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1. Introduction and outline

Typically, computations in four-dimensional gauge theories can only be carried out in

the weak coupling regime, where a wealth of perturbative techniques have been developed.

Dualities in field theory, however, provide new avenues in which to study the strong coupling

behavior of certain field theories by mapping the strong coupling dynamics of one theory

to the weakly coupled regime of the dual theory. Moreover, some gauge theories are
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holographically dual to quantum gravity with certain asymptotics, and the strong coupling

dynamics of the gauge theory can be solved in terms of semiclassical gravitational physics.

The best understood example, N = 4 super Yang-Mills, is a field theory that both

presents electric-magnetic duality [1 – 3] and describes holographically quantum gravity

with AdS5 × S5 boundary conditions [4]. Due to its high degree of symmetry, it enjoys

remarkable properties in the large N limit — such as integrability — that allow for the

study of some questions in the strong coupling regime (see for instance [5]).

In this paper we compute the large N , strong coupling correlation functions of a super-

symmetric Wilson loop in a large representation of the gauge group1 with local operators

of N = 4 super-Yang Mills, specifically with chiral primary operators and the stress tensor.

We compute these correlators both in gauge theory and using the dual supergravity de-

scription. In gauge theory we obtain strong coupling results by solving the normal matrix

model that captures these correlation functions. We then perform a quantitative test of

S-duality of N = 4 super Yang-Mills by also calculating in the semiclassical approximation

the correlator between a ’t Hooft loop operator and the same local operator. We find that

the S-dual of the semiclassical ’t Hooft loop correlator exactly matches the strong cou-

pling result of the Wilson loop correlator, providing a quantitative test of electric-magnetic

duality in N = 4 super Yang-Mills. We also perform the calculation of the Wilson loop

correlation functions using “bubbling” geometries and find exact agreement with the strong

coupling results we obtained in the gauge theory.

The study of supersymmetric Wilson loops in the context of the AdS/CFT correspon-

dence [4, 6, 7] is important for several reasons. Among them is the fact that these operators

couple to strings and branes in the bulk, thus touching on stringy properties of the the-

ory. Moreover, Wilson loops allow in some cases, for instance when they follow circular

contours, to obtain results that are exact in N and the ’t Hooft coupling λ ≡ g2
YMN .

The first example of an all order computation in N and λ was the computation of the

expectation value of the circular Wilson loop in the fundamental representation, which was

conjectured in [8, 9] to be captured by a hermitian matrix model. This result has recently

been proven using localization techniques [10] and generalizations thereof have been found

in, e.g., [11 – 15].

It is a well-established entry in the AdS/CFT dictionary that a supersymmetric Wilson

loop in the fundamental representation corresponds in the bulk to a classical string surface

with AdS2 induced metric, which extends in the interior of the AdS space and lands on the

loop on the boundary [16, 17]. In particular, the expectation value of the loop operator is

given by the minimal area of the string world-sheet, upon the appropriate regularization

of the IR divergence associated with the infinite area of the string [18].

When one considers Wilson loop operators in representations higher than the funda-

mental, with rank of order O(N), the string in the bulk gets replaced by configurations

of probe branes with electric flux dissolved in their world-volumes [19] (see also [20 – 23]).

More specifically, a Wilson loop in the rank k symmetric representation is described by a

1This is a representation where the number of boxes in each row or column of the corresponding Young

tableau is of order N .
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Figure 1: We depict here, rotated and inverted, the Young tableau R of the irreducible represen-

tation of U(N) in which we take the Wilson loop operator. The tableau consists of g blocks, the

I-th one of them having nI rows of length KI . All the edges of the diagram are taken to be long,

meaning that nI and KI are both of order O(N) for all I. This guarantees that the dual bubbling

geometry has small curvature everywhere.

D3-brane with k units of flux and wrapping an AdS2 × S2 subspace [20, 22], whereas a

loop in the rank k antisymmetric representation is described by a D5-brane [19, 21], also

with k units of flux, wrapping an AdS2 × S4 subspace. These branes can be thought of as

emerging from k coincident strings via the Myers polarization effect [24], which, for large

enough k, blows up an S2 or an S4 from the world-sheet of the coincident strings.

This probe approximation breaks down when the representation R of the Wilson loop

is taken to be even larger, with a corresponding Young tableau containing order O(N2)

boxes (see figure 1). In this case the back-reaction of the brane configuration in [19] cannot

be ignored and the space-time is deformed into a new geometry containing bubbles of new

cycles carrying fluxes, and it is thus called a bubbling solution. The study of the bubbling

solutions for this case was initiated in [25, 26] (see also [27]) and culminated in [28], where

an elegant description of the solution was given in terms of a Riemann surface. If the

representation of the Wilson loop is large, then the dual geometry is guaranteed to have

small curvature everywhere. The matrix model prediction for the on-shell action of these

bubbling solutions was found in [29].

This entire picture of strings metamorphosing into branes and branes undergoing ge-

ometric transitions into new geometries is remarkably universal in the context of gauge

theory/gravity dualities, having a very close analog for local operators, where these phe-

nomena were in fact analyzed first [30, 31],2 and for topological theories [33 – 35].

The aim of this paper is to deepen our understanding of Wilson loops in large repre-

sentations of the gauge group, both from a gauge theory perspective and in the bulk. The

tool we use to do this is the detailed study of the correlation functions of these loops with

local operators of N = 4 super Yang-Mills, such as chiral primary operators and the stress

tensor. We perform computations both in field theory and in supergravity.

In the gauge theory, the computation of these correlation functions makes use of a

2The bubbling construction for chiral primary operators was found building on ideas introduced in [32].
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matrix model (the computation of the correlators when the Wilson loop is in the funda-

mental, symmetric and antisymmetric representation was performed in [36, 37]).3 Building

on the results in [40], we solve the matrix model capturing these correlation functions in

the strong coupling regime and when the Wilson loop is in a large representation.

On the other hand, in the bulk analysis we use holographic methods on the bub-

bling supergravity backgrounds to extract the desired correlation functions, finding perfect

agreement with our computations in gauge theory. The bubbling supergravity backgrounds

indeed contain non-trivial dynamical information about correlation functions (see [41, 42]

for the computation of correlation functions from bubbling geometries for local operators

and surface operators respectively).4

These Wilson loops in large representations and their dual bubbling geometries rep-

resent an arena with an incredibly rich structure, yet one where explicit computations

and highly non-trivial quantitative tests of the AdS/CFT correspondence are possible and

where one may be able to shed new light into the inner workings of holography.

1.1 Outline of the paper

In section 2, we establish the notation and analyze the general structure of the correlation

functions we are interested in. The position dependence, both for correlators with chiral

primary operators [36] and correlators with the stress tensor [44], is completely determined

by the symmetry of the system, so that the computation boils down to finding coefficients

which depend on the characteristic data of the Wilson loop and the local operator, as well

as λ and N . We show using supersymmetric Ward identities that the correlator of the

Wilson loop with the stress tensor can be obtained from the correlator of the Wilson loop

with the dimension two chiral primary operator. In appendix B we derive the same relation

using a topological field theory argument.

In section 3, we proceed to compute in gauge theory the correlation coefficients men-

tioned above. The important point to stress is that we manage to perform these computa-

tions at strong coupling, making it possible to compare and match them with the results

in supergravity of section 4.

More specifically, we begin in section 3.1 with the computation of the correlator be-

tween a half-BPS circular Wilson loop and a chiral primary operator of N = 4 super

Yang-Mills as well as with the stress tensor. Similarly to what happens for the expectation

values, it has been conjectured in [36] that the exact path integral describing this correlation

function is also captured by a matrix model, which sums all the ladder/rainbow diagrams

in the perturbative expansion and therefore allows to extract its strong coupling behavior

(a derivation using localization along the lines of [10] should also be possible). The partic-

ular matrix model we use is the normal matrix model introduced in this context in [38].

Using results obtained in [40], we solve the model for large ’t Hooft coupling and large

representations of the gauge group and find the moments of the eigenvalue distribution, in

terms of which the correlators are determined.

3For the corresponding Wilson loop expectation value computation see [38, 39, 29].
4See [43, 37] for the probe string/brane computation of the correlation functions when the Wilson loop

is in the fundamental, symmetric and antisymmetric representation.
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We then calculate in section 3.2 the strong coupling correlator between the same half-

BPS circular Wilson loop and the stress tensor of N = 4 super Yang-Mills using a semiclas-

sical computation of the correlator of the ’t Hooft loop with the stress tensor. This consists

in computing first the correlator of a half-BPS ’t Hooft loop operator with the stress tensor

in the semiclassical approximation. To obtain the strong coupling result for the Wilson

loop we act with S-duality on the ’t Hooft loop semiclassical result. This computation

yields precisely the same answer computed by the matrix model in section 3.1 for a specific

choice of representation of the Wilson loop. We comment on the reason why this happens.

This yields a quantitative test of S-duality in N = 4 super Yang-Mills.

The supergravity analysis of these same correlators is contained in section 4. First,

we briefly review the bubbling solution found for the first time in closed form in [28] and

re-express it in terms of the resolvent of the matrix model, which encodes the correlation

functions in the gauge theory. We then apply the Kaluza-Klein holography machinery [45,

41] to this geometry and extract from the asymptotic expansion of the supergravity fields

the correlation functions with chiral primary operators and the stress tensor (see also [41,

42]). Differently from the gauge theory computation, we are able to carry on the bulk

computation only for operators up to dimension four, albeit the procedure we use is in

principle applicable to operators of arbitrarily high dimension. The correlators that we

compute in supergravity are found in perfect agreement with the strong coupling gauge

theory results. Particularly remarkable is the agreement between the correlators with

dimension four operators (both the dimension four chiral primary operator and the stress

tensor), because of very delicate cancellations between non-linear terms that take place in

supergravity, as expected from the strong coupling gauge theory analysis.

We conclude the paper with a series of appendices in which we collect some technical

details of our calculations.

2. Symmetry analysis of the Wilson loop correlators

In this paper we study the half-BPS circular Wilson loop of N = 4 super Yang-Mills in

R
4. It is given by

WR(θ, a) ≡ 1

dimR
TrRPexp

∮

circle

(
iA+ φiθi|ẋ|ds

)
. (2.1)

The trace is taken over an irreducible representation R of U(N). The Wilson loop WR,

besides containing the holonomy of the gauge field A = Aµdx
µ, also couples to the scalars

φi of the N = 4 multiplet through θi, a constant unit vector on R
6. The integral is taken

along a circle of radius a in R
4 parametrized by 0 ≤ s ≤ 2π.

The circular Wilson loop is related to the straight Wilson line

W line
R (θ) =

1

dimR
TrRPexp

∫

line

(
iA+ φiθi|ẋ|ds

)
(2.2)

by a conformal transformation (an inversion around the origin). Despite this relation, the

expectation value of the straight Wilson line is trivial (independent of the ’t Hooft coupling

– 5 –
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λ ≡ g2
YMN and N), while the expectation value of the circular Wilson loop has a non-trivial

dependence on λ and N [8, 9], which can be interpreted as a conformal anomaly [9].

We shall see in the following that it is also useful to study the physics of the half-BPS

Wilson loop of N = 4 super Yang-Mills by considering the theory on AdS2 × S2 instead

of R
4 [44]. In this geometry the Wilson loop is inserted along the boundary of AdS2.

5

The straight Wilson line corresponds to taking the metric on AdS2 in Poincaré coordinates

while the circular Wilson loop corresponds to taking AdS2 in global coordinates.6 As we

show in appendix A, the metric of AdS2 ×S2 in global and Poincaré coordinates is related

to the metric in R
4 by a Weyl transformation, which allows us to relate the computations

in R
4 to the computations in AdS2 × S2.

We now proceed to study the correlators of the half-BPS Wilson loop with chiral

primary operators and with the stress tensor in N = 4 super Yang-Mills.

