1

z
dy G1(y)

]

+

[

H̃L(z) + 2
∫ 1

z
dy

H̃L(y)

y

]

, (6.52)
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z H
⊥(1)
1L (z) =

∫ 1

z
dy

H1(y)

y
− m

Mh

∫ 1

z
dy G1(y) −

∫ 1

z
dy

H̃L(y)

y
, (6.53)

E(z) = Ẽ(z) +
m

Mh
zD1(z), (6.54)

DT (z)

z
=

[

D̃T (z)

z
+
∫ 1

z
dy

D̃T (y)

y2

]

, (6.55)

D
⊥(1)
1T (z) = −

∫ 1

z
dy

D̃T (y)

y2
, (6.56)

H(z) =

[

H̃(z) + 2
∫ 1

z
dy

H̃(y)

y

]

, (6.57)

z H
⊥(1)
1 (z) = −

∫ 1

z
dy

H̃(y)

y
, (6.58)

EL(z) = ẼL(z). (6.59)

The relations for the moments of fragmentation functions can be obtained from the above
equations or from the results of the distribution functions via the replacement

n→ −n (6.60)

in all expressions, followed by the replacement of the function moments by

[f ]−n → [D/z]n = [D]n−1, (6.61)

where the moments of fragmentation functions are defined as in equation (6.5) but involve
the momentum fraction z. This yields

[GT ]n = − 1

n + 1
[G1]n +

n+ 2

n+ 1
[G̃T ]n +

m

Mh

n + 2

n + 1
[H1]n+1 , (6.62)

[G
(1)
1T ]n+1 = − 1

n+ 1

(

[G1]n − [G̃T ]n − m

Mh
[H1]n+1

)

, (6.63)

[HL]n = − 2

n
[H1]n +

n+ 2

n
[H̃L]n +

m

Mh

n + 2

n
[G1]n+1 , (6.64)

[H
⊥(1)
1L ]n+1 =

1

n

(

[H1]n − [H̃L]n − m

Mh

[G1]n+1

)

, (6.65)

[E]n = [Ẽ]n +
m

Mh

[D1]n+1 , (6.66)

[DT ]n =
n + 2

n + 1
[D̃T ]n , (6.67)

[D
⊥(1)
1T ]n+1 = − 1

n + 1
[D̃T ]n , (6.68)
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[H]n =
n+ 2

n
[H̃]n , (6.69)

[H
⊥(1)
1 ]n+1 = − 1

n
[H̃]n , (6.70)

[EL]n = [ẼL]n . (6.71)

The autonomous evolution equations are again of the form

d

dτ
D(z, τ) =

αs(τ)

2π

∫ 1

z

dy

y
P [D]

(

z

y

)

D(y, τ), (6.72)

or via the (usual) moments A[D]
n =

∫ 1
0 dz z

n−1 P [D](z) of the splitting functions,

d

dτ
[D]n(τ) =

αs(τ)

2π
A[D]

n [D]n(τ). (6.73)

For the leading order contributions the analytic structure of the corrections for fragmen-
tation functions is similar as for distribution functions. We note a (generalized) Gribov-
Lipatov reciprocity, summarized by the following procedure. The splitting functions for
distribution functions f(x, τ) and corresponding fragmentation functions z D(z, τ) are
related by

P [f ](β) =
N (β)

(1 − β)+

, (6.74)

P [zD](β) =
β2 N (1/β)

(1 − β)+
. (6.75)

This relation works for the leading order fragmentation functions and the interaction-
dependent functions [Beli97b], for N (β) being (at most a quadratic) polynomial in β.
In the case of the leading order functions the functional form of the splitting functions
is the same for distribution and fragmentation functions. This is no longer true for
the interaction-dependent functions. For the anomalous dimensions of distribution and
fragmentation functions the relation becomes

A[f ]
n = A(n) − 2

n∑

j=1

1

j
= A(n) − 2γE − 2ψ(n+ 1), (6.76)

A
[D]
n+1 = A (−(n+ 1)) − 2γE − 2ψ(n+ 1) = A (−(n + 1)) − 2

n∑

j=1

1

j
, (6.77)

where A(n) is a rational function. We have not yet investigated the wider applicability
of the above relations. We find for the leading order fragmentation functions the familiar
results, which obey the original Gribov-Lipatov reciprocity relation A[f ]

n = A
[D]
n+1 between

the leading order distribution functions f = f1, g1, h1 and fragmentation functions D =
D1, G1, H1,

A
[D1]
n+1 = A

[G1]
n+1 = CF




3

2
+

1

n(n+ 1)
− 2

n∑

j=1

1

j



 , (6.78)

A
[H1]
n+1 = CF




3

2
− 2

n∑

j=1

1

j



 . (6.79)
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In the large Nc limit, our generalized reciprocity relations in equations (6.76) and (6.77)
applied to equations (6.15) - (6.17) give the results for the interaction-dependent func-
tions [Beli97b, Beli97]

A
[G̃T ]
n+1 =

Nc

2




1

2
− 1

n + 1
− 2

n∑

j=1

1

j



 , (6.80)

A
[H̃L]
n+1 =

Nc

2




1

2
+

1

n + 1
− 2

n∑

j=1

1

j



 , (6.81)

A
[Ẽ]
n+1 =

Nc

2




1

2
− 3

n + 1
− 2

n∑

j=1

1

j



 . (6.82)

Again one then also knows A[DT ] = A[D̃T ] = A[G̃T ], A[H] = A[H̃] = A[H̃L] and A[EL] = A[ẼL]

= A[E] = A[Ẽ].
Using the moment analysis (the reciprocity relations cannot be used straightforwardly)

one obtains, omitting the mass terms,

d

dτ
[G

(1)
1T ]n+1 =

αs(τ)

4π
Nc










1

2
+

1

n
− 2

n∑

j=1

1

j



 [G
(1)
1T ]n+1

− n

(n− 1)(n+ 1)
[G1]n






, (6.83)

d

dτ
[H

⊥(1)
1L ]n+1 =

αs(τ)

4π
Nc










1

2
+

3

n
− 2

n∑

j=1

1

j



 [H
⊥(1)
1L ]n+1

+
n− 1

n2
[H1]n






, (6.84)

with in this case mixing with a lower moment of the leading order functions. In terms of
the functions of light-cone momentum fractions one finds

d

dτ
zG

(1)
1T (z, τ) =

αs(τ)

4π
Nc

∫ 1

z
dy

{[

1

2
δ(y − z) +

y + z

y(y − z)+

]

yG
(1)
1T (y, τ)

− y2 + z2

2y2z
G1(y, τ)

}

, (6.85)

d

dτ
zH

⊥(1)
1L (z, τ) =

αs(τ)

4π
Nc

∫ 1

z
dy

{[

1

2
δ(y − z) +

3y − z

y(y − z)+

]

yH
⊥(1)
1L (y, τ)

+
1 + ln(z/y)

y
H1(y, τ)

}

. (6.86)

Given the fact that, apart from an additional γ5, the operator structure for the T-odd
Sivers fragmentation analog and Collins fragmentation function, D

⊥(1)
1T and H

⊥(1)
1 , are the

same as those of G
(1)
1T and H

⊥(1)
1L but without mixing with G1 or H1, one finds in the large

Nc limit an autonomous evolution for the T-odd functions, with anomalous dimensions

