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1. Introduction

Recently there has been an extensive study of the Galiliean 
Conformal Algebra (GCA) [1–14] and its various supersymmetric 
extensions [15–22]. These algebras exhibit non-relativistic confor-
mal symmetry and are obtained by a parametric contraction of the 
corresponding “parent” relativistic conformal or superconformal 
group. In two dimensions, the parent Virasoro or super-Virasoro 
algebra itself is infinite-dimensional, and we can systematically 
obtain the 2d (S)GCA by contraction of the two copies of the 
(super-)Virasoro algebra. 2d (S)CFTs are also important as they pro-
vide the necessary tool to formulate the worldsheet picture of the 
(super)string theories. It has been shown [23–25] that superconfor-
mal algebras with N = 2 and N = 4 worldsheet supersymmetry 
describe string compactification on complex manifolds of SU(n)

holonomy.
The 2d bosonic case was studied in great detail in [2]. The min-

imal supersymmetric extension giving us a supersymmetric GCA 
(SGCA) was obtained in [16] from the contraction of N = (1, 1)

super-Virasoro algebra [26–31]. In the present work, we will de-
rive an extended SGCA from the parent SCFT with N = (2, 2) su-
percharges [32,23,33–42]. We will restrict to the Neveu–Schwarz
sector so that we can use the superspace formalism. In any case, 
the N = 2 Ramond and Neveu–Schwarz algebras are isomorphic 
by spectral flow [43]. Such an SCFT could prove useful in the con-
struction of 2d critical systems with a hidden N = 2 supersymme-
try. It has extra features like R-symmetry, chiral primaries and BPS 

* Corresponding author.
E-mail addresses: imandal@perimeterinstitute.ca (I. Mandal), 

arayyan@ualberta.ca (A. Rayyan).
http://dx.doi.org/10.1016/j.physletb.2016.01.031
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
bounds as compared to the N = (1, 1) case. We will explore what 
new features emerge in the corresponding non-relativistic version.

The paper is organized as follows: In Sec. 2, we derive the 2d
extended SGCA from the (2, 0) holomorphic and the (0, 2) anti-
holomorphic super-Virasoro algebras by the method of group con-
traction [44]. In Sec. 3, we discuss the representation theory of the 
algebra. Sec. 4 provides the superspace formalism for the SGCA 
fields, allowing us to write them down in a compact notation as 
components of superfields. This section also discusses correlation 
functions, short supermultiplets and null states. Sec. 5 discusses 
the possibility of extending the R-symmetry of the non-relativistic 
algebra. We conclude with a summary and some outlook in Sec. 6.

2. 2d SGCA from N = (2, 2) SCFT

The N = 2 super-Virasoro algebra is given by [42]:

[Lm,Ln] = (m − n)Lm+n + c

8
m (m2 − 1) δm+n,0 ,

{
G+

r ,G−
s

} = Lr+s + 1

2
(r − s) Jr+s + c

4

(
r2 − 1

4

)
δr+s,0 ,

[ Jm, Jn] = c

2
m δm+n,0 , [ Jm,G±

r ] = ±G±
m+r ,

[Lm,G±
r ] =

(m

2
− r

)
G±

m+r , [Lm, Jn] = −n Jm+n , (1)

where m, n ∈ Z and r, s ∈ Z + λ. Furthermore, λ = 0 in the Ra-
mond sector and λ = 1

2 in the Neveu–Schwarz sector. Only the 
Neveu–Schwarz sector will be considered in this paper and hence 
r, s ∈ Z + 1

2 in all subsequent discussions.
Dealing with extended supersymmetry implies the presence of 

an R-symmetry. Here, this is represented by the bosonic U (1) cur-
rent algebra generated by Jn . Hence, in contrast to the N = 0, 1
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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cases, the N = 2 superconformal algebra has highest-weight states 
represented by two parameters, usually denoted by h and q, cor-
responding to the eigenvalues of the two elements (L0 and J0) 
of the Cartan subalgebra. The G±

r are fermionic operators with 
charges ±1 with respect to the U(1) current.

