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ABSTRACT

We perform a partial wave analysis on the reaction γp → pπ+π− for photon en-

ergies of 0.5-2.4 GeV (W =
√
s = 1.35 − 2.35 GeV/c2). The data was collected

using the CLAS detector located at Jefferson Laboratory in Newport News, VA. We

are searching for baryon states produced in γp → B and decaying by B → pπ+π−

through quasi-two body intermediate states such as ∆π and pρ. Our partial wave de-

composition allows us to accurately calculate the total and differential cross section.

We also calculate the cross section for γp→ ∆++π−, γp→ ∆0π+, and γp→ pρ. We

identify the D13(1520), P33(1600) and F15(1680) states in the decomposition. We do

not see evidence for the baryon state decaying to ∆π at 1700 MeV/c2 proposed by

Ripani, et al. [?]. We see no strong evidence for the positive parity missing baryons,

although there are signals in the data which warrant further investigation.

The constituent quark model does an excellent job of predicting the hadron

spectrum. Capstick, Cutkosky, Forsythe, Isgur and Koniuk [?, ?, ?, ?] have aug-

mented the quark model for baryons, including decays, with QCD-inspired correc-

tions and get very good agreement with experiment. It has been known however,

since the 1960’s that there are many predicted baryons which are not observed exper-

imentally [?, ?]. Many of the models use a harmonic oscillator basis, and it is found

that these missing states all fall in the N=2, positive parity band. This prompted

Lichtenberg[?] to propose the diquark model, where two of the three quarks become

tightly bound. This constraint leads to a spectrum devoid of the missing resonances

of the full model. There is nothing in QCD however, which would imply any sort of

diquark coupling. Later calculations [?, ?, ?] suggest that these missing states may

couple more strongly to Nππ final states than Nπ final states. Previous analysis,

such as those performed by Manley and Saleski [?], have focused on Nπ scattering,

where most of the experimental data lies.
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CHAPTER 1

Theoretical Motivation

1.1 Standard Model

Particle physics is the study of the most fundamental building blocks of matter

and the forces which govern their interaction. In the past, the atom was believed to

be the most basic constituent of matter. but this was shown not to be the case. In

fact the atom is composed of a central core, made up of of protons and neutrons,

and a cloud of lighter electrons surrounding it. As time went on more and more

sub-atomic particles were discovered. It is instructive to take a look at some of these

characteristics these particles possess. This will give us an idea of how we classify

them.

• Mass. How much inertia (or gravitational attraction) does the particle posses?

No matter how fast the particle is moving, no matter its energy, this value can

be measured from a particle’s energy and momentum. For some very short

lived particles, their mass may have some distribution. Two of the same

particle may have slightly different masses.

• Charge. This is our every day quantity of electric charge. The basic unit

is the magnitude of the charge of the electron, 1.602 × 10−19C. Almost all

particles are some integer multiple of this charge (keeping in mind it may be

0). Quarks, the particles that make up protons and neutrons, possess ±1/3

or ±2/3 the electron’s charge.

• Spin. All particles will have some intrinsic angular momentum associated with

them. If they are composite particles, it will some combination of the spin of

the particles that comprise them and the relative orbital angular momentum

of these constituent particles. A particle can either have integer spin or half-

integer spin. This spin also allows us to characterize particles by the statistics

they obey.
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– Fermi-Dirac (Fermions). These are particles which posses half-integer

spin. Two identical fermions cannot occupy the same state. This is the

basis for the Pauli exclusion which gives rise to electron energy levels in

atoms.

– Bose-Einstein (Bosons). These particles posses integer spin. Any

number of bosons can occupy the same state.

• Parity, charge conjugation, isospin, strangeness, charmness, etc.

There are other properties that these particles possess which we may use to

classify them. Some of these will be discussed in future chapters.

Particles are also classified by how they interact with each other. There are

four forces in the universe and not all matter (or energy) interact via all of these

forces. Let’s look at these forces.

• Gravity. Affects the motion of all matter and energy. It is the most macro-

scopic of the forces. It influences the formation of stars and galaxies, keeps

the planets in motion and ties us to the Earth. The most accurate theory we

have to understand gravity is that of General Relativity. It is a large scale,

geometric theory and does not lend itself to understanding phenomena on an

atomic scale.

• Electromagnetism. Affects all charged objects (or neutral objects which

are composed of individually charged particles). It is the force which drives

electric currents as well as binds the electrons to the protons in atoms.

• Weak nuclear force. Primarily observed in various decays, most notably

beta decay in certain nuclei and non-parity conserving decays in muons, kaons,

pions and other particles. It has been demonstrated that both the weak nuclear

and electromagnetic force, can be understood as manifestations of one force

imaginatively called the electro-weak force.

• Strong nuclear force. Acts between quarks. In binding quarks into protons

and neutrons, there is a residual effect which in turn binds the protons and

neutrons together in atomic nuclei.
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Table 1.1: Summary of lepton properties.[?]

Leptons
Flavor

Symbol Name Mass (MeV/c2) Charge
e electron 0.5 ±
νe, ν̄e electron neutrino < 3 × 10−6 0
µ muon 105.6 ±
νµ, ν̄µ muon neutrino < 0.19 0
τ tau 1777 ±
ντ , ν̄τ tau neutrino < 18.2 0

With these traits and forces in mind we can begin to form some sort of or-

der out of the most fundamental particles. The electrons belong to a family of

structure-less particles called leptons. Leptons interact via the weak force and even

though they have varying masses, they are believed to be structure-less. They are

not composed of any more fundamental particles. The charged particles can also in-

teract via the electromagnetic force. Leptons are all spin-1/2 and obey Fermi-Dirac

statistics. A summary of leptons can be seen in Table 1.1 [?]. Electrons, muons and

the tau’s are positive, but have a negatively charged antimatter compliment. The

various neutrino flavours are all neutral, and have a neutral antimatter compliment.

Unlike the electron, the proton and neutron do have structure. They are com-

posed of quarks. Quarks (and the particles that they make up) interact via the

electromagnetic, strong nuclear and weak nuclear forces (and gravity). Quarks are

also spin-1/2. Quarks will be discussed in greater detail in the next section. A

summary of quark properties is given in Table 1.2.

There is another class of particles known as gauge bosons. Photons are gauge

bosons. In Einstein’s photoelectric theory, they are quantized packets of light, or

discrete amounts of electromagnetic radiation. With the acceptance of quantum

electrodynamics, photons also became thought of as mediators of the electromag-

netic force. These integer-spin mediators are known as gauge bosons. Applying
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Table 1.2: Summary of quark properties.[?]

Quarks
Flavor

Symbol Name Mass (MeV/c2) Charge

d down 1.5 - 5 − 1
3

u up 3 - 9 +2
3

s strange 60 - 170 − 1
3

c charm 1100 - 1400 + 2
3

b bottom 4100 - 4400 − 1
3

t top 168,600 - 179,000 + 2
3

Table 1.3: Summary of gauge boson properties.[?]

Mediators - Gauge Bosons
Symbol Name Mass (MeV/c2) Charge Force
g gluon 0 0 Strong
γ photon 0 0 Electromagnetism
W± W boson 80,419 ± (charged) Weak
Z0 Z boson 91,188 0 (neutral) Weak

gauge invariance led Sheldon Glashow, Steven Weinberg and Abdus Salam to unify

the weak and electromagnetic forces. Their theory gave rise to three massive me-

diators and one massless mediator. The massive bosons are the W± and Z0. The

massless was the familiar photon. A similar approach led to quantum chromody-

namics (QCD) with gluons as mediators. The properties of these particles are listed

in Table 1.3.

The goal of physics is to be able to explain all these forces as various man-

ifestations of one theory. There have been significant successes in this endevour.

In the Glashow-Weinberg-Salaam theory, the electromagnetic and weak forces are

united as different aspects of one force. Quantum Chromodynamics is believed to

be a viable framework for understanding the interactions of the strong force. The
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group of theories which explain these forces is referred to as the Standard Model.

The Standard Model also provides a framework to understanding the flavors and

groupings of the elementary particles. There is still no viable framework for merg-

ing gravity and quantum theory, and so gravity remains outside the Standard Model.

1.2 Quarks

1.2.1 Constituent Quark Model

In the mid-1940’s, thanks to the efforts of J.J. Thomson, E. Rutherford, J.

Chadwick and many others, physicists knew of a handful of sub-atomic particles.

• Protons and neutrons. Found in the nuclei of atoms.

• Electrons. Found in a diffuse cloud around atoms.

• Pions and muons. First discovered in cosmic ray experiments.

• Photons. The quantized packets of light.

But by 1960, the picture had grown more complicated. Starting with the the-

oretical prediction and subsequent discovery of the positron in 1932, science became

aware of antiparticles. The positron is the antimatter complement to the electron.

In the mid 1950’s, the Berkeley Bevatron observed the anti-proton and the anti-

neutron. Adding to the confusion, the neutrino, a neutral particle initially thought

to be massless, was thrown into the mix. The neutrino had initially been proposed

by Pauli to account for the energy spectrum of the electron emitted in beta decay.

Evidence for it’s existence was later collected in photographs of the decays of cosmic

ray muons.

But beyond these developments a whole family of particles seemed to be emerg-

ing. In 1949, C.F. Powell showed evidence for a charged particle similar to the pion

but more massive. It was called the kaon. It was observed in photographs of cosmic

ray decays. The decay observed was

K+ → π+π+π−



6

This decay implies that the kaon possess integer-spin like the pion. Over the next

few years more of these integer-spin particles were observed like the η, φ, ω and

others. In keeping with early naming schemes involving the muon and pion, these

particles were called mesons.

Another family of particles was also emerging around these times. These par-

ticles had a proton in the final state of their decays implying that they possessed

half-integer spin. Some of these particles were the Σ’s, Ξ’s and ∆’s. These half-

integer spin particles became known as baryons. Both the mesons and baryons were

being produced in a way that implied strong force interactions (though they did not

always decay by the strong force). Particles which can interact via the strong force

are called hadrons.

The picture was uncomfortably chaotic. There was no rigorous order applied

to these particles in the way that the periodic table imposed order upon the ele-

ments. In 1961, M. Gell-Mann proposed an ordering scheme he called the Eightfold

Way. Y. Ne’eman proposed essentially the same idea around the same time. The

Eightfold Way arranged the hadrons into various geometrical patterns according to

charge and hypercharge. Hypercharge is related to a quantity called strangeness.

It was found that certain mesons like the kaon, and certain baryons like the Λ

were easily produced in scattering experiments, but they would decay weakly. They

would live for relatively long periods of time. Also, this group of particles would be

produced in pairs. You could produce a final state with KK or KΛ, but never just

the one. These strange characteristics led Gell-Mann and Nishijima to propose a

quantity that Gell-Mann referred to as strangeness. This quantity was conserved in

the production of these particles and so they possessed either S = +1 or S = −1.

Hypercharge was defined as S for mesons and S+1 for baryons. Later it was shown

that strangeness itself was a more useful way to group the baryons.

The eight lightest mesons can be arranged in the hexagonal pattern shown in

Fig. 1.1. The eight lightest baryons can be arranged in a similar fashion and are



7

shown in the same figure. Other baryons can be arranged in the decuplet pattern

shown in Figure 1.2. Note that particles of the same strangeness lie along the hori-

zontal, and like charges fall on the diagonals.

Σ+Σ−

Ξ0Ξ−

Σ 0

q=−1 q=0

S=−2

S=−1

S=0 pn

q=+1

Λ

π 0

Κ0Κ−

π−

Κ0 Κ+

π+

q=−1 q=0

S= 0

S=+1

q=+1

η

S=−1

Figure 1.1: The eight lightest baryon and eight lightest mesons grouped
according to the Eightfold Way

∆ − ∆ 0 ∆ + ∆ ++

Σ*− Σ*0 Σ*+

Ξ*− Ξ*+

Ω−

η

S=0

S=−1

S=−2

S=−3 q=0

q=+1

q=−1

q=+2

Figure 1.2: The first decuplet of baryons grouped according to the Eight-
fold Way

But just like the original periodic table, there were gaps in these arrangements.

The decuplet shown in Figure 1.2 did not originally have the Ω− at the bottom. Gell-

Mann noticed that the mass difference between the horizontal rows was about the
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same and wondered if this could predict the mass of the missing particle.

M∆ −MΣ∗ = MΣ∗ −MΞ∗ = MΞ∗ −M???

M∆ −MΣ∗ = 1232MeV − 1385MeV

= −153MeV

MΣ∗ −MΞ∗ = 1385MeV − 1533MeV

= −148MeV

MΞ∗ −M??? = 1533MeV−???MeV

≈ −150MeV

Gell-Mann used this information to predict a particle of strangeness -2 at a

mass of about 1680 MeV/c2. In 1964, the Ω− was discovered with these character-

istics.

This simple model, the Eightfold Way, was found to have powerful

predictive ability.

But why does the Eightfold Way predict what it does? In 1964, Gell-Mann

and G. Zweig independently put forth the idea that hadrons are composed of more

basic constituent particles. Gell-Mann called these particles, quarks.

Gell-Mann proposed three types, or flavours, of quarks. Each quark (anti-

quark) possessed a fractional charge and either 0 or +1(-1) strangeness. These

quantities are summarized in Table 1.4.

The name for the strange quark takes its name from the quantity, strangeness,

which had been associated with the kaons, Σ’s and other particles. The up and

down quarks took their names from the historical discussions of isospin. The idea

was that because the masses of the proton and neutron were so similar, they could

be viewed as one particle, the nucleon, which was an isospin- 1
2

particle and had two

projections in isospin space. The proton was the “up” projection, and the neutron
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Table 1.4: Summary of Gell-Mann’s quark properties.[?]

Quarks
Flavor

Symbol Name Isospin(Iz) Strangeness Charge

u up 1
2
(+1

2
) 0 +2

3

d down 1
2
(−1

2
) 0 −1

3

s strange 0 -1 − 1
3

was the “down” projection. The quarks also have anti-quark complements with

opposite charge and opposite strangeness. Gell-Mann had two rules that his quarks

followed.

• Baryons are composed of 3 quarks or 3 anti-quarks.

• Mesons are composed of 1 quark and 1 anti-quark.

With these rules, you could now look at the geometrical arrangements of the

Eightfold Way, in terms of the constituent quarks. Figure 1.3 shows how the quark

configurations map onto the first baryon decuplet.

There was a problem with this picture, however. The quarks carry spin 1
2
. This

means that they must obey Fermi-Dirac statistics. Just like the electron in atomic

orbits, no two identical quarks could occupy the same state. Yet the quark model

had the ∆++ consisting of 3 u quarks in the ground state. In 1964, O.W. Greenberg

proposed a solution. In addition to flavour, the quarks belonged to a statistical

group called para-Fermi. This suggestion led to the idea that quarks possessed an

additional degree of freedom that became known as colour. In analogy with optics,

each quark could come in red, blue or green, or for the anti-quarks, antired, antiblue

or antigreen. Continuing with the optical analogy, a red− blue − green combina-

tion resulted in a colour-less object. As did a red − antired, blue − antiblue or

green − antigreen combination. The idea is that all particles that we observe are

colour-less. This solved two problems: that the same quarks in the ground state
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Figure 1.3: The first decuplet of baryons explained in terms of the con-
stituent quarks.

S=0

S=−1

S=−2

S=−3 q=0

q=+1

q=−1

q=+2

dss uss

sss

uusudsdds

ddd udd uud udd

could have an anti-symmetric wave function due to colour, and that no free quarks

could be observed.

With the discovery of the J/ψ in 1974, a new flavour of quark (charm) was

added to the chart. We now know of six flavours of quarks (summarized in Table 1.2.

The constituent quark model (CQM) was able to handle each new discovery. There

is a glaring problem though. There were whole multiplets of baryons which were

predicted by the model, and never observed. It is this missing baryon problem which

is at the heart of this research and will be elaborated upon in upcoming sections.

1.2.2 Quark Model with Corrections

While the CQM was able to arrange the hadrons into some sort of sensical

pattern, the goal of many was to more accurately predict the masses and other

characteristics of the particles. In this next section, I give an overview of some of

the corrections to the CQM as applied to baryons.[?]

Baryons possesses half-integer spin, and so obeys Fermi-Dirac statistics. The
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total wave function of the quarks must be anti-symmetric under the exchange of any

two. The total wave function can be broken into flavour, spatial, spin and colour.

Though it will not be elaborated upon here, it can be shown that the colour part

of the wave function must be anti-symmetric [?]. This allows us to decompose the

wave function as follows.[?]

|qqq〉A = |colour〉A × |space, spin, f lavour〉S

So the product of the spatial, spin and flavour portions of the wave function must

be symmetric. This constraint allows you to build up a more complicated model

than in the previous picture. For example, if you have all the same flavour of quarks

with spins aligned, they must be in a symmetric spatial state. We want to use this

information to calculate the masses of the baryons. So let’s start with a simple

Hamiltonian picture.