A
[D

⊥(1)
1T

]
n+1 =

Nc

2




1

2
+

1

n
− 2

n∑

j=1

1

j



 , (6.87)
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function C a1 a2 a3 validity
f1 − 0 -7/6 -25/12
g1 + 0 -7/6 -25/12
h1 − -1/2 -3/2 -13/6

g̃T and f̃T + -1/2 -2 -17/6 large Nc

h̃L and h̃ − -5/2 -3 -7/2 large Nc

ẽ + +3/2 -1 -13/6 large Nc

g
(1)
1T and f

⊥(1)
1T − -2 -17/6 -41/12 large Nc

h
⊥(1)
1L and h

⊥(1)
1 + -3 -7/2 -47/12 large Nc

zD1 − 0 -7/6 -25/12
zG1 + 0 -7/6 -25/12
zH1 − -1/2 -3/2 -13/6

zG̃T and zD̃T + -2 -17/6 -41/12 large Nc

zH̃L and zH̃ − -1 -13/6 -35/12 large Nc

zẼ + -3 -7/2 -47/12 large Nc

zG
(1)
1T and zD

⊥(1)
1T − -1/2 -2 -17/6 large Nc

zH
⊥(1)
1L and zH

⊥(1)
1 + +3/2 -1 -13/6 large Nc

Table 6.1: The anomalous dimensions from which the large Q2 behavior of the moments,
proportional to [αs(Q

2)]dn , is obtained. Defining the moments an taking out the factor
CF or Nc/2 from the anomalous dimensions An, one has for the leading order functions
dn = −2an CF /β0 with β0 = (11Nc − 2Nf )/3, while for the large Nc results one has
dn = −3 an/11. Also indicated is the charge conjugation behavior of the functions, f̄(x) =
±f(−x).

A
[H

⊥(1)
1 ]

n+1 =
Nc

2




1

2
+

3

n
− 2

n∑

j=1

1

j



 . (6.88)

corresponding to splitting functions

P [zD
⊥(1)
1T

](β) =
Nc

2

[

1

2
δ(1 − β) +

1 + β

(1 − β)+

]

, (6.89)

P [zH
⊥(1)
1 ](β) =

Nc

2

[

1

2
δ(1 − β) +

3 − β

(1 − β)+

]

. (6.90)

The results in equations (6.88) and (6.90) are relevant for studies of the Collins effect and
equations (6.87) and (6.89) for studies of transversely polarized Λ production [Anse01],
provided that the relations following from Lorentz-invariance can be reconciled with the
use of non-collinear structure in cross-sections.

6.3.3 Discussion and conclusions

Our goal was to obtain the evolution equations of the functions that appear in azimuthal
spin asymmetries. These kT -dependent functions appear in asymmetries that are not
suppressed by explicit powers of the hard momentum. But as functions of transverse
momentum they are not of definite (local) twist, which implies that in order to obtain the
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evolution equations one has to calculate corrections to higher twist operators as well. For
the first p2

T
/2M2 moment (transverse moment) of these pT -dependent functions, such as

for the Collins fragmentation function,

H
⊥(1)
1 =

∫

d2k′
T
k′2

T
/2z2M2

h H
⊥
1 (z,k′2

T
), (6.91)

we obtain DGLAP-like evolution equations. Such moments appear in cross sections
weighted with the momentum qα

T
, where only the directional (azimuthal) dependence

remains. For explicit examples we refer to the literature [Boer97a, Boer97b, Boer98]. In
case one does not weight the transverse momentum integration of the differential cross
section, one is only sensitive to the leading order functions f1, g1 and h1 (and their frag-
mentation counterparts), but in case one weights with one or more powers of the observed

transverse momentum, one becomes sensitive to the functions g
(1)
1T , h

⊥ (1)
1L , f

⊥ (1)
1T , h

⊥ (1)
1 (and

their fragmentation counterparts), which are functions of the light-cone momentum frac-
tion x (or z) only.

In the large-Nc limit, the non-singlet evolution of these functions involves, under the
assumption of validity of the Lorentz invariance relations, only the functions themselves
and (in the T-even case) only well-known leading order functions. For the chiral-odd
functions the equations also apply to the singlet case, since there is no mixing with
gluon distribution functions. The large-Nc evolution equations are expected to be good
approximations to the full evolution equations which are not of this simple form gathered
in [Brau00], because of the appearance of two-argument sub-leading order functions as in
equation (3.21). It is not excluded that the first 1/Nc correction to the result obtained
here may still lead to autonomous evolution equations, but we will not address this issue
here. Especially the (large Nc) evolution equation we have obtained for H

⊥(1)
1 ,

d

dτ
zH

⊥(1)
1 (z, τ) =

αs

4π
Nc

∫ 1

z
dy

[

1

2
δ(y − z) +

3y − z

y(y − z)+

]

yH
⊥(1)
1 (y, τ), (6.92)

should prove useful for the comparison of data on Collins function asymmetries from
different experiments, performed at different energies.

It is worth investigating the large Q behavior of the solutions to the various evolution
equations. For this purpose we have given the first 3 anomalous dimensions for the dif-
ferent functions in table 6.1. First we note that all (diagonal) anomalous dimensions of

g
(1)
1T , h

⊥ (1)
1L , f

⊥ (1)
1T and h

⊥ (1)
1 are negative, implying that these functions will vanish asymp-

totically (Q2 → ∞), except that for the T-even functions there is mixing with g1 and h1,
but this does not alter the conclusion.

For the fragmentation counterparts the conclusion is similar, except for the fact that
the lowest anomalous dimensions of zH

⊥(1)
1L and zH

⊥(1)
1 are positive, potentially leading

to divergent behavior of the functions as Q2 → ∞. This divergent behavior is readily
cured if the first moment of these function vanishes, a condition that would lead to the
Schäfer-Teryaev sum rule [Scha00, Tery00],

∑

h

∫

dz z
[

H
⊥(1)
1 (z)

]

h
= 0, (6.93)

in which a summation over hadrons h is implied, being automatically satisfied. Similar
sum rules hold for the other first transverse moments of fragmentation functions [Scha00,
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Tery00, Anse01]. All higher moments will vanish asymptotically. The behavior of the
sum rule for the first moment of the function e is discussed in reference [Jaff92].

In conclusion, using the so-called Lorentz-invariance relations and the QCD equations
of motion, the operator structure of the transverse moments of kT -dependent quark dis-
tribution and fragmentation functions can be found in terms of twist-two and twist-three
operators. Knowing their, for large Nc simple, evolution one also knows the evolution of
azimuthal asymmetries in semi-inclusive hard scattering processes.

The Lorentz-invariance relations used here, might be incompatible with the notion of
transverse momentum dependent functions. The relations, also known by the name of
n-invariance due to the freedom in the precise specification of the ζ-direction in collinear
treatments, might not apply when a second hadron, necessary for the measurement of
non-collinear functions, fixes this direction and that of the transverse subspace.
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CHAPTER

SEVEN

Non-collinear evolution

7.1 Introduction

In this chapter we present an independent calculation of the first order in αs Q
2-evolution

of non-collinear distribution functions. The calculations are performed in a light-cone
gauge A ·ζ = 0, where ζµ is the light-like direction, ζ2 = 0, that is determined by the hard
direction q in which the hadron is probed. We consider only that part of the evolution
system that is of relevance in the large Nc limit.

In the following section we will consider the three polarization states of a parent hadron
separately. Only distribution functions are taken into account in this chapter, as at this
order in αs the results can easily be adapted for fragmentation functions.

In most results, the self-energy contributions will be left out. These contributions
always involve only end-point contributions in the momentum fraction integration, and
cannot change the structure of the evolution systems.

7.2 Unpolarized hadrons

For an unpolarized spin-1/2 hadron, the collinear set of functions that parametrize its
T-even structure, consists of the leading order function f1(x), and the sub-leading order
function e(x). T-odd structure complements this collinear set the functions with the
function h(x). Note that there is no leading order T-odd structure. Considering quark
transverse momentum generates a leading order T-odd structure denoted by the name
h
⊥(1)
1 (x).

