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THE PHASES OF QCD IN HEAVY-ION
COLLISIONS AND COMPACT STARS

KRISHNA RAJAGOPAL
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Cambridge, Massachusetts, USA

I review arguments for the existence of a critical point £ in the QCD phase diagram
as a function of temperature 7 and baryon chemical potential . I describe how heavy-
ion collision experiments at the SPS and RHIC can discover the tell-tale signatures of
such a critical point, thus mapping this region of the QCD phase diagram. I then review
the phenomena expected in cold dense quark matter: color superconductivity and color—
flavor locking. I close with a snapshot of ongoing explorations of the implications of recent
developments in our understanding of cold dense quark matter for the physics of compact
stars.

The QCD vacuum in which we live, which has the familiar hadrons as its
excitations, is but one phase of QCD, and far from the simplest one at that.
One way to better understand this phase and the nonperturbative dynamics
of QCD more generally is to study other phases and the transitions between
phases. We are engaged in a voyage of exploration, mapping the QCD
phase diagram as a function of temperature 7" and baryon number chemical
potential . Because QCD is asymptotically free, its high temperature
and high baryon density phases are more simply and more appropriately
described in terms of quarks and gluons as degrees of freedom, rather than
hadrons. The chiral symmetry breaking condensate which characterizes the
vacuum phase melts away. At high temperatures, in the resulting quark-
gluon plasma (QGP) phase all of the symmetries of the QCD Lagrangian
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are unbroken and the excitations have the quantum numbers of quarks and
gluons. At high densities, on the other hand. quarks form Cooper pairs
and new condensates develop. The formation of such superconducting
phases [1-5] requires only weak attractive interactions: these phases may
nevertheless break chiral symmetry [S] and have excitations with the same
quantum numbers as those in a confined phase [5-8]. These cold dense
quark matter phases may arise in the core of neutron stars; mapping
this region of the phase diagram requires an interplay between theory
and astrophysical observation. We describe efforts in this direction in
Section IV. A central goal of the experimental heavy ion physics program
is to explore and map the higher temperature regions of the QCD phase
diagram. Recent theoretical developments suggest that a key qualitative
feature, namely a critical point which in a sense defines the landscape
to be mapped, may be within reach of discovery and analysis as data is
taken at several different energies [9, 10]. The discovery of the critical
point would transform this region of the map of the QCD phase diagram
from one based only on reasonable inference from universality, lattice
gauge theory and models into one with a solid experimental basis.

I. THE CRITICAL POINT

We begin our walk through the phase diagram at zero baryon number
density, with a brief review [11] of the phase changes which occur as
a function of temperature. That is, we begin by restricting ourselves to
the vertical axis in Figures 1 through 4. This slice of the phase diagram
was explored by the early universe during the first tens of microseconds
after the big bang and can be studied in lattice simulations. As heavy ion
collisions are performed at higher and higher energies, they create plasmas
with a lower and lower baryon number to entropy ratio and therefore
explore regions of the phase diagram closer and closer to the vertical axis.

In QCD with two massless quarks (mya = 0; mg = oo; Figure 1)
the phase transition at which chiral symmetry is restored is likely second
order and belongs to the universality class of O(4) spin models in three
dimensions [12]. Below T, chiral symmetry is broken and there are three
massless pions. At T = T, there are four massless degrees of freedom: the
pions and the sigma. Above T = T,, the pion and sigma correlation lengths
are degenerate and finite. In nature, the light quarks are not massless.
Because of this explicit chiral symmeltry breaking, the second order
phase transition is replaced by an analvtical crossover: phveice chanoec
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FIGURE 1. QCD Phase diagram for two massless quarks. Chiral symmetry is broken in the
hadronic phase and is restored elsewhere in the diagram. The chiral phase transition changes
from second to first order at a tricritical point. The phase at high density and low temperature
is a color superconductor in which up and down quarks with two out of three colors pair
and form a condensate. The transition between this 2SC phase and the QGP phase is likely
first order. The transition on the horizontal axis between the hadronic and 2SC phases is first
order. The transition between a nuclear matter “liquid” and a gas of individual nucleons is
also marked; it ends at a critical point at a temperature of order 10 MeV, characteristic of
the forces which bind nucleons into nuclei.

dramatically but smoothly in the crossover region, and no correlation
length diverges. Thus, in Figure 2, there is no sharp boundary on the
vertical axis separating the low temperature hadronic world from the high
temperature quark-gluon plasma. This picture is consistent with present
lattice simulations [13, 14], which suggest T, ~ 140 — 190 MeV [15, 14].

Arguments based on a variety of models [16, 17, 3, 4, 18, 19] indicate
that the chiral symmetry restoration transition is first order at large w.
(In Section III, we describe the color superconducting (2SC) phase of
cold dense quark matter which occurs at values of w above this first
order transition; the fact that this is a transition in which two different
condensates compete strengthens the argument that this transition is first
order {18, 20].) This suggests that the phase diagram features a critical
point £ at which the line of first order phase transitions present for
@ > wg ends, as shown in Figure 2.* At up, the phase transition is

*If the up and down quarks were massless, E would be a tricritical point [21], at which
the first-order transition becomes second order. See Figure 1.
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FIGURE 2. QCD phase diagram for two light quarks. Qualitatively as in Figure |, except
that the introduction of light quark masses turns the second order phase transition into a
smooth crossover. The tricritical point becomes the critical endpoint £, which can be found
in heavy ion collision experiments.

second order and is in the Ising universality class [18, 19]. Although the
pions remain massive, the correlation length in the o channel diverges
due to universal long wavelength fluctuations of the order parameter. This
results in characteristic signatures, analogues of critical opalescence in the
sense that they are unique to collisions which freeze out near the critical
point, which can be used to discover E [9, 10].

Returning to the p = O axis, universal arguments [12], again backed
by lattice simulation [13], tell us that if the strange quark were as light
as the up and down quarks, the transition would be first order, rather than
a smooth crossover. This means that if one could dial the strange quark
mass mg, one would find a critical m¢ at which the transition as a function
of temperature is second order [22, 11]. Figures 2, 3 and 4 are drawn
for a sequence of decreasing strange quark masses. Somewhere between
Figures 3 and 4, m; is decreased below m$ and the transition on the
vertical axis becomes first order. The value of m¢ is an open question, but
lattice simulations suggest that it is about half the physical strange quark
mass [23, 24]. These results are not yet conclusive [25] but if they are
correct then the phase diagram in nature is as shown in Figure 3, and the
phase transition at low p is a smooth crossover.
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FIGURE 3. QCD phase diagram for two light quarks and a strange quark with a mass
comparable to that in nature. The presence of the strange quark shifts E to the left, as
can be seen by comparing with Figure 2. At sufficiently high density, cold quark matter is
necessarily in the CFL phase in which quarks of all three colors and all three flavors form
Cooper pairs. The diquark condensate in the CFL phase breaks chiral symmetry, and this
phase has the same symmetries as baryonic matter which is dense enough that the nucleon
and hyperon densities are comparable. The phase transition between the CFL and 2SC phases
is first order.

These observations fit together in a simple and elegant fashion. If we
could vary mg, we would find that as my is reduced from infinity to
m¢, the critical point E in the (T, u) plane moves toward the u = 0
axis [9]. This is shown in Figures 2-4. In nature, E is at some nonzero
Tg and pp. When my is reduced to m¢, between Figure 3 and Figure 4,
g reaches zero. Of course, experimentalists cannot vary mg. They can,
however, vary . AGS collisions with center of mass energy /s = 5 AGeV
create fireballs which freeze out near u ~ 500 — 600 MeV [26]. SPS
collisions with /s = 17 AGeV create fireballs which freeze out near
w ~ 200 — 300 MeV [26]. In time, we will also have data from SPS
collisions with /s = 9 AGeV and from RHIC collisions with /s = 56,
130 and 200 AGeV and other energies.* By dialing /s and thus u,
experimenters can find the critical point E.

