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1. Introduction

The AdS/CFT correspondence for superconformal 2+1 dimensional gauge theories is a fas-

cinating subject that has not been completely explored yet and might reveal new surprises.

It is known that M theory backgrounds AdS4 × H, with H a seven dimensional Sasaki-

Einstein manifold, preserves N = 2 supersymmetry [1 – 3]1 and are dual to superconformal

2+1 dimensional theories. The cone over H is a Calabi-Yau four-fold and the backgrounds

of interest arise as near horizon geometries of membranes sitting at the Calabi-Yau singu-

larity. We thus have a correspondence between the infinite number of Calabi-Yau four-folds

and an infinite set of superconformal theories. The difficult part of the story is to make this

correspondence precise and find the dual 2+1 dimensional theories. The analogous problem

in 3+1 dimensions has been solved, at least for the class of toric Calabi-Yau singularities,

using the Brane Tilings [4 – 6].2 The 2+1 dimensional case is much less understood. Pre-

vious attempts to find dual pairs have focused on Yang-Mills theories flowing in the IR to

superconformal fixed points [9 – 12]. The recent frenetic activity on M2 branes suggests the

importance of Chern-Simons terms in this context.

The superconformal N = 6 Chern-Simons theory describing N membranes on C4/Zk

was constructed in [13]. The ABJM theory is based on a U(N) × U(N) gauge group with

1In 2+1 dimensions we can also have N = 1 supersymmetry but we will not consider this case.
2A proposal for 2+1 dimensions is based on crystals [7, 8].
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no kinetic term and a Chern-Simons term with levels k and −k. For k = 1 the theory has

a supersymmetry enhancement to N = 8 and describes N membranes on flat space. The

theory constructed in [13] is the conclusion of a long activity that followed the discovery

of the BGL N = 8 supersymmetric Chern-Simons theory and the attempts to interpret

and generalize it [14 – 16]. Other examples of superconformal Chern-Simons theories with

supersymmetry N = 3, 4, 5 have been constructed recently [17 – 24].

One interesting aspect of the ABJM theory is that it is based on a quiver theory that in

3+1 dimensions is the conifold theory. This suggests a relation between 3+1 dimensional

quiver gauge theories and 2+1 dimensional Chern-Simons models and a possible use of

3+1 dimensional tools, for example Tilings. A 2+1 dimensional theory dual to an AdS4

M-background should have various distinctive features. In particular, the abelian moduli

space should be a four dimensional Calabi-Yau cone X and the non abelian moduli space

should be the symmetrized product of N copies of X (or a modification of it). In this

paper we will indeed show how to construct infinitely many Chern-Simons theories with

these properties.

In fact every consistent tiling for a 3+1 dimensional theory can be considered as a

model for a 2+1 dimensional theory with N = 2 supersymmetry and a product of U(N)

gauge groups. When we add N = 2 preserving Chern-Simons terms and let the theory flow

to the IR we generically reach some IR fixed point. The gauge fields are massive due to the

Chern-Simons terms and are not dynamical in the IR. The moduli space of supersymmetric

vacua can be obtained by analyzing D and F terms in a similar but different fashion as in

the 3+1 dimensional theory. In particular, the D terms needs to be treated in a different

way in the 2+1 dimensional Chern-Simons case. It turns out that, in the abelian case, one

particular combinations of the U(1) gauge groups should not be imposed and only acts as

a discrete symmetry. The abelian moduli space is then a C∗ fibration on the Calabi-Yau

threefold associated with the Tiling and it turns out that it is a toric, non-compact, singular

Calabi-Yau four-fold. The non-abelian moduli space is generically an N -fold symmetric

product of this space.

An important role in the analysis is played by the master space of the 3+1 dimensional

model [25]. This is just the G+2 dimensional toric variety obtained by solving the abelian

F-term conditions, where G is the number of gauge groups. By modding by the G − 1

complexified gauge groups we obtain the Calabi-Yau three-fold associated to the Tiling.

By modding by only G − 2 complexified gauge groups we obtain the four-dimensional

moduli space of the 2+1 dimensional model. In particular, every tiling gives rise to a G−1

dimensional family (in fact a lattice) of Calabi-Yau four-folds. In fact the direction of the

C∗ action, which is not modded out, inside the space of all G − 1 C∗ actions depends on

the G − 1 Chern-Simons integer parameters. The knowledge of the master space for the

3+1 dimensional model is extremely important also to compute the Hilbert series and the

properties of the resulting four-dimensional Calabi-Yau singularity.

The paper is organized as follows. In section 2 we discuss the general construction

and the moduli space of vacua of 2+1 dimensional Chern-Simons theories based on brane

tilings. We then proceed with examples. In section 3 we discuss the ABJM theory from the

perspective of the master space. In section 4,5,6 and 7 we discuss the 2+1 Chern-Simons
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theories associated with tilings corresponding to the modified C2/Z2 ×C, SPP, C3/Z3 and

F0 models. We end with comments and conclusions.

