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Abstract

The search for unstable resonances produced in the proton–proton collision data of
the Large Hadron Collider provides us an avenue through which physics beyond the
Standard Model can be probed. A key challenge in current LHC searches is how one
can model the interference effects that can severely distort the shape of the invariant
mass distribution obtained from the decay products of the resonance, relative to the
case where there is no interference. Such effects are strongly dependent on the
beyond-Standard Model theory that gives rise to the resonance, which is unknown
a priori.

This thesis presents a physically-motivated, yet model-independent, template
functional form for the purpose of modelling interference effects, both in the char-
acterization of positive discoveries and in the presentation of null results. We select
a benchmark Higgs-like scalar resonance decaying to a pair of photons to illustrate
the approach of an analysis, utilizing fully simulated Monte Carlo events and toy
datasets to exhaustively test the general parametrization. A chapter is also dedi-
cated to the study of detector smearing effects on experimental datasets.
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Chapter 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012
provided the final piece of experimental evidence for the particle spectrum of the
Standard Model (SM) [1, 2]. Nevertheless, the SM is commonly understood to only
be a manifestation of a broader theory, valid at low energies up to the Planck scale.
This provides a motivation for seeking physics beyond the Standard Model (BSM)
at the TeV scale, where it is hoped that evidence for the overarching theory can be
revealed.

A common feature of BSM theories is the existence of new resonances, whose dis-
covery and characterization can be achieved in particle collider experiments through
the study of the invariant mass distributions of their visible decay products. How-
ever, experimental collaborations currently adopt a top-down strategy in their anal-
ysis and presentation of results. Under this approach, the statistically meaningful
quantification of a discovery, or indeed a null result, can only be inferred from
experimental data after the selection of a benchmark physics model (see, for exam-
ple, [3–5]). In the case of positive results, a significance of the discovery is reported;
for negative results, exclusion limits are presented on the product of the cross section
for the resonance production and the branching ratio for decay into the final state of
interest. While the top-down strategy prescribes a simple statistical procedure for
an analysis, it is not without its drawbacks: the results that one obtains is highly
dependent upon the benchmark model selected for the analysis, in that the same
data might lead to different conclusions had a different benchmark been selected.
Since the choice and treatment of the benchmark is ultimately handled by the ex-
perimental collaborations, it can be difficult for a theorist to generalize the reported
results to a particular BSM model of interest to them.

Furthermore, it is often the case that the possible interference effects arising be-
tween the resonant signal and relevant SM backgrounds are neglected in an analysis.
In the absence of interference, it is straightforward to take a lineshape for the signal
(which depends on both the mass and width of the resonance), convolve it with the
known detector resolution, and perform a fit to the observed data with a simple sum
of the signal and background invariant mass distributions. Unfortunately, neglect-
ing interference effects can be a pragmatic compromise rather than a well-motivated
assumption. The details of signal–background interference are highly dependent on
the new physics that gives rise to the resonance, which is, of course, unknown a pri-
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2 Introduction

ori ; different models will generate different patterns and magnitudes of interference,
the overall effect of which is to change the production rate of the resonance whilst
distorting the invariant mass distribution of the decay products in such a way as to
change the apparent mass of the resonance [6, 7]. The potential presence of these
effects complicates both the interpretation of a new discovery in a resonance search,
and the presentation of null results in the form of cross sections times branching
ratio limits, which are not well-defined in the case of interference.

This thesis presents a practical approach for incorporating interference effects
in resonance searches in a model-independent way. In contrast to the top-down
approach currently employed, we consider the opposite viewpoint, namely that of
a bottom-up approach, where the results of a search are presented with minimal
assumptions of any particular physics model. The key idea is that, although the
precise form of the resonant lineshape depends on the unknown parameters of an
unknown physics model, its space of possible variations can be covered by any suit-
able choice of even and odd functions dictated by general Quantum Field Theory
arguments. We develop a physically-motivated functional form that is capable of
describing the distortions of the lineshape encountered in the presence of signal–
background interference, and illustrate how this functional form can be adopted by
the LHC and other collider experiments for the presentation of both positive and
null results. In this way, any theoretical model can be quickly checked to be com-
patible or incompatible with experimental data by means of a simple computation
in terms of the same parameters. A paper summarizing our findings is currently
being prepared for submission to the Journal of High Energy Physics.

This manuscript is structured as follows. We first set the theoretical context for
the work of this thesis in Ch. 2. A general, model-independent functional form will
then be derived in Ch. 3. Its description will be tested against fully simulated Monte
Carlo events of a benchmark signal model, which serves as our assumed choice of a
scenario that exists in Nature.

In Ch. 4, we will explore global optimization techniques for visualizing the pa-
rameter space of the general functional form. We demonstrate the viability of the
general functional form in describing a large variety of possible lineshapes exhibited
under the benchmark signal model, a result that can be generalized to other signal
models due to the wide range of behaviour covered.

Ch. 5 investigates a more realistic scenario in which distortions of the data from
limited detector resolutions is considered. A description of such effects, in terms of
the general functional form, will be presented and verified through the use of Monte
Carlo events that include a simulation of generic detector effects.

Finally, we conclude in Ch. 6.



Chapter 2

Theoretical Context

In this chapter, we present a brief overview of the theoretical concepts required to
understand the motivation for this work. We begin by introducing the Standard
Model—the most complete theory of the microscopic world to date, which exper-
imental efforts have shown to possess remarkable predictive power. Yet, it is not
without its shortcomings; we describe some of the motivation for seeking extensions
to the Standard Model, and present in more detail a particular example of such a
theory. Finally, we discuss how physics beyond the Standard Model can be probed
experimentally, focusing particularly on collider experiments and the detectors of
the Large Hadron Collider.

2.1 The Standard Model

The Standard Model (SM) of particle physics is a theory developed to describe
our universe at the most fundamental level. It is a study of the most elementary
particles in nature—those which, as far as we know, can be treated as point-like and
are not composed of other particles—and of their interactions under three of the four
fundamental forces: the electromagnetic (EM), weak, and strong forces. Elementary
particles can be categorized either as fermions, which are particles with half-integer
spin, or bosons, with integer spin. The matter in our universe is constituted of quarks
and leptons, which are spin-1/2 fermions. Their interactions under the three forces
prescribed by the SM are achieved through the exchange of mediating force particles.
These are the spin-1 gauge bosons: the photon (γ) for the EM force, exchanged
between particles possessing electric charge; W± and Z for the weak force, between
particles with weak charge (weak isospin and hypercharge); and gluon (g) for the
strong force, for particles with colour charge. The spectrum of SM particles and
some of their important properties are shown in Fig. 2.11.

Quantum Field Theory (QFT) provides the mathematical foundation for the
SM. Under this framework, it is the excitations of quantum fields that manifest
as the elementary particles of the model. Because of this, the SM is also a gauge
theory, due to the fact that QFT dictates all massless vector fields to necessarily
be gauge fields [8]. To be more specific, the SM is a gauge theory constructed
1Source: MissMJ, Wikimedia Commons (cropped).

3



4 Theoretical Context

Figure 2.1: The particle spectrum of the Standard Model.

under the SU(3)C × SU(2)L × U(1)YW symmetry group. The SU(3)C subgroup
describes the theory of quarks and gluons and the strong force, referred to as quan-
tum chromodynamics (QCD), with the subscript, C, denoting colour charge. The
EM and weak forces are described by a unified electroweak (EW) theory under the
SU(2)L × U(1)YW group, where L indicates a coupling of the weak force to left-
handed fields only, and YW is the weak hypercharge.

The full SM Lagrangian2 can thus be written as a sum of QCD and EW contri-
butions:

LSM = LQCD + LEW. (2.1)

The pure QCD contribution is given by

LQCD = −1

4
Gµν
a G

a
µν +

∑
f

q̄f (iγ
µDµ −mf )qf , (2.2)

where the Greek indices run over the four spacetime dimensions, while the Latin
indices span the dimensionality of the Lie algebra (eight, in the case of SU(3)C).
The Ga

µν represent field strength tensors of the gluon fields,

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν , (2.3)

2To be pedantic, this is a Lagrangian density, with the Lagrangian being its integral over all spatial
dimensions.
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where gs is the strong coupling constant, fabc the structure constants of the strong
symmetry group, and Ga

µ the gluon fields, which are generators of the group. The
γµ are the Dirac matrices, and qf (with adjoint q̄f ≡ q†fγ

0) denotes quark fields of
flavour f , with quark mass mf . The covariant derivative here is given by

Dµ = ∂µ + igs
λa
2
Ga
µ, (2.4)

where λa are the eight Gell-Mann matrices.
The EW contribution can itself be separated into distinct parts:

LEW = Lgauge + Lfermion + LHiggs + LYukawa . (2.5)

The first of these is the kinetic term for the gauge fields of SU(2)L × U(1)YW ,

Lgauge = −1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (2.6)

where W a
µν and Bµν are the field strength tensors of the SU(2)L weak isospin and

U(1)YW weak hypercharge subgroups respectively:

W a
µν = ∂µW

a
ν − ∂νW a

µ − gW εabcW b
µW

c
ν , (2.7)

Bµν = ∂µBν − ∂νBµ, (2.8)

where gW is the weak coupling constant, εabc the Levi-Civita symbol in three di-
mensions, and a = 1, 2, 3, in accordance with the 3-dimensionality of SU(2)L. The
gauge fields of Eqs. (2.7) and (2.8) are not directly physical; instead, it is their linear
combinations that give rise to the fields of the weak and EM gauge bosons:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.9)

Zµ = W 3
µ cos θW −Bµ sin θW , (2.10)

Aµ = W 3
µ sin θW +Bµ cos θW , (2.11)

where θW is the weak mixing angle, which can be written in terms of the coupling
constants of the weak isospin (gW ) and weak hypercharge (gY ) symmetry groups,

sin θW =
gY√

g2
W + g2

Y

. (2.12)

The second term of Eq. (2.5) is the kinetic term for all SM fermions, including
quarks since they also feel the weak and EM forces:

Lfermion =
(
ūiL, d̄iL

)
iγµDµ

(
uiL
diL

)
+
(
ν̄iL, l̄iL

)
iγµDµ

(
νiL
liL

)
+ ūiRiγ

µDµuiR + d̄iRiγ
µDµdiR + l̄iRiγ

µDµliR + (h.c.), (2.13)
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where (uiL, diL)T and (νiL, liL)T are SU(2)L doublets of left-handed quark and lep-
ton fields respectively, and uiR, diR, and liR are SU(2)L singlets of right-handed
fields. The index, i, runs over the three generations of fermions, and for brevity, the
Hermitian conjugate of each term has not been written in full. Dµ now denotes the
covariant derivative for SU(2)L × U(1)YW ,

Dµ = ∂µ + igW
σa
2
W a
µ + igY

YW
2
Bµ, (2.14)

where the Pauli matrices, σa, are the generators of SU(2)L, and YW is the weak
hypercharge generating U(1)YW .

The components of the SM Lagrangian discussed up to this point are relevant
for the description of freely propagating and interacting gauge boson and fermion
fields. However, note that the theory does not yet contain any mass terms relating
to the gauge fields. This is a clear contradiction with Nature: it is known that while
the gluon and photon are indeed massless, the W± and Z bosons of the weak force
are not. It is precisely to explain this discrepancy with reality that the Higgs and
Yukawa terms were introduced to Eq. (2.5); the former is responsible for inducing
mass terms for the massive gauge bosons, while the latter introduces a correction to
the fermion masses already appearing in the formulation thus far.

The process by which massive W± and Z bosons are allowed in the SM is known
as the Higgs mechanism. This is achieved by introducing a new (“Higgs”) field to
the theory, with the crucial requirement that it attains a nonzero vacuum expecta-
tion value (vev); as such, this field is necessarily a scalar field, Φ, and transforms
according to the particular gauge subgroup for which one requires massive gauge
bosons. Thus, the field is chosen to be a SU(2)L doublet of complex scalar fields:

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (2.15)

which yields the EW Lagrangian terms:

LHiggs = (DµΦ)† (DµΦ)− V (Φ), (2.16)

with the covariant derivative according to Eq. (2.14). The most general gauge
invariant potential that yields a still-renormalizable theory is of the form

V (Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
, (2.17)

where µ2 < 0 and λ > 0 are real parameters, with the restrictions on their domains
necessary to produce a nonzero vev. This is the famous Mexican hat potential of
the Higgs field, with a ring of degenerate minima circularly about the origin in the
complex plane, of radius v =

√
−µ2/λ corresponding to the acquired vev. The Higgs

mechanism gives rise to mass terms for the weak bosons upon spontaneous breaking
of this global U(1) symmetry (that of rotational invariance about the origin), which
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occurs when one chooses to expand the complex Higgs doublet about a particular
minimum of the potential.3

Finally, the last term of Eq. (2.5) deals with the Yukawa interaction of the SM
fermions and the Higgs field:

LYukawa =− Γuij
(
ūiL, d̄iL

)
Φ†ujR + Γdij

(
ūiL, d̄iL

)
ΦdjR

+ Γlij
(
ν̄iL, l̄iL

)
ΦljR + Γνij

(
ν̄iL, l̄iL

)
Φ†νjR + (h.c.), (2.18)

where Γfij are the 3 × 3 matrix Yukawa couplings, and the sum over Latin indices
again runs over the fermion generations.

2.2 Beyond the Standard Model

While the SM has had incredible success in predicting many of the experimental
results in high energy physics, most recently with the discovery of the Higgs boson
in 2012 [1, 2], there remain questions to which it does not provide an answer. For
example: why are there three generations of quarks and leptons? What leads to
the large mass differences between SM particles? Why are the gauge couplings
appearing in the SM so different? These questions prescribe the so-called “hierarchy
problem” of the SM, and for such reasons, it is often regarded to be a low-energy
manifestation of an overlying unified theory [9].

The SM also does not include a description of the fourth fundamental force in the
universe: gravity. Instead, its effects are currently explained using general relativity,
which is a theory completely separate from the SM. Astronomical observations have
also revealed phenomena not explained by the SM, such as the asymmetry in baryon-
antibaryon densities, or that most of the universe seems to be composed of invisible,
“dark” matter.

These are but some of the reasons that motivate the formulation of beyond-
Standard Model (BSM) physics theories. An example of such a theory is super-
symmetry (SUSY), which postulates the existence of a fermionic, “supersymmetric”
partner for each SM boson, and a bosonic partner for each fermion [10]. SUSY
prescribes a means for resolving the hierarchy problem, providing a unified theory
for the forces, and also produces particle candidates to explain dark matter—with
such attractive features, it is naturally the focus of much research (e.g. [11–13]).
However, SUSY requires the existence of two Higgs doublets, and this leads to one
of the simplest extensions of the SM: that of including a second Higgs doublet in its
description,

Φ1 =

(
φ+

1

φ0
1

)
, Φ2 =

(
φ+

2

φ0
2

)
, (2.19)

3Often, one might also hear of “spontaneous breaking” of local gauge symmetry, but this is a
misnomer owing to the gauge fixing that one usually imposes to remove the redundant degrees
of freedom that arise when breaking the global symmetry; indeed, that local gauge symmetries
cannot be spontaneously broken is a result known as Elitzur’s theorem.
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with both transforming under SU(2)L. The introduction of a second complex dou-
blet to the Higgs sector of the SM is itself a common topic of research (e.g. [14, 15]),
and is known colloquially as a two Higgs doublet model (2HDM). Since the compo-
nents of each doublet are complex fields, these two doublets contain eight degrees
of freedom in total: three of these result in the longitudinal degrees of freedom of
the weak gauge bosons, and the remaining lead to five physical scalar Higgs fields,
in contrast to the single field in the case of only one doublet. This gives rise to
five physical Higgs bosons: the CP -even neutral scalars, h and H, a CP -odd pseu-
doscalar, A, and two charged bosons, H±. In addition to the yet-undiscovered SUSY
partner particles, one can thus see that a common feature of BSM theories is the
predicted existence of new, non-SM particles.

2.3 Particle collider experiments

The formulation of the SM as a gauge theory constitutes a rigorous and consistent
mathematical framework that can be extended theoretically in many directions, as
we have seen from the example of SUSY and the simple 2HDM extension. However,
at the end of the day, any theory we construct must necessarily provide a description
of the physical world; in this section, we shift the discussion from one of somewhat
abstract Lagrangians and quantum field theory, to one that is more practically
applicable for experimental endeavours. In particular, we discuss the physics of,
and relating to, particle collider experiments, and how their results can be used to
study particle physics theories (SM or otherwise).

2.3.1 Practical application of physics theories

Let us begin by introducing a few important quantities that can be predicted theo-
retically from a QFT, and which are also relevant to physical experimental scenarios.
Of course, rigorous calculations can be performed under the mathematical frame-
work of QFT, but our goal in this section will only be to present a qualitative sketch
of the physics that is a prerequisite to understanding the motivation behind our
work in later chapters.

As we have seen in the previous sections, a QFT, such as the SM, can be presented
fully in terms of a Lagrangian (for example, Eq. (2.2)). Even without performing any
detailed calculations, one can draw insight into the theory simply by inspecting its
Lagrangian: using the QCD Lagrangian as an example, one can see terms involving
quark-gluon fields, quark-quark fields, etc.

A useful method of visualizing the interactions of a theory are with the use of
Feynman diagrams. Loosely, these are diagrams that depict the evolution of a parti-
cle(s) through spacetime. Particles whose fields are coupled in a theory Lagrangian
are allowed to interact under that theory, with some assumed rate given by the cou-
pling strength of the fields. As an example, Fig. 2.2 shows the Feynman diagram of
an electron-positron (“Bhabha”) scattering process, e+e− → e+e−. The lines of the
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Figure 2.2: Feynman diagram of a Bhabha scattering process.

diagram represent particles traversing spacetime (with different linestyles conven-
tionally used to differentiate types of particles), and typically one assumes a time
axis aligned in some direction. The vertices represent their interaction: assuming
the arrow of time to point rightwards, the diagram here depicts the EM interaction
of an electron-positron pair, which scatter through the exchange of a virtual photon.

In addition to being a useful visualization tool, Feynman diagrams can be used to
perform rigorous calculations under the mathematical jurisdiction of graph theory.
Using the Lagrangian of a theory, one can construct a set of Feynman rules, which
associates each line (“propagator”) and vertex of the Feynman diagram with a cor-
responding mathematical expression. This can be used to calculate the amplitude,
A, of a diagram. One can draw an analogy of this quantity with the probability
amplitude of quantum mechanics: in itself, it is not a physical quantity. Rather, it
is the absolute square of the amplitude that is physically relevant. This is referred
to as the cross section of the interaction,

σ ∝ |A|2, (2.20)

which etymologically originates from the classical analogue of scattering: the prob-
ability of two macro-objects colliding (e.g. a ball thrown at the side of a barn) is
related to the cross-sectional area of those objects—the larger the barn, the more
likely it is for the ball to hit. In line with this analogy, quantum cross sections are
expressed as areas, typically in units of barns (b, with 1 b = 10−28 m2) (which also
owes its name to the analogy). While the classical interpretation of scattering does
not apply to quantum particles, the cross section of a given Feynman diagram can
nevertheless be interpreted as the rate of occurrence of the interaction it represents,
with larger values indicating more favourable processes.