2.1 Correlators with chiral primary operators

A chiral primary operator of dimension J is a scalar operator transforming in the repre-

sentation of the SO(6) R-symmetry with the highest weight (0, J, 0). It is given by7

OJ(x) ≡
(8π2)J/2

λJ/2
√
J
Ci1...iJ Trφi1 . . . φiJ (x) , (2.3)

where Y = Ci1...iJ θ
i1 . . . θiJ is an SO(6) scalar spherical harmonic that specifies the operator

OJ . We normalize the complex coefficients Ci1...iJ so that

Ci1...iJCi1...iJ = 1, (2.4)

corresponding to the normalization of the spherical harmonics Y given by
∫

S5

|Y (θ)|2 =
π3

2J−1(J + 1)(J + 2)
. (2.5)

The operators (2.3) are normalized such that their two-point function is unit normalized

in the planar approximation

〈OJ (x)OJ (y)〉 =
1

|x− y|2J . (2.6)

Let us first consider the correlator of the Wilson loop and OJ(x) in AdS2 × S2. Be-

cause this space is homogeneous (all points are related to each other by an isometry), the

correlator is independent of the position x. By taking into account the transformation

properties under the R-symmetry group, we can parametrize the correlator as

〈OJ (x)〉W = ΞR,JY (θ). (2.7)

5To be precise, the Wilson loop should be inserted on a curve at a finite distance away from the boundary

and then we should take the limit in which this curve approaches the boundary. We refer the reader to [44]

for details on the procedure.
6Throughout this paper AdS refers always to Euclidean AdS space.
7Here φi = φa

i T a. The gauge group generators are canonically normalized by Tr(T aT b) = 1
2
δab and the

scalar propagator is given by 〈φa
i (x)φb

j(0)〉YM =
g2

YM

4π2

δijδab

x2 .
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The notation 〈. . .〉W denotes a correlator of N = 4 super Yang-Mills in AdS2 × S2 with

the Wilson loop WR(θ) on the boundary, normalized so that 〈1〉W = 1. This expression

holds both when AdS2 is in global and Poincaré coordinates, corresponding to inserting a

circular Wilson loop and straight Wilson line respectively.

For the circular Wilson loop (2.1) in R
4, the correlator is given by

〈WR(θ, a)OJ (x)〉
〈WR(θ, a)〉 = ΞR,JY (θ)

1

r̃J
, (2.8)

where we have defined the conformally invariant distance r̃ as

r̃ =

√
(r2 + L2 − a2)2 + 4a2L2

2a
, (2.9)

which is also the conformal factor that relates the metric on R
4 to the metric on AdS2×S2

in global coordinates, as we show in appendix A. Here a is the radius of the S1, L is

the distance between the location of the chiral primary operator (2.3) and the plane that

contains the circle. The other parameter r is the distance between the location of the

operator (2.3) and the axis of the circle. Therefore, symmetries determine the correlator

between a chiral primary operator and a circular Wilson loop up to the coefficient ΞR,J .

Similarly, the correlator of the straight Wilson line in R
4 (2.2) and the chiral pri-

mary (2.3) is given by

〈W line
R (θ)OJ (x)〉 = ΞR,JY (θ)

1

lJ
, (2.10)

where l can be interpreted, again, both as the distance between the line and OJ(x) as well

as the conformal factor relating the metric on R
4 to the metric on AdS2 × S2 in Poincaré

coordinates (see appendix A).

Agreement between various computations we perform in this paper suggests that the

correlator of a Wilson loop with a local operator normalized by the Wilson loop expectation

value transforms simply under conformal transformations, so that ΞR,J is the same for the

correlator computed with the circular Wilson loop and with the straight Wilson line. The

transformation properties of this ratio seem to be solely determined by the representation

of the local operator under the conformal group, and does not suffer from the conformal

anomaly of the Wilson loop expectation value [9]. It would be interesting to prove this

lack of conformal anomaly of the normalized correlator from first principles.

The coefficient ΞR,J depends on R, the representation of the Wilson loop, and J , the

dimension of the chiral primary operator (it is also a non-trivial function of the ’t Hooft

coupling λ and N) but is independent of the choice of operator in the (0, J, 0) multiplet

of SO(6) one uses. We will take advantage of this by choosing convenient operators in the

multiplet for the various computations.

2.2 Correlator with the stress tensor

The correlator of a half-BPS Wilson loop with the stress tensor is also essentially fixed by

symmetries up to a scaling function hW , that we wish to compute. For the stress tensor

– 7 –
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one must take into account that U(N) N = 4 super Yang-Mills on a curved background

has a conformal anomaly given by

〈T µ
µ 〉 =

N2

32π2

(
RµνR

µν − 1

3
R2

)
, (2.11)

where Rµν is the Ricci tensor and R is the Ricci scalar of the background. This relation

is protected from quantum corrections because the superconformal symmetry relates the

stress tensor to derivatives of the R-current.

On the AdS2×S2 background we are considering (both in global and Poincaré coordi-

nates), the anomaly (2.11) is N2/8π2. This, together with the symmetries of the problem,

determines the correlator up to a real number hW — the scaling function — that depends

on gYM, N , and R, but not on θ [44]

〈Tµν(x)〉W dxµdxν = hW (ds2AdS2
− ds2S2) +

N2

32π2
(ds2AdS2

+ ds2S2). (2.12)

We now turn to N = 4 super Yang-Mills in R
4. In this case there is no conformal

anomaly. The correlator of the straight Wilson line with the stress tensor in R
4 is given

by [44]

〈W line
R (θ)T44(x)〉 =

hW
l4

, 〈W line
R (θ)T4a(x)〉 = 0 ,

〈W line
R (θ)Tab(x)〉 = −hW

δab − 2nanb
l4

, (2.13)

where we have taken the line along the 4-direction and na = xa/l for a, b = 1, 2, 3 is the

unit normal vector to the line (i.e. nana = 1).

The form of the correlator between the circular loop and the stress tensor in R
4 can

be obtained similarly and we write it for completeness. The circular loop in the coordinate

system

ds2
R4 = dr2 + r2dψ2 + dL2 + L2dφ2 (2.14)

is supported at r = a and L = 0. The correlator is then given by

〈WR(θ, a)Trr(x)〉
〈WR(θ, a)〉 = hW

(
1

r̃4
− 2r2L2

a2r̃6

)
,

〈WR(θ, a)Tψψ(x)〉
〈WR(θ, a)〉 = hW

r2

r̃4
,

〈WR(θ, a)TLL(x)〉
〈WR(θ, a)〉 = hW

(
1

r̃4
− (a2 + L2 − r2)2

2a2r̃6

)
,

〈WR(θ, a)Tφφ(x)〉
〈WR(θ, a)〉 = −hW

L2

r̃4
,

〈WR(θ, a)TrL(x)〉
〈WR(θ, a)〉 = −hW

rL(a2 + L2 − r2)2

a2r̃6
. (2.15)

It is completely determined by the scaling function hW .

2.3 Correlator with the stress tensor from Ward identities

We now wish to derive an exact relation between the Wilson loop correlator with the stress

tensor and the Wilson loop correlator with the dimension two chiral primary operator.

This will allow us to compute the first correlator from the knowledge of the second one.

– 8 –
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The relation between these two correlators is a consequence of a Ward identity. The

idea is to apply the supersymmetry Ward identity to operators in the current supermul-

tiplet, which contains both the dimension two chiral primary operator and the stress ten-

sor [46].

Under the Poincaré supersymmetry transformations of N = 4 super Yang-Mills8

δϕAB = λ[AηB] +
1

2
ǫABCDηCλD,

δAµ = −i(λAσµηA + ηAσµλA), (2.16)

the straight Wilson line

W line
R (θ) =

1

dimR
TrRPexp i

∫
ds(A4 + θiΣi

ABϕ
AB) (2.17)

is invariant under the following supersymmetries

ηA = iθiΣi
ABσ4η

B , (2.18)

where Σi
AB , Σ

iAB
are the six-dimensional chiral sigma matrices satisfying (see e.g. [47])

Σi
ABΣ

jBC
+ Σj

ABΣ
iBC

= 2δijδCA , (2.19)

Σ
iAB

= −1

2
ǫABCDΣi

CD, (2.20)

and the scalars in the 6 of SU(4) are given by φi = Σi
ABϕ

AB . One can regard Σi
AB as the

Clebsch-Gordan coefficients coupling two 4’s to a 6 of SU(4).

Let’s now consider the following correlator

〈W line
R (θ)δO(x)〉, (2.21)

where δ denotes a supersymmetry transformation generated by the supersymmetries pre-

served by the Wilson line (2.18) and O(x) is an arbitrary local operator. Since δW line
R (θ) = 0

we have that

〈W line
R (θ)δO(x)〉 = 〈δ

(
W line
R (θ)O(x)

)
〉 = 〈[ηiαQiα + ηα̇i Q

i
α̇,W

line
R (θ)O(x)]〉 = 0 (2.22)

for any local operator O(x).

The supersymmetry variations of the supercurrent JµA (in the 4 of SU(4)) and the

fermionic operator χCAB = −χCBA (in the 20 of SU(4)) in the current supermultiplet are

given by (see e.g. [48])

δJµA = −σνTµνηA − 2

(
σρσµν −

1

3
σµνσρ

)
∂νRρCAηC

−
(
σρσσµν +

1

3
σµνσρσ

)
ǫACDE∂

νBCDρσηE ,

8We do not write the four-dimensional spinor indices for clarity.
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δχCAB =
3

4

[
iǫABEFσ

µνBCE
µν η

F + iǫABEFEECηF

×σµRCµ[AηB] + 2iσµ∂µQ
CD

ABηD

]
− trace , (2.23)

where aCAB − trace = aCAB − (1/3)(δCAa
D
DB − δCBa

D
DA). The supersymmetry transformations

generate other operators in the current supermultiplet. For example, in the right hand side

of (2.23) we get

QABCD =
1

4g2
YM

Σ
AB
i ΣjCDTr

(
φiφj − 1

6
δijφkφk

)
, (2.24)

which is the dimension two chiral primary operator in the 20′ of SU(4). The R-symmetry

current RµAB , the scalar operator EAB = EBA and the two-form BAB
µν = −BBA

µν transform

in the 15, 10, 6 representations of SU(4) respectively.

We can now constrain the correlator of the straight Wilson line W line
R (θ) with these

operators by using the fact that W line
R (θ) is SO(5) invariant. Since the 15 and 10 represen-

tations of SU(4) do not contain an SO(5) singlet in the decomposition of SO(5) ⊂ SU(4)

we have that

〈W line
R (θ)RµAB〉 = 0 , 〈W line

R (θ)EAB〉 = 0 . (2.25)

On the other hand, since 6 → 1 ⊕ 5 under the decomposition, we have that

〈W line
R (θ)BAB

4a 〉 = 0, 〈W line
R (θ)BAB

ab 〉 = bΣ
AB
i θi

ǫabcn
c

l3
. (2.26)

Likewise, we have from (2.10) and (2.24) that

〈W line
R (θ)QABCD〉 =

√
2N

32π2
ΞR,2Σ

AB
i ΣjCD

(
θiθj − 1

6
δij
)

1

l2
, (2.27)

and, as we have already seen,

〈W line
R (θ)T44(x)〉 =

hW
l4

, 〈W line
R (θ)T4a(x)〉 = 0 ,

〈W line
R (θ)Tab(x)〉 = −hW

δab − 2nanb
l4

. (2.28)

These correlators are completely characterized by the functions b, hW and ΞR,2, that de-

pend on the representation R, on g2
YM and N .

Our goal is to relate these three quantities. For that we use the Ward identity (2.22)

and the supersymmetry transformations (2.23). To do that, let us compute

0 = 〈W line
R (θ)δJ4A〉

= −σ4hW
l4
ηA −

(
σcdσ4a +

1

3
σ4aσcd

)
ǫACDEbǫcde∂

a

(
ne

l3

)
θiΣ

CD
ηE

=

(
ihW − 4

3
b

)
θiΣi

ABη
B

l4
, (2.29)
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0 = 〈W line
R (θ)δχCAB〉

=
3

4

[
iǫABEFσ

abbΣ
CE
i θi

ǫabcn
c

l3
ηF

+ 2iσa
√

2N

32π2
ΞR,2Σ

CD
i ΣjAB

(
θiθj − 1

6
δij
)
∂a

(
1

l2

)
ηD

]
− trace

=
3

4

(
b+ i

√
2N

8π2
ΞR,2

)
naσa

l3
θi
(

ΣiABδ
C
D − 1

3
δCBΣi

AD +
1

3
δCAΣi

BD

)
ηD , (2.30)

where we have used that the supersymmetry transformation is generated by a spinor sat-

isfying (2.18). Therefore we obtain that

hW = − N

3
√

2π2
ΞR,2 . (2.31)

This relation has been checked at weak coupling to make sure that the numerical coefficient

is correct. We stress that the relation holds exactly for arbitrary R, g2
YM, and N , as it

follows from a Ward identity. This allows us to calculate the correlator of the half-BPS

Wilson loop with the stress tensor in terms of the correlator of the Wilson loop with the

dimension two chiral primary operator.9 This will allow us to compute the stress tensor

correlator at strong coupling by solving a matrix model.

We expect that similar arguments can be constructed to relate the correlator with stress

tensor to the correlator with the dimension two chiral primary, in cases involving other

supersymmetric operators/backgrounds, e.g. surface operators, half-BPS local operators,

and interface CFT’s.