2. Tilings for 2+1 dimensional CS theories

Take a periodic, bipartite, two dimensional tiling of the plane, T , that gives rise to a con-

sistent 3+1 dimensional theory [4, 6]. We want to interpret it as a 2+1 dimensional theory

by considering a collection of N D2 branes in Type IIA instead of N D3 branes in Type

IIB. The theory has generically N = 2 supersymmetry. The rules for writing down the

2+1 dimensional theory follow the rules set out for the 3+1 dimensional theory. As in

3+1 dimensions, every face is a U(N) gauge group and every edge is a chiral superfield

transforming in a bi-fundamental representation of the two gauge groups it separates with

orientation defined by the bipartite structure of the tiling. By convention one can pick an

(incoming) outgoing arrow to correspond to an (anti)-fundamental representation, respec-

tively. For each edge Ei one can add an N = 2 preserving Chern-Simons interaction with

the following rule: add an integer CS coefficient ki and −ki to the adjacent gauge groups

connected by the edge. Call ka the resulting CS coefficient for the a-th gauge group.

The main difference with the 3+1 dimensional case is that all gauge couplings become

infinite in the IR and the standard kinetic terms for the gauge fields can be neglected. We

are left with auxiliary vector multiplets coupled by Chern-Simons interactions. We can

write the Lagrangian in N = 2 superspace notations as

Tr

(

−

∫

d4θ
∑

Xab

X†
abe

−VaXabe
Vb − i

∑

a

ka

∫ 1

0

dtVaD̄
α(etVaDαe−tVa)+

∫

d2θW (Xab)+c.c.

)

(2.1)

where the Va are the vector supermultiplets and Xab denote chiral supermultiplets trans-

forming in the fundamental representation of the gauge group a and in the anti-fundamental

of the gauge group b. The superpotential is obtained with the same rules of the 3+1 di-

mensional theory. Every vertex in the tiling contributes a term in the superpotential given

by the products of all the fields that meet at the vertex, with a positive sign for white

vertices and a negative sign for black ones.

Recall that in 2+1 dimensions a vector superfield has the expansion

V = −2iθθ̄σ + 2θγµθ̄Aµ + · · · + θ2θ̄2D (2.2)

where we omitted the fermionic part. Compared to 3+1 dimension, there is a new scalar

field σ. We can write the relevant terms in the Lagrangian

Tr

(

−4
∑

a

kaσaDa +
∑

a

Daµa(X)−
∑

Xab

(σaXab−Xabσb)(σaXab−Xabσb)
†−

∑

Xab

|∂Xab
W |2

)

(2.3)

where µa(X) is the moment map for the a-th gauge group

µa(X) =
∑

b

XabX
†
ab −

∑

c

X†
caXca + [Xaa,X

†
aa] (2.4)
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which in 3+1 dimensions is the D-term.

By integrating out the auxiliary fields Da we see that the bosonic potential is a sum of

squares. The vacua can be found as the vanishing conditions for the scalar potential which

are a set of matrix equations

∂Xab
W = 0

µa(X) = 4kaσa

σaXab − Xabσb = 0 (2.5)

The solutions of these equations automatically satisfy Da = 0 and give supersymmetric

vacua. We see that F-term constraints are exactly as in the 3+1 dimensional case while

the D-term constraints are modified.

Let us analyze the abelian case first. The supersymmetric conditions set all σa equal

to a given value σ. The remaining equations

µa(X) = 4kaσ (2.6)

look like standard D-term equations with a set of effective FI terms ζa = 4kaσ. Since
∑

a ka = 0 by construction, one of these equations is redundant. Call G the number of

gauge groups. We are left with G − 1 equations. By taking linear integer combinations of

the equations, we can set G − 2 equations in the form

µi(X) = 0 , i = 1, . . . G − 2 (2.7)

where the index i identifies G − 2 linear combinations of the gauge group, orthogonal to

the direction of the FI parameters ζa. We see that we are imposing the vanishing of the

D-terms for G−2 U(1) gauge groups. As in 3+1 dimensions, we can dispose simultaneously

of the D-term constraints and the corresponding U(1) gauge transformations by modding

by the complexified gauge group.

The equation for the remaining U(1) gauge field looks like a D-term condition with

a FI term. However, it is not adding further constraints: it simply determines the value

of the auxiliary field σ. Analogously we do not need to mod out by the remaining U(1)

gauge group. As explained in detail in [15, 13], the U(1) is coupled to the overall U(1)

gauge field by the Chern-Simons coupling and this leaves a discrete symmetry Zk, where

k = gcd({ka}).

The moduli space of the 2+1 abelian theory it is then easy to compute. We first solve

the F-terms constraints. This gives a G + 2 toric variety called the master space [25].