2.3.2 The Large Hadron Collider

CERN’s Large Hadron Collider (LHC) [16], located near Geneva at the French–Swiss
border, is the largest and most ambitious scientific experiment to date. As its name
may suggest, its operational design involves the acceleration of hadrons (specifically
protons) and facilitating their high energy collisions for the purpose of testing the
theories of particle physics. This is done by accelerating two anti-parallel proton
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beams on a circular path to near light-speed, and allowing these beams to intersect at
four different points on their rings. Its accelerator apparatus, with a circumference
of approximately 27 km, lies in the underground tunnel previously occupied by the
Large Electron-Positron (LEP) collider. The LHC began operations in 2008, and
since then has produced data corresponding to collision energies of

√
s = 7, 8, and

13 TeV over its two runs, with plans to continue towards its design goal of
√
s = 14

TeV beam collisions. A notable outcome of its endeavours thus far is, of course, the
discovery of the SM Higgs boson in 2012 [1, 2].

The accelerator itself, however, does not an experiment make; one requires meth-
ods for (indirectly) observing the collisions, by using detectors that are sensitive to
the final state of their scattering. This is achieved at the LHC primarily by its
four main detectors, each located at an intersection point of the proton beams: the
ATLAS and CMS general purpose detectors, the ALICE heavy ion experiment, and
LHCb for flavour physics studies [17–20].

Note that protons are not “clean” particles, but instead a QCD “soup” of quarks
and gluons. Thus, an event at the LHC is defined as an interaction of the constituent
quarks and gluons during a bunch crossing. The rate at which events occur depends
on both the total cross section of all possible interactions and the instantaneous
luminosity of the beams:

dN

dt
= σL(t), (2.21)

where, since N is dimensionless and σ has units of area, it follows that L(t) is
expressed as (area×time)−1. Instantaneous luminosity can be interpreted loosely as
the cross-sectional density of protons in the beams; it is then intuitive that a larger
L(t) results in a greater probability of an event occurring. The LHC is designed to
achieve instantaneous luminosities of 1034 cm−2s−1. Another important and related
quantity is the integrated luminosity, which is given by the integral of instantaneous
luminosity over time,

Lint =

∫ tend

tstart

dtL(t), (2.22)

which is often expressed in units of inverse femtobarns (fb−1), and is used to char-
acterize the total output of a collider over some operational duration.

Since the detectors of the LHC do not observe the collisions of protons (or more
accurately, of its constituents) directly, but instead the final state produced in the
scattering, one can also write an event rate separately for each possible final state:

dN(f)

dt
=
∑
i

σ
(f)
i L(t), (2.23)

where f denotes some final state, and the cross section of all possible interactions re-
sulting in f contributes to the sum. Introducing a sum over f then yields Eq. (2.21).

Eq. (2.23) is what enables the study of BSM physics at collider experiments.
As we have mentioned in the previous section, a common trait of BSM theories
is the existence of new particles. The decay of these unstable resonances into SM
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particles can be predicted from the particular theory. Thus, if an excess of events
not predicted by the SM is observed in some final state, one can infer a possible
BSM contribution to σ(f)

i in Eq. (2.23), corresponding to

σBSM × BR(f), (2.24)

where σBSM is the production cross section of the BSM resonance, which is pre-
dictable from its theory, and BR(f) denotes the branching ratio of the resonance
decay into the particular final state, f .

To infer meaningful results from the collision data collected, it has to be con-
verted to a form on which a statistical analysis can be performed. For this, it is
useful to present the total number of collected events as a distribution against some
observable, O, of the final state particles:

dN(f)

dO(f)

=
dσ(f)

dO(f)

Lint, (2.25)

where dσ(f)/dO(f) is the differential cross section with respect to the observable,
which of course satisfies: ∫ ∞

−∞
dO(f)

dσ(f)

dO(f)

= σ(f). (2.26)

In the context of BSM resonance searches, a particularly useful observable is the
invariant mass of the final state particles, m(f). Simplistically, an excess of events
at a particular invariant mass value, if assumed to arise due to a BSM resonant
contribution, corresponds to the mass of the BSM particle. This is because the
invariant mass is derived from the inner product of 4-momentum vectors:

m(f) =
P µPµ
c2

, (2.27)

where the P µ are evaluated in the rest frame of the collision. Owing to the conser-
vation of 4-momentum, one can then associate the invariant mass of the final state
with that of the intermediary BSM resonance.

2.3.3 Presentation of LHC results

Realistically, the procedure of an analysis is not as simple as presented in the previ-
ous section: due to QFT complications, one does not see an excess of events akin to
a δ-distribution at the mass of the assumed resonance, but instead a smeared excess
across the invariant mass distribution near the expected resonance mass.4 Ulti-
mately, this distortion of the invariant mass lineshape can be predicted from theory,
but herein lies the problem: to draw conclusions on the resonance from the distribu-
tion observed, one has to make a choice of a particular BSM theory, and assume the
4There is further smearing due to the physical limitations of detector equipment, but we will leave
this discussion to a later chapter.
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resonance to be one of the new particles it predicts. Only then can the lineshape of
the data be characterized for the extraction of physical quantities—mass, width, etc.
However, these quantities can vary greatly depending on the theory assumed, yield-
ing a final result that can be heavily model-dependent and always non-generalizable
to the plethora of existing BSM theories.

Another issue is associated with Eq. (2.23), which carelessly assumes that one
can simply obtain a total cross section by summing the individual cross sections
of all contributing processes. However, the cross section is obtained by evaluating
the absolute square of an amplitude (Eq. (2.20)). As one might recall from quan-
tum mechanics, a probability is calculated as the absolute square of the sum of
wavefunctions—not the sum of the absolute square of each wavefunction (though
one can sometimes show that the cross terms cancel anyway, yielding an equivalence
between the two approaches). Similarly in this case, one has to consider the sum
of amplitudes before squaring the result to obtain the cross section. Thus, a more
technically correct form of Eq (2.23) can be written as:

dN(f)

dt
= L(t)

∑
i

σ(i→f) ∝ L(t)
∑
i

∣∣∣∣∣∑
j

A(i→f)
j

∣∣∣∣∣
2
 , (2.28)

where the sum over cross sections now applies only to interactions that begin with
different initial states, i. For processes with the same initial and final state, the
sum of each of their scattering amplitudes is obtained before performing the abso-
lute square for the cross section. Importantly, the mixing of the A(i→f)

j in Eq. (2.28)
gives rise to quantum interference between interactions of like initial and final states.
Interference can modify the apparent cross section of an interaction, either con-
structively, destructively, or to distort the lineshape of the final state invariant mass
distribution.

Currently, LHC resonance searches are performed using “simplified” models [21],
while also neglecting possible interference effects that can arise between the assumed
resonance and relevant SM “background” processes (i.e. SM interactions with the
same initial and final state as the BSM signal). In the scenario that a positive signal
is detected, the parameters of the chosen model are reported; for null results, an
exclusion limit is presented on the production cross section times branching ratio
(σ×BR) of the signal. This renders the reported results model-dependent, and thus
possibly difficult for a given theorist in the field to generalize to their particular
BSM model of interest, especially if interference is predicted to play an important
role.



Chapter 3

A General Functional Form

In this chapter, we will derive a general functional form usable for the characteri-
zation of invariant mass distributions of any (directly visible) final state. To begin,
we seek a baseline template describing an invariant mass distribution. The general
interaction involving the production of an unstable resonance can be written as

i1 . . . im → X → f1 . . . fn, (3.1)

where i1 . . . im represent the m particles in the initial state, and f1 . . . fn the n decay
products of a particular decay mode of a new particle, X. We will refer to such an
interaction as the “resonant” or “signal” process. In the scenario that no intermediary
particle is produced, the interaction can be written as

i1 . . . im → f1 . . . fn, (3.2)

which will be referred to as the “background”, typically associated with physics that
can be assumed to be well understood (for example, the SM). For the purpose of our
work, any background contribution to the f1 . . . fn final state that does not interfere
with the signal process will be ignored.

The general helicity amplitude that describes such signal and background pro-
cesses can be written as

A(q2) =
S(q2)

q2 −m2 + imΓ
+ B(q2), (3.3)

where q2 denotes the four-momentum transfer of the scattering process; S(q2) de-
notes the amplitude of the signal process, which produces an unstable intermediary
particle with mass m and decay width Γ, up to a factor of the propagator which
has been written explicitly; and B(q2) represents the amplitude of all interfering SM
background processes. Note that we assume a single resonance within the invariant
mass range considered.

The signal and background amplitudes appearing in Eq. (3.3) can be separated
in terms of a real component and a complex phase,

S(q2) = |S(q2)| exp
(
iφS(q2)

)
, B(q2) = |B(q2)| exp

(
iφB(q2)

)
. (3.4)

13
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Substituting these expressions into the total amplitude, we then calculate its abso-
lute square:

|A(q2)|2 =
|S(q2)|2

(q2 −m2)2 +m2Γ2
+ |B(q2)|2

+
2|S(q2)||B(q2)|

(q2 −m2)2 +m2Γ2

{(
q2 −m2

)
cosφSB +mΓ sinφSB

}
. (3.5)

The first term in this equation is the contribution from the signal process, and we see
the familiar Breit-Wigner distribution arising from the squaring of the propagator,
up to a constant factor:

fBW(q2) ≡ 1

(q2 −m2)2 +m2Γ2
. (3.6)

The second term is the contribution of the background; finally, the third term is a
description of the interference, in terms of a relative phase between the signal and
background amplitudes which has been defined as

φSB = φS − φB. (3.7)

While Eq. (3.5) has been derived assuming a single helicity configuration for
the signal and background, one can extend its description to accommodate multiple
helicities by making a distinction between the two phase terms: cosφSB → cosφc
and sinφSB → sinφs, where

cosφc =

∑N
i |Si||Bi| cosφiSB√∑N
i |Si|2

∑N
i |Bi|2

, (3.8)

sinφs =

∑N
i |Si||Bi| sinφiSB√∑N
i |Si|2

∑N
i |Bi|2

, (3.9)

with the summation running over the N helicity states. The amplitudes appearing
in Eq. (3.5) are then implicitly understood to also denote a similar sum,

|S(q2)|2 =
N∑
i

|Si(q2)|2 , |B(q2)|2 =
N∑
i

|Bi(q2)|2 . (3.10)

With this small correction to Eq. (3.5), we can now find a description for the
final state invariant mass distribution. In the case of two particles in the initial and
final states, the differential cross section describing a single event at energy q can
be written as [22]

dσ

dΩCM
=

1

64π2q2

|k′|
|k| |A(q2)|2, (3.11)
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where dΩCM is the differential solid angle in the centre of mass frame, and k and k′

are the 4-momenta of incoming and outgoing particles respectively:

|k′| = 1

2q

√
q4 − 2q2(m2

1′ +m2′) + (m2
1′ −m2′)2 , (3.12)

|k| = 1

2q

√
q4 − 2q2(m2

1 +m2
2) + (m2

1 −m2)2 , (3.13)

with mi, i = 1, 2, denoting particle masses, and primed subscripts indicating outgo-
ing particles. In the context of hadronic collisions such as those carried out by the
LHC, Eq. (3.11) is modified by a weighting with a parton luminosity function,

dσ

dΩCM
=

∫
dq2 L(q2)

1

64π2q2

|k′|
|k| |A(q2)|2, (3.14)

necessary due to the composite nature of hadrons. This differential cross section
can be re-parametrized to one in terms of the invariant mass:

dσ

dq
=

∫
dΩCM L(q2)

1

32π2q

|k′|
|k| |A(q2)|2. (3.15)

Eq. (3.15), in combination with Eq. (3.5), provides a description for the invariant
mass distribution of the decay products in a hadronic 2-to-2 process. Note that at
this stage, the model-dependent terms in the amplitude are simply denoted collec-
tively as |S(q2)|; a particular model for the signal has not yet been assumed.

In the following section, we introduce a benchmark signal model that will serve as
our assumed choice of a scenario which exists in nature. The template of Eq. (3.15)
will be used to obtain an analytical description of the benchmark signal, by finding
an appropriate form for the model-dependent |S(q2)| term in the amplitude. We
then introduce a convenient code implementation of the benchmark physics model,
which will be used to simulate pseudo-realistic datasets using Monte Carlo methods,
and verify that the analytical forms obtained indeed parametrize the Monte Carlo
samples generated.

We will then proceed to derive a general, model-independent functional form us-
ing the baseline description of Eq. (3.15), and perform various tests of its parametriza-
tion against the benchmark physics model in Secs. 3.2 and 3.3.

A summary of our results is presented in Sec. 3.4.

3.1 Benchmark model

We choose to perform our study in the diphoton final state. A Higgs-like signal model
is chosen as the benchmark, prescribing a CP -even scalar resonance produced via
2-gluon fusion and decaying to two photons (Fig. 3.1, left). To find a description of
the diphoton invariant mass distribution for this process, we first refer to Eq. (3.15).
The factor |k′|/|k| reduces to 1, as both the incoming (g) and outgoing (γ) particles
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f
X

g

γ

g

γ

q

g γ

g γ

Figure 3.1: Left: the gg → X → γγ signal process. The resonance is a CP -even, spin-0
particle; the f denotes virtual fermions in the loop. Right: the leading order SM gg → γγ

background process with circulating quarks, q.

are massless (see Eqs. (3.12) and (3.13)). We will also neglect terms that do not
contain explicit q-dependence; this yields a simple expression for the differential
cross section,

dσ

dq
∝ Lgg(q

2)

q
|A(q2)|2, (3.16)

where Lgg(q2) is now specifically the gluon-gluon luminosity function. Eq. (3.16)
holds generally for a 2-to-2 process with incoming gluons and outgoing massless
particles.

The total amplitude of the signal process will receive a contribution each from
the production loop, the effective decay vertex, and the propagator of the resonance.
By comparison with Eq. (3.3), we thus have that

S(q2) = AggXAXγγ, (3.17)

where AggX and AXγγ are amplitudes of the production loop and decay vertex
respectively. The effective decay contributes a simple (q-dependent) factor,

AXγγ ∝ q2. (3.18)

The production term is more complicated; due to the fermion loop, a form factor is
introduced:

AggX ∝ q2
∑
f

A(τf ), (3.19)

where f denotes the fermions in the loop, and is A(τ) the form factor, which for a
CP -even resonance is [6]

A(τf ) = 2τf (1 + (1− τf )g(τf )), (3.20)
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Figure 3.2: Real (blue) and imaginary (red) components of the production loop form
factor containing a fermion with a 173 GeV mass.

where

τf =

(
2mf

q

)2

, (3.21)

and

g(τf ) =


arcsin2

(
1√
τf

)
for τf ≥ 1,

−1
4

[
log

(
1+
√

1−τf
1−
√

1−τf

)
− iπ

]2

for τf < 1.
(3.22)

The real and imaginary contributions of Eq. (3.20) are plotted against the diphoton
invariant mass in Fig. 3.2, for a fermion of mass mf = 173 GeV corresponding to
the SM top quark.

From Eq. (3.16) and the first term of Eq. (3.5), we can thus posit the diphoton
invariant mass distribution of the signal to be described by1

dσS
dq
∝ Lgg(q2)× q7 × fBW × |A(τ)|2, (3.23)

with the Breit-Wigner given by Eq. (3.6). The gluon luminosity function can be
approximated by a parametrization found using APFEL [23, 24] and the CT10 set
of parton distribution functions (PDFs) [25], for a centre of mass energy of 13 TeV
in accordance with LHC run-2 specifications [22]:

Lgg(q2) ∝
(

1−
( q

13 000

)1/3
)11.4407 ( q

13 000

)−2.5785

. (3.24)

1The sum of A(τ) over all fermions is left implicit.
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Figure 3.3: The shape of the gluon-gluon luminosity obtained with the CT10 PDF set,
as a function of the invariant mass.

The shape2 of this function is shown in Fig. 3.3.
An analytic form for the interference between the signal model and an inter-

fering SM background process, such as the leading order gg → γγ “box” diagram
(Fig. 3.1, right), can be found using Eqs. (3.16)–(3.19) and the final term of Eq. (3.5).
Direct substitution of the relevant terms yields:

dσI
dq
∝ Lgg(q

2)

q
2fBW q4 |A(τ)|

∣∣B(q2)
∣∣ { (q2 −m2

)
cosφSB +mΓ sinφSB

}
. (3.25)

While the amplitude of SM background diagrams can be calculated explicitly,
these processes are not the main interest of a resonance search. Instead, an ad
hoc parametrization of the background invariant mass distribution will typically be
found; let us denote such a parametrization as

FB(q2) ≡ dσB
dq
∝ Lgg(q

2)

q

∣∣B(q2)
∣∣2 . (3.26)

The background amplitude appearing in Eq. (3.25) can then be re-cast in terms of
this function:

dσI
dq
∝
√
Lgg(q2)

q

√
FB(q2) 2fBW q4 |A(τ)|

{(
q2 −m2

)
cosφSB +mΓ sinφSB

}
.

(3.27)
Note, however, that the constant of proportionality in this equation is not arbitrary;
if the normalizations of the signal (Eq. (3.23)) and background (Eq. (3.26)) differ-
ential cross sections are respectively denoted fs and fb, then we necessarily require
2Its normalization is not accounted for.
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the interference normalization to be

fi ≡
√
fsfb . (3.28)

A caveat to Eq. (3.28) is that it holds only when considering a single helicity con-
figuration for the signal and background. As previously discussed, to accommodate
multiple helicity states, it is sufficient to simply introduce two independent phases,
whose interpretations are given by Eqs. (3.8) and (3.9).

3.1.1 The Higgs characterization model

A convenient computational implementation of the benchmark model (Fig. 3.1, left)
is provided by the Higgs characterization (HC) model [26], a framework originally
developed for studying the properties of the Higgs boson. In this section, we briefly
summarize the relevant parts of the HC model, before describing, in more detail, our
procedure for obtaining fully simulated Monte Carlo (MC) samples of the benchmark
signal and the SM background.

For the loop-induced production of a new CP -even scalar particle, the La-
grangian,

Lf0 = −
∑
f=t,b,τ

ψ̄f (cακXffgXff )ψfX, (3.29)

describes the interaction of the scalar field, X, with fermion fields, ψf , within the
framework. The parameter cα ≡ cosα is the cosine of the mixing angle between
CP -even and CP -odd states, with cα = 1 (0) for the CP -even (odd) case; κXff
are dimensionless coupling parameters; and gXff is the strength of the coupling
between the resonance X and fermion f . The effective decay to γγ is described by
the dimension-5 operator,

LV0 = −1

4
[cακXγγgXγγAµνA

µν ]X, (3.30)

where Aµν is the electromagnetic field strength tensor, and κXγγ and gXγγ are as
previously described, the only difference being that the coupling is to two photons
instead of fermions.

The HC model was employed for its FeynRules [27, 28] implementation of
the Lagrangian terms of Eqs. (3.29) and (3.30), which provided an automated
computation of the Feynman rules of the model. This was imported into Mad-
Graph5_aMC@NLO [29–31] for a calculation of matrix elements and event gen-
eration, then interfaced with Pythia8 [32] for a parton shower simulation. Finally,
Delphes 3.4.1 [33] was used to perform a generic fast detector simulation.

In the interest of increasing the statistical accuracy of our simulations while
maintaining good computational efficiency, we chose to separately generate samples
of signal, interference, and background events. Signal and interference events were
generated for a m = 400 GeV resonance, with width Γ/m = 10%. To obtain a
well-defined relative phase between the signal and background processes, we also
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Figure 3.4: Cross-section-per-bin histograms constructed from MC samples. The signal
corresponds to a scalar resonance with a 400 GeV mass and 40 GeV width. Interference
with the SM continuum occurs with a relative phase of φSB = 5π/4.

introduced a modification to the HC model to define two new parameters, KHttim
and KHttre, whose values respectively specify the sine and cosine of the nominal
relative phase. However, the validity of this modification required a fermion in the
resonant production loop to have a mass much greater than that of the resonance, to
shift the non-trivial contributions of the form factor (in particular, of its imaginary
component (see Fig. 3.2)) to higher invariant masses. Within the SM and in the
unmodified HC model, circulating fermions are dominantly the t and b quarks and
the τ lepton; we set the mass of the t quark to mt = 2 TeV, such that contributions
to the production loop form factor are almost entirely from its effect. The value
KHttim = KHttre = −0.7071 was chosen, corresponding to an artificial relative
phase φs = φc = 5π/4 ≡ φSB.

