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ABSTRACT

The problem of lifting space-time symmetries to auto-~
morphisms of principal bundles is discussed. Bundles
admitting such lifts are classified for a case more
general than that considered by Harnsd,Shnider and
Vinet. Next, the classification of inveriant connec-
tions on bundles admitting 1lifts is performed. Final-
ly, & group-theoretical interpretation of the con-
gtraint equation for scalar fields appearing in the
dimensional reduction scheme is given and a method
for solving thia equation is shortly discussed.

0. INTRODUCTION

One of the interesting examples of field theories on
higher dimensionsl space-time (multidimensionsl universe) -
Usually referred to as Kaluza-Klein theories - is that of a
Pure Yang-Mills theory. After its dimensional reduction one
Obtains a gauge model which includes scalar fields, minimally
Coupled to the reduced gauge field and having & self inter-
8Ction term up to the fourth power in the fields /1-4/, see
8lso /5/ and references therein.

There were numerous attempts to construct by this method

Tealistic Higgs-models, for example, the bosonic sector of the
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Weinberg-Salam model /6,7/ or of grand unification models,
see /8/ and references therein.

It is well-known that the appropriate mathematical lan-
guage for studying problems related to this subject is that
of differential geometry: Gauge potentials are connection
forms on a principal bundle P(M,G) over space-time M with
gtructure (gauge) group G. The additional space-time symme-

try group K acts to the left on M:

d : KxM —m— M . (0.1)
Thus, the first question arising is: What is a K-invariant
gauge potential? To enswer this question one has to define 8

1ift of § +to the group of automorphisms Aut(P) of P :

6:XxP — = P , (0.2)

éke Aut(P), for all keK.
Unfortunately, such a 1ift does not always exist /9/, see 8l-
go /10,11/. No problems arise if the bundle is trivial or if
it is the frame bundle over M - therefore, for gravity this
problem does not occur.

A simple example demonstrating the existence of an ob~-
struction is the following: Consider the real line as a pri?”
cipal bundle RT(U(1),Z) over U(1) with structure group Z. FO¥
K take the discrete reflection group given by complex conju”
gation: f(z) = Z. Obviously, the unique bijective homomor-
phism %¢ of R1, which projects onto f is reflection with T€”
gspect to the origin: w(t) = -t . Now, observe that ¢ does

not commute with the right (principal) action of 2 on R,
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showing that % is not an automorphism of R1(U(1),Z), /9/,
Thus, one may formulate the following problem: Classify
all principal bundles P(M,G) with K-action (as automorphisms)
projecting on a given K-action on M. If K acts transitively
on M, the answer is well-known /9,12/. A general solution to
the problem is not known to us. In the first section we shall
give a generalizastion of the classical result (transitive ac-
tion), including but generalizing the case considered in /13/.
Our treatment will be based on /14/. In section 2 we shall
briefly discuss the classification of K~invariant connections
on bundles admitting 1ifts and comment on dimensional reduc-
tion of the gauge field action. As already mentioned at the
beginning, after dimensional reduction one obtains in sddi-
tion to the reduced gauge field = set of scalar fields. The-
Se fields have to fulfill a certasin (algebraic) constraint
equation, which can be interpreted in terms of group theory:
The set of scalar fields form an operator intertwining cer-
tain representations. Solving the constraint equation and fin-
ding the explicit form of the self interaction potential for
Scalar fields amounts to constructing this operator. In sec-
tion 3 we shall make some remarks on this problem. For a de-

teiled discussion we refer to /15/.

