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Modified theories of gravity are examined and shown to be alternative possibil-

ities to the standard paradigms of dark matter and dark energy in explaining the

currently observed cosmological phenomenology. Special consideration is given to

the relativistic extension of Modified Newtonian Dynamics (MOND) in supplanting

the need for dark matter. A specific modification of the Einstein-Hilbert action

(whereby an inverse power of the Ricci scalar is added) is shown to serve as an

alternative to dark energy.
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CHAPTER 1
INTRODUCTION

The advent of precision astrophysics in the past 20 years has provided cos-

mologists, particle theorists, and general relativists with a healthy volume of data

and measurements with which to work and explain. It has become clear that a

large fraction of the universe’s energy content is unknown to us. Indeed, we are

entering an exciting era of astrophysical investigation whereby experiments (past,

present, and future) will guide physicists to understand the fundamental nature of

the universe.

Our thesis considers two problems: namely, what I will term, with no attempts

at originality, the missing mass and the missing energy problem. Each shall be

approached by considering first the predominant or orthodox approach to their

explanations. In the case of the missing mass problem this corresponds to the

concept of dark matter. Respectively, the missing energy problem introduces

a substance dubbed dark energy to describe the late-time acceleration of the

universe. Each of these approaches will be shown to possess advantageous and

seemingly “natural” features which seem to justify their acceptance as the leading

candidates. However, these approaches are far from being satisfactory resolutions of

their targeted problems. Inconsistencies and ambiguities remain. While that is so,

alternative approaches must be vigorously researched.

One of the most important points to underline in this thesis is the fact that

neither dark matter nor dark energy have been detected in a laboratory setting;

they have only been observed in a gravitational context. Direct determination of

dark matter would certainly quell (if not completely put to rest) the notion that

perhaps we do not understand gravity even at the classical level. However, until
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2

strong evidence of either particle dark matter or dark energy is obtained we may

admit the possibility that it is new gravitational physics, not missing substances

which is responsible for our observed universe.

Einstein’s equation possesses two sides: the source side and the gravity side.

Gµν = 8πGTµν , (1.1)

where Tµν is the matter-energy stress tensor and Gµν ≡ Rµν − 1
2
gµνR is the Einstein

tensor. Each is obtained by varying the respective actions,

Gµν =
2√−g

δ

δgµν

∫
d4x

√−gR , Tµν =
−2√−g

δ

δgµν

∫
d4x

√−gLM(φ,Aα, Ψ, . . . ),

(1.2)

where LM is a matter Lagrangian density. We will use a time-like signature

throughout the thesis. Gµν can be thought of as the source of gravity due to the

matter components constituting Tµν . Clearly, we change the behavior of gravity by

altering the sources present in Tµν . Indeed, the “dark horses” of modern physics,

dark matter and dark energy, are both appendices to the source side, albeit in

peculiar forms. Gravitational observation can only tell us about the gravity side,

and thus the ability always exists to add terms to the source side to make the

gravity side true. Only by solving the equations of motion of a new particle field

and confirming the solution experimentally can one conclude real existence.

Consider the more general situation,

Gµν = 8πGTµν . (1.3)

Here, Gµν is a not necessarily the Einstein tensor. We will refer to it as the “gravity

tensor”. Obviously, one must make restrictions when formulating the gravity ten-

sor. General covariance reconciles the requirements of stability with local Lorentz

invariance. Higher spin fields are notorious for possessing negative energy degrees

of freedom. However, in a generally covariant theory these degrees of freedom are
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either unphysical (e.g., the non-transverse modes of the photon in Lorentz gauge)

or are constrained degrees of freedom (e.g., the Newtonian potential of gravity).

In addition to conforming with general covariance, phenomenological requirements

must be met. The most poignant of these is Newton’s law of gravitation. Gravity is

well understood at the solar system scale. Any proposed modification to Einstein’s

equation would have to faithfully reproduce Newton’s law in this regime. Further,

Einstein’s relativity (which has proven to be extremely robust over a broad range

of physical scale) must emerge from any candidate theory under the appropriate

conditions. Gravitational lensing, the bending of light due to matter sources, will

be shown to serve as an important phenomenological constraint. Astrophysical

data coming from recent experiments such as the Wilkinson Microwave Anisotropy

Probe (WMAP) and Cosmic Microwave Explorer (COBE); and data anticipated in

the future from the Supernova Acceleration Probe (SNAP) and the Planck Satellite

simultaneously furnish us with bizarre challenges now and place more and more

stringent restrictions on models in the future.

The thesis is organized as follows: Chapter 2 discusses the missing mass

problem and describes the dark matter approach to its explanation. In Chapter

3, the alternative proposition of MOND is introduced and shown as a viable

alternative. First, we discuss the nonrelativistic successes of MOND, followed by

a thorough analysis of the relativistic extensions currently under consideration.

Specifically, the scalar-vector-tensor theories Bekenstein, Milgrom, and Sanders

are surveyed in some detail followed by a complete treatment of the author’s

contribution to the purely metric approach. Chapter 4 introduces the dark energy

problem discussing some of the more common approaches. Chapter 5 introduces

a specific alteration to the Einstein-Hilbert action one can make to reproduce the

same effect as dark energy. The author’s contribution to the computation of the

force of gravity due to such an alteration is completely treated. It is shown to place



4

severe limitations on this wide class of models. Chapter 6 summarizes the results

with some remarks concerning the implications for present and future work.



CHAPTER 2
DARK MATTER: THE MISSING MASS

2.1 Introduction

When the velocities of satellites orbiting spiral galaxies are measured, they be-

have in a quite peculiar fashion. The velocities are of the order 102km/s (therefore

v/c ∼ 10−3), and one would naively expect a Newtonian description of their gravi-

tational dynamics. From elementary physics, we ascribe centripetal acceleration to

a particle in a circular orbit outside a matter distribution M(r),

a =
v2(r)

r
=

GM(r)

r2
, (2.1)

and thus well outside the mass distribution the asymptotic velocity behaves as,

v2
∞ =

GM

r
. (2.2)

However, rather than a Keplerian fall off of the asymptotic velocity, satellites are

observed to asymptote to a constant velocity far from the central galactic bulge,

v∞ = constant . (2.3)

Such behavior, one can easily imagine, can be described by inserting more

matter into the system in the appropriate distribution. Indeed, this phenomenon

has served as a major impetus for invoking the existence of an unknown matter

component (dark matter) that pervades the galactic systems of our universe, and

the universe’s entirety itself. As we have not directly witnessed this matter via

the electromagnetic, electroweak, or strong nuclear forces, it has acquired the

“dark” nomenclature. Its only interaction that we have observed (if it were a true

5
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component of our universe) is its gravitational interaction with luminous and

nonluminous matter (and of course the cosmological fluid itself).

The application of this idea faces many obstacles from the onset. Immediately,

its origins come into question. That is, one must use cosmological motivations and

evidence to account for the existence of dark matter. Galaxy formation becomes

a critical issue when discussing dark matter since early fluctuations in the CMB

give evidence to the density fluctuations that were present at recombination. These

imprints constrain the possibilities of how much matter energy density can be

involved in galaxy formation.

Many candidates have been proposed, of which a few will be discussed later

— but we may temporarily spotlight the necessity to quantify dark matter’s

standing in the particle description of matter. Specifically, does dark matter

consist of the usual suspects (i.e. the Standard Model particles)? Or is dark

matter the implementation of “new physics” — particles and fields not currently

captured in the Standard Model? Its distribution and “symbiotic” relationship

with the luminous matter in the galaxy and the universe must be identified.

Further, with the recent augmentation of our experimental abilities in measuring

galactic observables, dark matter must be embedded into our galactic systems in

a self-consistent fashion such that the current observables are not voided by the

introduction of a new exotic.

2.2 Dark Matter Taxonomy

We will limit the scope of our discussion of dark matter to issues concerning

galactic systems. However, it should be noted that there is an enormous amount

of theoretical and experimental work extant dealing with dark matter’s possible

role in cosmology. Dark matter, if existent, occupies far more of the intergalactic

medium than the galactic one. This is evident from recent and quite constraining

data from the WMAP probe [1], which reveals the large discrepancy between dark
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and luminous matter critical fractions, ΩCDM ∼ 0.27 and ΩB ∼ 0.03, respectively

(here CDM and B refer to cold dark matter and baryonic matter, respectively,

explained below). Any cosmological component represents some fraction of the

critical mass density (the density for which the universe expands to a critical radius

and freezes) ρc = 3H2/8πG,

ΩX ≡ ρX

ρc

, (2.4)

where H is the Hubble expansion parameter. The WMAP data confirms the hot

big bang theory followed by a period of inflation giving rise to a flat universe.

In terms of critical fractions, the total fraction is ΩTotal ∼ 1 with a dark energy

component, ΩΛ ∼ 0.7, which will be discussed later in greater detail. The question

is then whether the 30% energy component (i.e. that which is not coming from

dark energy) is a true matter component or whether there is new physics at the

level of new particles and fields, or fundamental spacetime principles.

In addition, proof that dark matter really does exist must come from its

observed interactions. Many dark matter candidates have emerged through

the years. Roughly, one may divide them into two categories: nonluminous

baryonic matter such as brown dwarfs, black holes, and large planets (MACHOS

— Massively Compact Halo Structures); and weakly interacting particles such

as neutrinos, axions, and neutralinos (WIMPS — Weakly Interacting Massive

Particles) which pervade large portions of the universe. Of these two candidates, it

has been experimentally and phenomenologically determined that if MACHOS do

exist, they constitute very little of the total possible dark matter observed [2].

WIMPS can be further categorized by their cosmological history. Some

particles formed in the big bang are relativistic for some period of time. Depending

on their masses and couplings to other particles, we are able to predict and

observe their transition from the relativistic regime to the nonrelativistic one.

Those that are relativistic at the onset of galaxy formation are classified as hot
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dark matter (HDM), whereas those which have dipped into the nonrelativistic

regime are classified as cold dark matter (CDM). A light neutrino (. 20 eV) and a

heavy neutrino (∼ 100GeV) serve as candidates for CDM and HDM, respectively

[3]. Finally, a third type of particle dark matter, the axion [4], arises from the

Peccei-Quinn mechanism to solve the strong CP problem of QCD [5]. The axion

is a particle which exhibits a particular symmetry that ensures (by reaching the

minimum of its potential) that CP-symmetry is not violated in any strong nuclear

interactions. Depending on the values of the axion mass and couplings, it is

possible to account for a large fraction of the dark matter [6].

Further analysis using WMAP data, however, strongly tilts the favor toward a

CDM scenario [7]. Because galactic formation depends upon the nature of its dark

matter constituency [8], CDM has emerged as it is able (unlike HDM) to provide

sufficient clumping on galactic scales we observe today. Therefore, we will survey

the conservative approach to galactic dark matter and regard it as CDM.

Galactic dark matter has been most commonly introduced itself in the

literature and in scientific investigations (both theoretical and phenomenological)

as halos in which one may either view the galaxy embedded in the halo, or the

halo embedded in the galaxy. The amount of dark matter projected is often on the

order of 90% greater than that of ordinary matter. Since the rotation curves of the

inner regions of galaxies are well reproduced by considering only luminous matter,

it must be that the majority of the dark matter resides outside the central bulge to

ensure the asymptotically constant satellite velocities.

We will further restrict ourselves to rotation curves of spiral galaxies, as they

have been by far the most studied. The problem is to find how the dark matter

distributes itself in and around the luminous matter of the galactic system. It

cannot have a great impact on dynamics in the inner region since luminous matter

accounts for the rotation curves there. It also faces the challenge of reproducing
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the rotation curves outside the inner region for a wide range of physical scales —

distance, luminous mass, mass-to-light ratios, etc. Thus, dark matter profiles face

the further challenge of being universal (or at least exhibiting universality).

2.3 Dark Matter Distribution

A thorough review of the different halo models is given by [9]. We consider

only two here, which is more than sufficient to capture the most important features

of halos. The simplest CDM distribution which can successfully account for the

rotation curves of spiral galaxies is the isothermal sphere proposed by Gunn and

Gott [10] with mass density,

ρ(r) =
ρ0

1 + (r/rc)2
. (2.5)

Immediately from Equation 2.5 we see there are two parameters which must be

determined, the central density ρ0 and the core radius rc. Clearly, this profile

gives rise to the observed rotation curves. The circular velocity of a particle in the

isothermal distribution is,

v2(r) =
4πG

r

∫ r

0

dr′r′2ρ(r′) , (2.6)

= 4πGρ0r
2
c

[
1− rc

r
arctan

(
r

rc

)]
. (2.7)

In the limit of r À rc, Equation 2.7 reduces to,

v∞ −→
√

4πGρ0r2
c , (2.8)

the asymptotic velocity required to explain the rotation curves. A possibly un-

fortunate feature of Equation 2.8 is that the velocity never ceases to fall off, and

therefore certainly this scenario can only serve as a first approximation.
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Another popular class of formulations is the so-called “universal” Navarro,

Frenk, and White (NFW) profiles [11, 12],

ρ(r)

ρc

=
δc

r
rs

(1 + r/rs)2
, (2.9)

where ρc is the same as in Equation 2.4. There are again two parameters to

determine, as is always the case with a CDM profile: a density parameter (in this

case a dimensionless characteristic number δc); and a length scale (here represented

by the scale radius rs). These profiles have inherited the classification “universal”

for the similarities in the profiles between halos of widely varying mass, which came

as a surprise, in light of the power-spectrum data [12].

Identical to the isothermal halo, we calculate the velocity from the NFW

profile Equation 2.9,

v2(r) =
4πGδcρcr

3
s

r

[
ln(1 + r/rs)− 1

1 + rs/r

]
(2.10)

The square velocity has the limiting behaviors,

v2(r) −→





2πGδcρcrsr r ¿ rs ,

4πGδcρcr3
s

r
ln(r/rs) r À rs .