In general, a superconformal field theory (SCFT) in 2d comes 
with a holomorphic as well as an anti-holomorphic copy of (1). 
The two copies are identical in structure, and one can obtain the 
anti-holomorphic copy by replacing Ln with L̄n , G±

r with Ḡ±
r , Jn

with J̄n , and c with c̄. Note that the independence of the two al-
gebras implies that the (anti-)commutator of an unbarred operator 
with a barred one vanishes.

Now, a contraction of both copies of (1) is performed by defin-
ing the following generators:

Ln = lim
ε→0

(L̄n +Ln) , Mn = lim
ε→0

ε (L̄n −Ln) ,

G±
r = lim

ε→0
(Ḡ±

r + G±
r ) , H±

r = lim
ε→0

ε (Ḡ±
r − G±

r ) ,

In = lim
ε→0

( J̄n + Jn) , Sn = lim
ε→0

ε ( J̄n − Jn) . (2)

The scaling chosen corresponds to a non-relativistic scaling of coor-
dinates so that the velocities v ∼ ε (see [1,2,16] for more details).

According to (1), the non-zero (anti-)commutators of the gen-
erators are:

[Lm, Ln] = (m − n) Lm+n + C1 m (m2 − 1) δm+n,0 ,

[Lm, Mn] = (m − n) Mm+n + C2 m (m2 − 1) δm+n,0 ,

[Im, In] = 4 C1 m δm+n,0 , [Im, Sn] = 4 C2 m δm+n,0 ,

[Lm, In] = −n Im+n , [Lm, Sn] = −n Sm+n = [Mm, In] ,{
G+

r , G−
s

} = Lr+s + 1

2
(r − s)Ir+s + 2 C1

(
r2 − 1

4

)
δr+s,0 ,{

G+
r , H−

s

} = {
H+

r , G−
s

}
= Mr+s + 1

2
(r − s)Sr+s + 2 C2

(
r2 − 1

4

)
δr+s,0 ,

[Lm, G±
r ] =

(m

2
− r

)
G±

m+r ,

[Lm, H±
r ] = [Mm, G±

r ] =
(m

2
− r

)
H±

m+r ,

[Im, G±
r ] = ± G±

m+r , [Im, H±
r ] = [Sm, G±

r ] = ± H±
m+r , (3)

where the central charges are given by:

C1 = lim
ε→0

c̄ + c

8
, C2 = lim

ε→0
ε

c̄ − c

8
. (4)

This is the 2d supersymmetric Galilean conformal algebra (SGCA) 
with four supercharges.

3. Representation theory of the extended SGCA

From the (anti-)commutation relations (3), one can check that 
the Cartan subalgebra of our SGCA is generated by L0, M0, I0
and S0. Hence it will be convenient to construct representations 
by considering states having definite weights which include the 
scaling dimension �, the ‘rapidity’ �̃, and the ‘charges’ κ and κ̃ , 
such that:

L0 |�,�̃,κ, κ̃〉 = � |�,�̃,κ, κ̃〉 ,

I0 |�,�̃,κ, κ̃〉 = κ |�,�̃,κ, κ̃〉 ,

M0 |�,�̃,κ, κ̃〉 = �̃ |�,�̃,κ, κ̃〉 ,

S0 |�,�̃,κ, κ̃〉 = κ̃ |�,�̃,κ, κ̃〉 .
We can relate these weights to the weights h, h̄, q and q̄ in the 
parent SCFT, which are the eigenvalues of L0, L̄0, J0 and J̄0 re-
spectively. The relations follow from the definition of our SGCA 
operators in (2):

� = lim
ε→0

(h̄ + h) , �̃ = lim
ε→0

ε (h̄ − h) ,

κ = lim
ε→0

(q̄ + q) , κ̃ = lim
ε→0

ε (q̄ − q) . (5)

Using (3), one can investigate the action of the SGCA genera-
tors on these weights. For �, one finds that, for an arbitrary SGCA 
generator labelled generically as Wν (with ν ∈ Z for the bosonic 
generators and ν ∈ Z + 1