H|Ψ〉 = E|Ψ〉.

How is H defined in this model? In the simplest treatment of this model we can

approximate the quarks as moving in a 3-D harmonic oscillator potential. There

are various corrections that can be applied at this point. In the Isgur-Karl non-

relativistic model [?, ?, ?] a hyperfine spin-spin interaction is added.

H = HHO +
∑

i<j

H ij
hyperfine

The hyperfine interaction term can be written out as

H ij
hyp =

2αs

3mimj

[

8π

3
δ3( ~rij)~Si · ~Sj +

1

r3
ij

(3~Si · r̂ij
~Sj · r̂ij − ~Si · ~Sj)

]

.

where αs is the hyperfine structure constant for the strong force, and Si and

mi are the spin operator and mass for the ith quark. It turns out that this factor is

a significant contribution to the mass splittings. For example, the mass difference

between the proton and the ∆+ is primarily due to different spin-alignments of the

quarks.
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Quark makeup Spin Quark spin alignment Mass (MeV/c2)

proton uud 1
2

↑↑↓ 938

∆+ uud 3
2

↑↑↑ 1232

Contrast this with the hyperfine splittings in atomic spectra. For example the

difference between the states of the hydrogen atom where the spins of the proton

and electron are either aligned or anti-aligned. The ground state of the hydrogen

atom has an energy of about 13.6 eV, but the hyperfine splitting is only 6×10−5 eV.

HHO can be written as

HHO =
p2

1

2m
+

p2
2

2m
+

p2
3

2m′
+

1

2
K|~r1 − ~r2|2 +

1

2
K|~r1 − ~r3|2 +

1

2
K|~r2 − ~r3|2.

It may be easier to work with different coordinates. So define a coordinate

system based on the position of each ith quark and the center of mass.

~ρ ≡ 1√
2
(~r1 − ~r2)

~λ ≡ 1√
6
(~r1 + ~r2 − 2~r3)

~Rc.m. ≡
m(~r1 + ~r2) +m′~r3

2m +m′

Define some mass combinations:

M = 2m+m′

mρ ≡ m

mλ ≡ 3mm′

2m +m′

m1,2 is the mass of quarks 1 and 2, and m′ is the mass of quark 3. pi and ri are the

momenta and position of the ith quark. We now have new momenta which follow
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Figure 1.4: Representation of the angular momenta of this model.

from the previous definitions.

~pc.m. = M
d ~Rc.m.

dt

~pρ = mρ
d~ρ

dt

~pλ = mλ
d~λ

dt

The harmonic oscillator Hamiltonian can now be rewritten as.

HHO =
p2

c.m.

2M
+

p2
ρ

2mρ
+

p2
λ

2mλ
+

3

2
Kρ2 +

3

2
Kλ2.

This can be interpreted as the motion of the center-of-mass, plus two independent

harmonic oscillators. Note that we have assumed the same spring constant. We can

also interpret the angular momenta `ρ and `λ as the angular momentum of 2 of the

quarks around their center of mass, and the angular momentum of the 3rd quark

with respect to the other two as shown in Figure 1.4 [?].

The solutions to the harmonic oscillator part of the Hamiltonian are known and

allow us to write the wave function in terms of N,L and M . Where M and mi are

the z-projections of L and Li, respectively.

N = 2(nρ + nλ) + `ρ + `λ

L = `ρ + `λ
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M = mρ +mλ

This now gives us a means to understand the various baryons in terms of spin

couplings and H.O. excitations.[?]

• Positive parity ground states with N = 0. This includes the proton and the

∆(1232).

• Negative parity excited states with N = 1 have either `ρ = 1 or `λ = 1.

• Positive parity excited states with N = 2. This can mean either radial ex-

citations in nρ or nλ or orbital excitations with `ρ + `λ = 2 and L = 0, 1 or

2

With the harmonic oscillator wave functions as solutions we can classify states

in terms of parity and varying degrees of excitation. The model can now be used to

make predictions as to the masses and quantum states of the baryons, specifically,

the total angular momentum and parity, JP . If we represent the sum of the intrinsic

spin of the particles by ~S, and the relative orbital angular momentum by ~L then

~J = ~S + ~L. P is the parity of the state. P = (−1)L+1

1.2.3 Relativistic Corrections

In the previous section we showed how the Hamiltonian can be written in

terms of a harmonic oscillator term and a spin-spin interaction term. Capstick and

Isgur [?] have worked on a more complete relativistic model of the interaction. The

potential used is motivated by the one gluon exchange mechanism and an adiabatic

Y -shaped string potential. But perhaps the best way to examine this potential is

to look at it in the non-relativistic limit p/m→ 0. [?]

V → Vstring + VCoul + Vhyp + Vso(cm) + Vso(Tp)

• Vstring - This is an adiabatic, Y -shaped string potential which includes 3-body

forces.



15

3

l
1

2

Figure 1.5: Representation of the diquark model.

• VCoul - A colour-Coulomb potential.

• Vhyp - A colour-hyperfine (spin-spin) interaction.

• Vso(cm) - A colour-magnetic spin-orbit interaction.

• Vso(Tp) - A Thomas-precession spin-orbit interaction.

The non relativistic limit is not applicable to the light quark systems we will be

looking at. The actual potentials used in the calculations are momentum depen-

dent. I will not go into the details of this model, but I mention this to show that

the model used is non-trivial. I will later show predictions based on this model and

so I try to justify the validity of this approach. The solutions to this Hamiltonian

are still given in terms of the familiar N,L and M .

Comparisons with experiment show that the spin-orbit terms are small in

comparison to other terms.[?] This is not fully understood. It has been suggested

that the Thomas-precession term may cancel out the colour-magnetic term.

1.2.4 Diquark Model

However, there are a group of resonances predicted by the quark model which

are not observed in experiment. In 1969, Lichtenberg proposed a solution. He

claimed that two of the quarks bind so tightly as to act as one and thus remove one

of the degrees of freedom of the model as represented in Fig. 1.5.

This model explains these missing states quite well. But there are reasons to

doubt the validity of this reasoning as explained in the next section.
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1.3 Quantum Chromodynamics (QCD)

Many of the relativized corrections to the CQM have their motivations in

quantum chromodynamics (QCD). It is therefore useful to spend some time dis-

cussing the salient points of this theory.

In the CQM, quarks are the only players on the stage. It is their interactions

and characteristics which give rise to hadronic features. QCD is a gauge theory

mediated by massless, colour-carrying bosons called gluons. I will not go into detail

here, but the prescription to derive QCD has its roots in the same gauge invariance

arguments that led to the marriage of electrodynamics and the weak interaction.

QCD, has its coupling constant αs. Like the more well-known α of electro-

magnetic interactions, αs is a “running” coupling constant. Its strength changes as

the distance between interacting particles changes. Unlike electromagnetism, αs de-

creases with decreasing distance. At high enough energies, αs becomes small enough

that you can treat calculations perturbatively.

At the energies we are looking at, perturbation theory cannot be used. Higher

order terms play a significant role in the calculation of matrix elements. Some

problems can be treated numerically, and this is the branch of study known as

lattice-QCD.

The quarks of QCD have a much smaller mass than the quarks of the CQM.

Sometimes the QCD quarks are referred to as bare quarks. The higher order terms

can be thought of as contributing to the dressed quarks of the CQM.

QCD is believed to be an accurate theory of hadronic interaction. Recent

lattice-QCD calculations have shown marked improvement in predicting baryon

masses [?]. We learn something else from QCD: there is nothing in QCD which

would support the diquark model. QCD places all three constituent quarks on

equal footing with no preference for any coupling between two of them.
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1.4 Predictions of Constituent Quark Model

In 1980 Koniuk and Isgur[?] used the QCD-inspired quark model discussed

earlier to predict decay properties of the baryon spectrum. It was found that the

missing baryons couple very weakly to Nπ final states. These resonances fall in

the positive parity N = 2 states. Since most partial wave analysis have focused on

elastic Nπ → Nπ, it is not surprising that these resonances have not been observed.

The model suggests that these states may preferentially decay to other final states.

If they have a sufficient branching ratio to Nππ, then they could be seen in photo-

production experiments.

Photon-nucleon scattering is sometimes described in terms of vector-meson

dominance (VMD). The idea is that the photon manifests itself as a quark-anti-

quark pair at the point of interaction. This pair then interacts strongly with the nu-

cleon. The quantum numbers (JPC)for the photon are 1−−. The quark-anti-quark

pair can be thought of as a meson with these quantum numbers. A meson with

J = 1 is a vector meson. The most common vector mesons are the ρ(770), ω(782)

and φ(1020). Photoproduction of these mesons has been very successfully described

using the VMD model [?]. The ρ primarily decays to ππ so a resonance with a

strong photocoupling should be seen in Nππ final states.

Some results of Isgur, Karl, Capstick and Roberts are shown in Table 1.4.

For the N = 2, positive-parity, missing baryons I show the predicted spins, mass

and width along with branching fractions to Nππ,∆π and Nρ. These latter two

will show up in Nππ analysis given the high branching fractions for ∆ → Nπ and

ρ→ ππ. I also plot the theoretical calculations for the photoproduction amplitudes.

There are two amplitudes that can be calculated. The photon has spin 1 and

has only two z-projections, -1 and +1. The proton is a spin- 1
2

particle and has two

projections as well, + 1
2

and −1
2
. From the rules for adding orbital angular momenta,

we see that our resonance can have M = + 3
2
,+1

2
,−1

2
,−3

2
. If we apply parity, the

amplitude to produce our intermediate resonance in an M = + 1
2

state is the same

as to produce it in an M = − 1
2

state, so we label the appropriate amplitudes by
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Figure 1.6: Representations of spin-aligned and spin-anti-aligned scatter-
ing and the amplitudes associated with these processes.

A1/2 and A3/2.

As a comparison we can look at the same quantities for known states. We list

these properties in Table 1.4 and Table 1.4. For N ∗’s we list the pγ decay amplitudes

which are proportional to the photoproduction amplitudes. For the ∆’s we list the

Nγ amplitudes which still gives us a handle on the pγ coupling.

1.5 Summary

Even if we ignore the missing baryons problem, we see that there are still known

resonances which have significant photoproduction amplitudes and Nππ couplings.

These states should provide “anchors” for our analysis. That is, in order to trust

any identification of previously unidentified states, we should be able to pick out

some of the better known states.
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N∗’s

Branching fractions γp amplitudes

JP mass width Nπ ∆π Nρ A1/2 A3/2

1
2

+
1880 150 0.05 0.49 0.03 0

1
2

+
1975 50 0.08 0.47 0.14 -12

3
2

+
1870 190 0.20 0.12 0.02 -2 -15

3
2

+
1910 390 0.00 0.75 0.03 -21 -27

3
2

+
1950 140 0.12 0.43 0.11 -5 2

3
2

+
2030 90 0.04 0.57 0.15 -9 15

5
2

+
1980 270 0.01 0.89 0.02 -11 -6

5
2

+
1995 190 0.00 0.51 0.33 -18 1

7
2

+
2000 50 0.13 0.53 0.03

∆’s

State mass width Nπ ∆π Nρ A1/2 A3/2

1
2

+
1835 310 0.05 0.63 0.20 -31

3
2

+
1985 220 0.05 0.44 0.25 6 3

5
2

+
1990 350 0.05 0.56 0.10 -10 -20

Table 1.5: Properties of missing baryons from the N = 2 band.[?, ?, ?]
Masses, widths and branching fractions are calculated from
the relativized CQM. The same model is used to predict the
γp photoproduction amplitudes for spin-aligned (A3/2) or spin-
anti-aligned (A1/2). Masses and widths are in MeV/c2. pγ

amplitudes are in 10−3 GeV
1

2 .
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N∗’s

Branching fractions pγ decay amplitudes

JP mass width Nπ ∆π Nρ A1/2 A3/2

1
2

−
S11 1535 150 0.35-0.55 <0.01 <0.04 90±30

1
2

−
S11 1650 150 0.55-0.90 0.01-0.07 0.04-0.12 53±16

1
2

+
P11 1440 350 0.60-0.70 0.20-0.30 <0.08 -65±4

1
2

+
P11 1710 100 0.10-0.20 0.15-0.40 0.05-0.25 -9±22

3
2

−
D13 1520 120 0.50-0.60 0.15-0.25 0.15-0.25 -24±9 166±5

3
2

−
D13 1700 100 0.05-0.15 0.50-0.60 <0.35 -18±13 -2±24

3
2

+
P13 1720 150 0.10-0.20 <0.15 0.70-0.85 18±30 -19±20

5
2

−
D15 1675 150 0.40-0.50 0.50-0.60 0.01-0.03 19±8 15±9

5
2

+
F15 1680 120 0.60-0.70 0.05-0.15 0.03-0.15 15±6 133±12

7
2

−
G17 2190 450 ??? ??? ??? ≈-42±12 ≈-130±50

9
2

+
H19 2220 400 0.10-0.20 ??? ??? ??? ???

9
2

−
G19 2250 400 ??? ??? ??? ??? ???

Table 1.6: Properties of known three and four star N ∗’s. Values are taken
from the 2002 PDG.[?] Masses and widths are in MeV/c2. pγ

decay amplitudes are in 10−3 GeV
1

2 .
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∆’s

Branching fractions Nγ decay amps

JP mass width Nπ ∆π Nρ A1/2 A3/2

1
2

−
S31 1620 150 0.20-0.30 0.30-0.60 0.07-0.25 27±11

1
2

+
P31 1910 250 ??? ??? ??? 3±14

3
2

−
D33 1700 300 0.10-0.20 0.30-0.60 0.30-0.55 104±15 85±22

3
2

+
P33 1232 120 >0.99 -135±6 -255±8

3
2

+
P33 1920 200 0.05-0.20 ??? ??? ≈40±14 ≈23±17

3
2

+
P33 1600 350 0.10-0.25 0.40-0.70 <0.25 -23±20 -9±21

5
2

−
D35 1930 350 0.10-0.20 ??? ??? ≈40±14 ≈23±17

5
2

+
F35 1905 280 0.05-0.15 <0.25 >0.60 26±11 45±20

7
2

+
F37 1950 300 0.35-0.40 0.20-0.30 <0.10 76±12 97±10

11
2

+
H3,11 2420 400 0.05-0.15 ??? ??? ??? ???

Table 1.7: Properties of known three and four star ∆’s. Values are taken
from the 2002 PDG.[?] Masses and widths are in MeV/c2. pγ

amplitudes are in 10−3 GeV
1

2 .



CHAPTER 2

The Experiment

2.1 Thomas Jefferson National Accelerator Facility

The experiment was conducted at Thomas Jefferson National Accelerator Fa-

cility (JLab) in Newport News, VA. Construction began in 1987, and the first exper-

iments were performed in 1994. JLab was built with the express purpose of probing

the nucleus, although much of the physics performed is outside the realm of tradi-

tional nuclear physics. The lab provides a continuous, high intensity, low emittance

electron beam with an energy of up to 6 GeV. The beam can be split into 3 different

halls (”A”, ”B”, ”C”) which house different detectors. All three halls can receive

beam at the same time. Hall B houses the CLAS detector where this experiment

was performed.

A
B

C
End

Stations

45-MeV Injector
(2 1/4 Cryomodules)

0.4-GeV Linac

Helium
Refrigerator

Extraction
Elements

0.4-GeV Linac

Recirculation
Arcs

(20 Cryomodules)

(20 Cryomodules)

Figure 2.1: The Continuous Electron Beam Accelerator Facility at JLab
in Newport News, VA.[?]
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Figure 2.2: Side view of Hall B, the tagger, the CLAS and other compo-
nents of the beam line. [?]
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2.2 Accelerator

Jefferson Lab operates a continuous electron beam. The accelerator consists

of superconducting accelerator cavities and bending magnets. The path that the

electrons follow looks like a race track. The long straightaways are filled with super-

conducting cryomodule cavities. Electrons are accelerated through these cavities by

means of an RF modulated current. The electron’s energy increase over the straight

portions of the accelerator. Steering magnets bend them around the curved section.

After each loop, the beam has a higher energy, and so must go through a different

set of steering magnets. The available energy is therefore limited by the number of

steering magnet tracks the lab has built. The current (2003) conditions allow for 5

complete loops. The electrons can be directed to any hall after any number of loops

so each hall can have a different beam energy.

The electron beam is continuously supplied in 2.004 ns pulses. For this exper-

iment the electron beam current was 10 nA with an energy of 2.445 GeV.

The electrons are accelerated by means of superconducting radio frequency

(RF) cavities. A current flows through the surfaces of the cavities and is modulated

by means of a radio frequency. The frequency can be tuned so that a beam bunch

entering a cavity always sees a accelerating electric field.