The evolution of f1(x) is very well known, and is shown at the same accuracy as the
rest of the results in this thesis in equation (6.2). The evolution of the function e(x) is
also known, although to much lower accuracy. In the following section the evolution of
e(x) is used as a check on the calculation, and for illustrative purposes as it is the simplest
sub-leading order evolution system. For a later discussion, it will also be of value to show
the results for e(x) together with the full results including all hadron polarizations.
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7.2.1 Scale dependence of e(x)

The evolution of e(x) is, compared to that of f1(x) more complicated. The large Nc

evolution equation was first calculated in [Bali96], whereas the full result was first shown
in [Beli97c].

Now there are several operators of the same dimension as the unit matrix. All these
operators mix under renormalization and result in a more complicated form for the evo-
lution equations.

Again using the following definition for e(x) in order to extract the order αs contribu-
tions to its Q2-dependence.

e(x) ≡
∫

d4k δ(k · ζ − xP · ζ) Tr

[

Φ(k)

(

P · ζ
M

1

2

)]

(7.1)

One finds after performing the calculation

ė(x) =
∫ 1

x

dy

y

[

B11 e(y) +
∫ 1

0
dy1 B12 Re {EA(y, y1)}

]

(7.2)

where the kernel parts are given by

B11 =
αs

4π
Nc (7.3)

B12 =
αs

4π
Nc

4

(x− y)
. (7.4)

In order to be able to find a closed evolution set we might naively search for the evolution
equations of the real part of EA. A calculation gives

Re
{

ĖA(x, x1)
}

=
∫ 1

x

dy

y

[

B21 e(y) +
∫ 1

0
dy1B22 Re {EA(y, y1)}

]

(7.5)

completing the kernel with the expressions

B21 =
αs

4π
Ncδ(x1 − y)

x

2
(7.6)

B22 =
αs

4π
Nc

[

δ(x1 − y)
x2 − y2 − x y + 2 y y1 − y2

1

(y1 − x)(y − y1)
(7.7)

+ δ(x1 − y1)
x3 + y3 − 2 x2 y1 − 2 y2 y1 + x y2

1 + y y2
1

(x− y)(x− y1)(y − y1)

]

. (7.8)

The obtained kernel satisfies the equations of motion involving e(x), equation (3.75), which
we regard as a check on our calculations. Use of this equation allows us to eliminate one
of the two functions appearing in the evolution equations and reduce the evolution system
to the autonomous evolution equation (6.14), in accordance with the literature.

7.2.2 Scale dependence of h
⊥(1)
1 (x)

Inclusion of transverse momentum makes it possible to define a leading order T-odd, func-
tion h

⊥(1)
1 (x). This function is absent in the collinear case. The evolution of this function
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has not been studied in the past except for a study based on the collinear evolution equa-
tions, equations of motion and equations naively based on Lorentz-invariance [Henn02].
In this section we show its evolution, resulting from a calculation in a redundant basis
without using any of these relations.

In agreement with the parametrization (3.35), it is possible to define the function h
⊥(1)
1

in terms of a projection operation on a soft part,

h
⊥(1)
1 (x) ≡

∫

d4k δ(k · ζ − xP · ζ) Tr

[(

εT
kT ργ5ζ/γρ

4M

)

Φ(k)

]

, (7.9)

where Φ(k) is as in (3.1).

By performing this projection operation on all 2PI-diagrams of order αs, which are
shown in figure 5.4, one obtains

˙
h
⊥(1)
1 (x,Q2) =

αs

4π
Nc

∫ 1

x

dy

y

[

A11 h
⊥(1)
1 (y) + A12 h(x)

+
∫

dy1 A13 Im{EA(y, y1)}
]

. (7.10)

The kernel functions A11 to A13 are given by

A11 =
2x(2x− y)

y(x− y)
(7.11)

A12 = −x (7.12)

A13 =
2(x y(x− y) + x y1(x− y1) − y(y − y1)

2)

y(x− y1)(y − y1)
(7.13)

It is important to note here that the evolution equation for h
⊥(1)
1 (x) (7.10), as found by

direct calculation, differs from the equation found by a different method in chapter 6 and
is expressed in terms of moments in equation (6.47). The evolution equation in chapter 6,

conveniently, only involves the function h
⊥(1)
1 (x), whereas the result of direct calculation

involves, besides the function itself, two additional sub-leading order functions, h and the
imaginary part of the two-argument function EA.

Equation (7.10) is formulated in an over-complete set of functions and one might
naively hope that equivalence with the results of chapter 6 can be made manifest through
the use of equation of motion and Lorentz-invariance relations, but this is not the case.
Because we are not able to eliminate all y1-dependence from the kernel function A13 in
equation (7.13), relation (3.80) cannot be used to eliminate all dependence on EA from
equation (7.10), as would be necessary to arrive at an autonomous evolution equation for

h
⊥(1)
1 (x). In fact, all evolution equations for non-collinear leading order functions found

by direct calculation, differ, because of this reason, from the results in chapter 6, shown
in equations (6.42-6.47). We will see later, when considering polarized hadrons, that this
residual momentum fraction dependence also occurs in the evolution equations for pure
interaction parts and has as a consequence that the autonomous evolution of the pure
interaction parts of the functions hL and gT , which is the starting point of the results
presented in chapter 6, is not confirmed by our direct calculations.
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Proceeding to find the closed set of functions that drive the evolution of h
⊥(1)
1 , we have

to calculate the perturbative contributions to the functions h(x) and EA(x, x1). Opera-
tional definitions of the functions h(x) and EA(x, x1), consistent with the parametrizations
in equation (3.18) and equation (3.21), are given by

h(x) ≡
∫

d4k δ(k · ζ − xP · ζ) Tr

[(

−P · ζ εT ρσγ5[γ
ρ, γσ]

8M

)

Φ(k)

]

(7.14)

EA(x, x1) ≡
∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − x1 P · ζ)

×Tr

[(

P · ζ
M

iεT
ρσγ5ζ/γρ

4

)

Φα
A(k, k1)

]

. (7.15)

The evolution equations for these functions show similar mixing with other functions.
The single-argument sub-leading order function h has the following evolution equation,

ḣ(x,Q2) =
αs

4π
Nc

∫ dy

y

[

A21 h
⊥(1)
1 (y) + A22 h(y) +

∫ 1

0
dy1 A23 Im{EA(y, y1)}

]

, (7.16)

where the kernel functions have the following values,

A21 =
2(3x− y)

y(x− y)
, (7.17)

A22 = 1, (7.18)

A23 =
4(y2 − x y1)

y(x− y)(y − y1)
. (7.19)

For the two-argument function EA(x, x1) one finds the following scale dependence,

Im
{

ĖA(x, x1)
}

=
αs

4π
Nc

∫ 1

x

dy

y

[

A31 h
⊥(1)
1 (y) + A32 h(x)

+
∫ 1

0
dy1 A33 Im{EA(y, y1)}

]

. (7.20)

The kernel parts are now given by

A31 = −δ(x1 − y)
x

y
(7.21)

A32 = −δ(x1 − y)
x

2
(7.22)

A33 = δ(x1 − y)
(x2 − x y + y2 + 2y y1 − y2

1)

(x− y1)(y − y1)

+δ(x1 − y1)
(x3 + y3 − 2x2y1 − 2y2y1 + x y2

1 + y y2
1)

(x− y)(x− y1)(y − y1)
. (7.23)

7.3 Longitudinally polarized hadrons

At leading order in 1/Q is the very well studied [Stra97] function g1(x) which considering
flavor non-singlet in the large Nc limit evolves according to equation (6.3). The function
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that parametrizes the soft structure at sub-leading order in the collinear case is hL(x).
This function has a more complicated evolution structure than its unpolarized counterpart
and was studied in [Koik95b] and its fragmentation function analogue in [Beli97c]. The

evolution of hL(x) already introduces, through mixing, the function h
⊥(1)
1L (x), and in the

next section the evolution of these functions is considered.
The collinear parametrization of the soft parts includes a sub-leading order T-odd

function eL(x) and has an identical evolution structure as the function e(x). Inclusion of
transverse momentum does not lead to new T-odd structures.