2 for the fermionic generators),

L0 Wν |�,�̃,κ, κ̃〉 = (� − ν) |�,�̃,κ, κ̃〉 . (6)

So generators with ν > 0 lower the value of �, while generators 
with ν < 0 raise it. For κ , one finds that a bosonic Wν leaves it 
unchanged, whereas:

I0 G±
r |�,�̃,κ, κ̃〉 = (κ ± 1) G±

r |�,�̃,κ, κ̃〉 ,

I0 H±
r |�,�̃,κ, κ̃〉 = (κ ± 1)H±

r |�,�̃,κ, κ̃〉 . (7)

Demanding that the weights be bounded from below implies 
the existence of primary states |p〉 ≡ |�,�̃,κ, κ̃〉p , defined by:

Ln |p〉 = Mn |p〉 = In |p〉 = Sn |p〉 = 0 (∀n > 0 ) ,

G±
r |p〉 = H±

r |p〉 = 0 (∀ r > 0 ) . (8)

As a result, given a primary state |p〉, one can get descendent 
states by the repeated action of L−n , M−n , G±−r , H±−r , I−n , and S−n

(with n, r > 0) on it. The primary state with all its possible descen-
dant states form a representation of the SGCA.

One interesting note to make is that I0 commutes with all 
L−n, M−n, I−n and S−n . As a result, descendant states formed by 
the action of only those four operators will still be eigenstates 
of I0, and so they all share the same κ . Similarly, the action of 
M−n, H±−n , and S−n on a primary state yields eigenstates of M0

with the same value of �̃. Finally, the action of L−n, M−n, H±−r, I−n

and S−n on a primary state yields eigenstates of S0 with the same 
value of κ̃ .

We require that the vacuum state |0〉 be invariant under the 
action of the globally defined sector of the SGCA. This corresponds 
to |0〉 satisfying the following properties:

Ln |0〉 = Mn |0〉 = 0 ( for n ≥ −1 ) ,

In |0〉 = Sn |0〉 = 0 ( for n ≥ 0 ) ,

G±
r |0〉 = H±

r |0〉 = 0 ( for r ≥ − 1
2 ) . (9)

4. Extended SGCA on superspace

We will use the superspace formalism of the 2d N = (2, 2)

SCFT [41,39] for the Neveu–Schwarz sector. The extended super-
symmetry requires the enlargement of the space to include two 
“fermionic” coordinates in each of the two sectors. Specifically, the 
(2, 0) holomorphic and the (0, 2) anti-holomorphic sectors are rep-
resented by the coordinates

Z ≡ (z, θ+, θ−) and Z̄ ≡ (z̄, θ̄+, θ̄−) (10)

respectively. For the remainder of this section, we will only con-
sider the holomorphic sector.

A superfield is a function at most linear in each of its Grass-
mann variables, due to their inherent nilpotency. As such, any 
superfield in the (2, 0) superspace can be expanded as
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F (Z) = f (z) + θ+ψ−(z) + θ−ψ+(z) + θ+θ−g(z) , (11)

where f (z) and g(z) are bosonic fields, while ψ−(z) and ψ+(z)
are fermionic fields. A primary superfield is defined as a superfield 
generating a highest-weight irreducible representation of the (2, 0)

superconformal algebra.
The generators of the superanalytic transformations in the su-

perspace can be represented as [41]:

Ln ≡ zn+1∂z + n + 1

2
zn (

θ+∂θ+ + θ−∂θ−
)
,

Jn ≡ zn (
θ−∂θ− − θ+∂θ+

)
,

G+
r√
2

≡ zr+ 1
2

(
∂θ+ − 1

2
θ−∂z

)
+ 1

2

(
r + 1

2

)
zr− 1

2 θ+θ−∂θ+ ,

G−
r√
2

≡ zr+ 1
2

(
∂θ− − 1

2
θ+∂z

)
− 1

2

(
r + 1

2

)
zr− 1

2 θ+θ−∂θ− . (12)