*The first data from RHIC collisions at /s = 56 AGeV and /s = 130 AGeV have
already appeared [27]. This bodes well for the analyses to come.
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FIGURE 4. QCD phase diagram for three quarks which are degenerate in mass and which are
either massless or light. The CFL phase and the baryonic phase have the same symmetries
and may be continuously connected. The dashed line denotes the critical temperature at
which baryon-baryon (or quark-quark) pairing vanishes; the region below the dashed line
is superfluid. Chiral symmetry is broken everywhere below the solid line, which is a first
order phase transition. The question mark serves to remind us that although no transition
is required in this region, transition(s) may nevertheless arise as the magnitude of the gap
increases qualitatively in going from the hypernuclear to the CFL phase. For quark masses as
in nature, the high density region of the map may be as shown in Figure 3 or may be closer
to that shown here, albeit with transition(s) in the vicinity of the question mark associated
with the onset of nonzero hyperon density and the breaking of U(1)g [7].

II. DISCOVERING THE CRITICAL POINT

We hope that the study of heavy ion collisions will, in the end, lead
both to a quantitative study of the properties of the quark—gluon plasma
phase at temperatures well above the transition and to a quantitative
understanding of how to draw the phase transition region of the phase
diagram. Probing the partonic matter created early in the collision relies on
a suite of signatures, including the use of J/W¥ mesons, charmed mesons,
and perhaps the Y as probes; the energy loss of high momentum partons
and consequent effects on the high- pr hadron spectrum; and the detection
of photons and dileptons over and above those emitted in the later hadronic
stages of the collision. I will not review this program here. Instead, I focus
on signatures of the critical point. The map of the QCD phase diagram
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which T have sketched so far is simple, coherent and consistent with all
we know theoretically; the discovery of the critical point would provide an
experimental foundation for the central qualitative feature of the landscape.
This discovery would in addition confirm that in higher energy heavy ion
collisions and in the big bang, the QCD phase transition is a smooth
crossover. Furthermore, the discovery of collisions which create matter
that freezes out near E would imply that conditions above the transition
existed prior to freezeout, and would thus make it much easier to interpret
the results of other experiments which study those observables which can
probe the partonic matter created early in the collision.

We theorists must clearly do as much as we can to tell experimentalists
where and how to find E. The “where” question, namely the question of
predicting the value of g and thus suggesting the /s to use to find E, is
much harder for us to answer. First, as we stress further in the next Section,
ab initio analysis of QCD in its full glory—i.e., lattice calculations—are
at present impossible at nonzero p. We must therefore rely on models.
Second, an intrinsic feature of the picture we have described is that wg is
sensitive to the mass of the strange quark, and therefore particularly hard
to predict. Crude models suggest that pp could be ~ 600 — 800 MeV
in the absence of the strange quark {18, 19]; this in turn suggests that
in nature pz may have of order half this value, and may therefore be
accessible at the SPS if the SPS runs with /s < 17 AGeV. However, at
present theorists cannot predict the value of pg even to within a factor of
two. The SPS can search a significant fraction of the parameter space; if
it does not find E, it will then be up to the RHIC experiments to map the
i < 200 MeV region.

Although we are trying to be helpful with the “where” question, we are
not very good at answering it quantitatively. This question can only be
answered convincingly by an experimental discovery. What we theorists
can do reasonably well is to answer the “how” question, thus enabling
experimenters to answer “where”. This is the goal of a recent paper by
Stephanov, myself and Shuryak [10]. The signatures we have proposed
are based on the fact that E is a genuine thermodynamic singularity at
which susceptibilities diverge and the order parameter fluctuates on long
wavelengths. The resulting signatures are nonmonotonic as a function of
J/s: as this control parameter is varied, we should see the signatures
strengthen and then weaken again as the critical point is approached and
then passed.
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The critical point E can also be sought by varying control parameters
other than \/s. lon size, centrality selection and rapidity selection can
all be varied. The advantage of using ./s is that we already know
(by comparing results from the AGS and SPS) that dialing it changes
the freeze out chemical potential w, which is the goal in a search
for E.

The simplest observables we analyze are the event-by-event fluctuations
of the mean transverse momentum ot the charged particles in an event,
pr, and of the total charged multiplicity in an event, N. We calculate
the magnitude of the effects of critical fluctuations on these and other
observables, making predictions which, we hope, will allow experiments to
find E. As a necessary prelude, we analyze the contribution of noncritical
thermodynamic fluctuations. We compare the noncritical fluctuations of
an equilibriated resonance gas to the fluctuations measured by NA49
at /s = 17 AGeV [28]. The observed fluctuations are as perfect
Gaussians as the data statistics allow, as expected for freeze-out from
a system in thermal equilibrium. The data on multiplicity fluctuations
show evidence for a nonthermodynamic contribution, which is to be
expected since the extensive quantity N is sensitive to the initial size
of the system and thus to nonthermodynamic effects like variation in
impact parameter. The contribution of such effects to the fluctuations
have now been estimated [29, 30]; the combined thermodynamic and
nonthermodynamic fluctuations are in satisfactory agreement with the
data [30]. The width of the event-by-event distribution* of mean pr is
in good agreement with predictions based on noncritical thermodynamic
fluctuations. That is, NA49 data are consistent with the hypothesis
that almost all the observed event-by-event fluctuation in mean pr,
an intensive quantity, is thermodynamic in origin. This bodes well for
the detectability of systematic changes in thermodynamic fluctuations
near F.

One analysis described in detail in Ref. [10] is based on the ratio of
the width of the true event-by-event distribution of the mean pr to the
width of the distribution in a sample of mixed events. This ratio was
called +/F. NA49 has measured +/F = 1.002 & 0.002 [28, 10], which is

*This width can be measured even if one observes only two pions per event [31]; large
acceptance data as from NA49 is required in order to learn that the distribution is Gaussian
_thut thermodynamic predictions may be valid, and that the width is therefore the on]);
nteresting quantity to measure.
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consistent with expectations for noncritical thermodynamic fluctuations.*
Critical fluctuations of the ¢ field, i.e., the characteristic long-wavelength
fluctuations of the order parameter near E, influence pion momenta via
the (large) o7 coupling and increase J/'F [10]. The effect is proportional
to szl_eczeoul, where Efreereont 15 the o-field correlation length of the long-
wavelength fluctuations at freezeout [10]. If Efreezcout ~ 3 fm (a reasonable
cstimate, as we describe below) the ratio JF increases by ~3-5%,
10 to 20 times the statistical error in the present measurement [10]. This
observable is valuable because data on it has been analyzed and presented
by NA49, and it can therefore be used to learn that Pb+Pb collisions at
158 AGeV do not freeze out near E. The 3-5% nonmonotonic variation
in +/F as a function of /s which we predict is easily detectable but is
not so large as to make one confident of using this alone as a signature
of E.

Once E is located, however, other observables which are more sensitive
to critical effects will be more useful. For example, a  Fyoft, defined
using only the softest 10% of the pions in each event, will be much more
sensitive to the critical long wavelength fluctuations. The higher p7 pions
are less affected by the o fluctuations [10], and these relatively unaffected
pions dominate the mean pr of all the pions in the event. This is why
the increase in +/F near the critical point will be much less than that
of +/Feopi. Depending on the details of the cuts used to define it, N Foft
should be enhanced by many tens of percent in collisions passing near E.
Ref. [10] suggests other such observables, and more can surely be found.

