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ABSTRACT 

The problem of lifting space-time symmetries to auto- 

morphisms of principal bundles is discussed. Bundles 

admitting such lifts are classified for a case more 

general than that considered by Harnsd,Shnider and 

Vinet. Next, the classification of invariant connec- 

tions on bundles admitting lifts is performed. Final- 

ly, a group-theoretical interpretation of the con- 

straint equation for scalar fields appearing in the 

dimensional reduction scheme is given and a method 

for solving this equation is shortly discussed. 

0~m INTRODUCTION 

One of the interesting examples of field theories on 

higher dimensional space-time (multidimensional universe) - 

~Sually referred to as Kaluza-Klein theories - is that of a 

~U~e Yang-Mills theory. After its dimensional reduction one 

obtains a gauge model which includes scalar fields, minimally 

COUpled to the reduced gauge field and having a self inter- 

action term up to the fourth power in the fields /I-4/, see 

also /5/ and references therein. 

There were numerous attempts to construct by this method 

realistic Higgs-models, for example, the bosonic sector of the 
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Weinberg-Salam model /6,7/ or of grand unification models, 

see /8/ and references therein. 

It is well-known that the appropriate mathematical lan- 

guage for studying problems related to this subject is that 

of differential geometry: Gauge potentials are connection 

forms on a principal bundle P(M,G) over space-time M with 

structure (gauge) group G. The additional space-time symme- 

try group K acts to the left on M: 

~ : K x M ~ M . (0.1) 

Thus, the first question arising is: What is a K-invariant 

gauge potential? To answer this question one has to define a 

lift of ~ to the group of automorphisms Aut(P) of P : 

4 : K x P - - ~  P , (0.2) 

~k ~Aut(P)' for all kaK. 

Unfortunately, such a lift does not always exist /9/, see al" 

so /10,11/. No problems arise if the bundle is trivial or if 

it is the frame bundle over M - therefore, for gravity this 

problem does not occur. 

A simple example demonstrating the existence of an ob- 

struction is the following: Consider the real line as a pri~" 

cipal bundle RI(u(1),~) over U(1) with structure group Z. Fo~ 

K take the discrete reflection group given by complex conjU" 

gstion: f(z) = E. Obviously, the unique bijective homomor- 

phism ~t of R I, which projects onto f is reflection with re~ 

spect to the origin:~.(t) = -t . Now, observe that ~ does 

not commute with the right (principal) action of ~ on R I , 
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~howing that ~ is not an automorphism of RI(u(1),~)~ /~/, 

Thus, one may formulate the following problem: Classify 

all principal bundles P(M,G) with K-action (as automorphisms) 

Projecting on a given K-action on M. If K acts transitively 

on M, the answer is well-known /9,12/. A general solution to 

the problem is not known to us. In the first section we shall 

give a generalization of the classical result (transitive ac- 

tion), including but generalizing the case considered in /13/. 

Our treatment will be based on /14/. In section 2 we shall 

briefly discuss the classification of K-invariant connections 

on bundles admitting lifts and comment on dimensional reduc- 

tion of the gauge field action. As already mentioned at the 

beginning, after dimensional reduction one obtains in addi- 

tion to the reduced gauge field a set of scalar fields. The- 

~e fields have to fulfill a certain (algebraic) constraint 

equation, which can be interpreted in terms of group theory: 

The set of scalar fields form an operator intertwining cer- 

tain representations. Solving the constraint equation and fin- 

ding the explicit form of the self interaction potential for 

~calar fields amounts to constructing this operator. In sec- 

tion 3 we shall make some remarks on this problem. For a de- 

tailed discussion we refer to /15/. 

1~m_ THE PROBLEM OF LIFTING SPACE-TI~E S¥~ETRIES 

Prom the very beginning we restrict ourselves to the ca- 

~e when (0.2) treated as s mapping ~ : K ~ Aut(P), is a 

homomorphism. If one drops this assumption, then the problem 
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becomes very complicated - as a simple example discussed in 

/16/ shows. Now, let K be a connected, compact Lie group. 