2.3 Tagger

[?] For this experiment we use a photon beam. As the electron beam enters

Hall B, it is directed onto a thin-foil radiator. As some of the electrons pass through

the radiator, they electromagnetically scatter off the nuclei of the radiator and emit

a photon. This process is called bremsstrahlung. The angle with respect to the

original beam that the photon and electron come out at is given by the following.

θγ =
mc2

E0

θe = θγ
Eγ

Ee

m is the electron mass and E0 is the energy of the incident electron beam. We are
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able to “tag” photons up to 95% of the electron beam energy. If I use the beam

energy of 2.445 GeV we get

θγ = 0.00021

θe = 0.0040

So to first order, neglecting multiple scattering, both the recoil electron and

the photon come out in the same direction as the incident electron beam.

The photons continue on toward the target. To determine the energy of the

photon, we must measure the energy of the recoil electron. Energy conservation will

then allow us to determine the photon energy.

Eγ = E0 − Ee

As the both scattered and non-interacting electrons leave the radiator, they en-

counter the tagger proper, shown in Fig. 2.3. Upon entering the tagger they en-

counter a magnetic field produced by a uniform-field dipole. The electrons are bend

downward and the photons pas through unaffected. For a constant magnetic field,

the radius of curvature for the electrons is proportional to their momentum. The

electrons are bent onto a series of scintillators. There are two sets of scintillators.

Each electron should hit at least one paddle in each set. While the momentum

will determine which paddle is hit for either set, one set is primarily designed to

give momentum/energy information, and the other set is designed to give timing

information.

2.3.1 E-counters

The first set of scintillators are designed to give the most accurate momentum

measurement. These are referred to as E-counters. To get the most precise mea-

surement of momentum, the position should be measured as accurately as possible.

There are 384 overlapping E-counters. Each one consists of a plastic scintillator

attached to a light guide and a photomultiplier tube (PMT).
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The plastic scintillators are 20 cm long, 4 mm thick and range from 6 to 8 mm

wide. They are overlapped so that coincidence between adjacent scintillators can be

used to even more accurately measure position. This effectively gives us 767 photon

energy bins giving an energy resolution of 0.001 E0. The E-counters are set up to

effectively tag photons from 20% to 95% of the incident electron beam energy.

As these are used for spatial measurements, the only information needed from

the PMT’s is whether or not a charged particle passed through the scintillator. No

pulse information is required beyond this. The signal from the PMT’s are fed to

an amplifier, discriminator and then to a FASTBUS TDC. This TDC runs in a

common-stop mode with a resolution of 500 ps/channel. The stop signal comes

from an event in the the CLAS detector.

2.3.2 T-counters

The other set of scintillators is used for timing information. These are the

T-counters. There are 61 T-counters arranged in the same overlapping fashion as

the E-counters. This gives us 121 timing bins.

The design of the T-counters is different from the E-counters. They are much

thicker at 2 cm. Any electrons passing through this will produce more electrons than

a thinner piece of plastic and so we get much more robust light pulse to analyze.

The width varies over the range to maintain a relatively constant counting rate

from counter to counter. The bremsstrahlung spectrum goes as 1/Eγ and so the

counters that count higher energy photons (lower energy electrons) would have a

lower counting rate than the counters measuring low energy photons (high energy

electrons) if they were all the same size.

The scintillators have a PMT at each end. The output of each PMT is fed to

a fast discriminator and from there to a FASTBUS TDC. The TDC has a resolution

of 50 ps. This is the best timing information for a physics event in the CLAS. The

TDC’s are operated in a common stop mode. That is, when a signal comes in from

the CLAS detector that a possible physics event has been detected, all the TDC’s

will start recording. The stop for each TDC comes from the discriminator. For

each physics event a T-counter will only record the first photon that strikes it. The
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Figure 2.3: Schematic of the electron tagger located in Hall B. [?]

flux during the g1c run was such that there were usually 2-3 photons in the tagger

per event. The difference in arrival time between these photons easily allowed us to

distinguish which photon caused the event.

A separate signal is run from each PMT on a T-counter to a fast AND logic

unit. A left-right coincidence is used to determine that a photon has been tagged

in that energy range. All 61 AND gates are connected to a master OR. This OR

provides a signal that a photon has been tagged somewhere in the tagger and this

is used in the trigger as will be discussed later.

2.4 Target

For the g1c running period a target of liquid H2 was used. The target was

kept at a temperature of 20 K and a pressure of 1095 mbar. The target is a cylinder

18 cm long with a 2 cm radius. The material used is Kapton. The thickness of the

target walls and inlet and exit windows is 127 microns.
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2.5 CEBAF Large Acceptance Spectrometer (CLAS)

Hall B houses the CLAS, the CEBAF Large Acceptance Spectrometer. It was

designed to cover as much of 4π solid angle as possible. It consists of a variety of

detectors.

The CLAS is divided into 6 sectors by a superconducting, toroidal magnet.

That is, if you define the beam direction to be the z-axis, the field lines point in

φ. For this experiment the field lines are such that positively charged particles are

bent out away from the beam and negatively charged particles are bent in toward

the beam. In this region are the drift chambers which tell us the path the particle

takes. From this we can get curvature and then momentum information.

Immediately surrounding the target is the start counter, a set of scintillators

divided into 3 regions. Their purpose is to provide a time for the start of the reaction.

This time can then be matched to a tagged photon.

After the drift chambers is another set of scintillators arranged. These are the

time-of-flight walls. The timing information they provide for charged tracks is used

in conjunction with the start counter to measure velocities and energies.

There are calorimeters also located in the forward region. They are primarily

used to detect neutrons and other neutral particles.

Cerenkov counters are used to trigger on electrons for electron beam experi-

ments, as well as distinguish high momenta electrons from pions.

For this experiment, we made use of the drift chambers, start counter and

TOF wall.

2.5.1 Torus magnet

A magnetic field is generated by a superconducting toroidal magnet shown in

Fig. 2.4 and consisting of six separate coils. Each coil is made of aluminum-stabilized

NbTi/Cu conductor. Cooling tubes at the edges of the windings allow super-critical

helium to be cool the torus down to 4.5 K. The maximum current is 3860 A, though

for this experiment only half the max current was run. Negatively charged tracks

bend inward and if they bend too much, they will exit the detector through the same

hole that the beam leaves and will not be detected. By decreasing the magnetic
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500+ channels, 145 ps resolution
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Figure 2.4: The CEBAF Large Acceptance Spectrometer
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1 m

Figure 2.5: Cut away side view of the CLAS.
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Drift Chambers
Region 1
Region 2
Region 3 TOF Counters

Main Torus Coils
1 m

Figure 2.6: Cut away forward view of the CLAS.

field we do not bend the negative tracks as much and increase acceptance for these

particles.

The field varies over θ. Contour maps of the field are shown in Fig. 2.7 and

Fig. 2.8. To give an idea of the strength of the magnets, we can look at how much

field different paths map out:
∫

B×dl. For a max field, this varies from 2.5 T·m for

forward angle, high momentum tracks, to about .6 T·m for tracks greater than 90◦.

Part of the support structure for the magnet consists of five carbon-fiber rods

per sector. These are arrayed toward the edges of the coils and maintain the distance

between them. The forward most rod will absorb or scatter forward going protons.

This is modeled in the Monte Carlo as will be shown in a later chapter.

2.5.2 Drift Chambers

The drift chambers were designed to measure particles with momenta of greater

than 200 MeV/c and cover a a polar angle between 8◦ and 142◦. Each of the 6 sectors

houses an identical set of drift chambers. There are 3 Regions, with R1 being the

Region closest to the target. These can be seen in Figs. 2.5, 2.6 and 2.9. Each
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Figure 2.7: Contours of magnetic field, equidistant between two coils.
The projection of the coils is shown. [?]

Region contains 2 sets of drift wires referred to as em superlayers.

The wires in the drift chamber are stretched between two end plates parallel

to the magnet coils. A superlayer is composed of quasi-hexagonal cells of wires as

can be seen in Fig. 2.10. Each cell has a sense wire at the center maintained at a

positive potential, and the vertices of the cell are field wires which are maintained

at a negative potential, half that of the sense wires. The average distance between

the field and sense wires is 0.7 cm in R1, 1.5 cm in R2 and 2.0 cm in R3. There are

35,148 sense wires in the drift chamber system. The drift chambers are filled with

an 88-12% mixture of argon and CO2.

When a charged particle passes through the drift chamber it ionizes the argon.

The ions will move in the field created by the sense and field wires. They will drift to

the the sense wires where they will create a current which is fed out to an amplifier,

discriminator and then to a common-stop TDC. Timing information from the TDC’s

can be used to give a more accurate positional measurement by making use of the
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Figure 2.8: Magnetic field vectors transverse to the beam. The length
of each line is proportional to the field strength. Note the
cross-sections of the six coils. [?]

drift velocity of the ions. On average, the spatial resolution for a cell is 310, 315 and

380 µm for R1, R2 and R3 respectively. For particles with a momentum of 1 GeV/c,

the the design should give a momentum resolution of δp/p ≤ 0.5% and δθ, δφ ≤ 2

mrad.

2.5.2.1 Tracking

To identify the track of a charged particle in the drift chambers, a 4-step

procedure is outlined here.[?]

• Cluster finding. A contiguous group of hits in each superlayer is identified.

An example of this can be seen in Fig. 2.10.

• A lookup table is used to identify clusters or portions of cluster which are

consistent with a track passing through that superlayer.
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Attachment
 Points

Region 3

  

Region 2

Figure 2.9: Schematic of an R2 and R3 drift chamber attached to the
torus cryostat. [?]

• Another lookup table is used to identify segments across superlayers which are

consistent with tracks passing through the drift chamber region.

• Using these segments a track is fitted to these hits. Two different values are

used for the fitting.

– Hit-based-tracking (HBT). The position used in the fitting is the location

of the wire.

– Time-based-tracking (TBT). A position is derived using the drift times

for the ions to the wire. This improves the resolution of the tracking

procedure. For this analysis, TBT was used for the particle identification
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and momentum information.

2.5.3 Start counter

The start counter is a set of scintillators that sit immediately outside the

carbon fiber beam pipe surrounding the target. The purpose of this instrumentation

is to register the start of an event in the CLAS.

The scintillators are 3 mm thick. The other dimensions are shown in Fig. 2.11.

Note that the design of the counters necessitates joining two of the strips at one

end. This configuration will cover two sectors. PMT’s are placed upstream at the

thicker ends of the paddles. This reduces unnecessary mass in the detector region.

The start counter in its position around the target is shown in Fig. 2.13.

The start counter is used in the event trigger. To get a robust signal the

analog signal from both PMT’s is combined before being fed into a discriminator.

Each PMT has an opportunity to register a hit, regardless of which leg the charged

particle passes through. However one of them will register a smaller light pulse due

to the attenuation from the longer path length.

A second signal is read out from each PMT and sent to individual discrimi-

nators and TDC’s. With this timing information from two TDC’s the location of

the charged track can be better identified and the timing resolution improved. The

resolution varies from 255 ps to 271 ps, depending upon where in the scintillator the

particle passes.

2.5.4 Time of Flight (TOF) systems

Outside the Region 3 drift chambers are sets of scintillators which extend

across the sector azimuthally. These are designed to provide time-of-flight (TOF)

information about the particles. They extend over the polar angle form 8◦ to 142◦.

The TOF counters are after the drift chamber and Cerenkov counters, but in front

of the calorimeters.

The design is similar to the T-counters in the tagger. A plastic (Bicron BC-

408) scintillator with a thickness of 5.08 cm has a PMT attached to each end. The

counters covers about 1.5◦ of scattering angle so the forward counters are 15 cm
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Summary of the CLAS detector
Resolution Momentum (θ ≤ 30◦) σp/p ≈ 0.5%

Momentum (θ ≥ 30◦) σp/p ≈ (1 − 2)%
Polar angle σθ ≈ 1mrad
Azimuthal angle σφ ≈ 4mrad
Time (charged particles) σt ≈(100-250) ps

Photon energy σE/E ≈10%/
√
E

Data acquisition Event rate 4 kHz
Data rate 25 MB/s

Table 2.1: Summary of characteristics of the CLAS detector.

Details for g1c running period - Oct. 2 - Nov 20, 1999
Target Liquid hydrogen
Electron Beam Energy 2.445 GeV
Photon Beam Range 0.5 - 2.325 GeV
Magnetic Field Half of max field
Current 10 nA

Table 2.2: Summary of g1c running period.

wide and the large angle counters are 22 cm wide. The lengths vary from counter

to counter to provide full azimuthal coverage for each of the six sectors.

Signals from the PMT’s are split. One signal is sent to the trigger. The other

signal is sent to both a TDC and an ADC (analog-to-digital converter). The ADC

measures pulse height and with the timing information can give information about

the position on the scintillator where the particle went.

2.5.5 CLAS performance summary

2.6 Calibration

The off-line calibration for the g1c data set was performed by Luminita Todor.

Her work is detailed in an internal CLAS note. [?]

2.7 Trigger

The hardware trigger to measure an event for this experiment was the Level 1

trigger. This required a photon to be tagged and at least one charged track in the
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CLAS. The trigger was a coincidence between a start counter signal, a TOF signal

and a T-counter signal from the tagger.

2.8 Particle Identification (PID)

The charged particle leaves the target. The first piece of instrumentation it

hits is the start counter, located about 1 foot from the target. Call this time, tsc.

The particle now travels through the drift chambers and hits the TOF wall

outside of Region 3. Call this time, ttof The information from the drift chambers

and TOF paddle gives us a path length for this particle while traveling from the

start counter to the TOF wall. Call this distance d.

Using the d, tsc and ttof a preliminary velocity can be calculated. This velocity

is used to extrapolate the path from the start counter to the target. Using the

timing information from the tagger, we can match up the event with the photon

that caused it. We can now use the timing information from the T-counter for the

start of the event. Call this time, ttag. The resolution for the T-counter is 50 ps.

This is the best timing information we have in the CLAS and allows us to calculate

a new an more accurate velocity. It is this velocity that is used for the rest of the

PID.

Particle identification in the CLAS for charged particles relies on two indepen-

dent measurements: the momentum and the velocity.

p = mvγ

where γ = 1/
√

1 − β2 and β = v/c. This gives us

m =
p

cβ

√

1 − β2

Momentum information is provided by the drift chamber measurements. Note

that p and β are determined independently. The different particles can be seen quite

clearly if you plot β vs p for all charged tracks.

In Fig. 2.14 you can easily see the distinct bands of different particles. Particle
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identification is made simply by placing cuts around these bands. Of the two heaviest

bands, the uppermost is the pions. The misidentified electrons are seen as a line

at β = 1. The lower of the heavy bands are protons. Between the two, the kaons

are slightly visible. And some deuterons below the protons. There are also some

structures which look like palm fronds peeling away from the main bands. These

are due to mistakes in timing coincidences with the discreet 2 ns photon bunches.

2.9 Normalization

For this analysis, the photon flux was calculated using the gflux method

developed by Eugene Pasyuk [?]. When a electron is first registered in the tagger

in a T-counter, a 200 ns window is opened to record data from all the other T-

counters. The correct photon can be picked out from timing information from the

start counter, but these “out-of-time” photons give us a measure of the photon flux.
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Figure 2.10: Two superlayers in the R3 drift chamber are shown. The
Cerenkov detector is seen in the upper right. The hexagonal
arrangement indicates the cells formed by the wires. Note
that the borders shown here do not actually exist. The
vertices represent the field wires and the sense wire would be
at the center of the cell. The highlighted cells are indicative
of what would happen in a charged particle passed through
this region. [?]
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Figure 2.11: Schematic of the start counter scintillators. Dimensions are
in millimeters unless otherwise specified. [?]
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Figure 2.12: Schematic of the electron tagger located in Hall B. [?]

Beam

Figure 2.13: Layout of TOF counters in one sector. [?]
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Figure 2.14: β vs. p for a sample of charged particles from the g1c run.



CHAPTER 3

Monte Carlo simulation

We used flat three-body phase space for our Monte Carlo data. The data was

generated using ROOT’s TGenPhaseSpace class. Fig. 3.1 is a Dalitz plot of the

raw events around 1.7 GeV/c2. showing the uniformity of the events except for

some minor depletion at the edges. This is due to the overlapping W bins, which

increases the number events in the overlap. The dotted lines around the data are

the kinematic boundaries for the low and high edges of the W bin.
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Figure 3.1: Dalitz plots for raw Monte Carlo data for 1.675 ≤ W <

1.700GeV/c2. The dotted lines outline the kinematic limits

based on the low and high edges of the W bin.