3. Correlators from gauge theory

In this section we compute the coefficients ΞR,J and hW in field theory. Later, in section 4,

we will repeat these computations in supergravity using the bubbling Wilson loop super-

gravity solutions. As explained earlier, ΞR,J is independent of the choice of Ci1...iJ , i.e., the

choice of the spherical harmonic Y (θ), or, equivalently, it is independent of the choice of

operator in the (0, J, 0) SU(4) multiplet. We will take advantage of this when calculating

ΞR,J in gauge theory and supergravity.

3.1 Correlators from a matrix model

3.1.1 Complex and normal matrix models

So far we have not committed to any explicit choice of chiral primary operator represen-

tative in (2.3). We do this now in order to compute ΞR,J , having in mind that the final

result is in fact independent of this choice. We take the following definition of complex

scalar field:

Z ≡ φ1 + iφ2

√
2

, (3.1)

9See appendix B for an alternative derivation of this relation obtained using a topological field theory

argument based on the GL twist [49].
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and choose the following chiral primary operator:

OJ(x) ≡
(8π2)J/2

λJ/2
√
J

TrZJ , (3.2)

which, as we shall see shortly, allows for its correlator to be computed using a matrix

model. The θ dependence of the correlator of this operator with the circular Wilson loop

WR(θ, a) is given by (2.8) with

Y (θ) =
(θ1 + iθ2)J

2J/2
. (3.3)

Using the symmetries of the problem, we can specialize without loss of generality to

a configuration with r = 0, corresponding to the local operator being inserted on the

symmetry axis of the circle. We can moreover use the SO(6) symmetry to take θ =

(1, 0, . . . , 0) so that the Wilson loop (2.1) only couples to φ1. In this case the contribution

to the correlator (2.8) due to the spherical harmonic associated with (3.2) is Y (θ) = 2−J/2.

It was conjectured in [36] that radiative corrections to this correlator that involve in-

ternal vertices cancel to all orders in perturbation theory and therefore do not contribute

to the evaluation of correlators between chiral primaries and circular Wilson loops. This is

the working assumption we make for the gauge theory analysis (a derivation using localiza-

tion similar to the one in [10] should be possible). Moreover, with the choice r = 0, every

point on the circle is equidistant from x and the propagator between the chiral primary

and the Wilson loop becomes constant. It was first noticed in [8] that, in Feynman gauge,

the combined propagator for the gauge field and the scalars between two points on the

circle is also a constant (independent of the radius a of the circle).

Summing over all Feynman diagrams reduces then to a combinatorial problem, where

one has to count the number of free propagators at any order in perturbation theory. As

pointed out in [38], this combinatorics is exactly captured by a complex Gaussian matrix

model defined by the partition function ZC =
∫

[dz] exp
(
−2N

λ Trzz
)
, where z is a complex

N ×N matrix. This matrix model also computes the two-point function of local operators

in N = 4 super Yang-Mills of the form Tr(ZJ) [50]. Therefore, the correlator of the circular

Wilson loop (2.1) with the chiral primary operator (3.2) is given by

〈WR(θ, a)OJ (x)〉YM

〈WR(θ, a)〉YM
=

1

r̃J
1

2J/2
1

λJ/2
√
J

∫
[dz]e−

2N
λ

TrzzTrRe
(z+z)/2 TrzJ

∫
[dz]e−

2N
λ

TrzzTrRe(z+z)/2
, (3.4)

where r̃ is given in (2.9).

By comparing this expression with (2.8), and using that for θ = (1, 0, . . . , 0) the spher-

ical harmonic function corresponding to (3.2) is given by Y (θ) = 2−J/2, we find that

ΞR,J =
1

λJ/2
√
J

∫
[dz]e−

2N
λ

TrzzTrRe
(z+z)/2 TrzJ

∫
[dz]e−

2N
λ

TrzzTrRe(z+z)/2
≡ 1

λJ/2
√
J
N〈zJ 〉MM . (3.5)

Therefore, we arrive at the result that the correlator of a dimension J chiral primary

operator OJ with a half-BPS circular Wilson loop WR(θ, a) is captured by the moment

〈zJ 〉 of a Gaussian complex matrix model (3.4).
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After having carefully settled the normalization factors, the next task is to compute

the moments 〈zJ 〉 in the complex matrix model. This is not easy because the eigenvalues

of the complex matrix model do not decouple from the off-diagonal components of the

matrix. To proceed, we will map the complex matrix model to a normal matrix model,

where one can reduce the computation of the moments to integrals over the eigenvalues. Via

manipulations involving coherent states, the authors of [38] proved the following formula

(see appendix A of [38]):

1

ZH

∫
dNξe−

2N
λ

P

i ξ
2
i ∆(ξ)2

∏

i

ekiξi

=
1

ZN

∫
d2Nze−

2N
λ

P

i zizi |∆(z)|2
∏

i

e
ki

zi+zi√
2 e−

λ
8N

k2
i . (3.6)

On the left hand side we have the hermitian matrix model, with eigenvalues ξi and partition

function ZH =
∫
dNξe−

2N
λ

P

i ξ
2
i ∆(ξ)2, while zi and ZN =

∫
d2Nze−

2N
λ

P

i zizi |∆(z)|2 are the

eigenvalues and partition function of the normal matrix model. The factors of ∆ are the

Vandermonde determinants originating from the transformation to the eigenvalue basis and

the constants ki encode all the information about the representation of the Wilson loop

insertion.

Since TrR(eξ) is a polynomial of eξi , the equation above proves that the hermitian

and the normal matrix model are almost equivalent, upon the replacement TrR(eξ) →
TrR(e(z+z)/

√
2). Because of the extra factors e−

λ
8N

k2
i in the right hand side, this equivalence

seems limited to the anti-symmetric representations where these factors are independent

of the index i and can be pulled out of the integral [38]. We can circumvent this difficulty

by rewriting

e−
λ

8N
k2

i =

√
2N

πλ

∫
dαie

− 2N
λ
α2

i +ikiαi . (3.7)

Thus we find that (going back to the matrix form for conciseness)

1

ZH

∫
[dξ]e−

2N
λ

Trξ2 1

dimR
TrR(eξ)

=
1

ZNZα

∫

[z,z]=0
[dz][dα]e−

2N
λ

Tr(zz+α2) 1

dimR
TrR(e

z+z√
2

+iα
) , (3.8)

where [dξ] and [dz] are the hermitian and normal matrix measures, respectively, α is a real

diagonal matrix, and [dα] is the Euclidean measure. We have divided by the appropriate

partition functions for proper normalization.

We are in fact interested in an extended version of the relation above, which is obtained

by applying the trick (3.7) to the results discussed in appendix C of [38]. This extension

includes an extra insertion corresponding to a chiral primary operator, and is given by

1

Z2
H

∫
[dξ][dη]e−

2N
λ

Tr(ξ2+η2) 1

dimR
TrR(eξ)Tr(ξ + iη)J

=
1

ZNZα

∫

[z,z]=0
[dz][dα]e−

2N
λ

Tr(zz+α2) 1

dimR
TrR(e

z+z√
2

+iα
)TrzJ

≡ 〈WRTrzJ〉MM (3.9)
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This formula rewrites the complex matrix model correlator in (3.5) as a normal matrix

model correlator. We will calculate ΞR,J in (3.5) using the normal matrix model description.

We are interested in the computation when the representation R is large while J is of

order one. It is for this class of operators that the dual supergravity background that we

will compute with in the next section has small curvature everywhere. In this case, the

eigenvalue distribution of the hermitian and normal matrix models is altered by the Wilson

loop insertion but not by the chiral primary operator insertion.

The trick found in [35] and used in [40] to analyze the eigenvalue distribution of a

hermitian matrix model with a Wilson loop insertion in a large representation R (see

figure 1) is to split the matrix ξ into g + 1 blocks ξI of size nI × nI and rewrite the traces

in terms of interactions among different submatrices

dimR 〈WR〉MM =
1

ZH

∫
[dξ] e−

2N
λ

Tr ξ2TrR(eξ)

=
1

ZH

∫ ∏

I

[dξI ] e
− 2N

λ

P

I Tr ξ2I e
P

I KITrξI
∏

I<I′

det
(ξI ⊗ 1 − 1 ⊗ ξI′)

2

1 − e−ξI ⊗ eξI′
, (3.10)

where KI are defined in figure 1. At the saddle point of the integral, the eigenvalues of ξI
for fixed I are distributed along some interval [e2I , e2I−1]. These intervals are ordered as

e2g+2 < . . . < e1 . (3.11)

In the limit

λ≫ 1 , g2
YMnI = O(λ) , g2

YM(KI −KI+1) = O(λ1/2) , (3.12)

these cuts are separated from each other by a distance of order
√
λ and the exponential

interactions in (3.10) can be safely ignored. We note that we are studying the matrix

model in the supergravity regime (3.12), where it is meaningful to compare the matrix

model computation with the corresponding computation performed using the dual bubbling

supergravity solutions, which we carry out in the next section. Thus the matrix integral

for the Wilson loop expectation value in a large representation R (see figure 1) in the

supergravity regime (3.12) is given by

dimR 〈WR〉MM

=
1

ZH

∫ ∏

I

[dξI ] e
− 2N

λ

P

I Tr ξ2I e
P

I KITrξI
∏

I<J

det (ξI ⊗ 1 − 1 ⊗ ξJ)
2 . (3.13)

This model was solved in [40] at large N .

The same trick goes through also in the normal matrix model. It is also straightforward

to generalize the computation with a local operator insertion, which is what we need to

compute (3.9). The corresponding formula is given by

dimR 〈WRTrzJ〉MM

=
1

ZNZα

∫

[zI ,zI ]=0

∏

I

[dzI ][dαI ]e
− 2N

λ

P

I Tr(zIzI+α2
I)e

P

I KITr
“

zI+zI√
2

+iαI

”

×
∏

I<I′

|det(zI ⊗ 1 − 1 ⊗ zI′)|2

det

(
1 − e

− zI+zI√
2

−iαI ⊗ e
z
I′+z

I′√
2

+iαI′

)
∑

I

TrzI
J . (3.14)
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Similarly to the hermitian matrix model, in the supergravity regime (3.12), the exponential

interactions in the denominator in the second line of (3.14) can be neglected. Then the

dynamics of α is decoupled and trivial as it doesn’t have the Vandermonde repulsion. Thus

we get

〈WRTrzJ〉MM

〈WR〉MM

=

∫

[zI ,zI ]=0

∏

I

[dzI ]e
− 2N

λ

P

I TrzIzIe
P

I KITr
“

zI+zI√
2

”∏

I<I′

|det(zI ⊗ 1 − 1 ⊗ zI′)|2
∑

I

TrzI
J

∫

[zI ,zI ]=0

∏

I

[dzI ]e
− 2N

λ

P

I TrzIzIe
P

I KITr
“

zI+zI√
2

” ∏

I<I′

|det(zI ⊗ 1 − 1 ⊗ zI′)|2
.

(3.15)

We can study the resulting matrix model in the large N saddle point approximation.

Since the submatrices of z feel different constant forces proportional to KI , the eigenvalues

of z spread into g+1 droplets (see figure 2(c)), and we can easily obtain the normal matrix

model saddle point equations

−2N

λ
zIi +

KI√
2

+
∑

(I′,i′)6=(I,i)

1

zIi − zI′i′
= 0 , I = 1, . . . g + 1, i = 1, . . . , nI , (3.16)

where I labels the droplets DI and i the eigenvalues inside each droplet, and
∑g+1

I=1 nI = N

(see figure 1).

3.1.2 Large N solution of the normal matrix model

In order to solve the normal matrix model in the supergravity regime (3.12), we define the

resolvent of the normal matrix model as

Ω(z) ≡ g2
YM

∑

I,i

1

z − zI,i
= λ

∫

C

d2z′ σ(z′, z′)
1

z − z′
, (3.17)

where σ(z, z) is the eigenvalue density in the complex plane and we use the measure d2z =

d(Re z)d(Im z). As in any normal matrix model, the eigenvalue density is constant in the

droplets (which are then incompressible), as one easily sees by rewriting the large N saddle

point equations (3.16) as

−2z +
g2
YMKI√

2
+ Ω(z) = 0 (3.18)

for z ∈ DI , and using that ∂z[1/(z − z′)] = πδ2(z − z′):

σ(z, z) =





2
πλ for z ∈ DI ,

0 for z /∈ DI .

(3.19)

The resolvent then becomes

Ω(z) =
2

π

∫

D=
S

I DI

d2z′
1

z − z′
. (3.20)
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Our task is to find a function Ω(z) and g+1 simply connected regionsDI such that Ω(z)

is holomorphic outside D = ∪IDI , equation (3.18) is satisfied on the boundaries ∂DI , and

Ω(z) =
λ

z
+ O(z−2) as z → ∞ . (3.21)

As we saw in equation (3.8), the normal matrix model is simply a rewriting of the hermitian

matrix model if we ignore the TrzJ insertion, to which the eigenvalues do not back-react

anyway. So we should expect that the large N solutions of the hermitian and the normal

matrix models are related.