7.3.1 Scale dependence of h
⊥(1)
1L (x)

We define the function h
⊥(1)
1L (x,Q2) by the following projection operation,

h
⊥(1)
1L (x) ≡

∫

d4k δ(k · ζ − xP · ζ) Tr

[

Φ(k)

(

−γ5 [ζ/, k/
T
]

8MSL

)]

. (7.24)

Performing this operation on all diagrams of order αs leads to the following evolution
equation

˙
h
⊥(1)
1L (x) =

αs

4π

∫ 1

x

dy

y

[

A11 h
⊥(1)
1L (y) + A12 hL(y)

+
∫ 1

0
dy1 A13 Re {HA(y, y1)}

]

. (7.25)

where the kernel functions A11 . . . A13 are given in equations (7.11), (7.12) and (7.13),

respectively. The functions that mix with h
⊥(1)
1L (x) according to equation (7.25), are

defined in the following way,

hL(x) =
∫

d4k δ(k · ζ − xP · ζ)Tr

[

Φ(k)

(

P · ζ
M

γ5 [η/, ζ/]

4SL

)]

, (7.26)

HA(x, x1) =
∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − x1P · ζ)

×Tr

[

Φα
A(k, k1)

(

P · ζ
M

γ5ζ/γT α

4SL

)]

. (7.27)

These two functions mix among each other as becomes clear from their evolution equa-
tions,

ḣL(x) =
∫ 1

x

dy

y

[

A21 h
⊥(1)
1L (y) + A22 hL(y) (7.28)

+
∫ 1

0
dy1 A23 Re {HA(y, y1)}

]

, (7.29)

Re
{

ḢA(x, x1)
}

=
αs

4π
Nc

∫
dy

y

[

A31 h
⊥(1)
1L (y) (7.30)

+A32 hL(x) +
∫ 1

0
dy1 A33 Re{HA(y, y1)}

]

, (7.31)

where the kernel functions A21-A23 are given in equations (7.17)-(7.19), and the kernel
functions A21-A23 are given in equations (7.21)-(7.23).

83



7.3.2 Scale dependence of eL(x)

In this section we will discuss the T-odd function eL(x). Defining this function consistently
with the parametrization 3.35 in the following way.

eL(x) ≡
∫

d4k δ(k · ζ − xP · ζ) Tr

[(

iγ5
P · ζ

2M SL

)

Φ(k)

]

(7.32)

Using this definition and considering the contributions in the large-Nc limit shown in
figure 5.4 one obtains the following Q2-dependence,

ėL(x) =
∫ 1

x

dy

y

[

B11 eL(y) +
∫ 1

0
dy1 B12 Im {EA(y, y1)}

]

. (7.33)

The kernel functions B11 and B12 already appeared in the evolution equation of the
function e(x), in equations (7.3) and (7.4).

If we now turn our attention to the mixing function, the imaginary part of EA(x, x1),
we find the following results. Defining this function as in equation (7.15) and consid-
ering the contributions shown in figure 5.5 one obtains the following results for the Q2-
dependence of the imaginary part of EA(x, x1).

Re
{

ĖA(x, x1)
}

=
∫ 1

x

dy

y

[

B21 eL(y) +
∫ 1

0
dy1 B22 Im {EA(y, y1)}

]

(7.34)

where the kernel functions B21 and B22 are given by the expressions (7.6) and (7.8).

To our knowledge, the evolution of this functions has not been investigated in the
past except for the results in reference [Henn02], which are presented in chapter 6. By
identifying the function eL(x) as an imaginary part of e(x) it was concluded that the two
functions would evolve identically. Direct computation has confirmed that the evolution
of the function eL(x) is identical to that of e(x).

7.4 Transversally polarized hadrons

The leading order, T-even, collinear structure in a transversally polarized spin-1/2 hadron
is parameterized by the function h1(x), also known by the name of the transversity func-
tion. Its evolution is known to next-to-leading (NLO) accuracy [Voge98, Haya97], just as
its fragmentation analog [Stra02], but all we will need here is its LO approximation shown
in equation (6.4). The T-even sub-leading order structure is parametrized by the function
gT (x), which has also been studied extensively. We will start presenting our results for the

gT -evolution sector. The function gT mixes with the function g
(1)
1T (x) that parametrizes

the non-collinear, T-even, leading order structure when transverse momentum is taken
into account.

Consideration of the T-odd sector in a transversally polarized spin-1/2 hadron includes
the collinear function fT (x). The evolution of this function cannot be considered without

encountering the non-collinear function f
⊥(1)
1T (x), the Sivers function, and a collinear,

two-argument function parametrizing a pure interaction part.
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7.4.1 Scale dependence g
(1)
1T (x)

Introducing again operational definitions for the functions consistent with the parametri-
zations in equations (3.33) and (3.21).

g
(1)
1T (x) ≡

∫

d4k δ(k · ζ − xP · ζ) Tr

[(

kT · ST

M S2
T

ζ/γ5

2

)

Φ(k)

]

(7.35)

gT (x) ≡
∫

d4k δ(k · ζ − xP · ζ) Tr

[(

P · ζ
M

S/
T
γ5

2S2
T

)

Φ(k)

]

(7.36)

GA(x, x1) ≡
∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − x1 P · ζ)

×Tr

[(

−P · ζ
M

i εST
Tρ ζ/

2S2
T

)

Φρ
A(k, k1)

]

(7.37)

G̃A(x, x1) ≡
∫

d4k d4k1 δ(k · ζ − xP · ζ) δ(k1 · ζ − x1 P · ζ)

×Tr

[(

P · ζ
M

STρζ/γ5

2S2
T

)

Φρ
A(k, k1)

]

(7.38)

Using the above expressions on the first order in αs kernels, one obtains.

˙
g

(1)
1T (x,Q2) =

∫ dy

y

[

E11 g
(1)
1T (y) + E12 gT (y)

+
∫

dy1

{

E13 GA(y, y1) + E14 G̃A(y, y1)
}]

(7.39)

where the kernels have the following dependence on the fractions

E11 =
αs

4π
Nc

[

x(2 x2 − x y + y2)

y2(y − x)

]

(7.40)

E12 =
αs

4π
Nc

[

x2

y

]

(7.41)

E13 =
αs

4π
Nc

[

x2 − 2 x y − y2 − x y1 − y y1

y(x− y1)

]

(7.42)

E14 =
αs

4π
Nc

[

2 x3 − x2 y − y3 − x2 y1 + 3 x y y1 − x y2
1 − y y2

1

y(y − y1)(y1 − x)

]

(7.43)

The function gT receives the following contributions.

ġT (x) =
∫
dy

y

[

E21 g
(1)
1T (y) + E22 gT (y) +

∫

dy1

{

E23 GA(y, y1) + E14 G̃A(y, y1)
}]

(7.44)

where

E21 =
αs

4π
Nc

[

2 x2 − x y + y2

y(y − x)

]

(7.45)
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E22 =
αs

4π
Nc

[

x

y

]

(7.46)

E23 =
αs

4π
Nc

[

x + y

y(x− y)

]

(7.47)

E24 =
αs

4π
Nc

[

2 x2 − 3 x y − y2 + x y1 + y y1

y(y − x)(y − y1)

]

(7.48)

Then there are the two argument functions involved in the evolution that obtain the
following contributions.