Suppose that K acts on M to the left with one orbit type [H~ 

/17/, ([HI - conjugacy class of stabilizers of the K-action), 

and that the bundle M ~ M/K admits a global section 

s: M/K ~ ~ . (1.1) 

This section can be chosen such that: 

(h,s(b)) = s(b) , (I .2) 

for all h~H, beM/K . 

This shall be called the case of simple K-action. In /13/ 

the above classification problem was solved for this case 

under the additional assumption that M/K is contractible. 

Let us denote~ := s(M/K) and ~ := ~-I(~). Obviously, 

~(M,G) is a G-principal bundle over ~. We denote the restri c~ 

tion of the right group action ~ and the canonical projec ~ 

tion~ to P by ~ and ~ and the vertical automorphisms 

by o 

Proposition I: 

Let there be chosen a section (1.1) satisfying (1.2). 

I. Let P(M,G) be a G-principal bundle and @ : K ~ Aut(P) 

an action of K on P projecting onto a simple action on M" 

Then there exists a K-equivariant diffeomorphism 

: K x H ~ - P , (I .3) 

where K is treated as an H-principal bundle K(K/H,H). 

2. Conversely, let ~ : K ~ Diff(M) be a simple action 

of K on M and let ~ be a G-principal bundle over ~. ~ore- 

over, let there be given a homomorphism: 
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^ ~) 
4 : H , A u t o (  . ( 1 . 4 )  

Then P := K x H P i s  n a t u r a l l y  a G - p r i n c i p a l  bund le  o v e r  

M and the natural action of K on P is a homomorphism 

4 : K ~ Aut(P), projecting onto ~ . 

P_roof: See /14/ . 

This Proposition reduces the lift problem for simple 

K-action to the problem of analyzing the structure of princi- 

Dal bundles ~(M,G) admitting homomorphisms (1.4). We are able 

to solve this problem only after making an additional regula- 

rity assumption. First, observe that ~ defines (and is com- 

Pletely characterized by) a mapping ~ : H x ~ ----~ G, given 

by : 

h(p) = ~ ( h , ~ ) ( ~ )  , h~H, ~P . (1.~) 
t ~  

~or  e v e r y  p,  ~ : H ~ G , i s  a g roup  homomorphism. Now, 

denote  ~o := ~ o  f o r  a f i x e d  ~o G ~ and assume t h a t  f o r  

every ~ there exists a g(~) with 

= g~p . (I .6) 

Clearly, this assumption does not imply any restriction on 

the action of K on M - but, nevertheless, it would be inte- 

resting to drop it and try to investigate the general case. 

~inally, let us denote the centralizer of ~o(H) in G by C. 

P.~oDos ition 2: 

I. Let ~(M,G) be a principal bundle and ~: H ~ Auto(~) 

a homomorphism satisfying (1.6). Then P is reducible to 

a principal subbundle P over M with structure group C. 
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Moreover, there exists a G-equivariant diffeomorphism 

~c. G x C P ~- P , (1.7) 

where G is treated as a C-principal bundle G(G/C,C). 

2. Conversely, let P(M,C) be a C-principal bundle and 
A 

"~oeHom(H,G). Then P := G x C P is naturally a G-prin- 
A 

cipal bundle over M, P a subbundle, and there eXists a 

natural homomorphism ~ : H ~ Auto(~), satisfying 

( 1 . 6 ) .  

Proof: See /14/ • 

It follows from this Proposition that a homomorphism 
t~ 

(1.4) satisfying (1.6) is implementable iff P is reducible 

A 

to P. This has been already shown in /18/. As a result of 

our discussion we obtain that bundles admitting lifts of 

simple group actions are (for a fixed immersion of ~) clas- 

sified by pairs (~o,~), with ~ being in general - of cour- 

se - non-trivial. In the case considered in /13/ bundles 

admitting lifts were (for a fixed immersion) - as in the 

transitive case - classified just by homomorphism ~v o . 

In the next section we shall perform the classification of 

K-Invariant connections on b~ndles of the above type. 