We use a simulation of the detector called gsim. We wanted to be confident

that it reproduced the CLAS response so we conducted a thorough study discussed

in the following section. Details of the study can be found in the appropriate CLAS

note [?].

3.1 Empirical acceptance method

The analysis involves three final state particles. If I detect any two, the third

can always be reconstructed from missing momentum, whether or not it has been

42
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detected in CLAS. This principle can be used to map out an acceptance for CLAS

using either real world or simulated data. We can then compare these two acceptance

functions.

For example, suppose I detect the π+ and π− in CLAS. I calculate the missing

mass off the two pions and see if this corresponds to the mass of a proton. I then

loop over the particles detected in the CLAS to see if this proton was detected.

p

π

π
γ

+

−

???

Figure 3.2: Representation of looking for a missing particle where I ex-
pect it to be based on my momentum reconstruction.

Using this information, I can now calculate some efficiency for detecting a

particle based on it’s momentum and angle.

ε(ρ, θ, φ) =
# of times CLAS found the particle

# of identified missing particles

where ρ, θ and φ are the spherical components of the momentum. Note that this

efficiency combines both acceptance and detector response and can be determined

separately for either real or simulated data..

I determine the efficiency as a function of some kinematic variable. I choose

some narrow momentum bin, and I integrate over all φ. I then plot the efficiency

over cos(θ) as seen in Fig. 3.3. We found that our comparisons are sensitive to the

differences in the real world momentum distributions and the phase space which we

run through the simulation. For this reason it is important that we bin finely in

both momentum and cos(θ).
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Figure 3.3: The first plot shows the distribution of π+ lab angle cos(θ)
as reconstructed from missing mass for the momentum bin
0.24 < p < 0.26 GeV/c. The fine binning is important for ob-
taining a valid result. The second plot shows the distribution
of π+ where they are detected in CLAS. The third plot is the
second divided by the first plot. This gives us our efficiency.
This particular example uses real world data.

3.1.1 Characteristics of the data and tuning gsim.

The Monte Carlo data was processed as follows. Three-body phase space

events were generated using the TGenPhaseSpace class found in the ROOT package.

They were generated roughly uniformly over the beam energy range 0.5-2.5 GeV/c2.

Following that, the gsim detector simulation package, gpp, a program designed to

simulate inefficient TOF paddles and drift chamber wires, and a1c, the cooking

routine. Details of these programs and the flags used can be found in the CLAS

note [?].

After this there were still some obvious discrepancies between the data and the

Monte Carlo. When the Cerenkov detectors were installed, there was a support bar

used that was not put into gsim at the time of this document. Protons that strike

this bar are sometimes scattered or absorbed and are not detected. By plotting

momentum vs. cos(θ) for the protons I see a depletion region which is not visible in

the Monte Carlo. This is shown in Fig. 3.4.

The other depletion structures are due to the carbon rods which support the

main torus, or junctures between two time-of-flight walls and seem to be modeled

properly in gsim. I impose a momentum cut to remove the Cerenkov support bar

depletion region in both my data and Monte Carlo.
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Figure 3.4: Plots showing the effect of the support bar in the Cerenkov
detector on the distribution of protons. The dashed line in
the data plot outlines the region that will be cut out of both
real world and simulated data.
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Figure 3.5: These plots show the mass of π+’s as calculated from time-
of-flight measurements. The first plot is real data and the
second plot is Monte Carlo. The sharp cutoff at 0.3 GeV is
imposed by the CLAS software’s particle identification rou-
tine.

If I look at the time-of-flight mass of the pions in Fig. 3.5, I see what looks to

be misidentified electrons. I cut them out of both MC and data.

I also want to make sure that I have knocked out dead paddles in the Monte

Carlo. After I have run it through gpp I can compare the distribution of hits for a

particle in a particular sector over all the TOF paddles. If I look at Fig.3.6 I can

see that paddle #44 is dead in the data, but has not been properly accounted for

in the Monte Carlo.

Fig.3.7 shows this distribution after I have cut out what I refer to as misiden-

tified electrons. Paddle #44 shows no reconstructed pions now in the Monte Carlo,
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Figure 3.6: Hits in the time-of-flight paddles for π+’s in sector 1. The
first plot is real data and the second plot is Monte Carlo.
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Figure 3.7: Hits in the time-of-flight paddles for π+’s in sector 1 after
I have cut out misidentified electrons. The first plot is real
data and the second plot is Monte Carlo.

but paddle #29 has been depleted. The Monte Carlo data has been filled with a

status for each TOF paddle. But it does not always act the same as data when it

comes to reconstruction the time and so I get more misidentified electrons in the

Monte Carlo distribution. My solution was to impose a strict requirement on the

health of the TOF paddles. First I only take hits that have a completely healthy

status. I also go through and identify what I will call bad paddles in the data and

knock them out in my analysis code in both data and Monte Carlo.

There may also be slight discrepancies in the drift chamber positions between

the real CLAS and in gsim. To deal with this I cut in very slightly in the forward

region and in phi. I do not cut on the momentum of the track, but where in the

detector the particle went. I chose one plane in each of the three Regions. Tracks that

passed within 5, 20, or 22 cm of the edge of a sector for R1, R2 or R3 respectively

were cut out. The minimum foward angle for tracks was effectively increased from
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8◦ to about 14◦.

3.1.2 Comparison

The data was binned in 20 MeV/c momentum bins and 0.02 bins in cos(θ). I

integrated over all φ. When I’m able to reconstruct a particle from missing mass,

I’ll refer to it as a reconstructed particle. When CLAS detects the particle, I’ll refer

to it as a found particle.

To calculate the error on the efficiency, I assumed a binomial distribution for

the found particles and used that to give me the error for them.

σ2
found

= Nfound × pfound × pmissed (3.1)

= Nreconstructed × Nfound

Nreconstructed

× (1 − Nmissed

Nreconstructed

) (3.2)

= Nfound × (1 − Nmissed

Nreconstructed

) (3.3)

I also assume zero error on the reconstructed particles. The error on the

efficiency then just comes out to be

σefficiency =
σmissed

Nreconstructed

I require that there be at least 30 reconstructed particles in a bin to calculate

an efficiency. I can now look at the data (black) and Monte Carlo (red) overlaid on

the same plot, or as a ratio. (See Fig.3.8.)

There is a huge amount of data, so I needed some way to determine the validity

of my cuts. I used a χ2 per degree of freedom to see how much my ratio deviates

from 1. I calculate this for each momentum bin where the degrees of freedom are

the number of cos(θ) bins that have values for both data and Monte Carlo.

χ2 =
(1 − R)2

σ2
R

R =
εdata

εMonteCarlo
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Figure 3.8: The first plot shows the comparison in efficiency for real-
world data (black) and Monte Carlo data (red). The second
plot shows the ratio of the two data sets.

I can look at this χ2 for each momentum bin and see how the cuts improve

the agreement, as seen in Figs. 3.9-3.11.
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Figure 3.9: χ2 per degree of freedom for the proton and pions before and
after the cuts.

There is a separate document which contains plots of all the momentum bins

generated for comparison in this analysis [?] This document also details of all the

the cuts.
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Figure 3.10: χ2 per degree of freedom for the proton and pions before
and after the cuts.
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Figure 3.11: χ2 per degree of freedom for the proton and pions before
and after the cuts.

3.1.3 Conclusions

To summarize, here is the procedure we used to process and compare the data.

• Monte Carlo

– gsim

– gpp

– a1c

• CLAS data and Monte Carlo
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– Energy loss and momentum corrections.

– Vertex cuts.

– Misidentified electron cuts.

– Bad TOF paddles knocked out.

– Region in proton momentum distribution affected by the Cerenkov sup-

port bar is knocked out.

– Fiducial cuts applied to track position in the drift chambers.

The combination of all the cuts seem to improve the agreement in the empirical

efficiency calculation. In the course of the study it was noted that the bulk of

the improvement in the middle cos(θ) regions comes from the TOF paddle knock

outs. The fiducial cuts seem to primarily improve the agreement for forward going

particles.

The biggest disagreement in this study was for lower energy protons. It may

be possible that limitations in binning and the difference in flat phase space and real

world data is the reason for this. In the end we decided to analyze particles where

all three tracks were detected in the CLAS. The hope is that the extra constraints

on the missing mass will give us the cleanest data sample.

3.2 Monte Carlo events

I generated 60 million events and ran them through the simulation with about

5-9% acceptance over the energy range after all cuts. Fig. 3.12 shows the distribution

of the generated events, the accepted events and the integrated acceptance. Note

that the raw and accepted MC seem discontinuous. When the flux was calculated

by Eugene Pasyuk [?], some T-counters and E-counters in the tagger were found to

not give consistent readings, and were cut out of the data. To maintain consistency,

I cut out Monte Carlo events associated with these counters as well. I generated

the data in two different periods and generated slightly fewer events above W = 1.8

GeV/c2. There is no other significance to this.
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CHAPTER 4

Characteristics of the data

4.1 Data Selection

At this point we have discussed a number of cuts. These cuts serve the fol-

lowing purposes.

• Cleanly identifying the photon which caused the reaction.

• Improving the particle identification.

• Improving the agreement between gsim and the CLAS detector.

These cuts have been described in greater detail in the previous chapter.

At this point we can select the data upon which we will perform our analysis. I

will have three particles in the final state. I can select these particles in four different

ways. I can detect all three in CLAS, or I can detect any two and reconstruct the

third from missing momentum.

In the first case, I want to make sure I only choose events with a proton,

π+ and π−. Fig. 4.1 shows the missing mass squared off of the three particles for

different beam energies. The largest peak is centered on 0, and these are the events

we want to choose. For higher energies a secondary peak can be seen. This peak

is centered around 0.02 GeV2/c4 and is caused by π0’s. These must be cut out. I

make a cut of −0.01 < MM 2(pπ+π−) < 0.01 GeV2/c4.

52
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Figure 4.1: Missing mass squared off the proton, π+ and π− for four dif-

ferent energy ranges. The cuts that were made for identifying

exclusive events are shown at ± 0.01 GeV2/c4 and a reference

line at 0 is also drawn.

After I make these cuts, there will still be some background leaking in from

π0’s. To try to tighten the cuts to exclude π0 events I make a cut on the missing z-

component of momentum. In Fig. 4.2 I plot the z-component of missing momentum

for different beam energies. The peak is centered at 0 with very little background.

The plots also show the cut at −0.05 < Missing pz(pπ
+π−) < 0.05 Gev/c that we

place on the data.
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Figure 4.2: Missing z-component of momentum off the proton, π+ and

π− for four different energy ranges. The cuts that were made

for identifying exclusive events are shown at ± 0.05 GeV/c

and a reference line at 0 is also drawn.
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Figure 4.3: Missing mass squared off the proton, π+ and π− after cuts on

missing mass and missing momentum. Note the change in

x-axis scale from the previous plots.
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Figure 4.4: Monte Carlo events. Missing mass squared off the proton, π+

and π− after cuts on missing mass and missing momentum.

Fig. 4.3 shows the missing mass squared after our cuts. We have reduced the

background so that it is on the order of 1%. We make the same plots for the Monte

Carlo data in Fig. 4.4. While the Monte Carlo data does not have π0 events, we

see that the resolution for detecting the missing mass is well reproduced by our

simulation.

If we chose, we could also select the data by reconstructing any of the three

particles from missing mass. In Fig. 4.5 we plot the missing mass squared off of the

proton and π+ for four different beam energies. The peak is at the mass squared

of the π− and a line is drawn at this mass. However, we would be less able to

separate out the contaminating π0’s. The resolution on the missing mass is also not

as good as when I detect all three particles. It was also shown that the agreement in

acceptance between Monte Carlo and CLAS data is worse for low momenta protons.

By requiring that all three particles be detected in CLAS, it is hoped that the extra
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constraints will give us the most well measured events. With a finite amount of time

to study the detector and interpret the PWA results we chose to analyze exclusive

events with all three being detected. The trade-off is that we are more limited by

the detector acceptance and we lose some portions of phase space as will be shown in

the next section. It is hoped that further analysis will be performed on the data set

where the π− is not detected in the CLAS but instead reconstructed from missing

mass.
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Figure 4.5: Missing mass squared off the proton and π+ when these are

the only two charged tracks detected. A reference line is

drawn at the mass squared of the π−.

4.2 Amount of data

After all the cuts are made I have 775,553 data events to analyze. I break the

data up by binning in groups of 16 E-bins. This gives us a manageable amount of

statistics in each bin. In Fig. 4.6 I plot the number of events in each bin the photon

flux for these events and the flux corrected data yield. The data is rather jumpy

due to the photon flux and bad E-counters that I have cut out of the data. Right

at W ≈ 1.7 I have completely discarded the events associated with the E-counters

in that region due to problems during the flux calculation. In the third plot I’ve

divided the data by the photon flux to show that removing the effect of cutting out

the bad E-counters gives us a smoother distribution.
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Figure 4.6: Data, photon flux and flux corrected data used in this anal-

ysis.

4.3 Characteristics of the data for different W

Before we begin the PWA in earnest, we show aspects of the data and draw

some conclusions about what it tells us about the physics at hand as well as what

our analysis limitations might be. In the following sections we look at the same

variables for different W , starting at the lower energy range of our data sample, and

working our way up to higher W . No acceptance correction has been applied.

I plot the three invariant two-body masses: pπ+, pπ− and π+π−. If the reaction

proceeds through quasi-two-body final states, unstable isobars should appear in plots

of the two-body invariant masses. For the pπ plots a dotted line is drawn at the the

mass of the ∆(1232). This is a dominant feature in portions of our energy range. For

the π+π− plot a dotted line is drawn at the mass of the ρ(770), another dominant

feature, though in a different range.

I plot the three final state particles cos(θ) in the center of mass. Features of

the CLAS affect these plots similarly. The hole in the forward region means that

forward going tracks will not be detected. Negatively charged tracks bend inward
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and so we lose a greater portion of these tracks than the outward bending positively

charged tracks. The CLAS also has no instrumentation for θ > 142o so tracks that

go too far backward are lost as well.

I show two Dalitz plots forM 2(pπ+) vs. M2(pπ−) andM2(π+π−) vs. M2(pπ−).

The information on these plots is redundant, but by plotting it differently some fea-

tures may become more obvious. On this plot I draw dotted lines representing the

mass squared of the ∆(1232) and the ρ(770) for the appropriate axis. Isobars will

be visible in these plots. On the Dalitz plots there are two dotted lines. For a

particular W , there is a definite boundary to the Dalitz plot which is a function of

W and the masses of the final state particles. These Dalitz plots are for a small

range of W (25 MeV/c2 wide) so we show the boundary for both the low and high

W .

4.3.1 1.4 ≤ W < 1.5 GeV/c2

This is at the lower end of our energy. Threshold for this reaction is W ≈ 1.22

GeV/c2. This reaction may proceed through the decay of an intermediate ∆(1232)

resonance. The threshold for ∆π is W ≈ 1.46 GeV/c2. So for this W we are at the

limit for this reaction and this is supported by the lack of structure in the pπ mass

distributions.

The Dalitz plots are particularly interesting in this range. The dotted lines

outline the allowable phase space for this W bin. For the M 2(pπ+) vs. M2(π−) plot

it is noticeably depleted in the upper left and lower right portions of the plot. Is this

physics? No. If we run Monte Carlo three-body phase space through our detector

simulation, we get the same depletions. How does this happen? The events in the

upper left correspond to those where the pπ− mass is closer to threshold. There

is less breakup momentum for this two body system and so in their center-of-mass

frame, they have very little relative velocity. This region of the plot also implies a

greater breakup momentum for the pπ+ system and so there must be more relative

momentum between these two. In this lower W -bin there is a limited amount of

energy and so the most favorable distribution is for the pπ− system to continue more

or less forward with little transverse momentum. Because of the structure of CLAS,
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we lose particles which travel too far forward due to the hole in the detector in the

forward region. Because we are requiring that all three particles be detected, we do

not detect those events which populate the upper left region of the plot. The same

argument explains the depletion in the lower right. A similar effect is noticed if we

plot the invariant mass squared of the π+π− system on one of the axis.

For comparison I plot the M 2(pπ+) vs. M2(π−) for both raw and accepted

phase space as shown in Fig. 4.8. The raw phase space is evenly populated, with

slightly fewer events due to the fact that our plot is not just one W , but a range

of W . The accepted phase space shows that our detector is insensitive to certain

kinematic distributions and so we lose events in parts of our plot. This will have

consequences for our PWA as will be discussed in later chapters.
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Figure 4.7: Two Dalitz plots for 1.475 ≤ W < 1.500 GeV/c2. The dotted

lines outline the kinematic limits based on the low and high

edges of the W bin. The depleted regions are due to the

acceptance of the CLAS.
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Figure 4.8: Monte Carlo data. The same variables are plotted on these

two Dalitz plots for 1.475 ≤ W ¡ 1.500 GeV/c2. The first

plot is raw phase space and the second plot phase space run

through our detector simulation. The dotted lines outline the

kinematic limits based on the low and high edges of the W

bin. The depleted regions are due to the acceptance of the

CLAS.
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Figure 4.9: Details of the data for 1.4 ≤ W < 1.5 GeV/c2.