l._THE PROBLEM OF LIFTING SPACE-TIME SYMMETRIES

From the very beginning we restrict ourselves to the ca-~
Se when (0.2) treated as a mapping & : K — Aut(P), is a

hOmomorphism. If one drops this assumption, then the problem
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becomes very complicated - as a simple example discussed in
/16/ shows. Now, let K be a connected, compact Lie group.
Suppose that K acts on M to the left with one orbit type [ HJ
/17/, (LH) - conjugacy class of stabilizers of the K-action),
and that the bundle M — M/K admits a globsl section
s: M/K — M . (1.1)
This section can be chosen such that:
$(n,s(b)) = s(b) (1.2)
for all heH, beN/XK .
This shall be called the case of simple K-action. In /13/
the above clessification problem was solved for this case
under the additional assumption that M/K is contractible.
Let us denote ¥ := s(M/K) and ¥ := v~ (}). Obviously,
?(ﬁ,@) is a G-principal bundle over M. We denote the restric”
tion of the right group action ¥ and the canonical projec-
tion W to P by % and % and the vertical automorphisms
by Auto(ﬁ).

Proposition 13

Let there be chosen a section (1.1) satisfying (1.2).
1. Let P(M,G) be a G-principal bundle and & : K —s Aut(P)
an action of K on P projecting onto a simple action on M.
Then there exists & K-equivariant diffeomorphism
X:Kxg ¥ —w P , (1.3)
where K is treated as an H-principal bundle K(X/H,H).
2. Conversely, let & : K —— Diff(M) be a simple action
of K on M and let © be a G-principal bundle over M. Moreé~

over, let there be given a homomorphism:
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~

o

é: H ——» Auto(P) . (1.4)
Then P := K Xy 5 is naturally a G-principal bundle over
M and the naturasl action of K on P is a homomorphism

6 : K —— Aut(P), projecting onto & .
Proof: See /14/ .

This Proposition reduces the 1lift problem for simple
K-gction to the problem of analyzing the structure of princi-
pal bundles ?(ﬁ,G) admitting homomorphisms (1.4). We are able
to solve this problem only after meking an additional regula-
rity assumption. First, obaerve that 2 defines (and is com-
bletely characterized by) a mapping 7T : H x 5 — G, given
by:

8@ = T 5)(® 4 nen, Fe¥. (1.5)

For every 7, 'tf t: H-—wG , is a group homomorphism. Now,

denote T, 1= T% for a fixed ﬁoe’i and assume that for

every ﬁ there exgsta a g(P) with

T - g(3) T e . (1.6)
Clearly, this assumption does not imply any restriction on
the action of X on M - but, nevertheless, it would be inte-

resting to drop it and try to investigate the general case.

Pinally, let us denote the centralizer of ?B(H) in G by C.

Proposition 2:

o~ A o~ ad
1. Let P(M,G) be a principal bundle and &: H — Aut _(F)
a homomorphism satisfying (1.6). Then P is reducible to

A
a principal subbundle P over M with structure group C,
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Moreover, there exists a G-equivsariant diffeomorphism

~

X:G6x. P — P , (1.7)

C
where G is treated as a C-principal bundle G(G/C,C).

2. Conversely, let @(ﬁ,C) be a C-principal bundle and
ﬂfoe:Hom(H,G). Then P := G X $ is naturally a G-prin-
cipal bundle over ﬁ, % a subbundle, and there exists a
natural howmomorphism e: H —-4-Aut0(§), gatisfying
(1.6).

Proof: See /14/ .

It follows from this Proposition that & homomorphism
(1.4) satisfying (1.6) is implementable iff P is reducible
to ?. This has been already shown in /18/. As & result of
our discussion we obtain that bundles admitting lifts of
simple group actions are (for a fixed immersion of'ﬁ) clas~
gified by peirs (130,?), with P being in general - of cour-
se - non-trivial. In the case considered in /13/ bundles
admitting lifts were (for a fixed immersion) - as in the
trangitive case - classified just by homomorphism 4?6 .

In the next section we shall perform the classification of

K-invariant connections on bundles of the above type.