(2.11)

These limiting behaviors are clearly superior in the phenomenological sense to the

isothermal halo on account of the quasi-Keplerian fall off at large enough distances.

The nontrivial solution to the transcendental equation,

x̄(1 + 2x̄)− (1 + x̄)2 ln(1 + x̄) = 0 , (2.12)

where x̄ = r̄/rs, gives the ratio of radii necessary to achieve the maximum velocity.

This equation can be numerically solved to give x̄ ' 2.16. The velocity approx-

imately drops to 0.82vmax and 0.85vmax for x = 0.1x̄ and x = 10x̄, respectively.

Therefore, it is quite evident that flat rotation curves can be described with the
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NFW profile, with the added feature that at asymptotically large distances, a fall

off is exhibited.

2.4 Problems and Drawbacks to the CDM Halo Models

Although the isothermal halo model enjoys success in reproducing many of

the observed rotation curves of disk galaxies, the assumptions leading to it exposes

its lack of universality. The isothermal model assumes what has been called the

“maximum-disk” hypothesis, which assigns to the disk the maximum mass-to-

light ratio consistent with velocity measurements in the inner region [11]. The

maximum-disk hypothesis effectively separates the disk from the halo. Therefore,

satellites in the inner region inherit all but a negligible fraction of their velocities

from the disk alone. This has the effect, of course, of limiting the core density of

the halo. However, inclusion of data from dwarf galaxies shows this assumption to

break down [13]. The rotation curves for these samples were of quite a different

shape and could not be explained using the isothermal plus maximum-disk model.

Further, velocity-dispersion measurements in the normal direction to the disk

showed that the disk only contributed approximately 60% to the inner velocity of

satellites [14], thereby nullifying the maximum-disk hypothesis.

The maximum-disk hypothesis attempts to regard rotation curves as functions

of the luminosity alone. This was tendentiously proposed [14] in response to the

observation that in low-luminosity galaxies, rotation curves rise slowly and continue

rising past the optical radius; whereas in higher luminosity galaxies, the curves rise

more sharply to their maximum, leveling off and sometimes even declining past the

optical radius. However, it was discovered [14] that within the subset of observed

galaxies that exhibit similar luminosities, differently shaped curves were measured

(distinguished by the galaxy’s surface brightness).

The NFW profiles for galactic halos and X-ray clusters have been studied

extensively using N-body/gasdynamical simulations of CDM in a flat, low-density,
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cosmological constant-dominated universe [15, 16]. Inserting nonsingular isothermal

halos into N-body simulations shows these structures to poorly fit the data [15].

The NFW profiles by far constitute a more sophisticated approach and are able

to overcome some of the problems of the isothermal model. That said, the NFW

approach currently requires further dynamical input into determining the specific

profiles that can account for the broad range of observed galaxy brightnesses and

masses observed. For example, low surface-brightness galaxies are not as well fit by

NFW profiles [17] where rotation curves rise more sharply in the inner region than

the profile predicts.

Lastly, one of the more disturbing features of CDM halos is their large

parameter range. Although it is by no means an indicator of futility of this

approach, it certainly spurs the advent of more sophisticated models (if not

radically new ideas). By trading off disk mass for halo concentration, one is always

capable of producing similar velocity curves. In fact, any rotation curve can be fit

by setting the disk’s mass-to-light ratio to zero and tuning the halo parameters.

Thus, differentiating among a class of halo models becomes a daunting task that

can only be simplified by injecting new data or new fundamental concepts into the

profile-building process.

This fine-tuning problem comes to light when considering the Tully-Fisher

relation: the observation that a galaxy’s luminosity is correlated to its peak

rotation velocity via,

L ∝ v4
max . (2.13)

The rotation velocity is mostly set by the halo, whereas the infrared luminosity

comes from the visible matter in the galaxy [18]. The fine-tuning that arises from

the symbiotic relationship between the disk and halo must somehow consistently

reproduce Equation 2.13. The observational precision of Equation 2.13, however,

is not to be easily expected from statistical processes involved in galaxy formation.
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Therefore, the Tully-Fisher relation remains an issue for halo profiles that clearly

needs to be addressed before any specific profile or halo mechanism is deemed

satisfactory.

2.5 Concluding Remarks

Evidence for dark matter, regardless of the galaxy rotation curves, is quite

extensive. The Standard Cosmology cannot do without it; at least not without a

radical change to fundamental physics. Processes such as Big Bang Nucleosynthesis

(BBN) [19, 20], structure formation [21, 22], and the cosmic microwave background

(CMB) [23, 24] all indicate the Lambda CDM (cold dark matter with a cosmo-

logical constant) approach to be the superior scenario. Successes in these areas

cannot be ignored. The conservative approach to favor dark matter as the leading

candidate of the “missing mass” phenomenon. It can be said that halo models are

just extending past their infancy. Indeed, any gasdynamical process incorporates

an enormous amount of complexity. Attempting to find universality among galaxies

is a daunting task if dynamical histories have distinct imprints in the rotation

curves. Currently, NFW profiles offer the most universal approach in halo models.

Despite their inability to accurately fit low-surface-brightness galaxies, their success

encourages us to add new galactic dynamics to the model instead of abandoning

it altogether. These profiles are inferred using N-body simulations, and therefore

questions as to the validity of these simulations certainly enter. For example, one

could argue that the limited number of particles employed prevents an accurate

reproduction of the dynamics; and the singular nature of NFW profiles is certainly

an unattractive feature that does not exist in nature.

The enormous parameter space also leads one to conclude that dark matter’s

existence cannot be proved by galaxy rotation curves alone. Even more narrowly,

perhaps neither can any particular halo model (at least not any from the current

arsenal). Along with cosmological evidence and particle searches for dark matter
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properties, abundances, and composition, galaxy rotation curves will serve as one

of the approaches to investigate its possibility. In the event of a “smoking gun”

observation of dark matter’s existence, rotation curves will play an important role

in understanding galaxy formation and dynamical evolution.



CHAPTER 3
MODIFIED NEWTONIAN MECHANICS

MOND was proposed by Milgrom in 1983 [25] as an empirical alternative to

dark matter in explaining the rotation curve phenomena. By altering gravity at

low acceleration scales, one can reproduce the asymptotically constant velocities of

satellites outside the central galactic bulge [26]. This chapter will first introduce

the nonrelativistic formulation of Milgrom and Bekenstein. Next, relativistic

extensions of this theory will be discussed: first the scalar-tensor varieties whose

major proponents have been Bekenstein and Sanders, and secondly the purely

metric approach of Soussa and Woodard. We will end with the phenomenological

constraints and implications of each of these relativistic approaches.

3.1 Nonrelativistic Formulation

3.1.1 Motivation

One may formulate MOND by altering Newton’s second law to be nonlinear in

the acceleration ~a,

~FNewt = mµ

(
a

a0

)
~a where µ(x) =





1 ∀ x À 1 ,

x ∀ x ¿ 1 .

(3.1)

The function µ(x) is constructed to reproduce Newton’s 2nd law, F = ma for

accelerations a ¿ a0 (corresponding to µ À 1); and F = ma2/a0 for accelerations

a À a0 (corresponding to µ ¿ 1). The numerical value of a0 has been determined

by fitting to the rotation curves of nine well-measured galaxies [27],

a0 = (1.20± 0.27)× 10−10m s−2 . (3.2)

15
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However, when one considers the enormous internal accelerations of galactic and

stellar constituents relative to the center-of-mass acceleration, it becomes preferable

to regard MOND as a modification of the gravitational force at low accelerations 1 ,

~FMOND = f

(
FNewt

ma0

)
~FNewt where f(x) =





1 ∀x À 1 ,

x−
1
2 ∀x ¿ 1 .

(3.3)

This empirical law is constructed to ensure the asymptotically constant velocities

observed in the galactic rotation curves. That is, a particle orbiting a mass

M at an acceleration a ¿ GM
r2 will follow a trajectory governed by the force

FMOND = m
√

a0GM/r. Setting mv2/r = FMOND gives,

√
a0GM

r
=

v2
∞
r

=⇒ a0GM = v4
∞ . (3.4)

In the absence of dark matter, a galaxy’s luminosity L should be a constant times

its mass where the constant depends on the type of galaxy. Therefore, MOND is

able to automatically reproduce the expectation L ∼ v4
∞, which is the observed

Tully-Fisher relation [29].

When the data are analyzed, MOND is shown to be an impressively robust

predictive tool. Using only the measured distributions of gas and stars, and the

fitted mass-to-luminosity ratios for gas and stars, MOND has accurately matched

the data of more than 100 measured galaxies. A review by Sanders and McGaugh

[30] summarizes the data and lists the primary sources. Two significant things

should be noted: first, MOND agrees in detail, even with low-surface-brightness

1 For example, if we were to consider neutral Hydrogen as a classical planetary
system, the proton would be accelerating with a value of about 1019ms−2 about
the atomic barycentre and therefore well above MOND’s characteristic acceleration
scale. Milgrom has considered strongly nonlocal nonrelativistic particle actions in
which the onset of MOND might be governed by the center-of-mass acceleration
[28]
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galaxies [17, 31]; second, the fitted mass-to-luminosity ratios are not unreasonable

[32].

On the other hand, when MOND is applied to intergalactic scales, or clusters

of galaxies, it has proven as yet to be less successful. Some dark matter must be

invoked to explain the temperature and density profiles at the cores of large galaxy

clusters [33], and data from the Sloan digital sky survey claims that satellites of

isolated galaxies violate MOND when care is taken to exclude interloper galaxies

(defined as dwarfs with large physical distances from the primary galaxies which

are claimed to make the halo mass profile difficult to measure) [34]. This objection,

however, has serious difficulty in being applied to all the rotation curves. Prada et

al. suggest that this is what leads to the systematic effects that fools the observer

into measuring a constant velocity dispersion in a “few” instances [34]. To regard

100 rotation curves — most of which have not been systematically checked for

the presence of this purported interloper phenomenon — as a few instances is

currently an overestimation of the interloper hypothesis. Recently, a paper by

Peñarrubia and Benson [35] analyzed the effects of dynamical evolution on the

distribution of dark halo substructures using semi-analytic methods (checked

with the latest N-body simulations). Their goal was to disentangle the effects of

processes acting on the substructures. They conclude that orbital properties of

substructure components are determined a priori by the intergalactic environment

[35] precluding the interloper hypothesis.

3.1.2 Action Principle

Milgrom and Bekenstein were able to obtain the MOND force law from a

nonrelativistic Lagrangian that respected all the symmetry (and hence conserva-

tion) principles we demand of nonrelativistic theories [36]. Considering a general

gravitational potential φ sourced by a mass density ρ, they proposed the following
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Lagrangian,

L = −
∫

d3r

{
ρ(~r)φ(~r) + (8πG)−1a2

0F

[
(~∇φ(~r))2

a2
0

]}
, (3.5)

where the interpolating function F is related to the function µ of Equation 3.1 via,

µ(x) = F ′(x2) . (3.6)

Assuming that the potential vanishes on the boundary, varying L with respect

to φ gives the equation of motion,

~∇ · [f(‖~∇φ‖/a0)~∇φ] = 4πGρ, where f(x) = F ′(x2) . (3.7)

Consider an isolated mass M . Using Gauss’s law and spherical symmetry we

trivially have,

f(‖~∇φ‖/a0)~∇φ =
GM

r3
~r . (3.8)

in view of our empirical requirement set forth in Equation 3.3, we see that the

asymptotic behavior of the acceleration of an object due to an object of mass M

must behave as,

~a −→ −
√

a0GM

r2
~r +O(r−2) . (3.9)

Note the Equation 3.9 applies in all regimes: MOND and Newtonian. Requiring

that,

~∇φ =

√
a0GM

r2
~r , (3.10)

leads to the trivial solution,

φ −→
√

a0GM ln(r/r0) +O(r−1) , (3.11)

where r0 is an arbitrary radius. Solving the field Equation 3.7 can be done by get-

ting the first integral leaving one with an algebraic problem. From the rotational,

space, and time translational symmetry of Equation 3.5 we immediately obtain
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the conserved quantities of linear momentum, angular momentum, and energy,

respectively.

The form of the interpolating function is obviously not unique and many dif-

ferent forms may be taken as long as the limiting behavior matches the requirement

Equation 3.3. A typical example is,

f(x) =

√
1

2
+

1

2

√
1 +

4

x2
, (3.12)

and thus,

F (x) =
√

x + x2 − ln(
√

x +
√

1 + x) . (3.13)

3.2 Relativistic Formulation

3.2.1 Motivation

The purpose of the previous section, and that of the original authors, was to

demonstrate: first, the MOND force law is derivable from an action principle; and

second (and a direct consequence of the first), the action principle would possess

the spacetime symmetries associated with conservation of energy and momentum.

The need to extend MOND into the relativistic domain is easily seen. Esthet-

ically, the nonrelativistic formulation of MOND leaves a theorist almost aching to

extend it to a fully relativistic description. However, and perhaps even fortunately,

it is phenomenology which serves as the greatest impetus. As is, MOND proclaims

itself as an alternative to dark matter, and therefore any phenomena to which the

presence of dark matter has succeeded in explaining must now be equally or better

described by MOND.

If one is interested in cosmology and gravitational lensing, there is no escape

from the requirement of a generally covariant formulation of MOND that includes

at least the usual metric. If MOND is indeed a viable alternative approach, it must
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account for the deficiency observed in the general relativity with no dark matter

prediction [37]. Milgrom, Bekenstein, and Sanders have a scalar-tensor approach to

this end [36]

3.2.2 Scalar-tensor Approach

We will not in anyway here attempt to thoroughly consider scalar-tensor theo-

ries. Rather, we will take a more taxonomic approach, and in the process list their

respective strengths and weaknesses from the theoretical perspective. Bekenstein

[18] gives a more exhaustive review of these theories. The main phenomenological

issue is whether the metric encodes the MOND force law or whether it is coming

from a scalar field. All the scalar-tensor approaches possess the latter feature,

and therefore one may immediately see that a new kind of dark matter emerges.