ĠA(x, x1) =
∫ dy

y

[

E31 g
(1)
1T (y) + E32 gT (y)

+
∫

dy1

{

E33GA(y, y1) + E34 G̃A(y, y1)
}]

(7.49)

where the kernel parts are

E31 =
αs

4π
Nc

[

−δ(x1 − y)
x

2 y

]

(7.50)

E32 =
αs

4π
Nc

[

δ(x1 − y)
x

2

]

(7.51)

E33 =
αs

4π
Nc

[

−δ(x1 − y)
x2 − 2 y2 + 2 y y1 − y2

1

2(x− y)(x− y1)(y − y1)

+δ(x1 − y1)
(x+ y)(x2 + y2 − 2 x y1 − 2 y y1 + 2 y2

1)

2(x− y)(x− y1)(y − y1)

]

(7.52)

E34 =
αs

4π
Nc

[

−δ(x1 − y)
x− 2 y + y1

2(y − y1)

−δ(x1 − y1)
(x− y)(x+ y − 2y1)

2(x− y1)(y − y1)

]

(7.53)

The evolution of the function G̃A(x, x1) is given in the limit of large-Nc by the following
equation.

˙̃GA(x, x1) =
∫
dy

y

[

E41 g
(1)
1T (y) + E42 gT (y) +

∫

dy1

{

E43 GA(y, y1) + E44 G̃A(y, y1)
}]

(7.54)

in which

E41 =
αs

4π
Nc

[

δ(x1 − y)
x

2 y

]

(7.55)

E42 =
αs

4π
Nc

[

−δ(x1 − y)
x

2

]

(7.56)

E43 =
αs

4π
Nc

[

δ(x1 − y)
(x− 2 y + y1)

2(y − y1)
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−δ(x1 − y1)
(x− y)(x+ y − 2 y1)

2(x− y1)(y − y1)

]

(7.57)

E44 =
αs

4π
Nc

[

δ(x1 − y)
x2 − 2 y2 + 2 y y1 − y2

1

2(x− y1)(y − y1)

+δ(x1 − y1)
x2 − 2 y2 − 2 x y1 − 2 y y1 + 2 y2

1

2(x− y)(x− y1)(y − y1)

]

(7.58)

Quark self-energy

Until now no self-energy contributions have been taken into account. As mentioned before,
these contributions are proportional to δ-functions that only let them contribute at end-
points of the integration range of the momentum fraction. It is illustrative of the nature
of different functions, to pay some attention to the contributions of the quark self-energy
to the evolution system of the function g

(1)
1T (x).

Starting with the following combination of diagrams

1

2







x

+

x







(7.59)

and inserting the appropriate projector for the function g
(1)
1T (x) a short calculation reveals

the quark self-energy contribution to g
(1)
1T (x),

ġ
(1)
1T (x)

∣
∣
∣
QSE

=
αs

2 π
g

(1)
1T (x)

(

3

2
− 2 x

∫
dy

y
Θ0

11(y, y − x)

)

(7.60)

which is identical to the result for collinear leading order functions.
By now taking into account the diagram combination

1

2







x

+

x







(7.61)

and using the corresponding projectors for the sub-leading order functions GA(x, x1) and
G̃A(x, x1), one obtains for the quark self-energy contribution to the evolution of these
functions,

ĠA(x, x1)
∣
∣
∣
QSE

=
αs

2 π
GA(x, x1)

(

3

2
− 2 x

∫
dy

y
Θ0

11(y, y − x)

)

(7.62)

˙̃GA(x, x1)
∣
∣
∣
QSE

=
αs

2 π
G̃A(x, x1)

(

3

2
− 2 x

∫
dy

y
Θ0

11(y, y − x)

)

(7.63)

which again is identical to the case of leading order collinear functions. This is surprising
as these results reflect the fact that these functions only involve good fields, which are
renormalized in the same way for all the functions above.
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A different situation is encountered when looking at a function that not only involves
good fields, like the function gT (x). A calculation of the contribution of quark self-
interaction to the function gT (x) reveals,

ġT (x)
∣
∣
∣
QSE

=
αs

2 π

{

g
(1)
1T (x)

(

1 − x
∫ dy

y
Θ0

11(y, y − x)

)

(7.64)

+
1

x
gT (x)

(

2 − 4 x
∫
dy

y
Θ0

11(y, y − x)

)}

,

clearly differing from the contributions (7.60), (7.62) and (7.63), which only involve good
fields.

7.4.2 Scale dependence of the Sivers function

Consideration of the T-odd sector results in an evolution structure that is identical to the
evolution structure of the T-even sector. The leading order function f

⊥(1)
1T (x), the Sivers

function, mixes with the sub-leading order functions fT (x) and the imaginary parts of the
two argument functions GA(x, y) and G̃A(x, y).

An operational definition of these functions is given by the following expressions

f
⊥(1)
1T (x) =

∫

d4k δ(k · ζ − xP · ζ) Tr

[

Φ(k)

(

εST kT
T

ζ/

2M S2
T

)]

(7.65)

fT (x) =
∫

d4k δ(k · ζ − xP · ζ) Tr

[

Φ(k)

(

−P · ζ
M

εST α
T

γTα

2M S2
T

)]

(7.66)

and the two argument functions were already defined in equations (7.37) and (7.38).
The extraction of the evolution structure of order αs diagrams leads to the structure,

˙







f
⊥(1)
1T (x,Q2)
fT (x,Q2)

Im {GA(x, x1)}
Im

{

G̃A(x, x1)
}









=








E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44
















f
⊥(1)
1T (y,Q2)
fT (y,Q2)

Im {GA(y, y1)}
Im

{

G̃A(y, y1)
}









(7.67)

in which all the functions Eij are identical to the evolution kernel of the T-even sector
functions.

7.4.3 Diagonal evolution of the pure interaction part

The pure interaction part in gT (x), indicated by g̃T (x), has been claimed to evolve diago-
nally in the large Nc limit [Ali91], with the kernel shown in equation (6.12). Our results
can be put in diagonal form. Looking at the lower two rows in equation (7.67) and the

identical evolution matrix for the functions g
(1)
1T , gT , and the real parts of GA and G̃A, it is

possible by use of the equations of motion, to eliminate the contributions from the kernel
elements E31, E32, E41 and E42. By defining a new two argument function,

Y (x, y) =

(

GA(x, y) + G̃A(x, y)
)

2(x− y)
, (7.68)
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the evolution equation takes a diagonal form,

Ẏ (x, x1) =
∫

dydy1 K(x, x1; y, y1)Y (y, y1), (7.69)

where the kernel function is given by

K(x, x1; y, y1) = δ(x1 − y1)

(

Θ0
11(x, x− y)

x y (x + y − 4 y1)

(x− y)(y − y1)2

−Θ0
11(x, x− x1)

y1(x− y1)
2

(x− y)(y − y1)2

)

+ δ(x− y)

(

Θ0
11(x1, x1 − y1)

(x2 x1 − 2x x2
1 + x3

1 + x2 y1 − 2 x y2
1 + y3

1)

(y − y1)2(x1 − y1)

+Θ0
11(x1, x1 − y)

(x1 − y)(x1 y + 2 y2 − x1 y1)

2 y (y − y1)2

)

. (7.70)

The relation of the object of which diagonal evolution is claimed and the function Y here
above is given by the relation,

g̃T (x) =
1

x

∫

dy Re {Y (x, y)} (x− y). (7.71)

We did not succeed in rewriting the evolution equation (7.69) as an autonomous evolution
equation of function depending on a single momentum fraction. An elimination of all
dependence of the kernel (7.70) on one of the momentum fractions, which is necessary for
rewriting in terms of single momentum fraction functions, does not seem possible. Note
that although self-energy contributions are not included in the above evolution kernel,
these contributions only matter at integration end-points and cannot bring the evolution
equation into the desired form in the integration interval.