The hermitian matrix model (3.13) has been solved in [40]. The resolvent

ω1(ζ) = g2
YM

∑

I

1

ζ − ξ(I)
(3.22)

is given as the indefinite integral

ω1(ζ) =

∫ ζ

∞

(
2 − 2

ag+1(ζ
′)√

H2g+2(ζ ′)

)
dζ ′. (3.23)

Here ag+1(ζ) and

H2g+2(ζ) =

2g+2∏

i=1

(ζ − ei) (3.24)

are monic polynomials of degree g + 1 and 2g + 2, respectively. Their coefficients are

determined by the constraints described in [40]. These constraints guarantee that the

integration contour in (3.23) is arbitrary as long as it does not cross any of the cuts

[e2I , e2I−1]. The integrand is a meromorphic one-form on the hyperelliptic curve given by

the equation

w2 = H2g+2(ζ). (3.25)

Let us define a holomorphic function ω2(ζ) by analytically continuing the resolvent

ω1(ζ) to the second sheet along the (g + 1)-th branch cut:

ω2(ξ ± iǫ) = ω1(ξ ∓ iǫ) for ξ ∈ [e2g+2, e2g+1] . (3.26)

In other words,

ω2(ζ) = ω1(e2g+2) +

∫ ζ

e2g+2

(
2 +

ag+1(ζ
′)√

H2g+2(ζ ′)

)
dζ ′, (3.27)

where again the contour should not cross any cut. It then follows that

ω2(ξ ± iǫ) − ω1(ξ ∓ iǫ) =

∮

BI

dζ

(
2 − 2

ag+1(ζ)√
H2g+2(ζ)

)
= g2

YMKI , (3.28)
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ζ
ξ

ρ(ξ)

(a) (b)

z

(c)

Figure 2: (a) The branch cuts [e2I , e2I−1] (I = 1, . . . , g+1) on the ζ plane C for the the hyperelliptic

curve (3.25) in the g = 2 case. (b) The eigenvalue density ρ(ξ) of the hermitian matrix model (3.10).

(c) The corresponding eigenvalue distribution (droplets) of the normal matrix model (3.14). The

shape of a droplet is given by ρ(ξ).

where the contour BI goes around the interval [e2g+1, e2I ] , from e2I to e2g+1 on the first

sheet and from e2g+1 to e2I on the second sheet. The last equality in (3.28) is one of the

constraints [40].

We claim that the solution to our complex analysis problem determining the resolvent

of the normal matrix model is given by Ω(z) = (1/
√

2)ω1 ◦ ω−1
2 (2

√
2z), or

z =
1

2
√

2
ω2(ζ), (3.29)

Ω(z) =
1√
2
ω1(ζ). (3.30)

First, one can see from (3.27) that (3.29) maps C − ∪I [e2I , e2I−1] to the complement of

some droplets, identified with DI . That is, it maps figure 2(a) to figure 2(c). For z ∈ ∂DI

with Im z ≶ 0, then

−2z +
g2
YMKI√

2
+ Ω(z) = − 1√

2
ω2(ξ ± iǫ) +

g2
YMKI√

2
+

1√
2
ω1(ξ ± iǫ) = 0, (3.31)

where we used that ω1(ξ ± iǫ) = ω1(ξ ∓ iǫ). Thus (3.18) is indeed satisfied!

In summary, we have found a normal matrix model eigenvalue distribution in terms

of the hermitian matrix model. This now allows to calculate ΞR,J in (3.5) in terms of the

moments of the hermitian matrix model eigenvalue distribution. We will then compare this

with the supergravity computation in the next section, where exact agreement will be found.

3.1.3 Correlators as moments in the normal matrix model

All the information about the representation R of the Wilson loop is encoded in the mo-

ments of the matrix model eigenvalue distribution, which for the hermitian matrix model

are defined by

〈ξn〉 ≡ ρn ≡
∫
dξ ρ(ξ) ξn . (3.32)
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Here ρ(ξ) is the hermitian matrix model eigenvalue distribution. We want to express the

normal matrix model moments

〈zJ〉 =

∫
d2z σ(z, z)zJ (3.33)

in terms of the 〈ξn〉’s.
The hermitian matrix model resolvent ω1(ζ) can be expanded in moments of the eigen-

value distribution

ω1(ζ) = λ

∫
dξ ρ(ξ)

1

ζ − ξ
= λ

∞∑

n=0

〈ξn〉
ζn+1

, (3.34)

with 〈ξ〉 = 0.10 This constraint can be interpreted as arising from considering N = 4 super

Yang-Mills with SU(N) gauge group.

From the SU(N) saddle point equation on the (g+1)-th cut, we have for any ζ that [40]

ω1(ζ) + ω2(ζ) = 4ζ + g2
YM|R|/N , (3.35)

where |R| is the total number of boxes in the Young tableau corresponding to the repre-

sentation R (see figure 1). After shifting z by
√

2g2
YM|R|/4N in (3.29), we get that

z =
√

2ζ − 1

2
√

2
ω1(ζ) . (3.36)

This relation can be inverted recursively using (3.34), (3.36) to obtain

ζ =
z√
2

+
λ

2
√

2z
+

4λ〈ξ2〉 − λ2

4
√

2z3
+
λ〈ξ3〉
z4

+

√
2λ3 − 8

√
2〈ξ2〉λ2 + 8

√
2〈ξ4〉λ

8z5
+ O(z−6). (3.37)

We can now write the resolvent of the normal matrix model in terms of the hermitian

matrix model moments of the eigenvalue distribution by combining (3.30), (3.37)

Ω(z) = λ
∞∑

J=0

〈zJ〉
zJ+1

=
λ

z
+

2λ〈ξ2〉 − 1
2λ

2

z3
+

2
√

2λ〈ξ3〉
z4

+
4λ〈ξ4〉 − 4λ2〈ξ2〉 + 1

2λ
3

z5

+
4
√

2λ〈ξ5〉 − 5
√

2λ2〈ξ3〉
z6

+
8〈ξ6〉λ− 12〈ξ4〉λ2 − 6〈ξ2〉2λ2 + 15

2 〈ξ2〉λ3 − 5
8λ

4

z7
+ O

(
z−8
)
. (3.38)

This allows us to express the normal matrix model moments 〈zJ〉 in terms of the moments

of the hermitian matrix model 〈ξn〉 ≡ ρn. Notice that non-linearities in the moments start

10 This imposes a center of mass condition on the distribution. So far we have focused on the U(N) case.

For SU(N) gauge group, we need to restrict the integrated hermitian and complex matrices. Since the U(1)

part is decoupled, in the large N limit, the net effect is to shift the eigenvalue distributions so that the

average eigenvalues vanish: 〈ξ〉 = 〈z〉 = 0.
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to appear only at order O(z−7). The first few moments of the normal matrix model are

given in terms of the moments of the hermitian matrix model by

〈z2〉 = 2〈ξ2〉 − λ

2
= 2∆ρ2 ,

〈z3〉 = 2
√

2〈ξ3〉 = 2
√

2∆ρ3 ,

〈z4〉 = 4〈ξ4〉 − 4λ〈ξ2〉 +
λ2

2
= 4 (∆ρ4 − λ∆ρ2) , (3.39)

where ∆ρn ≡ ρn − ρ0
n. Here we have used that the moments ρ0

n of the Wigner semi-circle

distribution law, which has the eigenvalue distribution ρ0(ξ) = (2/πλ)
√
λ− ξ2, are given

by ρ0
2 = λ/4, ρ0

3 = 0 and ρ0
4 = λ2/8. As we shall see in the next section, the fact that

the correlators are given by moments relative to the Wigner semi-circle distribution has

a corresponding statement in supergravity, where correlators are captured by devitations

away from the AdS5×S5 vacuum solution, which in the parametrization of [28] corresponds

to the Wigner semi-circle distribution law.

We are now ready to write the result of our computation of the correlator coefficients

ΞR,J in the supergravity regime (3.12). From (3.5), we find that

ΞR,2 =
√

2
N

λ
∆ρ2 ,

ΞR,3 = 2

√
2

3

N

λ3/2
∆ρ3 ,

ΞR,4 = 2
N

λ2
(∆ρ4 − λ∆ρ2) . (3.40)

The expression (3.40), together with (2.7), is the final result of the gauge theory computa-

tion for the correlators between a half-BPS Wilson loop and the chiral primary operators

in N = 4 SYM and represents a prediction for supergravity, as we have solved the matrix

model in the supergravity regime (3.12).

Moreover, using our derivation of the relation between the correlator of the Wilson

loop with the stress tensor and the correlator with the dimension two chiral primary oper-

ator (2.31) we also obtain the correlator with the stress tensor in terms of the hermitean

matrix model. Namely, we have that

hW = − N

3
√

2π2
ΞR,2 = − N2

3π2λ
∆ρ2 . (3.41)

and the correlator is given by (2.12).

In section 4, we will calculate the same correlation functions using the dual bubbling

supergravity solutions and show that we get precise agreement.

3.2 Correlator of Wilson loop with the stress tensor from S-duality

We have already shown in subsection 2.3 an exact relation between the correlator of the

Wilson loop with the stress tensor and the correlator of the Wilson loop with dimension two

chiral primary operators. Using this result, we have computed the strong coupling result
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of this correlator in terms of the hermitian matrix model second moment of the eigenvalue

distribution (3.41).

Here we calculate the stress tensor correlator at strong coupling in an alternative way.

This involves considering the correlator of the stress tensor with a ’t Hooft line T line
R in

the semiclassical gauge theory and then S-dualizing. This turns the ’t Hooft line into a

Wilson line and exchanges the weak coupling regime with the strong coupling regime. So

we need to calculate the semiclassical scaling weight hT for the ’t Hooft line T line
R , which

captures the correlator of a ’t Hooft line operator with the stress tensor as in (2.13) (see

also [44]). We find exact agreement, providing a non-trivial test of S-duality in N = 4

super Yang-Mills.

The bosonic action of N = 4 super Yang-Mills is given by

S =
1

g2
YM

∫
d4x

√
gTr

(
1

2
FµνF

µν +Dµφ
iDµφi +

R

6
φiφi − 1

2
[φi, φj ]2

)
. (3.42)

The bosonic contribution to the stress tensor of the theory is given by

Tµν =
2√
g

δS

δgµν

=
2

g2
YM

Tr

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
+

2

g2
YM

Tr

(
Dµφ

iDνφ
i − 1

2
gµνDρφ

iDρφi

− R

12
gµνφ

iφi+
1

6
Rµνφ

iφi+
1

6
(gµνD

2−DµDν)(φ
iφi)+

1

4
gµν [φ

i, φj ]2
)
.

(3.43)

We want to compute the correlator 〈T line
R Tµν(x)〉. In the semiclassical approximation,

this is found by evaluating the stress tensor (3.43) on the gauge field configuration produced

by the insertion of T line
R , which is given by (see e.g. [44])

F =
1

2
B volS2 , φ =

B

2l
. (3.44)

Here volS2 is the volume form on the S2 surrounding the ’t Hooft line, l is the distance from

the ’t Hooft line and B is the highest weight vector for the representation R (see figure 1).

The semiclassical scaling weight for the ’t Hooft line operator T line
R is given by

(c.f. (2.13))

hT = − 1

3g2
YM

Tr(B2) + corrections , (3.45)

where the corrections are due to loop effects, that would be interesting to compute. For

gauge group SU(N), B — the highest weight vector of the representation R — is given by

B = diag (R1 − |R|/N,R2 − |R|/N, . . . , RN − |R|/N) , (3.46)

so that (see figure 1)

TrB2 =
∑

I

nI(KI − |R|/N)2. (3.47)
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Therefore, we have found that in the semiclassical approximation the scaling weight of the

’t Hooft line operator T line
R in a representation R is given by

hT = − 1

3g2
YM

∑

I

nI(KI − |R|/N)2. (3.48)

We are interested in computing the scaling weight of the corresponding Wilson line

W line
R hW at strong coupling. S-duality is expected to exchange the ’t Hooft line T line

R

with the Wilson line W line
R , as well as exchange the weak coupling regime with the strong

coupling regime. Therefore, for the Wilson loop scaling weight hW at strong coupling, we

should S-dualize the ’t Hooft loop result (3.48) by replacing g2
YM → 16π2/g2

YM. The S-dual

scaling weight of the ’t Hooft line — which we denote by hST – is then given by

hST = − g2
YM

48π2

∑

I

nI(KI − |R|/N)2 + corrections . (3.49)

On the other hand, the strong coupling result we obtained using the normal matrix

model for the scaling weight of the Wilson loop W line
R is (3.41)

hW = − N2

3π2λ
∆ρ2 . (3.50)

We now note that

〈z2〉 = 2∆ρ2 =
g4
YM

8N

∑

I

nI(KI − |R|/N)2 (3.51)

in the limit that the cuts in the eigenvalue distribution of the matrix model are widely

separated, so that

ρ(ξ) =
∑

I

nI
N
δ

(
ξ − g2

YM(KI − |R|/N)

4

)
. (3.52)

In this particular limit, the expression for the S-dual of the ’t Hooft loop scaling

weight (3.49) agrees precisely with the computation of the scaling weight of the Wilson

loop in the strong coupling regime, obtained by combining (3.50) and (3.51). This is a

non-trivial quantitative test of S-duality for N = 4 SU(N) super Yang-Mills.