One million diphoton events each were generated for the signal and interference,
and 500 000 events for the background sample. The relevant output of our simu-
lations is a file produced by Delphes 3.4.1, containing information on both the
“generation” or “truth”-level events imported directly from the Pythia8 simulation,
as well as the “reconstructed” events that result from the Delphes 3.4.1 detector
simulation. For now, we will work with the truth-level events, deferring the study
of detector effects to Ch. 5.

CERN’s ROOT data analysis framework [34] was used to extract and calculate
the invariant mass of diphoton events in the Delphes 3.4.1 particle record. We
also extracted the weight of each event, the sum over which yields the cross section
of the generated process,3 ∑

events

w = σ. (3.31)

This information was necessary to understand the contribution of interference pho-
tons to the overall invariant mass distribution; in particular, it is possible for the
3Depending on how the MC generator normalizes its events, it can also be necessary to divide by
the total number of events generated.
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events in this record to be associated with a negative weight, as interference can not
only enhance but also suppress a signal. The weighted events of each sample were
then sorted into binned histograms of their invariant mass (Fig. 3.4).

Typically, one needs to be conscious of relative normalisations when combining
separately generated samples, since the contribution of the interference is physi-
cally dependent on the signal and background. It would be unphysical to directly
combine the samples of 1 million signal and interference and 500 000 background
events, for example. However, by taking into account the weight of each event when
constructing the histograms, the number of generated events (which is arbitrary)
has been converted into a cross section (which is only process-dependent, and does
not depend on the number of events generated). Thus, histograms at the level of
cross sections are already normalized according to the physics given as input to the
event generator; the correct relative normalization between the three components is
ensured, and a physically consistent total diphoton invariant mass distribution can
be obtained by a simple sum of their histograms.

A comparison of our signal, interference, and background cross-section-per-bin
histograms is shown in the top-leftmost plot of Fig. 3.5. While having a correct
relative normalization, the signal and interference distributions are several orders of
magnitude lower than that of the background. However, note that we can apply a
scaling factor to enhance the signal and interference contributions; to preserve the
correct relative normalization, a scaling of the interference histogram by a factor √µ
necessarily accompanies a signal scaling by µ. This post-generation enhancement of
our sample cross sections is equivalent to modifying the Yukawa coupling parameter,
KHtt, within the HC model before generating any events. The remaining plots in
Fig. 3.5 show a comparison of the three components for scaling factors µ= 75, 150,
and 250.

3.1.2 Comparison of Monte Carlo with analytic forms

In this section, we will perform fits to the cross-section-per-bin histograms con-
structed from our MC samples using the analytical forms we have derived, to verify
that they are indeed representative of the physics we wish to study. We will also
summarize the results of [35], which tests several ad hoc template functional forms to
find one that provides a suitable parametrization of the MadGraph5_aMC@NLO
background.

ROOT’s 1-dimensional histogram fitting function, TH1::Fit, was used to per-
form the fits. This implements the Minuit minimization program for the optimiza-
tion of an objective function, FCN, using the Migrad algorithm [36]. By default,
FCN corresponds to the chi-square statistic; assuming no correlation between bins,
this is given by

χ2 =
∑
i

(y(xi;θ)−Oi)
2

E2
i

, (3.32)
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Figure 3.5: Top left: a comparison between the signal, (absolute value of the) interference,
and background histograms at the cross section level, with no post-generation scaling
factors applied. The remaining plots show the result of applying scaling factors, µ and√
µ, respectively to the signal and interference components.

where Oi denotes the value stored in the ith bin, with uncertainty Ei. The function
being fitted to the histogram, y(x;θ), with free parameters θ, is evaluated discretely
at the central value of each bin. The minimization of the χ2 yields best-fit values
for each parameter, along with an estimate of their uncertainties [37].

The signal histogram was fitted using Eq. (3.23), with the form factor receiving
only a single contribution from a fermion of mass 2 TeV. This corresponds to the
choice we made for the t quark in the modification of the HC model. The free
parameters of the fit are m, Γ, and fs; these are respectively the mass and width of
the resonance, appearing in the Breit-Wigner, and an overall normalization factor.

The result of the fit is presented in Fig. 3.6. Values extracted for the m and Γ

parameters are in good agreement with their true values of 400 GeV and 40 GeV
respectively, despite not being strictly within the one standard deviation (1σ) un-
certainty ranges reported by the fitter. The metric of fit quality is the chi-square per
degree of freedom (χ2/ndf), where the number of degrees of freedom is equal to the
number of datapoints (histogram bins) less the number of fitted parameters. Overall,
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Figure 3.6: A fit of the physics model functional form (red) to the MC sample of signal
events. Best-fit parameter values and uncertainties are shown in the box.

we find the analytical description of Eq. (3.23) to provide a good parametrization
of the data distribution, with χ2/ndf ≈ 2.

For the background, instead of performing a possibly complicated calculation
for the amplitude of the background processes, it is typical to seek an ad hoc
parametrization,

FB(q2) ≡ dσB
dq
∝ Lgg(q

2)

q
|B(q2)|2. (3.26 revisited)

Here, we present a summary of the results from [35], which tested three different
functional forms with the goal of identifying a suitable description of the Mad-
Graph5_aMC@NLO diphoton background distribution. The first of these was
based on a family of functional forms used in an analysis by the ATLAS collabora-
tion for a centre of mass energy of 13 TeV [4],

FATLAS
B (q2) ∝ 1

q

(
1−

( q

13 000

)1/3
)A ( q

13 000

)B
, (3.33)

with free parameters A and B. In particular, A = 6.3 and B = −3.5 are the values
used in the ATLAS analysis. The second functional form was one used in an analysis
by the CMS collaboration [5],

FCMS
B (q2) ∝ qA+B log q, (3.34)
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Figure 3.7: Left: a test of various template functional forms using a sample of Mad-
Graph5_aMC@NLO background events. This result is extracted from [35]. Right: a fit
of the background sample we generated, using the “ATLAS” functional form.

with free parameters again labelled as A and B. Finally, a combination of the
ATLAS and CMS forms was defined:

F combined
B (q2) ∝ 1

q

(
1−

( q

13 000

)1/3
)A ( q

13 000

)B+C log q

, (3.35)

with three free parameters A, B, and C.
Eqs. (3.33)–(3.35) were tested against a large sample of approximately 10 mil-

lion background-only events generated with MadGraph5_aMC@NLO. ROOT’s
RooFit fitting toolkit [38] was employed to perform fits over the 200–2500 GeV in-
variant mass range. Results are shown in Fig. 3.7 (left). The CMS parametrization
(black) was found to underestimate the distribution generated by the MC, but both
the ATLAS (red) and hybrid (green) forms provided good descriptions, performing
equally well in the invariant mass regions below approximately 1200 GeV. At higher
invariant masses, the hybrid parametrization was found to provide a slightly more
accurate description of the data. The exact parametrization used by ATLAS is also
plotted as a comparison (purple), but its description was found to be incompatible
with the MadGraph5_aMC@NLO background.

Let us now make use of these results; since we have chosen to generate signal
events at the m = 400 GeV mass point, the invariant mass region we will study
lies in the range for which the hybrid and ATLAS parametrizations perform almost
equivalently. We will thus use the simpler form of the latter, with an additional
normalization parameter, fb, to parametrize our histogram of background events. A
good description is found (Fig. 3.7, right), verifying the suitability of this template
for our study.

Finally, the analytical description of the interference (Eq. (3.27), with FB(q2)

fixed to the background description found above) was verified against the histogram
of interference events. The result of the fit is shown in Fig. 3.8. The characteristic
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Figure 3.8: A fit of the interference lineshape.

peak-dip structure of the interference is captured well by the analytical form, extract-
ing a relative phase of φSB = −2.37, the sine (cosine) of which is approximately -0.69
(-0.72). This result agrees well with the true value, cosφSB = sinφSB = −0.7071.

Note, however, an extracted normalization incompatible with Eq. (3.28) and the
previous results of Figs. 3.6 and 3.7 (right). We find a suppression of the interference
pattern by a factor of approximately

√
2/15, due to the reasons discussed previously.

3.2 A general parametrization

At the beginning of this chapter, we calculated a generic amplitude describing a
resonant and background process (Eq. (3.5)), and found a simple expression for the
differential cross section in terms of this amplitude (Eq. (3.16)). In this section,
we will develop these equations to derive a general functional form capable of de-
scribing invariant mass distributions in a model-independent fashion. This general
parametrization will then be studied using the benchmark physics model and the
MC samples we have generated.

Let us begin by re-visiting the relevant equations:

|A(q2)|2 =
|S(q2)|2

(q2 −m2)2 +m2Γ2
+ |B(q2)|2

+
2|S(q2)||B(q2)|

(q2 −m2)2 +m2Γ2

{(
q2 −m2

)
cosφSB +mΓ sinφSB

}
, (3.5 revisited)

which is the absolute square of a general parton-level amplitude, and

dσ

dq
∝ Lgg(q

2)

q
|A(q2)|2, (3.16 revisited)
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the differential cross section for the gg → γγ processes of interest. The differential
cross section obtained by combining these equations can be expressed as a sum of
the contributions from the individual components,

dσ

dq
=
dσS
dq

+
dσI
dq

+
dσB
dq

, (3.36)

where the subscripts denote signal, interference, and background contributions to
the cross section:4

dσS
dq

=
Lgg(q2)

q
fBW|S(q2)|2, (3.37)

dσI
dq

=
Lgg(q2)

q
2fBW|S(q2)||B(q2)|Φ(φSB), (3.38)

with fBW denoting the Breit-Wigner distribution (Eq. (3.6)), and Φ(φSB) a short-
hand for the phase-related terms in the interference,

Φ(φSB) =
(
q2 −m2

)
cosφc +mΓ sinφs , (3.39)

where the now-independent “phases” φs and φc account for multiple helicity config-
urations. The background is again parametrized in an ad hoc manner,

dσB
dq

=
Lgg(q2)

q
|B(q2)|2 ≡ FB(q2). (3.26 revisited)

There are two particular points of note. Firstly, because we only consider inter-
fering background processes, the same parton luminosity function, Lgg(q2), enters
each of the three differential cross sections above. Secondly, the ad hoc descrip-
tion of the background differential cross section already encompasses information
on the luminosity function. Thus, let us introduce a factor of 1 to the signal and
interference contributions:

dσS
dq

=
Lgg(q2)

q
fBW|S(q2)|2 × |B(q2)|2

|B(q2)|2 (3.40)

= fBW
|S(q2)|2
|B(q2)|2 × FB(q2), (3.41)

and

dσI
dq

=
Lgg(q2)

q
2fBW|S(q2)||B(q2)|Φ(φSB)× |B(q2)|2

|B(q2)|2 (3.42)

= 2fBW
|S(q2)|
|B(q2)| Φ(φSB)× FB(q2). (3.43)

4Proportionality factors have been absorbed into the amplitudes.
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By doing so, Eq. (3.36) can be written fully as

dσ

dq
= FB(q2)

[
fBWR

2(q2) + 2fBWR(q2)Φ(φSB) + 1
]
, (3.44)

where we have defined the ratio of signal to background amplitudes as

R(q2) ≡ |S(q2)|
|B(q2)| . (3.45)

A parametrization of the differential cross section in terms of this ratio removes the
explicit appearance of the gluon luminosity function (or indeed, any parton lumi-
nosity in general), allowing us to sidestep the need to approximate its form. Addi-
tionally, Eq. (3.44) becomes generally applicable to the invariant mass distribution
of any final state, as its description of a resonance and interference is completely
relative to the background. This also means that it is able to describe invariant
mass distributions not necessarily parametrized as a differential cross section. For
example, experimental datasets are typically given in terms of a differential number
of events,

dN

dq
, (3.46)

where the number of events is a simple scaling of the cross section by the integrated
luminosity of the experiment,

N = σ × Lint. (3.47)

The ad hoc background description of such a dataset will thus already contain the
appropriate factor of Lint that scales Eq. (3.44) to describe a differential number of
events.

3.2.1 Casting R(q2) as a parameter

The general template of Eq. (3.44) provides a description that is applicable to our
summed (“BIS”) histogram of background, interference, and signal MC events. How-
ever, there remains an ambiguity regarding the ratio, R(q2), and the exact form it
should take. Owing to its definition in terms of the q-dependent signal and back-
ground amplitudes, it is generally an unknown, model-dependent function of the
invariant mass. To maintain the model-independence of the functional form, a gen-
eral approximation of the ratio is thus required.

As a starting point, we neglect the q-dependence to approximate the ratio as
a parameter of the functional form, R(q2) ≡ R. Under this assumption, fits of
Eq. (3.44) to BIS histograms are 5-dimensional, in the parameters

{m,Γ, R, φc, φs} . (3.48)

The background component of the functional form, FB(q2), is held completely fixed
according to the description found in Fig. 3.7 (right). Fits were performed on his-
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Figure 3.9: Fits over 200–1000 GeV of the summed invariant mass distributions, using the
general functional form with the ratio, R, treated as a parameter. Various scaling factors,
µ, have been applied to enhance signal and interference contributions to the histograms.

tograms with various scalings applied to the signal and interference contributions,
corresponding to µ = 50, 75, 150, and 250.

Results are presented in Fig 3.9. The data corresponding to µ = 50 is fitted well,
with only a slight underestimation of the data above approximately 800 GeV. The
quality of fit decreases as the strength factor is increased, most noticeably in the
high-q regions of the data: we see that the best-fit lineshapes converge to the fixed
background contribution at high invariant masses. Additionally for the larger µ fits,
the functional form is unable to fully capture the shape of the trough left of the
signal peak. This suggests that the general functional form, under the assumption
of a q-independent ratio parameter, is applicable only to a restricted invariant mass
region about a peak; its form is not flexible enough to accommodate significant
contributions of non-background events too far from the peak.

Upon inspection of best-fit parameter values extracted in the fits, we findm and Γ

consistent with their true values of 400 GeV and 40 GeV respectively. Following from
the definition of the phase-related parameters in Eq. (3.39), with a suppression of
approximately

√
2/15 (see Sec. 3.1.2), we expect values of φc ≈ 1.83 and φs ≈ −0.26,

but these are not reflected in our results. The values extracted for the phases
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also vary significantly for different µ. However, failing to correctly characterize the
interference might not be too surprising, since one would expect to be sensitive to
its effect only if a good parametrization of the data is found in the first place.

Let us, however, discuss the use of φSB as a parameter, and the possible conse-
quences of this from a computational point of view. Currently, fits are performed
using ROOT’s TH1::Fit method, which employs the Migrad algorithm to mini-
mize an objective function (the χ2). The minimization begins by calculating the
first derivative of the objective function at a user-specified starting point, using this
information to determine the direction in parameter space that decreases the χ2.
This process repeats until the fitter converges to the point of minimum χ2. The im-
portant point of note is that finding the correct solution relies heavily on obtaining
an accurate approximation of the first derivative [36, 37].

In setting up a fit, we are required to choose upper and lower limits for each free
parameter in the fit. Because of the invariance of φc/s under the transformation5

φc/s → φc/s + 2πk, k ∈ Z, (3.49)

we restricted the range of the phases to (approximately) φc/s ∈ [−π, π]. Ideally,
this would mean that the extracted φc/s corresponded to their true values within
the range specified. However, a poorly chosen initial value can affect the calculation
of the gradient of the χ2, such that the minimization attempts to converge to a
solution outside the specified range of values for the parameters. In such a scenario,
it is possible for the algorithm to declare convergence of the fit without reaching the
correct minimum in parameter space.

To avoid this issue, one can instead treat cosφc or sinφs as parameters. By
doing this, the invariance of φc/s no longer plays a role, and we are simply left with
parameters that take a range of physical values in [−1, 1].

3.2.2 Taylor expansion of R(q2)

In the previous section, we found that neglecting q-dependence in the ratio of am-
plitudes led to generally poor descriptions of BIS histograms over large invariant
mass ranges, especially for those receiving large signal (and interference) contribu-
tions. However, the goal of an analysis is to extract the physical parameters of a
resonance; it can be sufficient to consider only a limited invariant mass window, if
accurate predictions of the parameters are obtainable.

Nevertheless, being able to parametrize a larger invariant mass window can help
to constrain the parameters of the functional form, especially if there are limited
number of events available in a dataset. Thus, it might be desirable to inject some
q-dependence to the ratio of amplitudes in a model-independent fashion. Let us
do this now by performing a Taylor series expansion for R(q2) in the variable q2,
5φc/s refers to φc and φs.
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calculated about the square of the resonance mass, m2:

R(q2) = R(0) +R(1)(q
2 −m2) +O

(
(q2 −m2)2

)
. (3.50)

By construction of the Taylor series, the expansion coefficients are, analytically,

R(0) = R(m2), R(1) =
∂R(q2)

∂q2

∣∣∣∣
q2=m2

, (3.51)

and so on for higher order terms. However, in practice, these coefficients are treated
as parameters of the functional form. Our results in the previous section are, of
course, equivalent to the case in which we truncate Eq. (3.50) at the zeroth order.
In principle, one would also perform a similar expansion for the relative phase, φSB,
as it is generally a q-dependent quantity; we present such a consideration in App. A,
but will neglect it for the studies presented in the main body of this manuscript.

The general functional form will thus be 4+j-dimensional in its parameters,
where j ∈ Z+ is the order past which we choose to truncate the expansion of R(q2).
This is normally chosen at the order which satisfied, to some desired precision,

R(i+1)(q
2 −m2)i+1 � R(i)(q

2 −m2)i ∀ i ≥ j. (3.52)

However, a choice cannot be made without prior knowledge of the expansion coeffi-
cients, R(i), and the resonance mass, m. Furthermore, the expansion includes factors
of (q2 −m2)i, which is a function whose value increases quickly with q. Because of
this, the problem also depends on the invariant mass range being considered, as a
larger window will lead to the inclusion of increasingly higher order terms.

The two decisions we need to make in a given fitting problem, then, are:

1. The invariant mass range that the functional form is to fit, and

2. The order at which the Taylor expansion of R(q2) is to be truncated.

These points are related in that making a choice for one of these points fixes the
“correct” choice for the other. Thus, there are two ways to proceed. The first is
to decide on the invariant mass range to be considered in an analysis and begin
with the zeroth order approximation, increasing the order of the expansion until
Eq. (3.52) is found to hold sufficiently well. However, with no cause to discard any
events a priori, one would simply choose to perform the fit over as large an invariant
mass range as possible, with limitations coming only from the number of events
measured in the experiment. In this scenario, the Taylor expansions are probably
not ideal, as one would need to include very high order terms to accommodate the
large fit window, leading to a functional form featuring an excessive number of free
parameters. Instead, one could consider performing the expansion using a basis of
functions that are slowly-varying or steeply-falling in the neighbourhood of q2 = m2;
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for example,

R(q2) = R(0) +R(1) log

(
q2

m2

)
+O

((
log

q2

m2

)2
)
. (3.53)

The alternative, and arguably simpler, method is to immediately perform a trun-
cation of the Taylor expansion at some arbitrary order. This yields a general func-
tional form with a set of parameters fixed by the choice of truncation; its fit to a
data distribution holds exactly at q2 = m2, but its description becomes less accu-
rate as one moves away from the peak. While this means that only a subset of the
data collected in an experiment will be relevant to a fit, the extraction of the phys-
ical parameters corresponding to a resonance should be unaffected. In addition,
maintaining a consistent set of parameters between analyses allows for a simpler
interpretation and comparison of results.