Namely, if these added fields are real then we are again faced with the challenge of

detecting them as any other dark matter candidate.

Aquadratic Lagrangian: AQUAL

Bekenstein and Milgrom first proposed a relativistic formulation of MOND as

an appendix to their principal theme of devising a nonrelativistic potential theory

in [26]. Their original approach was to introduce a dynamical degree of freedom

in the form of a scalar field ψ in the spirit of scalar-tensor theories. Particles no

longer follow geodesics of the Einstein metric gµν , but rather that of a conformally

related “physical” metric g̃µν = e2ψgµν . MOND physics comes from the scalar field

Lagrangian density,

Lψ = − 1

8πGL2
f̃(L2gµνψ,µψ,ν) , (3.14)

where f̃ is an a priori known function which is constructed so as to reproduce

MOND in the appropriate regimes and L is a constant length. In this theory,

particles follow geodesics of g̃µν . That is, if we parameterize a particle’s worldline
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to be χµ(τ), it has the following action,

Sm = −m

∫
dτeψ

√
gµν(χ(τ))χ̇µ(τ)χ̇ν(τ) , (3.15)

where a dot indicates differentiation with respect to τ . To make contact with the

nonrelativistic theory, expand the particle action,

Sm = −m

∫
dτ

(
1 + ΦN + ψ +

~v2

2
+ . . .

)
. (3.16)

identifying ΦN = −(1 + gtt)/2 as the Newtonian potential, determined by mass

density ρ via the linearized Einstein equations. If we further restrict ourselves to

the quasi-static case, it is straightforward to recover the MOND equation of motion

Equation 3.7 in the weak field limit, with the acceleration of a particle governed by,

~a = −~∇(ΦN + ψ) . (3.17)

Phase coupling gravitation: PCG

AQUAL was discovered to possess the debilitating feature that ψ could

propagate superluminally [26]. To see this, consider the wave equation for free

propagation of ψ that follows from Equation 3.14,

[f̃ ′(L2gµνψ,µψ,ν)g
αβψ,β];α = 0 . (3.18)

Here a semicolon represents covariant differentiation with respect to gµν . Now

linearize Equation 3.18 for small perturbations in ψ and consider the highest

derivative terms. Following Bekenstein’s coordinate prescription [26], it is possible

to find a local Lorentz frame to point in the x-direction, allowing one to expand

Equation 3.18 as,

0 = −δψ,tt + (1 + 2ξ)δψ,xx + δψ,yy + δψ,zz + . . . , (3.19)



22

where ξ ≡ d ln f̃ ′(y)/d ln y and the dots indicate terms with only one derivative. To

determine whether ψ can propagate acausally, we need only consider the highest

derivative term and their respective coefficients. Since ξ ≥ 0, the coefficients in

Equation 3.19 clearly display δψ’s ability to violate causality.

Another downfall of AQUAL comes from the conformal nature in which

the field couples to the Einstein and the physical metrics. It cannot influence

gravitational lensing. We simply state this fact here: any conformal transformation

of the form gµν −→ Ω−2gµν has no impact on the bending of light. We will

revisit this statement and discuss it at greater length when considering a purely

metric theory. This means galaxies induce gravitational lensing only to the extent

predicted by general relativity without dark matter. This is far too small [38].

In order to prevent the superluminal propagation of the scalar field inherent to

the relativistic AQUAL theory, one can add a second scalar field which couples to

ψ to ensure causality. This incarnation of MOND, PCG (Phase Coupled Gravity)

[39], has now for a scalar Lagrangian density,

L[ψ, A] = −1

2

[
gµν(A,µA,ν + η−2A2ψ,µψ,ν) + V(A2)

]
, (3.20)

and equation of motion for A,

A,α
;α − η−2Aψ,αψ,α − AV ′(A2) = 0 . (3.21)

Including a point mass M , the equation of motion for ψ follows from Equation

3.20,

(A2gαβψ,β);α = η2eψMδ3(~r) . (3.22)

Small values of |η| justifies dropping the first term in Equation 3.20 and allows us

to solve for A in terms of ψ. Inserting this into Equation 3.22 reproduces the same

type of equation exhibited by AQUAL for ψ.
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For the choice V(A2) = −1
3
ε−2A6 with ε a constant one can show that a

particle acceleration for spherically symmetric solutions behaves as,

ar = −GM

r2
− η2M

4πεκr
, (3.23)

where κ ≡ 2−3/2

(
1 +

√
1 + 4

(
ηM
πε

)2
)

. Making an appropriate choice of ε and thus

κ and identifying the critical acceleration scale in terms of our PCG parameters,

a0 =
η3

4πGε
, (3.24)

will satisfy the rotation curve requirement. Thus PCG is capable of reducing to

the AQUAL behavior and thus the nonrelativistic regime which is responsible

for rotation curves. It also removes the acausal propagation of the scalar field.

Naively, one would assume that since first derivatives of ψ in Equation 3.21 enter

quadratically that causality ensues. A more thorough analysis by Bekenstein [40]

shows that although this is not sufficient, considering only stable backgrounds

enforces the desired property of causal propagation.

The parameters η and ε are stringently constrained by solar system tests. The

accuracy to which we know the perihelion precession of Mercury proves enough to

marginally rule out PCG (See [18] for a detailed discussion).

Finally, PCG suffers the same problem as AQUAL: the conformal coupling of

the metrics leads to no enhancing of gravitational lensing in the general relativity

with no dark matter hypothesis.

Disformally transformed metrics: Stratified gravitation

The failure of both the AQUAL and PCG theories stem from the conformal

relation between the Einstein and physical metrics. Consider, rather a “disformal”

relation [41],

g̃µν = e−2ψ(Agµν + BL2ψ,µψ,ν) , (3.25)
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where A and B are functions of the invariant gµνψ,µψ,ν and L is a constant length.

The second term in Equation 3.25 is responsible for the additional light deflection

needed to explain observed galaxy lensing without dark matter. However, if one

demands causality then it was found [42] that the sign of B would have to be such

that the effect of the disformal transformation would be to decrease the amount

of gravitational lensing. One way to overcome this shortcoming is to replace the

second term in Equation 3.25 by a non-dynamical vector field which is purely

time-like [43]. This stratified framework, which chooses

g̃µν = e−2ψgµν − 2UµUν sinh(2ψ) , (3.26)

gµνUµUν = −1 , (3.27)

is able to successfully describe observed gravitational lensing phenomena, and

satisfies local solar system tests of gravity. However, it is clearly a preferred-frame

theory, and has no a priori principle in which to select the preferred direction.

Further, Uα must be of a bizarre form to satisfy Equation 3.27 at all spacetime

points — undoubtedly an unnatural feature.

Tensor-Vector-Scalar Theory: TeVeS

Recently, Bekenstein has built on the successes of Sanders’ stratified theory

[18], by formulating a theory incorporating a vector, a scalar, and a tensor field

which work cooperatively to exhibit the desired phenomenology — gravitational

lensing beyond general relativity alone and causal propagation of scalar modes. In

addition, this tensor, vector, scalar (TeVeS) theory is no longer a preferred-frame

theory like the stratified framework theory of Sanders by virtue of the vector field’s

dynamics.
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The TeVeS theory proposes the following transformation between the physical

and Einstein metric,

g̃µν = e−2φgµν − 2UµUν sinh(2φ) , (3.28)

gµνUµUν = −1 . (3.29)

Now, however, the vector follows from the action [18],

SV = − K

32πG

∫
d4x

√−g [gαβgµνU[α,µ]U[β,ν] − 4(λ(x)/K)(gµνUµUν + 1)] , (3.30)

where λ(x) is a Lagrange multiplier enforcing Equation 3.29, and K is a constant of

dimension zero. Further, we employ the notation V[α,β] = Vα,β − Vβ,α. 2

The scalar action is,

Sσ = −1

2

∫
d4x

√−g

[
σ2(gµν − UµU ν)φ,µφ,ν +

G

2`2
σ4F (kGσ2)

]
, (3.31)

where F is a function again constructed to reproduce MOND behavior and k

and ` are constants of length dimension zero and one, respectively. The gravity

action is the usual Einstein-Hilbert action with metric gµν , but the matter action is

constructed coupling to g̃µν instead of gµν .

TeVeS’s scalar equation of motion is,

[
µ(k`2gµνφ,µφ,νg

αβφ,α

]
;β

= kGN(ρ̃ + 3p̃)e−2φ , (3.32)

where µ(y) is defined by the equation,

− µF (µ)− 1

2
µ2F ′(µ) = y . (3.33)

2 It should be noted that Jacobson et al. [44] have considered models such as
Equation 3.30 (Einstein-Aether Theories).



26

Quantities with tildes are constructed using the physical metric. Equation 3.32 is

exact. To exhibit AQUAL behavior, we take gαβ → ηαβ and e−2φ → 1. Further, we

neglect p̃ relative to ρ̃. Equation 3.32 can then be approximated,

~∇ ·
[
µ(k`2(~∇φ)2~∇)φ

]
= kGρ̃ . (3.34)

By properly constructing µ, Equation 3.34 reproduces the nonrelativistic scheme of

AQUAL. Similarly, one can work out from Equation 3.32 the MOND limit and the

GR limit — in fact, Equation 3.32 is the starting point for most analyses.

Parameterizing the metric as,

gαβdxαdxβ = −eν(%)dt2 + eζ(%)
[
d%2 + %2(dθ2 + sin2 θdϕ2)

]
. (3.35)

One can show [18] that gravitational lensing in TeVeS is achieved by,

∆ϕ =
b

2

∫ ∞

−∞

ν ′ − ζ ′ + 4φ′

%
dx , (3.36)

where x =
√

%2 − b2 is the Cartesian coordinate along the light-ray characterized

by distance ρ and impact parameter b from the source. Further, Equation 3.36 can

be approximated to leading order via the relation [18],

∆ϕ = 2b

∫ ∞

−∞

Φ′

%
dx , (3.37)

where Φ = φ + ΦN . This result is consistent with the GR plus dark matter

prediction.

TeVeS’s major setback is that (like dark matter) it introduces new parameters

to which one must then examine their origins. Taking appropriate limits of TeVeS’s

three parameters k, `, K allows one to properly go from general relativity to

MOND, etc. At least two (we may assume that at least one of these parameters

are related explicitly to a0 which is determined from rotation curve data) added

experiments have to be performed to determine these parameters. We can imagine
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that perhaps solar system tests provide one, lensing another, and rotation curves a

third. Thus, like many current problems in current physics, we may recast an old

problem in terms of new unknown parameters.

Another drawback is that if the scalar and vector fields are real entities, they

are in essence a new form of dark matter which need explanation. One can thus

argue that this is simply dark matter in a peculiar guise. Undoubtedly, however,

the TeVeS is an improvement over the previous scalar-tensor approaches, and its

phenomenological success alone makes it a viable and serious candidate explanation

for the current astrophysical data.

3.2.3 Purely Metric Approach

Motivation

One interested in simplicity, viz. by pure degrees of freedom would certainly

want to consider a purely metric extension of MOND, if for no other reason than

theoretical completeness. Further, it is certainly arguable that a purely metric ap-

proach is closer to the “spirit” of general relativity. However, as is usually the case

in physics, one gains simplicity in one facet of a theory only to lose it in another.

We discovered that no local theory can reproduce MOND behavior. Consider the

weak-field expansion of general relativity about a Minkowski background,

S =
1

16πG

∫
d4x

√−gR −→ 1

16πG

∫
d4x

{
h ,µν

µν − h µ
,µ +O(h2)

}
, (3.38)

We want MOND corrections to “turn on” at a characteristic gravitational

acceleration. The Ricci scalar, however, vanishes for general relativity outside a

source. So there is no way a putative MOND correction term based upon R can

“know” to turn on. You can get terms which don’t vanish by using the Kretchman

invariant, RαβγδR
αβγδ; these can indeed tell when to turn on but functions of this

invariant automatically inherit the Ostrogradskian instability [45].
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The only local actions which can avoid the higher derivative problem involve

functions of the Ricci scalar alone. The Gauss-Bonnet invariant avoids this

instability but is purely topological. Since the nonrelativistic MOND force law

involves ‖~∇φ‖2, the weak-field expansion must start at cubic order in the action.

Abandoning locality is certainly not an uncommon occurrence in today’s

theoretical physics. Effective theories have become more and more commonplace in

regimes where ignorance of fundamental principles dominates. Quantum gravity’s

effective action, of course, falls in this category; and although we are unable to

even say what the full effective action is, nothing prevents us from guessing its

form. We chose the simplest class of guesses which would be capable of satisfying

our nonrelativistic constraint Equation 3.7, acting with the inverse covariant

d’Alembertian on the Ricci scalar3 . We will refer to this as the small potential,

ϕ[g] =
1

¤R where ¤ =
1√−g

∂µ(
√−ggµν∂ν) . (3.39)

(We use the convention Rµν ≡ Γρ
νµ,ρ − Γρ

ρµ,ν + Γρ
ρσΓσ

νµ − Γρ
νσΓσ

ρµ.) Embedding

MOND in a nonlocal Lagrangian has the form,

L =
c4

16πG

[
R + c−4a2

0F
(
c4a−2

0 gµνϕ,µϕ,ν

)]√−g , (3.40)

where F(x) is an interpolating function whose form for small x controls the onset

of MOND behavior as in the nonrelativistic case considered previously.

