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Abstract The continuum-fitting method is the analysis of
the thermal spectrum of the geometrically thin and opti-
cally thick accretion disk around stellar-mass black holes.
A parametrization aiming to test the Kerr nature of astro-
physical black holes was proposed in Ghasemi-Nodehi and
Bambi in EPJC 76:290, 2016. The metric contains 11 param-
eters in addition to the mass and spin parameters. One can
recover the Kerr case by setting all parameters to one. In this
paper, I study the continuum-fitting method in a Ghasemi-
Nodehi–Bambi background. I show the impact of each of
the parameters on the spectra. I then employ χ2 studies and
show that using the continuum-fitting method all parame-
ters of Ghasemi-Nodehi–Bambi spacetime are degenerate.
However, the parameter b9 can be constrained in the case
of a high spin value and the Ghasemi-Nodehi–Bambi black
hole as reference. This degeneracy means that the spectra of
the Kerr case cannot be distinguished from spectra produced
in Ghasemi-Nodehi–Bambi spacetime. This is a problem as
regards measuring the spin of astrophysical black holes and
constrain possible deviations from the Kerr case of General
Relativity.

1 Introduction

General Relativity (GR) was born more than a century ago
and is still used for describing the gravitational field and
geometry of spacetime [1]. The theory has been extensively
explored in the weak field regime, such as in solar system
experiments and radio pulsars observations [2–5]. There are
many theoretical models that make the same prediction as
general relativity in the weak field regime but they devi-
ate in strong field regimes. The strong field regime can be
either studied with gravitational waves (GWs) or with elec-
tromagnetic radiation. Dynamical systems have a signature
on GW but an electromagnetic radiation method can be stud-
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ied when spacetime is static. Effects such as the deviation
from geodetical motion can be studied by electromagnetic
radiation-related methods.

GR predicts astrophysical black holes (BHs) are Kerr BHs
with spin and mass parameters [6,7]. There are different sce-
narios that deviate from the Kerr case but there is degeneracy
in measurement of their parameters and spin parameters of
Kerr spacetime. One way to test the Kerr hypothesis is to
parametrize the Kerr metric and try to constrain deviations
from Kerr spacetime. There are several parametrization in
the literature [8–22]. In this paper, I consider the Ghasemi-
Nodehi–Bambi (GB) metric, proposed in [21]. The Kerr case
would be recovered by setting all GB parameters to one. For
an electromagnetics-based test of the strong gravity regime,
one can use X-ray continuum spectra and iron line emission.
One can also study BH shadow observations with an event
horizon telescope at mm/sub-mm wavelength. In spite of
large systematic errors of quasi-periodic oscillations (QPOs),
one can use QPO frequencies to probe strong field regimes
as well. Iron line reverberation mapping can be used as well.

Continuum spectra, iron lines and QPOs have already been
observed by X-ray missions including RXTE, Chandra, Nus-
tar, ASCA, Suzaku, and XMM-Newton.

The shadow [21], X-ray reflection spectroscopy [23],
QPO [33] and iron line reverberation [33] of the GB met-
ric have already been studied. In the current paper, I study
the continuum-fitting method to check possible constraints
of the GB parametrization.

The continuum-fitting method is used to study the thermal
spectrum of geometrically thin and optically thick accretion
disks [24]. One can only apply this method to stellar-mass
BHs. This is because the spectrum of the supermassive BHs
is in the optical/UV band where dust absorption limits the
capability of accurate measurement. The temperature of the
disk depends on the mass of the compact object. The spec-
trum of the thin disks around stellar-mass black holes is in the
soft X-ray band. Currently, assuming the Kerr BH as astro-
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physical BH, the spin parameter, a∗ = J/M2, of the BH
can be measured by this method. If one considers non-Kerr
BHs, this technique can measure deviations from the Kerr
solution [25,26].

In this paper, I consider a GB background metric. I sim-
ulate thermal spectra of the thin accretion disk and show
the impact of the deformation parameters on the spectra.
By decreasing (increasing) the deformation parameter b7 the
spectra get softer (harder) and by decreasing (increasing) the
parameters b4, b9, b10 the spectra get harder (softer). The
impact of the parameters b2, b5, b8, b11 is very close to the
Kerr one. The impact of the other parameters was studied
before. References [25,27,28] provide the impact of all other
parameters. By increasing (decreasing) the mass the spectra
get harder (softer). The mass accretion rate changes the tem-
perature of the disk. The distance of the source alters the
normalization of the spectrum. For higher (lower) inclina-
tion angle, the area of the observed emitting region decreases
(increases). If the spin parameter increases the spectra get
harder.