This part of the story is identical to the 3+1 dimensional result. See [26, 25] for a detailed

study of this concept. It is known that the master space is a G−1 dimensional C∗ fibration

over the threefold associated with the tiling. The CS parameters determine a particular

direction inside (C∗)G−1. By dividing by G− 2 C∗ actions orthogonal to the CS direction,

we obtain a 4 dimensional non-compact Calabi-Yau manifold. The moduli space is obtained

by modding by the remaining discrete Zk symmetry. This moduli space is interpreted as

the transverse space to one M2 brane in M theory which probes the four-fold.

– 4 –
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The non abelian case is also remarkably simple. By a gauge transformation, we can

diagonalize all the σa. The equations σaXab = Xabσb tell you that generically all the

fields Xab are diagonal.3 This reduces the problem to N copies of the abelian one. The

remaining discrete gauge symmetry corresponding to the Weyl group of SU(N) implies that

the moduli space is generically the N -fold symmetric product of the abelian one. A similar

statement for the mesonic moduli space of the corresponding 3+1 dimensional theory is

harder to prove. We see that the Chern-Simons theory nicely enforces in 2+1 dimensions a

structure of the moduli space which is very natural from the point of view of M2 branes. It

is possible, as in 3+1 dimensions, that the moduli space for some particular quiver contains

various different branches of the moduli space. Henceforth we avoid these subtle issues and

always refer to the branch corresponding to the symmetric product, or a modification of

it.

A word of caution regards the fact that we treat the Lagrangian as classical. Here

we are assuming that the theory flows in IR to a fixed point of the renormalization group

which is strongly coupled. Unfortunately, most of the 3+1 dimensional tools for studying

superconformal IR fixed points are not available in 2+1 dimensions and even this state-

ment is difficult to check. Moreover, we are assuming that possible corrections to the

Kähler potential are not affecting our discussion. For an analysis of N = 2 and N = 3

superconformal invariance in 2+1 dimensions we refer to [27].

Let us now see some examples for this construction. We will encounter some models

that have already appeared in the literature as orbifold of the ABJM theory and may have

enhanced N = 3 or N = 4 supersymmetry [17, 18, 20, 21, 23], as well as many other new

models based on 3+1 dimensional quivers. For notational convenience we will call a tiling

T for a 3+1 dimensional theory and a tiling T̃{ka} for a 2+1 dimensional theory with a

collection of CS terms, {ka}, such that
∑

a ka = 0. For example, a 2+1 dimensional theory

resulting from the 3+1 dimensional tiling of F0 will be called F̃0{k1,k2,k3,k4}.

3. One hexagon, one diagonal — Modified conifold

The simplest tiling contains one hexagon and the construction above is too trivial as each

edge contributes zero CS to the gauge group. Therefore the simplest tiling with an inter-

esting effect corresponds to one hexagon and one diagonal across it. There are three such

diagonals and all are equivalent and lead to the same gauge theory. The periodic tiling of

one hexagon is well known to give the N = 4 theory in 3+1 dimensions [4]. After adding

a diagonal on this hexagon [5], the resulting tiling corresponds to C, the conifold theory, a

quiver with two gauge groups, fields Ai, Bi, i = 1, 2 transforming in the (N, N̄ ) and (N̄ ,N)

3It may happen that there are other solutions of these equations. For example, when M eigenvalues of

the σa’s coincide, a M by M block in the Xab is not necessarily diagonal and it satisfies the equations of

motion of the corresponding 3+1 model with SU(M) groups; this leaves a 3M + G− 1 dimensional moduli

space of solutions [26, 25] to be compared with the 4M dimensional space obtained as diagonal matrices.

In simple cases these are not new solutions, but a subset of the generic ones. It is possible however that

for some values of M and G there are new solutions. It would be interesting to check if these correspond

to new branches of the moduli space, as suggested by the difference in dimension, or alternatively, to a

modification of the symmetric product.
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representation of the gauge group, respectively, and interacting with the superpotential

W = A1B1A2B2 − A1B2A2B1 (3.1)

This is the N = 6 theory analyzed in [13]. Let us look at it using the language of

Tilings and master space.

The master space for the conifold theory was computed in [28] and turns out to be C4.

Such a tiling has G = 2 gauge groups and therefore by the construction above there are no

further D terms to divide by and we recover the result [13] that the moduli space for the

theory is C4. The generators are A1, A2, B1, B2 corresponding to the fundamental fields of

the conifold theory.

The moduli space for higher k is then given by the Zk action 1, 1,−1,−1 on the

generators, respectively. Let us compute the Hilbert Series for this model. We will take

a different approach to that of [29] by picking a specific complex structure on the moduli

space, which is consistent with picking a particular N = 2 (4 supercharges) subset out of

the N = 6 supersymmetry of this theory in 2+1 dimensions. This approach allows for the

generalization that is discussed in this paper.