Although the field equations are nonlocal, they do not possess additional

graviton solutions in weak-field perturbation theory. To see this, expand the metric

3 This is not an unprecedented approach, but has been utilized in examining the
physics of the post-inflationary universe [46].
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about a Minkowski background,

gµν = ηµν + hµν . (3.41)

The Ricci scalar follows easily,

R = hµν
,µν −

1

2
h,ν +O(h2) , (3.42)

where graviton indices are raised and lowered using the Lorentz metric. Using our

gauge freedom we choose de Donder gauge,

hµ
ν,µ −

1

2
h,ν = 0 , (3.43)

to show that the small potential is local in the weak-field limit,

ϕ[η + h] = −1

2
h +O(h2) . (3.44)

Since the Lagrangian depends upon the first derivative of ϕ, this theory contains no

higher derivative solutions in weak-field perturbation theory. Further, all solutions

to the source-free Einstein equations are solutions to this theory since R = 0

throughout spacetime, which implies ϕ = 0 as well. Therefore, our modification to

the Einstein-Hilbert action in Equation 3.40 is the change in response to sources,

without adding new weak-field dynamical degrees of freedom — a clear distinction

from the scalar-tensor theories so far discussed.

The class of nonlinear gravity theories we are considering are known to have

a connection to scalar-tensor theories through a conformal rescaling of the metric,

thereby introducing a minimally coupled, massive scalar field [47]. Regardless,

the number of dynamical degrees of freedom remain equivalent. The scalar-tensor

theories of Milgrom, Bekenstein, and Sanders all introduce new degrees of freedom,

and therefore these approaches are truly distinct. Were the small potential ϕ[g] an

independent dynamical variable, rather than a functional of the metric, the purely
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gravitational sector of these models would be identical, and thus the matter sector

would serve to distinguish them. Matter couples in the usual way to gµν in our

class of models whereas it couples to ϕ2gµν in the Bekenstein-Milgrom formalism.

Note in particular that the field equation associated with a truly dynamical scalar,

(ϕ,µF ′);µ = 0 , (3.45)

is not generally solved by ϕ = ¤−1R.

Phenomenological constraints

The two physical processes we will use to guide us in formulating our relativis-

tic extension of MOND are the rotation curves and gravitational lensing. We will

consider circular orbits as an approximation to the typical orbit a satellite of a spi-

ral galaxy follows. The invariant length element in a static, spherically symmetric

geometry can be expressed as,

ds2 ≡ gµνdxµdxν = −B(r)dt2 + A(r)dr2 + r2dΩ2 . (3.46)

The worldline of a test particle moving in this geometry may be parameterized by

χµ(t) and obeys the geodesic equation,

χ̈µ(t) + Γµ
ρσ(χ(t))χ̇ρ(t)χ̇σ(t) = 0 . (3.47)

It is a straightforward exercise to obtain the nonzero connection coefficients from

Equation 3.46,

Γt
tr =

B′

2B′ , Γr
tt =

B′

2A
, Γr

rr =
A′

2A
,

Γr
θθ = − r

A
, Γr

φφ = − r

A
sin2 θ, Γθ

θr =
1

r
,

Γφ
φr =

1

r
, Γθ

φφ = − sin θ cos θ, Γφ
φθ = cot θ . (3.48)
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Now parameterize the worldline for the case of circular motion,

(χt, χr, χθ, χφ) =
(
ct, r,

π

2
, φ(t)

)
. (3.49)

The only nontrivial geodesic equation in Equation 3.47 is,

B′

2A
− r

A

φ̇2

c2
= 0 . (3.50)

The A(r) is thus irrelevant. In circular orbits, the velocity has the relation to

the angular velocity v = rφ̇. In the MOND limit v2 approaches the constant

v2
∞ =

√
a0GM , and thus the MOND limiting form of B(r) must obey,

B′(r) −→ 2

r

√
a0GM

c4
. (3.51)

For weak-fields we can write,

A(r) = 1 + a(r), B(r) = 1 + b(r), (3.52)

where |a(r)| ¿ 1 and |b(r)| ¿ 1. A large spiral galaxy has on the order of 1011

solar masses in dust and gas, or M ∼ 1041kg. Therefore, such a galaxy would enter

the MOND limit at a radius,

Rgal ∼
√

GM

a0

∼ 1020m . (3.53)

It is significant that the natural length scale corresponding to the MOND accelera-

tion,

RMOND ∼ c2

a0

∼ 1027m, (3.54)

is greater than the Hubble radius. This has the important consequence that,

r

RMOND

¿ 1, (3.55)

on galaxy and galactic cluster scales, and therefore powers of r do not necessarily

distinguish ‘large’ and ‘small’ terms.



32

We will now propose a phenomenological Ansatz for the asymptotic behavior

of the weak-fields in terms of four order one parameters 4 ,

a(r) −→ δ1
GM

c2r
+ ε1

√
a0GM

c4
, b(r) −→ δ2

GM

c2r
+ ε2

√
a0GM

c4
ln

(
r

Rgal

)
. (3.57)

From Equation 3.51 we see that MOND predicts ε2 = 2. General relativity without

dark matter predicts ε1 = ε2 = 0 and δ1 = −δ2 = 2. The insertion of an isothermal

dark halo whose density is chosen to reproduce v2
∞ =

√
a0GM would lead to the

general relativity prediction of ε1 = ε2 = δ1 = −δ2 = 2.

To see what the remaining parameters in our Ansatz must be to be consistent

with phenomenology, we consider the angular deflection of light from a mass M in

terms of the turning point R0,

∆φ = 2

∫ ∞

R0

dr

r

√√√√ A(r)(
r

R0

)2
B(R0)
B(r)

− 1
− π . (3.58)

Expanding this expression in powers of the weak-fields and changing variables to

r = R0 csc θ yields,

∆φ = 2

∫ ∞

R0

dr

r

1√(
r

R0

)2

− 1

{
1 +

a(r)

2
− 1

2

b(R0)− b(r)

1− (
R0

r

)2 + · · ·
}
− π , (3.59)

=

∫ π
2

0

dθ
{
a(R0 sec θ)− csc2 θ[b(R0)− b(R0 sec θ)] + · · ·} . (3.60)

4 One may be worried about the logarithmic growth in b(r), but it is of no prac-
tical concern. The change in b(r) from the onset of MOND all the way to the cur-
rent horizon (Rhor ∼ 1026m) is

b(Rhor)− b(Rgal) ∼ −δ2 × 10−6 + ε2 × 10−5 . (3.56)

The weak-field regime is therefore applicable throughout the Hubble volume.
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Substituting in the Ansatz Equation 3.57 gives,

∆φ = (δ1 − δ2)
GM

c2R0

+ (ε1 + ε2)
π

2

√
a0GM

c4
+ · · · . (3.61)

Without dark matter, general relativity gives too little deflection at large R0 to

be consistent with the frequency of lensing by galaxies. General relativity with an

isothermal dark halo is consistent with the existing data [37, 38]. Therefore, for

MOND to faithfully adhere to the current observations, it is required to have the

sum ε1 + ε2 to be positive and of order one.

The field equations

In this section the field equations that would be derived from Equation 3.40

are presented. Here we give a more heuristic approach to this end. To avoid

digression, we simply state here that the one does not get causal field equations by

varying a temporally nonlocal action. Further, if one considers this class of models

in the context of quantum field theory, then issues of nonreal operator eigenvalues

quickly present themselves. We will here derive the field equations without light

of the above concerns. Instead we will use a trick so to speak to obtain causal and

conserved field equations from Equation 3.40. Therefore, one may as well regard

the resulting equations of motion, rather than Equation 3.40 as defining the model.

The method we present reconciles the requirements of causality and conser-

vation. Using retarded boundary conditions, one may easily add corrections to

the field equations to enforce causality. However, it is immensely more difficult to

guess symmetric tensors of any complexity that will combine to have a vanishing

covariant divergence. Of course, field equations derived from any coordinate invari-

ant action will automatically be conserved; however, varying actions which involve

nonlocal operators result in equations at xµ which depend upon fields in the future

as well as in the past of xµ.
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The method is simplest to describe by comparing with the correct variation.

Consider an arbitrary functional of the metric, f [g](y). We can write,

f [g](y)
δϕ[g](y)

δgµν(x)
= f [g](y)

{
− 1

¤y

δ¤y

δgµν(x)

1

¤y
R(y) +

1

¤y

δR(y)

δgµν(x)

}
, (3.62)

where we used the fact that δ¤−1 = −¤−1(δ¤)¤−1.

Varying the covariant d’Alembertian and the Ricci scalar gives,

δ
√
−g(y)¤(y)

δgµν(x)
=

∂

∂yρ

[√
−g(y)

(
δρ

(µδ
σ
ν) −

1

2
gρσgµν

)
δ4(x− y)

]
∂

∂yσ
, (3.63)

δR(y)

δgµν(x)
= [Rµν(y) + DµDν − gµν(y)¤]δ4(x− y) . (3.64)

We now define the small potential using the retarded Green’s function,

ϕ[g](y) ≡
∫

d4z Gret(y; z)R(z) . (3.65)

Using the well known property Gret(x; y) = Gadv(y; x), we have,

∫
d4y f [g](y)

δϕ[g]

δgµν(x)
= −1

2
gµνR

1

¤adv
f +

[
δρ

(µδ
σ
ν) −

1

2
gρσ

]
ϕ,ρ∂σ

1

¤adv
f

+ [Rµν + DµDν − gµν¤]
1

¤adv
f . (3.66)

The trick is to simply replace the advanced Green’s function in Equation 3.66 with

the retarded ones,

∫
d4y f [g](y)

δϕ[g]

δgµν(x)
−→ −1

2
gµνR

1

¤f +

[
δρ

(µδ
σ
ν) −

1

2
gρσ

]
ϕ,ρ∂σ

1

¤f

+ [Rµν + DµDν − gµν¤]
1

¤f . (3.67)

Since conservation depends only upon the differential equations obeyed by the

Green function, it is not affected by this replacement. The source for our gravi-

tational equations of motion is the stress-energy tensor from the variation of the

matter action Sm,

Tµν =
2√−g

δSm

δgµν
. (3.68)
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Finally, taking 16πGc−4/
√−g times the variation of our nonlocal action Equation

3.40 — in the sense of our trick Equation 3.67 — and defining the large potential5 ,

Φ[g] ≡ 1

¤(ϕ,ρF ′);ρ, (3.69)

gives the following field equations,

8πGc−4Tµν = 2[Φ;µν − gµν¤Φ] + [1− 2Φ]Gµν

+ [gµνϕ
,ρΦ,ρ − ϕ,µΦ,ν − ϕ,νΦ,µ] + ϕ,µϕ,νF ′ − a2

0

2c4
gµνF . (3.70)

It is worthwhile to explicitly demonstrate conservation as we have not rigorously

derived Equation 3.70. Taking the covariant divergence Dν of Equation 3.70 gives,

2[Φ;µν − gµν¤Φ];ν = 2R ν
µ Φν , (3.71)

([1− 2Φ]Gµν)
;ν = −2R ν

µ Φν + RΦµ , (3.72)

[gµνϕ
,ρΦ,ρ − ϕ,µΦ,ν − ϕ,νΦ,µ];ν = −ϕ,µ¤Φ−RΦ,µ , (3.73)

(ϕ,µϕ,νF ′);ν = ϕ;µνϕ
,νF ′ + ϕ,µ¤Φ , (3.74)

(
− a2

0

2c4
gµνF

);ν

= −ϕ;µνϕ
,νF ′, (3.75)

which obviously sum to zero. Because 1/¤ denotes the retarded Green’s function,

these equations are causal in the sense that the equations at xµ depend only upon

points within the xµ’s past light-cone6 .

5 Note that the large potential would vanish identically had ϕ been a fundamen-
tal scalar as in the scalar-tensor models of Bekenstein and Milgrom [36].

6 This issue of causality should be distinguished from causal propagation. Field
equations for which the highest derivative term is nonlinear can admit superluminal
propagation as in the relativistic model of Bekenstein and Milgrom [36].
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The Schwarzchild-MOND solution

Here we work out the small and potentials: Equation 3.39 and Equation 3.69,

respectively, for a spherically symmetric and static metric Equation 3.46. They give

rise to two independent equations of motion deriving from Equation 3.70 for this

geometry.

The generally spherically symmetric and static geometry Equation 3.46,

Equation 3.48 gives rise to the following Ricci scalar,

R = − B′′

AB
+

B′

2AB

(
A′

A
+

B′

B

)
+

2

rA

(
A′

A
− B′

B

)
+

2

r2

(
1− 1

A

)
. (3.76)

For this case, and acting upon a function only or r, the covariant d’Alembertian

reduces to,

¤ =
1

r2
√

AB

d

dr

(
r2

√
B

A

d

dr

)
. (3.77)

The differential equation which defines the small potential therefore takes the form,

(
r2

√
B

A
ϕ′

)′

=

(
r2

√
B

A

[
−B′

B
+

2

r
(A− 1)

])′

− r
√

AB

(
1− 1

A

)(
A′

A
+

B′

B

)
.