We choose to proceed using the second method and a truncation of the Taylor
expansion at the first order, being the simplest choice that does not neglect the
q-dependence of R(q2). Substitution into Eq. (3.44) yields:

dσ

dq
= FB(q2)

[
fBW

(
R2

(0) + 2R(0)R(1)(q
2 −m2)

)
+2fBW

(
R(0) +R(1)(q

2 −m2)
)

Φ(φSB)

+1 +O
(
(q2 −m2)2

) ]
. (3.54)

Note that as defined currently, R(0) has units of mass-squared, while R(1) is
dimensionless. To more easily interpret fit results, we obtain parameters that are of
the same canonical dimensions by scaling with factors of the mass,

R(0) →
R(0)

m2
, R(1) → R(1), (3.55)

to cast both parameters as dimensionless quantities. Also writing the phase-related
contributions to the interference explicitly in terms of cφ ≡ cosφc and sφ ≡ sinφs,
the functional form to first order in R(q2) becomes:

dσ

dq
= FB(q2)

[
fBW

(
m4R2

(0) + 2m2R(0)R(1)(q
2 −m2)

)
+2fBW

(
m2R(0)cφ(q2 −m2) +R(0)m

3Γsφ
)

+2fBW(q2 −m2)
(
R(1)cφ(q2 −m2) +R(1)mΓsφ

)
+ 1 +O

(
(q2 −m2)2

)]
. (3.56)
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Figure 3.10: Fits of our functional form with R(q2) expanded to the first order. From
top to bottom: Fitted histograms correspond to scaling factors µ = 50, 75, 150, 250.

Note that O ((q2 −m2)2) refers specifically to terms from the Taylor expansion; the
factor of (q2−m2)2 appearing explicitly in Eq. (3.56) arises from separate contribu-
tions of (q2−m2) from the squaring of the resonance propagator, and from the first
order term of the Taylor expansion of R(q2).

We now present fits of Eq. (3.56) to BIS histograms, with scaling factors again
chosen to be µ = 50, 75, 150, and 250. Discarding the O ((q2 −m2)2) term, the
functional form contains six parameters:{

m,Γ, R(0), R(1), cφ, sφ
}
. (3.57)

Fit windows were restricted to ±80 GeV about the peak at mγγ = 400 GeV, as we
know that the first order approximation holds only in the region close to the peak.
Fig. 3.10 shows our results. The arbitrarily chosen ±80 GeV fit window yields a good
parametrization of the data distribution for the µ = 50 and µ = 75 fits, returning a
χ2/ndf ≈ 1. However, for the larger µ, we find the fits to deviate slightly from the
data near the edges of the window, resulting in a rapid increase of the χ2 due to the
very small uncertainties of the datapoints.
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Figure 3.11: Visualization of the χ2/ndf against fit window size for factors µ = 50, 75,
150, 250. The left-hand column shows results using the zeroth order truncation, while the
right-hand column includes the first order parameter.
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This trend of decreasing fit quality with increasing µ is similar to our (zeroth or-
der) results from the previous section, though inclusion of the first order parameter,
R(1), has improved the fit qualities somewhat; the evolution of best-fit χ2/ndf, for
each µ and both the zeroth and first order truncations, is plotted against the fitted
mass window in Fig. 3.11. For µ = 50 and µ = 75, there is little difference between
the zeroth and first order results, with a stable χ2/ndf ≈ 1 found even for the largest
window tested (±110 GeV, centred about the 400 GeV peak). Differences between
the two choices of truncation become more apparent in the µ = 150 and µ = 250

results: in the zeroth order case, one finds an approximately exponential increase
in the χ2/ndf up to a threshold window of about ±60 GeV, past which the χ2/ndf
still increases exponentially, but at a lower rate. The same behaviour past ±60 GeV
is seen in the first order results, but below this threshold, one finds a slower, less-
than-exponential deterioration in the fit quality; as expected, these results indicate
that the inclusion of higher order Taylor coefficients extends the mass window that
can be described by the general functional form.

We note that the µ = 50 and µ = 75 results of Fig. 3.10 show that the first
order functional form is able to provide an exceptional description of the data in the
400±80 GeV invariant mass window. Despite this, we are still unable to extract the
expected phases, and we also see that their best-fit values differ between the two
results. This is surprising, since a change in the scaling of the signal and interference
contributions to the data should affect only the R(i) parameters in the functional
form, as the shape of the interference has not been altered. We will investigate this
problem of unphysical phases in the following section.

On a tangent, let us highlight the importance of keeping FB(q2) fixed, not only
from a physical standpoint but also from a functional one. Without fixing this back-
ground contribution, one introduces additional degrees of freedom to Eq. (3.44) that
can greatly increase the variety of lineshapes it can exhibit. Fig. 3.12 shows a result
in which we assume the zeroth order truncation of R(q2) and allow a floating nor-
malization of the background component in the functional form. Fits were repeated
on the histogram corresponding to µ = 250. In comparison to the previous zeroth
and first order results, we find these fits to yield much lower χ2/ndf in general, and
also deteriorate at a slower rate as the fit window size increases. Of course, despite
the apparently improved description of the data, we know that the parameters found
in such a result do not reflect the physical truth.

3.3 An alternative parametrization

In the previous section, we presented a general functional form and applied it to se-
lected points in the benchmark signal model. Despite finding accurate parametriza-
tions of the MC histograms in localized regions about the signal peak, we were
unable to extract expected values for the interference-related parameters. Let us
first note that the general functional form to first order in R(q2) (Eq. (3.56)) can be
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Figure 3.12: Fits to the sample with scaling factor µ = 250 applied, with the height of
the background component in the functional form allowed to vary. The ratio parameter is
truncated at the zeroth order.

rewritten by grouping terms with like powers of (q2 −m2),

dσ

dq
= FB(q2)

[
fBW

{
m4R2

(0) + 2R(0)m
3Γsφ

+2(q2 −m2)
(
m2R(0)R(1) +m2R(0)cφ +R(1)mΓsφ

)
+2(q2 −m2)2

(
R(1)cφ

)}
+ 1
]
. (3.58)

In this form, an alternative parametrization is obvious:

dσ

dq
= FB(q2)

[
fBW

{
a0m

4 + 2a2m
2(q2 −m2) + 2a4(q2 −m2)2

}
+ 1
]
, (3.59)

where the ai are dimensionless quantities, related to the physical parameters by

a0m
4 = m4R2

(0) + 2R(0)m
3Γsφ, (3.60)

a2m
2 = m2R(0)R(1) +m2R(0)cφ +R(1)mΓsφ, (3.61)
a4 = R(1)cφ. (3.62)

In this section, we will utilize the ai description of the general functional form to
study the physical parameters6 by performing closure tests. For this, we make use
of Asimov datasets [39], which perfectly represent the model generating the data.
We select points in the ai parametrization as input; the choice of a set of values
for the parameters fixes the shape and normalization of the input distribution. The
6We henceforth refer to these (the R(i), cφ and sφ) as the “RC” (Ratio-(Co)sine) parameters, of
the “RC parametrization” of the general functional form.



36 A General Functional Form

Asimov histogram can then be constructed by setting the content of each bin to the
value of the input function evaluated at the central invariant mass value of that bin.
Uncertainties mimic those for our MC samples,

∆bin =

√
Ntot

f(qbin)∑
i f(qi)︸ ︷︷ ︸

counting uncertainty

×
∑

i f(qi)

Ntot︸ ︷︷ ︸
scaling factor

, (3.63)

where Ntot is the total number of events we wish to simulate within the invariant
mass window constructed, and f(qbin) is the input function evaluated at the central
q value of the corresponding bin. The sum is performed over all bins of the Asimov.
The first term is a contribution arising from regular counting statistics,

∆N =
√
N, (3.64)

for N observed events, while the second scales the uncertainty to account for the fact
that the Asimov is normalized to the input distribution, by virtue of its construction.

We begin with the trivial case of using the ai parameters to generate Asimov
histograms, then fitting to these the ai parametrization. This is a simple closure
test with the goal of verifying that we are able to correctly extract the inputs to the
Asimovs.

The functional form tested (Eq. (3.59)) contains five parameters: m, Γ, and the
three ai. Ten thousand sets of input values for the ai were generated en masse using
ROOT’s TRandom2 random number generator, with m = 400 GeV and Γ = 40 GeV
chosen in all cases. Asimov histograms were created over the 300–500 GeV invariant
mass range for each set of inputs. Bin uncertainties were calculated using Eq. (3.63),
assuming Ntot = 1 000 000 events within the invariant mass range constructed. Fits
were then performed on the Asimovs; due to the gradient-descent nature of ROOT’s
fitting algorithm, initial values of ai = 0.5 were used to ensure impartial results
across fits.

We present our results in Fig. 3.13, which shows a collation of the ratio of best-fit
to input ai values found by the fits. A pronounced, δ-function-like spike is found at
1, indicating that input ai values were correctly recovered in every fit, as expected.

This toy closure test was then repeated using the RC parametrization. To ensure
that ai inputs were physical, we generated random values for the RC parameters,
then used Eqs. (3.60)–(3.62) for calculation of the inputs; otherwise, the construction
of Asimovs follows the procedure described previously. To the Asimovs, the six
parameters m, Γ, R(0), R(1), cφ, and sφ of Eq. (3.58) were fitted, with initial values
of 0.5 again specified for each parameter (bar m and Γ).

The ratios of best-fit to input values are presented in Fig. 3.14. These results
are a stark constrast to those for the ai parameters: instead of a δ-like peak, we
see that many fits have converged to other solutions, although the highest point of
these distributions corresponds still to a ratio of 1. These results indicate that the
physical parametrization of the general functional form can still yield unexpected
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Figure 3.13: A collation of the ratio of extracted best-fit to input parameter values for
each of the ai parameters, from performing 10 000 closure tests using Asimov datasets
constructed from randomly generated input points in its space.
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Figure 3.14: A collation of the ratio of extracted best-fit to input parameter values for
each of the RC parameters, from performing 10 000 closure tests using Asimov datasets
constructed from randomly generated input points in its space.
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results, even in the ideal scenario of Asimov datasets. Thus, degeneracies within
the space of the RC parameters may be unavoidable. In addition, note that the
clustering of solutions about 1 might indicate flat structure in parameter space,
which can affect the gradient-descent approach to finding a minimum if convergence
is declared prematurely.

3.3.1 Analysis of RC degeneracy

In hindsight, the results of Fig. 3.14 are not surprising—after all, finding solutions
for a fit in terms of the RC parameters is essentially equivalent to first finding appro-
priate values for the ai, then solving Eqs. (3.60)–(3.62) for the RC. The problem of
finding four unknowns with only three equations immediately indicates non-unique
solutions.

One might suggest, then, that fitting in terms of the ai parameters of Eq. (3.59)
would lead to simpler and more stable results. However, the ai parameters can only
serve as numerical aids, since they do not have clear physical interpretations; hence,
after finding best-fit values for the ai, one is still faced with the task of finding the
corresponding RC parameters.

This is a non-trivial exercise, which we now demonstrate for the special case of a
helicity correction factor of 1, such that the cφ and sφ parameters can be expressed
using the trigonometric identity:

sφ = ±
√

1− c2
φ . (3.65)

In this regime, it might be possible to identify unique solutions for the physical
parameters, since the problem reduces to solving a system of three equations (given
by Eqs. (3.60)–(3.62), assuming known values for m, Γ, and the ai from a prior fit)
for three unknowns (the R(0), R(1), and cφ).

We begin by rearranging Eq. (3.60) to find an equation for cφ in terms of m, Γ,
R(0), and a0,

a0 −R2
(0) = 2R(0)

Γ

m
λ
√

1− c2
φ , (3.66)

=⇒ λ
√

1− c2
φ =

m
(
a0 −R2

(0)

)
2R(0)Γ

, (3.67)

=⇒ cφ =

√√√√√1−
m2
(
a0 −R2

(0)

)2

4R2
(0)Γ

2
, (3.68)
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where we have denoted the sign ambiguity of sφ as λ. Substituting into Eq. (3.62),
we find

R(1) =
a4

cφ
= a4


√√√√√1−

m2
(
a0 −R2

(0)

)2

4R2
(0)Γ

2


−1

. (3.69)

Using Eqs. (3.66), (3.68) and (3.69) in Eq. (3.61) then yields an equation for R(1) in
terms of m, Γ, R(0), and all three of the ai parameters:

R(1) =
1

a2

R(0)a4 +
a2

4

(
a0 +R2

(0)

)
2R(0)

(
1− m2(a0−R2

(0)
)2

4R2
(0)

Γ2

)
 , (3.70)

with a similar expression for cφ easily following from Eq. (3.62):

cφ = a2

R(0) +
a4

(
a0 +R2

(0)

)
2R(0)

(
1− m2(a0−R2

(0)
)2

4R2
(0)

Γ2

)

−1

. (3.71)

Thus, given values for R(0), m, Γ, a0, a2, and a4, we can calculate the (unique)
values of R(1) and cφ, and also fix λ by noting that the sign of the right hand side
of Eq. (3.66) is determined by the sign of λ.

The final exercise is then to find a relationship that yields an R(0) value(s) given
only the m, Γ, and ai. We can immediately see the possibility of multiple R(0)

solutions from Eq. (3.60), which can be written as a quadratic equation,

b1R
2
(0) + b2R(0) + b3 = 0, (3.72)

with

b1 = −1− a4

R2
(1)

, (3.73)

b2 =
2a2

R(1)

, (3.74)

b3 = −a0. (3.75)

However, this does not yet account for the R(0) dependence of R(1), and upon sub-
stitution of Eq. (3.70), we instead find the equation

F
(
R(0);m,Γ, a0, a2, a4

)
= A2

1 − A2 = 0, (3.76)
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where

A1 = −2a0a4 + a2
0

(m
Γ

)2

− 4R2
(0) − 2a4R

2
(0) − 2a0R

2
(0)

(m
Γ

)2

+R4
(0)

(m
Γ

)2

, (3.77)

and

A2 = −4a2
2

(
a0
m

Γ
+R(0)

(
2−R(0)

m

Γ

))(
a0
m

Γ
−R(0)

(
2 +R(0)

m

Γ

))
. (3.78)

F (R(0);m,Γ, a0, a2, a4) is a polynomial of order eight; once the values of m, Γ, and
the ai are specified, its roots yield solutions for R(0). However, note that this is an
even function of R(0), and since the physical domain of solutions require R(0) ≥ 0

by definition, the problem reduces to a quartic one. Thus, each point in ai param-
eter space can translate to as many as four distinct, but equivalent, points in RC
parameter space.

Let us provide an example using the following set of arbitrarily chosen RC pa-
rameter values:

{m, Γ, R(0), R(1), cφ} = {400, 40, 0.2, 0.1, 0.5}, (3.79)

corresponding to

{m, Γ, a0, a2, a4} = {400, 40, 0.075, 0.13, 0.05}. (3.80)

Fig. 3.15 (leftmost) shows the behaviour of Eq. (3.76) for this set of ai values. In
addition to the input R(0) = 0.2, we find a second solution of R(0) ≈ 0.19, and also
another one at R(0) ≈ 0.39, though this final solution is not strictly physical as the
function does not meet the axis at this point. Recall that a0−R2

(0) yields the correct
choice for λ, so in this example, the two physical solutions correspond to λ = 1,
while the third (approximate) solution corresponds to λ = −1.

The other two plots in Fig. 3.15 depict Eqs. (3.70) and (3.71), showing the
solutions for R(1) and cφ once a value for R(0) is fixed. The most striking feature
in these plots are the asymptotes near the R(0) solutions, a behaviour that seems
to persist also for other sets of input parameters; thus, even small variations in the
extraction of R(0) can potentially lead to very different R(1) and cφ results. While we
have derived this result assuming the special case of Eq. (3.65), one can imagine a
generalization to explain the extraction of unexpected and sporadic relative phases
in the MC fits of previous sections.

A numerical verification of these results was performed using an Asimov dataset
of 1 000 000 events over the 300–500 GeV invariant mass window. All three of the
exact (λ = 1) and approximate (λ = −1) solutions predicted analytically were found
(Fig. 3.16), through variation of initial parameter values for the λ = 1 case. The
possibility of numerical instabilities, due to divergences in the analytical descriptions
of R(1) and cφ, has not affected the convergence to expected solutions in these fits,
presumably because of the high-statistic Asimov datasets used. One-dimensional
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Figure 3.16: Two equivalent and one approximate solution in RC parameter space cor-
responding to {m, Γ, a0, a2, a4} = {400, 40, 0.075, 0.13, 0.05} in ai space.

scans over the parameters, performed for λ = 1, also distinctly reveal the multiple
minima: Fig. 3.17 shows the variation in the χ2/ndf as R(0), R(1), and cφ are each
held fixed over a range of values.

3.4 Summary

We have presented a functional form for the general characterization of resonances
and their interference with SM backgrounds, by encapsulating model-dependence
within a Taylor expansion of a quantity, R(q2), defined as the ratio of an assumed
model and interfering SM background amplitudes. This was tested for a Higgs-
like scalar resonance in the γγ final state, using fully simulated MC event samples
generated with MadGraph5_aMC@NLO. The general functional form was found
to provide a good description of the invariant mass distribution in a localized window
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Figure 3.17: Scans of the R(0), R(1), and cφ parameter spaces, for λ = 1.

about the signal peak, with a stricter restriction placed on the size of this window
as the size of the signal increased.

However, the extraction of unexpected relative phases in our fits prompted us
to investigate the functional form using an equivalent parametrization in terms of
unphysical ai parameters. Analytical and numerical studies involving this alterna-
tive basis of parameters, performed in the specific case that removed the correction
factors of helicity selection rules, revealed degeneracies in the space of physical pa-
rameters which were largely unavoidable. In addition, the analytical descriptions for
R(1) and cφ in this special case indicated a sensitivity to very small changes in the
value of R(0). Thus, it might prove difficult to extract the physically correct R(1),
cφ, and sφ from a fit, at least with the method involving ROOT’s fitting algorithm,
which strives to return a single best-fit value, with corresponding uncertainty, for
each parameter.



Chapter 4

Global Optimization

In this chapter, we continue our study of the physical parametrization of the general
functional form,

dσ

dq
= FB(q2)

[
fBW

{
m4R2

(0) + 2R(0)m
3Γsφ

+2(q2 −m2)
(
m2R(0)R(1) +m2R(0)cφ +R(1)mΓsφ

)
+2(q2 −m2)2

(
R(1)cφ

)}
+1
]
. (3.58 revisited)

However, with a high possibility of multiple solutions in the space of the RC pa-
rameters, the gradient-descent fitting approach implemented by ROOT’s TH1::Fit
function is not ideal. We thus turn to the attractive alternative of global optimiza-
tion techniques, which entail a large-scale sampling of parameter space and reporting
of the quality of fit at each point sampled. With this approach, one ideally would not
need to worry about finding solutions corresponding to local extrema, and the ex-
istence of any degeneracies in parameter space are immediately revealed. The need
to specify arbitrary starting points, as gradient-descent methods would require, can
also be avoided.

We begin the chapter with a brief overview of some statistical concepts, and
describe in more detail the particular sampling algorithm we will use to obtain our
results. We will use this to visualize the degeneracies between the RC parameters of
the general functional form, especially when one does not assume the special case of
sφ = ±

√
1− c2

φ but instead treats the two parameters independently. Nevertheless,
a simple final result in the form of parameter values and uncertainties can still be
desirable; to this end, we explore possible modifications to the RC parameters in
an attempt to lift their degeneracies. A practical method of applying the general
functional form to more realistic scenarios will also be investigated; in particular,
we propose a procedure with which a suitable fit window can be determined when
no prior knowledge of the data is assumed.

