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Abstract
In Ref.[1] we use two different generalized uncertainty principles to compute mass
thresholds and lifetimes for micro black holes close to their Planck phase. Motivated
by that paper, we study here in detail the conditions for the translation and rotation
invariance of these two different kinds of deformed commutation relations.

1 Introduction

When we consider a high energy collision, we know that Heisenberg principle ∆p∆x ≥ h̄/2 can be casted
in the form ∆E∆x ≥ h̄c/2 (since ∆E ' c∆p). Actually, the main reason since larger and larger energies
are required to explore smaller and smaller details is that the size of the smallest detail theoretically
detectable with a beam of energy E is δx = h̄c/(2E). An equivalent argument comes from considering
the resolving power of a ”microscope”: the smallest resolvable detail goes roughly as the wavelength of
the employed photons, and therefore δx ' λ = c

ν = hc
ε .

The research on viable generalizations of the Heisenberg uncertainty principle traces back to many
decades (see for early approaches [2], etc. See for a review [3] and for more recent approaches [4]). In the
last 20 years, there have been seminal studies in string theory [5] suggesting that for very high energy
scattering the uncertainty relation (ST GUP) should be written (in 4 + n dimensions) as

δx ≥ h̄c

2E
+ β`4n

E

E4n
, (1)

where `4n is the 4 + n dimensional Planck length and E is the energy of the colliding beams (we use the
relation E4n`4n = h̄c/2). If however we take into account the possibility of a formation of micro black
holes in the scattering, with a gravitational radius of RS ∼ (E)1/(n+1), then we easily see that in 4 + n
dimensions (and n ≥ 1) the stringy principle seems to forbid the very observation of the micro hole itself.
In fact, at high energy the error predicted by the stringy GUP goes like δx ∼ E, while the size of the
hole goes like RS ∼ (E)1/(n+1). For E large enough and n ≥ 1, we always have E > (E)1/(n+1), thereby
loosing the possibility of observing micro black holes, just when they become massive (that is, when
they should approach the classicality). Also to avoid this state of affairs, and on the ground of gedanken
experiments involving the formation of micro black holes, it has been proposed [6] a modification of the
uncertainty principle, that in 4 + n dimensions reads

δx ≥ h̄c

2E
+ βR4n(E) , (2)

where R4n is the 4 + n dimensional Schwarzschild radius associated with the energy E (see [7])

R4n =
[

16πG4nE

(N − 1)ΩN−1c4

] 1
N−2

= `4n

(
ωn

E

E4n

) 1
n+1

(3)

and N = 3+n is the number of space-like dimensions, ωn = 8π/((N−1)ΩN−1), ΩN−1 = 2πN/2/Γ(N/2) =
area of the unit SN−1 sphere. Thus, the GUP originating from micro black hole gedanken experiments
(MBH GUP) can be written as

δx ≥ h̄c

2E
+ β`4n

(
ωn

E

E4n

) 1
n+1

, (4)
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where β is the deformation parameter, generally believed of O(1). Remarkably, in 4 dimensions (N = 3,
n = 0) the two principles coincide. The deformation parameter β, supposed independent from the
dimensions N , can be therefore chosen as the same for both principles.

2 Translation and rotation invariance of the GUPs

In this section we shall prove that the GUPs previously introduced do respect the constraints posed
by requiring the conventional translation and rotation invariance of the commutation relations. First,
we show what these kinematic constraints imply about the structure, in 4 + n dimensions, of the [x, p]
commutations relations. In this, we follow closely Ref. [8]. As a general ansatz for the x, p commutation
relation in 4 + n dimensions we take

[xi, pj ] = i h̄ Θij(p) (5)

and we require that Θij(p) differs significantly from δij only for large momenta. We assume also [pi, pj ] = 0
and we compute the remaining commutation relation through the Jacobi identities, obtaining

[xi, xj ] = ih̄{xa, Θ−1
ar Θs[iΘj]r,s} (6)

where {} are the anti-commutators and Q,s := ∂Q/∂s. The commutation relations (5) are translation
invariant (they are preserved under the transformations xi → xi + di, pi → pi). However, the com-
mutation relations (6) are not invariant under translation, unless we require Θij(p) to be such that it
yields [xi, xj ] = 0. Thus, in order to implement translation invariance, Θij must satisfy the necessary
and sufficient condition (read off from the (6))