The multiplicity of soft pions is an example of an observable which
may be used to detect the critical fluctuations without an event-by-event
analysis. The post-freezeout decay of sigma mesons, which are copious
and light at freezeout near E and which decay subsequently when their
mass increases above twice the pion mass, should result in a population
of pions with pr ~ my /2 which appears only for freezeout near the
critical point [10]. If &treczeout > 1/, this population of unusually low
momentumn pions will be comparable in number to that of the “direct”

*1n an infinite system made of classical particles which is in thermal equilibrium, JF=1
Bose effects increase ~/F by 1 — 2% [32, 10}; an anticorrelation introduced by energy
conservation in a finite system—when one mode fluctuates up it is more likely for other
modes to fluctuate down—decreases JVF by 1 —2% [10]; two-track resolution also decreases

VF by | —2% [28]. The contributions due to correlations introduced by resonance decays
and due to fluctuations in the flow velocity are each much smaller than 1% [10].
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pions (i.e., those which were pions at freezeout) and will result in a large
signature. This signature is therefore certainly large for Epeezeout ~ 3 fm
and would not increase much further if £geezeon Were larger still.

The variety of observables which should all vary nonmonotonically with
/5 (and should all peak at the same /) is sufficiently great that if it were
to turn out that g < 200 MeV, making E inaccessible to the SPS, all
four RHIC experiments could play a role in the study of the critical point.

In Ref. [33] we estimate how large &feezeout €an become, thus making
the predictions of Ref. [10] for the magnitude of various signatures
more quantitative. The nonequilibrium dynamics analyzed in Ref. [33] is
guaranteed to occur in a heavy ion collision which passes near E, even if
local thermal equilibrium is achieved earlier at a higher temperature. If this
plasma were to cool arbitrarily slowly, § would diverge at Tr. However,
it would take an infinite time for & to grow infinitely large. Indeed, near a
critical point, the longer the correlation length, the longer the equilibration
time, and the slower the correlation length can grow. This critical slowing
down means that the correlation length cannot grow sufficiently fast for
the system to stay in equilibrium. We use the theory of dynamical critical
phenomena to describe the effects of critical slowing down of the long
wavelength dynamics near E on the time development of the correlation
length. The correlation length does not have time to grow as large as it
would in equilibrium: we find &feereout ~ 2/TE ~ 3 fm for trajectories
passing near E. Although critical slowing down hinders the growth of §,
it also slows the decrease of £ as the system continues to cool below the
critical point. As a result, £ does not decrease significantly between the
phase transition and freezeout.

Our results depend on the universal function describing the equilibrium
behavior of & near the Ising critical point E, on the universal dynamical
exponent z describing critical slowing down (perturbations away from
equilibrium relax toward equilibrium on a time scale that scales with &
like A&2 [34]), on the nonuniversal constant A, the nonuniversal constants
which relate (T —Tg) and (u— ) to dimensionless Ising model variables,
on T which we take to be ~140 MeV, and finally on the cooling rate
|dT /dt| which we estimate to be 4 MeV/fm [35, 33].

Our estimate that £ does not grow larger than 2/Tg is robust in
three senses. First, it depends very little on the angle with which the
trajectory passes through E. Second, it turns out to depend on only one
combination of all the nonuniversal quantities which play a role. We call
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this parameter «; it is proportional to la’T/dtI’l. Third, our results do not
depend sensitively on a. We show that the maximum value of & scales like
aﬁl% ~ %215 [33].* Thus, for example, |dT /dt| would have to be a
factor of 25 smaller than we estimate in order for & to grow to 4/ Tg instead
of 2/Tg. Although our results are robust in this sense, they cannot be
treated as precise because our assumption that the dynamics of & in QCD
is described by the universal classical dynamics of the three-dimensional
Ising model only becomes precise if § > 1/ Tg, while our central result is
that & does not grow beyond ~ 2/Tg. A (3+1)-dimensional quantum field
theoretical treatment of the interplay between cooling and the dynamics
of critical slowing down is not yet available, but promising first steps in
this direction can be found in Ref. [40].

It is important to realize that one need not hit E precisely in order
to find it. Our analysis demonstrates that if one were to do a scan
with collisions at many finely spaced values of the energy and thus g,
one would see signatures of E with approximately the same magnitude
over a broad range of w. The magnitude of the signatures will not
be narrowly peaked as u is varied. As long as one gets close enough
to E that the equilibrium correlation length is (2 — 3)/Tg, the actual
correlation length £ will grow to ~ 2/ Tg. There is no advantage to getting
closer to E, because critical slowing down prevents & from getting much
larger even if &4 does. Data at many finely spaced values of w is not
called for.

As described above, knowing that we are looking for Efreczeomt ~ 3 M
allows us [33] to make quantitative estimates of the magnitude of the
signatures of E described in detail in Ref. [10]. Together, the excess
multiplicity at low momentum (due to post-freczeout sigma decays)
and the excess event-by-event fluctuation of the momenta of the low
momentum pions (due to their coupling to the order parameter which
is fluctuating with correlation length Efreczcout) Should allow a convincing
detection of the critical point E. Both should behave nonmonotonically as
the collision energy, and hence p, are varied. Both should peak for those
heavy ion collisions which freeze out near E, with &feezeont ~ 3 fm.

P —

*A scaling law of this form (of course with different numerical values Tor the exponents)
relating the muximum correlation length which is reached o the cooling rate was first
discovered in the theory of defect formation at a second order phase transition [36]. I
has been tested in this context in numerical simulations [37] and, furthermore, is supported
by data from experiments on liquid crystals [38] and superfluid YHe [39).
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We have learned much from the beautiful gaussian event-by-event
fluctuations observed by NA49. The magnitude of these fiuctuations are
consistent with the hypothesis that the hadronic system at freezeout is in
approximate thermal equilibrium. These and other data show none of the
non-gaussian features that would signal that the system had been driven
far from equilibrium either by a rapid traversal of the transition region or
by the bubbling that would occur near a strong first order phase transition.
There is also no sign of the enhanced, but still gaussian, fluctuations
which would signal freezeout near the critical point E. Combining these
observations with the observation of tantalizing indications that the matter
created in SPS collisions is not well described at early times by hadronic
models [41] suggests that collisions at the SPS may be exploring the
crossover region to the left of the critical point E, in which the matter is
not well described as a hadron gas but is also not well described as a quark—
gluon plasma. This speculation could be confirmed in two ways. First, if
the SPS is probing the crossover region then the coming experiments at
RHIC may discover direct signatures of an early partonic phase, which are
well-described by theoretical calculations beginning from an equilibrated
quark—gluon plasma. Second, if /s = 17 AGeV collisions are probing the
crossover region not far to the left of the critical point E, then SPS data
taken at lower energies would result in the discovery of E. If, instead,
RHIC were to discover E with g < 200 MeV, that would indicate that
the SPS experiments have probed the weakly first-order region just to the
right of E. Regardless, discovering E would take all the speculation out
of mapping this part of the QCD phase diagram.