It is desirable to understand why quantum corrections are suppressed in this limit and

to explicitly compute them. Once these are included in the ’t Hooft loop computation,

the agreement we found could be extended. We hope to come back to these issues in the

near future.

4. Correlators from supergravity

In this section we compute the correlation functions of a half-BPS circular Wilson loop

with the chiral primary operator OJ for J = 2, 3, 4 and with the stress tensor of N =

4 super Yang-Mills using the bubbling supergravity backgrounds found in [25, 26, 28].
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These geometries are regular solutions of ten-dimensional type IIB supergravity that are

asymptotically AdS5×S5 and provide the gravitational description of all half-BPS circular

Wilson loops in N = 4 super Yang-Mills. They capture the complete backreaction of the

configuration of D5 or D3 branes in AdS5 × S5 describing a half-BPS Wilson loop in an

arbitrary representation R of the gauge group [19] (see also [20 – 22]).

For such ten-dimensional asymptotically AdS5 × S5 solutions there is a well-defined

procedure, developed in [45, 41],11 to extract the one-point functions of local operators in

the state produced by the operator that the bubbling solution describes. Using this method,

we will be able to obtain the correlators of the Wilson loop from the asymptotic expansion

of various bulk fields, which we compute using the bubbling supergravity solution. We will

find exact agreement with the strong coupling computation in gauge theory performed in

sections 2 and 3 using matrix models and S-duality.

4.1 Review of the bubbling solution

We start by briefly reviewing the bubbling solution found in [25, 26, 28], using the elegant

parametrization of the solution found in [28] (to which we refer the reader for more details).

As is well-known, a half-BPS circular Wilson loop preserves an Osp(4∗|4) subalgebra of the

P SU(2, 2|4) algebra of symmetries of N = 4 super Yang-Mills. The SO(2, 1) × SO(3) ×
SO(5) bosonic symmetries in Osp(4∗|4) are realized in the ten-dimensional supergravity

solution by writing the ten-dimensional metric as an AdS2 × S2 × S4 fibration over a two-

dimensional base manifold and by writing the most general ansatz for the other supergravity

fields compatible with this symmetry.

The metric describing a half-BPS Wilson loop is then given by

ds2 = f2
1ds

2
AdS2

+ f2
2ds

2
S2 + f2

4ds
2
S4 + 4ρ2(dx2 + dy2) (4.1)

where the warp factors f1, f2, f4, and ρ are real functions on the base.12 The warp factors

and the supergravity fluxes can be completely expressed in terms of two harmonic functions

h1 and h2 on the base [28]. In [40], a precise relation has been found between these harmonic

functions and the data that control the spectral curve of the hermitian matrix model, which

captures the vacuum expectation value of a half-BPS Wilson loop in N = 4 super Yang-

Mills [8 – 10]. The mapping is given by [40]

h1 =
iα′

8gs
(2(z − z) − (ω1 − ω1)) , h2 =

iα′

4
(z − z) (4.2)

where

z = −i
√
λ sinh(x+ iy) , (4.3)

and ω1 is the hermitian matrix model resolvent introduced in equation (3.22), and z is the

spectral parameter of the resolvent. Notice that we use from now on, for graphical clarity,

11For some of the previous work on holographic renormalization see [51 – 55]. A nice review of these

topics can be found in [56].
12The same symbol ρ denotes both the eigenvalue density as well as a component of the metric. The

distinction should be clear from the context.
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the letters z, x, and y for the hermitian matrix model variables (whereas in the previous

section we have used Greek letters for the hermitian matrix model and Latin letters for

the normal matrix model). The hermitian matrix model resolvent is given by

ω1 = g2
YMTr

1

z −M
≡ λ

∫
ρ(x)

z − x
. (4.4)

We note that the information of the representation of the Wilson loop is encoded in the

resolvent ω1, which depends non-trivially on the choice of representation R of the Wilson

loop, while the harmonic function h2 is universal and independent of the representation.

It is convenient to define the following combinations of the harmonic functions h1 and

h2 and their derivatives

V ≡ 1

2

∂h1

∂y

∂h2

∂x
− 1

2

∂h1

∂x

∂h2

∂y
,

W ≡ 1

2

∂h1

∂x

∂h2

∂x
+

1

2

∂h1

∂y

∂h2

∂y
,

N1 ≡ 1

2
h1h2

((
∂h1

∂x

)2

+

(
∂h1

∂y

)2
)

− h2
1W ,

N2 ≡ 1

2
h1h2

((
∂h2

∂x

)2

+

(
∂h2

∂y

)2
)

− h2
2W . (4.5)

The warp factors in the metric (4.1) are then given by [28]

f2
1 =

(
−4

√
−N2

N1
h4

1

W

N1

)1/2

,

f2
2 =

(
4

√
−N1

N2
h4

2

W

N2

)1/2

,

f2
4 =

(
4

√
−N1

N2

N2

W

)1/2

,

ρ2 =

(
−W

2N1N2

h4
1h

4
2

)1/4

. (4.6)

The RR four-form can be read off from

dC(4) = −dj1ê0123 + dj2ê
4567

≡ −dj1ê0123 + (Fxdx+ Fydy)ê
4567, (4.7)

where j2, as shown in [40], is given by

dj2 = −if4
4ρ(fzdw − fzdw)

=

[
∂

∂x

(
h1h2

V

W

)
+ 3

(
h1
∂h2

∂y
− h2

∂h1

∂y

)]
dx

+

[
∂

∂y

(
h1h2

V

W

)
− 3

(
h1
∂h2

∂x
− h2

∂h1

∂x

)]
dy. (4.8)
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In the expression for the four-form gauge field (4.7), ê0123 is the AdS2 × S2 volume form

and ê4567 is the S4 volume form, both with unit radius.

The complete bubbling supergravity solution also excites the dilaton and the RR and

NS-NS two-form gauge fields of type IIB supergravity. However, we will not need their

explicit expressions in this paper, as we will later show that these fluxes do not contribute

to the correlation functions we compute. Their explicit expressions can be found in [28].

In order to calculate the correlation function of a half-BPS Wilson loop and a local

operator, we must study the deviations of the bubbling supergravity solution from the

AdS5 × S5 vacuum solution. Our task will then be to extract the various correlation

functions from the deviations from this vacuum. Therefore, we first consider the eigenvalue

distribution corresponding to AdS5 × S5. In the language of the hermitian matrix model,

the eigenvalue distribution for this case is the Wigner semi-circle law

ω
(0)
1 = 2z − 2

√
z2 − λ . (4.9)

From equations (4.2), (4.3) we get that the harmonic functions corresponding to AdS5×S5

are given by

h
(0)
1 = 4c2 coshx cos y , h

(0)
2 = 4c2 sinhx cos y, (4.10)

where c2 =
√
λα′/8 (we have set the background dilaton to zero for simplicity). For

AdS5 × S5 the functions defined in (4.5) are given by

V (0) = −4c4 sin 2y ,

W (0) = 4c4 sinh 2x ,

N
(0)
1 = −64c8 cos4 y sinh 2x ,

N
(0)
2 = 64c8 cos4 y sinh 2x , (4.11)

while the AdS5 × S5 warp factors are13

f
(0)
1 = 2

√
2c cosh x , f

(0)
2 = 2

√
2c sinhx , f

(0)
4 = 2

√
2c cos y , ρ(0) =

√
2c . (4.12)

These warp factors give rise to the AdS5 × S5 metric

ds2 = 8c2
(
cosh2 x ds2AdS2

+ dx2 + sinh2 x ds2S2

)
+ 8c2

(
dy2 + cos2 y ds2S4

)
, (4.13)

where AdS5 is foliated by AdS2 × S2 slices while the S5 is foliated by S4’s, a slicing that

makes manifest the symmetries of the half-BPS Wilson loop. For the vacuum solution only

the RR four-form is excited and

dj
(0)
2 = −64c4 cos4 y dy. (4.14)

13Here y ∈ [−π/2, π/2].
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4.2 Kaluza-Klein holography

We recall now how to holographically compute the one-point functions of local oper-

ators from asymptotically AdS5 × S5 supergravity geometries.14 For more details we

recommend [45, 41].

Given an asymptotically AdS5 ×S5 supergravity solution, one needs to expand all the

ten-dimensional fields excited in the solution in a complete basis of spherical harmonics on

the S5. This produces in general an infinite number of five-dimensional fluctuation fields.

These fluctuation modes are, however, not independent. Some of them are in fact related

to each other by the action of ten-dimensional diffeomorphisms, which give rise to non-

linear gauge transformations on the five-dimensional fluctuations. Instead of gauge fixing

these symmetries (by going for example to de Donder gauge) as it is usually done in the

study of the spectrum, it is more convenient to construct gauge invariant combinations of

the fluctuations. This is because generic ten-dimensional supergravity solutions, such as

the bubbling Wilson loop backgrounds we are considering, are generally not in de Donder

gauge. The equations of motion solved by the gauge invariant fluctuations are nevertheless

the same as those of the fluctuations in the de Donder gauge.

The gauge invariant combinations of fluctuations obey in general non-linear equations

of motion containing higher derivative terms, just like the fluctuations in the de Donder

gauge do. These equations of motion with the higher derivatives, however, cannot be ob-

tained from a local five-dimensional action. In order to perform holographic computations

of correlators using supergravity, we want to rewrite the bulk action using a local bulk ac-

tion. This can be accomplished by performing a Kaluza-Klein reduction map, a non-linear

map between solutions to the ten-dimensional equations of motion, ψ10d, and solutions to

the five-dimensional ones, Ψ5d, which can be schematically expressed as

Ψ5d = ψ10d + Kψ10d ψ10d + · · · (4.15)

where K is some operator containing also derivatives and the ellipses denote higher order

combinations of the 10-dimensional fields and their derivatives. Notice that, in principle, all

Kaluza-Klein modes are kept in the reduction map. However, in practice, when computing

the expectation value of some operator with a given dimension, only a finite number of

modes will contribute, giving an effective truncation of the Kaluza-Klein tower. This will

also limit the number of non-linear terms in (4.15) that one needs to compute. In general,

the higher the dimension of the operator one considers, the more terms have to be turned

on. For example, we shall see that for the dimension four chiral primary operators only

two terms in the map are needed: a linear term with dimension four and a term quadratic

in the fields dual to dimension two operators.

At this point, the new equations in the reduced fields Ψ5d can be integrated into a

local five-dimensional action and one can use the general holographic rules to compute

gauge theory correlation functions from supergravity [4, 6, 7]. The local five-dimensonal

action does suffer from infrared divergences and has to be regularized by the addition

14The procedure is actually more general and applies to any asymptotically AdSp × Xq solution, with

Xq being a compact manifold.
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of appropriate boundary counterterms and then evaluated on-shell. Differentiating the

regularized on-shell action with respect to appropriate sources in the spirit of [4, 6, 7]

yields the renormalized one-point functions of the dual gauge theory operators. These are

related to certain coefficients in the near boundary expansion of the bulk fields, which

correspond to the normalizable fluctuation mode of the field. The higher the dimension of

the operator, the deeper in AdS space one needs to dig to extract its one-point function.

In this paper we are interested in computing the one-point functions of OJ for

J = 2, 3, 4 and the stress tensor in the state created by a half-BPS Wilson loop. The

calculation of these relatively low dimension operators enjoys a great simplification. In or-

der to calculate their one-point functions we can neglect all the supergravity fields excited

by the bubbling solution except for the metric and the RR four-form gauge field. The

fluctuations that arise from the other fields (the dilaton and the RR and NS-NS two-form

gauge fields) do not enter in the calculation of the one-point function of the local opera-

tors under study. Technically, the reason this occurs is that the fluctuations coming from

the dilaton, the RR and NS-NS two-form gauge field fall off too fast near the AdS5 × S5

boundary and therefore do not enter into the Kaluza-Klein reduction map (4.15) for the

dual fluctuations. We can therefore use the formulas relating five-dimensional fluctuations

and one-point functions of dual gauge theory operators derived in [45, 41].