43
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4.1 Statistical background

4.1.1 The likelihood function

Consider a sample of events x = {x1, x2, · · · , xN} drawn from a continuous random
variable, X, which is distributed according to the probability distribution function
(PDF) of some statistical model M(X; Θ). The likelihood function for this sample
is defined as the PDF of the generating model, but with the model parameters, Θ,
acting as the variables:

L(Θ;X) ≡M(X; Θ). (4.1)

Our studies are performed using histograms of binned events. Bins can thus be
considered as independent counting experiments following a Poisson distribution; in
the asymptotic limit of a large number of events, this tends towards a Gaussian:

G(n;N, σ) =
1√

2πσ2
exp

[
−(n−N)2

2σ2

]
, (4.2)

where n is a random variable representing the number of events, and the parameters
N and σ are respectively the mean and standard deviation of the Gaussian corre-
sponding to the particular bin. To define the likelihood function, the interpretation
of these quantities are reversed: n becomes the number of observed events in a bin,
and σ its uncertainty. The parameter of interest is N , which represents the number
of events predicted by some model; in the fitting scenario of a functional form to a
binned invariant mass distribution, we have, for the ith bin,

Ni ≈ F (qi;θ), (4.3)

where qi denotes the central invariant mass value of the bin, and F (qi;θ) the fitted
functional form, with parameters θ. Thus,

Li(θ; qi, ni, σi) =
1√

2πσ2
i

exp

[
−(ni − F (qi;θ))2

2σ2
i

]
. (4.4)

The full likelihood function for a binned fitting procedure is simply the product
of the likelihood for each bin:

L(θ) =
all bins∏
i=1

Li(θ; qi, ni, σi) =
1√

2π
∏

j σj
exp

[
−1

2

∑
i

(
ni − F (qi;θ)

σi

)2
]
. (4.5)

4.1.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) provides a frequentist approach to the prob-
lem of estimating the parameters of a model given some observed dataset. As the
name of the method suggests, this is achieved through maximization of a likelihood
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function, L(θ). Values for the parameters that maximize the likelihood are known
as the maximum likelihood (ML) estimators, θ̂, for which the observed data is most
likely, assuming correctness of the model.

Under the MLE method, constant contributions to the likelihood can be dis-
carded, as they do not affect the location of its maximum. It is also equivalent to
instead maximize a monotonically increasing function of the likelihood, or introduce
negative factors to convert the problem to one of minimization. Particularly for the
likelihood function of Eq. (4.5), note that

λ(θ) ≡ −2 logL(θ) =
∑
i

(
ni − F (qi;θ)

σi

)2

, (4.6)

where the constant pre-factor of (
√

2π
∏

j σj)
−1 has been discarded as it does not

affect the optimization. Thus, MLE is essentially equivalent to the exercise of min-
imizing the χ2.

However, the problem of parameter estimation involves not only finding the ML
estimators, θ̂, but also the uncertainties associated with them. Consider the single-
parameter case and assume a Gaussian distribution of the likelihood in parameter
space, with mean θ̂ and standard deviation σ; thus,

λ(θ) = −2 logL(θ) =

(
θ − θ̂

)2

σ2
. (4.7)

Confidence intervals for the parameter, θ, can then be constructed using the likeli-
hood ratio test,

Λ(θ) ≡ L(θ)

L(θ̂)
, (4.8)

which assesses the goodness-of-fit of a point in parameter space to that at the ML
estimator. For example, the 1σ interval corresponds to [θ̂ − σ, θ̂ + σ], whence

− 2 log Λ(θ̂ ± σ) = λ(θ̂ ± σ)− λ(θ̂) = 1. (4.9)

Thus, one can identify all points in parameter space that satisfy

λ(θ) < λ(θ̂) + 1, (4.10)

to lie within the 1σ confidence interval for that parameter; this can be interpreted as
the interval that, with an approximately 68% probability (for the 1σ case), contains
the true value for θ.1

Despite being derived under a Gaussian assumption for θ, the confidence inter-
vals found according to Eq. (4.10) are good approximations even in non-Gaussian
cases [40]. A generalization to higher n-dimensional parameter spaces can also be
1Note that this is a statement on the confidence interval found, and not the true value of the
parameter.
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made [41, 39]:
λ(θ) < λ(θ̂) +Qχ2

n
(p), (4.11)

whereQχ2
n
is the inverse cumulative distribution function (ICDF) of a χ2

n distribution
with n degrees of freedom, and p the probability of enclosing the true parameter
value(s). One can verify that setting n = 1 and p ≈ 0.68 indeed recovers Eq. (4.10).

4.1.3 Bayesian inference

Bayesian inference is a statistical method built upon Bayes’ theorem; given dataX,
and a hypothesis model M , with parameters Θ, the theorem states:

P (Θ|X,M) =
P (X|Θ,M)P (Θ|M)

P (X|M)
, (4.12)

where P(Θ|X,M) ≡ P(Θ) is the posterior probability distribution of the parame-
ters; P(X|Θ,M) ≡ L(Θ) is the likelihood function; P(Θ|M) ≡ π(Θ) are the prior
distributions of the parameters; and P(X|M) ≡ Z is the Bayesian evidence, which
normalizes the posterior distribution:

Z =

∫
Θall

L(Θ)π(Θ) dDΘ , (4.13)

where Θall indicates a definite integral over the entire space of the D parameters.
Bayesian inference can be applied to problems of parameter estimation through

maximization of the posterior probability distribution, P(Θ), in maximum a poste-
riori (MAP) estimation. This is the Bayesian counterpart to the MLE method, and
reduces to the MLE in the special case of uniform priors; note that the normalizing
Z factor of Eq. (4.13) has integrated out all dependence on the model parameters
Θ, and so can be neglected as it will not affect the maximization of P(Θ). The
evidence plays a more important role when one wishes to compare two competing
models, M0 and M1, by computing the ratio of their posterior probabilities for a
given dataset,

P(M1|D)

P(M0|D)
=

P(D|M1)P(M1)

P(D|M0)P(M0)
=
Z1π(M1)

Z0π(M0)
, (4.14)

also known as the Bayes factor. As there would usually be no a priori preference
for either model, π(M1)/π(M0) = 1, so the test reduces to a comparison of the
Bayesian evidence for each model. A larger evidence indicates a better agreement
of the corresponding model with the observed data.

4.1.4 MultiNest and the nested sampling algorithm

To employ either the MLE or MAP methods for estimating model parameters, one
requires a way of sampling parameter space. Many techniques exist for this purpose,
such as the Metropolis-Hastings or Hamiltonian sampling algorithms, of the Markov
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Chain Monte Carlo (MCMC) class of methods, which have been used extensively
in astrophysical and other physics applications [42–44]. The differential evolution
algorithm [45–47], which traverses a problem space in a survival-of-the-fittest (set of
parameter values) manner, has also found success as a robust and computationally
efficient alternative to MCMCs [48–50].

For our work, we choose to use MultiNest [51], which implements a variant
of the nested sampling (NS) algorithm specifically for the study of multimodal dis-
tributions [52–54]. Thus, we expect it to perform well in identifying the multiple
solutions of the general functional form.

At its core, the NS algorithm is a Bayesian inference tool that seeks to calcu-
late the Bayesian evidence (Eq. (4.13)). This is a multidimensional integral over
the parameter space of a problem, and can be computationally expensive; the NS
algorithm simplifies the calculation by introducing the prior volume,

X(`) =

∫
L(Θ)>`

π(Θ) dDΘ, (4.15)

which is an integral of the parameter priors over the region bounded by the L(Θ) = `

iso-likelihood contour. Note that since prior distributions are PDFs (hence normal-
ized to unity), X(`) ∈ [0, 1], with X(0) = 1. Using this, one can convert the
multidimensional evidence integral to a 1-dimensional one:

Z =

∫ 1

0

L(X) dX, (4.16)

where L(X) = X−1(`) is a monotonically decreasing function of X, and represents
the value of the likelihood at the boundary of a given prior volume. Assuming
Riemann integrability of L(X), Eq. (4.16) can be approximated as a weighted sum,

Z ≈
M∑
i=1

L(Xi)wi, (4.17)

with the trapezoidal rule yielding the weights as wi = 1
2
(Xi−1 − Xi+1). Thus, to

calculate the evidence, one requires values for the L(Xi) and Xi, for i = 0, 1, · · · ,M ,
satisfying 0 < XM < · · · < Xi < · · · < X0 = 1.

The sum of Eq. (4.17) is computed in MultiNest as follows: One begins with
the full prior volume (corresponding to X0 = X(0) = 1) and from this, draws a
sample of Nlive random (“live”) points. The point with the lowest likelihood in this
sample, L0, is then discarded and replaced with a point of likelihood L1 > L0.
To improve the efficiency of finding a point that meets this requirement, a variant
of the clustered nested sampling [54–56] method is employed, which uses the X-
means clustering algorithm [57] to accommodate the possibility of a multimodal
distribution. This generates a D-dimensional ellipsoid (or a cluster of ellipsoids)
using a covariance matrix calculated from the live points; the acceptance rate of a
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sampled point increases if it is drawn from this hyper-ellipsoid(s), instead of the full
prior volume.

In this way, the prior volume enclosing the Nlive points is reduced every itera-
tion, Xi < Xi−1; the algorithm traverses nested shells of the likelihood, hence its
nomenclature. For i > 0, a probabilistic approximation for Xi is made:

Xi ≈ tiXi−1, (4.18)

where ti is a random variable following a PDF describing the largest out of Nlive

samples drawn from a uniform distribution across [0, 1],

ti ∼ P(t) = Nlive t
Nlive−1 . (4.19)

However, since the ti are independent for each iteration, one can write

Xi ≈ titi−1 · · · t1t0X0 = titi−1 · · · t1t0, (4.20)

and so one can utilize the expectation and standard deviation of the ti,

E[log t] = − 1

Nlive
, σ[log t] =

1

Nlive
, (4.21)

to obtain:

logXi ≈ −
(
i±
√
i
)

Nlive
=⇒ Xi ≈ exp

(
−
(
i±
√
i
)

Nlive

)
. (4.22)

Thus, an approximation for the evidence improves with every subsequent iteration;
the algorithm terminates once a desired accuracy is achieved.

The NS algorithm thus provides an efficient solution to the problem of sampling
parameter space and identifying regions of high likelihood, despite its original goal
of calculating the Bayesian evidence. Indeed, MultiNest can be re-purposed for
frequentist analyses using the MLE method, provided that one increases the number
of live points to the order of 103 to 104 (in contrast to Nlive∼102 required for accurate
evidence approximations), and imposes a stricter stopping criterion to allow for a
more thorough exploration of high likelihood regions in parameter space [58].

4.2 Fit of RC parameters using MultiNest

Let us return to the toy problem from Sec. 3.3.1, in which we fitted the general
functional form (Eq. (3.58)) to an Asimov histogram constructed using these input
RC parameter values:

{m, Γ, R(0), R(1), cφ} = {400, 40, 0.2, 0.1, 0.5}, (3.79 (revisited))

with input sφ ≈ 0.866 fixed using its relation with cφ in the case of a single helicity
configuration.
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We repeat this toy study to illustrate the capabilities of MultiNest. The anal-
ysis is performed in a frequentist approach by defining uniform priors for each fit
parameter. To investigate degeneracies between the RC parameters in the gen-
eral helicity configuration case, we return to using the six-parameter description of
Eq. (3.58) with sφ distinct from cφ. The MultiNest configuration of nlive = 5000

live points, with tolerance tol = 0.001 defining the convergence condition, was
found to provide a good balance between computational cost and an adequate ex-
ploration of parameter space. The MultiNest output is processed and plotted
using pippi [59] as 2-dimensional profile likelihood ratios,

Λ(θ1, θ2) =
L(θ1, θ2; Θ̂|θ1,θ2)

L(Θ̂)
, (4.23)

where θ1 and θ2 are the two parameters relevant to a given plot, with Θ̂|θ1,θ2 denoting
values for the remaining parameters such that the likelihood is maximized at each
point in the θ1-θ2 plane. L(Θ̂) denotes the maximum likelihood in the full parameter
space.

The result of the fit is presented in Fig. 4.1 as three separate contour plots
over the m-Γ, R(0)-R(1), and cφ-sφ planes in parameter space. Confidence regions
corresponding to p = 0.683 (1σ) and p = 0.954 (2σ) have been outlined with white,
defined according to Eq. (4.11) with n = 2. The Gaussian-like peak in them-Γ plane
is expected; of more interest are the large, curving degeneracies found in the R(0)-R(1)

and cφ-sφ plots. Removing the restriction on sφ has extended the multiple but unique
solutions previously predicted, to a single connected region in parameter space.
These results also verify the robustness of MultiNest as a sampling algorithm for
MLE analyses, even in the case of highly non-trivial distributions.

4.3 The ai,j parametrization

The RC parameter space of the general functional form has been found to exhibit
complex degenerate behaviour, largely owing to the fact that its four parameters
can be transformed into an alternative basis of only three ai parameters. This is
not a problem in particular, as long as one understands that these degeneracies
exist and hence use appropriate tools to perform an analysis. However, the ideal
scenario in which one reports a set of best-fit parameter values and uncertainties is
still desirable for its much simpler communication of results.

Motivated by this, let us explore possible means of lifting the RC degeneracies.
Recall the definition of R(q2) as the ratio of signal (excluding a factor of the prop-
agator) to background amplitudes (Eq. (3.45)). By doing this, a general functional
form was derived, in which a description of the background was assumed to be
obtainable from a fit to data or otherwise. While this remains true, any physical
background will generally be a steeply decreasing function of q. We exploit this fact
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Figure 4.1: A MultiNest fit of the six RC parameters to a toy Asimov constructed from
the same general parametrization. The white star and red circle respectively mark the
best-fit and input points. The contours correspond to 68% (1σ) and 95% (2σ) confidence
regions.

analytically to modify the parton-level amplitude:

A(q2) =
S(q2)

q2 −m2 + imΓ
+

(
m2

q2

)a B(q2)

m2
, (4.24)

where the q−2a function, for a ∈ R+, serves to parametrize the explicit q-dependence
of the background amplitude. Indeed, we find q−5 to provide a good approximation of
the MadGraph5_aMC@NLO gg → γγ background invariant mass distribution,
corresponding to a ≈ 1.3 in the amplitude. If one can approximate the dominant
kinematic behaviour of the signal and background respectively as a Breit-Wigner
and the q−2a function, then the ratio of amplitudes, R(q2), will be a relatively flat
function of q2, with a quickly converging Taylor expansion. Of course, this will only
be true in the neighbourhood of q2 about m2, as the signal also receives the same
PDF and flux contributions whence the fact of steeply falling backgrounds arise.

The culmination of re-defining the background amplitude according to Eq. (4.24)
is a corresponding redefinition of R(q2), which amounts to a change of its expansion



§4.3 The ai,j parametrization 51

coefficients in the functional form,

R(0) →
(
q2

m2

)a
R(0), R(1) →

(
q2

m2

)a
R(1). (4.25)

Hence, the q−2a function can also be interpreted as one that parametrizes the q-
dependence of R(q2), even though it was motivated by the fact of steeply falling
backgrounds. It is thus acceptable to consider values for the parameter a not nec-
essarily derived from background-only considerations.

Explicitly, the general functional form under this regime is

dσ

dq
= FB(q2)

[
fBW

{
m4

(
q2

m2

)2a

a0,4 +m4

(
q2

m2

)a
a0,2

+2(q2 −m2)

(
m2

(
q2

m2

)2a

a2,4 +m2

(
q2

m2

)a
a2,2

)

+2(q2 −m2)2

((
q2

m2

)a
a4,2

)}

+1

]
, (4.26)

where the ai,j parameters are:

a0,4 = R2
(0), (4.27)

a0,2 = 2R(0)
Γ

m
sφ, (4.28)

a2,4 = R(0)R(1), (4.29)

a2,2 = R(0)cφ +R(1)
Γ

m
sφ, (4.30)

a4,2 = R(1)cφ. (4.31)

Using Eqs. (4.27)–(4.29) and (4.31), expressions for the RC parameters can be found:

R(0) =
√
a0,4 , (4.32)

R(1) =
a2,4√
a0,4

, (4.33)

cφ =
a4,2
√
a0,4

a2,4

, (4.34)

sφ =
m

2Γ

a0,2√
a0,4

, (4.35)
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where the positive solution for R(0) is the correct one. Eq. (4.30) yields an identity,

∆ ≡ a2,2 −
a0,4a4,2

a2,4

− a2,4a0,2

2a0,4

= 0. (4.36)

Of course, this can never be exactly satisfied in a numerical procedure, but it is
sufficient for ∆ to be statistically compatible with zero; for example, an Xσ com-
patibility, assuming no correlations between the ai,j, would require

|∆| ≤

√√√√∑
ai,j

(∣∣∣∣ ∂∆

∂ai,j

∣∣∣∣2 δa2
i,j

)
, (4.37)

where δai,j denotes the Xσ level uncertainty for the corresponding ai,j.
In this way, we have obtained a 5-parameter description of the general functional

form (the ai,j) that can be transformed into a basis of only four parameters (the RC).
Note that the parameter a is not to be considered on the same level as the other
parameters, as its value is not to be determined from a fit. Instead, one assumes a
(positive real) value for it prior to the fit. In the limiting case of a = 0, one recovers
the ai parameters previously studied,

a0,4 + a0,2
a=0
= a0, (4.38)

a2,4 + a2,2
a=0
= a2, (4.39)

a4,2
a=0
= a4, (4.40)

but for any other choice of a, the ai,j can be distinguished; thus, much in the same
way that multiple RC solutions can correspond to a single point in ai space, it might
be possible to find (degenerate) solutions for the ai,j, but which all map to a unique
solution in RC space.

4.3.1 MultiNest ai,j toy closure tests

Let us perform the most trivial test for the proposed ai,j parametrization, as we
did for the RC in Sec. 4.2. We construct a toy Asimov histogram using a chosen
input point in ai,j (or equivalently, RC) parameter space, then perform a fit of the
ai,j using MultiNest, with the goal of visualizing its parameter space in the ideal
scenario that at least one exact solution (the input point) is known to exist. This
is done for six different a values: 1, 1.5, 2, 2.5, 3, and 3.5, to test whether its choice
affects a set of results.

We choose the particular set of input parameters

{m, Γ, R(0), R(1), cφ, sφ} = {400, 40, 0.2, 0.1, 0.5, 0.866} , (4.41)
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with corresponding input ai,j obtainable from Eqs. (4.27)–(4.31),

{a0,4, a0,2, a2,4, a2,2, a4,2} = {0.04, 0.03464, 0.02, 0.10866, 0.05} . (4.42)

Asimov histograms are constructed over the 300–500 GeV invariant mass range, with
Eq. (3.63) providing uncertainty estimates assuming 1 000 000 events in this region.
We perform the fits in terms of m, Γ, and the five ai,j parameters; Eqs. (4.32)–(4.35)
then provide the transformations back to RC space.

For brevity, we show only the a = 1.5 result here, with results for the other a
values delegated to App. B. Profile likelihood plots are presented in Fig 4.2, with the
1σ and 2σ contours shown, and including the transformed result of RC parameters.
We again find a well-defined high likelihood peak in the m-Γ plane, agreeing well
with the inputs chosen. For the ai,j parameters, linear correlations between the
parameters are seen. The 1σ region meets or crosses the zero value in all cases; in
particular for a0,4 and a2,4, whose reciprocal enters the expressions for R(1), cφ, and
sφ (Eqs. (4.33)–(4.35)), this leads to a very large variation in the RC parameters. A
larger choice for a yields more constrained regions in ai,j space, but does not improve
the complicated result in RC space.