The corresponding differential operators acting on a primary su-
perfield F(Z) are given as:

[Ln,F] = zn
[

z ∂z +
(

n + 1

2

)
(θ+∂θ+ + θ−∂θ−)

+ (n + 1)
(

h + n q

4
z−1θ+θ−)]

F,

[G±
r ,F] = √

2

[
zr+ 1

2

(
∂θ± − 1

2
θ∓∂z

)

−
(

r + 1

2

)
zr− 1

2 θ∓
(

1

2
θ±∂θ± + h ∓ q

2

)]
F,

[ Jn,F] = zn
[
θ−∂θ− − θ+∂θ+ + n h z−1θ+θ− + q

]
F . (13)

The transformations for the anti-holomorphic sector take an iden-
tical form, with z and θ± replaced by z̄ and θ̄± , respectively.

Now we construct the superspace formalism for the SGCA by 
taking the non-relativistic limit of these superspace coordinates. 
Our new coordinates are obtained by taking the linear combina-
tions

t = z + z̄

2
, x = z − z̄

2
, α± = θ± + θ̄±

2
, β± = θ± − θ̄±

2
, (14)

and then taking the scalings as:

t → t , x → ε x , α± → α±, β± → ε β±. (15)

Hence an extended SGCA primary superfield is of the form


(t, x,α±, β±)

= p(t, x) + α+γ (t, x) + β+γ̄ (t, x) + α+β+d(t, x)

+ α−[ δ(t, x) + α+e(t, x) + β+ f (t, x) + α+β+δ̄(t, x) ]
+ β−[η(t, x) + α+g(t, x) + β+�(t, x) + α+β+η̄(t, x) ]
+ α−β−[ j(t, x) + α+ζ(t, x) + β+ζ̄ (t, x) + α+β+s(t, x) ] ,

(16)

where p(t, x) is a primary field with respect to the bosonic gen-
erators. The bosonic and the fermionic fields have been denoted 
by Latin and Greek characters respectively. The group contraction 
in (2) implies that the SGCA operators should act on a primary 
superfield 
 as:

[Ln,
] = lim
ε→0

[L̄n +Ln,F] , [Mn,
] = lim
ε→0

ε [L̄n −Ln,F] ,
[G±

r ,
] = lim [Ḡ±
r + G±

r ,F] , [H±
r ,
] = lim ε [Ḡ±

r − G±
r ,F] ,
ε→0 ε→0
[In,
] = lim
ε→0

[ J̄n + Jn,F] , [Sn,
] = lim
ε→0

ε [ J̄n − Jn,F] .
(17)

Taking the scaling limit (15) with (13) and its anti-holomorphic 
counterpart, one finally arrives at

[Ln,
] = tn
{

t ∂t + (n + 1)x∂x +
(

n + 1

2

)
(α+∂α+ + β+∂β+

+ α−∂α− + β−∂β−) + n (n + 1)

2

x

t
(α+∂β+ + α−∂β−)

+ (n + 1)

(
� + n κ

4 t
α+α− − n

t

[
�̃ x

+ κ̃

4

(
x(n − 1)

t
α+α− + α+β− + β+α−

)])}

,

[Mn,
] = tn
{
−t ∂x −

(
n + 1

2

)
(α+∂β+ + α−∂β−)

+ (n + 1)

(
�̃ + n κ̃

4 t
α+α−

)}

,

[G±
r ,
] = √

2

{
tr+ 1

2

[(
∂α± − 1

2
(α∓∂t + β∓∂x

)

+
(

r + 1

2

)
x

t

(
∂β± − 1

2
α∓∂x

)]

+
(

r + 1

2

)
tr− 1

2

[(
β∓ +

(
r − 1

2

) x

t
α∓

)

×
(

�̃ ∓ κ̃

2
− 1

2
α±∂β±

)

− α∓(
� ∓ κ

2
+ 1

2
(α±∂α± + β±∂β±)

)]}

,

[H±
r ,
] = √

2

{
tr+ 1

2

[
1

2
α∓∂x − ∂β±

]