2., CLASSIFICATION OF XK-~INVARTANT GAUGE POTENTIALS

A K-invariant gauge potentiml is a connection form
on P satisfying
®
¢, % = , for all kekK . (2.1)
First, observe that a connection satisfying (2.1) is com-~

pletely given by its values on ?2 Now, let us fix an AdK~
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invariant scalar product on k (Lie algebra of K) and take
the corresponding orthogonal (reductive) decomposition:
=Hh > Y, (2.2)
with 4 being the Lie algebra of the stabilizer H. Obvious-
ly, (2.2) induces naturally a connection in K(X/H,H), which
in turn induces a connection in the associated bundle K xﬁg.
Taking its image under X gives a splitting of the tangent
bundle TP:

N g .
1e = in? @ ex(tyn § , (2.3a)

with p = ¢(k,P) and é\ﬁ('ia:") being the subspace spanned by
Killing vectors of the lifted group action. The decomposi-
tion of 1-forms corresponding to (2.3a)will be denoted by

o= O(,v + o(/h - (2-3b>

Proposition 3:

1. A connection form ¢ on P is completely characterized by
a pair (%,&;’ ), with

~ v . : ~
a) w:i= [wf, being a connection form on P,

~

b) (D) := é‘%’@hrﬁ being an eguivariant mapping

25‘ P — (Ybﬂ*@ (> (2.48)
¥ o"‘ng - adg e F , get. (2.4b)
2. A K-invariant connection form & is characterized by a
pair (&, 35 ) satisfying:
a) Z\gamaﬁ , (2.5a)

b) $(F)eAdh = Ad%(h)»&'ﬁ) , for all heH . (2.5b)

Proof: See /3,4/.
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Now, (2.5a) means exactly that 5{@ has to take values

in C and, therefore, we have:

Propogition 4:

A K-invariant connection form is in 1-1-correspondence with

a pair (&, &) , with

AREEN T (2.6a)
$:= 5{@, , satisfying (2.6b)
$(5) o adn = aa =, (n) p(H) . (2.60)

Proof: See /3,4/ .

We see that K-invariant gauge potentisls are in a natu-
ral way characterized by objects living on the bundle % ob-
tained in section 1. In order to consider field dynamicg oné
needs an additional structure, namely a (pseudo)-Riemannian
metric ¥ on M. Dimensional reduction of the gauge field ac~
tion is possible if one assumes ¥ to be also K-invariant:

815:& , for all k €K. (2.72)
Let us restrict ourselves here to the simplest case when,
additionally, the splitting
TeM = T%"M @ 8\%(43*) , ¥el , (2.7b)
is orthogonal with respect to j§ . ( 8%(@#) is the space
tangent to the K-orbit through ¥.) One can show easgily tha? &
sufficient condition for (2.7b) to be orthogonal with respec?t
to § is that W/H (N - normalizer of H in K) is a discrete

group. Under this additional assumption one obtains:
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Proposition 5t

The canonical action of the pure Yang-Mills theory on P re-
duces - due to K-invariance (2.1) and (2.7) - to the follo-
~
wing action on P:
& A P ~ ~N A
S = /% {«51,9?_>>(1) + 1/2%08,0$P,y - V(§)} avy , (2.8)
P
A " A~
where S¢ is the curvature form of & , D the covariant

derivative of & with regpect to & and

V(E) = -<KR(ENR (I Dy (2.92)
W $) = 1/2008,8 - Fel,Ine - oL Inped, (2aow)

T 43 — & being the Lie algebra homomorphism induced by

H

't'o. Moreover, <<"'>>(i) denote the scalar products in the
8paces of horizontal forms on /13 with values in ¢ , (/b“-)*@%
and /7((‘3*)*(&% respectively.

Proof: See /4/, (but, restricted to a subbundle of P over a
contractible piece of rIVI (2.8) is identical with the result
Obtained in /1,2/.)

In /4/ we performed the reduction of the gauge field
action without the above mentioned orthogonality assumption.
In that case additional terms in the reduced action appear,
describing non-minimal interaction of gauge and Higgs fields.
For similar results see also /5/. For an application of the-
Se fibre bundle reduction techniques to gravitational theo-~
Ties see /19/.