4.3.2 1.7 ≤ W < 1.8 GeV/c2
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Figure 4.10: Two Dalitz plots for 1.775 ≤ W < 1.800 GeV/c2. The dotted

lines outline the kinematic limits based on the low and high

edges of the W bin. The depleted regions are due to the

acceptance of the CLAS.
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The ∆++ is clearly visible in the pπ+ mass spectrum in both the mass plot

and Dalitz plot in Figs. 4.10 and 4.11. The ∆0 is visible as well in the pπ− mass

spectrum, though it is not as prominent as the ∆++. This does make sense if we

look at the resonances in this region. Referring back to Table 1.4 and Table 1.4,

I find in this mass range there more contributing N ∗’s than ∆’s. Invoking isospin

conservation we find the N ∗ favours the ∆++π− over the ∆0π+ decay channel by

almost 9:1. For a ∆ the ratio is 9:4. Because there are more N ∗ in this region we

see a greater strength of ∆++ than ∆0.

Threshold for pρ is W = 1.708 GeV/c2 so in this region we are just hitting the

tail edge of the ρ and so there is very little structure in the π+π− plot.

Even with the acceptance colouring the angular distributions we see that both

the π’s prefer to go forward and the proton prefers to go backward.
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Figure 4.11: Details of the data for 1.7 ≤ W < 1.8 GeV/c2.
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4.3.3 1.9 ≤ W < 2.0 GeV/c2
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Figure 4.12: Two Dalitz plots for 1.975 ≤ W < 2.000 GeV/c2. The dotted

lines outline the kinematic limits based on the low and high

edges of the W bin. The depleted regions are due to the

acceptance of the CLAS.

The ∆’s are both still visible and we are now seeing a strong ρ. The π’s are

more forward peaked and the proton is even more backward going.
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Figure 4.13: Details of the data for 1.9 ≤ W < 2.0 GeV/c2.

4.3.4 2.2 ≤ W < 2.3 GeV/c2
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Figure 4.14: Two Dalitz plots for 2.225 ≤ W < 2.250 GeV/c2. The dotted

lines outline the kinematic limits based on the low and high

edges of the W bin. The depleted regions are due to the

acceptance of the CLAS.
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In this region we are now almost entirely dominated by ρ production, though

we cannot make any claims about whether it is s-channel or t-channel production.

The ∆++ is still visible, though much less than at lower energies.
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Figure 4.15: Details of the data for 2.2 ≤ W < 2.3 GeV/c2.



CHAPTER 5

Partial Wave Analysis (PWA)

In the simplest terms, I know the initial state is (γp) and the final state (pπ+π−)

and I want to know what the intermediate states were and their relative strengths.

5.1 Formalism

5.1.1 Introduction

The amplitude for a scattering process can be written as some operator, T ,

which connects our initial and final states.

Ψ = 〈f |T |i〉

More rigorously, I write my operator T as a product of Ti and Tf which act on

the initial and final states respectively. I can then expand over intermediate states

in some basis. τ represents the kinematics for the reaction.

〈f |T |i〉 = 〈pπ+π−; τf |T |γp; τi〉

= 〈pπ+π−; τf |Tτf
Tτi

|γp; τi〉

=
∑

α

〈pπ+π−; τf |Tτf
|α〉〈α|Tτi

|γp; τi〉

=
∑

α

ψα(τf )Vα

I now have two amplitudes.

• ψα(τf) This is the amplitude for the decay of the intermediate state into our

final state.

• Vα This represents the production amplitude for our initial state.

The partial wave decomposition method allows us to calculate the decay amplitudes,

and fit the production amplitudes. Note that I have discarded the τ dependence

65
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Figure 5.1: Representation of decomposing the scattering amplitude in
some known basis.

for the production amplitudes. The square of the amplitude gives me a probability

density which is proportional to the intensity which we observe. Our analysis will

bin in the mass of the final state particles. If we bin fine enough, the assumption is

that the physics is energy independent within the bin.

5.1.2 Scattering amplitudes

We assume that the scattering process proceeds through two body decays.

Write the intensity in terms of the scattering amplitude squared.

I(τ) =

∣

∣

∣

∣

∣

∑

α

Vα ψα(τ)

∣

∣

∣

∣

∣

2

=
∑

α,α‘

Vα V
∗

α‘ ψα(τ) ψ∗

α‘(τ)

The α label, indicates the waves we are summing over: isobars, spin, parity, orbital

angular momentum. The ψ’s are some set of known functions in which we want to

expand our intensity. The V ’s are the relative strengths of each of these functions:

a measure of how much each wave contributes to the total intensity.

For s-channel production, the assumption is the photon and proton interact

to form some resonance with spin J and parity P . This resonance decays to some

two-body state with some angular momentum L.

For most of this analysis, we confined our allowed J ’s to 1
2
, 3

2
and 5

2
with both

+ and − parity. The motivation being that these are the quantum numbers of the

resonances that dominate below W = 1.8 GeV/c2. We later added 7
2

±
states.
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Figure 5.2: Decay of JP into particles s1 and s2 with helicities λ1 and λ2.

Fig. 5.2 represents some decay for which I want to calculate the amplitude.

This decay is indexed by the following values:

• Parent state

– J - angular momentum

– η - parity

– M - z-component of angular momentum

– Λ - helicity

– p - momentum

• s Daughters 1 and 2

– s1, s2 - spins

– η1, η2 - parity

– λ1, λ2 - helicities

– ` - angular momentum between the daughters

– τ - kinematics of daughters

The formalism to calculate these amplitudes comes from Jacob and Wick [?]

and has been applied to our analysis method by Chung [?]. The following comes

from these two references.

We write our amplitudes in the helicity basis, where the helicity (λ) is the spin-

operator for a particle projected onto it’s momentum vector: λ = ~s · p̂. We could

calculate the amplitude in the total angular momentum basis, but as the orbital
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angular and intrinsic spin operators are defined in different reference frames, this is

not the most straightforward calculation. The helicity operator is invariant under

rotations and boosts along p̂ [?]. This allows us to construct basis vectors which

are eigenstates of of total angular momentum and helicity, or linear momentum and

helicity [?].

ψ = 〈~pλ1,−~p, λ2|M |JM〉

= 4π

(

w

p

)
1

2

〈φθλ1λ2|JMλ1λ2〉〈JMλ1λ2|M |JM〉

= NJF
J
λ1λ2

DJ∗
MΛ(φ, θ, 0) λ = λ1 − λ2

where p is the relative momentum and w is the effective mass of the final state

two-particle system. F is the helicity decay amplitude. (Note that we use the

(j1j2m1m2|JM) convention to represent Clebsch-Gordon coefficients.)

F J
λ1λ2

= 4π

(

w

p

)
1

2

〈JMλ1λ2|M |JM〉

NJF
J
λ1λ2

=
∑

`s

(2`+ 1)
1

2 (`0sΛ|JM)(s1λ1s2 − λ2|sλ)

The intensity can now be written as

I(Ω) =
(

2J + 1

4π

)

∑

ΛΛ′λ1λ2

ρJ
ΛΛ′DJ∗

Λλ(φ, θ, 0)DJ
Λ′λ(φ, θ, 0)gJ

λ1λ2

The spin-density matrix ρJ
ΛΛ′ is defined as

ρh =
∑

ΛΛ′

|JΛ〉ρJ
ΛΛ′〈JΛ′|

The term gJ
λ1λ2

is defined as

gJ
λ1λ2

∼
∫

dwK(w)
∣

∣

∣F J
λ1λ2

∣

∣

∣

2
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The term K(w) incorporates all the energy dependant functions for this reaction.

K(w) ∼ f`(p)∆J(w)ga

f`(p) is the Blatt-Weisskopf centrifugal-barrier factor [?] and suppresses higher `’s.

∆J(w) is the Breit-Wigner form for the w dependence of the decaying state

[?].

∆J(w) =
w0Γ0

w2
0 − w2 − iw0ΓJ(w)

ΓJ(w) ∝ q2J+1

w

ga is a coupling term for this decay. In this procedure, this is rolled into the

production amplitude as part of the fit procedure.

If one of the decay particles, s1 or s2, decays, it’s decay amplitude can be

calculated and the entire process becomes the products of these two amplitudes.

J PM
Ω

π

∆,Ν ∗

p

γ
π

p

Ω1

Figure 5.3: Formation of JP and subsequent decay to ∆ or N ∗ and it’s

decay to pπ.

It may be helpful to look at an example. Let’s look at the intensity for the

process shown in Fig. 5.3. Let the spin of the ∆ or N ∗ be labeled as s. The helicities

of the photon, initial proton and final state proton I label λγ, λi, and λf respectively.

Also note that M for the intermediate process is the same as its helicity, which I

label Λ. The intensity for this process may be written as follows [?]:

I(Ω,Ω1) =
(

2J + 1

4π

)(

2s+ 1

4π

)

∑

ΛΛ′λλ′λ1

ρJ
ΛΛ′gJ

λλ′gs
λ1
DJ

Λλ(Ω)DJ∗
Λ′λ′(Ω)Ds

λλ1
(Ω1)D

s∗
λ′λ1

(Ω1)
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Where we can write Λ = λγ − λi.

The intensity can be represented as the sum of 8 non-interfering terms which

are indexed by the initial and final helicities, as are the decay amplitudes.

By applying parity at both the photon-proton vertex and the decay side, we

are able to show that the production amplitudes need only be indexed by |M |(|Λ|).
Parity is conserved in this interaction. Applying parity to the vertex takes λγ to

−λγ and λi to −λi. The amplitudes for these two processes must be the same.

VΛ = Vλγ−λi

= V−λγ− −λi

= V−Λ

I can apply parity to the decay side as well. The amplitude associated with λf will

be the same as the amplitude associated with −λf .

Table 5.1 shows how the different helicities index the production and decay

amplitudes. There are eight combinations of the helicities. These index both the

non-interfering terms which comprise our intensity and the decay amplitudes. Ac-

tually, for ease’s sake, the decay amplitudes are indexed by M , instead of λγ and λi,

but this is the same thing. The production amplitudes are indexed by |M |. This

means every one production amplitude is associated with four decay amplitudes.
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ψ

λγ λi λf M V

+1 +1
2

+1
2

+1
2

V1/2

+1 +1
2

−1
2

+1
2

V1/2

+1 −1
2

+1
2

+3
2

V3/2

+1 −1
2

−1
2

+3
2

V3/2

-1 +1
2

+1
2

−3
2

V3/2

-1 +1
2

−1
2

−3
2

V3/2

-1 −1
2

+1
2

−1
2

V1/2

-1 −1
2

−1
2

−1
2

V1/2

Table 5.1: Table representing the appropriate helicities for this reaction,

the M of the intermediate process, and the constraints on the

production amplitudes.

5.1.2.1 Waves

There were four decay paths we allowed for these states: ∆π, pρ, pσ and

N∗(1440)π. We were motivated by previous experimental evidence for the preferred

decay modes of these resonances.

Only certain L’s are allowed, based on the spin and parity of the initial quan-

tum numbers and those of the decay products. At most there are two allowed L’s

for a given state and decay path.

For decays involving pρ the spins of the two can be aligned in a 1
2

state or 3
2

state with particular ` associated with each.

Because the coupling of the intermediate state and the isobar-bachelor state is

wrapped up in the production amplitude, we are actually looking to fit an amplitude

that involves the photo production of some JP state in some M state and it’s

subsequent decay to some isobar-bachelor system.
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Decay amplitudes may be labeled in the following way:

3

2

−

(M = +
3

2
) → ∆++π−(` = 0, λf = +

1

2
)

1

2

−

(M = −1

2
) → pρ(s =

1

2
, ` = 0, λf = −1

2
)

and production amplitudes may be labeled as:

3

2

−

(M =
3

2
) → ∆++π−(` = 0)

1

2

−

(M =
1

2
) → pρ(s =

1

2
, ` = 0)

5.2 Unbinned extended maximum likelihood method

Given some n number of events where the probability of measuring each ith

event is given by Pi, then the probability of measuring the entire data set is simply

the product of all the individual probabilities.

Pdata set = P1 · P2 · P3 · · · ¶n

This is the basis of the maximum likelihood method. If Pi is some function

with some parameter that can be fit, we can vary this parameter until we reach the

maximum probability of measuring this data set.

The intensity is interpreted as a probability density and so we use this to

construct a likelihood function [?]. The intensity is calculated by summing over all

waves, α. τ represents the kinematics of the events.

I =
∑

αα′

VαV
∗

α′ψα(τ)ψ∗

α′(τ)

We also need to consider that our detector has a finite acceptance, η(τ). The

likelihood function can now be written as:

L ∝
[

n̄n

n!
e−n̄

] n
∏

i

I(τi)
∫

I(τ)η(τ)dτ
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The first term in the brackets is the Poisson probability for measuring n events.

The expectation value, n̄, is given by [?]:

n̄ =
∫

I(τ)η(τ)dτ

This allows us to simplify the likelihood function:

L =
n̄n

n!
e−n̄

n
∏

i

I(τi)

n̄n

=
1

n!
e−n̄

n
∏

i

I(τi)

lnL = − lnn! − n̄−
n
∑

i

I(τi)

= − lnn! −
∫

I(τ)η(τ)dτ +
n
∑

i

I(τi)

We have taken the log of the likelihood function as the sum of the log of the terms

is much easier to deal with than the product of the terms. For purposes of the fit

we will minimize the negative of the log likelihood function. Dropping the terms

that are not dependant on the production amplitudes we are left with the following

equation to minimize:

− lnL = −
n
∑

i

I(τi) +
∫

I(τ)η(τ)dτ

I want to be able to numerically calculate my normalization integral. I can

do this by using Monte Carlo data. Here I write out the expression using the raw

Monte Carlo.

∫

I(τ)η(τ)dτ ⇒ 1

NRMC

RMC
∑

i

I(τi)η(τi)

The η(τi) is our acceptance and can be thought of as a 1 or 0 depending on

the acceptance for that region of phase space. So change the sum so that it runs

over the accepted Monte Carlo, instead of the raw events.
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∫

I(τ)η(τ)dτ ⇒ 1

NAMC

AMC
∑

i

I(τi)

1

NAMC

AMC
∑

i

I(τi) =
1

NAMC

∑

i

∑

αα′

VαV
∗

α′Ψα(τi)Ψ
∗

α′(τi)

=
∑

αα′

VαV
∗

α′

[

1

NAMC

∑

i

Ψα(τi)Ψ
∗

α′(τi)

]

The quantity in brackets is summed over the accepted Monte Carlo events and

need only be calculated once for all the fits. The final likelihood function is then

lnL =
n
∑

i

ln

[

∑

αα′

VαV
∗

α′ψα(τi)ψ
∗

α′(τi)

]

− n
∑

αα′

VαV
∗

α′

[

1

NAMC

∑

i

Ψα(τi)Ψ
∗

α′(τi)

]

Where we have introduced a factor of n to the normalization integral to account

for the an absolute normalization for the parameters, V ’s [?].

We perform the fits independently in W bins, the mass of the JP state. By

looking at how the intensity of waves changes from bin to bin, we can identify

resonance behavior.

5.3 Isospin basis

It may be possible to use isospin conservation to extract information from the

fit results, either at fit time, or in the mass-dependant analysis. When we write out

our waves in terms of the JP of the state, there is no isospin information. That is,

we do not know if the state is an N ∗(I = 1
2
) or a ∆(I = 3

2
). Because the charge of

our final state is +1 we know that it is Iz = 1
2
.

These two isospins have different branching ratios to ∆++π− and ∆0π+ sim-

ply on the basis of isospin conservation. Using Clebsch-Gordon coefficients I can

calculate these ratios. Reminding ourselves that ∆++ and ∆0 are the +3
2

and −1
2

projections of an I = 3
2

state, the π+ and π− are the +1 and −1 projections of an

I = 1 state, and the proton is the + 1
2

projection of an I = 1
2

state.
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First for I = 1
2

going to ∆++π−:

〈j1j2m1m2|JM〉

〈3
2
1
3

2
− 1|3

2
1
1

2

1

2
〉 =

√

1

2

And for ∆0π+.