However, there are yet additional constraints that can be imposed on these re-
sults. We note that many of the high likelihood ai,j points are unphysical, cor-
responding to cφ or sφ values outside the range [−1, 1]. We can hope to better
constrain the ai,j result by rejecting all unphysical solutions, but this will obviously
not improve the situation for RC parameters, as the high likelihood region found for
both cφ and sφ currently enclose the entire range of physical values.

We can additionally take into consideration the identity of Eq. (4.36). Fig. 4.3
shows a 1-dimensional profile likelihood plot for the quantity, ∆, which we expect
to be approximately zero for a consistent transformation between the ai,j and RC
parameters. This is clearly not the case, as we see a large variation in its value. The
compatibility condition of Eq. (4.37) does not hold here, since the ai,j are clearly
correlated; we instead make the arbitrary choice of restricting ∆ to be in [−1, 1].
Fig. 4.4 shows the result after imposing these restrictions on ∆, cφ, and sφ. Indeed,
we find that the size of the contours between the ai,j parameters have been greatly
reduced. However, their degeneracies remain, and importantly, we still find a poorly
constrained solution for cφ and sφ.

Recall that the introduction of a q−2a function was supposed to reduce the q-
dependence of R(q2), leading to a more quickly-convergent Taylor expansion in q2.
Currently, we assume a truncation at the first order; however, the zeroth order might
prove sufficient for a given problem. Setting R(1) = 0 in Eqs. (4.27)–(4.31) yields
a2,4 = a4,2 = 0, and

a2,2 = R(0)cφ, (4.43)

with no change to a0,4 or a0,2. The equation for cφ is then

cφ =
a2,2√
a0,4

, (4.44)
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Figure 4.2: Profile likelihood contours of the ai,j parameters fitted to an Asimov toy
constructed from an input point in its space, with a = 1.5. The bottom two plots show
the result in terms of the RC parameters.
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Figure 4.3: One-dimensional profile likelihood ratio plot for the quantity, ∆, when a =

1.5. For the correct relationship between the ai,j and RC parameters, one requires this to
adopt a value of approximately zero.

with R(0) and sφ as before.
One can check whether a problem can be reduced to the zeroth order by looking

at the a4,2-a2,4 first order result: a high likelihood at the point (0, 0) indicates the
existence of a good solution at the zeroth order. Note that it is not sufficient to only
require R(1) = 0, as this can be achieved when a2,4 = 0 but a4,2 6= 0. For our a = 1.5

result, we find the zero to lie very close to the boundary of, but still within, the 1σ
region in a4,2-a2,4 space. Thus, while including the first order parameters will return
a better fit, we still anticipate an acceptable fit under the zeroth order assumption,
with the benefit of possibly finding a cleaner result between its parameters.

The result of the zeroth order fit, with a = 1.5, to the (first order) Asimov
histogram is shown in Fig. 4.5. The best fit corresponds to χ2/ndf ≈ 0.1, indicating
that a good agreement with the toy can indeed be found using only the zeroth order
parameters. The solutions at this order are highly constrained to small elliptical
regions, although some linear correlation between the parameters can still be seen.

However, a problem with fitting in terms of the ai,j is highlighted by these results:
it is difficult to ensure that, after transforming to the RC parameters, physical values
for cφ and sφ are found. In particular, the current zeroth order result finds sφ values
that are unphysical. Note that this does not indicate the non-existence of physical
solutions that could provide a good fit of the data, only that any such solution is
less preferred than the one found.

Combined with the fact that correlations between the ai,j seem unavoidable, our
initial motivation for its use—to find “nice” solutions representable as a value with
some uncertainty—has not been met. Thus, if one were to utilize Eq. (4.26) in a
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Figure 4.4: The ai,j fit result for a = 1.5, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded. The fit was performed in terms of the ai,j parameters, leading to the
somewhat poor visualization of RC parameter space.
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Figure 4.5: The result of a zeroth order ai,j fit to the Asimov constructed from first order
inputs, with a = 1.5.

fit, it would be simpler to directly fit the RC parameters (Eqs. (4.32)–(4.35)), which
would also ensure adequate sampling of its parameter space.

In proceeding, we will return to the general functional form and set of RC pa-
rameters as defined prior to this section, to avoid the complication of needing to
choose a value for the a parameter prior to a fit.

4.4 Fit window tests

Let us return to the original problem posed in Ch. 3, which sought to test the via-
bility of the general functional form in describing the physics of a benchmark model.
We have now verified MultiNest to be a suitable tool for obtaining results capable
of visualizing the complicated correlations between the parameters of the general
functional form; this has been shown for the ideal scenario in which the fitted data
corresponded exactly to at least one set of values for the RC parameters. However,
for a distribution derived from a general physics model, the RC parameters provide
only an approximation: a good description can indeed be found in an invariant mass
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window restricted about the signal peak, but we know that this deteriorates with
the size of the window.

Our goal in this section is to determine, in a more statistically rigorous manner,
the threshold invariant mass window for which an accurate description of the data
still holds. Beyond showing that a good fit exists, we also wish to verify that
one can correctly extract the parameters of the physics model, given a fit result
in terms of the RC parameters. Although our results will be obtained using only
the benchmark model presented in Sec. 3.1, we will again make use of Asimov toys
to generate a variety of physical distributions to test. Due to the wide range of
behaviour these Asimovs will exhibit, we assume our results to generalize well to
other physics models.

4.4.1 Methodology and results

Our testing procedure is as follows. We first obtained Asimov toys using the an-
alytical description of the benchmark physics model (PM), which was derived in
Sec. 3.1. This description contains five parameters:

{m, Γ, cφ, sφ, fs}. (4.45)

By choosing different input values for these parameters when constructing the Asi-
movs, a large variety of lineshapes could be tested.

Ten input mass points were chosen, with values ofm = 400 GeV tom = 1300 GeV
in increments of 100 GeV. Three choices were made for the input width: Γ/m = 3%,
5%, and 10%. For the three remaining parameters of the PM functional form, two
different sets of inputs will be used:

{cφ, sφ, fs} =

{
{0.7, 0.3, 4×10−16} “set 1” ,
{−0.8, 0.1, 4×10−18} “set 2” .

(4.46)

Notably, the height of the signal, fs, is two orders of magnitude smaller in the set
2 inputs. The Asimovs created using the distributions defined by these inputs2 are
shown in Fig. 4.6, for the choice of 2 GeV bin widths and 10 000 000 events across
the 100–1600 GeV invariant mass range visualized.

To each Asimov constructed, multiple fits of the general functional form were
performed, over invariant mass windows of different sizes centred about the corre-
sponding mass input to that Asimov: window widths were chosen to be w = 20

GeV to w = 200 GeV, in increments of 20 GeV, such that fit windows were given
by m ± w. However, in a blind search, the true mass of the resonance is of course
unknown a priori; while the general parameters were obtained by means of a Taylor
expansion about the (square of the) resonance mass, it is unrealistic to expect that
one can always choose a fit window exactly centred about this point. Thus, we also
performed additional fits in which the central invariant mass value of the fit window
2For Γ/m = 5% only; see App. C.1 for the 3% and 10% Asimovs.



§4.4 Fit window tests 59

500 1000 1500
 [GeV]γγm

7−10

6−10

5−10

4−10

3−10

2−10

1−10

 [p
b 

/ 2
 G

eV
]

γγ
/d

m
σd

-1610× = 4
s

 = 0.3, fφ = 0.7, sφc
/m = 5%Γ, Param. set 1

500 1000 1500
 [GeV]γγm

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

 [p
b 

/ 2
 G

eV
]

γγ
/d

m
σd

-1810× = 4
s

 = 0.1, fφ = -0.8, sφc
/m = 5%Γ, Param. set 2

Figure 4.6: Visualization of Asimov datasets, generated from the PM functional form at
various mass points with Γ/m = 5%, for the two sets of input parameters.

was shifted to the left or right of its true value, to test whether a good fit could still
be obtained. These were chosen to have a central invariant mass value of m±w/2,
for fit windows (m± w/2)± w.

To identify an approximate threshold where the general functional form still fits
the input toy histograms well, we note that the −2 logL quantity of our fits follows
a χ2

ν distribution (Eq. (4.6)), with the number of degrees of freedom, ν, equal to the
difference between the number of datapoints (histogram bins) and the number of
fitted parameters. We can thus calculate, for example, the 1σ cut-off by evaluating
the ICDF of a χ2

ν distribution, Qχ2
n
(p), at p ≈ 0.68. If the best-fit χ2 of a given

result falls below this value, then the general functional form is able to provide a
good description (within 1σ) of the toy, for that choice of fit window. We present
our results in terms of the ratio of best-fit to cut-off χ2,

χ2
bf

χ2
1σ

. (4.47)

Thus, an exact fit will find a result of zero, with the 1σ threshold at one; values
larger than this indicates increasing deterioration of the fit quality.

The results corresponding to input Γ/m = 5% for both sets of input parameters
are presented in Fig. 4.7 as colour plots, with the ratio of chi-squares on the colour
axis (the 3% and 10% results are left to App. C.2). We find a trend of decreasing
fit quality as the window size increases, and also as the input mass decreases. This
effect is more pronounced in the set 1 results, with a fit window of m ± 40 GeV
being the largest choice suitable for fitting a 400 GeV mass. In contrast, the ratio
of chi-squares found in the set 2 results remain small across the entire range of
windows tested. In general, this shows that a larger signal will restrict the fit to
smaller windows.

Comparing with the results obtained when the fit window is shifted, we find
that while there are small distortions to the exact value of the χ2 ratios, the general
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Figure 4.7: Colour plots showing the quality of fits relative to the 1σ threshold of a χ2
ν

distribution. Results correspond to input widths of Γ/m = 5%. Left (right): results using
set 1 (2) of the input PM parameters. From top to bottom, results correspond to a fit
window: centred about the input mass; shifted to the left by w/2; shifted to the right by
w/2.

conclusions remain unchanged. Thus, only the size of a fit window is important to a
fit of the general functional form, with results being mostly insensitive to the exact
mass range that this window covers.

These results have been presented in an easily interpretable manner for many
different input points in the PM parameter space, and are generally consistent with
the conclusions previously reached in Sec. 3.2.2, where results were obtained using
MC samples. However, there we were unable to adequately answer the question of
whether expected parameter values could be extracted by the fit, since the fitting
tool used was ill-suited for the problem.
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Figure 4.8: Profile likelihood contours for the fit result corresponding to input m = 700

GeV, Γ/m = 5%, set 1 input PM parameters, and a fit window of m± 40 GeV. The white
star and red circle respectively mark the best-fit and true (input PM) points.

Now, armed with the MultiNest sampling technique, let us study this problem
again using a particular instance from the array of toy fits. We visualize the profile
likelihood contours for the result corresponding to input m = 700 GeV and Γ/m =

5%, with w = 40 GeV centred about the true mass. Fig. 4.8 shows the result for the
set 1 inputs, and Fig. 4.9 the set 2.

For the RC parameters that have an analogous PM counterpart (m, Γ, cφ, sφ),
expected input values have been marked using a red circle. We find these to agree
very well with the high likelihood regions found in the set 2 results. For set 1, the
true phase does not coincide with the best-fit point, but is nevertheless contained
within the 1σ likelihood region. However, the true point in the m-Γ plane does
not fall inside even the contour at the 2σ level. This initially appears to be a
contradiction to the good fit reported by Fig. 4.7 for this set of inputs. However,
we simply note that the parameters appearing in the general functional form cannot
always be interpreted as exact counterparts to those appearing in a physics model,
since they are only an approximation; what matters is that the lineshape of the
physical distribution can be adequately characterized by the RC parameters.
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Figure 4.9: Profile likelihood contours for the fit result corresponding to input m = 700

GeV, Γ/m = 5%, set 2 input PM parameters, and a fit window of m± 40 GeV. The white
star and red circle respectively mark the best-fit and true (input PM) points.

Still, it might be desirable to explicitly confirm that the true input PM values can
be extracted from these distorted results in RC space. We will do this by performing
a closure fit of the physics model to a dataset representative of RC fit results.

4.4.2 Constructing histograms from fit results

Let us first explore methods for obtaining a histogram from the fit result of the
general functional form. There are several plausible ways in which this can be done;
the simplest is perhaps to consider the lineshape of only the best-fit result, and
construct an Asimov histogram from this distribution under the same conditions as
those used to create the initial PM toy (defined over the same invariant mass range,
and using the same calculation of bin uncertainties).

However, this neglects the information available to us from the MultiNest
sampling of RC parameter space. Let us instead describe a procedure that makes
use of this: our aim is to fully utilize the MultiNest sampling output to construct
a “results” histogram, using the corresponding functional form of those results. We
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Figure 4.10: The distribution of the profile likelihood ratio, obtained from the Multi-
Nest fit output, against the value of general functional form in the first bin of the con-
structed results histogram. Left (right): obtained using the set 1 (set 2) fit result. The
parabolic distributions indicate a good approximation for Gaussian bin likelihoods.

define this histogram over an invariant mass range equal to the fit window of the
initial fit, with the same binning as that of the original fitted dataset.

We then make the assumption of an independent Gaussian random variable for
each bin. The validity of this assumption is checked for the MultiNest outputs
corresponding to the results of Figs. 4.8 and 4.9. The likelihood distribution of the
RC functional form in the first fitted bin is presented in Fig. 4.10. Indeed, we see
an approximately Gaussian distribution for both results. Assuming this to be true
in general, Eq. (4.10) can then be used to define a range of values, for each bin in a
results histogram, corresponding to a 1σ uncertainty interval. Alternatively, one can
note that the functional form generating this dataset is 6-dimensional; one would
thus prescribe the condition of Eq. (4.11) instead, with n = 6 degrees of freedom.
This will, of course, lead to larger bin uncertainties compared to the 1-dimensional
assumption.

We test both methods of defining the 1σ interval by performing a simple toy
closure test of the PM functional form. An Asimov toy is first created using an
input PM distribution corresponding to the parameters:

{m, Γ, cφ, sφ, fs} = {400, 40, 0.5, 0.866, 0.4×10−16}. (4.48)

The PM functional form is then fitted to this toy histogram, and the result is used
to construct results histograms using the two methods. A second fit of the PM
functional form is then performed on the two results histograms; the results of these
fits are compared to the initial fit to see which method provides a more accurate
uncertainty definition.

We find that the second method, using Eq. (4.11) for determining likelihood
cut-offs (with n = 5 for the PM functional form), more accurately reflects the
uncertainties in the initial toy. The supporting figures are presented in App. C.3.
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Figure 4.11: Closure fit of the PM functional form to the RC results histogram corre-
sponding to m = 700 GeV, Γ/m = 5%, set 1 input PM parameters, and a fit window of
m± 40 GeV. The white star and red circle respectively mark the best-fit and true (input
PM) points.

4.4.3 Physics model closure fit

Using the method described, we construct a histogram from the RC fit result for
the set 1 inputs, with m = 700 GeV, Γ/m = 5%, and m± 40 GeV fit window. The
fit of the PM functional form to this histogram is presented in Fig. 4.11. Indeed,
despite the disagreeing result of m and Γ in RC parameter space, we find that their
expected input values can still be extracted correctly if the physics model parameter
space is instead considered.

4.5 Significance of a discovery

So far, our results have been presented in terms of the profile likelihood ratio
(Eq. (4.23)), suitable for the purpose of parameter estimation using the MLEmethod.
However, this result makes sense only if one assumes the existence of a signal within
the invariant mass window fitted; the profile likelihood simply presents a result that
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is relative to the point of best fit, regardless of the fit quality at that point. A sen-
sible procedure for an analysis thus requires a method for first determining whether
or not the existence of a signal is likely.

To do this, one can perform a test to determine whether any region of the ob-
served invariant mass distribution deviates significantly from the expected back-
ground. The relevant test statistic is the likelihood ratio defined as

Λ0(θ) ≡ L0

L(θ)
, (4.49)

or equivalently

q0 =

{
−2 log Λ0 for 0 < Λ0 ≤ 1,

0 for Λ0 > 1,
(4.50)

where L0 is the likelihood under a background-only assumption, and L(θ) the like-
lihood of a signal-inclusive model at some point, θ, in its parameter space. Smaller
(larger) values for Λ0 (q0) indicate an increasing disagreement between the observed
data and the background-only assumption. This prescribes the procedure for a null
(background-only) hypothesis test: its rejection, to some statistical degree, implies
the alternative hypothesis (discovery of a signal).

A measure for quantifying this incompatibility is the p-value,

p0 =

∫ ∞
q0,obs

f(q0|0) dq0, (4.51)

where f(q0|0) is the conditional PDF of q0 under the null assumption, and q0,obs is
the observed q0 value. The p-value is the probability of additional observations of
the data being incompatible, to an equal or greater degree, with the background-
only assumption; a small p-value can thus be interpreted as a low probability of
obtaining the observed data if the background hypothesis were true, indicating a
preference for signal-inclusive models.

To obtain the p-value, f(q0|0) is required. While its exact form will not be
knowable, one can make a Gaussian approximation for Λ0, analogous to Eq. (4.7).
Assuming the validity of this approximation, the conditional PDF for q0 can then
be written as [39]

f(q0|0) =
δ(q0)

2
+

1

2
√

2πq0

exp
(
−q0

2

)
, (4.52)

which is a combination of a delta function at q0 = 0, and a χ2 distribution with one
degree of freedom. One then finds the p-value to be

p0 = 1− F (q0,obs|0), (4.53)
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where F (q0,obs|0) is the cumulative distribution function (CDF) of f(q0|0),

F (q0,obs|0) =

∫ q0,obs

−∞
f(q0|0) dq0, (4.54)

which in this case is equivalent to the CDF of a standard Gaussian evaluated at√
q0,obs,

F (q0,obs|0) ≡ FG
(√

q0,obs
)
. (4.55)

Commonly in particle physics, a result is also presented in terms of the (local)
significance,

Z = QG(1− p), (4.56)

where QG(p) is the inverse CDF of a standard Gaussian. Given a probability p, the
significance corresponds to the number of standard deviations above the mean of
the Gaussian such that an upper-tail probability of p is found. For the p0 according
to Eq. (4.53), a simple expression for the significance is found:

Z0 =
√
q0 . (4.57)

Typically, a claim of discovery in particle physics accompanies a significance3 of
Z0 = 5 standard deviations, corresponding to a p-value of p0 ≈ 2.87×10−7.

4.5.1 Toy scan over m and Γ

Let us demonstrate the procedure for a background-only hypothesis test, using an
Asimov dataset containing a signal at m = 400 GeV, with a width Γ = 10 GeV. The
general functional form is used as the alternative to the null hypothesis.

We performed a scan over the m and Γ parameters by partitioning the m-Γ plane
into a uniform grid of 100×100 pixels. Independent fits using MultiNest were per-
formed for each pixel by constraining the uniform priors of the m and Γ parameters
according to the boundaries of the partition. The maximum likelihood for each fit
was extracted to calculate the corresponding significance, using Eqs. (4.49), (4.50)
and (4.57).

Note that while we know the general functional form to provide a good approxi-
mation only in a restricted region about a signal peak, a large fit window can still be
used during the m-Γ scan. This is because parameter estimation is not the purpose
of the scan; we are only interested in whether a better alternative to the background-
only description exists. Thus, it is not particularly necessary to precisely capture
the lineshape of a resonance in this step, as long as it is possible to infer invariant
mass regions of interest. Of course, if such a region is found to exist, the scan should
be repeated to more accurately approximate the discovery significance.
3To be more precise, one requires this for the global significance, which takes into account the
possibility for random fluctuations in any region of the data (the “look-elsewhere effect” (LEE)).
Refer to [22, 60, 61] for a more detailed summary and study of this effect.
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Figure 4.12: Local significance for rejecting the background-only hypothesis, for an Asi-
mov dataset generated at input mass m = 400 GeV and width Γ = 10 GeV.