+
(

r + 1

2

)
tr− 1

2 α∓
[

1

2
α±∂β± ±

( κ̃

2
∓ �̃

)]}

,

[In,
] = tn
{
α−∂α− + β−∂β− − α+∂α+ − β+∂β+

+ n
x

t
(α−∂β− − α+∂β+) − n

t

[
�̃

(
α+β− + β+α−

+ (n − 1)
x

t
α+α−) + κ̃ x

]
+ n

t
�α+α− + κ

}

,

[Sn,
] = tn
{
α+∂β+ − α−∂β− + n

t
�̃α+α− + κ̃

}

. (18)

Assuming that the operator-state correspondence present in the 
parent 2d SCFT continues to hold in the SGCA (i.e. O(t, x) ↔
O(0, 0) |0〉), we find that the primary state |p〉 ≡ p(0, 0) |0〉 trans-
forms as:

G+
− 1

2
|p〉 = √

2 |γ 〉 , G−
− 1

2
|p〉 = √

2 |δ〉 ,

H+
− 1

2
|p〉 = −√

2 |γ̄ 〉 , H−
− 1

2
|p〉 = −√

2 |η〉 ,

G+
− 1

2
G−

− 1
2
|p〉 = L−1 |p〉 − 2 |e〉 , G+

− 1
2

H+
− 1

2
|p〉 = −2 |d〉 ,

G−
− 1

2
H+

− 1
2
|p〉 = M−1 |p〉 − 2 | f 〉 , G−

− 1
2

H−
− 1

2
|p〉 = −2 | j〉 ,

G+
− 1

2
H−

− 1
2
|p〉 = M−1 |p〉 + 2 |g〉 , H+

− 1
2

H−
− 1

2
|p〉 = −2 |�〉 ,

G+
− 1

2
G−

− 1
2

H+
− 1

2
|p〉 = √

2
(
M−1 |γ 〉 − L−1 |γ̄ 〉 + 2 |δ̄〉) ,

G+
− 1 H+

− 1 H−
− 1 |p〉 = √

2 (M−1 |γ̄ 〉 + 2 |η̄〉) ,

2 2 2
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G−
− 1

2
H+

− 1
2

H−
− 1

2
|p〉 = −√

2
(
M−1 |η〉 + 2 |ζ̄ 〉) ,

H−
− 1

2
G+

− 1
2

G−
− 1

2
|p〉 = √

2 (L−1 |η〉 − M−1 |δ〉 − 2 |ζ 〉) ,

G+
− 1

2
G−

− 1
2

H+
− 1

2
H−

− 1
2
|p〉 = (M−1)

2 |p〉 + 2M−1 (|g〉 − | j〉)
+ 4L−1 |�〉 − 4 |s〉 . (19)

In essence, given a primary superfield, we can jump around the 
components of the superfield by these operations. This is expected 
as the primary superfields comprise the irreducible representations 
of the SGCA.

4.1. Correlation functions

We now construct correlation functions obeying the SGCA in-
variance. One method is to directly use the commutators of the 
SGCA, but the mixing of holomorphic and anti-holomorphic al-
gebras leads to very complicated expressions for the differential 
operators. Another method is to construct the correlation func-
tions respecting the super-Virasoro algebra, and then taking a non-
relativistic scaling of the coordinates and weights to obtain the 
SGCA result. We will demonstrate the latter method for simplic-
ity.

The two-point function of the (2, 0) super-Virasoro algebra is 
given by [41]:

G(2)
SVA(z12, θ

±
12) ≡ 〈F1(x1, t1,α

±
1 , β±

1 )F2(x2, t2,α
±
2 , β±

2 )〉
= δh1,h2 δq1,−q2 z−2h1

12

(
1 − q1

2
z−1

12 θ+
12θ

−
12

)
, (20)

where z12 = z1 − z2 − 1
2 (θ+

1 θ−
2 + θ−

1 θ+
2 ) and θ±

12 = θ±
1 − θ±

2 . Also 
the overall multiplicative constant has been set to unity by adjust-
ing the normalization of the operators. The form of the superin-
tervals are fixed by the invariance under the operators L−1 and 
G±

− 1
2

. Invariance under J0 and L1 requires that the charges of the 
two superfields are related as q1 = −q2, h1 = h2 for a non-zero 
answer. Similarly, one can find a ḠSVA corresponding to the anti-
holomorphic copy of the algebra, with all the intervals and the 
weights replaced with their barred counterparts.