(3.78)

Assuming the parenthesized terms above vanish at r = 0, we can write,

ϕ′(r) = −B′

B
+

2

r

(
A− 1

)
− 1

r2

√
A

B

∫ r

0

dr′r′
√

B

A

(
A− 1

) (
A′

A
+

B′

B

)
. (3.79)

The differential equation that defines the large potential is,

∂µ

(√−ggµνΦ,ν

)
= ∂µ

(√−ggµνϕ,νF ′
)

=⇒
(
r2

√
B

A
Φ′

)′
=

(
r2

√
B

A
ϕ′F ′

)′
. (3.80)

Assuming again that the parenthesized terms vanish at r = 0 we can write,

Φ′(r) = ϕ′(r)F ′
(

c4ϕ′2(r)
a2

0A(r)

)
. (3.81)

The second covariant derivatives we shall need are,

Φ;tt = −B′

2A
Φ′ , Φ;rr = Φ′′ − A′

2A
Φ′ , ¤Φ =

1

A

[
Φ′′ +

2

r
Φ′ +

1

2

(B′

B
− A′

A

)]
. (3.82)
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Only the diagonal components of the field equations Equation 3.70 are

nontrivial in this geometry. The θθ and φφ components are proportional to

one another, and are identically obtained from the rr and tt equations from

conservation. We have therefore the two independent equations of motion,

8πGA

c4B
Ttt = 2Φ′′ +

4

r
Φ′ +

A

B
Gtt(1− 2Φ) +

a2
0

2c4
AF − A′

A
Φ′ − ϕ′Φ′ , (3.83)

8πG

c4
Trr = −4

r
Φ′ + Grr(1− 2Φ)− a2

0

2c4
AF − B′

B
Φ′, (3.84)

and the two from conservation,

Tφφ

sin2(θ)
= Tθθ =

r3

2A

{ B′

2B

A

B
Ttt +

[ d

dr
+

2

r
− A′

A
+

B′

2B

]
Trr

}
. (3.85)

The tt and rr components of the Einstein tensor are,

A

B
Gtt =

A′

rA
+

(A− 1

r2

)
, Grr =

B′

rB
−

(A− 1

r2

)
. (3.86)

At this point we begin our perturbative analysis in this geometry, and recall

that we may express A(r) and B(r) in terms of the weak-fields a(r) and b(r),

A(r) = 1 + a(r) , (3.87)

B(r) = 1 + b(r) . (3.88)

In the MOND regime, we have |a(r)| ¿ 1 and |b(r)| ¿ 1. Therefore, to leading

order in the weak-fields Equation 3.79 becomes,

ϕ′ −→ 2a

r
− b′ + · · · . (3.89)

Notice that the integrand in Equation 3.79 vanishes exactly in the general relativity

regime when A = B−1. In the MOND regime, the integrand is no longer zero, but

it is second order in the weak fields and we are therefore justified in ignoring this

term altogether for our present analysis.
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In the asymptotic regime we can assume that each derivative adds a factor of

1/r. Hence ϕ′(r) goes like 1/r times the small numbers a(r) or b(r). It follows that

Φ′/r is much larger in magnitude than ϕ′Φ′. By similar reasoning we recognize that

Φ′/r and Φ′′ dominate the other MOND corrections,

∣∣∣1
r
Φ′

∣∣∣ ∼
∣∣∣Φ′′

∣∣∣ À
∣∣∣ϕ′Φ′

∣∣∣ ,
∣∣∣A

′

A
Φ′

∣∣∣ ,
∣∣∣B

′

B
Φ′

∣∣∣ ,
∣∣∣a

2
0

c4
F

∣∣∣ . (3.90)

We will assume Trr = 0 in the weak-field limit and allow for a nonzero

A/BTtt = ρ. Including the first two terms in Equation 3.90 with the general

relativity terms allows us to express Equation 3.83 and Equation 3.84 to leading

order in the weak-fields,

2Φ′′ +
4

r
Φ′ +

a′

r
+

a

r2
+ . . . =

8πG

c4
ρ(r) , (3.91)

−4

r
Φ′ +

b′

r
− a

r2
+ . . . = 0 . (3.92)

The first of these equations Equation 3.91 can be integrated to give,

4

r
Φ′ +

2a

r2
+ · · · = K

r3
+

16πG

c4r3

∫ r

Rgal

dr′r′2ρ(r′) , (3.93)

where K is the constant of integration. Adding Equation 3.92 and Equation 3.93

cancels the leading MOND corrections,

b′

r
+

a

r2
+ · · · = K

r3
+

16πG

c4r3

∫ r

Rgal

dr′r′2ρ(r′) . (3.94)

Notice that Equation 3.94 is independent of the still unknown interpolating

function F . We can therefore make general statements about all models of the type

Equation 3.40. In the absence of dark matter, the mass integral must eventually

stop growing, for which case the left hand side of Equation 3.93 must fall as 1/r3.

To satisfy this situation, b′(r) must go as a constant times 1/r and a(r) must

go like minus this same constant. In terms of our Ansatz of the previous section
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Equation 3.57, we have just demonstrated that,

ε1 + ε2 = 0 . (3.95)

We acquire no lensing at leading order — a phenomenologically unacceptable

result.

It is still worthwhile to see if we can find an interpolating function F(x) to

reproduce MOND rotation curves. We will consider a sphere of mass M and radius

R with very low, constant density,

ρ(r) =
3Mc2

4πR3
θ(R− r) . (3.96)

If the density is small enough the MOND regime prevails throughout, as in a low

surface brightness galaxy. This means that Equation 3.91 can be integrated all the

way down to r = 0 to give,

2Φ′ +
a

r
+ · · · = 8πG

c4r2

∫ r

0

dr′r′2ρ(r′) . (3.97)

We can also use Equation 3.89 to eliminate b′(r) in −r times Equation 3.92,

4Φ′ + ϕ′ − a

r
+ · · · = 0 . (3.98)

Now eliminate a(r) by adding Equation 3.97 and Equation 3.98, and then use

Equation 3.81 to obtain an equation for the small potential,

ϕ′
[
1 + 6F ′

(c4ϕ′2

a2
0

)]
+ · · · = 8πG

c4r2

∫ r

0

dr′r′2ρ(r′) . (3.99)

For r > R the mass integral is constant,

ϕ′
[
1 + 6F ′

(c4ϕ′2

a2
0

)]
+ · · · = 2GM

c2r2
∀r > R . (3.100)

To get flat rotation curves we determined that MOND requires ε2 = 2. We have

just computed explicitly that any model of the type Equation 3.40 must have
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ε1 = −ε2 and therefore the weak-field limit Equation 3.89 for the small potential

implies,

ϕ′(r) −→ −6

r

√
a0GM

c4
+ . . . (3.101)

It follows that the constant term within the square brackets of Equation 3.100 must

exactly cancel, and that the next order term must involve one power of ϕ′. It is

straightforward to compute our interpolating function,

F ′(x) = −1

6
−
√

x

108
+ O(x) =⇒ F(x) = −x

6
− x

3
2

162
+ O(x2) . (3.102)

The associated weak-fields are,

a(r) −→ 4GM

3c2r
− 2

√
a0GM

c4
, (3.103)

b(r) −→ −8GM

3c2r
+ 2

√
a0GM

c4
ln

( r

R

)
. (3.104)

For the general weak-field Ansatz Equation 3.57 of section 2 we have just shown

−2δ1 = δ2 = −8
3

and −ε1 = ε2 = 2.

We have a large amount of freedom in enforcing the MOND limit with regard

to choosing the interpolating function F(x). The MOND limit is enforced by

determining only the first two terms in the small x expansion of F(x). Therefore

depending on the level of suppression desired its functional form is far from unique.

Our only requirement is that the MOND corrections must be sufficiently small

when entering the general relativity regime, i.e. |x| À 1. For example, we can make

F(x) −→ −14
3
|x| 12 for large |x| with the following extension,

F ′(x) = −
7
18

sgn(x)

1 + 1
6
|x| 12

+
2
9
sgn(x)(

1 + 1
6
|x| 12

)2 , (3.105)

F(x) = −
22
3
|x| 12 + 7

9
|x|

1 + 1
6
|x| 12

+ 44 ln
(
1 +

1

6
|x| 12

)
. (3.106)
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For |x| À 1 this would typically suppress MOND corrections by some characteristic

length of the system divided by c2/a0 ∼ 1027 m. If that is not sufficient one can

always extend F(x) differently to obtain more suppression.

The FRW-MOND Solution

Even though we just discovered our relativistic formulation is unable to

produce enough lensing, it is still instructive to see what it does for cosmology.

Further, it serves as a potential gauge of how much a general formulation of MOND

changes in passing from a static geometry to the time dependent one of cosmology.

We begin with the usual Friedmann-Robertson-Walker metric for homogeneous and

isotropic cosmologies,

ds2 ≡ −c2dt2 + a2(t)d~x · d~x . (3.107)

In this geometry the Ricci scalar is,

c2R = 6Ḣ + 12H2 where H ≡ ȧ

a
. (3.108)

The small potential is defined by the equation,

¤ϕ(t) = −a−3 d

dct

(
a3 dϕ

dct

)
= R(t) . (3.109)

We define the initial values of ϕ and its first derivative to be zero, in which case the

small potential becomes,

ϕ(t) = −
∫ t

0

dt′a−3(t′)
∫ t′

0

dt′′a3(t′′)
(
6Ḣ(t′′) + 12H2(t′′)

)
. (3.110)

The large potential is defined by the differential equation,

∂µ

(√−ggµνΦ,ν

)
= ∂µ

(√−ggµνϕ,νF ′
)

=⇒ d

dt

(
a3Φ̇

)
=

d

dt

(
a3ϕ̇F ′

)
. (3.111)

If we again assume null initial values the result is,

Φ(t) =

∫ t

0

dt′ϕ̇(t′)F ′
(
−c2a−2

0 ϕ̇2(t′)
)

. (3.112)
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The nonzero components of the second covariant derivative are,

Φ;00 = c−2Φ̈ , Φ;ij = −c−2HΦ̇gij . (3.113)

For a perfect fluid, the stress-energy tensor is,

Tµν = pgµν + (p + ρ)uµuν . (3.114)

Stress-energy conservation implies, ρ̇ = −3H(ρ + p). The nonzero components of

the Einstein tensor are,

c2G00 = 3H2 , (3.115)

c2Gij = −(2Ḣ + 3H2)gij . (3.116)

The two nontrivial equations of motion from Equation 3.70 in this geometry

are,

8πGc−2ρ = −6HΦ̇ + 3H2(1− 2Φ) +
a2

0

2c2
F , (3.117)

8πGc−2p = 2Φ̈ + 4HΦ̇− (2Ḣ + 3H2)(1− 2Φ)− ϕ̇Φ̇− a2
0

2c2
F . (3.118)

Conservation tells us only one of these equations is independent.

In the MOND regime we can therefore express Equation 3.117 as,

−Hϕ̇ + 3H2
(
1− 1

3
ϕ
)
− 1

12
ϕ̇2 + · · · = 8πGc−2ρ . (3.119)

For cosmology the argument x = −(cϕ̇/a0)
2 is negative so the large potential has

the same sign as the small potential,

Φ(t) −→ 1

6
ϕ(t) . (3.120)

In the MOND regime we can therefore express Equation 3.117 as,

−Hϕ̇ + 3H2
(
1− 1

3
ϕ
)
− 1

12
ϕ̇2 + · · · = 8πGc−2ρ . (3.121)
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Of special interest to cosmology is the case of a power-law scale factor,

a(t) =
(
1 + Hit

)s

. (3.122)

Here Hi is 1/s times the Hubble parameter at t = 0. Substituting into Equation

5.13 gives the small potential,

ϕ(t) = −6s
(2s− 1

3s− 1

){
ln

[
1 + Hit

]
− (1− 3s)−1

[(
1 + Hit

)1−3s

− 1
]}

. (3.123)

The logarithm term dominates in Equation 3.124 at late times. In this regime, we

can express ϕ̇ in terms of the Hubble parameter H,

ϕ(t) = −6s
(2s− 1

3s− 1

){
ln

[
1 + Hit

]
− (1− 3s)−1

[(
1 + Hit

)1−3s

− 1
]}

. (3.124)

We can therefore write the MOND analog of the Friedman equation for power law

expansion,

3
{

1 + 2σ − σ2 + 2sσ ln
[
1 + Hit

]}
H2(t) + · · · = 8πGc−2ρ(t) , (3.125)

where σ ≡ (2s− 1)/(3s− 1). For s > 1
2
, the logarithm term serves to gradually slow

the expansion — consistent with the MOND strengthening of the force of gravity in

the weak-field regime.

For the case of radiation domination (s = 1/2 and σ = 0) we note that

ϕ(t) = 0, and hence so too Φ(t) = 0. The equations are therefore those of general

relativity, but with the energy and pressure coming from ordinary matter. This is

of course unacceptable in light of recent observations which show that nonbaryonic

matter must predominate over baryonic matter by about a factor of six [1].

3.3 The MOND No-Go Statement for Purely Metric Approaches

In the previous section we discussed scalar-tensor theories of MOND. These

models have had successes in complying with the phenomenological restrictions
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currently available, but to date they have not shown to be completely satisfac-

tory for the reasons already presented. We went on to develop systematically a

relativistic version of MOND using a purely metric approach. The purely metric

class of models suffered from far too little lensing. It is the purpose of this sec-

tion to demonstrate that any purely metric theory of MOND will suffer the same

phenomenological shortcoming.

3.3.1 Motivation

It was our intention in developing a phenomenologically viable theory of

MOND which would satisfy the requirements of gravitational lensing and still

reproduce the rotation curves. What we discovered, however, was that to leading

order in the weak-fields in our class of models Equation 3.40, the MOND predicts

no additional lensing to the prediction of general relativity. This is inconsistent

without invoking the presence of dark matter. One is immediately tempted to

consider different classes of models which can overcome the lensing “disaster”. For

example, one might replace the covariant d’Alembertian with the conformal one in

defining a small potential,

ϕc[g] =
1

¤ c
R where¤c = ¤− 1

6
R . (3.126)

However, the distinction between ¤ and ¤c disappears in the weak-field regime

since R scales as one power of the weak-fields times 1/r2. Therefore, this class of

models would have no hope of having any success in acquiring a nonzero lensing

contribution to leading order in the weak-fields.