Our toy results are visualized in Fig. 4.12. A distinct region of high local signif-
icance can be identified at mass and width values expected from the input physics.
In a blind search, such a result can be used to presuppose the existence and ap-
proximate locale of a resonance; one could then proceed with fits over this invariant
mass region for the purpose of estimating the parameters of the general functional
form.

4.6 Summary

In this chapter, we introduced the nested sampling algorithm and its MultiNest
implementation as a means for performing global optimization problems involving
the general functional form. Despite the large and non-trivial degeneracies between
the RC parameters of the general functional form, MultiNest has proven to be
robust and effective in sampling the problem space for the purpose of conducting
frequentist tests under the MLE method.

The simplicity of results presented as a set of parameter values and their associ-
ated uncertainties is still attractive; we explored avenues for lifting the RC degen-
eracies by introducing the set of ai,j parameters, obtained through a modification
at the amplitude level. However, we found the degeneracies between these ai,j, and
also the RC parameters, to persist.

We thus returned to the general functional form, to first order in the approxima-
tion for R(q2), as derived in the previous chapter. By performing fits to many toy
Asimov histograms generated using the benchmark Higgs characterization model,
we found the general template to provide a good description of data close to a peak,
with fit quality deteriorating as the fitted mass window increases, and also as the
size of the signal increases. Results were mostly unaffected by an overall shift of the
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fit window; despite being defined using a Taylor expansion about the true mass of
a resonance, one does not need to know this value precisely before fitting with the
general functional form.

We propose the procedure of an analysis, given a sample of events, as follows:

1. Perform a scan over the m-Γ plane of the general functional form, and produce
a plot of discovery significance. The remaining parameters are to be profiled
over, to find the maximum likelihood at each point of the scan.

2. Identify any invariant mass regions of high local significance; if any exist,
perform fits to the data over these regions, using fit windows of increasing
size.

3. Extract the parameters of the general functional form using the largest possible
(or sufficiently large) fit window that still yields a good fit to the data. Such a
window can be found by considering the χ2 of a fit relative to the 1σ threshold
of a χ2

ν distribution, for an appropriate number of degrees of freedom, ν.



Chapter 5

Detector Effects

The studies so far have been performed using ideal datasets that exhibit character-
istics entirely due to an assumed physics model. To these truth-level distributions,
a direct fit of the general functional form then revealed insight into the model pa-
rameters behind the data. However, such a procedure neglects any effects due to
realistic particle reconstruction in a detector, which would result in the observation
not of the truth, but instead of a reconstructed distribution with features that are
a distortion of the truth.

Due to these detector-based effects, the standard procedure of an analysis is
to model the shape of a signal contribution to an invariant mass distribution as a
convolution [4]:

F reco
S (q) = (F truth

S ∗DR)(q) =

∫ ∞
−∞

F truth
S (Q)DR(q −Q) dQ, (5.1)

where F truth
S (q) is the truth-level signal description predicted by an assumed physics

model, and DR(q) denotes a detector resolution function, which can be parametrized
by careful construction of the detector in Monte Carlo studies.

While Eq. (5.1) is written specifically to describe a reconstructed signal, the
convolution is also valid for the interference and background components. How-
ever, a direct parametrization of the reconstructed background is typically found
instead, either by extrapolation from Monte Carlo studies or with a functional form
fit to observed data. Current procedures also often neglect interference, so that the
convolution is only necessary for the signal component; data is then described with

NS |F reco
S (q)|norm +NB |F reco

B (q)|norm , (5.2)

where F reco
S (q) and F reco

B (q) are treated as PDFs of the reconstructed signal and
background invariant mass lineshapes (and thus normalized to one), and assuming
a dataset in terms of a differential number of events, the coefficients NS and NB
represent the number of signal and background events respectively, with values to
be extracted from a fit.

A description involving the general functional form is not so straightforward,
as it contains terms associated with interference; an analogous NI |F reco

I (q)| term
cannot simply be added to Eq. (5.2), since the normalization of the interference will

69
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depend on both the signal and the background. Furthermore, the R(i) parameters
are loosely derived from the ratio of signal to background amplitudes; their correct
extraction thus relies on knowing the background at the truth-level.

In this chapter, MadGraph5_aMC@NLO [29] and Pythia8 [32] will be used
to generate events that will then be passed through the Delphes 3.4.1 [33] detector
simulation to yield pseudo-realistic samples of reconstructed events. The scalar
Higgs-like signal decaying to two photons of the HC model [26] is again assumed.
We will begin by describing Delphes 3.4.1 in more detail, particularly for the
case of photon reconstruction, before verifying that it produces a diphoton invariant
mass distribution well described by Eq. (5.1). We then seek a general description of
reconstructed distributions by convolving the general functional form with a detector
resolution function, and confirm that results consistent with those at the truth-level
can be extracted.

5.1 Delphes 3 fast detector simulation

Monte Carlo simulations play an integral role in collider physics, providing a means
for refining search strategies prior to an experiment in order to optimize the uptime of
the apparatus. This entails an extensive and detailed simulation of detector effects,
usually achieved via a recreation of the detector using the Geant4 toolkit [62–
64]. Naturally, such a simulation is computationally expensive; thus, when stringent
levels of accuracy are unnecessary (for example, in phenomenological studies), one
might seek a cheaper alternative.

Delphes is a framework designed for this purpose. Its generic detector set-
up comprises of, in order: an inner tracking volume, electromagnetic (ECAL) and
hadron (HCAL) calorimeters, and a muon identification system. These are cylindri-
cally centred about the beam axis, with the volume of the two calorimeters exactly
overlapping. The basic operation of the Delphes detector response is to read, as
input, the stable (or sufficiently long-lived) particles from an event generator such
as Pythia8 [32], and perform a smearing of their momentum vectors to simulate
the limited resolution of a detector.

The simulation first propagates the long-lived particles through the inner tracking
volume, which contains a uniform magnetic field aligned parallel to the beam axis.
In this region, electrically charged particles follow a helical trajectory. Delphes
reconstructs the tracks of these particles with some user-defined efficiency, and as-
sumes a perfect angular resolution with smearing only of the transverse component
of particle momenta. Neutral particles such as photons simply trace a straight-line
path to the calorimeters.

After passing through the inner volume, particles arrive at the calorimeters,
which are segmented in the pseudorapidity, η, and azimuthal angle, φ. A fixed
fraction of their energy is then deposited in the calorimeter cell they arrive at. By
default, electrons and photons deposit all their energy in the ECAL, while neutral
and charged hadrons deposit in the HCAL. The η-dependent energy resolution, σ,
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is calculated independently for both calorimeters:( σ
E

)2

=

(
S(η)√
E

)2

+

(
N(η)

E

)2

+ C(η)2, (5.3)

where E is the energy, and S(η), N(η), and C(η) respectively denote the stochastic,
noise, and constant contributions to the resolution. Using this, the total energy in
a given tower of calorimeter cells is then smeared using a log-normal distribution,
logN (m, s), with mean m and variance s, according to

Etower =
∑

particles

logN (fEE, σE(E, η)) + logN (fHE, σH(E, η)) , (5.4)

where the sum is performed over all particles that deposited some fraction of their
energy in the tower, either in the ECAL (with fraction fE) or HCAL (fH).

True photons in the ECAL, with their energies smeared according to Eq. (5.4),
along with electrons whose tracks were not reconstructed in the inner detector, are
reconstructed as photons by Delphes. To ensure that these are not part of a jet,
an isolation variable is also defined for each reconstructed particle:

I(P ) =
1

pT (P )

∆R<R, pT (i)>pmin
T∑

i 6=P

pT (i), (5.5)

where pT (P ) denotes the transverse momentum of particle P , and

∆R =
√

∆η2 + ∆φ2 < R, (5.6)

defines a conical region of radius R around the particle. I(P ) is thus a measure of
any additional transverse momenta in the vicinity of a particle, relative to its own
pT . A large value for I(P ) indicates the significant presence of other particles, while
I(P ) = 0 indicates perfect isolation.

To simulate pile-up effects that occur in the high luminosity bunch-crossings
of the LHC, Delphes also makes use of a pre-generated sample of low-q2 QCD
events, placed randomly along the beam axis. The average contamination density
of these interactions, ρ, is estimated using the Jet Area method with the FastJet
package [65–67]. Pile-up subtraction results in a correction to the isolation variable,

I(P )→ I(P )− ρπR2

pT (P )
. (5.7)

A particle is considered to be isolated if I(P ) < Imin. The default values used by
Delphes are pmin

T = 0.5 GeV, R = 0.5, and Imin = 0.12.
The result of the Delphes simulation is an output in the ROOT data format.

To reconstruct the diphoton invariant mass distribution, we run an analysis macro
to identify all events containing at least two photons. The most energetic pair of
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photons in each event is considered to contain the prompt diphotons originating from
the resonance decay. However, this will inadvertently include photons not produced
by the signal, and additionally also the untracked electron pairs misidentified as
photons.

In contrast to the photons produced in a hard scattering event, these “soft”
photons will typically have smaller transverse momenta. To reject such events, we
will impose kinematic cuts on the lower end of the pT spectrum, requiring

pT > pcut
T , (5.8)

for some choice of pcut
T .

5.2 Double-Sided Crystal Ball

In this section, we test the analytical approximation of Eq. (5.1) against the recon-
structed diphoton invariant mass distributions simulated by Delphes 3.4.1. The
true physics model functional form (see Sec. 3.1), with all parameters fixed from a
fit to truth events, will be used as the truth-level description. The detector resolu-
tion function will be parametrized as a Double-Sided Crystal Ball (DSCB) function,
which comprises of a Gaussian core with power law tails:

DSCB(q) = NDSCB



exp
(
− t2

2

)
for − αlow ≤ t ≤ αhigh,

exp

(
−α

2
low
2

)
[
αlow
nlow

(
nlow
αlow

−αlow−t
)]nlow for t < −αlow,

exp

(
−
α2high

2

)
[
αhigh
nhigh

(
nhigh
αhigh

−αhigh+t

)]nhigh for t > αhigh,

(5.9)

where
t =

q − µDSCB

σDSCB
. (5.10)

The parameters µDSCB and σDSCB are the mean and standard deviation of the Gaus-
sian core, while the nlow and nhigh exponents dictate the distribution of the power
law tails. The points at which the Gaussian changes into the tail distributions is
determined by the αlow and αhigh parameters. NDSCB is a factor that normalizes the
DSCB to unity.

5.2.1 Narrow-width signal modelling

In the scenario that the width of a signal is small, the truth-level description is
highly peaked at the resonance mass:

F truth
NWA ∼ δ(q −m). (5.11)
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Thus, if the description of Eq. (5.1) can be assumed, it follows that the reconstructed
distribution will be representative of the detector resolution function,

F reco
NWA ≈ DR(q). (5.12)

To verify the DSCB function for parametrizing the Delphes 3.4.1 detector
resolution, we test its description of reconstructed signals generated under the nar-
row width approximation (NWA). The signal samples were generated using Mad-
Graph5_aMC@NLO at six mass points, m = 200, 250, 300, 400, 600, and 800

GeV, with widths set to Γ = 4 MeV. In extracting the reconstructed photons from
these samples, we imposed the particular selection criterion of pT > 60 GeV.

ROOT’s histogram fitting method was used to perform the seven-dimensional fit
of the DSCB parameters:

{µDSCB, σDSCB, αlow, αhigh, nlow, nhigh, N}, (5.13)

where note that N is simply an overall parameter and does not necessarily corre-
spond to the NDSCB normalization factor in Eq. (5.9). Fig. 5.1 shows the results. A
good fit to each of the reconstructed distributions is found. However, the best-fit
parameter values are not consistent between the fits; most notably, the width of the
Gaussian core, σDSCB, increases for the signals at higher mass points, indicating a
finer resolution of less energetic photons. The large uncertainties associated with
nlow and nhigh arise due to their large correlations with the other parameters.

To generalize our results to yield a parametrization applicable at any mass point,
we assume a linear dependency between each DSCB parameter and the invariant
mass. Using the fit results at the six mass points generated, best-fit values and
uncertainties are plotted against the mass; a linear relationship is then extrapolated
through a fit of the straight-line function:

Aq +B. (5.14)

Fig. 5.2 shows the results. We find the linear approximation to hold sufficiently well.
These results prescribe a q-dependent function for each DSCB parameter; evaluating
at a given q defines an approximation of the Delphes 3.4.1 detector resolution at
that invariant mass.

5.2.2 Large-width modelling with PM

The method of extracting DSCB parameters by extrapolation of NWA fit results
allows us to predict the reconstructed lineshape of a signal at any mass point. We
now demonstrate the convolution of Eq. (5.1) for describing a large-width signal
generated at the mass point m = 400 GeV, with width Γ = 40 GeV. The same
pT > 60 GeV condition is again imposed during the extraction of photons.
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Figure 5.1: Fits of the DSCB function to reconstructed NWA signal samples, generated
at six different mass points. A pT > 60 GeV cut has been imposed on the reconstructed
photons.
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Figure 5.2: Extrapolation of a continuous linear relationship between the DSCB param-
eters and the diphoton invariant mass, using the NWA samples generated at six discrete
mass points.
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Recall the analytical description of the signal model found previously:

dσS
dq
∝ Lgg(q2)× q7 × fBW × |A(τ)|2. (3.23 revisited)

A definite set of values for its parameters (m, Γ, and normalization fs) was first fixed
by fitting the MC sample at the truth-level. This distribution was then convolved
with the DSCB, with all its parameters fixed according to the results extrapolated
from the NWA fits:

µDSCB = 0, (5.15)
σDSCB(q = m) = σADSCBm+ σBDSCB, (5.16)
αlow(q = m) = αAlowm+ αBlow, (5.17)
αhigh(q = m) = αAhighm+ αBhigh, (5.18)
nlow(q = m) = nAlowm+ nBlow, (5.19)
nhigh(q = m) = nAhighm+ nBhigh, (5.20)

where quantities with superscript A’s and B’s denote the linear coefficients found for
the corresponding parameter in Fig. 5.2, and m denotes the mass of the large-width
resonance.

We similarly perform a fit of the reconstructed interference and background
distributions. The results are presented in Fig. 5.3. The single free parameter in
these fits is an overall normalization,

N = NDSCB × ε, (5.21)

which receives a contribution from the normalization of the DSCB, as well as the
selection efficiency, ε, of the reconstructed events. The efficiency represents the
fraction of reconstructed photons retained after the pT selection cuts have been ap-
plied. Overall, a good description of the reconstructed lineshapes is found for all the
components. However, we find a small discrepancy between the values of N found.
Since a common DSCB parametrization was used in the fits (thus corresponding to
the same NDSCB), Eq. (5.21) implies that there is a discrepancy in the efficiencies of
each component.

There is also a clear fall-off in the data at low invariant masses, especially visible
in the mγγ . 200 GeV region of the signal, and mγγ . 300 GeV in the background.
This arises due to the pT cut imposed on the reconstructed photons; the effect will
ultimately be model-dependent, and cannot be predicted using the simple descrip-
tion provided by the convolution with a DSCB. While it is possible to optimize
cuts to extend the region of good fit to lower mγγ in the current study involving
Monte Carlo samples, a baseline trigger-level selection criteria will be dependent
upon the characteristics of the detector, and cannot be chosen arbitrarily. In a re-
alistic search procedure, it might thus be necessary to restrict the search range to
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Figure 5.3: A fit of the reconstructed signal, interference, and background distributions
using a convolution of their respective truth-level lineshapes and a DSCB detector resolu-
tion function. Fits were performed over 0–1000 GeV (signal), 200–1000 GeV (interference),
and 300–1000 GeV (background). The single free parameter in each fit is N , an overall
normalization factor.

above some invariant mass threshold, to avoid a mis-characterization of the signal
lineshape.

5.3 Discrepancy in selection efficiencies

The results found in the previous section have shown that the convolution description
of Eq. (5.1) provides a good approximation of the reconstructed signal lineshape,
and holds also for reconstructed interference and background distributions, which is
a necessary extension since a detector cannot realistically distinguish diphoton pairs
based on their production method. However, photons produced in different processes
will display different pT distributions; thus, the imposition of a hard cut on minimum
photon pT will reject differing fractions of signal, interference, and background events
from the reconstructed record, reflected in the discrepant normalization parameters
and the reduced number of events at low invariant masses.



78 Detector Effects

Table 5.1: Normalizations extracted when different pT cuts are applied.
pcut
T [GeV] Ns (±0.0001) Ni (±0.0008) Nb (±0.0008)

0 0.0669 0.0661 0.0666
30 0.0664 0.0658 0.0648
45 0.0662 0.0652 0.0622
60 0.0654 0.0635 0.0585
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Figure 5.4: Reconstructed signal, interference, and background photon pT distributions.
Left (right): including only the diphoton pairs with an invariant mass above 200 GeV (300
GeV). As the minimum mγγ threshold increases, fewer low pT photons remain.

In this section, we further investigate this discrepancy between the efficiencies of
the signal, interference and background components. To verify that this effect arises
from the selection criteria we imposed on the photons, we will begin by repeating
the procedure of the previous section using a range of different pT cuts. Tab. 5.1
shows the best-fit normalizations found for each choice of cut. Indeed, in the case
where the reconstructed photons are extracted simply as the leading and sub-leading
pair in an event with no additional constraints on their pT , the three normalizations
agree within reported uncertainties. A discrepancy is apparent only when a pT cut
is introduced to the analysis, becoming more pronounced as the cut threshold in-
creases. The background normalization, Nb, experiences the largest rate of decrease
as the minimum pT increases, while the signal normalization, Ns, varies the least.

The reconstructed photon pT distributions of each component are presented in
Fig. 5.4 (left). We find that more photons of the background lie at the lower end
of the pT spectrum. A cut will thus reject a greater fraction of events from the
background sample, in comparison to the interference and signal; this is the reason
behind the discrepancy seen in their respective invariant mass distributions. How-
ever, note that these distributions consider all of the photons that result in an event
with invariant mass mγγ > 200 GeV. We previously noted that it might be necessary
to prescribe a search range above some minimum invariant mass threshold, due to
possible distortions in the reconstructed lineshapes at low invariant mass regions.
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Figure 5.5: Reconstructed background pT distributions, with various minimum mγγ con-
straints imposed on the photons.

Table 5.2: The fraction of reconstructed background photons with a pT less than 60
GeV (fγ,bck

pT<60), as a percentage of the total number of photons in the sample, for various
minimum diphoton invariant mass conditions (mmin

γγ ).

mmin
γγ [GeV] fγ,bck

pT<60 [%]

200 17.18
300 6.83
400 3.33
500 1.75
600 0.97

Fig. 5.4 (right) shows the pT distributions when a mγγ > 300 GeV condition is
imposed instead. Compared to the left-hand plot, very few low pT photons remain.

Fig. 5.5 further compares the pT distributions of background photons for increas-
ing cut-off values of the diphoton invariant mass. Tab. 5.2 shows the corresponding
fraction of photons which would be rejected if a pT > 60 GeV cut were imposed.
For mγγ > 200 GeV, almost a fifth of the background photons are rejected by the
pT > 60 GeV cut. The result in Fig. 5.3 corresponds to mγγ > 300 GeV, with
approximately 7% of the events removed. The situation improves as the minimum
cut-off increases; if one can restrict an analysis to the invariant mass range above
600 GeV, for example, then fewer than 1% of the background events in our current
MC sample will be rejected.