7.5 Reducing redundancy

As mentioned in chapter 3 and extensively used in chapter 6, two types of relations exist
between the functions parametrizing collinear and non-collinear structure. At tree-level
both types of relations can be used to reduce the number of independent functions. Study
of the evolution equation sets found by direct computation indicates a difference in self-
consistency under evolution between equation of motion and Lorentz-invariance relations.

The relations following from the equation of motion are invariant under evolution
up to the accuracy of the calculation. For example, the relation involving the function
g

(1)
1T (x), shown in equation (3.77), neglecting the quark mass for brevity, is satisfied by the

calculated order αs perturbative corrections,

ġT (x) =
1

x

˙
g

(1)
1T (x) +

1

x

∫

dy Re
{

ĠA(x, y) + ˙̃GA(x, y)
}

. (7.72)

More explicitly, the evolution kernels Eij given by equations (7.40)-(7.43), (7.45)-(7.48),
(7.50)-(7.53) and (7.55)-(7.58), satisfy the following equation,

E1i −
1

x
E2i −

1

x

∫

dx {E3i + E4i} = 0, (7.73)
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for i = 1, 2, 3, 4. This means that the calculated kernels are such that the equation
of motion relation remains valid under evolution irrespective of the momentum fraction
dependence of all involved soft functions.

On the other hand, the Lorentz-invariance relation containing the function g
(1)
1T (x)

(3.66), is not invariant under evolution. The equation,

ġT (x) = ġ1(x) +
d

dx

˙
g

(1)
1T (x), (7.74)

does not hold. This remains not being the case even given that the functions gT , g1 and
g

(1)
1T fulfill the Lorentz-invariance relation (3.66). Fulfillment of the Lorentz-invariance

relation at all scales (7.74), implies the following additional condition, for all values of x,
on the remaining independent functions (after elimination of the function g1),

0 =
∫ 1

x
dy

{[

E21 −
d

dx
E11 + P

d

dy

]

g
(1)
1T (y) +

[

E22 −
d

dx
E12 − P

]

gT (y)

+
∫

dy1

{[

E23 −
d

dx
E13

]

GA(y, y1) +

[

E24 −
d

dx
E14

]

G̃A(y, y1)

}}

(7.75)

where

P =
x2 + y2

y2(y − x)
, (7.76)

is the kernel in the evolution of the function g1. As condition (7.75) has to be valid for all
x, and the kernel functions are ratios of polynomials in x, the only possible dependence
on longitudinal momentum fractions for the soft functions is the trivial solution,

gT (y) = g
(1)
1T (y) = GA(y, y1) = G̃A(y, y1) = 0. (7.77)

In general, the consequences of the Lorentz-invariance relations beyond tree-level seem
too restrictive and lead us to question their validity in a non-collinear treatment.

7.6 Discussion

We find a disagreement between the literature [Brau00] and our results for the evolution
of the pure-interaction parts of functions hL(x) and gT (x). The evolution equation found
for the function e(x) agrees with what is found in the literature. The gluon self-energy
contributions that are missing in our calculation, cannot be responsible for this mismatch
as these only involve end-point contributions. The results are presented in a redundant
basis of functions without application of equations of motion or equations resulting from
Lorentz-invariance. All results presented in this chapter satisfy the equations of motion,
giving us confidence in the validity of our results. The relations following from Lorentz-
invariance seem not to be satisfied by the first order corrections, indicating that care must
be taken in the application of these relations.

The results reveal a similar structure to the first order in αs evolution of the flavor
non-singlet leading order functions

ḟ1 = P ⊗ f1 (7.78)

ġ1 = P ⊗ g1 (7.79)

ḣ1 = D ⊗ h1. (7.80)
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The evolution kernels of the functions f1 and g1, given in equations (6.2) and (6.3) are
both denoted by the symbol P as they are identical. The evolution kernel for the function
h1, given in equation (6.4) and denoted here by the symbol D differs from P. Considering
the real and complex evolution sectors of the non-collinear functions one finds similar
results. The evolution structure and kernels of longitudinally polarized and unpolarized
functions is identical, only involving different functions,

Unpolarized

˙




h
⊥(1)
1

h
ImEA




 =






A11 A12 A13

A21 A22 A23

A31 A32 A33




⊗






h
⊥(1)
1

h
ImEA




 (7.81)

˙(

e
ReEA

)

=

[

B11 B12

B21 B22

]

⊗
(

e
ReEA

)

(7.82)

Longitudinally polarized

˙




h
⊥(1)
1L

hL

ReHA




 =






A11 A12 A13

A21 A22 A23

A31 A32 A33




⊗






h
⊥(1)
1L

hL

ReHA




 (7.83)

˙(

eL

ImHA

)

=

[

B11 B12

B21 B22

]

⊗
(

eL

ImHA

)

, (7.84)

(7.85)

whereas the evolution structure of the transversally polarized sector differs clearly from
the former two cases,

Transversally polarized

˙






g⊥1T

gT

ReGA

ReG̃A








=








E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44







⊗








g⊥1T

gT

ReGA

ReG̃A








(7.86)

˙







f
⊥(1)
1T

fT

ImGA

ImG̃A









=








E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44







⊗









f
⊥(1)
1T

fT

ImGA

ImG̃A









. (7.87)

One also notices that the transversally polarized sector shows identical real and imaginary
evolution sectors, whereas the longitudinal and unpolarized sectors show much asymmetry
in these parts.
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CHAPTER

EIGHT

Summary and discussion

This thesis is about the set of distribution and fragmentation functions that parametrize
the soft hadronic physics reflecting the quark and gluon content of spin-1/2 and spin-0
hadrons participating in hard electro-weak processes. The set of functions goes beyond
a collinear treatment, by including transverse momentum, kT , of quarks with respect to
their parent hadrons. In this non-collinear set the functions depend, besides the longi-
tudinal momentum fraction, also on k2

T
, and their number is larger than in a collinear

treatment, because kT is included in the structures that they parametrize. Of the ad-
ditional non-collinear functions, some only parametrize the collinear structure in more
detail and reduce into the collinear set after integration over kT . The rest of the addi-
tional functions parametrize structures that are odd in kT . In the collinear approximation,
an approximation that suffices when only one hadron is relevant in the hard process, this
kT -odd structure averaged out and does not appear in the cross-section. However, when
more than one hadron participates in the hard process, it is possible to construct cross-
sections which are determined by this non-collinear structure. Azimuthal asymmetries
allow for the measurement of this kT -odd structure at leading order in 1/Q.

This additional, non-collinear, leading order structure can enter the cross-section with-
out any suppression because it involves only correlations between good components of the
quark fields, which is the same reason why leading order collinear functions can con-
tribute unsuppressed. In the rest frame of a parent spin-1/2 hadron and in a helicity
basis for the good components of the quark field, the complementarity between collinear
and non-collinear functions becomes clear. In this specific representation in quark spin
space × parent hadron spin space, one sees that the collinear set of functions spans a
limited part of this product space. This product space is fully spanned after inclusion of
the non-collinear structure.

Using this specific quark-spin×hadron-spin representation, we were able to derive
bounds between the leading order functions of the non-collinear set. Besides a kT -
dependent version of the Soffer bound, a number of inequalities is found that bound
the magnitude of non-collinear functions. Since these results are derived for the functions
at tree level, the relations can be used as first estimates for experimental investigation. A
more complete study is necessary to investigate the effect of interactions on the validity
of these relations in practice.
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The inclusion of interactions leads to logarithmic scale dependence of distribution and
fragmentation functions which can be calculated perturbatively. In order to study this
scale dependence of non-collinear functions, we employ two different methods. The first
method relies on the large-Nc evolution equations presented in the literature for the so-
called interaction dependent parts of sub-leading order functions. The connection with
non-collinear functions is made through the use of relations following from the equations of
motion and Lorentz invariance relations. The second method is based on direct calculation
of the evolution equations in a light-cone gauge. The calculations are performed in an
over-complete set of distribution functions without using equation of motion-, or Lorentz
Invariance relations.