Then, in order to compare results with the Kerr case, I
use a minimum χ2 approach. I plot the related contour plots.
The results show that using continuum-fitting method the GB
parameters are degenerate and cannot be distinguished from
the Kerr case. However, the parameter b9 may be constrained
in the case of a high spin value and the GB BH as a reference.

The structure of the paper is as follows. In Sect. 2, I provide
details of the continuum-fitting method. Section 3 is devoted
to a description of the metric of the spacetime. Results and
discussion are presented in Sect. 4. Finally, a summary and
conclusions are in Sect. 5.

2 The continuum-fitting method

The thermal spectrum can be written in terms of the photon
flux number density as measured by a distant observer [25,
27–30]. The photon flux number density is given by

NEobs = 1

Eobs

∫
Iobs(ν)dΩobs (1)

where Iobs is specific intensity of radiation, Eobs is the photon
energy, and ν is the photon frequency measured by a distant
observer. dΩobs = dXdY/D2, X and Y are coordinate posi-
tion of the photon on the sky as seen by a distant observer, D
is the distance of the source. In order to include all relativistic
effects, one needs to compute the photon trajectory from the
emission point in the disk to thre image plane of the distant
observer (detection point). We have

NEobs = 1

Eobs

∫
Iobs(ν)dΩobs = 1

Eobs

∫
w3 Ie(νe)dΩobs

(2)

where Ie is the local specific intensity of the radiation emitted
by disk and w the redshift factor, which are

Ie(νe) = 2hν3
e

f 4
col

Υ

exp
(

hνe
kBTcol

)
− 1

, (3)

w = Eobs

Ee
= ν

νe
= kαuα

obs

kβu
β
e

. (4)

Regarding Eq. (3), since the disk is in thermal equilibrium
the emission is blackbody-like. One can define the effective
temperature, Teff , F(r) = σT 4

eff , where σ is the Stefan–
Boltzmann constant and F(r) is the time averaged energy
flux from Novikov–Thorne model [31,32]. The Novikov–
Thorne model can be used to describe geometrically thin
and optically thick accretion disks around the black hole. The
assumption is that the disk is in the equatorial plane. The gas
of the disk moves on a nearly geodesic circular orbit. F(r)
can be written as

F(r) = Ṁ

4π
√−G

F(r),
√−G =

√
α2grr gφφ (5)

where Ṁ is the mass accretion rate, and F(r) is

F(r) = ∂rΩ

(E − ΩLz)2

∫ r

rin

(E − ΩLz)(∂ρLz)dρ. (6)

E, Lz, and Ω are, respectively, the conserved specific
energy, the conserved z-component of the specific angular
momentum, and the angular velocity for equatorial circular
geodesics. rin is assumed to be at the innermost stable circular
orbit (ISCO). Actually the disk’s temperature near the inner
edge is high and non-thermal effects are not negligible. For
this reason one can introduce a hardening factor or a color
factor, fcol and the color temperature is Tcol(r) = fcolTeff .

In Eq. (3), νe is the photon frequency, h is Planck’s constant,
kB is the Boltzmann constant and Υ is a function of the angle
between the wavevector of a photon emitted by the disk and
the normal of the disk surface. Here I consider Υ = 1 for
isotropic emission.
Regarding the w in Eq. (4), Ee = hνe, ν being the pho-
ton frequency measured by a distant observer, kα is the 4-
momentum of the photon, uα

obs = (−1, 0, 0, 0) is the 4-
velocity of the distant observer, and uα

e = (ute, 0, 0,Ωute)
is the 4-velocity of the emitter. From Liouville’s theorem we
have Ie(νe)/ν

3
e = Iobs(νobs)/ν

3.
Finally, the photon flux number density can be written as

NEobs = A1

(
Eobs

keV

)2 ∫
1

M2

Υ dXdY

exp
[

A2
wF1/4

(
Eobs
keV

)]
− 1

, (7)

where A1 and A2 are

A1 = 2 (keV)2

f 4
col

(
GNM

c3hD

)2
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= 0.07205

f 4
col

(
M

M�

)2 (
kpc

D

)2

γ keV−1 cm−2 s−1,

A2 =
(

keV

kB fcol

) (
GNM

c3

)1/2 (
4πσ

Ṁ

)1/4

= 0.1331

fcol

(
1018 g s−1

Ṁ

)1/4 (
M

M�

)1/2

. (8)

One finds

ute = − 1√−gtt − 2gtφΩ − gφφΩ2
, (9)

from the normalization condition gμνu
μ
e uν

e = −1 and thus

w =
√−gtt − 2gtφΩ − gφφΩ2

1 + λΩ
, (10)

where λ = kφ/kt is a constant of motion along the photon’s
path. All relativistic effects are encoded in the redshift factor
w.