Using the scaling in (15), one obtains the following SGCA su-
perintervals:

x12 = x1 − x2 − 1

2
(α+

1 β−
2 + α−

1 β+
2 + β+

1 α−
2 + β−

1 α+
2 ),

t12 = t1 − t2 − 1

2
(α+

1 α−
2 + α−

1 α+
2 ),

α±
12 = α±

1 − α±
2 , β±

12 = β±
1 − β±

2 . (21)

Now G(2)
SCFT ≡ G(2)

SVA Ḡ(2)
SVA can be scaled to obtain our desired result:

G(2)
SGCA(x12, t12,α

±
12, β

±
12)

≡ 〈
1(x1, t1,α
±
1 , β±

1 )
2(x2, t2,α
±
2 , β±

2 )〉

= δ�1,�2 δ�̃1,�̃2
δκ1,−κ2 δκ̃1,−κ̃2

exp
(

2 �̃1x12
t12

)
t2�1

12

(
1 − κ1

2

α+
12α

−
12

t12

+ κ̃1

2

α+
12β

−
12 + β+

12α
−
12 − x12

t12
α+

12α
−
12

t12
− κ̃2

1

4

α+
12α

−
12β

+
12β

−
12

t2
12

)
.

(22)

One can find the correlation functions of the component fields of 

1 and 
2 by expanding both sides in terms of the fermionic co-
ordinates and equating the coefficients.
4.2. Short supermultiplets

Let us consider primaries satisfying GS
− 1

2
|�,�̃,κ, κ̃〉p = 0, 

where S takes the value + or −. The anti-commutators{
G+

− 1
2
, G−

1
2

}
= L0 − I0

2
,

{
G+

− 1
2
, H−

1
2

}
= M0 − S0

2
,

{
G−

− 1
2
, G+

1
2

}
= L0 + I0

2
,

{
G−

− 1
2
, H+

1
2

}
= M0 + S0

2
, (23)

tell us that � = Sκ/2 and �̃ = Sκ̃/2 for these primaries. From (5), 
we find that these conditions correspond to a chiral or anti-
chiral primary of the parent SCFT depending on whether S takes 
the value + or −. In other words, the parent primary satisfies 
h = Sq/2 and h̄ = Sq̄/2 giving rise to BPS multiplets in both the 
holomorphic and anti-holomorphic sectors which are shorter than 
the generic multiplets. In the SGCA too, the above conditions lead 
to shortening of the generic number of components for a super-
field.

If we consider primaries satisfying HS
− 1

2
|�,�̃,κ, κ̃〉p = 0 (where 

S can be + or −), the anti-commutators{
H±

− 1
2
, H±

1
2

}
= 0,

{
H+

− 1
2
, G−

1
2

}
= M0 − S0

2
,

{
H−

− 1
2
, G+

1
2

}
= M0 + S0

2
(24)

translate into �̃ = Sκ̃/2. These conditions also lead to short mul-
tiplets for the SGCA. However, the parent SCFT primaries need not 
be chiral or anti-chiral in this case. But if they are (anti-)chiral in 
the holomorphic sector, then they are forced to be (anti-)chiral also 
in the anti-holomorphic sector, and vice versa.