Direct calculation shows that the scale dependence of the non-collinear leading order
functions is very different from that of collinear leading order functions, even when re-
stricted to flavor non-singlet, first order in αs accuracy. While collinear functions display
autonomous evolution, the non-collinear functions are part of the evolution systems in-
volving sub-leading order collinear functions. In general, one obtains an evolution matrix
structure in which several functions mix among each other and even with two-momentum
fraction functions from different types of correlators. In a special light-cone gauge the
evolution equations take their simplest form and involve only a quark-quark correlator
and a correlator including an additional transversally polarized gluon.

The evolution equations derived using collinear evolution as a starting point and sup-
plemented with equations of motion and Lorentz-invariance relations are surprisingly sim-
ple and easier to apply than those resulting from direct calculation. The use of relations
following from the equations of motion, seems legitimate. The results that follow from
direct calculation reflect these equations, and we believe that the equation of motion
relations can be used in a non-collinear treatment to reduce the over-complete set of
functions. The evolution systems found by direct calculation do not seem to respect the
Lorentz-invariance relations between functions, making us question the validity of these
relations in a non-collinear treatment, without any consequence for Lorentz-invariance of
the description itself. Their use might be a possible reason for the mismatch between the
two sets of evolution equations. A second possible reason might be found in the valid-
ity of the autonomous evolution of the pure interaction parts. From the results of our
calculations, only the autonomous evolution of the function ẽ(x) (and therefore ẽL(x))
could be confirmed. The autonomous evolution forms of g̃T (x) and h̃L(x) as suggested in
[Brau00], could not be confirmed, and requires further study.

An important issue is that of gauge invariance. The evolution systems calculated
in chapter 7 involve soft parts that coincide in a light-cone gauge with gauge invariant
quantities. Although we are confident of the self-consistency of our light-cone gauge
evolution equations, the structure of the evolution equations might be modified in an
arbitrary gauge. In particular the presence of the gauge-link operator might lead to
modifications.

A correct treatment of gauge invariance in connection to kT -odd structure, leads to dif-
ferences from a collinear treatment. The concept of hard factorization of kT -odd structure,
when comparing e.g. DIS to Drell-Yan, is modified by additional minus signs originating
from the special gauge-link structure. Furthermore, non-trivial gauge-link structure can
lead to T-odd distribution functions. A study of the evolution of the non-collinear struc-
ture in an arbitrary physical gauge might help clarify some of these issues.
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Samenvatting

Schaalafhankelijkheid van correlaties op het lichtfront

Protonen en neutronen, of meer algemeen hadronen, bestaan uit quarks en gluonen die
volgens de wetten van de quantum chromodynamica (QCD) de meest hecht gebonden
toestanden vormen die in de natuur gevonden worden. Tot op heden zijn alle pogingen
om hadronen in afzonderlijke quarks en gluonen te doen uiteenvallen, mislukt en hebben
slechts geleid tot de schepping van meer hadronen. De overtuiging is dat de krachten
die quarks en gluonen tot hadronen binden niet overwonnen kunnen worden en dat het
bestaan van quarks en gluonen alleen binnen hadronen mogelijk is. Dit verschijnsel, dat
de naam confinement draagt, is nog altijd niet begrepen en vormt een onoverkomelijk
obstakel om, uitgaande van quarks en gluonen, uit eerste principes de eigenschappen van
hadronen te berekenen.

Terwijl QCD verantwoordelijk is voor de sterkste kracht die we kennen, de sterke wis-
selwerking, weten we dat op afstanden die veel kleiner zijn dan de karakteristieke grootte
van een hadron, quarks en gluonen juist geen krachten op elkaar uitoefenen, een limietge-
drag van de theorie dat bekend is onder de naam van asymptotische vrijheid. Hoewel deze
twee extremen voor een theorie op het eerste gezicht merkwaardig lijken, pleiten ze juist
voor QCD, gezien de succesvolle beschrijving van bepaalde verstrooiingsexperimenten in
het z.g. Parton Model, dat als uitgangspunt heeft dat quarks niet wisselwerken met de
rest van het hadron waartoe ze behoren. Deze klasse van experimenten, die van de harde

elektrozwakke verstrooiingsexperimenten, is zeer geschikt om het gedrag van quarks en
gluonen in hadronen te kunnen zien.

Met een elektrozwak proces wordt een verstrooiingsproces bedoeld waarin, naast hadro-
nen, ook leptonen betrokken zijn. Leptonen zijn fundamentele deeltjes die, in tegenstelling
tot hadronen, ongevoelig zijn voor de sterke wisselwerking. De wisselwerking tussen de
leptonen en de hadronen verloopt via de elektrozwakke wisselwerking, een interactie die
zeer nauwkeurig beschreven kan worden d.m.v. de uitwisseling van één enkel elektrozwak
krachtdeeltje, een elektrozwak boson. Omdat de betrokken leptonen gedetecteerd wor-
den, weten we precies hoeveel energie en impuls aan de hadronen overgedragen wordt en
kunnen we alleen naar die verstrooiingen kijken waarin de massa Q van het overgedragen
boson veel groter is dan de massa’s van de betrokken hadronen. Zulke processen worden
hard genoemd.

In het hadron zijn quarks en gluonen verantwoordelijk voor de absorptie van het
harde boson. Gluonen hebben geen elektrozwakke lading en zullen het elektrozwakke
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boson niet voelen. Quarks, daarentegen, zijn wél elektrozwak geladen en zijn daarom als
enige verantwoordelijk voor de directe koppeling aan het boson. Dit deelproces waarin de
quark een hard boson absorbeert speelt in de beschrijving een centrale rol. De beschrijving
berust op factorisatie, wat inhoudt dat de werkzame doorsnede, de kans dat een bepaalde
verstrooiing plaatsvindt, geschreven kan worden als het product van een zacht en een
hard stuk. Het harde stuk correspondeert met de interactie van de quark en het harde
boson, onafhankelijk van de rest van het hadron, terwijl het zachte stuk de quark in het
hadron beschrijft. Factorisatie verwijst naar het scheiden van de twee genoemde, totaal
verschillende, aspecten van QCD; de fysica die confinement beschrijft, is te vinden in het
zachte stuk en de asymptotisch vrije fysica in het harde stuk.

Het harde quarkverstrooiingsproces wordt gekarakteriseerd door de grote schaal Q, en
kan beschreven worden in de asymptotisch vrije limiet. Hierdoor kan het nauwkeurig
berekend worden, gebruikmakend van storingsrekening in de koppelingsconstante van
QCD, αs. Dit betekent dat de verstrooide quark in eerste benadering, tijdens de korte duur
van de harde interactie, als een vrij deeltje beschouwd wordt en dat de wisselwerking van
de quark met gluonen slechts kleine correcties hierop zijn. Het zachte stuk beschrijft de
connectie tussen hadronen en quarks en wordt uitgedrukt in een aantal quark distributie-
en fragmentatiefuncties. Distributiefuncties beschrijven de quarkinhoud van een hadron
dat deelneemt aan een hard proces, terwijl fragmentatiefuncties de vervalmogelijkheid van
een quark in een bepaald hadron beschrijven.