Without further ado, we setup our computation by expanding the bubbling Wilson

loop solution in fluctuations around the AdS5×S5 background. We define the fluctuations

in the metric (4.1) as

ds2 = (f
(0)
1 )2(1 + ∆1) ds

2
AdS2

+ (f
(0)
2 )2(1 + ∆2) ds

2
S2

+(f
(0)
4 )2(1 + ∆4) ds

2
S4 + 4(ρ(0))2(1 + ∆ρ) (dx2 + dy2). (4.16)

Physical quantities, such as the correlation functions we are after, are encoded in the

asymptotic expansion of these functions for large x.

Since all the information of the matrix model is given by the resolvent, the fluctuations

∆1, ∆2, ∆4, and ∆ρ should depend only on the matrix model resolvent ω1. So we first

need to determine the relation between the resolvent and the asymptotic form of the ∆’s.

We start by expanding h1 for large x

h1 = 4c2 cosh x cos y

(
1 +

∞∑

m=3

cm(y)e−mx
)
, (4.17)

whereas h2, being independent of ω1, remains equal to its background value h
(0)
2 corre-

sponding to AdS5 × S5. The corrections start from order e−3x because the background

(cosh x) includes ex and e−x and the corrections should not affect these terms, as the so-

lution should match on to AdS5 × S5 asymptotically. The first coefficient, c3(y), does not

actually have any physical information because it can be eliminated by going to the “center

of mass” coordinate system or, in other words, we can always set the first moment of the

matrix model eigenvalue distribution to zero without loss of generality. As we noted in

footnote 10, this is automatic for SU(N) gauge group.
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The Laurent expansion of ω1 in z is given by

ω1 = λ

∞∑

n=0

ρn
zn+1

, (4.18)

where ρn are the moments of the eigenvalue distribution introduced in (3.32):

ρn =

∫
dx ρ(x)xn. (4.19)

We would like to express the functions that appear in the asymptotic expansion of the

harmonic function h1 (4.17) in terms of the ρn’s, which contain the information about

the eigenvalue distribution of the matrix model. This can be systematically computed by

plugging (4.18) into the definition of h1 in (4.2) and comparing the result with (4.17). We

get for the first few coefficients

c4(y) =
8∆ρ2

λ
(1 − 2 cos 2y),

c5(y) = −64∆ρ3

λ3/2
cos 2y sin y,

c6(y) =
32∆ρ4

λ2
(1 − 2 cos 2y + 2cos 4y) − 16∆ρ2

λ
(2 − 4 cos 2y + 3cos 4y), (4.20)

where ∆ρn ≡ ρn − ρ0
n is the difference between the bubbling solution eigenvalue moments

and the AdS5 × S5 moments (we have also encountered this difference of moments in the

computation of the correlators in the gauge theory (3.40)). In deriving these formulas, we

have taken

ρ0 − ρ0
0 = 0 , ρ1 − ρ0

1 = 0. (4.21)

The first condition comes from fixing the radius of the two geometries, so that both are

asymptotically AdS5 × S5 with the same radius of curvature. The second one is the

“center of mass” condition. One can also see from expanding Wigner’s semi-circle law

— which controls the eigenvalue distribution of the AdS5 × S5 vacuum solution — that

ρ0
0 = 1, ρ0

1 = 0, ρ0
2 = λ/4, ρ0

3 = 0, and ρ0
4 = λ2/8.

The prescription in [45, 41] is to express the near boundary expansion of the metric

and the other bulk fields in Fefferman-Graham form:

ds25 =
dZ2

Z2
+
dXidXj

Z2

(
G(0)ij(X) + Z2G(2)ij(X)

+Z4
(
G(4)ij(X) + logZ2h(4)ij(X)

)
+ · · ·

)
,

Φ2(X,Z) = Z2
(
logZ2Φ2

(0)(X) + Φ̃2
(0)(X) + · · ·

)
,

Φk(X,Z) = Z4−kΦk
(0)(X) + · · · + ZkΦk

(2k−4)(X) + · · · for k > 2 , (4.22)

where Z is the Fefferman-Graham radial coordinate and Xi are coordinates on the bound-

ary. The first terms in these equations, G(0)ij , Φ2
(0), and Φk

(0), are the sources for the stress

tensor and the chiral primary operators of the field theory, while G(4)ij , Φ̃
2
(0), and Φk

(2k−4)
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are the normalizable modes of the fluctuations. For the bubbling solutions used in this

paper, the non-normalizable modes that introduce sources vanish.

Our first task is to perform a near boundary expansion of the bubbling supergravity

solution. To do this, we introduce a radial coordinates R, which is related to the coordinate

x appearing in the bubbling solution (4.1) by

x = log
(
R+

√
R2 + 1

)
. (4.23)

In these new coordinates, the AdS5 × S5 metric (4.13) is given by

ds2 = 8c2
(

(R2 + 1)ds2AdS2
+

dR2

R2 + 1
+R2ds22 + dy2 + cos2 y dΩ4

)
. (4.24)

In this coordinate system the conformal boundary is at R→ ∞, where the metric on it is

that of AdS2 × S2.

After some calculations, we get the asymptotic form of the deviations in (4.16) up to

order O
(
R−5

)
terms:

∆1 = − 1

32
(4c4 + tan y ∂yc4)

1

R2
− 1

64
(5c5 + tan y ∂yc5)

1

R3

− 1

2048

[
96c6 + 16 tan y ∂yc6 − 48c24 − 12 tan y ∂yc

2
4

−3 tan2 y(∂yc4)
2 + 64c4(2 cos 2y − 7) + 32 tan y(cos 2y + 2)∂yc4

] 1

R4
,

∆2 = − 1

32
(4c4 + tan y ∂yc4)

1

R2
− 1

64
(5c5 + tan y ∂yc5)

1

R3

− 1

2048

[
96c6 + 16 tan y ∂yc6 − 48c24 − 12 tan y ∂yc

2
4

−3 tan2 y(∂yc4)
2 + 64c4(2 cos 2y + 1) + 32 tan y(cos 2y − 2)∂yc4

] 1

R4
,

∆4 =
1

32
(4c4 + tan y ∂yc4)

1

R2
+

1

64
(5c5 + tan y ∂yc5)

1

R3

+
1

2048

[
96c6 + 16 tan y ∂yc6 − 16c24 − 4 tan y ∂yc

2
4

− tan2 y(∂yc4)
2 + 64c4 sec y cos 3y + 32 tan y cos 2y ∂yc4

] 1

R4
,

∆ρ =
1

32
(4c4 + tan y ∂yc4)

1

R2
+

1

64
(5c5 + tan y ∂yc5)

1

R3

+
1

2048

[
96c6 + 16 tan y ∂yc6 − 16c24 − 4 tan y ∂yc

2
4

− tan2 y(∂yc4)
2 − 64c4(2 cos 2y + 5) − 32 tan y(cos 2y + 2) ∂yc4

] 1

R4
.

(4.25)

We recall that the functions cm(y) are given in terms of the moments of the eigenvalue

distribution by (4.20). Therefore, we have written the deviations in terms of the matrix

model data, the various moments of the eigenvalue distribution.
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One finds similarly that the RR four-form deviation (4.7) is given up to order O
(
R−5

)

by

Fy

F
(0)
y

≡ 1 + ∆Fy

= 1 +
1

64

(
16c4 + 8 tan y ∂yc4 − ∂2

yc4
) 1

R2
+

1

128

(
20c5 + 9 tan y ∂yc5 − ∂2

yc5
) 1

R3

+
1

256

[
24c6 + 10 tan y ∂yc6 − ∂2

yc6 − 96 sin2 y c4

+10 sec y(sin 3y − sin y) ∂yc4 + ∂2
yc4(1 − sec y cos 3y)

] 1

R4
. (4.26)

Here we note that the coordinate R used in our expansions (4.25), (4.26) is closely

related to the Fefferman-Graham radial coordinate Z defined in (4.22). The relation is

given by

Z =
1

R
− 1

4R3
+ O(1/R5). (4.27)

This relation allows us to use compute the correlators for the various local operators up

to dimension 4 by isolating the relevant term in the 1/R asymptotic expansion of the

corresponding bulk fluctuation, even though R is not the Fefferman-Graham coordinate.

Now that we have the explicit form of the deviations that we need to calculate our

correlators, we expand the deviations in a basis of spherical harmonics of S5. We decompose

the metric and the RR 5-form into an AdS5 × S5 part and a perturbation

gMN = g
(0)
MN + hMN ,

F5 = F
(0)
5 + f5. (4.28)

In this subsection, we are interested only in the fluctuations of the metric and of the 5-form

on S5, which only contain scalar harmonics [57]15

haa =
∑

πkY k,

fabcde =
∑

bkΛkǫabcdeY
k,

h(ab) =
∑

φk(s)∇(a∇b)Y
k + · · · , (4.29)

where a, b, . . . are indices on S5, Λk = −k(k + 4) is the mass of the k-th scalar spherical

harmonic, and ǫ is a volume form of S5 with unit radius. The brackets on the indices

instruct us to take the symmetric and traceless combination. In the last line we omit terms

involving vector and tensor spherical harmonics that are irrelevant for us. Later, for the

computation of the stress tensor, we will also need

hµν =
∑

hkµνY
k , (4.30)

where µ and ν are indices on AdS5.

15For the correlators computed in this paper, the fluctuations in the other supergravity fields do not

contribute.
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Since the circular Wilson loop preserves an SO(5) subgroup of the R-symmetry group

of N = 4 super Yang-Mills, so does the bubbling supergravity solution. Therefore, in

performing the harmonic decomposition of the solution, only SO(5) invariant spherical

harmonics contribute. These spherical harmonics depend only on the polar angle of the S5,

which we identify with the coordinate y ∈ [−π/2, π/2] of the base. The metric on the sphere

is given by ds2 = dy2+cos2 y ds2S4 , as can be seen from the AdS5×S5 vacuum solution (4.1).

The SO(5) invariant spherical harmonics are given in this coordinate system by16

Y J(y) = NJ c
(2)
J (cos y) , (4.31)

where c
(2)
J (cos y) are Gegenbauer polynomials and the normalization factors are chosen as

in (A.2) of [41] and in (2.5)

∫

S5

Y JY J
′
= π3z(J)δJJ

′
, z(J) =

1

2J−1(J + 1)(J + 2)
. (4.32)

This fixes the normalization of the SO(5) invariant spherical harmonics to

NJ =

√
3J !

2J−1(J + 1)(J + 3)!
. (4.33)

In particular, the explicit normalization for the harmonics we will need is given by

N0 = 1 , N1 =
1

4
, N2 =

1

2
√

30
, N3 =

1

8
√

10
, N4 =

1

20
√

7
. (4.34)

For the reader’s convenience, we list the explicit form of the first few harmonics:

Y 0 = N0 ,

Y 1 = N14 sin y ,

Y 2 = N2(−2 + 12 sin2 y) ,

Y 3 = N3(−12 sin y + 32 sin3 y) ,

Y 4 = N4(3 − 48 sin2 y + 80 sin4 y) . (4.35)

More details about the expansion in fluctuations and about general properties of spher-

ical harmonics are given in [45, 41].

4.3 Chiral primary operators

To compute the one-point functions for chiral primary operators OJ we need appropriate

combinations of the trace of the metric and of the RR four-form fluctuations, which are

mass eigenstate of the Laplacian on the sphere [58]

sk =
1

20(k + 2)
(πk − 10(k + 4)bk). (4.36)

16A brief review of SO(5) invariant harmonics and of Gegenbauer polynomials can be found, for example,

in the appendix of [37].
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The first expansion in (4.29) can be inverted to find πk by using the orthogonality of the

spherical harmonics

πk =

∫ π/2
−π/2 dy h

a
a Y

k cos4 y
∫ π/2
−π/2 dy (Y k)2 cos4 y

(4.37)

where, in our case, haa = 4∆4 + ∆ρ, which follows from (4.16). More precisely, we need to

pick the appropriate terms in the expansion (4.25). The terms to compute depend on the

dimension J of the dual chiral primary operator OJ . For O2 we have to select the coefficient

of the R−2 term in (4.25), for O3 the coefficient of the term R−3 in (4.25). These are the

same as the coefficients of Z2 and Z3, respectively, due to (4.27). The coefficient of the

Zk term in the expansion of the quantity A is usually denoted with the notation [A]k. In

general [A]k differs from the coefficient of R−k.17 From the explicit expressions in (4.35)

and from the expansion for ∆4 and ∆ρ in (4.25) we get

[
π2
]
2

=
[
π̂2
]
2

=
5
√

30

λ
∆ρ2 ,

[
π3
]
3

=
[
π̂3
]
3

=
20
√

10

λ3/2
∆ρ3,

[
π4
]
4

=

√
7

2λ2

(
−84λ∆ρ2 − 45(∆ρ2)

2 + 100∆ρ4

)
, (4.38)

where hatted quantities in these formulas denote gauge invariant quantities at first order

in the fluctuations. Note in particular that the scalars entering in the dimensions 2 and 3

computations are automatically gauge invariant, whereas this is not the case for dimension

4 operators, as we will see presently.