III. COLOR SUPERCONDUCTIVITY AND
COLOR-FLAVOR LOCKING

I turn now to recent developments in our understanding of the low
temperature, high density regions of the QCD phase diagram. First, a
notational confession: It is conventional in the literature on cold dense
quark matter to define p as the quark number chemical potential, one-
third the baryon number chemical potential used in Sections I and II. We
make this change from here on. For example, neutron star cores likely have
u ~ 400-500 MeV, corresponding to baryon number chemical potentials
~1.2-1.5 GeV in Figures 1-4.
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The relevant degrees of freedom in cold dense quark matter are those
which involve quarks with momenta near the Fermi surface. At high
density, when the Fermi momentum is large, the QCD gauge coupling
g(w) is small. However, because of the infinite degeneracy among pairs
of quarks with equal and opposite momenta at the Fermi surface, even
an arbitrarily weak attraction between quarks renders the Fermi surface
unstable to the formation of a condensate of quark Cooper pairs. Creating
a pair costs no free energy at the Fermi surface and the attractive
interaction results in a free energy benefit. Pairs of quarks cannot be
color singlets, and in QCD with two flavors of massless quarks the
Cooper pairs form in the (attractive) color 3 channel [1-4]. The resulting
condensate creates a gap A at the Fermi surfaces of quarks with two
out of the three colors and breaks SU(3)color t0 an SU(2)color Subgroup,
giving mass to five of the gluons by the Anderson-Higgs mechanism.
In QCD with two flavors, the Cooper pairs are ud — du flavor singlets
and the global flavor symmetry SU(2); x SU(2)r is intact. There is also
an unbroken global symmetry which plays the role of U(1)p. Thus, no
global symmetries are broken in this 2SC phase. There must therefore
be a phase transition between the 2SC and hadronic phases on the
horizontal axis in Figure 1, at which chiral symmetry is restored. This
phase transition is first order [3, 18, 42, 20] since it involves a competition
between chiral condensation and diquark condensation [18, 20]. There
need be no transition between the 2SC and quark-gluon plasma phases in
Figure 1 because neither phase breaks any global symmetries. However,
this transition, which is second order in mean field theory, is likely first
order in QCD due to gauge field fluctuations [18], at least at high enough
density [43].

In QCD with three flavors of massless quarks, the Cooper pairs cannot
be flavor singlets, and both color and flavor symmetries are necessarily
broken. The symmetries of the phase which results have been analyzed
in [5, 6]. The attractive channel favored by one-gluon exchange exhibits
“color-flavor locking.” A condensate of the form

(,‘//za,(/ffb) o AEO{ﬁAeabA (1)

involving left-handed quarks alone, with «, 8 color indices and a, b flavor
indices, locks SU(3);, flavor rotations to SU(3)color: the condensate is not
symmetric under either alone, but is symmetric under the simultancous
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SU (3) L 1color Totations.* A condensate involving right-handed quarks alone
locks SU(3)r flavor rotations to SU(3)color- Because color is vectorial,
the combined effect of the LL and RR condensates is to lock SU(3)z
to SU(3)g, breaking chiral symmetry.T Thus, in quark matter with three
massless quarks, the SU(3)color X SU3)r, x SU@B)g x U(l)p symmetry
is broken down to the global diagonal SU(3)color+£+# group. All nine
quarks have a gap. All eight gluons get a mass. There are nine massless
Nambu-Goldstone bosons. There is an unbroken gauged U (1) symmetry
which plays the role of electromagnetism. Under this symmetry, all the
quarks, all the massive vector bosons, and all the Nambu-Goldstone
bosons have integer charges. The CFL phase therefore has the same
symmetries as baryonic matter with a condensate of Cooper pairs of
baryons [6]. Furthermore, many non-universal features of these two phases
correspond [6]. This raises the possibility that quark matter and baryonic
matter may be continuously connected [6], as shown in Figure 4.

The physics of the CFL phase has been the focus of much recent work
[5-8, 44-59]. Nature chooses two light quarks and one middle-weight
strange quark, rather than three degenerate quarks as in Figure 4. A
nonzero m; weakens those condensates which involve pairing between
light and strange quarks. The CFL phase requires nonzero {us) and (ds)
condensates; because these condensates pair quarks with differing Fermi
momenta they can only exist if they are larger than of order m% /2, the
difference between the u and s Fermi momenta in the absence of pairing.
If one imagines increasing m; at fixed u, one finds a first order unlocking
transition [7, 8]: for larger m; only u and d quarks pair and the 2SC phase
is obtained. Conversely, as m; is reduced in going from Figure 2 to 3 to 4,
the region occupied by the CFL phase expands to encompass regions with
smaller and smaller y [7, 8]. For any m; # oo, the CFL phase is the ground
state at arbitrarily high density [7]. For larger values of my, there is a 2SC
interlude on the horizontal axis, in which chiral symmetry is restored,
before the CFL phase breaks it again at high densities. For smaller values
of my, the possibility of quark-hadron continuity [6] as shown in Figure 4

*It turns out [5] that condensation in the color 3 channe!l induces a condensate in the
color 6 channel because this breaks no further symmetries [7]. The resulting condensates
can be written in terms of «| and «p where (1,[/2"1//5”) ~ ey 82 5Pl 4 162890 5P4 Here, the
Kronecker 8’s lock color and flavor rotations. The pure color 3 condensate (1) has k) = —«|.

tOnce chiral symmetry is broken by color—flavor locking, there is no symmetry argument
precluding the existence of an ordinary chiral condensate. Indeed, instanton effects do induce
a nonzero (Gq) [5], but this is a small effect [44].
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arises. It should be noted that when the strange and light quarks are not
degenerate, the CFL phase may be continuous with a baryonic phase in
which the densities of all the nucleons and hyperons are comparable;
there are, however, phase transitions between this hypernuclear phase and
ordinary nuclear matter [7].

The Nambu-Goldstone bosons in the CFL phase are Fermi surface
excitations in which the orientation of the left-handed and right-handed
diquark condensates oscillate out of phase in flavor space. The effective
field theory describing these oscillations has been constructed [46, 49, 54].
Because the full theory is weakly coupled at asymptotically high densities,
in this regime all coefficients in the effective theory describing the long
wavelength meson physics are calculable from first principles. The decay
constants fyr k. .y [49] and the meson masses My K,y [49-53, 55] are
all now known. The meson masses depend on quark masses like m? ~ '”62/
in the CFL phase (neglecting the small chiral condensate) [5], and their
masses are inverted in the sense that the kaon is lighter than the pion [49].
The charged kaon mass m%(i ~ my(my + mg)A/p is so light that it is
likely less than the electron chemical potential, meaning that the CFL
phase likely features a kaon condensate [58]. The dispersion relations
describing the fermionic quasiparticle excitations in the CFL phase, which
have the quantum numbers of an octet and a singlet of baryons, have
also received attention [7, 47]. So have the properties of the massive
vector meson octet—the gluons which receive a mass via the Meissner-
Anderson-Higgs mechanism [49, 60, 56]. We now have a description of
the properties of the CFL phase and its excitations, in which much is
known quantitatively if the value of the gap A is known. We describe
estimates of A below.

It is interesting that both the 2SC and CFL phases satisfy anomaly
matching constraints, even though it is not yet completely clear whether
this must be the case when Lorentz invariance is broken by a nonzero
density [61]. It is not yet clear how high density QCD with larger numbers
of flavors [48] satisfies anomaly matching constraints. Also, anomaly
matching in the 2SC phase requires that the up and down quarks of the
third color remain ungapped; this requirement must, therefore, be modified
once these quarks pair to form a J = 1 condensate, breaking rotational
invariance [3].