Θia∂piΘbc = Θib∂piΘac (7)

where sum over i is understood. The rotation invariance can be implemented by requiring Θij to have
the form

Θij(p) = f(p2)δij + g(p2)pipj . (8)

Together, conditions (7) and (8) imply that f and g must satisfy the differential equation

2f ′f + (2p2f ′ − f)g = 0 (9)

where f ′(p2) = df/d(p2). Under these conditions, commutation relations do obey translation and rotation
invariance. Considering, for sake of simplicity, the mono-dimensional case i = j, we write for the main
commutator

[x, p] = ih̄(f(p2) + g(p2)p2) . (10)

The usual Heisenberg commutator is recovered by choosing, for example, f(p2) = 1. Then Eq.(9) implies
g(p2) = 0 and [x, p] = ih̄. The stringy inspired commutator is obtained, to the first order in β, by
choosing g(p2) = β (see [8]). Then, in fact, solving (9) (a Manfredi equation, in such case), we find

f(p2) =
βp2

√
1 + 2βp2 − 1

' 1 +
β

2
p2 + O((βp2)2) (11)

and, to the first order in β (or, equivalently, for small p) we have

[x, p] = ih̄

(
1 +

3
2
βp2 + O(β2)

)
. (12)

The MBH GUP (4) can be written in terms of momentum transferred as p δx >∼ h̄
2

(
1 + γp

n+2
n+1

)
where

γ = β(ωn)
1

n+1
(

2`4n

h̄

)n+2
n+1 and this in terms of commutators becomes

[x, p] = ih̄
(
1 + γp

n+2
n+1

)
. (13)
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To show that MBH GUP is translation and rotation invariant we must show that the commutator (13)
is of the same form of commutator (10) (when p → 0), with f and g satisfying (9) (in particular we
would like to have f(p2) → 1 for p → 0). However, the previous strategy, namely to fix a priori a
given form for g(p2) and then to compute f(p2) by solving (9) (as we did for HUP, g(p2) = 0, and for
stringy GUP, g(p2) = β), in this case does not work. Even if one puts p2g(p2) = γp(n+2)/(n+1), Eq.(9)
becomes however rather complicated (it is an Abel equation of 2nd kind), and hardly we can hope it
gives f(p2) → 1 for p → 0. Moreover, an explicit solution could not be so useful, since we are mainly
interested in an asymptotic behaviour. Therefore we ask the following general properties to be satisfied
by the functions f and g





[f(p2) + g(p2)p2] → [1 + γp
n+2
n+1 ] for p → 0

2f ′f + (2f ′p2 − f)g = 0 ,

(14)

We shall look if there actually exist f and g such that the above two properties can be simultaneously
satisfied. In this way the rotational and translational invariance of GUP (4) will result proved. In what
follows such solutions are proved to exist, provided we allow g to develop poles (of course, the function
f and the whole function f + gp2 remain perfectly finite).

In the differential equation (9) everything is function of p2 and f ′(p2) = df/d(p2). So, let’s set
y := p2 (y > 0, p = y1/2) and, to avoid fractionary powers, set also y

1
2(n+1) =: λ, y = λ2(n+1). Then

f ′(y) = 1
2(n+1)λ

−(2n+1)F ′(λ) , and the system (14) becomes




[F (λ) + G(λ)λ2(n+1)] → [1 + γλn+2] for λ → 0

F ′(λ)F (λ) + [λF ′(λ)− (n + 1)F (λ)]G(λ)λ2n+1 = 0 .
(15)

We have to see if the two conditions are compatible, and what this implies for f and g. To check this
compatibility we can use power series representations of the functions F (λ), G(λ). We allow G(λ) to
develop poles. Since the factor λ2(n+1) multiplies G(λ) in the boundary condition, we could allow poles
until λ−2(n+1) and still the combination [F + Gλ2(n+1)] would remain analytical. However, we’ll show
that the result can be obtained by allowing poles just until λ−n only. So we write

F (λ) =
∞∑

k=0

akλk and G(λ) =
∞∑

k=−n

bkλk . (16)

and we look for what the two conditions imply on the coefficients ak, bk. We have