Further, any MOND action which only contains the Ricci scalar as the

source upon which the nonlocal operator acts will have no impact during the

radiation phase of the universe — an entirely unacceptable feature. The next most
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complicated scalar potential would seem to be,

ϕ2[g] ≡ c4

a2
0

1

¤
(
RµνRµν

)
. (3.127)

Because ϕ2 has roughly two derivatives acting upon two powers of the weak-fields,

one must also change the Lagrangian,

L2 =
c4

16πG

[
R + c−4a2

0F2

(
ϕ2[g]

)]√−g . (3.128)

For this class of models F2(x) would be linear in the MOND regime.

Instead of embarking on a program to discover a class of theories which are

able to satisfy the lensing requirements, we propose to study the general features

any purely metric formulation of MOND possesses. This approach is obviously

the more powerful if a definitive result can be obtained (or at least if some firmer

guidelines as to which classes of models can be considered in making MOND

relativistic).

3.3.2 The Statement

We intend to show here that no phenomenologically viable, purely metric

approach of MOND can be constructed within a set of given assumptions.

We assume that the gravitational force is mediated by the metric tensor

gµν(x), and that its source is the usual stress-energy tensor Tµν(x). In four space-

time dimensions the metric is determined by the set of ten equations having the

form,

Gµν [g] = 8πGTµν , (3.129)

where the gravity tensor, Gµν is a functional of the metric (for ordinary general

relativity it is simply the Einstein tensor Gµν). The stress-energy tensor is obtained

as usual by varying the matter action.
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We assume that the gravity tensor is covariant and is covariantly conserved,

gρνDρGµν = 0 . (3.130)

At this point we have made no restrictions on the gravity tensor. In particular, we

allow it to involve higher derivatives, and even to be a nonlocal functional of the

metric.

Recall that MOND and Newtonian gravity are distinguishable only for very

small accelerations. These accelerations are expressed as derivatives of the metric.

It is well known that diffeomorphism invariance bestows the freedom to choose a

coordinate frame in which the metric agrees with the Minkowski metric ηµν at a

single point. The observed fact that the gradients of the metric are small allow us

to make the metric numerically quite close to ηµν over a large region. Therefore, we

are justified in expanding the gravity tensor in weak-field perturbation theory,

gµν(x) = ηµν + hµν(x) , (3.131)

Gµν [g] = Gµν [η + h] . (3.132)

The crucial observation now in specializing to MOND, is to notice that the

MOND force law Equation 3.4 scales like the square root of the mass,

FMOND =

√
a0GM

r
. (3.133)

As a result, at least one component of hµν must scale like
√

GM (for spherical

distributions this would be the rr component but this does not matter). It is

obvious that the right hand side of Equation 3.129 scales like GM , and therefore

Gµν [η + h] must have at least one nonzero component whose lowest term is of order

h2.

If we further assume gravity to be absolutely stable then not all ten compo-

nents of Gµν [η + h] can begin at quadratic order in the weak-field expansion. This
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is due to the fact that the dynamical subset of field equations are obtained from

varying the gravitational Hamiltonian. If its variation were quadratic then the

Hamiltonian would be cubic, and this would be inconsistent with stability. The

conclusion therefore is that only a subset of the ten components of Gµν [η + h] can

begin at order h2.

This subset must be distinguished in some covariant fashion. A symmetric,

second rank tensor in four dimensions has two distinguished components: its

covariant derivative and its trace. We can immediately see from Equation 3.130

that conservation occurs at all orders in perturbation theory, and therefore the

covariant divergence cannot be responsible for the required h2 term. We are left

with the trace as the only remaining possibility,

gµνGµν [η + h] = O(h2) . (3.134)

Equation 3.134 implies asymptotic conformal invariance. Although we are able

to reproduce the MOND rotation curves, the corrections to gravitational lensing of

general relativity with no dark matter come in at quadratic order, and are therefore

far too weak [37].

To see this, note that in the weak-field limit, one can perform a local, confor-

mal rescaling of the metric,

gµν(x) −→ Ω2(x)gµν(x) , (3.135)

and completely remove the corrections — the linearized MOND weak-fields are

traceless. It has been known for some time that traceless metric field equations

imply invariance under the conformal transformation in Equation 3.135 [48]. The

full field equations are not traceless, and so neither is the full theory conformally

invariant. This means that the linearized field equations only determine the metric

up to a conformal factor (and a linearized diffeomorphism, but this is irrelevant
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for the argument). The conformal part of the metric is fixed by the order h2 term

in the trace of the field equations, and this is how one component hµν contrives to

scale like
√

GM .

This is a disaster for the phenomenology of gravitational lensing. Recall that

for a general metric gµν the Lagrange density of electromagnetism is,

L = −1

4
FµνF

ρσgµρgνσ
√−g , (3.136)

where Fµν ≡ ∂µAν − ∂νAµ. Equation 3.136 is invariant under the metric rescaling

Equation 3.135, and thus oblivious to MOND corrections to general relativity in

the weak-field limit.

An Example

Here we will illustrate our no-go statement’s using our nonlocal, purely metric

model. The equations of motion Equation 3.70 imply the identification,

Gµν [g] = 2[Φ;µν − gµν¤Φ] + [1− 2Φ]Gµν

+ [gµνϕ
,ρΦ,ρ − ϕ,µΦ,ν − ϕ,νΦ,µ] + ϕ,µϕ,νF ′ − a2

0

2c4
gµνF . (3.137)

We have already worked out the leading order terms in the small and large

potentials, and the interpolating function as well. We may leave the large potential

Φ[g] = 1
¤(ϕ,ρF ′);ρ in terms of the small potential ϕ, in which case the necessary

relations are,

F(x) −→ −1

6
x , (3.138)

Φ[g] −→ −1

6
ϕ . (3.139)

In taking the weak-field limit of Gµν we may neglect any products of Rµν , ϕ or

Φ, such as GµΦ, ϕ,ρΦ,ρ, and ϕ,µϕ,ν . Henceforth, the weak-field limit of Gµν is
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contained in the four terms,

Gµν −→ 1

3
(gµν¤ϕ− ϕ;µν) + Rµν − 1

2
gµνR . (3.140)

Of course these terms contain higher powers of hµν , but more importantly they

contain all the linear pieces. And the terms we have kept are exactly traceless,

gµνGµν −→ gµν

(
1

3
gµν¤ϕ− 1

3
ϕ;µν + Rµν − 1

2
gµνR

)
, (3.141)

= ¤ϕ−R = 0 . (3.142)

Note that tracelessness (and hence conformal invariance) is not a feature of the

full field equations. In particular,

gµνGµν = −6¤Φ−R[1− 2Φ] + 2ϕ,µΦ,µ + ϕ,µϕ,µF ′ − 2a2
0

c4
F . (3.143)

This scales like h2 in the weak-field expansion.

3.3.3 A Connection with TeVeS

We have constructed MOND as a purely classical theory of gravity in the

sense that no attempt at quantization has been made (that said, the class of

models we derived can be thought of as originating from the effective action of

gravity). It should be noted that Bekenstein’s TeVeS model can be put in the form

of a nonlocal, purely metric theory as long as the scalar and vector fields are not

directly observed. This is done by integrating out those fields, leaving one with a

nonlocal, purely metric action.

A second and extremely important distinction between the TeVeS theory and

the purely metric theory is the coupling of gravity to matter. The TeVeS theory

possesses a physical metric and an Einstein metric. One simple and direct con-

sequence of this fact is that gravitational and electromagnetic radiation traveling

from distant sources should possess disparate travel times. Recall that in the TeVeS

theory, the physical (g̃µν) and Einstein metric (gµν) are related via the scalar field φ
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and the vector field Uµ,

g̃µν = e−2φgµν − 2UµUν sinh(2φ) . (3.144)

Suppose we were to observe a “significant” astrophysical event (such as a Super-

nova) from a source such as the Large Magellanic Cloud (LMC)7 . Assuming a

Minkowski background (which is a reasonable first approximation) we would expect

gravitational waves to take a time T = D/c to reach us, while ultrarelativistic

neutrinos would take a time,

T̃ =
1

c

∫ D

0

e−2φdr , (3.145)

' T (1− 2φ) . (3.146)

In obtaining Equation 3.146 we made two assumptions. First, that the vector

of Equation 3.144 is directed in the direction of the cosmological evolution pa-

rameter, i.e. Uµ = δ0
µ. Secondly, we assume that the value of the scalar field is

approximately constant and has a magnitude φ << 1. This last assumption can

be understood in far greater detail in [18]. However, a reasonable choice would

be φ ∼ 10−6. The distance to the LMC is D ≈ 105lyrs; and therefore this value

of φ would correspond to a delay of ∆T ≈ 10 min. Consequently, the parameter

space of theories like TeVeS should ostensibly be constrained, and perhaps either be

bolstered or falsified.

7 For example, an observer at the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) and an observer at SuperKamiokande (SuperK) would be capable
of detecting the gravitational waves and neutrino flux from the event in the LMC.
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3.3.4 Revisiting the No-Go Statement

This section examines the no-go statement in more detail. Specifically we

consider circumventing the gravitational lensing disaster by relaxing the assumption

of gravitational stability.

Let us revisit the assumptions which led to our no-go result:

1. The gravitational force is carried by the metric with its source being the

usual stress-energy tensor.

2. Gravity is described by a covariant theory.

3. The MOND force law can be realized in weak-field perturbation theory.

4. The theory of gravity is absolutely stable.

5. Electromagnetism couples conformally to gravity.

The third and fifth assumptions are the most rigid. The third, if untrue,

would inhibit us from working with any relativistic theory of MOND; if there is no

region for which the MOND force is weak (or at least as weak as the Newtonian

gravitational force), then there is no hope in passing even solar system experiments.

The first assumption may be violated if one makes a distinction between a

“physical” and “gravitational” metric. In such a case test particles would follow

geodesics of the former while gravity would behave according to dynamics of the

latter. This is obviously a violation of the strong equivalence principle, but it

is worth noting that to date there has been no conclusive data forbidding this

possibility (See [36] for a detailed consideration). This old idea has been explored

with many more modern theories such as Brans-Dicke [49], Dirac’s variable

gravitational constant [50], and string theories [51] to name a few.

The second assumption is easily foregone if one specifies a preferred-frame as

we have seen in a previous section. However, by losing covariance or perturbability

would certainly seem to be counter to the spirit in which we set upon in construct-

ing a purely metric theory. Our fundamental prescription makes strong use of
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the strong equivalence principle whereby gravity and matter are described by one

metric, not two.

Relaxing the fourth assumption, that of gravitational stability, is seemingly the

most reasonable choice to overcome the no-go statement. Given the choice between

a stable and unstable theory when examining an observably stable system, the

physicist will always choose the former. However, when phenomenologically driven,

the latter may be the choice of greater utility. When the instability manifests itself

at scales outside or nearly outside the physical scale, or at least in regimes where

perturbative predictions no longer hold, the phenomenologist may cautiously accept

(or at least consider accepting) the unstable solution as a candidate explanation. If

the gravitational stability is on the super-cluster scale or larger, we may consider

the possibility of all ten of the linearized MOND equations vanishing — the trace

component is no longer distinguished.

How does this relaxation affect the no-go statement? Imagine that all of the

linearized MOND weak-fields vanish in the field equations, in which case there

would no longer be a linearized theory – a sufficient bending of light could be

realized. We have already discussed the fact that if the MOND weak-fields begin

at order h2, then the gravitational Hamiltonian begins at cubic order. This signals

an instability, but not necessarily a fatal one. There are two weak-field regimes –

the weak-field (or Newtonian) and ultra-weak-field (or deep MOND). In regions

such as the solar system it would be the Newtonian regime which dominates and

thus we experience no deviation from well established physics. At larger scales

(galactic and/or cosmological) we expect the deep MOND regime to enter the

fold. At these scales, the unstable solution would proceed to decay into large

wavelength particles diffusing as the universe expands. The result is that a return

to the Newtonian regime could occur as decay products build a sufficiently large

gravitational potential. The instability would, in essence, turn itself off just as it



53

becomes too large to become quantitatively reliable. We would no longer have a the

tracelessness of the linearized equations — there would be no linearized theory, and

hence gravitational lensing could be affected by MOND corrections.



CHAPTER 4
DARK ENERGY: THE MISSING ENERGY

4.1 Introduction

One of the greatest surprises to astrophysicists and particle physicists alike

in the last 20 years is the recent observation from Type Ia Supernovae that

the universe is entering a phase of acceleration. The Standard Cosmology is

characterized by an early period of accelerated expansion (inflation) leading to

a flat universe, a process supported by the large-scale isotropy observed in the

Cosmic Microwave Background (CMB) [1]. The matter we see today is the result of

gravitational collapse over 13.76 Gyrs after the initial singularity — which in turn

is a manifestation of the density perturbations created by quantum fluctuations

at the end of inflation. The sum of the critical energy fractions is very nearly one,

with its current decomposition consisting of nearly 30% from matter (of which

only approximately 4% is ordinary), and over 70% from an unknown source. The

first year’s data of WMAP [1] gives us (in terms of the Friedmann equation of

cosmology in the present epoch) the critical fractions,

Ωtot = Ωk + Ωm + Ωr + ΩX = 1.02± 0.02 , (4.1)

Ωk = Ωr = 0 (95% CL) , (4.2)

Ωm = 0.27± 0.04 , (4.3)

ΩX = 0.73± 0.04 . (4.4)

ΩX of course represents the source of critical energy responsible for the acceleration

of the universe. This “dark” energy has commanded the attention of a wide variety

of researchers, both theoretical and experimental.

54
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The term dark energy, much like dark matter, is a rather broad encompass-

ment of theoretical ideas – essentially referring to some added component to the

right hand side of the Einstein equation which represents a “substance” which

exerts a negative pressure and therefore induces expansion. Interestingly, Einstein’s

greatest blunder, the cosmological constant introduced in his research to ensure

a static universe, has now almost impishly reintroduced itself into the theoretical

arena.