〈3
2
1 − 1

2
1|3

2
1
1

2

1

2
〉 =

√

1

6

We still need to take into account the decay of the Delta’s:

∆++ → pπ+

〈1
2
1
1

2
1|1

2
1
3

2

3

2
〉 =

√
1

∆0 → pπ−

〈1
2
1
1

2
− 1|1

2
1
3

2
− 1

2
〉 =

√

1

3

|1
2

1
2
〉 → ∆0π+ → pπ + π−

|1
2

1
2
〉 → ∆++π− → pπ + π− =

√

1
6
×
√

1
3

√

1
2
×
√

1

=

√

1

9

I follow the same procedure for the I = 3
2

state and I get:

|3
2

1
2
〉 → ∆0π+ → pπ + π−

|3
2

1
2
〉 → ∆++π− → pπ + π− =

−
√

8
15

×
√

1
3

√

2
5
×
√

1

= −
√

4

9

Note that these are the ratios for the amplitudes. I can use this information

now in one of two ways.

I can rewrite my amplitudes involving a ∆π intermediate state in an isospin

basis. I can take the amplitudes already generated and linearly combine them using
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the above ratios.

I also have the option of using the above as a guide to interpret the intensities.

By squaring the above I get the ration for the observed intensities. Using the ratio of

a JP state decaying to each of the charged ∆π states should give me a handle on the

isospin of that state. Interferences may make eyeballing the data a risky proposition.

Interferences may affect the charge states differently and so this procedure would

best be used when a full mass-dependant analysis is performed.

5.4 Non-resonant background terms

5.4.1 Contact term

The Born contact term can be represented as an isospin combination of the

charged ∆π states [?]. Specifically, the ratio is almost the same as the N ∗’s except

that it is negative, − 1
9
.

The difficulty is that because we have only two charged states, when we move

to the isospin basis we pick up an ambiguity when we have three states: I = 1
2
, I = 3

2

and the contact term. Some fits were tried with in the isospin basis where we chose

to leave out one of the isospin combinations when we included the contact term.

5.4.2 t-channel contributions

ρ,σγ

p p

π

π

γ

p
p∆,Ν ∗

π

π

Figure 5.4: Representation of the amplitudes for t-channel production of

the ρ, σ or π.

Threshold for the ρ production at the mass of the ρ is about W = 1.7 GeV/c2.

This process can occur not only through the s-channel creation and subsequent

decay of some resonance, but also through a t-channel process where some virtual

process is created. This has the effect of pushing the ρ in the forward direction.
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Of course, the ρ is not the only particle that could be created through this

process in our reaction. A σ could also be produced. We could also have π produc-

tion where an N ∗ or ∆ is left on the bottom resonance. Call whatever is produced

on the top vertex, X. The amplitudes are represented in Fig. 5.4

We generated amplitudes for these processes and used them in the fit the same

way we would any of the other waves. Because this is a different basis, we have

the issue that we may be introducing mathematical ambiguities to the likelihood

function. The hope is that the t-channel processes could only be mocked up by a

large number of s-channel terms, and so by including the dominant s-channel waves

and a minimum number of t-channel waves we would avoid any practical ambiguities.

We calculated these terms in two different ways.

In our first set of fits we generated an amplitude that was the product of two

terms: an exponential, containing the t slope (t = (Pγ−PX)2) and the Breit-Wigner

amplitude.

ψt = e−
β

2
t∆X(p)

This procedure was only used for ρ production. When we tried this procedure,

we did not let it interfere with the other terms and the one decay amplitude was

associated with one production amplitude.

The next step was to include a term for the angular distribution for the decay

of the ρ or ∆ or any isobar we used.

ψt = e−
β
2

t∆X(p)FI(Ω)

For different fits we would allow this to interfere in a variety of ways. Because

the helicity of the isobar need not be tied to the initial helicity states the number of

production amplitudes can quickly grow large. For most fits, we would truncate the

number of terms by appealing to some physics justifications or in some arbitrary

attempt to identify a stable fit. The results of these fits will be discussed in later

chapters.
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5.5 Mechanics of the fits

5.5.1 Computer tools

The code used for the bulk of the fitting procedure was written by John Cum-

mings and Dennis Weygand [?] and the procedure is detailed in the references.

One change was made to the actual fitting routine. Instead of the original fit

routine, I wrote a program I called fastfit. This routine is less general than the

old code, but runs much faster. The core of the code is the same though in that the

minimization is still performed by the CERN software, MINUIT [?]. The code was

extensively checked to make sure it gives the same results as the original software.

5.5.2 Tracking fits

The code was set up so that we can easily do tracking fits. We perform the

fits in W bins. The default procedure is to use random initial starting values for

the complex fit parameters. However, if we so choose we can use the final values

from a neighboring bin. The idea being that the physics has changed only slightly

from bin to bin and so we may already be near a minima if we use the values from a

nearby bin. We are then able to choose some starting bin and track out from there.

We state when the results shown are from one of these fits.

5.5.3 Results

5.5.3.1 Weighting the Monte Carlo data

I can use the results of the fit to generate a weight for the accepted Monte

Carlo data. In this way I compare some kinematic variable with CLAS data to get

an idea of how good the fit describes the physics.

Fig. 5.5 shows the proton’s cos(θ) in the center of mass for 3 different sets of

data. The first is just the data out of the CLAS. The error bars are just statistics.

The next plot shows the phase space Monte Carlo after it has been run through

the simulation routine, showing the effect of the CLAS acceptance. The last plot

is the accepted Monte Carlo weighted by the results of the fit. If the fit is a good

description of our physics, this plot should agree with the first one. In later chapters

I will overlay these on one another to see the agreements or discrepancies. The error
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bars on the weighted plot are also statistics.
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Figure 5.5: The first plot shows the proton’s cos(θ) in the center of mass

for data for a bin around W = 1.70 GeV/c2. The next plot

shows the same quantity for the accepted phase space Monte

Carlo. The last plot shows the same quantity for the accepted

Monte Carlo weighted by the fit.

Fig. 5.6 shows the same quantities but for raw Monte Carlo. The first shows

the flat distribution we expect. The next plot shows the raw Monte Carlo weighted

by the results of the fit. This is what we refer to as the acceptance corrected

distribution. In effect, this is what the fit is saying the physics looked like before it

saw the detector. This is what we will provide to others in the community so that

they may compare theoretical predictions with these results.
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Figure 5.6: The first plot shows the proton’s cos(θ) in the center of mass

for raw Monte Carlo. The next plot shows the same quantity

weighted by the results of the fit. This is the acceptance

corrected distribution for this quantity.
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5.5.3.2 Calculating a cross section

To calculate a cross section I need to know how many events went into my

detector, and so I must correct the detected number of events for the acceptance of

the CLAS.

If CLAS was a perfect 4π detector and the physics was a purely flat distribu-

tion, I could just use the raw and accepted number of Monte Carlo events to get

the number of events in a bin.

N = Nmeas
NRMC

NAMC

But because we have physics and not flat phase space, this does not work. The

fit results allow us to calculate the true number of events [?].

N = Nmeas
NRMC

NAMC

∑

αα′

VαV
∗

α′

[

1

NRMC

∑

i

Ψα(τi)Ψ
∗

α′(τi)

]

where the normalization integral is over the raw Monte Carlo events. With

the acceptance corrected yield in hand, I can now calculate a cross section [?].

Nevents

second
= σ

Nflux

second

F
= σ × Luminosity

• F ≡ target constant

– [F ] = barns

– 1 barn = 10−24cm2

– F = A
NAρ`

∗ A ≡ atomic weight

∗ NA ≡ Avogadro’s number

∗ ρ ≡ density

∗ ` ≡ length of target

• For the g1c liquid hydrogen target, these numbers are:

– A = 1
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– NA = 6.022 × 1023 particles per gram

– ρ = 0.071 grams cm−3

– ` = 18 cm

• F = 1.3 × 10−24 cm−2

• F = 1.3 barns

σ = F × Nevents

Nflux

= 1.3 × Nevents

Nflux

5.5.4 The problem of local minima

Because we have finite statistics and finite computing time, there is no way

for the fit to know if it has converged to a local minimum or global minimum. We

conducted some studies to see how often we at least found the best minimum we

could reasonably expect.

Fig. 5.7 shows the results of one of these studies. We ran this fit 21 times

and plot the negative log likelihood function. Half of the time the fit finds the best

minimum, or at least the best minimum out of these trials. Regardless of which

minimum it converges to, we see that the acceptance corrected yield comes out

roughly the same. There is some scatter however in the strengths of the individual

waves.
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Figure 5.7: We ran this fit 22 times in one bin. The plot in the upper left

shows the distribution of the negative log likelihood function.

We want to minimize this value so the points lower on the x-

axis represent a better fit. The plot in the upper right shows

the acceptance corrected yield calculated from each of these

fits. The lower two plots show the yield from each of two

individual waves.

Fig. 5.8 shows the results where we are only finding the best minimum less

than 25% of the time. It is also possible that there is a better minimum which we

have not seen yet. Because of these studies, the results that we show are either the

best fits out of multiple trials or tracking fits.
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Figure 5.8: We ran this fit 21 times in one bin. The plot in the upper left

shows the distribution of the negative log likelihood function.

We want to minimize this value so the points lower on the x-

axis represent a better fit. The plot in the upper right shows

the acceptance corrected yield calculated from each of these

fits. The lower two plots show the yield from each of two

individual waves.



CHAPTER 6

Results of PWA fits

6.1 Choices of fitting parameters

Over the course of this study, close to 200 fits were tried. Not all were tried

over the full mass range. Some were the result of trying to find a minimal wave set

by doing an iterative search of which waves could be added to give the best liklihood

function. Some used physics justifications as a starting point. By this I mean, the

quantum numbers and decay modes of expected resonances were put in the wave

set. Some fits used t-channel waves and allowed them to interfere with the s-channel

waves in different ways.

In this chapter I will focus primarily on six fits. You can think of these fits

having increasing amounts of physics in the wave selection. It was found that if we

put in all allowed quantum numbers for just ∆π and pρ decays, the approximately

100 waves needed rendered the fit results uninterpretable. The intensity distribu-

tions were not smooth and showed no evidence of any real resonance motion, even in

regions where it should be exptected. Most of our focus was then on truncating the

basis so we could still accurately describe the data, calculate a total cross section

and still interpret the individual motion of the waves. To this end we referred to

previous studies for branching ratios [?, ?] and photocouplings [?] to get a feel for

what quantum numbers and isobars we could expect to contribute.

When choosing these waves I focused on resonaces below 1.8 GeV/c2 as a

starting point. There are questions about how to handle the t-channel ρ production,

so we concentrated on this region for a time. This chapter is broken up into sections

covering below and above this energy.

I will refer to these fits as fit 132, 163, 947, 121, 053 and 125, where I have

listed them in what I think of as containing increasing amounts of physics. The

reader will find these names somewhat arbitrary, but these were the numbers that

were used during the course of this analysis and I choose to stick with them for the

sake of consistency.

84
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In the next section I outline these six fits. Note that when I refer to ∆π I am

referring to both charge states, ∆++π− and ∆0π+.

6.1.1 Fit 132

At lowest energies, the leading contribution to the scattering process is a gauge

invariant Born term [?] which results in a ∆π s-wave. The only quantum numbers

which can decay this way is the 3
2

−
. This term can be represented as an isospin

combination of the charge states [?]. The D13(1520), D13(1700) and D33(1700) could

also contribute to these waves. For this simple fit I try a 3
2

−
decaying to ∆π in both

allowed M values.

JP M Isobars # of waves

3
2

− 1
2
, 3

2
(∆π)(`=0) 4

Total # of waves 4

Table 6.1: Fit 132

6.1.2 Fit 163

For this fit I try a limited amount of waves using the aforementioned references

to guide me. The 3
2

−
is motivated by the D13(1520),D13(1700) and D33 and their

respective observations in ∆π and pρ decays. I use the previously measured photon

coupling amplitudes, A1/2 and A3/2, to try to identify the M value in which I should

observe these decays. I also try to limit myself to particular `’s or s’s. It should be

noted that the D13(1700) prefers to decay to a ∆π in a D wave while the D13(1700)

prefers to decay to ∆π in a S wave.

Note that while the threshold for the producing pρ at the ρ peak is W = 1.7

GeV/c2, the ρ has a width around 0.15 Gev/c2. So ρ production could contribute

significantly even at W = 1.6 GeV/c2. In fact, the D13(1520) has a significant

branching ratio to pρ according to the PDG [?].

The 3
2

+
is motivated by the D13(1720) which is reported to couple strongly to

pρ final states and the D33(1600) which has a stronger branching ratio to ∆π.

The 5
2

+
is motivated by the F13(1680) and it’s dominant A3/2 amplitude.
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It is interesting to note that this is motivated by only a handful of resonance

and yet we already have 19 waves which means 37 (2n− 1) parameters for our fit.

JP M Isobars # of waves

3
2

− 1
2
, 3

2
(∆π)(`=0,2) 8

1
2

(pρ)(s=3/2);`=0,2) 2

3
2

(pρ)(s=3/2);`=2) 1

3
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
(pρ)(s=1/2);`=1) 2

5
2

+ 3
2

(∆π)(`=1) 2

Total # of waves 19

Table 6.2: Fit 163

The values I show for this fit are the best liklihood of 10 fits which used random

starting values.

6.1.3 Fit 947

For fit 947 less care was taken in choosing the waves based on the photocoupling

in order to open up more possibilities. The motivations for the 3
2

−
, 3

2

+
and 5

2

+
waves

have been discussed in the previous fit. We also add 1
2

−
(S11(1535), S11(1650)

S31(1620)), 1
2

+
(P11(1440), P11(1710)) and 5

2

−
(D15(1675)).

Note that I am also allowing certain waves to decay to pσ or N ∗(1440)π+.
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JP M Isobars # of waves

1
2

+ 1
2

∆π 2

1
2

− 1
2

∆π 2

1
2

(pρ)(s=1/2;`=0) 1

3
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
(pρ)(s=1/2;`=1) 2

1
2
, 3

2
(pρ)(s=3/2;`=1,3) 4

1
2
, 3

2
N?(1440)π 2

3
2

− 1
2
, 3

2
(∆π)(`=0,2) 8

5
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
pσ 2

5
2

− 1
2
, 3

2
(∆π)(`=2) 4

Total # of waves 35

Table 6.3: Fit 947

The values I show for this fit are the best liklihood of 10 fits which used random

starting values.

6.1.4 Fit 121

When I was putting together the fit 947, I made a mistake and neglected the

coupling of the 3
2

−
to pρ final states. For fit 121 I put these back into the wave set.
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JP M Isobars # of waves

1
2

+ 1
2

∆π 2

1
2

− 1
2

∆π 2

1
2

(pρ)(s=1/2;`=0) 1

3
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
(pρ)(s=1/2;`=1) 2

1
2
, 3

2
(pρ)(s=3/2;`=1,3) 4

1
2
, 3

2
N?(1440)π 2

3
2

− 1
2
, 3

2
(∆π)(`=0,2) 8

1
2
, 3

2
(pρ)(s=3/2;`=0,2) 4

5
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
pσ 2

5
2

− 1
2
, 3

2
(∆π)(`=2) 4

Total # of waves 39

Table 6.4: Fit 121

This is a tracking fit where I tracked outward from about 1.6 GeV/c2. The

starting point was the best liklihood of 20 fits.

6.1.5 Fit 053

This fit was modeled on fit 947 so it is missing the 3
2

− → pρ waves. However,

this is the first fit we tried with t-channel ρ production. To the waves from fit 947

we added one non-interfering ρ wave. We modeled it with an exponential slope of

β = 6.0 and a Breit-Wigner for the ρ, but we did not include the angular decay of

the ρ. This was the starting point for our t-channel studies.
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JP M Isobars # of waves

1
2

+ 1
2

∆π 2

1
2

− 1
2

∆π 2

1
2

(pρ)(s=1/2) 1

3
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
(pρ)(s=1/2) 2

1
2
, 3

2
(pρ)(s=3/2;`=1,3) 4

1
2
, 3

2
N?(1440)π 2

3
2

− 1
2
, 3

2
(∆π)(`=0,2) 8

5
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
pσ 2

5
2

− 1
2
, 3

2
(∆π)(`=2) 4

t-channel ρ, no Ω decay, no interfere 1

Total # of waves 36

Table 6.5: Fit 053.

This is a tracking fit where I tracked outward from about 1.6 GeV/c2. The

starting point was the best liklihood of 20 fits.

6.1.6 Fit 125

In this fit I added 4 t-channel waves and allowed them to interfere in a con-

strained way. I only allow the ρ to have helicity of ±1, like the incoming photon.

But I allow for helicity flip. That is, a photon with λ = +1 may wind up as a ρ

in either λ = ±1. I have a different production amplitude however for the different

helicities of the incoming proton.