4.3. Null states and Kac-like formula

The null states obtained from the Kac-like formula [23,39] in 
the N = (2, 2) SCFT will also give null states in the daughter SGCA 
once we translate the relations involving SCFT weights into equa-
tions involving SGCA weights by taking the appropriate scaling 
limits. However, the relation (4) tells us that the parent SCFTs need 
not be unitary. So naturally, the number of SGCA null states will be 
larger than those obtained by the scaling method involving unitary 
SCFTs. The derivation of a generic formula will be a very difficult 
task and is left for future investigation. One can of course find the 
null states level by level from the intrinsic SGCA analysis. However, 
this procedure becomes more and more algebraically cumbersome 
as the level increases. One can easily see that the condition on 
the weights of a primary state to get the lowest level null state 
(at level 1

2 ) will actually coincide with the expressions derived for 
the short multiplets. One can further work out the Kac-like for-
mula and fusion rules for the SGCA primaries. This is left for future 
work.

5. Possibility of extending the R-symmetry

Let us try to see if the SGCA with four supersymmetries can 
have an extended R-symmetry, other than the U (1) × U (1) that 
we have obtained by the group contraction.

The first thing we can try is to examine whether we can pro-
mote the U (1) current algebra generated by In ’s to an SU(2) cur-
rent algebra generated by J j

n ’s such that we have the modified 
(anti-)commutators:
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{
G+

r , G−
s

} = Lr+s + 1

2
(r − s)σ j

+− J j
r+s + 2 C1

(
r2 − 1

4

)
δr+s,0 ,

{
G−

r , G+
s

} = Lr+s + 1

2
(s − r)σ j

−+ J j
r+s + 2 C1

(
s2 − 1

4

)
δr+s,0 ,

{
G+

r , G+
s

} = r − s

2
J 3

r+s ,
{

G−
r , G−

s

} = − r − s

2
J 3

r+s ,

[J j
m, GS

r ] = 1

2
σ

j
SS ′ GS ′

m+r , [J j
m, HS

r ] = 1

2
σ

j
SS ′ HS ′

m+r ,

[J j
m,J k

n ] = i ε jkl J l
m+n , [Lm,J j

n ] = −nJ j
m+n , (25)

where (S, S ′) = ±, and σ j are the Pauli matrices. But we immedi-
ately see that the first two anti-commutators are incompatible, and 
hence this algebra is inadmissible. Similarly, an SU(2) to rotate the 
HS

r ’s only amongst themselves will also fail.
Next we can try to see if we can promote the U (1) current 

algebra generated by Sn ’s to an SU(2) current algebra generated 
by J j

n ’s with the following modifications:

{
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s

} = Mr+s + 1

2
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2
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4

)
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}
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2
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r ] = σ
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2
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j
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2
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[J j
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r ] = σ
j

−+
2
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m+r + σ
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−−
2

G−
m+r ,

[J j
m, H+

r ] = σ
j

+−
2

G−
m+r + σ

j
++
2

H+
m+r ,

[J j
m, H−

r ] = σ
j

−+
2

G+
m+r + σ

j
−−
2

H−
m+r ,

[J j
m,J k

n ] = i ε jkl J l
m+n , [Lm,J j

n ] = −nJ j
m+n , (26)

where (S, S ′) = ±. Here one can check that Jacobi identities are 
not satisfied, for example the one involving 

(
J 3

0 , G+
1
2
, H−

− 1
2

)
. Hence 

this algebra is also inadmissible.
From the analysis above, we conclude that an SU(2) extension 

of the R-symmetry does not seem feasible.

6. Summary and discussions

In this work, we have considered the SGCA in 2d with extended 
supercharges by taking a scaling limit (or group contraction) of 
the combination of the holomorphic and anti-holomorphic sec-
tors of the N = 2 2d SCFT. This leads to the emergence of extra 
bosonic generators compared to the SGCA obtained from N = 1
SCFT, which are the analogues of the R-symmetry generator of the 
relativistic case. Assuming the state-operator correspondence, we 
have defined primary and descendent fields of this algebra and 
have derived their transformation rules under the action of the 
generators. We have also provided a superspace formalism in anal-
ogy with that of the N = (2, 2) SCFT. This allowed us to write 
the correlation functions of the superfields, which encode the cor-
relators of the component fields. Lastly, we have proved that the 
U (1) × U (1) R-symmetry of the SGCA cannot be extended.
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