The Hilbert Series can be computed easily by following the methods outlined in [29]

and previous papers. We use the discrete Molien invariant and find

g
(

t, C̃{k,−k}

)

=
1

k

k−1
∑

j=0

1

(1 − ωjt)2(1 − ω−jt)2
=

1 + t2 + 2ktk − 2ktk+2 − t2k − t2k+2

(1 − t2)3(1 − tk)2
,

(3.2)

with ωk = 1. This Hilbert Series counts the N = 2 BPS states of the abelian 2+1

dimensional theory, or, equivalently, the holomorphic functions on the four-fold Calabi-

Yau C4/Zk.

We see here a general property of the Hilbert series we will be computing in the paper.

They will be always palindromic, g(1/t) = twg(t) for some weight w, similarly to what

happens for the master space in 3+1 dimensions [25]. Due to a theorem by Stanley [30],

the palindromic property is equivalent to the Calabi-Yau condition4 and this will give a

non trivial check for all our computations.

For the case of k = 1 the Hilbert series takes a simple form,

g
(

t, C̃{1,−1}

)

=
1

(1 − t)4
, (3.3)

from which we see that we have four free generators with weight one. We recover the

well known result that the moduli space C4 can be thought of as a fibration of a complex

line bundle over P3, namely 4 complex variables zi, i = 1, 2, 3, 4 which are subject to the

identification zi h λzi, for λ some complex parameter. This procedure will help us identify

the the complex 3 dimensional compact manifold B over which the non-compact CY 4-fold

is fibered over.

4We should say better the Gorenstein condition.
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For large values of k the Hilbert Series behaves like

g
(

t, C̃{k,−k}

)

=
1 + t2

(1 − t2)3

(

1 + O(tk)
)

, (3.4)

which is the Hilbert series for the conifold. The large k limit is equivalent to dividing

the four-dimensional moduli space by the C∗ action specified by the charges under the

remaining U(1) gauge group. We see that the four-dimensional Calabi-Yau is a C∗ fibration

over the three-dimensional Calabi-Yau that is associated with the tiling.

Notice that we have two different fibrations, one over a non-compact three-fold Calabi-

Yau, the conifold, and the other over a compact Kähler manifold, P3. The conifold is

naturally associated with the tiling, while the compact P3 is the relevant manifold for the

Type IIA description of the ABJM theory. When restricted to the Sasaki-Einstein seven-

manifold H = S7, Zk is acting on the fiber of a principal U(1) bundle with base P3. For

large k, the length of the circle is reduced by a factor of k and, in the limit k → ∞, we can

descend to a compactification of Type IIA on P3 with fluxes [13].

Let us elucidate briefly on a relation between P3 and the conifold. In [29] we wrote a

partition function for N = 6 chiral multiplet on AdS4 × S7/Zk. The result for k → ∞

∞
∑

n=0

[n, 0, n]t2n (3.5)

where [n, 0, n] denotes an SU(4) representation, can be interpreted as the partition function

for N = 6 chiral multiplets in the KK compactification on P3. It is well known indeed that

the KK chiral multiplets for AdS4 × P3 fall in [n, 0, n] representations [31]. The Hilbert

series (3.2) and (3.4) can be analogously interpreted as the partition functions for the

N = 2 KK chiral multiplets on AdS4 × S7/Zk and AdS4 × P3, respectively. They differ

from equations (3.15) and (3.16) of [29] since here we are counting only an N = 2 subset

of the protected operators in N = 6 supersymmetry. For example, out of dim[n, 0, n] =

(n + 1)2(n + 2)2(2n + 3)/12 protected operators in N = 6 there are precisely (n + 1)2

operators which are holomorphic under the N = 2 subgroup. We therefore sum

∞
∑

n=0

(n + 1)2t2n =
1 + t2

(1 − t2)3
, (3.6)

and get the result computed in (3.4).

Near t = 1 the Hilbert series (3.2) looks like

g
(

t, C̃{k,−k}

)

∼
1

k(1 − t)4
, (3.7)

typical to a moduli space C4/Zk that has a volume reduced by a factor k.

4. Two hexagons — Modified C2/Z2 × C

The theory has two gauge groups, two adjoint fields Φi and four chiral fields Ai, Bi, i = 1, 2

transforming in the (N, N̄) and (N̄ ,N) representation of the gauge group, respectively, and

– 7 –
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interacting with the superpotential

W = Φ1(A1B2 − A2B1) + Φ2(B2A1 − B1A2) (4.1)

This theory has G = 2 gauge groups and we can modify it by adding a CS term k to

one of the gauge groups and −k to the other. Since the number of gauge groups is 2 the

moduli space of this theory for k = 1 is the master space of the 3+1 dimensional theory.

The largest irreducible component of the master space is computed to be C × C [28, 25]

and has a Hilbert Series

g
(

t, ˜C2/Z2 × C{1,−1}

)

=
1 + t

(1 − t)4
. (4.2)

It is a complete intersection moduli space which is generated by 5 generators of weight 1

that are subject to 1 relation of weight 2. The generators and relations can be written in

an explicit form as 4 of the bi-fundamental fields of this theory, A1, A2, B1, B2, subject to

the quadratic relation

A1B2 = A2B1 (4.3)

generating the conifold, together with the adjoint field, Φ = Φ1 = Φ2, parametrizing C.