Much effort has gone into estimating the magnitude of the gaps in
the 2SC and CFL phases [2-5, 7, 8, 18, 20, 44, 62-77]. It would be

PHASES OF QCD IN HEAVY-ION COLLISIONS Al35

ideal if this task were within the scope of lattice gauge theory as is, for
example, the calculation of the critical temperature on the vertical axis of
the phase diagram. Unfortunately, lattice methods relying on importance
sampling have to this point been rendered exponentially impractical at
nonzero baryon density by the complex action at nonzero . There are
more sophisticated algorithms which have allowed theories which are
simpler than QCD but which have as severe a fermion sign problem as that
in QCD at nonzero chemical potential to be simulated [78]. This bodes
well for the future. Given the present absence of suitable lattice methods,*
the magnitude of the gaps in quark matter at large but accessible density
has been estimated using two broad strategies. The first class of estimates
are done within the context of models whose parameters are chosen to
give reasonable vacuum physics. Examples include analyses in which the
interaction between quarks is replaced simply by four-fermion interactions
with the quantum numbers of the instanton interaction [3, 4, 18] or
of one-gluon exchange {5, 7], random matrix models [65], and more
sophisticated analyses done using the instanton liquid model [20, 44, 84].
Renormalization group methods have also been used to explore the space
of all possible effective four-fermion interactions [62, 63]. These methods
yield results which are in qualitative agreement: the favored condensates
are as described above; the gaps range between several tens of MeV
up to as large as about 100 MeV: the associated critical temperatures

“Note thit quark pairing can be studied on the lattice in some models with four-fermion
interactions and in two-color QCD [79]. The N = 2 case las also been studied analytically
in Refs, [4, 80]; pairing in this theory is simpler 0 analyze because quark Cooper pairs are
color singlets, The N — oo limit of QCD is often one in which hard problems become
tractable. However, the ground state of N = oo QCD is i chiral density wave, not a color
superconductor [81]. At asymptotically high densities color superconductivity persists up to
Ne's of order thousands |82, 83] before being supplanted by the phase described in Ref. [81].
At any finite N, color superconductivity oceurs at arbitrarily weuk coupling whereas the
chiral density wave does not. For Ny = 3, color superconductivity is still Tavored over the
chiral density wave (although not by much) even if’ the interaction is 50 strong that the color
superconductivity gap is ~ /2 [84]. The phase off N = 3 QCD with nonzero isospin
density (11, # 0) and zero baryon density (= 0) can be simulated on the lattice [85],
Although not physically realizable, it is very interesting to consider because phenomena
arise which are similar to those oceurring at large j¢ and, in this context, these phenomen:
can be analyzed on the lattice. In this setting, therefore, laltice simulations can be used 1o
test caleulational methods which have also been applied at large j¢, where lattice simulation
is unavailable. Large g1y physics features large Fermi surfaces for down quarks and anti-up
quirks, Cooper pairing ol down and anti-up quarks, and a gap whose g-dependence is as in
(2), albeit with 4 different coefficient of 1/g in the exponent [85]. This condensate has the
same quantum numbers as the pion condensate expected at much lower 1y, which means
that a hypothesis of continuity between hadronic—in this case pionic—and quark matter as
a function of 11; can be tested on the Jattice [85].
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(above which the diquark condensates vanish) can be as large as about
T. ~ 50 MeV. This agreement between different models reflects the fact
that what matters most is simply the strength of the attraction between
quarks in the color 3 channel, and by fixing the parameters of the model
interaction to fit, say, the magnitude of the vacuum chiral condensate, one
ends up with attractions of similar strengths in different models.

The second strategy for estimating gaps and critical temperatures is
to use 4 = 0o physics as a guide. At asymptotically large u, models
with short-range interactions are bound to fail because the dominant
interaction is due to the long-range magnetic interaction coming from
single-gluon exchange [42, 66]. The collinear infrared divergence in small
angle scattering via one-gluon exchange (which is regulated by dynamical
screening [66]) results in a gap which is parametrically larger at ; — 00
than it would be for any point-like four-fermion interaction. At i — 00,
where g(u) — 0, the gap takes the form [66]

A ~ b g() = expl—3m%/v2g()) )

whereas for a point-like interaction with four-fermion coupling g? the gap
goes like exp(—1/ g%). Son’s result (2) has now been confirmed using
a variety of methods [70, 67-69, 71, 72, 75]. The O(go) contribution
to the prefactor b in (2) is not yet fully understood. It is estimated
o be b ~ 5127% in the 2SC phase and b ~ S5127w*271/3(2/3)%/2
in the CFL phase [70, 67, 69, 71-73, 48]. However, modifications to
the quasiparticle dispersion relations in the normal (nonsuperconducting;
high temperature) phase [71] and quasiparticle damping effects in the
superconducting phase [77] both tend to reduce b. Also, the value of
b is affected by the choice of the scale at which g is evaluated in (2).
The results of Beane et al. demonstrate that g should be evaluated at a
u-dependent scale which is much lower than [75]. If, by convention,
one instead takes g as g(u), then b is significantly enhanced. Finally,
examination of the gauge-dependent (and g-dependent) contributions to
b in calculations based on the one-loop Schwinger-Dyson equation (e.g.,
those of Ref. [70, 67, 69, 72]) reveals that they only begin to decrease for
g < 0.8 [76]. This means that effects which have to date been neglected
in all calculations (e.g., vertex corrections) are small corrections to b only
for > 10% MeV.

At large enough w, the differences between u, d and s Fermi momenta
decrease, while the result (2) demonstrates that the magnitude of the
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condensates increases slowly as © — oo. (As u — oo, the running
coupling g(u) — O logarithmically and the exponential factor in (2)
goes to zero, but not sufficiently fast to overcome the growth of p.) This
means that the CFL phase is favored over the 2SC phase for ;1 — oo for
any my # oo [7]. If we take the asymptotic estimates for the prefactor,
quantitatively valid for w >> 108 MeV [76], and apply them at accessible
densities, say p ~ 500 MeV, it predicts gaps as large as about 100 MeV
and critical temperatures as large as about 50 MeV [70]. Even though the
asymptotic regime where A can be calculated from first principles with
confidence is not accessed in nature, it is of great theoretical interest. The
weak-coupling calculation of the gap in the CFL phase is the first step
toward the weak-coupling calculation of other properties of this phase, in
which chiral symmetry is broken and the spectrum of excitations is as in
a confined phase. As we have described above, for example, the masses
and decay constants of the pseudoscalar mesons can be calculated from
first principles once A is known.

It is satisfying that two very different approaches, one using zero
density phenomenology to normalize models, the other using weak-
coupling methods valid at asymptotically high density, yield predictions
for the gaps and critical temperatures at accessible densities which are in
good agreement. Neither can be trusted quantitatively for quark number
chemical potentials u ~ 400-500 MeV, as appropriate for the quark matter
which may occur in compact stars. Still, both methods agree that the
gaps at the Fermi surface are of order tens to 100 MeV, with critical
temperatures about half as large.

T, ~ 50 MeV is much larger relative to the Fermi momentum (say
i ~ 400 — 500 MeV) than in low temperature superconductivity in
metals. This reflects the fact that color superconductivity is induced
by an attraction due to the primary, strong, interaction in the theory,
rather than having to rely on much weaker secondary interactions, as in
phonon mediated superconductivity in metals. Quark matter is a high-T,
superconductor by any reasonable definition. It is unfortunate that its 7 is
nevertheless low enough that it is unlikely the phenomenon can be realized
in heavy ion collisions.

IV. COLOR SUPERCONDUCTIVITY IN COMPACT STARS

Our current understanding of the color superconducting state of quark
matter leads us to believe that it may occur naturally in compact stars. The
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critical temperature 7, below which quark matter is a color superconductor
is high enough that any quark matter which occurs within neutron stars
that are more than a few seconds old is in a color superconducting state.
In the absence of lattice simulations, present theoretical methods are not
accurate enough to determine whether neutron star cores are made of
hadronic matter or quark matter. They also cannot determine whether any
quark matter which arises will be in the CFL or 2SC phase: the difference
between the u, d and s Fermi momenta will be a few tens of MeV
which is comparable to estimates of the gap A; the CFL phase occurs
when A is large compared to all differences between Fermi momenta.
Just as the higher temperature regions of the QCD phase diagram are
being mapped out in heavy ion collisions, we need to learn how to
use neutron star phenomena to determine whether they feature cores
made of 2SC quark matter, CFL quark matter or hadronic matter, thus
teaching us about the high density region of the QCD phase diagram. It is
therefore important to look for astrophysical consequencés of color super-
conductivity.