In QCD, een quantumveldentheorie, corresponderen distributie en fragmentatiefunc-
ties met de verwachtingswaarden van quark- en gluonvelden geëvalueerd tussen hadron-
toestanden. Een veldentheoretische analyse bevestigt de splitsing in een hard en een zacht
stuk voor processen waarvoor de impulsoverdracht Q groot genoeg is. Dit maakt het mo-
gelijk om de werkzame doorsnede als een expansie in machten van 1/Q op te schrijven. De
harde stukken kunnen nauwkeurig berekend worden en zijn in feite instrumenten om de
zachte stukken in hadronen te meten. De zachte stukken blijken te corresponderen met
matrixelementen van quarkvelden geëvalueerd langs een heel specifieke richting. Deze
speciale richting is een licht-achtige richting die bepaald wordt door de impulsen van
het hadron en het uitgewisselde boson. Correlaties van het quarkveld langs een speci-
fieke licht-achtige richting, corresponderen met wat distributie en fragmentatie functies
genoemd worden. Er bestaat een aantal z.g. collineaire functies, dat alle mogelijke struc-
tuur die van belang is als één hadron aan het harde proces deelneemt, parametriseert. In
dat geval is alleen de impuls van de quarks langs de licht-achtige richting van belang en
de functies hangen slechts van één enkele variabele af, de impulsfractie x = Pquark/Phadron.
Collineaire functies parametriseren strictuur die alleen de speciale licht-achtige richting
bevat en ook een andere licht-achtige richting als ze subleidend in 1/Q kunnen bijdra-
gen aan de werkzame doorsnede. Deze twee richtingen spannen samen een lichtkegel op,
waardoor de collineaire correlaties ook wel lichtkegel-correlaties worden genoemd.

Dit proefschrift bestudeert een extensie van de collineaire distributie- en fragmen-
tatiefuncties die van belang is als er meer dan een enkel hadron aan het hard proces
deelneemt. Het stelsel van functies dat beschouwd wordt in dit proefschrift, houdt reken-
ing met de transversale impuls, kT , van quarks ten opzichte van het collineaire richting
waarlangs het harde proces zich afspeelt, en parametriseert daarom structuur die afwezig
is in de gangbare collineaire benadering. In deze parametrisatie van de niet-collineaire
structuur, hangen de functies niet alleen van een longitudinale impulsfractie x af, maar
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ook van k2
T
. Met deze transversale richting spreekt men niet langer van een lichtkegel

maar van het lichtfront, waardoor deze niet-collineaire correlaties ook lichtfront corre-
laties genoemd worden. Het aantal functies is groter dan in het collineaire geval omdat
het aantal mogelijke structuren groter is. Een aantal van de functies heeft alleen k2

T
als

extra argument en deze functies reduceren tot de collineaire parametrisatie na integratie
over kT . Daarnaast is er niet-collineaire structuur dat oneven is in kT . Als er slechts
één enkel hadron meedoet wordt, middelt deze extra structuur uit en alleen de collineaire
functies komen voor in de uitdrukking voor de werkzame doorsnede. Echter, als er meer
dan één hadron een rol speelt, is het mogelijk om werkzame doorsneden te meten die
juist de additionele niet-collineaire structuur bevatten. In azimutale asymmetrieën is het
mogelijk om deze niet-collineaire structuur in leidende orde in 1/Q te meten.

De in leidende orde in 1/Q bijdragende correlaties hebben voor zowel het collineaire
als het niet-collineaire geval betrekking op de goede componenten van het quarkveld.
De goede componenten zijn, in een bepaalde ijk, de werkelijk onafhankelijke vrijheids-
graden van het quarkveld, terwijl de overige componenten niet onafhankelijk zijn, maar
door de goede componenten van het quarkveld en het gluonveld bepaald worden. In
het rust-stelsel van het moeder-hadron en in een heliciteitsbasis van de goede compo-
nenten van het quarkveld, kan een dichtheidsmatrix geconstrueerd worden die de in-
formatie voor alle mogelijke hadron- en partonpolarisaties bevat. In deze matrix is
goed zichtbaar hoe de collineaire structuur aangevuld wordt door de niet-collineaire.
De collineaire structuur vult slechts een deel van deze matrix in de product-ruimte van
hadronspin×quarkheliciteit. Deze matrix wordt gecomplementeerd als de niet-collineaire
structuur in beschouwing wordt genomen. Omdat deze dichtheidsmatrix positief-definiete
eigenwaarden moet hebben, is het mogelijk om een aantal ongelijkheden te verkrijgen.
Afgezien van een kT -afhankelijke versie van de Soffer-ongelijkheid, wordt een aantal on-
gelijkheden gevonden die de grootte van collineaire en niet-collineaire functies beperkt.
Hoewel deze resultaten luscorrecties buiten beschouwing laten, zijn ze nuttig voor orde
van grootte schattingen van de nieuwe functies. Het is echter wel nodig om de invloed
van luscorrecties op de geldigheid van deze ongelijkheden nader te bestuderen.

Interacties tussen quarks en gluonen leiden tot een logaritmische schaalafhankelijk-
heid van distributie- en fragmentatiefuncties, die m.b.v. storingsrekening berekend kan
worden. We berekenen de schaalafhankelijkheid, die ook bekend is onder de naam evo-
lutie, van de leidende niet-collineaire functies tot eerste orde in αs in de limiet van een
oneindig aantal kleuren, volgens twee verschillende methodes. De eerste methode gaat
uit van de autonome evolutievergelijkingen van het pure interactiedeel van in subleidend
orde (1/Q) verschijnende functies in de limiet van oneindig veel kleuren, zoals die uit de
literatuur [Brau00] bekend zijn. Door gebruik te maken van relaties volgend uit de beweg-
ingsvergelijkingen van quarks (Dirac-relaties) en relaties volgend uit Lorentz-invariantie
(Lorentz-relaties), is het mogelijk om uitdrukkingen te krijgen voor de evolutie van de
niet-collineaire leidende orde functies. De tweede methode die gehanteerd wordt is een
ab initio berekening van de schaalafhankelijkheid, uitgevoerd in een lichtkegel-ijk, zonder
gebruik te maken van Dirac- of Lorentz-relaties.

De resultaten verkregen d.m.v. de twee methodes zijn, afgezien van de evolutie van de
functie ẽ(x), verschillend en niet met elkaar in overeenstemming te brengen door gebruik
te maken van de Dirac- of Lorentz-relaties. De evolutievergelijkingen van de leidende
niet-collineaire functies die volgens de eerste methode autonoom zouden zijn, zijn dat niet
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volgens de tweede methode. In het algemeen zijn de evolutievergelijkingen die door directe
berekening gevonden zijn, ingewikkelder en vereisen kennis van subleidende functies. Van
de drie autonome evolutievergelijkingen voor de subleidende functies h̃L(x), g̃T (x) en ẽ(x),
zoals gepresenteerd in [Brau00], bevestigt onze directe berekening slechts de autonome
evolutie van de functie ẽ(x). Voor de interactiestukken h̃L(x) en g̃T (x), kan in de tweede
methode slechts een autonome evolutie verkregen worden voor de corresponderende twee-
argument functies, maar niet voor de functies h̃L(x) en g̃T (x) zelf.

Uit de tweede methode volgt ook een belangrijk verschil tussen de Dirac-relaties en de
Lorentz-relaties. De gevonden evolutiekernels zijn zodanig dat de perturbatieve correcties
altijd aan de Dirac-relaties voldoen. Dit gebeurt volledig onafhankelijk van de x-afhanke-
lijkheid van de daarbij betrokken functies. Wij concluderen hieruit dat de Dirac-relaties,
tot eerste orde in αs en in de limiet van oneindig veel kleuren, bij alle schalen geldig
blijven. Voor de Lorentz-relaties is de situatie geheel anders. Ook al zouden de relaties
bij een bepaalde schaal gelden, dan zijn de gevonden perturbatieve correcties zodanig
dat, bij een andere schaal, deze relaties geschonden worden. Geldigheid bij alle (althans
hogere) schalen volgt alleen als alle niet-collineaire en subleidend structuur nul gesteld
worden. Onze conclusie op grond van de directe berekening, is dat de Lorentz-relaties
onhoudbaar zijn onder evolutie.
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