However, note that the fitted normalizations differ only slightly between the
samples, agreeing to one significant figure (two decimal places) in the results of
Fig. 5.3. Realistically, this discrepancy will probably be sub-dominant in comparison
to other sources of uncertainty; their differences are pronounced in the current study
due only to the very precise uncertainties reported by the fits, consequent of the
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large number of MC events generated. Experimental datasets will typically contain
fewer events, leading to larger uncertainties in N values. Furthermore, background
distributions are often falling functions of the invariant mass, leading to fewer events,
and thus larger uncertainties, at higher invariant masses.

Thus, we suggest that the approximation of equal efficiencies will probably prove
valid in realistic searches. Distortions in the results of fits to reconstructed data will
be inevitable, but mostly negligible; to minimize these effects, one could also choose
to begin a fit at a highermγγ point, where data-driven constraints on the background
will be less strict. Regardless, the imposition of necessary detector-based selection
criteria will place a lower bound on the invariant mass range that a search can be
performed over. If it is imperative to accurately parametrize data at low mγγ, it
would be preferable to instead seek a better functional description of detector effects;
a possible solution might be to perform the convolution over all relevant physical
variables in addition to the invariant mass, but we will not explore this idea further.

5.4 General functional form (reconstructed)

We now proceed to apply the convolution method of incorporating detector effects
to the model-independent functional form, which can be written in the form:[

dσ

dq

]
tr

= F tr
B (q) {S + I + 1} , (5.22)

where S and I represent the signal and interference terms in the functional form
respectively, and F tr

B (q) describes the truth-level background distribution. Following
from Eq. (5.1) and the previous discussion, a reconstructed distribution can be
described with[
dσ

dq

]
reco

= Ns

[(
F tr
B × S

)
∗DSCB

]
+Ni

[(
F tr
B × I

)
∗DSCB

]
+Nb

[
F tr
B ∗DSCB

]
,

(5.23)
where the pre-factors are given by Eq. (5.21), so the DSCB is not explicitly nor-
malized to unity. However, one typically finds a function that directly describes the
reconstructed background,

F reco
B ≡ Nb

[
F tr
B ∗DSCB

]
. (5.24)

This can be simplified because the background is often a smoothly varying function,
such that the convolution with the (un-normalized) DSCB simply introduces its
appropriate normalization factor,

F reco
B ≈ Nb

[
F tr
B

NDSCB

]
. (5.25)
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template functional form to reconstructed MadGraph5_aMC@NLO events.

Eq. (5.23) can thus be rewritten as[
dσ

dq

]
reco

=
εsNDSCB

εb
[(F reco
B × S) ∗DSCB] +

εiNDSCB

εb
[(F reco
B × I) ∗DSCB] + F reco

B .

(5.26)
In the previous section, we discussed the validity of assuming equal efficiencies,

εs ≈ εi ≈ εb. Under this approximation, the coefficients of the signal and interference
terms in Eq. (5.26) reduce simply to NDSCB, whose value can easily be computed for
a given DSCB function. Hence, the convolution of the general functional form with
a detector resolution function introduces no additional free parameters, and a fit to
reconstructed events can be performed using the same set of parameters as those in
the truth scenario: m, Γ, R(0), R(1), cφ, and sφ.

5.4.1 Fit to reconstructed MC

Eq. (5.26) was tested as follows. First, a description of the background component
F reco
B was found by fitting a sample of reconstructed background-only events. We

then noted that the assumption made in going from Eqs. (5.24) to (5.25) allowed us
to find the appropriate normalization factor for the DSCB by performing a second
fit to the reconstructed background, using the function defined as

N × (F reco
B ∗DSCB). (5.27)

The free parameter in this fit yields the value for NDSCB:

N ≡ NDSCB. (5.28)
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Figure 5.7: A fit of the convolved template functional form to the reconstructed Mad-
Graph5_aMC@NLO sample over the 300–1200 GeV mass range.

With this and a description for F reco
B , we attempted fits of Eq. (5.26) to a sample

of reconstructed events. Following the discussion of the previous section, we chose
to generate a new MC sample with a more realistic number of events, to improve
the approximation of equal selection efficiencies between the three components. The
signal was generated at m = 800 GeV, with Γ = 40 GeV. A cut of pT > 60 GeV
was again imposed during the extraction of reconstructed photons. Preliminary
fits were then performed using ROOT and various fit windows. Fig. 5.6 shows the
ratio of best-fit (χ2

bf) to 1σ cut-off (χ2
1σ) chi-squares against the windows tested.

Unlike our previous results at the truth-level, a monotonically increasing ratio with
the fit window is not seen. This is due to the stochastic nature of MC samples,
in contrast to Asimovs that perfectly capture the underlying theory. To prevent
random fluctuations from yielding volatile results, a sufficiently large fit window will
thus be required; in the particular case of Fig. 5.6, the ratio of chi-squares reaches
a minimum at w = 250 GeV. However, the distribution effectively plateaus past
w ≈ 150 GeV and does not worsen significantly for larger w, suggesting a resonance
small enough that the entirety of its effect on the invariant mass distribution can
be described. Indeed, Fig. 5.7 shows that the general template is able to fit the
reconstructed distribution well over a large 300–1200 GeV mass range. For samples
with larger signals, one would expect to instead see a relationship with a clear
minimum in w.

An estimation of the parameters of the functional form was then performed using
MultiNest, over a restricted window of 650–950 GeV about the signal peak. We
additionally performed a fit to the truth-level distribution over the same window.
The results from these two minimizations are compared in Fig. 5.8, with the recon-
structed contours in colour and the truth in grey. We find a good agreement in the
m-Γ contour between the two sets of results, with largely overlapping 1σ contours.
For the other plots, we see two distinct 1σ regions at the truth-level, enveloped by
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Figure 5.8: Two dimensional profile likelihood plots for the parameters of our general
functional form, extracted from a global fit to reconstructed events over a 650–950 GeV
window. The grey contours show 1 and 2σ boundaries for a fit to the truth-level distribu-
tion.

the 2σ contour. However, the reconstructed fit is unable to resolve this feature,
and instead finds a single high likelihood region in the R(0)-R(1) and cφ-sφ planes.
Nevertheless, there is a large overlap between the truth and reconstructed results at
the 2σ level.

An option previously suggested for reducing the distortions in reconstructed fit
results was to shift the fit window to higher invariant masses. This was tested by
performing another fit using a 700–1000 GeV window. The results are presented
in Fig. 5.9. With the shift to higher invariant masses, the reconstructed fit is now
able to distinguish two regions of high likelihood in the R(0)-R(1) and cφ-sφ profile
likelihood plots. The contours we find in the cφ-sφ plane, in particular, closely reflects
the truth-level contours. The R(1) values between results also coincide closely, and
while there is a slight preference for larger R(0) values in the reconstructed fit, the
1σ intervals largely overlap.



84 Detector Effects

★
★

★ Best fit

MultiNest 3.10

30

40

50

Γ
[G

eV
]

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

790 800 810
m [GeV]

0.2

0.4

0.6

0.8

1.0

RC to MC, 850±150 GeV

Reco-truth comp.

Prof. likelihood

★

★

★ Best fit

MultiNest 3.10

−0.5

0.0

0.5

R
(1

)

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

0.2 0.3 0.4
R(0)

0.2

0.4

0.6

0.8

1.0

RC to MC, 850±150 GeV

Reco-truth comp.

Prof. likelihood

★

★

★ Best fit

MultiNest 3.10

−0.5

0.0

0.5

s φ

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

−0.5 0.0 0.5
cφ

0.2

0.4

0.6

0.8

1.0

RC to MC, 850±150 GeV

Reco-truth comp.

Prof. likelihood

Figure 5.9: Two dimensional profile likelihood plots for the parameters of our general
functional form, extracted from a global fit to reconstructed events over a 700–1000 GeV
window. The grey contours show 1 and 2σ boundaries for a fit to the truth-level distribu-
tion.

5.5 Summary

In addition to underlying physical processes, experimental datasets will experience a
distortion due to limitations of the detectors used to observe relevant decay events.
This results in a smearing of the invariant mass distributions, which can be de-
scribed as the convolution between a truth-level lineshape and an ad hoc detector
resolution function, commonly parametrized with a DSCB. In this chapter, we ver-
ified the validity of such a treatment using our MC samples generated with Mad-
Graph5_aMC@NLO and the Delphes 3.4.1 detector simulation. In general, the
convolution was found to describe our reconstructed samples well; however, there
were distortions in the low mγγ regions of the data that were not predicted. These
effects arise from the imposition of a pT cut on reconstructed photons, introduced
to mimic LHC detector trigger requirements. Thus, there will necessarily be a lower
bound on the invariant mass in a resonance search, if detector effects are to be
characterized as a simple convolution.
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Additionally, the kinematic selection criteria introduced a small discrepancy
to the overall normalizations of the reconstructed signal, interference and back-
ground invariant mass distributions. This was dependent on the number of events
rejected from each component by the selection criteria, and hence inherently model-
dependent. However, the discrepancy was found to be negligible when statistics are
limited, as is typically the case for more realistic datasets. The approximation of
equal normalizations was tested using a convolved form of our template functional
form against a MC sample generated with a more realistic number of events. Results
were compared with those from a fit performed directly on the truth-level distribu-
tion. Similar contours were observed in their profile likelihood plots, supporting
our approximation. A closer agreement was found when the fit window was slightly
shifted to a higher invariant mass range, indicating that normalization differences
can indeed be better ignored as uncertainties in the data grow, and constraints on
the reconstructed lineshape loosen.





Chapter 6

Conclusion

The top-down approach employed in the presentation of LHC resonance search re-
sults, while constituting a straightforward procedure in the scenario where there is
strong motivation to believe in a particular resonance model a priori (for example,
when seeking to better constrain the Higgs or other results predicted by the SM),
becomes less ideal for reporting the results of a blind search for BSM physics. In the
latter scenario, it is desirable for the reported results to be sufficiently generalizable
to the plethora of existing BSM models, such that a given theorist is able to relate
them to their pet model of interest.

In this thesis, we presented a general, model-independent functional form for this
purpose:

dσ

dq
= FB(q2)

[
fBW

{
m4R2

(0) + 2R(0)m
3Γsφ

+2(q2 −m2)
(
m2R(0)R(1) +m2R(0)cφ +R(1)mΓsφ

)
+2(q2 −m2)2

(
R(1)cφ

)}
+1
]
, (3.58 revisited)

which was derived using Quantum Field Theory arguments, and includes a general
characterization of possible interference patterns arising between the signal and rel-
evant SM backgrounds. The key motivation behind such a functional form is to
introduce a bottom-up approach for analysis of experimental data: instead of se-
lecting a benchmark BSM model and extracting a dataset to maximize the predicted
signal, we propose a procedure that minimizes any model-dependent manipulation
of the data, with results to be reported in terms of the parameters of the general
functional form, which simply represents the lineshape of the data distribution ob-
served. A theorist could then compute the same set of parameters for their particular
model, and verify their result against those reported experimentally.

The procedure that we propose for an analysis is:

1. Perform a scan over the m-Γ plane of the general functional form, and produce
a plot of the discovery significance. The remaining parameters of the functional
form are to be profiled over, to yield the maximum significance at each point
of the scan.
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2. If any highly significant regions exist, repeat the fits of the general parameters
to the data over these regions, using invariant mass windows of increasing size.
The purpose of this is to identify an appropriate fit window to the data, since
it is understood that the general parametrization is only a good approximation
in the neighbourhood of the prospective signal peak.

3. Extract the parameters of the general functional form using the largest possible
(or sufficiently large) fit window that still yields a good fit to the data. These
results are in the form of 2-dimensional profile likelihood plots over the general
parameter space, to appropriately visualize their non-trivial correlations.

In this, we have assumed that only a single resonance contributes to the invariant
mass range considered; if there are multiple prospective signals, they must contribute
to sufficiently separated regions of the data, such that independent analyses can
be conducted for each. The general parametrization described also assumes that
the background is produced in the same partonic channel as the signal (and hence
generates an interference pattern). In the case of additional backgrounds yielding
the same final state but induced by a different partonic process from the signal (an
example being the γγ final state, which can be produced by gg, qg, or qq̄ fusion in
pp collisions), we assume that a suitable procedure for subtracting such backgrounds
from the data exists. For this, we rely on the correctness of our understanding of
SM physics, and thus of the non-interfering background contributions predicted by
theoretical simulations.

In a practical application of the procedure to experimental datasets, one would
perform the fits using a convolution of the general functional form with a detector
resolution function:[
dσ

dq

]
reco

=
εsNDSCB

εb
[(F reco
B × S) ∗DSCB] +

εiNDSCB

εb
[(F reco
B × I) ∗DSCB] + F reco

B .

(5.26 revisited)
where S and I respectively denote the signal and interference terms in the functional
form, and the description (and normalization) of the detector resolution function,
commonly parametrized as a Double-Sided Crystal Ball, is to be found prior to the
fit through stringent Monte Carlo simulations of the physical detector. The ε are
selection efficiencies of the various components; however, the approximation of equal
efficiencies holds quite well, as their discrepancies will generally be dwarfed by other
sources of experimental uncertainty. This convolution description of detector smear-
ing effects on the invariant mass distribution is in line with the methods currently
employed by the LHC detector collaborations.
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Appendix A

Taylor expansion of φSB
Here, we assume the case of a single helicity description to retain only one relative
phase in the general functional form. A Taylor expansion of φSB in q2 can then be
written as:

φSB(q2) = φ
(0)
SB + φ

(1)
SB

(q2 −m2)

m2
+O

(
(q2 −m2)2

)
, (A.1)

where
φ

(0)
SB = φSB(m2), φ

(1)
SB =

∂φSB(q2)

∂(q2/m2)

∣∣∣∣
q2=m2

. (A.2)

Substitution into the general functional form yields:

dσ

dq
= FB(q2)

[
fBW

(
m4R2

(0) + 2R(0)m
3Γ sinφ

(0)
SB

+2
(
q2 −m2

)2
(
R(1) cosφ

(0)
SB −R(0)φ

(1)
SB sinφ

(0)
SB

))
+2fBW(q2 −m2)

(
m2R(0) cosφ

(0)
SB +m2R(0)R(1)

+R(1)mΓ sinφ
(0)
SB +R(0)φ

(1)
SBmΓ cosφ

(0)
SB

)
+ 1 +O

(
(q2 −m2)2

)]
. (A.3)

However, in the form of Eq. (A.3), one loses the invariance of the phase under
the transformations φSB → φSB + 2πk, k ∈ Z, owing to the linear dependence on
φ

(1)
SB. To avoid this issue, one could expand in terms of the cosine of the phase,

cosφSB = cφ(0) + cφ(1)
(q2 −m2)

m2
+O

(
(q2 −m2)2

)
, (A.4)

with
sinφSB = λ

√
1− cos2 φSB , λ = ±1, (A.5)

where √
1− cos2 φSB =

√
1− c2

φ(0) −
cφ(0)cφ(1)(q

2 −m2)

m2
√

1− c2
φ(0)

, (A.6)

or alternatively, designate sinφSB as the parameter of interest:

sinφSB = sφ(0) + sφ(1)
(q2 −m2)

m2
+O

(
(q2 −m2)2

)
, (A.7)

cosφSB = λ

√
1− sin2 φSB , λ = ±1, (A.8)√

1− sin2 φSB =
√

1− s2
φ(0) −

sφ(0)sφ(1)(q
2 −m2)

m2
√

1− s2
φ(0)

. (A.9)
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These expansions yield a functional form:

dσ

dq
= FB(q2)

[
fBW

(
m4R2

(0) + 2R(0)m
3Γλ
√

1− c2
φ(0)

+2
(
q2 −m2

)2 (
R(1)cφ(0) +R(0)cφ(1)

))
+2fBW(q2 −m2)

m2R(0)cφ(0) +m2R(0)R(1)

+R(1)mΓλ
√

1− c2
φ(0) −R(0)mΓλ

cφ(0)cφ(1)√
1− c2

φ(0)


+ 1 +O

(
(q2 −m2)2

)]
, (A.10)

or equivalently, in terms of the sine:

dσ

dq
= FB(q2)

fBW

m4R2
(0) + 2R(0)m

3Γsφ(0)

+2
(
q2 −m2

)2

R(1)λ
√

1− s2
φ(0) −R(0)λ

sφ(0)sφ(1)√
1− s2

φ(0)


+2fBW(q2 −m2)

(
m2R(0)λ

√
1− s2

φ(0) +m2R(0)R(1)

+R(1)mΓsφ(0) +R(0)mΓsφ(1)

)

+ 1 +O
(
(q2 −m2)2

) . (A.11)
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Figure B.1: Profile likelihood contours of the ai,j parameters fitte to an Asimov toy
constructed from an input point in its space, with a = 1. The bottom two plots show the
result in terms of the RC parameters.
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Figure B.2: Profile likelihood contours of the ai,j parameters fitted to an Asimov toy
constructed from an input point in its space, with a = 2. The bottom two plots show the
result in terms of the RC parameters.
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Figure B.3: Profile likelihood contours of the ai,j parameters fitted to an Asimov toy
constructed from an input point in its space, with a = 2.5. The bottom two plots show
the result in terms of the RC parameters.
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Figure B.4: Profile likelihood contours of the ai,j parameters fitted to an Asimov toy
constructed from an input point in its space, with a = 3. The bottom two plots show the
result in terms of the RC parameters.
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Figure B.5: Profile likelihood contours of the ai,j parameters fitted to an Asimov toy
constructed from an input point in its space, with a = 3.5. The bottom two plots show
the result in terms of the RC parameters.
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Figure B.6: The ai,j fit result for a = 1, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded.
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Figure B.7: The ai,j fit result for a = 2, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded.
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Figure B.8: The ai,j fit result for a = 2.5, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded.
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Figure B.9: The ai,j fit result for a = 3, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded.
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Figure B.10: The ai,j fit result for a = 3.5, after all cφ, sφ, and ∆ points outside of [−1, 1]

have been discarded.



Appendix C

Fit window tests

C.1 Asimov toys of input distributions
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Figure C.1: Visualization of Asimov datasets, generated from the PM functional form at
various mass points, with Γ/m = 3% and 10%, for the two sets of input parameters.

103



104 Fit window tests

C.2 Results for Γ/m=3% and 10%

Figure C.2: Colour plots showing the quality of fits relative to the 1σ threshold of a χ2
ν

distribution. Results correspond to input widths of Γ/m = 3%. Left (right): results using
set 1 (2) of the input PM parameters. From top to bottom, results correspond to a fit
window: centred about the input mass; shifted to the left by w/2; shifted to the right by
w/2.
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Figure C.3: Colour plots showing the quality of fits relative to the 1σ threshold of a
χ2
ν distribution. Results correspond to input widths of Γ/m = 10%. Left (right): results

using set 1 (2) of the input PM parameters. From top to bottom, results correspond to a
fit window: centred about the input mass; shifted to the left by w/2; shifted to the right
by w/2.
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C.3 PM fit to PM toy results comparison

The result of fitting the PM to an Asimov generated using a point in its space
as input was used to construct two histograms with their bin uncertainties defined
differently: “method 1” assumes a 1-dimensional Gaussian random variable for each
bin, while “method 2” assumes a 5-dimensional χ2 distribution (corresponding to
the five PM parameters). The fit of the PM to these two histograms is compared to
the original fit to the Asimov.
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Figure C.4: Grey: fit to toy PM Asimov. Red: fit to results histogram constructed
assuming “method 1”. The fit to the results histogram finds more constrained confidence
intervals for the parameters, suggesting an underestimate of bin uncertainties.
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Figure C.5: Grey: fit to toy PM Asimov. Red: fit to results histogram constructed
assuming “method 2”. A better agreement between the two sets of results is found.
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