It would be interesting to drop the asssumption thet

M —+ M/K admits a section and to do the classification of
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bundles admitting lifts of K-actions and of K-invariant con-
nections in this more general case. In /20/ the clagsifica-
tion of K-invariant connections for this case has been done

- but with the a priori assumption thaet a 1ift exists.

3. REMARKS ON THE CONSTRAINT EQUATION FOR SCALAR FIELDS

AND MODEL BUILDING

In this section we assume the groups G and K to be simp-
le. Then there are unique, up to a constant, Ad~invariant sc8”
lar products on ¢ and R , which we denote by < , > and

(+,) . Due to (2.9) - the potentisl V($) is formally of
fourth power in ¢ . Its explicit form, however, can be
found only after solving the constraint equation (2.6¢). Thif
equation has the following group theoretical interpretation:
&5 is an operator intertwining the representations Adehiﬁ)
and AthH(Qfﬁ. Thus, solving (2.6¢) means constructing t%is
intertwining operator explicitely. Technically, it is more
convenient to use the infinitesimal version of (2.6¢)
ad (- )e B(H) = $(Pleaa( ) . (3.1)
It is also useful to complexify the Lie algebras q,and ®
and to continue $ linearly to the complexified algebras:
$®(u1 + iug) 1= $(u1) + i$(u2) s Uqy Up € 'b“‘. (3.28)
Then
3%w = 3%m , uwe T, (3.20)
with "bar" denoting complex conjugation, Obvioualyy?$$ ful-
fills (3.1). Continuing this equation linearly to ,%c we get

ad'z?(’g¢)o$" = c’fvwoad/gm . (3,20)
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If one has constructed an operator &:@, gatisfying
(3.2¢), then one obtains $ satisfying (3.1) by restricting
$® to 43} c(/b‘L)m. In /7/ there has been proposed a nice
graphical method to solve (3.2¢), based on a graphicsl re-
Pregentation of the lattice of positive roots of Lie alge-
bras. Moreover, the authors of /7/ investigated the case
K/H being symmetric quite in detail. They found - provided
T is injective and the subalgebras /bc’k and 'z:’[da)c% are
regular - that in this case one has one irreducible multiplet
of geslar fields. They discussed also several options for
tonstructing the bosonic sector of the Weinberg~Salam mo-
del and found that - under the above assumptions - the best
one is choosing K/H = CP" and G = Sp(m+1). In that case
One gets for the Weinberg angle
3in®Q = 1/(m+1) , (3.3)
Which gives reasonable values for m=3 or m=4. If one assu-
Mes additionally /15/ that the symmetric space is of rank 1,

then one gets a nice geometrical formula for the potential:

Eroposition 6:

Let K/H be symmetric, rank(K/H) = 1, ‘b - simple, T -
injective and the subalgebras ¢ ck and 'C'\(g)cg regular,.Then
V(&) = (1 - 1/6819)2¢ex% R, (3.4)
Where R is the scalar curvature of K/H corresponding to y .
Moreover, £ denotes the ratio of indices of 't’(/%) in O&
8ngd of Ah in & , snd m is defined by
(Q* - 2 . . . .

S B ge= - /m° e (3.5)
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Proof: See /15/ .
An interesting exampls of this type is:
s0(1+1)/s0(1) = st (3.62)

S0(1+p) . (3.6b)

XK/H

1

G

]

For p=3 , one gets the bosonic sector of the Georgi-Glashow
model and one can estimate the Higgs and the "t Hooft-Polys-

kov monopole maas in terms of the above parameters:

my = mV(1-1). 2’ (3.78)

myon, = (47/g2)VT-m-c(2(1-1)/1) , (3.70)
with ¢ being a slowly varying function given in /22/.

For a discussion of the case K/H ~ not symmetric and
(or) ®° - not injective we refer to /15/. It turns out that
in this case one gets interesting new possibdilities of model

building.
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