2. CLASSIFICATION OF K-INVARIANT GAUGE POTENTIALS 

A K-invariant gauge potential is a connection form @ 

on P satisfying 

~k ~ = ~ , for all keK . (2.1) 

First, observe that a connection satisfying (2.1) is com- 

pletely given by its values on P. Now, let us fix an AdK- 
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invariant scalar product on l~ (Lie algebra of K) and take 

the corresponding orthogonal (reductive) decomposition: 

= ~ ® , ~  , (2 .2)  

with ~ being the Lie algebra of the stabilizer H. Obvious- 

ly, (2.2) induces naturally a connection in K(K/H,H), which 

in turn induces a connection in the associated bundle K XHP. 

Taking its image under D~ gives a splitting of the tangent 

bundle TP: 

TpP = & k [ T#P (~ ( ~ )  ~ , (2.3a) 

with p = 6(k,p and g (~) being the subspace spanned by 

Killing vectors of the lifted group action. The decomposi- 

tion of l-forms corresponding to (2.3~will be denoted by 

~= ~v + ooh . (2.3b) 

P~ropositi0n ~: 

I. A connection form ~ on P is completely characterized by 

a pair (~,~), wit~ 

a) ~ := ¢¢v~ being a connection form on P, 

b) ~(~) := 8~o~h~ being an equivariant mapping 

"4;, '~ ~ ( T ) * ~  '~ • (2.4a) 
$° V~ = A'~g-lo ~ , g~Q. (2.4b) 

2. A K-invariant connection form ~ is characterized by a 

pair (~, ~) satisfying: 

a)  ~'~'~=~ , ( 2 . 5 a )  

b) $(~)oAdh = Adt'~(h)°~(~) , for a11 hEH . (2.5b) 

P~oof : See 13,4/. 
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Now, (2.5a) means exactly that ~ has to take values 

in C and, therefore, we have: 

Proposition 4: 

A K-invariant connection form is in l-l-correspondence with 

a pair ( a, $) , with 

$ := ~I~ , satisfy,~g (2.6b) 

~(~)  o Adh = Ad q'o(h)o$(~) , ( 2 . 6 0 )  

Proof :  See / 3 , 4 /  • 

We see that K-invariant gauge potentials are in a natu- 
A 

ral way characterized by objects living on the bundle P ob- 

tained in section I. In order to consider field dynamics one 

needs an additional structure, namely a (pseudo)-Riemannian 

metric ~ on M. Dimensional reduction of the gauge field ac- 

tion is possible if one assumes ~ to be also K-invariant: 

~ k ~ = $  , for a l l  k eK. (2 .7a)  

Let us restrict ourselves here to the simplest case when, 

additionally, the splitting 

~ M  = ~ ® ~ ( ~  ) , ~ M  , (2.7b) 
k 

is orthogonal with respect to ~. (~2(~ ~) is the space 

tangent to the K-orbit through ~,) One can show easily that s 

sufficient condition for (2.75) to be orthogonal with respect 

to ~ is that N/H (N - normalizer of H in K) is a discrete 

group. Under this additional assumption one obtains: 
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P_roposition 5: 

The canonical action of the pure Yang-Mills theory on P re- 

duces - due to K-invariance (2.1) and (2.7) - to the follo- 
A 

wing action on P: 

+ 

P 

w h e r e ~  i s  t he  c u r v a t u r e  form o f  ~ , D $  the  c o v a r i a n t  

d e r i v a t i v e  o f  $ w i t h  r e s p e c t  t o  ~ and 

v($) = -~(¢),~(¢)>>(3) , (2.9a) 

~: ~ ---~ ~ being the Lie algebra homomorphism induced by 

~o" Noreover, <<"'>>(i) denote the scalar products in the 

Spaces of horizontal forms on P with values in ~ ,( 

and ~(~)~®0~ respectively. 
A 

P.~_~oof: See /4/, (but, restricted to a subbundle of P over a 

Contractible piece of M (2.8) is identical with the result 

- v(¢)] dv~ , (2.8) 

obtained in /1,2/.) 

In /4/ we performed the reduction of the gauge field 

action without the above mentioned orthogonality assumption. 

In that case additional terms in the reduced action appear, 

describing non-minimal interaction of gauge and Higgs fields. 