The decay amplitudes are only indexed by the helicity of the ρ (± 1) as the

proton is just a spectator in this reaction. This gives us two decay amplitudes which

appear in all eight non-interfering terms in the intensity calculation. Once we apply

parity contraints to the system the production amplitudes are indexed by the helicity
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of the photon and the absolute value of the M of the resonances. While there is no

real resonance information in this wave, the M tells us which s-channel terms they

interfere with. So there are two production amplitudes in each of the non-interfering

terms in the intensity calculation and each of these production amplitudes appears

twice.

In an effort to limit the number of waves in the fit and keep in manageable I

removed a few isobars from the 3
2

+
waves. The N∗ term had yielded negligible results

in earlier fits and upon closer study of the literature, some of the s` combinations

for the pρ waves seemed extraneous.

JP M Isobars # of waves

1
2

+ 1
2

∆π 2

1
2

− 1
2

∆π 2

1
2

(pρ)(s=1/2;`=0) 1

3
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
(pρ)(s=1/2;`=1) 2

3
2

− 1
2
, 3

2
(∆π)(`=0,2) 8

1
2
, 3

2
(pρ)(s=3/2;`=0,2) 4

5
2

+ 1
2
, 3

2
(∆π)(`=1) 4

1
2
, 3

2
pσ 2

5
2

− 1
2
, 3

2
(∆π)(`=2) 4

t-channel ρ 1
2
, 3

2
λρ = 1

2
, 1

2
4

Total # of waves 37

Table 6.6: Fit 125

This is a tracking fit where I tracked outward from about 1.85 GeV/c2. The

starting point was the best liklihood of 20 fits.
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6.2 Total cross section

The reaction γp→ pπ+π− has been studied in other experiments. In 1968, the

ABBHHM collaboration used an 85 cm bubble chamber and a photon beam with

energies up to 5.8 GeV [?]. In 1966, the Cambridge Bubble Chamber Group used a

12 inch hydrogen chamber with a photon beam with energies up to 6.0 GeV [?, ?].

Both of these experiments had excellent acceptance but not a lot of events. The

CBC group analyzed 3900 events with a photon energy from 0.5-2.5 GeV, the same

energy range I am analyzing. The ABBHHM collaboration analyzed 16533 events

over this same energy range. In 1994, the DAPHNE detector at Mainz was used to

to make measurements of this reaction, but only for photon energies from 0.4-0.8

GeV (W = 1.34 − 1.54 Gev/c2).

Each of these three experiments was able to calculate a total cross section

which I show in Fig. 6.1.

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

0

20

40

60

80

100

120
ABBHHM (1968)

CEA (1967)

2W GeV/c
1.3 1.35 1.4 1.45 1.5 1.55 1.6

 b
)

µ
 (σ

0

20

40

60

80

100

120
ABBHHM (1968)

CEA (1967)

Mainz,DAPHNE (1994)

2W GeV/c
1.3 1.35 1.4 1.45 1.5 1.55 1.6

 b
)

µ
 (σ

0

20

40

60

80

100

120
ABBHHM (1968)

CEA (1967)

Mainz,DAPHNE (1994)

Figure 6.1: Total cross section for γp→ pπ+π− as measured by three dif-

ferent experiments: ABBHHM, CBC amd DAPHNE. Note

the scale on the x-axis has changed in the plot on the right to

show the improved resolution of the DAPHNE experiment.

The results of our fits allow us to acceptance correct our data and calculate a

total cross section. Comparing our results to other experiments will give us a refer-

ence point for our fits. We have better statistics and resolution that the ABBHHM

or CBC experiments and a greater range of energy than the more recent DAPHNE

measurement, so we should be able to improve on these results.
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6.3 W < 1.8 GeV/c2

In Chapter 5, we have discussed how we can weight the events in our accepted

Monte Carlo and compare this to the CLAS data and use this as a diagnostic of

how well the fit is describing the physics.

For the six fits I will show the comparison for four kinematic variables: the

invariant mass of the pπ− and π+π− systems, the π− cos(θ) in the center-of-mass,

and the π+ cos(θ) in the ∆++ helicity frame. I could show others, but I focus on

these four as they are sensitive to the fits. I will show these for two different W -bins

at 1.46 and 1.69 GeV/c2.

As a reference, Fig. 6.2 shows the schematic of which plots are from which fit.

They can be thought of in increasing physics as you go down.
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Fit 132 Fit 132 Fit 132 Fit 132

Fit 163 Fit 163 Fit 163 Fit 163

Fit 947 Fit 947 Fit 947 Fit 947

Fit 121 Fit 121 Fit 121 Fit 121

Fit 053 Fit 053 Fit 053 Fit 053

Fit 125 Fit 125 Fit 125 Fit 125

Figure 6.2: Schematic of how the plots are laid out for which fit in the

following pages.
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6.3.1 W ≈ 1.47 GeV/c2
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Figure 6.3: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the dot-

ted blue line is the accepted Monte Carlo data weighted by

the fit results. W ≈ 1.47 GeV/c2
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In Fig. 6.3 we see that even fit 132, with very few waves, does a reasonable job

fitting the data. However, the fit results differ very little from accepted phase space.

In this lower energy region we are dominated by the acceptance of the detector and

if we refer to the ????? plots of the Data chapter, we remind ourselves that we have

heavily cut into the availible phase space for this reaction by requiring all three

particles. It still misses noticibly in the π− angle around cos(θ) = −0.2 and in the

helicity angle. But by the next fit, 163, the agreement is excellent and does not vary

with increasing wave set.

One thing to point out is the consistent disagreement in the π− cos(θ) angle

at cos(θ) = 0.0. The center-of-mass angle maps directly onto cos(θ) in the lab frame

and because this disagreement is so consistent from fit to fit it is likely the result

of incorrect modeling in the gsim simulation. Perhaps an inefficient wire region or

inefficient TOF paddle that was not perfectly modeled.
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6.3.2 W ≈ 1.69 GeV/c2
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Figure 6.4: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the dot-

ted blue line is the accepted Monte Carlo data weighted by

the fit results. W ≈ 1.69 GeV/c2
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In this region the difference between our data and the flat Monte Carlo is

bigger. Fit 132 does not do a good job at all and even fit 163 has a difficult time

getting the π+π− mass and both angles correct. All the fits have a discrepancy in

the helicity angle at cos(θ) > 0.5.

6.3.3 Total cross section calculations

As a reference I acceptance correct my data using a flat correction and calculate

the cross section. The correction is performed in each W bin by integrating over all

variables and just getting a correction factor from the number of accepted Monte

Carlo events divided by the number of raw Monte Carlo events. This cross section is

shown in Fig. 6.5. The cross section is lower than previous measurements atW < 1.5

GeV/c2. and W > 1.7 GeV/c2. But reasonably close for a simple correction.

Fig. 6.6 has more physics, but the agreement actually gets worse for these fits.

Fig. 6.7 shows the fits with >30 waves and the agreement seems to be good.

Perhaps still low below W < 1.5 GeV/c2, but within error bars.
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Figure 6.5: Total cross section. This PWA fit contains only a flat phase

space correction.
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Figure 6.6: Total cross section. These fits (132 and 163) contain 4 and 16

waves respectively and are considered to only have a minimal

amount of physics in them.
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Figure 6.7: Total cross section. These fits all contain >30 waves.

In an effort to understand how a flat acceptance correction is better than a fit

with 31 parameters I take a look at the raw Monte Carlo weighted by the fits for

the same kinematic variables, fits and W -bins that I did for the data. These plots

are the physics that the fit has found for these bins: the acceptance corrected data.
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Looking at the lower bin in Fig. 6.8 I see that for fit 132, it has started pushing

the π− forward and backward slightly in the C.M. frame. In fit 163 this is even more

pronounced but it has also depleted the region around cos(θ) = 0.0. Our interpre-

tation is that the flat acceptance correction just happened to over estimate in some

regions of the detector and underestimate others to get the correct cross section. For

this bin and the higher bin shown in Fig. 6.9 the acceptance corrected data seems to

approach a stable distribution as we add more parameters. This is important as one

goal of this analysis is to be able to provide acceptance corrected distributions to

the physics community. While we may not always be able to interpret the individual

waves, it is good that we have demonstrated that the different fits converge to a

common acceptance correction.
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Figure 6.8: Raw MC. Comparison of kinematic variables for different fits.

The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 1.47

GeV/c2
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Figure 6.9: Raw MC. Comparison of kinematic variables for different fits.

The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 1.69

GeV/c2
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6.3.4 Individual waves

The results of the fits allow us to calculate the intensity distributions for

individual waves or sum over any combination of these waves. For example, Fig. 6.10

shows the contributions of the individual waves for fit 132. Here I have plotted them

all on the same scale. The strongest wave in the lowest W is the ∆++π− (M = 3
2
)

wave. In later fits we we will see that this is always the case and is consistent with

the dominance of the Born contact term.
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Figure 6.10: Cross section for indiviual waves from fit 132.

In the following sections I will show some individual waves for the 3
2

−
, 3

2

+
and

5
2

+
quantum numbers and offer interpretations of the intensity distributions. For

most of the waves I will focus on four fits: 947, 121, 053, 125. These fits all had

>30 waves giving the fits significant freedom to describe the data. When applicable,

I show a wave from fit 163, where there were much fewer waves, but a smoother

motion.

To orient ourselves Fig. 6.11 shows how the waves will be consistently displayed

in the following figures. Note that the labels for each wave start with some number:

1), 2), 11), etc. These were the numbers of the wave in that particular fit. Because
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there were different numbers of waves, these numbers may not be consistent. The

scales may also be different within a group of plots.

Fit 947 Fit 121

Fit 053 Fit 125

Figure 6.11: Schematic of how the plots are laid out for which fit in the

following pages.

6.3.4.1 3
2

−

The motivation for including the 3
2

−
terms are the Born contact term at lower

W , the D13(1520), the D13(1700) and the D33(1700). Fig. 6.12 shows the 3
2

−
decaying

to a ∆++π− in an s-waves for the four fits we will focus on. Fig. 6.13 shows the

same wave from fit 163. All fits seem to be consistent with each other for lower

W . This term dominates the cross section in this region and the fact that it shows

up primarily in ∆++π− as opposed to ∆0π+ is consistent with predictions [?]. I

have been unable to find any predictions about the strength of A1/2 or A3/2. We

consistenly see this dominance in our M = 3
2

term.
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Figure 6.12: 3
2

−
waves. The strength in the lower W bins can be inter-

preted as the Born contact term.
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Figure 6.13: Fit 163. 3
2

−
waves. The strength in the lower W bins can be

interpreted as the Born contact term.

Figs. 6.14- 6.16 show the 3
2

−
∆π S-waves in the two M states. The ∆++π−

waves in Fig. 6.14 show an enhancement between 1.6 and 1.7 GeV/c2. The ∆0pi+

waves in Figs. 6.15- 6.16 exhibit an enhancement between 1.5 and 1.6 GeV/c2. These

can be interpreted as the D13(1700) or D33(1700) and the D13(1520) respectively.

The PDG [?] states that previous experiments have constrained the Breit-Wigner
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mass for the D13(1700) between 1.65 and 1.75 GeV/c2 and the D33(1700) between

1.67 and 1.77 GeV/c2, with the pole positions lying 20-40 MeV lower for each.

While at first glance these observations may appear to inconsitent with previous

experiments, the differences could be due to interference effects between overlapping

states. It should also be noted that the D13(1700) is narrower at 100 MeV/c2 than

the wider D33(1700) at 200 MeV/c2. The D33(1700) has also been found to have a

higher photocoupling [?].
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Figure 6.14: 3
2

−
∆π S-waves.
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Figure 6.15: 3
2

−
∆π S-waves.
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Figure 6.16: 3
2

−
∆π S-waves.
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Figs. 6.17- 6.20 show the D-waves. The observed motion is different from the

S-waves, but is qualitatively consistent.
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Figure 6.17: 3
2

−
∆π D-waves.
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Figure 6.18: 3
2

−
∆π D-waves.
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Figure 6.19: 3
2

−
∆π D-waves.
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Figure 6.20: 3
2

−
∆π D-waves.

Figs. 6.21- 6.22 show the pρ decays that I allowed in fits 121 and 125. Note

that I have maintained the layout for consistency. Fits 947 and 053 did not have

these waves in them. Again we see enhancement around 1.7 GeV/c2. Both the

states here have been shown to couple to pρ final states. The D13(1520) has been

observed as well in pρ but we do not see evidence here.
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Figure 6.21: 3
2

−
pρ waves.
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Figure 6.22: 3
2

−
pρ waves.
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Fig. 6.23 show the previous two waves from fit 163, the smaller fit. The

pronounced enhancement at 1.7 GeV/c2. is consistent with the four other fits.
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Figure 6.23: Fit 163. 3
2

−
pρ waves.

In Figs. 6.24- 6.28 I have summed the 3
2

−
waves over various subsets.

In Fig. 6.24 the Born contact term dominates the lower W in the ∆++π−

waves, the effects of a resonance can be clearly seen above 1.6 GeV/c2.

In Fig. 6.25 the ∆0π+ waves more clearly show evidence of the D13(1520) and

perhaps something at 1.7 GeV/c2.
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Figure 6.24: 3
2

−
summed over all ∆++π− waves.
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Figure 6.25: 3
2

−
summed over all ∆0π+ waves.
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Figure 6.26: 3
2

−
summed over all ∆π waves.

After summing over the pρ terms Fig. 6.27 shows the peak at 1.7 GeV/c2 and

perhaps evidence of the D13(1520).
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Figure 6.27: 3
2

−
summed over all pρ waves.
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Figure 6.28: 3
2

−
summed over all waves.
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It is a good test of the fit that when we sum over the waves the different fits

remain consistent with one another.

6.3.4.2 3
2

+

The 3
2

+
waves are motivated by the P33(1600) and the P13(1720). The ∆++π−

waves in Fig. 6.29 and the pρ waves in Fig. 6.30 both show a strong enhancement

at 1.6 GeV/c2.
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Figure 6.29: 3
2

+
∆π P -waves.
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Figure 6.30: 3
2

+
pρ waves.

The other spin-alignments of the pρ waves, Figs 6.31- 6.34, show more evidence

of the P13(1720). Other analysis [?] show this state coupling almost entirely to the

pρ final state. They determined the pρ spin-alignment to be 1
2
. While we see this

state in s = 3
2

as well, the strongest wave seems to be our s = 1
2

wave as well.

Recent observations in ep scattering at Jefferson Lab have posited a new N ∗

at 1.720 GeV/c2 ??. This is based on the fact that in order to fit the cross section,

they require a state at ≈ 1.7 GeV/c2 which couples more strongly to ∆π final states

than the reported values for the P13(1720). We see no evidence for this coupling.

This is not entirely inconsistent with these new observations as we use a real photon

beam and they have a virtual photon from the electron scattering.
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Figure 6.31: 3
2

+
pρ waves.
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Figure 6.32: 3
2

+
pρ waves.
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Figure 6.33: 3
2

+
pρ waves.
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Figure 6.34: 3
2

+
pρ waves.
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In Figs. 6.35- 6.37 I sum over the charged states for ∆π and then all of the ∆π

waves. We see evidence for the D33(1600). Previous measurements have measured

the width between 200-400 MeV/c2 which is not inconsistent with our observation.

We see no obvious evidence for a state at 1.7 GeV/c2. It is possible that this

state destructively interferes with the D33(1600) and so is not immediately visible

in this stage of the analysis. A mass-dependant analysis of this data is necessary to

determine this.

The structure in the ∆0π− below 1.5 GeV/c2 appears to be anomolous as it

does not consistently appear in all four fits.
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Figure 6.35: 3
2

+
summed over ∆++π− waves.
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Figure 6.36: 3
2

+
summed over ∆0π+ waves.
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Figure 6.37: 3
2

+
summed over ∆π waves.
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Fig. 6.38 shows the intensity summed over all pρ waves. The top two fits

(947 and 121) do not have any t-channel ρ production and so any evidence of this

process is rolled into the s-channel waves. The bottom two fits (053 and 125) do

have t-channel ρ waves and show the show the 1.7 GeV/c2 more clearly.
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Figure 6.38: 3
2

+
summed over pρ waves.
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Figure 6.39: 3
2

+
summed over all waves.

6.3.4.3 5
2

+

The 5
2

+
waves are motivated by the F15(1680). Figs. 6.40, 6.42 show the ∆0π+

waves for the four fits. Fig. 6.41 shows one of the waves that was allowed in fit 163.

All are consistent with a state between 1.6-1.7 GeV/2, though perhaps narrower

than the PDG value of ≈130 MeV [?].
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Figure 6.40: 5
2

+
∆π P -waves.
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Figure 6.41: Fit 163. 5
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+
∆π P -waves.
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Figure 6.42: 5
2

+
∆π P -waves.