This description helps to identify the moduli space as a fibration of a line bundle over a

compact manifold that is given by the relation (4.3) of weight 2 in P4. Alternatively one

can think of this compact manifold as a T 2 fibration over P1 × P1. For higher values of k

we need to divide by a Zk discrete group that acts on the generators as one of the gauge

groups: 1, 1,−1,−1, 0. The resulting Hilbert series takes the form

g
(

t, ˜C2/Z2 × C{k,−k}

)

=
1

k

k−1
∑

j=0

1 + t

(1 − ωjt)2(1 − ω−jt)2

=
1 + t2 + 2ktk − 2ktk+2 − t2k − t2k+2

(1 − t)(1 − t2)2(1 − tk)2
. (4.4)

We see that the partition function is palindromic and this indicates that the moduli

space is indeed a Calabi-Yau. For k → ∞ we obtain

g
(

t, ˜C2/Z2 × C{k,−k}

)

=
1 + t2

(1 − t)(1 − t2)2

(

1 + O(tk)
)

, (4.5)

which is indeed, as in the previous section, the Hilbert series of the three-fold associated

with the tiling, in this case C2/Z2 × C, over which the moduli space is fibered.

5. Two hexagons and one diagonal — Modified SPP

This theory has three gauge groups, one adjoint field Φ and chiral fields, C1, A1, B1 trans-

forming in the (N, N̄ , 0), (0, N, N̄ ) and (N̄ , 0, N) representation of the gauge group, respec-

tively, and C2, A2, B2 transforming in the complex conjugate representation, and interact-

ing with the superpotential

W = Φ(A1A2 − C2C1) − A2A1B1B2 + C1C2B2B1 (5.1)

– 8 –
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This theory has G = 3 gauge groups and the most general CS terms given by the

construction above can be denoted as k1, k2 − k1,−k2. One of the gauge groups contains

an adjoint field and by definition we can set its CS term to be the middle one, k2 − k1.

Let us take a simplified model in which k1 = k2. The moduli space is computed as

follows. The master space for the SPP theory is C × C2, where C is the conifold [25].

It is a five dimensional complete intersection moduli space and is generated by 6 fields

Ai, Bi, Ci, i = 1, 2, each of weight t, subject to one constraint of weight t2,

A1A2 = C1C2. (5.2)

The number of gauge groups for the SPP theory is G = 3 and therefore we need to divide

the master space by a D term. Since we deal with the case of k1 = k2 we see that the gauge

group corresponding to the hexagon in the SPP tiling is a good choice. The generators

of the master space carry the following charges under the corresponding gauge group,

1,−1, 0, 0,−1, 1. To divide by this gauge group let us construct invariants,

M11 = A1A2,M21 = C1A1,M12 = A2C2,M22 = C1C2, (5.3)

with the constraint

M12M21 = M11M22 = M2
11 (5.4)

The other generators of the moduli space are not affected. The resulting moduli space

is identified as C2/Z2 × C2, as already computed in [18].

The Hilbert series for this moduli space can be easily computed by introducing a weight

z to the charges of the gauge group we divide by and using the Molien Weyl formula,

g
(

t, S̃PP {1,0,−1}

)

=
1

2πi

∮

|z|<1

dz

z

1 − t2

(1 − tz)2(1 − t)2(1 − t/z)2
=

1 + t2

(1 − t)2(1 − t2)2
(5.5)

The generators of this moduli space are 2 fields Bi of weight 1 that generate C2 and

3 fields Mij of weight 2 subject to one constraint of weight 4 that generate C2/Z2. This

identifies a compact 3 dimensional manifold B over which the moduli space is fibered to

be the complete intersection manifold given by 1 relation of order 4 in weighted projec-

tive space, P4
1,1,2,2,2. It would be interesting to see how if this is related to a Type IIA

compactification as in [13].

For higher values of the CS term k we need to divide this moduli space by Zk by

identifying the orbifold action on the generators. This action is identified with one of the

charges of the rectangles in the SPP tiling and acts on the generators as 1,−1 for B1,2 and

1, 0,−1 on M12,M11,M21, respectively. The corresponding Hilbert Series can be computed

using the Molien invariant

g
(

t, S̃PP {k,0,−k}

)

=
1

k

k−1
∑

j=0

1 + t2

(1 − ωjt)(1 − ω−jt)(1 − ωjt2)(1 − ω−jt2)
, (5.6)

with ωk = 1.
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U(1)1 U(1)2 U(1)3 k2 U(1)1 + k1 U(1)3

A1 0 1 −1 −k1

A2 0 −1 1 k1

B1 −1 0 1 k1 − k2

B2 1 0 −1 k2 − k1

C1 1 −1 0 k2

C2 −1 1 0 −k2

Table 1: Global charges for the basic fields of the quiver gauge theory on the D brane probing the

SPP singularity.