4.2 The Many Faces of Dark Energy

Here we review the fundamental physics behind dark energy. Simple observa-

tional ideas — coupled with theory — allows one to easily understand the nature of

dark energy. We will survey the modern landscape of theoretical ideas with a broad

brush attempting to capture the more important themes and identify the common

properties each must share.

On large scales the universe is homogeneous and isotropic, allowing one to

use the Friedman-Robertson-Walker (FRW) metric to define the invariant length

element in natural units,

ds2 ≡ gµν(x)dxµdxν = −dt2 + a2(t)d~x · d~x . (4.5)

Reading off the metric components, assuming the perfect-fluid form (with energy

and pressure densities ρ(t) and p(t), respectively), and inserting them into the

Einstein equation yields the two independent equations,

3

(
ȧ

a

)2

= 8πGρ , (4.6)

2
ä

a
−

(
ȧ

a

)2

= −8πGp . (4.7)

(4.8)
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Taking the linear combination of Equations 4.6 and 4.7 gives,

ä(t)

a(t)
= −4πG

3

[
ρ(t) + 3p(t)

]
, (4.9)

then it is clear that in order for the universe to undergo accelerated expansion (i.e.

ä > 0), we must have,

p < 0, and |p| ∼ |ρ| . (4.10)

A useful but unfortunately named quantity is q, the deceleration parameter defined

by,

q ≡ − ä

ȧ2
a . (4.11)

Clearly, ȧ2 and a are positive definite, and therefore an accelerating universe

demands q < 0.

Observationally, one can understand late-time expansion using a Hubble plot.

The cosmological redshift, z, can be equivalently defined using the ratios of photon

wavelengths or the ratios of scale factors at different times,

z ≡ λnow

λthen

− 1 , z ≡ a0

a(t)
− 1 , (4.12)

where a0 is the value of the scale factor now and time t = 0 is the present and all

values of t > 0 involve the past. Physical distances are determined via the relation,

dphys = a(t)dco−moving . (4.13)

Supernovae have the desirable feature of having well-determined luminosities, and

thus are good for distance and velocity measurements. The flux F one measures is

related to the luminosity L thusly:

F =
L

4πd2
L

, (4.14)

where dL is the luminosity distance (physical distance) to the supernova. It is

simple to show using Equation 4.12 and the Hubble parameter H = ȧ/a that the
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luminosity distance can be calculated with the integral,

dL = (1 + z)

∫ z

0

dz′

H(z′)
. (4.15)

Substituting into Equation 4.15 the expansion of H(z) for small z gives,

dL =
(1 + z)

H0

∫ z

0

dz′
(

1− 1

H0

H ′
0z
′ + . . .

)
. (4.16)

Using Equation 4.11 and the chain rule allows us to make the identification

H ′
0 = (1 + q)H0. Integrating Equation 4.16 term by term and collecting powers

results in the following power series in z,

dL =
z

H0

[
1 +

1

2
(1− q0)z + . . .

]
. (4.17)

The first term in Equation 4.17 represents Hubble’s law — namely, v = H0d. The

second term is the first deviation of Hubble’s law. Therefore, by measuring dL and

z and plotting them one infers the curvature (or deviation from linearity). For

z & 1, this expansion breaks down; in which case numerical integration can be

performed using the energy density one assumes to be present in Equation 4.6 (this

obviously introduces some model-dependent effects).

To determine the evolution of the missing energy component, we define the

parameter w which relates the energy and pressure densities at any given time by

the equation of state,

p = wρ (4.18)

Equations 4.9 and 4.18, along with the requirement that the universe accelerate

forces the inequality,

ρ(1 + 3w) < 0 . (4.19)

Since ρ ≥ 0, dark energy must give rise to w < −1
3
. Recently, w has become slightly

more constrained as measurements have improved. In order for the structure

formation we currently observe to exist from the density perturbations indicated
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by CMB anisotropy measurements, we must have w < −1
2

[52]. Additionally, the

absence of any intragalactic physics due to dark energy leads one to believe that its

distribution be smooth and homogeneous on large-scales.

The Cosmological Constant

The history of the cosmological constant is now so well known it needs little

development. Einstein introduced a constant to his general relativity equations

to balance the collapsing effect that matter alone would exert on the cosmic fluid.

By doing this it imposed what he felt at the time to be the natural state of the

universe — static.

Of course, the observed redshift of distant galaxies quickly did away with

the notion of a static universe; however, the cosmological constant would undergo

a conceptual “revolution” soon after, when particle theorists were forced to

incorporate the quantum fluctuations of the vacuum which persist in gravity even

after renormalization. For example, consider the Hamiltonian of the quantum

harmonic oscillator with N degrees of freedom in terms of the raising and lowering

operators a† and a, respectively:

H = ~ω
N∑

i=1

[
a†iai +

1

2

]
= ~ω

N∑
i=1

a†iai +
N~ω

2
. (4.20)

The transition to field theory takes the number of degrees of freedom to infinity,

H =
∑

~k

[
a†(~k)a(~k) +

1

2

]
~ω(~k) . (4.21)

Clearly, the ground state contributes an infinity to Equation 4.21. The usual

practice is to redefine the Hamiltonian by shifting the energy by an infinite

amount as only energy differences are observable quantities. This procedure,

however, cannot be employed with gravity. Theories like QED, QCD, and the

EW force all possess dimensionless expansion parameters. Thus, one may always

find enough counter terms in the renormalization scheme at all energy scales.
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The expansion parameter of gravity is Newton’s constant GN , which in natural

units has dimensions M−2. Thus, as one increases in energy (i.e. probing the

ultraviolet) it takes more and more counter terms to renormalize to a finite value

— an infinite such counter terms for higher order terms and thus gravity in this

sense is nonperturbatively finite. Admitting our ignorance we may insert an ad hoc

cutoff,

HVAC ∼
Λ∑

~k

~ω(~k) = Λ . (4.22)

The cutoff scale is often chosen to be the Planck mass, Λ ∼ MP ∼ 1019GeV,

at which point new physics is needed to make predictions as to how gravity and

spacetime behave. Further, the Casimir effect, which in QED is the force registered

by two neutral, conducting plates as a result of quantum vacuum fluctuations lends

credence that the vacuum plays a definite role at certain scales [53].

Vacuum energy is naturally homogeneous, isotropic, and of course must enter

Einstein’s equation covariantly,

TVAC
µν = ρVACgµν ∼ M4

P gµν , (4.23)

Vacuum energy has the inherent properties that ρVAC is uniform throughout

spacetime and that pVAC = −ρVAC (i.e. w = −1).

The proposition of a cutoff introduces an awkward problem which we must

face. Currently, the value of the constant can be grossly estimated by assuming,

ρ ∼ ρΛ ∼ 3H2
0

8πG
∼ 10−48GeV4 . (4.24)

If we take a cutoff seriously, then a bare cosmological constant would have a value,

ρΛ bare ∼ Λ4 ∼ 1076GeV4 . (4.25)

Thus, we are forced to account for a discrepancy of 120 orders of magnitude

between the expected and the observed. One may do away with many orders of



60

magnitude if supersymmetry is included (with a cutoff scale MSUSY ∼TeV), or

if the cutoff is not the Planck scale but rather the electroweak scale of 100 GeV;

however, it does not do nearly enough and we are left with essentially the same

questions, if but perhaps in a slightly less embarrassing form.

The observation of a small but non-zero cosmological constant which leads

to the so-called coincidence problem: namely, why has it only recently achieved

relative dominance [54, 55]?

There have been many attempts at understanding these critical problems

[56, 57, 58, 59, 60, 61, 62], none of which can be deemed satisfactory solutions,

else we would certainly have something far more profound to say about dark

energy. Introducing a homogeneous scalar field which possesses dynamics will work

[63, 64, 65, 66], but one must understand why it is homogeneous [67] and again

why it has achieved dominance now. This approach, named quintessence, works as

a tracker solution, whereby the energy density of the scalar field follows the energy

density of the universe in such a way as to produce late-time acceleration.

Long-range forces have been suggested [68] whereby one introduces a charged

scalar field with a long-range, self-interacting force mediated by vector gauge boson.

If the gauge boson mass were to vanish at the minimum of the scalar potential, the

field would be unable to relax to its minimum, and cosmic acceleration could be

achieved [68]. Unlike quintessence, this model predicts an oscillating equation of

state [68] which can ostensibly be observed by high-z Supernovae; and therefore,

this model is distinguishable.



CHAPTER 5
LATE TIME ACCELERATION WITH A MODIFIED EINSTEIN-HILBERT

ACTION

As was the case with dark matter, dark energy plays the role of an added

and hitherto unknown component to the right hand side of the Einstein equation.

Endowing it with the special property that it exerts a negative pressure on the

cosmological fluid provides us with a somewhat natural mechanism with which

to explain late-time acceleration. And just as MOND announces itself as an

alternative to the dark matter hypothesis, modified Einstein-Hilbert gravities

position themselves as alternative candidate explanations.

This chapter illustrates how adding a term proportional to an inverse power

of the Ricci scalar gives rise to an accelerating universe in late-time cosmology, i.e.

post big-bang inflation. We then examine the effect an added inverse Ricci term in

the action has on the resulting force of gravity.

5.1 Late-time Acceleration

Carroll, Duvvuri, Trodden, and Turner proposed a purely gravitational

approach [69]. Late time acceleration is achieved by considering a subset of

nonlinear gravity theories in which a function of the Ricci scalar is added to the

usual Einstein-Hilbert action,

Sg[g] =
1

16πG

∫
d4x

√−g [R + f(R)] , (5.1)

where,

f(R) = −µ2(p+1)R−p ∀ p > 0 . (5.2)

61
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From dimensionality we see that µ is an a priori unknown parameter of mass

dimension one. Some connections to braneworlds have been proposed in which

terms with inverse powers of the Ricci scalar are exhibited [70].

For simplicity we will consider the case p = 1 at no loss of qualitative

understanding. We also include the matter action for completeness, in which case

the action is,

S =
1

16πG

∫
d4x

√−g

(
R− µ4

R

)
+

∫
d4xLM . (5.3)

The equations of motion follow directly from Equation 5.28 via the variation,

8πGTM
µν =

−2√−g

δSg

δgµν
, (5.4)

=

(
1 +

µ4

R

)
Rµν − 1

2

(
1− µ4

R2

)
Rgµν + (gµν¤−DµDν)

µ4

R2
, (5.5)

where TM
µν is the matter energy-momentum tensor. It is quite evident that the limit

µ → 0 in Equation 5.29 takes us back to the usual Einstein equation of motion.

Equation 5.29 can be trivially solved for R if one is considering the constant-

curvature vacuum solution (i.e. DµR = 0 and TM
µν = 0). Interestingly, they are

non-zero,

Rvac = ±
√

3µ2 , (5.6)

unlike their Minkowski counterpart. Of course, a (negative) positive constant-

curvature solution is precisely (anti) de Sitter space, and we therefore see imme-

diately how our equation of motion Equation 5.29 is capable of providing a purely

gravitational mechanism for explaining cosmological acceleration.

We wish to consider cosmological scenarios. Thus, on the grounds of large-

scale isotropy and homogeneity of the cosmological fluid, we restrict ourselves to

the perfect fluid form of the energy-momentum tensor,

TM
µν = (ρM + PM)UµUν + PMgµν , (5.7)
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where Uα is the fluid rest-frame four velocity, ρM is the energy density of matter

and radiation, PM is the pressure of matter and radiation which is related to the

energy density via the equation of state PM = wρM . In a matter dominated

universe, w = 0; and in a radiation dominated universe, w = 1/3.

Homogeneity and isotropy allows also to limit our analysis to metrics of the

Robertson-Walker form,

ds2 = −gµνdxµdxν = −dt2 + a2(t)d~x · d~x . (5.8)

It is straightforward to compute the Ricci scalar in terms of the scale factor a(t)

from Equation 5.8,

R = 6

(
ä

a
+

ȧ2

a2

)
= 6(Ḣ + 2H2) , (5.9)

where H is the Hubble parameter,

H ≡ ȧ

a
. (5.10)

With Equation 5.9 and Equation 5.8, we obtain the two time-time and space-space

equations of motion from Equation 5.29,

3H2 − µ4

12(Ḣ + 2H2)3
(2HḦ + 15H2Ḣ + 2Ḣ2 + 6H4) = 8πGρM , (5.11)

Ḣ +
3

2
H2 − µ4

72(Ḣ + 2H2)2

(
4Ḣ + 9H2 + 2

R̈

R
− 6

Ṙ2

R2
+ 4H

Ṙ

R

)
= −4πGPM ,

(5.12)

respectively.

These fourth-order equations are cumbersome and therefore extracting their

cosmological implications not an easy task in their present form. Instead, Carroll

et al. [69] performed a specific conformal transformation on the original degrees of
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freedom,

g̃µν = p(φ)gµν , p ≡ exp

(√
16πG

3
φ

)
= 1 +

µ4

R2
, (5.13)

dt̃ =
√

pdt , ã(t) =
√

pa(t) , (5.14)

ρ̃M = p−2ρM , P̃M = p−2PM . (5.15)

where φ is a real scalar function on space-time. This transformation has been

extensively treated [47], and involves representing metric degrees of freedom in

terms of a fictitious scalar field. The transformation leads to the following equation

of motion for the transformed expansion parameter,

H̃2 =
8πG

3

(
ρφ + ρ̃M

)
, (5.16)

and scalar equation of motion,

φ′′ + 3H̃φ′ +
dV (φ)

dφ
− (1− 3w)√

6
ρ̃M , (5.17)

where a prime denotes differentiation with respect to t̃. We have introduced the

potential,

V (φ) =
µ2

8πG

√
p− 1

p2
, (5.18)

and here we identify the transformed energy density and scalar energy density,

ρ̃M =
K

ã3(1+w)
exp

[
−

√
4πG

3
(1− 3w)φ

]
, (5.19)

ρφ =
1

2
φ′2 + V (φ) , (5.20)

respectively. Carroll et al. [69] considered three qualitatively distinct cases,

assuming an initial value for the scalar field to satisfy,

φ0 ¿ MP ≡ 1√
16πG

. (5.21)
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From Equation 5.18, we see that the potential vanishes when φ → 0 and φ → ∞.