In Figs. 6.30- 6.32 I sum over the charged states for ∆π and then all of the ∆π

waves. The F15(1680) is clearly visible in ∆0π+, but not in ∆++π−, possibly due to

interference effects.
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Figure 6.43: 5
2

+
summed over all ∆++π− waves.
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Figure 6.44: 5
2

+
summed over all ∆0π+ waves.
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Figure 6.45: 5
2

+
summed over all ∆π waves.

Some analysis observed the F15(1680) in (σN)D decays and so I include this

wave in the fits and Fig. 6.46 shows the sum over the two allowed M values. Fits

121 and 125 seem to show a bump around 1.67 GeV/c2, while the others do not.

These main difference is that these two fits have 3
2

−
waves going to pρ while the

others do not. It is possible that this freedom allows this F15(1680) decay to show

up.
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Figure 6.46: 5
2

+
summed over all pσ waves.

When we sum over all the waves in Fig. 6.47, the F15(1680) is still visible,

though the shoulder at 1.5 GeV/c2 is not understood.
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Figure 6.47: 5
2

+
summed over all ∆++π− waves.

6.3.5 Unexplained intensities

There were a few waves that showed a consistent enhancement around 1.6

GeV/c2. Two waves in 1
2

+
and one in 1

2

+
. These are shown in Figs 6.48- 6.50.

This could be an indication that we are missing some required waves to explain the

physics in this region, and so strength is put in these waves in an attempt to fit the

data. It is also possible we have too many waves and these waves are destructively

interfering with other unnecessary waves. Further study is required.
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Figure 6.48: 1
2

+
∆π P -waves.
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Figure 6.49: 1
2

+
∆π P -waves.
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Figure 6.50: 5
2

+
∆π P -waves.

6.4 W > 1.8 GeV/2

Here I begin looking at the fit results for W > 1.8 GeV/2. We have learned

that we a large amount of waves to describe the data in this region. I will only focus

on the fits with >30 waves: 947, 121, 053 and 125.

6.4.1 Total cross section

We approach this section in the same way as the lower W range. First I look

at how the fits describe the data. Fig. 6.51 shows the layout of the fits for the pages

to follow. I show the kinematic variables for two W bins at W = 2.00 GeV/c2

and W = 2.24 GeV/c2. This region is more difficult to fit so in addition to the 4

kinematic variables I showed before I show four others as well: invariant mass of the

pπ+ system, the proton and π+ C.M. cos(θ), and the π− cos(θ) in the ∆0 helicity

angle. These plots are shown in Figs. 6.52- 6.55.
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Fit 947 Fit 947 Fit 947 Fit 947

Fit 121 Fit 121 Fit 121 Fit 121

Fit 053 Fit 053 Fit 053 Fit 053

Fit 125 Fit 125 Fit 125 Fit 125

Figure 6.51: Schematic of how the plots are laid out for which fit in the

following pages.
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Figure 6.52: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.00 GeV/c2
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Figure 6.53: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.00 GeV/c2
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Figure 6.54: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.24 GeV/c2
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Figure 6.55: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.24 GeV/c2

Fits 947 and 121, which do not contain any t-channel terms fit the data poorly

in this region. Fits 053 and 125, which do contain t-channel terms, do a much better

job, though still not perfect. The disagreement is most noticable in the C.M. angles.

Even with the disagreement in these angles the total cross section calculations shown

in Fig. 6.56 demonstrate the agreement with previous calculations is much better

when we do include t-channel terms.
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Figure 6.56: W ≈ 2.24 GeV/c2

This is also reflected in the acceptance corrected distributions shown in Figs.6.57-

6.60. In the lower W bins we found that the distributions converged to a common

shape with >30 waves, regardless of the inclusion of t-channel terms. Here we see
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that these terms are necessary to get a stable shape.
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Figure 6.57: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.00

GeV/c2
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Figure 6.58: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.00

GeV/c2
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Figure 6.59: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.24

GeV/c2
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Figure 6.60: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.24

GeV/c2

6.4.2 Summed intensities

The results of these fits allow me to calulate cross sections for the different

isobars. I show these for the larger wave sets. Fig. 6.61 shows the layout I will use

for the plots which follow.
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Fit 947

Fit 121

Fit 053

Fit 125

Figure 6.61: Schematic of how the plots are laid out for which fit in the

following pages.

Figs. 6.62- 6.63 show my calculated cross sections for γp→ ∆++π− and γp→
∆0π+ respectively. The dip in the ∆++π− cross section at 1.5 GeV/2 is at the same

spot as the enhancement in the ∆0π+ cross section. The combined cross section for

both charge states is shown in Fig. 6.64. All these plots are consistent between the

fits.
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Figure 6.62: σ for γp→ ∆++π−
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Figure 6.63: σ for γp→ ∆0π+
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Figure 6.64: σ for γp→ ∆π

Figs. 6.65-6.66 show the cross section for γp → pρ for the s-channel and

t-channel processes respectively, reminding ourselves that only fits 053 and 125 con-

tained t-channel terms. The s-channel waves differ when these terms are included
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and an enhancement between 1.65-1.70 GeV/c2 appears in this term. The total

cross section for γp→ pρ is shown in Fig. 6.67 and again is different if we choose to

include t-channel terms.

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

d

0

5

10

15

20

25

30

35 ρs-channel p 

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

d

0

5

10

15

20

25

30

35 ρs-channel p 

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

d

0

2

4

6

8

10

12

14

16

18

20
ρs-channel p 

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

d

0

5

10

15

20

25

ρs-channel p 

Figure 6.65: σ for γp→ pρ s-channel waves
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Figure 6.66: σ for γp→ pρ t-channel waves
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Figure 6.67: σ for γp→ pρ
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6.5 7

2
and higher terms

6.5.1 Fit 080

During the course of this analysis, some very large wave sets were tried in

the fits. The intensites of the individual waves became difficult to interpred due to

jumpy waves and very large error bars. The fits also took on the order of a day.

However we tried a few with a large number to see if it improved the agreement or

changed the summed intensities.

Fit 080 is fit 947 with some waves added. I added all possible ∆π decays for

7
2

+
and 7

2

−
waves. I also added t-channel ρ,σ and π− production with a variety

of baryons produced in the bottom vertex. A summary of the waves is given in

Table 6.7. All t-channel terms used β = 6.0.

JP M Isobars # of waves

# of waves fit 947 35

7
2

+ 1
2
, 3

2
(∆π)(`=1,5) 8

7
2

− 1
2
, 3

2
(∆π)(`=2,4) 8

t-channel ρ 1
2
, 3

2
λρ = ±1,0 6

t-channel σ 1
2
, 3

2
2

t-channel π− 1
2
, 3

2
∆++ 2

π− 1
2
, 3

2
N∗(1440) 2

π− 1
2
, 3

2
N∗(1520) 2

t-channel π+ 1
2
, 3

2
∆0 2

Total # of waves 67

Table 6.7: Fit 080

In the following sections I show some of the same quantities for this fit that I

did for the previous fits. I will compare to fit 125, which seemed to be the best fit of

the previous fits. First I look at how well the fit describes the data in the same W

bins for the higher region, W = 2.00 GeV/2 and W = 2.24 GeV/2. Fig. 6.68 shows

the layout for these plots.
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Fit 125 Fit 125 Fit 125 Fit 125

Fit 080 Fit 080 Fit 080 Fit 080

Figure 6.68: Schematic of how the plots are laid out for which fit in the

following pages.

Figs. 6.69- 6.72 show the comparison of the data and the fit results for these

eight variables in two higher mass W bins. Fit 080 does a better job, especially in

the agreement between the angles.
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Figure 6.69: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.00 GeV/c2
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Figure 6.70: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.00 GeV/c2
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Figure 6.71: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.24 GeV/c2
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Figure 6.72: Comparison of kinematic variables for different fits. The

shaded region is CLAS data, the solid red line which is the

same for each fit is accepted Monte Carlo data, and the

dotted blue line is the accepted Monte Carlo data weighted

by the fit results. W ≈ 2.24 GeV/c2

The total cross section is shown for these two fits in Fig. 6.73 and is fairly

consistent above W = 1.7 GeV/c2. Below this value, it differs from our previous

calculations, perhaps as a result of ambiguities in the waves which cannot be resolved

in the lower mass.
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Figure 6.73: Total cross sections for fit 125 and 080.

The acceptance corrected data distributions are shown in Figs. 6.74- 6.77. The

distributions seem much the same except the C.M. angles are noticibly different. The

π− and π+ have a shoulder in the forward region that is indicative of the competing

ρ and π t-channel processes.
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Figure 6.74: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.00

GeV/c2
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Figure 6.75: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.00

GeV/c2
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Figure 6.76: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.24

GeV/c2
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Figure 6.77: Raw MC. Comparison of kinematic variables for different

fits. The shaded region is raw MC weighted by the fit results

(acceptance corrected data) and the solid red line which is

the same for each fit is raw Monte Carlo data. W ≈ 2.24

GeV/c2

In the end this fit perhaps shows us the difficulty of exactly describing the

higher energy region with the 30 waves we were using. But qualitatively there is not

a great difference when we add this many new higher order terms. The individual

wave intensities are rendered meaningless however.



CHAPTER 7

Results and conclusions

In this chapter I summarize our results. All plots shown here are from fit 125. See

Table 6.6.

7.1 Total cross section

We calculate the total cross section for γp→ pπ+π−. This is shown in Fig. 7.1.

The error bars are indicative of the shape of the liklihood function and are some

convolution of the CLAS resolution, statistics and uncertainty in the wave selection.

Other fits give the same cross section to within 1-4%.
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Figure 7.1: Fit 125. Total cross section.

7.2 Cross section for isobars

We are able to pull out the cross section for the isobars we use. These are

shown in Figs. 7.2- 7.7. The γp→ pρ cross section shown in Fig. 7.6 is summed over

both s- and t-channel processes. In Fig. 7.3 we compare our results for the ∆++π−

cross section with values extracted by the Cambridge Bubble chamber analysis [?].

Our results disagree with previous measurements, but have less model dependance.
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Figure 7.2: Fit 125. Cross section for γp→ ∆++π−
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Figure 7.3: Fit 125. Cross section for γp → ∆++π−. Compare with CEA

results.
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Figure 7.4: Fit 125. Cross section for γp→ ∆0π+
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Figure 7.5: Fit 125. Cross section for γp→ ∆π
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Figure 7.6: Fit 125. Cross section for γp → pρ, including both s-channel

and t-channel contributions.
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Figure 7.7: Fit 125. Cross section for γp→ pρ. Compare with ABBHHM

results.

Fig. 7.7 shows our pρ cross section plotted with results from the ABBHHM

analysis [?]. Three different methods were used to extract their results and are all

plotted. Our mass independant fit vastly improves upon the previous results.

7.3 Strengths of individual waves

We find the dominant wave below 1.5 GeV/c2 to be the 3
2

−
∆++π− in an

S-wave. We make the new measurement that this is strongest in an M = 3
2

state.

This is shown in Fig. 7.8.
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Figure 7.8: Fit 125. 3
2

−
waves. The strength in the lower W bins can be

interpreted as the Born contact term.

The D13(1520) is seen, as shown in Fig. 7.9. A peak is seen around 1.7 GeV/c2

consistent with the D13(1700) or D33(1700) in Fig. 7.10.
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Figure 7.9: Fit 125. 3
2

−
∆π S-waves.
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Figure 7.10: Fit 125. 3
2

−
pρ waves.

Evidence for the P33(1600) is shown in Fig. 7.11. Evidence for the P13(1720) is

shown in Fig. 7.12 with all strength coming from pρ in support of the PDG values.
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Figure 7.11: Fit 125. 3
2

+
∆π P -waves.
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Figure 7.12: Fit 125. 3
2

+
pρ waves.

A peak is seen in 5
2

+
consistent with the F15(1680) and is shown in Fig. 7.18.

2W GeV/c
1.4 1.6 1.8 2 2.2 2.4

 b
)

µ
 (σ

d

0

1

2

3

4

5

6

7

8

9

  (l=1)+π 0∆ →) 
2
1(M=

+

2
511)  

Figure 7.13: Fit 125. 5
2

+
∆π P -waves.

A full mass dependant fit is required to extract the parameters of these reso-

nances and establish the isospin. However, we can do a simple fit to a Breit-Wigner

and look at the phase difference.
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Figure 7.14: Fit 125. Intensity of a 5
2

+
, a 3

2

+
and the phase difference

between the amplitudes.

Fig. 7.14 shows a very simple fit. I fit a Breit-Wigner to the 5
2

+
wave and 3

2

+

wave. I show the results of the fit overlaid on the intensities and the results of the

fit plotted on the phase difference for these waves. The phase difference is not a

constraint in the fit.

The fit returns a mass and width for the 5
2

+
wave of 1650 MeV/c2 and 115

MeV/c2. The PDG value for the width of the F15(1680) is 130 MeV/c2. For the 3
2

+

I get 1770 MeV/c2 and 85 MeV/c2. The width of the P13(1720) is commonly given

as 150 MeV/c2.
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Figure 7.15: Fit 125. Intensity of a 5
2

+
, a 3

2

+
and the phase difference

between the amplitudes.

Fig. 7.15 shows the same 5
2

+
with a different 3

2

+
wave. The fit returns a mass

and width of 1580 MeV/c2 and 70 MeV/c2 for this 3
2

+
. The width of the P33(1600)

is much wider at 350 MeV/c2, though some analysis have placed it as low as 250

MeV/c2.

The phase difference from these fits qualitiatively agrees with the data and

our masses and widths are close to book values.

7.4 Differential cross sections

We are able to acceptance correct the data and calculate differential cross

sections. We have begun providing this data to the community so that there is

a standard to compare with theory. A dialogue has already begun with Victor

Mokeev at Jefferson Lab. He has begun checking his model against our data set.

He calculates the differential cross section in four variables: invariant mass of the

pπ+, pπ− and π+π− systems and the π− cos(θ) in the center of mass. One bin of his

comparisons is shown in Fig. 7.16
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Figure 7.16: Fit 125. 5
2

+
∆π P -waves.

7.5 Missing resonances

We see no evidence for the a P13 state at 1.7 GeV/c2 which strongly couples

to ∆π final states, as reported by Ripani, et al [?].

There is strength in some of the 3
2

+
waves around 2.0 GeV/c2. The PDG

lists the P13(1900), a 2-star state, and the P33(1940), a 3-star state. It is possible

that this is the 3
2

+
state at 2030 predicted by Capstick and Isgur [?] but the data

is inconclusive at best and a full mass dependant fit is necessary to extract this

information.
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Figure 7.17: Fit 125. 3
2

+
∆π P -waves.
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Figure 7.18: Fit 125. 3
2

+
∆π P -waves.

The mass dependant fit will also help characterize other resonances which

are not part of the positive parity missing baryons, but simply poorly understood.

Fig. 7.19 shows strength in the 3
2

−
wave around 1.9 GeV/c2. There is a D33(1940)

and a D13(2080) which are 1- and 2-star states respectively [?].
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Figure 7.19: Fit 125. 3
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−
∆π P -waves.

7.6 Future work

The mass independant partial wave decomposition holds great promise. A

mass dependant fit using intensity and phase difference is the next step in this

analysis. It may be possible to further constrain the fits by analyzing the data sets

where one of the final state particles is not detected in the CLAS, but reconstructed

from missing mass. This will allow us to double check our differential cross sections

as we make this data availible to the scientific community.
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Figure A.1: Different W bins.
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A.1.2 pπ−
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Figure A.2: Different W bins.
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A.1.3 π+π−

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

100

200

300

400

500

600

21.3 < W < 1.4 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

1000

2000

3000

4000

5000

6000

7000

8000

21.4 < W < 1.5 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

2000

4000

6000

8000

10000

21.5 < W < 1.6 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

2000

4000

6000

8000

10000

21.6 < W < 1.7 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

1000

2000

3000

4000

5000

6000

7000

8000

21.7 < W < 1.8 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

1000

2000

3000

4000

5000

6000

7000

8000

21.8 < W < 1.9 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

1000

2000

3000

4000

5000

6000

7000

21.9 < W < 2.0 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

500

1000

1500

2000

2500

3000

3500

4000

4500

22.0 < W < 2.1 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

500

1000

1500

2000

2500

3000

22.1 < W < 2.2 GeV/c

2
) GeV/c-π +πM(

0.2 0.4 0.6 0.8 1 1.2 1.4

2
# 

ev
en

ts
/2

0 
M

eV
/c

0

200

400

600

800

1000

1200

1400

1600

22.2 < W < 2.3 GeV/c

Figure A.3: Different W bins.
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A.2 Center-of-mass angles
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Figure A.4: Different W bins.
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A.2.2 π+ cos(θ)
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Figure A.5: Different W bins.
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A.2.3 π− cos(θ)
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Figure A.6: Different W bins.
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A.3 Dalitz plot
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Figure A.7: Different W bins.