Next we turn to the more general case in which k1 6= k2 and take gcd(k1, k2) = 1.

We can form a linear combination of charges that sets the D term equation to zero by

taking, for example, k2 copies of the first U(1) and k1 copies of the third. We use table 1

to compute the charges.

This leads to the Hilbert Series

g
(

t, S̃PP {k1,k2−k1,−k2}

)

(5.7)

=
1

2πi

∮

|z|<1

dz

z

1 − t2

(1 − tz−k1)(1 − tzk1)(1 − tzk1−k2)(1 − tzk2−k1)(1 − tzk2)(1 − tz−k2)

One for example can take the case of k1 = 1, k2 = 2 and get

g
(

t, S̃PP {1,1,−2}

)

=
1 + 2t2 + 4t3 + 2t4 + t6

(1 − t2)2(1 − t3)2
, (5.8)

giving rise to a non-compact CY manifold of dimension 4 which is generated by 4 operators

of weight 2 and 6 of weight 3 that are subject to 1 relation at weight 4, 8 relations at weight

5 and 11 relations at weight 6. We see that the Hilbert series is palindromic, as expected.

In the case gcd(k1, k2) 6= 1 we will need to mod by an extra discrete symmetry, which can

be done as in the previous case by using the discrete Molien invariant.

6. The simplest chiral model — Modified C3/Z3

All model studied so far and most of the models studied in the literature are non-chiral

where chirality is understood to be in the 3+1 dimensional sense. This means that in the

quiver description of the model, the non-chiral theory has equal number of arrows going to

and from each pair of nodes, while in the chiral theory it is not.

Consider now a chiral model with three hexagons. There are three groups and three sets

of chiral fields Ui, Vi,Wi, i = 1, 2, 3 transforming in the (N, N̄ , 0), (0, N, N̄ ) and (N̄ , 0, N)

representation of the gauge group, respectively, and interacting with the superpotential

W = ǫijkUiVjWk (6.1)

We can put different CS terms k1, k2,−k1−k2. The master space, computed in [25] is partic-

ularly simple, given by the variety C6/{1, 1, 1,−1,−1,−1}. This has dimension five and it
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is a (C∗)2 fibration over C3/Z3. The linear combination k2 U(1)1−k1 U(1)2 of gauge groups

has a vanishing D-term. The corresponding action on C6 is {k2 + k1,−k2,−k1, 0, 0, 0}. Let

us first take gcd(k1, k2) = 1. We can write the Hilbert series for (C̃3/Z3)k1,k2
as

g
(

t, C̃3/Z3{k1,k2,−k1−k2}

)

=
1

(2πi)2

∮

dz

z

dw

w

1

(1 − zwk2+k1)(1 − zw−k2)(1 − zw−k1)(1 − t/z)3
. (6.2)

More generally, for k1 = km1, k2 = km2 with gcd(k1, k2) = k, the linear combination

m2 U(1)1 −m1 U(1)2 of gauge groups has a vanishing D-term and we have to mod by a Zk

subgroup of the orthogonal gauge group −U(1)3

g
(

t, C̃3/Z3{k1,k2,−k1−k2}

)

(6.3)

=
1

k

k−1
∑

j=0

1

(2πi)2

∮

dz

z

dw

w

1

(1 − zwm2+m1)(1 − zω−jw−m2)(1 − zωjw−m1)(1 − t/z)3
,

where ωk = 1.

7. Another chiral model — Modified F0

The gauge theory is the usual quiver theory for F0 and for simplicity we will study phase I

of this theory [25]. We have four groups and four sets of chiral fields Ai, Bi, Ci,Di i = 1, 2

transforming in the (N, N̄ , 0, 0), (0, N, N̄ , 0), (0, 0, N, N̄ ) and (N̄ , 0, 0, N) representation of

the gauge group, respectively. The superpotential is

W = ǫijǫpqAiBpCjDq (7.1)

The master space of F0 is a product of two conifolds, C × C [25], and therefore it is

a complete intersection generated by 8 generators Ai, Bi, Ci,Di of weight t subject to two

relations of weight 2,

A1C2 = A2C1, B1D2 = B2D1. (7.2)

The corresponding Hilbert series for the master space is

H(t, C × C) =
(1 − t2)2

(1 − t)8
. (7.3)

Let us first consider the model where we add CS terms k and −k for two gauge groups

only, say the first and fourth. To get the moduli space of the 2+1 dimensional theory we

need to divide the master space by two D term conditions, coming from the gauge groups

with CS terms equal to 0. The charges under these two gauge groups are for A,B,C,D

−1, 1, 0, 0 and 0,−1, 1, 0, respectively. To compute the generators of the resulting moduli

space it is possible to follow the procedure outlined above for the case of the SPP theory
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but it is more systematic to use the Hilbert Series. So let us first compute the Hilbert