Equation of State

Much of the work on the consequences of quark matter within a compact
star has focused on the effects of quark matter on the equation of state,
and hence on the radius of the star. As a Fermi surface phenomenon, color
superconductivity has little effect on the equation of state: the pressure is
an integral over the whole Fermi volume. Color superconductivity modifies
the equation of state at the ~ (A/ w)? level, typically by a few percent [3].
Such small effects can be neglected in present calculations, and for this
reason I will not attempt to survey the many ways in which observations
of neutron stars are being used to constrain the equation of state [86].

I will describe one current idea, however. As a neutron star in a low
mass X-ray binary (LMXB) is spun up by accretion from its companion,
it becomes more oblate and its central density decreases. If it contains a
quark matter core, the volume fraction occupied by this core decreases,
the star expands, and its moment of inertia increases. This raises the
possibility [87] of a period during the spin-up history of an LMXB when
the neutron star is gaining angular momentum via accretion, but is gaining
sufficient moment of inertia that its angular frequency is hardly increasing.
In their modelling of this effect, Glendenning and Weber [87] discover
that LMXB’s should spend a significant fraction of their history with a
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frequency of around 200 Hz, while their quark cores are being spun out
of existence, before eventually spinning up to higher frequencies. This
may explain the observation that LMXB frequencies are clustered around
250-350 Hz [88], which is otherwise puzzling in that it is thought that
LMXB’s provide the link between canonical pulsars and millisecond
pulsars, which have frequencies as large as 600 Hz [89]. It will be
interesting to see how robust the result of Ref. [87] is to changes in model
assumptions and also how its predictions fare when compared to those of
other explanations which posit upper bounds on LMXB frequencies [90],
rather than a most probable frequency range with no associated upper
bound [87]. We note here that because Glendenning and Weber’s effect
depends only on the equation of state and not on other properties of quark
matter, the fact that the quark matter must in fact be a color superconductor
will not affect the results in any significant way. If Glendenning and
Weber’s explanation for the observed clustering of LMXB frequencies
proves tobust, it would imply that pulsars with lower rotational frequencies
feature quark matter cores.

Cooling by Neutrino Emission

We turn now to neutron star phenomena that are affected by Fermi surface
physics. For the first 10 years of its life, the cooling of a neutron star
is governed by the balance between heat capacity and the loss of heat by
neutrino emission. How are these quantities affected by the presence of
a quark matter core? This has been addressed recently in Refs. [91, 92],
following earlier work in Ref. [93]. Both the specific heat Cy and the
neutrino emission rate L, are dominated by physics within T of the Fermi
surface. If, as in the CFL phase, all quarks have a gap A > T then
the contribution of quark quasiparticles to Cy and L, is suppressed by
~ exp(—A /T). There may be other contributions to L,, [91], but these are
also very small. The specific heat is dominated by that of the electrons,
although it may also receive a small contribution from the CFL phase
Goldstone bosons. Although further work is required, it is already clear
that both Cy and L, are much smaller than in the nuclear matter outside
the quark matter core. This means that the total heat capacity and the total
neutrino emission rate (and hence the cooling rate) of a neutron star with
a CFL core will be determined completely by the nuclear matter outside
the core. The quark matter core is “inert”: with its small heat capacity
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and emission rate it has little influence on the temperature of the star as
4 whole. As the rest of the star emits neutrinos and cools, the core cools
by conduction, because the electrons keep it in good thermal contact with
the rest of the star. These qualitative expectations are nicely borne out in
the calculations presented by Page et al. [92].

The analysis of the cooling history of a neutron star with a quark
matter core in the 2SC phase is more complicated. The red and green
up and down quarks pair with a gap many orders of magnitude larger
than the temperature, which is of order 10 keV, and are therefore inert as
described above. Any strange quarks present will form a (ss) condensate
with angular momentum J = | [94]. The resulting gap has been estimated
to be of order hundreds of keV [94], although applying results of Ref. [95]
suggests a somewhat smaller gap, around 10 keV. The blue up and down
quarks can also pair, forming a J =1 condensate which breaks rotational
invariance [3]. The related gap was estimated to be a few keV [3], but
this estimate was not robust and should be revisited in light of more
recent developments given its importance in the following. The critical
temperature T, above which no condensate forms is of order the zero-
temperature gap A. (T, = 0.57A for J = 0 condensates [67].) Therefore,
if there are quarks for which A ~ T or smaller, these quarks do not pair
at temperature T. Such quark quasiparticles' will radiate neutrinos rapidly
(via direct URCA reactions like d — u+e+v, u — d+et +v,etc.) and
the quark matter core will cool rapidly and determine the cooling history
of the star as a whole [93, 92]. The star will cool rapidly until its interior
temperature is 7 < T, ~ A, at which time the quark matter core will
become inert and the further cooling history will be dominated by neutrino
emission from the nuclear matter fraction of the star. If future data were to
show that neutron stars first cool rapidly (direct URCA) and then cool more
slowly, such data would allow an estimate of the smallest quark matter gap.
We are unlikely to be so lucky. The simple observation of rapid cooling
would rot be an unambiguous discovery of quark matter with small gaps;
there are other circumstances in which the direct URCA processes occurs.
However, if as data on neutron star temperatures improves in coming years
the standard cooling scenario proves correct, indicating the absence of the
direct URCA processes, this would rule out the presence of quark matter
with gaps in the 10 keV range or smaller. The presence of a quark matter
core in which all gaps are 3> 7' can never be revealed by an analysis of
the cooling history.
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Supernova Neutrinos

We now turn from neutrino emission from a neutron star which is many

years old to that from the protoneutron star during the first seconds of

a supernova. Carter and Reddy |96] have pointed out that when this
protoneutron star is heated up to its maximum temperature of order 30—
50 MeV, it may feature a quark matter core which is too hot for color
superconductivity. As the core of the protoneutron star cools over the
coming seconds, if it contains quark matter this quark matter will cool
through 7, entering the color superconducting regime of the QCD phase
diagram from above. For T ~ T, the specific heat rises and the cooling
slows. Then, as 7" drops further and A increases to become greater than 7',
the specific heat drops rapidly. Furthermore, as the number density of quark
quasiparticles becomes suppressed by exp(—A/T), the neutrino transport
mean free path rapidly becomes very long [96]. This means that all the
neutrinos previously trapped in the now color superconducting core are
able to escape in a sudden burst. If we are lucky enough that a terrestrial
neutrino detector sees thousands of neutrinos from a future supernova,
Carter and Reddy’s results suggest that there may be a signature of the
transition to color superconductivity present in the time distribution of
these neutrinos. Neutrinos from the core of the protoneutron star will lose
energy as they scatter on their way out, but because they will be the last to
reach the surface of last scattering, they will be the final neutrinos received
at the earth. It they are emitted from the quark matter core in a sudden
burst, they may therefore result in a bump at late times in the temporal
distribution of the detected neutrinos. More detailed study remains to be
done in order to understand how Carter and Reddy’s signature, dramatic
when the neutrinos escape from the core, is processed as the neutrinos
traverse the rest of the protoneutron star and reach their surface of last
scattering.