3 Ghasemi-Nodehi–Bambi spacetime

Reference [21] proposed a new parametrization to the Kerr
metric. The purpose of this parametrization is to constrain
possible deviations from a Kerr solution of GR. The Kerr
case would be recovered when all deformation parameters
are equal to one. While in other metrics the deformation
parameters are additive and reduce to the Kerr case for van-
ishing deformation parameters. In this parametrization, 11
new parameters are introduced in front of any mass and/or
spin term. Any deviation from one deforms the spacetime
more/less than that of prediction of GR. The metric is as
follows:

ds2 = −
(

1 − 2b1Mr

r2 + b2a2 cos2 θ

)
dt2

− 4b3Mar sin2 θ

r2 + b4a2 cos2 θ
dtdφ + r2 + b5a2 cos2 θ

r2 − 2b6Mr + b7a2 dr2

+
(
r2 + b8a

2 cos2 θ
)

dθ2

+
(
r2 + b9a

2 + 2b10Ma2r sin2 θ

r2 + b11a2 cos2 θ

)
sin2 θdφ2. (11)

Here we set b1 = b3 = b6 = 1. b1 is equal to one because it
is the coefficient of mass and b3 = 1 in the same way; b3a is
the asymptotic specific angular momentum. b6 is close to one
from a solar system experiment. I do not consider these three
parameters in my continuum-fitting method calculations.

Fig. 1 Thermal spectra of accretion disks for different values of the
bi parameters. The values of the model parameters are M = 10M�,
Ṁ = 2 × 1018 g/s, D = 10 kpc, i = 45◦, a∗ = 0.9, and one of bi = 15
in each case. In these simulations I have assumed fcol = Υ = 1. See
text for more details

4 Results and discussion

The results of my simulation of thermal spectra are shown
in Figs. 1, 2, 3 and 4. In Fig. 1 I have drawn the impact
of deformation parameter bi on the thermal spectra of the
accretion disk for different values of the model parameters.
The values of the model parameters are M = 10M�, Ṁ =
2 × 1018 g/s, D = 10 kpc, i = 45◦, a∗ = a/M = 0.9,. In
each curve one bi is equal to 15 and all others are equal to 1.
In these simulations I have assumed fcol = Υ = 1. As we see
in the plot, the parameter b7 makes the spectra harder than the
Kerr one on increasing. By increasing the parameters b4, b9

and b10 the spectra get softer than Kerr case. Parameters
b2, b5, b8, and b11 are nearly similar to Kerr one. The overall
structure of the plots does not change for different sets of
parameters. The impact of all other parameters is studied in
[25,27,28].

Now, in order to compare my results, I use the χ2

approach. I compare the spectra produced in Kerr space-
time with one expected from the GB background. The χ2

is defined as follows:

χ2(a∗, b j ) = 1

n

n∑
i=1

NGB
i − NKerr

i

σ 2
i

(12)

where summation is performed over n sampling energies
Ei . NKerr

i and NGB
i are the photon fluxes in the energy bin,

[Ei , Ei +ΔE], for Kerr and GB metric. The error, σi , is con-
sidered to be 15% of the photon flux NKerr

i . For these results,
M = 10M�, Ṁ = 2 × 1018 g/s, D = 10 kpc, i = 45◦
and a∗ = 0.6. The contours are presented in Figs. 2 and
3. The brown, orange and lighter orange are for 1σ, 2σ and
3σ (68%, 95% and 99.7%) confidence level, respectively. If
the contour plots would be closed, this means we can con-
strain the parameters and there is no degeneracy, but, here,
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Fig. 2 Contour map of thermal spectra of accretion disks. Contour map
of parameter b2 (top left panel), b4 (top right panel), b5 (bottom left
panel), b7 (bottom right panel). The reference model is a Kerr BH with

spin 0.6. The other parameter values are M = 10M�, Ṁ = 2 × 1018

g/s, D = 10 kpc, and i = 45◦. See the text for more details

the contours are not closed in Figs. 2 and 3. So we cannot
constrain the parameters. In other words, there is degeneracy
between measurements of the parameters bi and measure-
ment of the spin parameter, so that the parameters bi cannot
be constrained. Degeneracy means one cannot distinguish
the properties of these spectra from spectra of a disk around
a Kerr BH.