Series for this theory. Using the Molien-Weyl integral we have

g
(

t, F̃0{1,0,0,−1}

)

=
1

(2πi)2

∮

|z1|<1

dz1

z1

∮

|z2|<1

dz2

z2

(1 − t2z2/z1)(1 − t2z1/z2)

(1 − t/z1)2(1 − tz1/z2)2(1 − tz2)2(1 − t)2

=
1 + t + t2 + 4t3 + t4 + t5 + t6

(1 − t)(1 − t3)3
, (7.4)

indicating that the moduli space is indeed 4 dimensional, as expected. The palindromic

Hilbert series also implies that this is a CY manifold. By construction it is further toric.

To get more information on this moduli space we take the Plethystic Logarithm which

gives information on the generators and relations,

PL
[

g
(

t, F̃0{1,0,0,−1}

)]

= 2t + 6t3 − 3t4 − 6t6 + O(t7) (7.5)

This means that there are 2 generators of weight 1 which are identified with Di and 6

generators of weight 3 which are identified with the gauge invariant combinations AiBjCl,

with i, l symmetrized due to the F term conditions, giving all together 6 generators. There

are 3 relations at weight 4 and 6 relations at weight 6. This is the moduli space of the

modified (F̃0){1,0,0,−1} theory. We can further view it as a fibration over a 3 dimensional

complex base B given by the non-complete intersection of 3 relations of weight 4 and 6

relations of weight 6 in the weighted projective space, P7
1,1,3,3,3,3,3,3 .

Next we turn to the case k > 1. This is a Zk orbifold of the previous theory. The

action on the generators is 1 on D’s and −1 on the ABC’s. Since this moduli space is not

a complete intersection it contains infinitely many syzygies and it is hard or impractical to

figure out the action of Zk on each of them. Instead we will refer to the action of Zk on

the basic fields of the theory as they appear in the tiling. We recall that D has charge 1

and C has charge −1. This allows to write the combination of Molien-Weyl integral and

Molien invariant,

g
(

t, F̃0{k,0,0,−k}

)

(7.6)

=
1

(2πi)2k

k−1
∑

j=0

∮

|z1|<1

dz1

z1

∮

|z2|<1

dz2

z2

(1 − ω−jt2z2/z1)(1 − ωjt2z1/z2)

(1 − t/z1)2(1 − tz1/z2)2(1 − ω−jtz2)2(1 − ωjt)2

=
1

k

k−1
∑

j=0

1 + 3ω−jt3 − 3t4 − ω−jt7

(1 − ωjt)2(1 − ω−jt3)3
=

1 + 6t4 + t8 + (k + 1)tk + . . . + t9k+8

(1 − t4)3(1 − t3k)3
.

The last sum is doable but is too long to report here. The numerator is indeed verified to

be a palindromic polynomial of order 9k + 8, indicating that the moduli space is CY for

any k, as expected. By taking the PL of this expression we find 9 generators at weight 4

corresponding to the 9 basic mesonic operators of F0. These operators satisfy 20 relations,

again as expected from F0. The new feature comes from k + 1 generators at weight k that

obviously are a consequence of the CS term. The Hilbert series has a behavior at large k

that goes like

g
(

t, F̃0{k,0,0,−k}

)

∼
1 + 6t4 + t8

(1 − t4)3
(1 + O(tk)) (7.7)
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This is indeed the Hilbert series for the three dimensional Calabi-Yau cone over F0 [33]. We

see again that in the k → ∞ limit we recover the Hilbert series of the three-fold associated

with the tiling, over which the four-fold is a C∗ fibration.

As a second example, we can consider the theory with CS parameters k,−k, k,−k.

The two gauge groups U(1)1 +U(1)2 and U(1)1 +U(1)4 acting on the fields A,B,C,D with

charges 0, 1, 0,−1 and 1, 0,−1, 0 have zero D-terms and can be modded out. For k = 1 we

obtain the remarkably simple result

g
(

t, F̃0{1,−1,1,−1}

)

=
1

(2πi)2

∮

|zi|<1

dz1

z1

dz2

z2

(1 − t2)2

(1 − tz2)2(1 − tz1)2(1 − t/z2)2(1 − t/z1)2

=
(1 + t2)2

(1 − t4)4
, (7.8)

corresponding to the variety C2/Z2 × C2/Z2. This model is presumably one of the chiral

orbifolds considered in [17]. For k > 1 we mod by the discrete action of the gauge group

U(1)3

g
(

t, F̃0{k,−k,k,−k}

)

(7.9)

=
1

k

k−1
∑

j=0

1

(2πi)2

∮

|zi|<1

dz1

z1

dz2

z2

(1 − t2)2

(1 − tz2)2(1 − tz1ω−j)2(1 − tωj/z2)2(1 − t/z1)2

with ωk = 1.