r-Mode Instabilities

Another arena in which color superconductivity comes into play is the
l?hysics of r-mode instabilities. A neutron star whose angular rotation
frequency €2 is large enough is unstable to the growth of r-mode
oscillations which radiate away angular momentum via gravitational
waves, reducing 2. What does “large enough” mean? The answer depends
on the damping mechanisms which act to prevent the growth of the relevant
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modes. Both shear viscosity and bulk viscosity act to damp the r-modes,
preventing them from going unstable. The bulk viscosity and the quark
contribution to the shear viscosity both become exponentially small in
quark matter with A > T and as a result, as Madsen {97] has shown,
a compact star made enfirely of quark matter with gaps A = | MeV
or greater is unstable if its spin frequency is greater than tens to 100 Hz.
Many compact stars spin faster than this, and Madsen therefore argues that
compact stars cannot be strange quark stars unless some quarks remain
ungapped. Alas, this powerful argument becomes much less powerful in
the context of a neutron star with a quark matter core. First, the r-mode
oscillations have a wave form whose amplitude is greatest near the surface,
not in the core. Second, in an ordinary neutron star there is a new source
of damping: friction at the boundary between the crust and the neutron
superfluid “mantle” keeps the r-modes stable regardless of the properties
of a quark matter core [98, 97].

Magnetic Field Evolution

Next, we turn to the physics of magnetic fields within color superconduct-
ing neutron star cores [99, 100]. The interior of a conventional neutron
star is a superfluid (because of neutron-neutron pairing) and is an elec-
tromagnetic superconductor (because of proton-proton pairing). Ordinary
magnetic fields penetrate it only in the cores of magnetic flux tubes. A
color superconductor behaves differently. At first glance, it seems that
because a diquark Cooper pair has nonzero electric charge, a diquark
condensate must exhibit the standard Meissner effect, expelling ordinary
magnetic fields or restricting them to flux tubes within whose cores the
condensate vanishes. This is not the case [100]. In both the 2SC and CFL
phase a linear combination of the U(1) gauge transformation of ordinary
electromagnetism and one (the eighth) color gauge transformation remain
unbroken even in the presence of the condensate. This means that the or-
dinary photon A, and the eighth gluon Gi are replaced by new linear
combinations

Ag =cosag Ay + sinag GISL Aff = —sinag A, + cosag GSL 3)
where A,L is massless and AX is massive. This means that B 5 satisfies the
ordinary Maxwell equations whlle By experiences a Melssner effect. The
mixing angle o is the analogue of the Weinberg angle in electroweak

s B
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theory, in which the presence of the Higgs condensate causes the Ay
and the third SU(2)w gauge boson mix to form the photon, A, and
the massive Z boson. sin(wg) is proportional to ¢/g and turns out to
be about 1/20 in the 2SC phase and 1/40 in the CFL phase [100]. This
means that the Q-photon which propagates in color superconducting quark
matter is mostly photon with only a small gluon admixture. If a color
superconducting neutron star core is subjected to an ordinary magnetic
field, it will either expel the X component of the flux or restrict it to
flux tubes, but it can (and does [100]) admit the great majority of the
flux in the form of a BQ magnetic field satisfying Maxwell’s equations.
The decay in time of this “free field” (i.e. not in flux tubes) is limited by
the Q- -conductivity of the quark matter. A color superconductor is not a
0- superconductm—thdt is the whole point—but it turns out to be a very
good Q-conductor due to the presence of electrons: the B - ¢ magnetic field
decays only on a time scale which is much longer than the age of the
universe [100]. This means that a quark matter core within a neutron star
serves as an “anchor” for the magnetic field: whereas in ordinary nuclear
matter the magnetic flux tubes can be dragged outward by the neutron
superfluid vortices as the star spins down [101], the magnetic flux within
the color superconducting core simply cannot decay. Even though this
distinction is a qualitative one, it will be difficult to confront it with data
since what is observed is the total dipole moment of the neutron star. A
color superconducting core anchors those magnetic flux lines which pass
through the core, while in a neutron star with no quark matter core the
entire internal magnetic field can decay over time. In both cases, however,
the total dipole moment can change since the magnetic flux lines which
do not pass through the core can move.

Glitches in Quark Matter

The final consequence of color superconductivity we wish to discuss is the
possibility that (some) glitches may originate within quark matter regions
of a compact star [95]. In any context in which color superconductivity
arises in nature, it is likely to involve pairing between species of quarks
with differing chemical potentials. If the chemical potential difference
is small enough, BCS pairing occurs as we have been discussing. If the
Fermi surfaces are too far apart, no pairing between the species is possible.
The transition between the BCS and unpaired states as the splitting
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between Fermi momenta increases has been studied in electron [102] and
QCD [7, 8, 103] superconductors, assuming that no other state intervenes.
However, there is good reason to think that another state can occur., This
is the “"LOFF" state, first explored by Larkin and Ovchinnikov [104] and
Fulde and Ferrell [105] in the context of electron superconductivity in
the presence of magnetic impurities. They found that near the unpairing
transition, it is favorable to form a state in which the Cooper pairs have
nonzero momentum. This is favored because it gives rise to a region of
phase space where each of the two quarks in a pair can be close to its
Fermi surface, and such pairs can be created at low cost in free energy.
Condensates of this sort spontaneously break translational and rotational
invariance, leading to gaps which vary periodically in a crystalline pattern.
If in some shell within the quark matter core of a neutron star (or within
a strange quark star) the quark number densities are such that crystalline
color superconductivity arises, rotational vortices may be pinned in this
shell, making it a locus for glitch phenomena.

We [95] have explored the range of parameters for which crystalline
color superconductivity occurs in the QCD phase diagram, upon making
various simplifying assumptions. For example, we focus primarily on
a four-fermion interaction with the quantum numbers of single gluon
exchange, Also, we only consider pairing between » and o quarks, with
Md = jt+ 8 and p, = i — 8, whereas we expect a LOFF state
when the difference between the Fermi momienta of any two quark flavors
IS near an unpairing transition. We find the LOFF state is favored for
values of §u which satisfy Sp; < s < dpe where §pu1/Ap = 0.707 and
Sua/Ag = 0,754 in the weak coupling limit in which Ay < 1. (Here,
Ap is the 28C gap that would arise if dpe were zero.) The LOFF gap
parameter decreases from 0.23A¢ at §j = d4) (where there is a first
order BCS-LOFF phase transition) to zero at u = Suy (where there is
a second order LOFF-normal transition). Except for very close to dus,
the critical temperature above which the LOFF state melts will be much
higher than typical neutron star temperatures. At stronger coupling the
LOFF gap parameter decreases relative to Ag and the window of 8§12/ A
within which the LOFF state is favored shrinks. The window grows if
the interaction is changed to weight electric gluon exchange more heavily
than magnetic gluon exchange.

The quark matter which may be present within a compact star will be
in the crystalline color superconductor (LOFF) state if du/Ag is in the
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requisite range. For a reasonable value of 8y, say 25 MeV, this occurs if
the gap A¢ which characterizes the uniform color superconductor present
at smaller values of 84 is about 40 MeV. This is in the middle of the range
of present estimates. Both 8u. and Ag vary as a function of density and
hence as a function of radius in a compact star. Although it is too early
to make quantitative predictions, the numbers are such that crystalline
color superconducting quark matter may very well occur in a range of
radii within a compact star. It is therefore worthwhile to consider the
consequences.