Similarly, we can invert the second equation in (4.29) to get bk:

[
b2
]
2

= [̂b2]2 =

∫
[∆Fy ]2

(
− 1

12

)
Y 2 cos4 y∫

(Y 2)2 cos4 y
= −

√
30

4λ
∆ρ2 ,

[
b3
]
3

= [̂b3]3 =

∫
[∆Fy ]2

(
− 1

21

)
Y 3 cos4 y∫

(Y 3)2 cos4 y
= −2

√
10

3λ3/2
∆ρ3 ,

[
b4
]
4

=

∫
[∆Fy ]2

(
− 1

32

)
Y 4 cos4 y∫

(Y 4)2 cos4 y
=

√
7

8λ2
(9λ∆ρ2 − 10∆ρ4) . (4.39)

Again, dimensions 2 and 3 quantities are already gauge invariant, unlike b4.

Gauge invariant combinations for the k = 4 case can be nonetheless easily formed using

φ4
(s), as explained in [45, 41]. This coefficient can be obtained from the third expansion

in (4.29), using some standard properties of spherical harmonics

∫
D(aDb)h(ab)Y

4 = φ4
(s)4

(
1 +

Λ4

5

)
Λ4

∫
(Y 4)2, (4.40)

17For the quantities relevant to our particular computations, the differences cancel out.
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so that, integrating by parts and using (4.16), (4.25) we get

[φ4
(s)]4 =

1

4
(
1 + Λ4

5

)
Λ4

∫
D(aDb)[h(ab)]4Y

4

∫
(Y 4)2

=
1

4
(
1 + Λ4

5

)
Λ4

∫ (
[∆ρ]4 ∂

2
yY

4 − 4[∆4]4 tan y ∂yY
4 + 32

5 [∆ρ + 4∆4]4Y
4
)

∫
(Y 4)2

= −
√

7∆ρ2

4λ
. (4.41)

One can now form the following gauge invariant combination of fluctuations [41]

[
π̂4
]
4

=
[
π4
]
4
− Λ4

[
φ4

(s)

]
4

=
5
√

7

2λ2

(
20∆ρ4 − 9(∆ρ2)

2 − 20λ∆ρ2

)
,

[̂b4]4 =
[
b4
]
4
− 1

2

[
φ4

(s)

]
4

= −5
√

7

4λ2
(∆ρ4 − λ∆ρ2). (4.42)

We have at this point all the ingredients to construct the gauge invariant mass eigenfunc-

tions to linear order in the fluctuations:

[
s2
]
2

=
1

80
(
[
π̂2
]
2
− 60[̂b2]2) =

√
30

4λ
(∆ρ2) ,

[
s3
]
3

=
1

100
(
[
π̂3
]
3
− 70[̂b3]3) =

2
√

10

3λ3/2
(∆ρ3) ,

[
s4
]
4

=
1

120
(
[
π̂4
]
4
− 80[̂b4]4) =

√
7

16λ2

(
20∆ρ4 − 3(∆ρ2)

2 − 20λ∆ρ2

)
. (4.43)

Using holographic renormalization we are now able to extract the one-point functions

of various local operators. Given the local five-dimensional supergravity action together

with the associated counterterms, correlation functions can be computed by differentiating

with respect to the non-normalizable modes(=sources) of the bulk fields. In the gauge

theory, we have computed the correlation functions of unit normalized operators (2.3).

The one-point functions of the unit normalized chiral primary operators O2 and O3 are

given in terms of the supergravity fluctuations by [41]

〈O2(x)〉W =
N

2

2
√

8

3
[s2]2 =

N

λ

√
5

3
∆ρ2,

〈O3(x)〉W =
3N

2
√

6
[s3]3 =

N

λ3/2

√
5

3
∆ρ3 , (4.44)

while the expectation value for the dimension 4 operator contains non-linear terms, as

anticipated above, and reads

〈O4(x)〉W =
N2

2π2

4
√

3

5

[
2s4 +

2

3z(4)
a422

(
s2
)2
]

4

=
N

λ2

√
7

2
(∆ρ4 − λ∆ρ2) , (4.45)

with the triple overlap function a422 being

a422 =
1

π3

∫
Y 4(Y 2)2 =

√
7

800
(4.46)
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and z(4) = 1/240 as defined in (4.34). These are the final results from supergravity for the

one-point functions of low dimension chiral primary operators.

The non-trivial information about the correlator is in the function ΞR,J defined in (2.7)

〈OJ(x)〉W = ΞR,JY (θ). (4.47)

The dependence of the correlator on the choice of representative of the chiral primary

multiplet factorizes, and it is captured by the spherical harmonic function Y (θ), where θi

determines the coupling of the scalars to the loop (2.1). Since the bubbling supergravity

solution is SO(5) invariant, the supergravity correlator computes the one-point function of

a chiral primary operator which is SO(5) invariant and can be constructed from the SO(5)

invariant spherical harmonics Y = Y J in (4.31). For the choice of scalar coupling we have

made where θ = (1, 0, . . . , 0), we have that

Y J(π/2) = NJ
(J + 3)!

6J !
=

√
(J + 2)(J + 3)

2J+13
. (4.48)

Therefore, we can compute ΞR,J by dividing (4.44), (4.45) by (4.48) and obtain

ΞR,2 =
√

2
N

λ
∆ρ2, ΞR,3 = 2

√
2

3

N

λ3/2
∆ρ3, ΞR,4 = 2

N

λ2
(∆ρ4 − λ∆ρ2). (4.49)

The agreement between the supergravity results (4.49) and the gauge theory computa-

tions (3.40) is then manifest!

4.3.1 The small representation limit

In comparing the gauge theory and supergravity results we have not used the explicit

expressions for the moments ρn. Here we evaluate them for the rank k symmetric and

antisymmetric representation respectively and for the specific case of J = 2. For these

small representations, the bulk computation of the correlator can be performed in terms

of a probe D3 and D5-brane respectively [37]. Even though the curvature gets large in

the interior of the bubbling geometry, the curvature is small near the boundary, which is

sufficient to compute these correlators.

From (4.44) above and from (C.11) and (C.16) in appendix C, we have (after trans-

forming to R
4)

〈WR(θ, a)O2(L)〉
〈WR(θ, a)〉 =

4a2

L4

N

λ

√
5

3
∆ρ2 =





4a2

L4

√
5
3κ

√
1 + κ2 symmetric case ,

4a2

L4

√
5
3

√
λ

6π sin3 θk antisymmetric case .

(4.50)

On the other hand the probe D-brane computation in [37] gave

〈WR(θ, a)O2(L)〉
〈WR(θ, a)〉 =

a2

L4
cS/A,2 Y

2
(π

2

)
, (4.51)

with

cS,2 = 4
√

2κ
√

1 + κ2 , cA,2 =
2
√

2λ

3π
sin3 θk . (4.52)

Putting everything together and recalling that Y 2(π/2) =
√

5/6 one finds exact agreement

with (4.50).
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4.4 Stress tensor

We now move on to the computation of the one-point function of the stress tensor. As

explained in [45, 41], we need to compute
(
1 + 1

3π
0
)
g0
µν+h0

µν . Here h0
µν are the zero-modes

of the metric perturbation on AdS5 (recall that Y 0 = 1)

h0
µν =

8

3π

∫ π/2

−π/2
dy hµν cos4 y , (4.53)

which explicitly read

h0
µνdx

µdxν =
(
R2 + 1

) (3∆ρ2 (5∆ρ2 − 2λ)

8λ2R4
+ O(R−5)

)
ds2AdS2

+

(
−∆ρ2 (15∆ρ2 − 8λ)

24λ2R4
+ O(R−5)

)
dR2

R2 + 1

+R2

(
∆ρ2 (45∆ρ2 + 14λ)

24λ2R4
+ O(R−5)

)
ds2S2 , (4.54)

while π0 is the zero mode of the trace of the metric perturbation haa

π0 =
8

3π

∫ π/2

−π/2
dy haa cos4 y = −25(∆ρ2)

2

8λ2R4
+ O(R−5) . (4.55)

Then, the modified metric

ds2 =

(
1 +

1

3
π0

)
g0
µν + h0

µνdx
µdxν (4.56)

is expanded in 1/R as

ds2 = (R2 + 1)

(
1 +

∆ρ2(10∆ρ2 − 9λ)

12λ2R4
+ O(R−5)

)
ds2AdS2

+

(
1 +

∆ρ2(−5∆ρ2 + λ)

3λ2R4
+ O(R−5)

)
dR2

R2 + 1

+R2

(
1 +

∆ρ2(10∆ρ2 + 7λ)

12λ2R4
+ O(R−5)

)
ds22

≡ (R2 + 1)
(
1 +

p1

R4

)
ds2AdS2

+
(
1 +

p2

R4

) dR2

R2 + 1
+R2

(
1 +

p3

R4

)
ds22 . (4.57)

We now introduce the following near boundary coordinate

R =
1

z

(
1 − 1

4
z2 +

p2

8
z4

)
, (4.58)

so that the metric becomes

ds2 =

(
1

z2
+

1

2
+

(
1

16
+ p1 +

p2

4

)
z2

)
ds2AdS2

+
dz2

z2

+

(
1

z2
− 1

2
+

(
1

16
+
p2

4
+ p3

)
z2

)
ds2S2 . (4.59)
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Note that z is the near boundary coordinate for the modified metric (4.56) and thus differs

form Fefferman-Graham Z introduced in (4.27).

From [41], the stress tensor correlator is given by18

〈Tij〉 =
N2

2π2

(
g(4)ij −

2

9

(
[ŝ2]2

)2
g(0)ij

+
1

8
[Trg2

(2) −
(
Trg(2)

)2
]g(0)ij −

1

2

(
g2
(2)

)
ij

+
1

4
g(2)ijTrg(2)

)
, (4.60)

where the g(k)ij ’s are the analogues of the quantities in (4.22) for the metric (4.56).

Plugging (4.59) into the expression above and using [s2]2 =
√

30
4λ ∆ρ2, which appears in

the dimension 2 chiral primary calculation, we get

〈Tij(x)〉W dxidxj = − N2

3π2λ
∆ρ2(ds

2
AdS2

− ds2S2) +
N2

32π2
(ds2AdS2

+ ds2S2). (4.61)

This precisely agrees with the gauge theory computation (3.41)

hW = − N

3
√

2π2
ΞR,2 = − N2

3π2λ
∆ρ2 , (4.62)

including the conformal anomaly contribution (2.12)

〈Tij(x)〉W dxidxj = hW (ds2AdS2
− ds2S2) +

N2

32π2
(ds2AdS2

+ ds2S2) . (4.63)
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A. Weyl transforms between boundary metrics

In this appendix we discuss the two Weyl transformations relating R
4 and AdS2 × S2,

which we have used in section 2.1. The first transformation is relevant for the circular loop

computation, while the second one for the straight line.

Let us parametrize R
4 using two sets of polar coordinates so that

ds2
R4 = dr2 + r2dψ2 + dL2 + L2dφ2. (A.1)

18Note that g(n) denotes the coefficient of the zn term in the expansion of (4.59), i.e.

ds2 = dz2

z2 + 1
z2 (g(0)ij + · · · + zng(n)ij)dxidxj .
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These coordinates are relevant for a circular loop, which we take to be defined by r = a

and L = 0. By making the following change of coordinates

r̃2 =
(r2 + L2 − a2)2 + 4a2L2

4a2
=

R2

(cosh ρ− cos θ)2
, r = r̃ sinh ρ , L = r̃ sin θ , (A.2)

we find the metric

ds2
R4 = r̃2

(
dρ2 + sinh2 ρ dψ2 + dθ2 + sin2 θ dφ2

)
, (A.3)

which is conformal to AdS2 × S2 in global coordinates. Note that the conformal factor r̃

is that in (2.9) and that the loop, which was located at r = a, L = 0 in R
4, gets mapped

to the conformal boundary of AdS2 × S2, namely the boundary of the Poincaré disk.

Now, under the conformal transformation (A.3) a dimension J operator OJ transforms

as follows: OJ → r̃−JOJ . This proves the relation between the form of the correlator in

R
4 (2.8) and the one in AdS2 × S2 (2.7).