We could similarly analyze the case with generic CS parameters k1, k2, k3,−k1−k2−k3

giving a three integer family of four-fold Calabi-Yau singularities.

8. Dimers and orientifolds

For this case we will be brief, leaving a detailed discussion for future work. One can

construct CS theories in 2+1 dimensions by following the same construction in this paper

and apply it to the tilings which were introduced in [6]. The simplest model corresponds

to an Sp × SO model which was discussed in the literature in various papers [29, 20, 22],

a prototypical case leading to an orbifold C4/Dk moduli space. A particularly interesting

aspect about this class of models is that they lead to non-toric CY 4-folds and therefore

are a very interesting tool in studying such backgrounds beyond the familiar toric tools.

Other interesting models are obtained as non-supersymmetric orientifolds [32].

9. Comments and conclusions

In this paper we demonstrate how to construct infinitely many 2+1 dimensional product

U(N) Chern-Simons theories with moduli space which is generically the N -fold symmetric

product of toric four-fold Calabi-Yau singularities. The natural expectation is that these

theories are dual to the M theory background AdS4×H, where H is the 7 real dimensional

Sasaki-Einstein base of the Calabi-Yau.
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We explicitly computed the Hilbert series for the abelian theory. Under the assump-

tion that the moduli space is a symmetric product we can compute the Hilbert series -

the partition function for chiral operators - for all values of N using the Plethystic Expo-

nential [33 – 35]. This computation is extremely simple, similar to the computation of the

partition function for the mesonic moduli space in 3+1 dimensions and does not involve

all the complications due the existence of baryonic directions [36, 28].

More generally, our construction opens the way for many interesting investigations.

Of course the most important point would be to prove that the CS theory is really dual

to the AdS4 background; this might be difficult because many efficient 3+1 dimensional

tools to study superconformal theories are not available in 2+1 dimensions at the moment of

the writing. We could start by trying to understand better the existence and the properties

of the IR fixed points corresponding to Chern-Simons theories. Similarly to the generic

3+1 dimensional quiver, these theories will be strongly coupled and with a spectrum of

conformal dimensions that is not the canonical one. In the 3+1 dimensional case, we can

explicitly compare the results of a-maximization [37, 38] with the spectrum of dimensions

computed from volumes of cycles in H and gain confidence in our identification of the

quiver gauge theory as the dual of AdS4 × H [39 – 43]. This comparison can be done for

a generic toric three-fold [44] and it is a highly non-trivial check of the correspondence

between Tilings and toric Calabi-Yau singularities. In 2+1 dimensions, the familiar tools

for studying the IR fixed point and the exact R-charges and dimensions, as for example a-

maximization, are not available. We can still compute volumes of cycles in toric Calabi-Yau

singularities [45, 46] and extract from this the dimension of a subset of fields. It would be

quite interesting to find a surrogate of a-maximization to compare with. Less ambitiously,

it would be interesting to understand if and how we can parametrize R-charges using the

toric data of the Calabi-Yau singularity, as it happens in 3+1 dimensions [41 – 43, 47].

Another interesting point regards the Type IIA description of the supergravity back-

ground. The discrete group Zk, with k = gcd({ka}), is acting on the seven-manifold H.

In the ABJM case, it acts on the fiber of a U(1) bundle on P3 and it reduces the length of

the circle by a factor of k. For large k, it is better to descend to Type IIA compactified

on P3 with fluxes. It would be nice to understand this construction for a generic four-fold,

to see whether we can always descend in Type IIA preserving N = 2 supersymmetry and

identify the compact three-manifold B that appears in the supergravity solution. Notice,

in particular, that we considered two different fibrations of the four-fold: one over the non-

compact Calabi-Yau associated with the Tiling, and another over a compact Kähler three

manifold. It would be quite interesting to understand the relation between these different

three dimensional algebraic varieties. By consistency, we can expect that the partition

function for chiral scalar KK modes on B (eigenfunctions of the Laplacian on B) coincides

with the partition function for holomorphic functions on the Calabi-Yau three-fold.

Finally, the most ambitious goal would be to find a complete classification of the 2+1

dimensional theories dual to toric (and non toric) Calabi-Yau singularities. In particular,

in this paper we produce a direct algorithm to generate Calabi-Yau singularities for a given

Chern-Simons theory. A natural question is if all toric Calabi-Yau singularities arise in this

way and how to find the inverse algorithm, that in 3+1 dimensions is developed in [48 –
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50]. See [51] for further details. This algorithm takes the toric data of a given Calabi-Yau

singularity and generates the 3+1 dimensional theory. Similarly we would like to take the

toric data of a 4-fold CY singularity and generate the 2+1 dimensional theory.

We plan to investigate all these issues in the future with many other interesting topics

that are missing in the list.

Note added: while finishing this work, a paper [52] appeared in the arXiv, which has

some overlap with our results. Comments on the moduli space of N = 2 CS theories also

appeared in [23].
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