Many pulsars have been observed to glitch. Glitches are sudden jumps
in rotation frequency Q which may be as large as AQ/Q ~ 1079,
but may also be several orders of magnitude smaller. The frequency of
observed glitches is statistically consistent with the hypothesis that all
radio pulsars experience glitches [106]. Glitches are thought to originate
from interactions between the rigid crust, somewhat more than a kilometer
thick in a typical neutron star, and rotational vortices in the neutron
superfluid which are moving (or trying to move) outward as the star
spins down. Although the models [107] differ in important respects, all
agree that the fundamental requirements are the presence of rotational
vortices in a superfluid and the presence of a rigid structure which
impedes the motion of vortices and which encompasses enough of the
volume of the pulsar to contribute significantly to the total moment of
inertia.

Although it is premature to draw quantitative conclusions, it is inter-
esting to speculate that some glitches may originate deep within a pulsar
which features a quark matter core, in a region of that core in which the
color superconducting quark matter is in a LOFF crystalline color super-
conductor phase. A three flavor analysis is required to determine whether
the LOFF phase is a superfluid. If the only pairing is between u and d
quarks, this 2SC phase is not a superfluid [3, 7], whereas if all three quarks
pair in some way, a superfluid is obtained [5, 7]. Henceforth, we suppose
that the LOFF phase is a superfluid, which means that if it occurs within
a pulsar it will be threaded by an array of rotational vortices. It is rea-
sonable to expect that these vortices will be pinned in a LOFF crystal, in
which the diquark condensate varies periodically in space. Indeed, one of
the suggestions for how to look for a LOFF phase in terrestrial electron
superconductors relies on the fact that the pinning of magnetic flux tubes
(which, like the rotational vortices of interest to us, have normal cores) is
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expected to be much stronger in a LOFF phase than in a uniform BCS
superconductor [108].

A real calculation of the pinning force experienced by a vortex in a
crystalline color superconductor must await the determination of the crys-
tal structure of the LOFF phase. We can, however, attempt an order of
magnitude estimate along the same lines as that done by Anderson and
Itoh [109] for neutron vortices in the inner crust of a neutron star. In that
context, this estimate has since been made quantitative [110, 111, 107]. For
one specific choice of parameters [95], the LOFF phase is favored over the
normal phase by a free energy £ orr ~ 5 x (10 MeV)* and the spacing
between nodes in the LOFF crystal is b = 7/(2|q]) ~ 9 fm. The thickness
of a rotational vortex is given by the correlation length & ~ 1/A ~ 25 fm.
The pinning energy is the difference between the energy of a section of
vortex of length b which is centered on a node of the LOFF crystal vs.
one which is centered on a maximum of the LOFF crystal. It is of order
E, ~ FLorr b> ~ 4 MeV. The resulting pinning force per unit length of
vortex is of order fp ~ E,,/b2 ~ (4 MeV)/(80 fmz). A complete cal-
culation will be challenging because b < £, and is likely to yield an f,,
which is somewhat less than that we have obtained by dimensional analy-
sis. Note that our estimate of Jp 15 quite uncertain both because it is only
based on dimensional analysis and because the values of A. b and Frore
are uncertain. (We have a good understanding of all the ratios A/Ag,
/Ao, q/Ay and consequently bAg in the LOFF phase. It is of course
the value of the BCS gap Ao which is uncertain.) It is premature to com-
pare our crude result to the results of serious calculations of the pinning
of crustal neutron vortices as in Refs. [110, 111, 107]. Tt is nevertheless
remarkable that they prove to be similar: the pinning energy of neutron
vortices in the inner crust is £ p ~ 1-3 MeV and the pinning force per
unit length is fp & (1-3 MeV)/(200-400 fm?), Perhaps, therefore, glitches
occurring in a region of crystalline color superconducting quark matter
may yield similar phenomenology to those occurring in the inner crust.

Perhaps the most interesting consequence of these speculations arises
in the context of compact stars made entirely of strange quark matter,
The work of Witten [112] and Farhi and Jaffe [113] raised the possibility
that strange quark matter may be energetically stable relative to nuclear
maltter even at zero pressure. If this is the case it raises the question
whether observed compact stars—pulsars, for example—are strange quark
stars [114, 115] rather than neutron stars. A conventional neutron star may
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feature a core made of strange quark matter, as we have been discussing
above.* Strange quark stars, on the other hand, are made (almost) entirely
of quark matter with either no hadronic matter content at all or with a
thin crust, of order one hundred meters thick, which contains no neutron
superfluid [115, 116]. The nuclei in this thin crust are supported above
the quark matter by electrostatic forces; these forces cannot support a
neutron fluid. Because of the absence of superfluid neutrons, and because
of the thinness of the crust, no successful models of glitches in the crust
of a strange quark star have been proposed. Since pulsars are observed
to glitch, the apparent lack of a glitch mechanism for strange quark stars
has been the strongest argument that pulsars cannot be strange quark stars
[117-119]. This conclusion must now be revisited.

Madsen’s conclusion [97] that a strange quark star is prone to r-mode
instability due to the absence of damping must also be revisited, since the
relevant fluid oscillations may be damped within or at the boundary of a
region of crystalline color superconductor.

The quark matter in a strange quark star, should one exist, would be
a color superconductor. Depending on the mass of the star, the quark
number densities increase by a factor of about two to ten in going from
the surface to the center [115]. This means that the chemical potential
differences among the three quarks will vary also, and there could be
a range of radii within which the quark matter is in a crystalline color
superconductor phase. This raises the possibility of glitches in strange
quark stars. Because the variation in density with radius is gradual, if a
shell of LOFF quark matter exists it need not be particularly thin. And,
we have seen, the pinning forces may be comparable in magnitude to
those in the inner crust of a conventional neutron star. It has recently
been suggested (for reasons unrelated to our considerations) that certain
accreting compact stars may be strange quark stars [120], although the
evidence is far from unambiguous [121]. In contrast, it has been thought
that, because they glitch, conventional radio pulsars cannot be strange
quark stars. Our work questions this assertion by raising the possibility
that glitches may originate within a layer of quark matter which is in a
crystalline color superconducting state.

o

*Note that a convincing discovery of a quark matter core within an otherwise hadronic
neutron star would demonstrate conclusively that strange quark matter is not stable at zero
Pressure, thus ruling out the existence of strange quark stars. It is not possible for neutron
stars with quark matter cores and strange quark stars to both be stable.




Al48 K. RAJAGOPAL

Closing Remarks

The answer to the question of whether the QCD phase diagram does or
does not feature a 2SC interlude on the horizontal axis, separating the
CFL and baryonic phases in both of which chiral symmetry is broken,
depends on whether the strange quark is effectively heavy or effectively
light. This is the central outstanding qualitative question about the high-
density region of the QCD phase diagram. A central question at higher
temperatures, namely, where does nature locate the critical point E, also
depends on the strange quark mass. Both questions are hard to answer
theoretically with any confidence. The high-temperature region is in better
shape, however, because the program of experimentation described in
Section II allows heavy ion collision experiments to search for the critical
point E. Theorists have described how to use phenomena characteristic
of freezeout in its vicinity to discover E; this gives experimentalists the
ability to locate it convincingly. The discovery of E would allow us
to draw the higher temperature regions of the map of the QCD phase
-diagram in ink. At high density, there has been much recent progress
in our understanding of how the presence of color superconducting
quark matter in a compact star would affect five different phenomena:
cooling by neutrino emission, the temporal pattern of the neutrinos emitted
by a supernova, the evolution of neutron”star magnetic fields, r-mode
instabilities, and glitches. Nevertheless, much theoretical work remains
to be done before we can make sharp proposals for which astrophysical
observations are most likely to help teach us how to ink in the boundaries
of the 2SC and CFL regions in the QCD phase diagram. Best of all,
though, and as in heavy ion physics, a wealth of new data is expected
over the next few years.
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