This degeneracy is a problem as regards measuring the
spin of astrophysical BHs. So far, spin measurement is based
on the Kerr BH hypothesis but as we see from the result of
this study with the continuum-fitting method, the same elec-
tromagnetic observation (thermal spectra here) can be repro-
duced by non-Kerr spacetime as an example of GB spacetime
with different spin and deformation parameters.
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Fig. 3 Contour map of thermal spectra of accretion disks. Contour map
of parameter b8 (top left panel), b9 (top right panel), b10 (bottom left
panel), b11 (bottom right panel). The reference model is a Kerr BH with

spin 0.6. The other parameter values are M = 10M�, Ṁ = 2 × 1018

g/s, D = 10 kpc, and i = 45◦. See the text for more details

I also consider the case for higher values of the spin, such
as 0.9, as reference model but still the results are degenerate.
Then we consider the reference BH not to be a Kerr BH. I
consider a GB BH as reference BH in a contour study with
spin 0.9 and bi = 18. In this case, only the parameter b9 may
be constrained because the contour looks closed, as we see
in Fig. 4. The parameter b10 is harder to constrain is this case
as well.

As the result of other tests with electromagnetic radiation,
considering triplet frequency observations of GRO J1655-40,
we find that the GB parameter b2 is 2.2+0.395

−0.523 but the other
parameters cannot be constrained [33]. If we assume we have
10 observations in the future, we can constrain more parame-
ters, we find that b2, b9, b10 and b11 can be well constrained,
while b4, b5, b7 and b8 cannot. With X-ray reflection spec-
troscopy, known as the iron line method, 200 ks observa-
tions with future observational facilities such a LAD-eXTP

123
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Fig. 4 Contour map of thermal spectra for parameter b9. The reference
model is a non-Kerr BH with M = 10M�, Ṁ = 2 × 1018 g/s, D = 10
kpc, i = 45◦, a∗ = 0.9, and b9 = 18. In these simulations I have
assumed fcol = Υ = 1. See text for more details

can constrain all parameters except for b11. b11 leaves a very
weak impact on the iron line. A BH shadow method shows a
weak impact on the parameters b2, b8, b9 and b10. There is no
impact on the shadow boundary by the parameters b4, b5, b7

and b11. An iron line reverberation mapping study of GB
spacetime can constrain all parameters except b11. b4 also is
harder to constrain [33].
As we see, the BH shadow can constrain some parameters
but can not constrain others. Iron line studies either with
time-integrated analysis or with reverberation can constrain
all with exception of b11. But a mock observation of 10 BHs
can constrain b11 in addition to the other parameters.
Unfortunately, due to degeneracy of the parameters in the
continuum-fitting method, we cannot further restrict GB
parameters using this method. This might be a general prob-
lem as regards measuring the spin of the BH.

A combination of different observational methods may
help to constrain the deformation parameters and break the
degeneracy of the parameters.

5 Summary and conclusions

The continuum-fitting method is a method to study thermal
spectra. The disk should be geometrically thin and optically
thick. Also this study is valid for stellar-mass black holes.

Furthermore, parametrization of the Kerr BH hypothesis
is one way to study deviations from the predictions of GR
and provide constraints on the deviation from GR.

In this work I use the continuum-fitting method to check
whether it can constrain the GB metric parameters introduced
in [21]. The GB metric contains 11 deformation parameters,
which the Kerr case recovers when all deformation param-
eters are set to one. I first compute the thermal spectra for
different bi parameters. My results show that by increasing
parameter b7 the spectra get harder. Also by increasing the
parameters b4, b9, b10 the spectra get softer and impact of
the parameters b2, b5, b8, and b11 is very close to the Kerr
one.

I then consider my simulation as observational data and
try to study possible constraints of the deformation param-
eters of GB spacetime using the χ2 approach. My contour
studies show that all deformation parameters are degenerate.
However, for the case of a high spin value with GB BH as
reference, the parameter b9 may be constrained. This degen-
eracy means the observation with specific spin and the defor-
mation parameter can reproduce the spectra of the Kerr case.
This is a problem as regards measuring the spin of astrophys-
ical black holes and constrain possible deviations from GR.
Also as a result of this degeneracy, in order to verify the Kerr
hypothesis, any deviation from the Kerr case should vanish.

Different observational tests such as the BH shadow
method, X-ray reflection spectroscopy, iron line reverber-
ation mapping and QPO introduce different impacts of the
parameters. Combination of different methods may help to
break the degeneracies.
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