The metric for R
4 can also be written as

ds2
R4 = dt2 + dl2 + l2ds2S2. (A.4)

We place the straight line at l = 0. In this case the Weyl transformation to AdS2 × S2 is

simple:

ds2
R4 = l2ds2AdS×S4 , (A.5)

where

ds2AdS2×S2 =
dt2 + dl2

l2
+ ds2S2 (A.6)

involves the AdS2 metric in Poincaré coordinates. The operators transform as OJ → l−JOJ

when going from AdS2 × S2 to R
4, thus proving (2.10).

B. Relating the stress tensor to a chiral primary via a GL twist

Here we rederive the relation (2.31) between the correlator of the Wilson line with the

stress tensor and the correlator of the Wilson line with the dimension two chiral primary

O2 from a different point of view.

The basic observation is that the supersymmetric Wilson line is closed with respect

to the BRST charge of the Geometric Langlands (GL) twist [49].19 Since, by definition of

a topological field theory, the twisted stress tensor T ′
µν is BRST exact, it follows that the

expectation value of T ′
µν in the presence of the Wilson line is zero:

〈WR(θ, a)T ′
µν〉 = 〈WR(θ, a) {QGL, Vµν}〉 = −〈Vµν {QGL,WR(θ, a)}〉 = 0 . (B.1)

19More precisely, the GL twists form a 1-parameter family of twists, where the parameter, t, is the

projective coordinate on CP 1. The Wilson line is closed with respect to the t = i twist.
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We can then compute the difference between the stress tensors of the twisted and untwisted

theories and consider its correlator with WR(θ, a). This will turn out to give the wanted

relation with the correlator of O2.

We do not need to consider the kinetic term of the gauge field since this is an R-

symmetry singlet not affected by the twist. We also ignore fermions at first. Before the

twist the action in a generic curved background is

S =
1

g2
YM

∫
d4x

√
gTr

(
Dµφ

iDµφi +
R

6
φiφi − 1

2
[φi, φj ]2

)
, (B.2)

where, as before, i = 1, . . . , 6. We now identify an SO(4) ⊂ SO(6) with the Lorentz group,

so that i = µ, 5, 6, and define σ = 1√
2
(φ5 + iφ6). The GL twisted action is then given by

(see equations (3.46 - 3.48) in [49])

S′ =
1

g2
YM

∫
d4x

√
gTr

(
DµφνD

µφν +Rµνφ
µφν − 1

2
[φµ, φν ]

2

+2DµσD
µσ − 2[φµ, σ][φµ, σ] + [σ, σ]2

)
. (B.3)

The covariant derivatives Dµ contain both the gauge and metric connections. In flat space

S = S′.

Let us now compute the stress tensor by taking the variation of the action with respect

to the metric and setting in the end gµν = δµν . One finds

Tµν − T ′
µν =

2√
g

δ

δgµν
(S − S′)

∣∣∣
gµν=δµν

=
2

g2
YM

Tr

(
1

6
δµνD

2(φiφi) − 1

6
DµDν(φ

iφi) + φ(µD
2φν) +Dρ(φ(µDν)φρ)

−Dρ(φρD(µφν)) −
1

2
δµνDρDσ(φρφσ) −

1

2
D2(φµφν)

+DρD(µ(φν)φρ) + [φµ, φρ][φν , φρ] + 2[φ(µ, σ][φν), σ]

)
, (B.4)

where we have used the following formulas

δΓρµν =
1

2
gρσ(Dµδgνσ +Dνδgµσ −Dσδgµν) ,

δR = Rµνδg
µν + gµνD

2δgµν −DµDνδg
µν ,

δRρσ =
1

2
gµνD(ρDσ)δg

µν +
1

2
gρµgσνD

2δgµν − gµ(ρDνDσ)δg
µν , (B.5)

and integrated by parts. Imposing the equations of motion

D2φµ = −[φρ, [φµ, φρ]] − [σ, [φµ, σ]] − [σ, [φµ, σ]] (B.6)

we can eliminate the quartic terms in (B.4) and arrive at the final expression

Tµν − T ′
µν =

2

g2
YM

Tr

(
1

6
δµνD

2(φiφi)− 1

6
DµDν(φ

iφi)+Dρ(φ(µDν)φρ)−Dρ(φρD(µφν))

−1

2
δµνDρDσ(φρφσ) −

1

2
D2(φµφν) +D(µDρ(φν)φρ)

)
.

(B.7)
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Note that on-shell ∂µ(Tµν − T ′
µν) = 0, as it should be.

Let us take now the Wilson loop to be a line along the µ = 1 direction and consider

the correlation function with the stress tensor. By SO(5) symmetry we can say that

〈WR(θ, a)Tr(φαφβ)〉 = 〈WR(θ, a)Tr(φ2φ2)〉δαβ and 〈WR(θ, a)Tr(φ1φα)〉 = 0 where α =

2, . . . , 6. Moreover, derivatives in the µ = 1 direction vanish because of translational

invariance and 〈WR(θ, a)Tr(φα∂µφ
β)〉 is non zero only if α = β. Putting everything together

we have (here a = 2, 3, 4)

〈WR(θ, a)T11〉 = − 2

3g2
YM

∂a∂a
〈
WR(θ, a)Tr

(
φ1φ1 − φ2φ2

)〉
, 〈WR(θ, a)T1a〉 = 0

〈WR(θ, a)Tab〉 = − 1

3g2
YM

(∂a∂b − δab∂c∂c)
〈
WR(θ, a)Tr

(
φ1φ1 − φ2φ2

)〉
(B.8)

and it is also immediate to realize that 〈WR(θ, a)T µ
µ 〉 = 0.

The operator Tr
(
φ1φ1 − φ2φ2

)
is a chiral primary of dimension two. The dependence

(∝ 1/l2) of 〈WR(θ, a)Tr
(
φ1φ1 − φ2φ2

)
〉 is consistent with the functional form (2.13) of

〈WR(θ, a)Tµν〉. One then finds that

hW = − 4

3g2
YM

〈
Tr
(
φ1φ1 − φ2φ2

)〉
W

= − N

3
√

2π2
ΞR,2. (B.9)

Here we have used Y (θ) = 1√
2
(θ1θ1 − θ2θ2) evaluated at θ = (1, 0, . . . , 0).

We see that the bosonic contributions have already reproduced the full result (2.31).

Thus it should be possible to show that the fermionic contributions sum up to zero, though

we do not perform this computation here.

C. Moments in the small representation limit

In this appendix we compute the explicit expressions for the second moments 〈ξ2〉 of the

hermitian eigenvalue distributions in the cases of rank k symmetric and antisymmetric

representations. Wilson loops transforming in these representations are described by

D3 and D5 probe branes, respectively, having k units of string charge dissolved in their

worldvolumes [19 – 21].

C.1 Symmetric case

Let us call the eigenvalues ξi and label them in increasing order, ξ1 < . . . < ξN . Without

the Wilson loop insertion, the eigenvalues are distributed on the interval [−
√
λ,

√
λ] and

satisfy Wigner’s semi-circle law derived from the saddle point equations

−4N

λ
ξ
(0)
i +

∑

j 6=i

2

ξ
(0)
i − ξ

(0)
j

= 0 for all i = 1, . . . , N. (C.1)

As is well-known, the last eigenvalue is ξ
(0)
N =

√
λ and the resolvent of the matrix model is

given by ω0(ζ) = g2
YM

∑
i 1/(ζ − ξ

(0)
i ) = 2ζ − 2

√
ζ2 − λ.
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Inserting in the path integral a Wilson loop in the rank k symmetric representation

consists in moving the last eigenvalue ξN a distance k away from the interval. The saddle

point equations become then

−4N

λ
ξi +

∑

j 6=i,j 6=N

2

ξi − ξj
+

2

ξi − ξN
= 0 for i = 1, . . . , N − 1, (C.2)

−4N

λ
ξN + k +

N−1∑

j=1

2

ξN − ξj
= 0 . (C.3)

We make the ansatz that

ξi = ξ
(0)
i + δξi, δξi = O(1/N) for i = 1, . . . , N − 1 , (C.4)

while the shift for the ξN is large as remarked above. Then (C.3) implies that

ξN =
√
λ
√

1 + κ2 + O(1/N), (C.5)

where κ ≡
√
λk/4N . We want to compute

〈ξ2〉 − 〈ξ2〉0 =
1

N

N−1∑

i=1

(ξ
(0)
i + δξi)

2 +
1

N
ξ2N − 1

N

N∑

i=1

ξ
(0)
i

2

=
2

N

N−1∑

i=1

ξ
(0)
i δξi +

1

N
ξ2N − 1

N
ξ
(0)
N

2 + O(1/N2). (C.6)

By taking the difference between the two saddle point equations (C.1) and (C.2) for

i = 1, . . . , N − 1, we get

−4N

λ
δξi − 2

∑

j 6=i,j 6=N

δξi − δξj

(ξ
(0)
i − ξ

(0)
j )2

− 2

ξ
(0)
i − ξ

(0)
N

+
2

ξ
(0)
i − ξN

= O(1/N). (C.7)

We multiply this equation by ξ
(0)
i and sum over i from 1 to N − 1. By playing with the

dummy indices, one can show that

−2
N−1∑

i=1

ξ
(0)
i

∑

j 6=i,j 6=N

δξi − δξj

(ξ
(0)
i − ξ

(0)
j )2

= −2
N−1∑

i=1

N−1∑

j=1

i6=j

δξi

ξ
(0)
i − ξ

(0)
j

= −4N

λ

N−1∑

i=1

ξ
(0)
i δξi + O(1). (C.8)

In the second line we used the saddle point equation for ξ
(0)
i . Thus

−8N

λ

N−1∑

i=1

ξ
(0)
i δξi +

N−1∑

i=1

ξ
(0)
i

(
− 2

ξ
(0)
i − ξ

(0)
N

+
2

ξ
(0)
i − ξN

)
= O(1/N) , (C.9)

– 39 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
8

from which follows

2

N

N−1∑

i=1

ξ
(0)
i δξi =

1

2N
(−ξNω0(ξN ) + ξ

(0)
N ω0(ξ

(0)
N )) + O(1/N2). (C.10)

By collecting everything, we get

〈ξ2〉 − 〈ξ2〉0 =
λ

N
κ
√

1 + κ2 + O(1/N2). (C.11)

C.2 Antisymmetric case

The effect of inserting a Wilson loop in the antisymmetric representation is to create a hole

in the [−
√
λ,

√
λ] interval so that the distribution splits into two groups with k and N − k

eigenvalues.20 The shift is O(1/N) for all of them and the saddle point equations read

−4N

λ
ξi +

∑

j 6=i

2

ξi − ξj
= 0 for i = 1, . . . , N − k,

−4N

λ
ξi + 1 +

∑

j 6=i

2

ξi − ξj
= 0 for i = N − k + 1, . . . , N . (C.12)

Subtracting (C.1) from these expressions one gets

−4N

λ
δξi + 2

∑

j 6=i

δξj − δξi

(ξ
(0)
i − ξ

(0)
j )2

= O (1/N) for i = 1, . . . , N − k,

−4N

λ
δξi + 1 + 2

∑

j 6=i

δξj − δξi

(ξ
(0)
i − ξ

(0)
j )2

= O (1/N) for i = N − k + 1, . . . , N .

(C.13)

In this case the expression for the second moment reads

〈ξ2〉 − 〈ξ2〉0 =
2

N

N∑

i=1

ξ
(0)
i δξi + O

(
1/N2

)
. (C.14)

Multiplying (C.13) by ξ
(0)
i , summing over the respective ranges of i, and finally summing

the two equations one has

−4N

λ

N∑

i=1

ξ
(0)
i δξi + 2

N∑

i=1

ξ
(0)
i

∑

j 6=i

δξj − δξi

(ξ
(0)
i − ξ

(0)
j )2

+

N∑

i=N−k+1

ξ
(0)
i = O (1/N) . (C.15)

Using (C.8) and defining ξ =
√
λ cos θ, one has up to orders O

(
1/N2

)

2

N

N∑

i=1

ξ
(0)
i δξi =

g2
YM

4N

N∑

i=N−k+1

ξ
(0)
i =

g2
YM

4

2

πλ

∫ √
λ

ξk

dξ
√
λ− ξ2

=
λ3/2

2πN

∫ θk

0
dθ sin2 θ cos θ =

λ3/2

6πN
sin3 θk . (C.16)

20Note the difference between the symmetric and antisymmetric representation: the former can have

arbitrary rank k, consistently with the fact that we can move ξN arbitrarily far away from the interval,

whereas the latter must have k ≤ N , with the hole confined inside the interval.
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