F (λ) + G(λ)λ2(n+1) =
∞∑

k=0

(ak + bk−2(n+1))λk (17)

where bk−2(n+1) = 0 for k = 0, 1, 2, ..., n + 1 and b−n 6= 0, b−n+1 6= 0, etc.
At small λ we should have the matching, for λ → 0,

∞∑

k=0

(ak + bk−2(n+1))λk −→ 1 + γλn+2 . (18)

This means

k = 0; [a0 + b−2(n+1)] = 1 ⇒ a0 = 1
k = 1; [a1 + b1−2(n+1)] = 0 ⇒ a1 = 0
k = 2; [a2 + b2−2(n+1)] = 0 ⇒ a2 = 0

... ... ...

k = n + 2; [an+2 + b−n] = γ ⇒ (∗)
k = n + 3; [an+3 + b−n+1] = any quantity

... ... ... (19)
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(*) here at least b−n is 6= 0, therefore at least b−n can be chosen equal to γ.
Now let’s see if the conditions on ak, bk just found above, required by the first of Eqs.(15), are com-
patible with those required by the differential equation (15). Since F ′(λ) =

∑∞
k=0(k + 1)ak+1λ

k,
G(λ) =

∑∞
k=−n bkλk =

∑∞
k=0 bk−nλk−n (with b−n 6= 0, b−n+1 6= 0,..., b0 6= 0), we have F (λ)F ′(λ) =∑∞

k=0 Ckλk, G(λ)F ′(λ) =
∑∞

k=0 Dkλk−n, F (λ)G(λ) =
∑∞

k=0 Ekλk−n, where Ck =
∑k

q=0(q+1)ak−qaq+1,

Dk =
∑k

q=0(q + 1)bk−n−qaq+1, Ek =
∑k

q=0 ak−qbq−n and the differential equation (15) becomes

∞∑

k=0

[
Ckλk + Dkλk+n+2 − (n + 1)Ekλk+n+1

]
= 0 (20)

Reshuffling indexes a bit in Eq.(20) we get
∞∑

k=0

[Ck + Dk−n−2 − (n + 1)Ek−n−1] λk = 0 (21)

where D−n−2 = 0, D1−n−2 = 0, ..., D−1 = 0, and E−n−1 = 0, E1−n−1 = 0, ..., E−1 = 0, and
it is easy to see that these relations are direct consequences of the definitions for bk in Eq.(17) and
of relations (19). Equation (21) can be satisfied only if all the coefficients of λk are identically zero.
We can now check explicitly that this requirement is in full agreement with conditions (19). In fact:
k = 0; C0 + D−n−2 − (n + 1)E−n−1 = a0a1 = 0 ⇒ a1 = 0 (since a0 = 1) and this agrees with (19).
And then k = 1; C1 + D1−n−2 − (n + 1)E1−n−1 = a1a1 + 2a0a2 = 0 ⇒ a2 = 0 (since a0 = 1) and this
agrees with (19). Again, for k = 2 we have C2 + D2−n−2 − (n + 1)E2−n−1 = 0 ⇒ a3 = 0 and so on for
k = 3, 4, .... For k = n we find an+1 = 0 in agreement with (19). For k = n + 1 we have

Cn+1 + D−1 − (n + 1)E0 =
n+1∑
q=0

(q + 1)an+1−qaq+1 − (n + 1)
0∑

q=0

a0−qbq−n = (n + 2)a0an+2 − (n + 1)a0b−n = 0

Since a0 = 1, then (n + 2)an+2 − (n + 1)b−n = 0 and this equation is compatible with the ”k = n + 2”
condition of (19). In fact, we have two equations in two unknowns

(n + 2)an+2 − (n + 1)b−n = 0 and an+2 + b−n = γ , (22)

which allow us to compute an+2 (the first non zero coefficient for F (λ), after a0 = 1) and b−n (pole of
order n of G(λ)). For the next case, k = n + 2, we don’t have evidently any problem, since Eq.(19)
simply gives (an+3 + b−n+1) =any quantity. Therefore any relation between an+3, b−n+1 required by the
differential equation in (15) is acceptable. Note moreover that if we allowed poles for G(λ) with a degree
less than n, we would find contradiction between the conditions (18)-(19), and the differential equation
in (15). Thus, we conclude that the two conditions (15) are compatible (if we allow G(λ) to develop
poles). So the MBH GUP, as well as the ST GUP, are translational and rotational invariant. Q.E.D.
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