For similar results see also /5/. For an application of the- 

se fibre bundle reduction techniques to gravitational theo- 

Ties see /19/. 

It would be interesting to drop the assumption that 

~---* N/K admits a section and to do the classification of 
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bundles admitting lifts of K-actions and of K-invariant con- 

nections in this more general case. In /20/ the classifica- 

tion of K-invariant connections for this case has been done 

- but with the a priori assumption that a lift exists. 

3. REMARKS ON THE CONSTRAINT EQUATION FOR SC%L~ FIELDS 

AND MODEL BUILDING 

In this section we assume the groups G and K to be simp ~ 

le. Then there are unique, up to a constant, Ad-invariant scS~ 

lar products on ~ and I% , which we denote by ~ , ~ and 

(-,) . Due to (2.9) - the potential V(~) is formally of 

fourth power in ~ . Its explicit form, however, can be 

found only after solving the constraint equation (2.6c). This 

equation has the following group theoretical interpretation: 

¢ is an operator intertwining the representations Ad61~(H ) 

and AdK~H(~A). Thus, solving (2.6c) means constructing this 

intertwining operator explicitely. Technically, it is more 

convenient to use the infinitesimal version of (2.6c) : 

ad'G~( • ) Q ~ ( ~ ) =  ~ ( ~ ) o a d (  • ) . (3 .  1 ) 

It is also useful to complexify the Lie algebras ~ and % , 

and to continue $ linearly to the complexified algebras: 

$ ¢ ( U  1 + i u  2) := ¢ (U 1) + i ~ ( u  2) , 

Then 

u 1 ,  u 2 e 

(3.2b) 
with "bar" denoting complex conjugation. Obviously, $¢ ful ~ 

fills (3.1). Continuing this equation linearly to ~ we get 

: . ( 3 . 2 ° )  
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If one has constructed an operator ~8, satisfying 

(3.2c), then one obtains $ satisfying (3.1) by restricting 

$~ to ~A ~(~)¢. In /7/ there has been proposed a nice 

graphical method to solve (3.2c), based on a graphical re- 

Presentation of the lattice of positive roots of Lie alge- 

bras. Moreover, the authors of /7/ investigated the case 

K/H being symmetric quite in detail. They found - provided 

~ is injective and the subalgebras ~c~ and ~)¢~ are 

regular - that in this case one has one irreducible multiplet 

of scalar fields. They discussed also several options for 

Constructing the bosonic sector of the Weinberg-Salam mo- 

del and found that - under the above assumptions - the best 

one is choosing K/H = cpm and G = Sp(m+1). In that case 

one gets for the Weinberg angle 

Sin2~w = I/(m+I) , (3.3) 

Which gives reasonable values for m=3 or m=4. If one assu- 

mes additionally /15/ that the symmetric space is of rank I, 

then one gets a nice geometrical formula for the potential: 

Pr~osition 6: 

Let K/H be symmetric, rank(K/H) = 1, ~ - simple,~7 ~- 

InJective and the subalgebras ~ cQ and ~(~)c~ regular. Then 

V ( ~ )  = (1 - 1 / ¢ . l ~ i 2 ) ~ m 2 " R  , ( 3 . 4 )  

~here R is the scalar curvature of K/H corresponding to ~ . 

~Oreover, E denotes the ratio of indices of ~(~) in 

a~d of ~ in Q , and m is defined by 

(~)~ )~x=- 1/m 2 ( , )~ . (3.5) 



496 

Proof: See /15/ . 

An interesting example of this type is: 

K/H = SO(I+I)/SO(1) = S 1 , (3.6a) 

G = SO(l+p) . (3.6b) 

For P=3 , one gets the bosonic sector of the Georgi-Glashow 

model and one can estimate the Higgs and the "t Hooft-Polys- 

kov monopole mass in terms of the above parameters: 

m H = 2 '  (3.7a) 

mmon. = (4~/g2)~.m c(2(1-I)/I) , (3.7b) 

with c being a slowly varying function given in /22/. 

For a discussion of the case K/H - not symmetric and 

(or) T\ - not injective we refer to /15/. It turns out that 

in this case one gets interesting new possibilities of model 

building. 
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