The limit φ → 0 would normally correspond to the Minkowski vacuum, but from

Equation 5.13 it is clear that instead a curvature singularity exists in this limit.

Although φ → ∞ corresponds to R → 0 and seems like a possible Minkowski

vacuum solution. However, from Equation 5.17 and Equation 5.13 we see that the

solution is oscillatory at asymptotically large values of φ and therefore unphysical.

When the initial condition, φ′0 = φ′C , where φ′C is the critical value for which

the scalar field comes to rest at the peak of the potential, the scalar field energy

density becomes constant. Therefore,

H̃[φ′0 = φ′C ] = constant . (5.22)

This of course is the hallmark of a de Sitter expansion, albeit under unstable

conditions since any perturbations in the scalar field will have it exhibit one of the

alternative qualitative possibilities.

For the scenario φ′0 < φ′C , the scalar field never reaches the maximum but rolls

back toward φ = 0 and the universe collapses upon itself. As V → 0 and H̃ goes to

a constant, the deceleration parameter and the Ricci scalar, both of which depend

upon Ḣ or H̃ ′, are singular since Ḣ ∼ V ′ ∼ 1√
φ
→∞.

Alternatively, the scalar field can be endowed with φ′0 > φ′C in which case the

scalar field becomes quite large with time and the potential behaves as,

V (φ) → µ2M2
P p−3/2 = µ2M2

P exp

(
−

√
3

2

φ

MP

)
. (5.23)

If we seek a power law solution for the scale factor,

ã ∼ t̃n ∝ p −→ H̃ ∼ 1

t̃
, (5.24)

then this implies,

φ′ ∼ 1

t̃
−→ p ∼ t̃4/3 . (5.25)
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Thus, the scale factors behave as,

ã ∼ t̃4/3 , (5.26)

a ∼ t2/3 . (5.27)

It is possible to consider the above situations for the more realistic case of ρ̃M 6= 0,

which was considered in [69]. However the results are no more instructive, and we

therefore direct to the aforementioned article for a more thorough discussion.

To this point we have said nothing of the µ parameter. Although the φ′0 = φ′C

scenario is unstable, one may argue that this theory holds phenomenological

relevance. This eternal de Sitter inflation is not too absurd if the decay rate of

the phase is on the order of τ−1 ∼ (14 Gyrs)−1 — the inverse age of the universe.

In terms of a mass scale, this corresponds to µ ∼ 10−33eV. Therefore, one can

argue on phenomenological grounds that this theory is worthy of consideration

since it clearly gives rise to late-time acceleration. Of course, µ is no better than

a tuned parameter serving the function of giving credence to the above statement.

Nevertheless, it is a viable alternative to the dark energy mechanism, and as such

merits further investigation.

5.2 The Gravitational Response

We have shown in the previous section that with an inverse Ricci scalar term

in the gravity action, it is possible to explain late-time acceleration. However, we

have yet to see what this theory says about the force of gravity on cosmological and

local scales. That is the task of this section, and we will restrict ourselves to the de

Sitter solution which was discussed to be unstable, but with a slow enough decay

rate to justify its study.

Before we embark on calculating the force of gravity with an inverse Ricci

term added to the gravitational action, we should comment on the inherent

features of such actions. As was apparent from Equation 5.11 and Equation
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5.12, our equations of motions of motion are of the higher derivative variety

(that is, they possess more than two time derivatives on one of the degrees of

freedom). Typically, higher derivatives bring negative energy degrees of freedom;

however, endowing the Lagrangian with nonlinear functions of the Ricci scalar

can sometimes be permitted [71]. This will only give rise to a single, spin zero

higher derivative degree of freedom. But since the lower derivative spin zero is

a constrained, negative energy degree of freedom (the Newtonian potential), its

higher derivative counterpart can occasionally carry positive energy.

There have been several recent articles which examine aspects of this model.

Dick considered the Newtonian limit in perturbation theory about a maximally

symmetric background [72]; while Dolgov and Kawasaki discovered and discussed

an instability in the interior of a matter distribution [73]. However, Nojiri and

Odintsov have shown than R2 can be added to the action without changing the

cosmological solution, and that the coefficient of this term can be chosen to

enormously increase the time constant of the interior instability [74]. Meng and

Wang have explored perturbative corrections to cosmology [75]; and others have

drawn connections with a special class of scalar-tensor theories [76, 77].

What we wish to consider here is the gravitational response to a diffuse matter

source after the epoch of acceleration has set in. The procedure will be to solve

for the perturbed Ricci scalar, whence we determine the gravitational force carried

by the trace of the metric perturbation. We will constrain the matter distribution

to have the property that its rate of gravitational collapse is identical to the rate

of spacetime expansion, thereby fixing the physical radius of the distribution

to a constant value. Further, we impose the condition that inside the matter

distribution the density is low enough to justifiably employ a locally de Sitter

background, in which case the Ricci scalar can be solved exactly and remains

constant.
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The Calculation

We shall consider a gravitational action parameterized by p > 0,

S[g] =
1

16πG

∫
d4x

√−g
[
R− µ2(p+1)R−p

]
. (5.28)

(We employ a space-like metric with Ricci tensor Rµν ≡ Γρ
νµ,ρ − Γρ

ρµ,ν + Γρ
ρσΓσ

νµ −
Γρ

νσΓσ
ρµ.) Functionally varying with respect to the metric and setting it equal to

the matter stress energy tensor leads to the equations of motion,

[
1 + pµ2(p+1)R−(p+1)

]
Rµν − 1

2

[
1− µ2(p+1)R−(p+1)

]
Rgµν

+ pµ2(p+1)(gµν¤−DµDν)R
−(p+1) = 8πGTµν . (5.29)

Dµ is the covariant derivative and ¤ ≡ (−g)−1/2∂µ(
√−ggµν∂ν) is the covariant

d’Alembertian.

Although one must really solve all components of the field equations Equa-

tion 5.29 we can get an important part of the gravitational response by simply

taking the trace. We shall also restrict to p = 1 for simplicity. Inside the matter

distribution the trace equation is,

−R + 3
µ4

R
+ 3µ4¤ 1

R2
= 8πGgµνTµν ≡ T . (5.30)

(Note that T is negative.) Normally, one would expect the matter stress energy

to be redshifted by powers of the scale factor in an expanding universe. However,

recall that this matter distribution possesses a rate of gravitational collapse equal

to the rate of universal expansion, and thus T remains constant. Since our matter

source is also diffuse, we may perturb around a locally de Sitter background. For

the interior solution, we are able to solve for R exactly using Equation 5.30 for the

case T is constant and DµR = 0,

Rin = −T
2

[
1∓

√
1 +

12µ4

T 2

]
. (5.31)
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Obtaining de Sitter background obviously selects the negative root. Further, we

concentrate on the situation |T | ¿ µ2,

Rin =
√

3µ2 − T
2

+ · · · . (5.32)

Outside the matter source we perturb around the de Sitter vacuum solution,

Rout =
√

3µ2 + δR. (5.33)

Substituting Equation 5.33 into Equation 5.30 and expanding to first order in δR

yields the equation defining the Ricci scalar correction,

¤δR(x) +
√

3µ2δR(x) = 0. (5.34)

In our locally de Sitter background the invariant length element is,

ds2 ≡ −dt2 + a2(t)d~x · d~x, (5.35)

with a(t) having the property,

H ≡ ȧ

a
= constant. (5.36)

We can relate the Hubble constant H to the parameter µ via the vacuum Ricci

scalar,

R = 12H2 =
√

3µ2. (5.37)

Identifying ¤ = a−3∂ρ(a
3gρσ∂σ), we expand Equation 5.34,

[
∂2 − 3H∂0 + 12H2

]
δR(t, ~x) = 0, (5.38)

where ∂2 ≡ −∂2
0 + a−2∇2. It is evident from Equation 5.38 that the frequency term

has the wrong sign for stability [69]. However, since the decay time is proportional

to 1/H, we may safely ignore this issue.
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Seeking a solution of the form δR = δR(Ha‖~x‖) allows us to convert Equation

5.38 into an ordinary differential equation,

[
(1− y2)

d2

dy2
+

2

y
(1− 2y2)

d

dy
+ 12

]
δR = 0, (5.39)

where y ≡ Ha‖~x‖. To solve this equation we try a series of the form,

fα(y) =
∞∑

n=0

fnyα+n. (5.40)

Substituting this series into Equation 5.38 yields a solution with α = 0,

f0(y) ≡
∞∑

n=0

Γ(n + 3
4
−

√
57
4

)Γ(n + 3
4

+
√

57
4

)

Γ(3
4
−

√
57
4

)Γ(3
4

+
√

57
4

)

(2y)2n

(2n + 1)!
, (5.41)

and a solution with α = −1,

f−1(y) ≡ 1

y

∞∑
n=0

Γ(n + 1
4
−

√
57
4

)Γ(n + 1
4

+
√

57
4

)

Γ(1
4
−

√
57
4

)Γ(1
4

+
√

57
4

)

(2y)2n

(2n)!
. (5.42)

Both solutions converge for 0 < y < 1. Both also have a logarithmic singularity

at y = 1, which corresponds to the Hubble radius. We can therefore employ them

quite reliably within the visible universe.

The solution we seek is a linear combination,

δR(y) = β1f0(y) + β2f−1(y), (5.43)

whose coefficients are determined by the requirements that δR(y) and its first

derivative are continuous at the boundary of the matter distribution. We employ

a spherically symmetric distribution of matter, centered on the comoving origin.

If the matter distribution collapses at the same rate as the expansion of the

universe, its physical radius is a constant we call ρ. (This means that the comoving

coordinate radius is ρ/a(t).) If the total mass of the distribution is M we can



71

identify T as the constant,

T = −8πGM
4
3
πρ3

= −6GM

ρ3
. (5.44)

In terms of our variable y = Ha(t)‖~x‖, the boundary of the matter distribution is

at y0 = Hρ. Demanding continuity of the Ricci scalar and its first derivative at y0

gives the following result for the combination coefficients of the exterior solution

Equation 5.43,

β1 =
3MG

ρ3

[
f0(y0)− f ′0(y0)

f ′−1(y0)
f−1(y0)

]−1

, (5.45)

β2 =
3MG

ρ3

[
f−1(y0)−

f ′−1(y0)

f ′0(y0)
f0(y0)

]−1

, (5.46)

where a prime represents the derivative with respect to the argument.

We are now in a position to calculate the gravitational force carried by the

trace of the graviton field. The metric perturbation modifies the invariant length

element as follows,

ds2 = −(1− h00)dt2 + 2a(t)h0idtdxi + a2(t)(δij + hij)dxidxj. (5.47)

Further defining h ≡ −h00 + hii and imposing the gauge condition,

h ,ν
µν − 1

2
h,µ + 3hν

µ(ln a),ν = 0, (5.48)

allows us to express the Ricci scalar in terms of h,

δR =
1

2

(
−∂2h + 4H∂0h

)
. (5.49)

(Recall that we define ∂µ ≡ (∂t, a
−1~∇).) Assuming h = h(y) as we did for δR gives

the equation for the gravitational force carried by h,

[
(y2 − 1)

d

dy
+

1

y
(5y2 − 2)

]
h′(y) =

2δR(y)

H2
. (5.50)
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The solution to Equation 5.50 is,

h′(y) = − 2

y2(1− y2)3/2

∫ y

0

dy′y
′2(1− y

′2)1/2 δR(y′)
H2

. (5.51)

At this point it is useful to consider the y values which are relevant. The

Hubble radius corresponds to y = 1, whereas the typical distance between galaxies

corresponds to about y = 10−4, and a typical galaxy radius would be about

y = 10−6. We are therefore quite justified in assuming that y0 ¿ 1, and in

specializing to the case of y0 ¿ y ¿ 1. Now consider the series expansions,

f0(y) = 1− 2y2 +
1

5
y4 +O(y6) , β1 =

3MG

ρ3
+O(y2

0), (5.52)

f−1(y) =
1

y

[
1− 7y2 +

14

3
y4 +O(y6)

]
, β2 = −12MGy3

0

ρ3
+O(y5

0). (5.53)

We see first that |β2| ¿ β1 — which means δR(y) ≈ β1f0(y) — and second, that

f0(y) ∼ 1 — which implies δR(y) ≈ −T /2. This means that the integrand in

Equation 5.51 fails to fall off for y > y0, so the integral continues to grow outside

the boundary of the matter distribution. For small y À y0 we have,

h′(y) = −2GM

H2ρ3
y +O(y3). (5.54)

To see that this linear growth is a phenomenological disaster it suffices to

compare Equation 5.54 with the result that would follow for the same matter

distribution, in the same locally de Sitter background, if the theory of gravity had

been general relativity with a positive cosmological constant Λ = 3H2. In that case

δR(y) = −T θ(y0 − y) and, for y > y0, the integral in Equation 5.51 gives,

h′(y)
∣∣∣
GR

=
T

4H2y2(1− y2)
3
2

{
arcsin(y0)− y0(1− 2y2

0)
√

1− y2
0

}
. (5.55)

= −4GMH

y2
+O(1). (5.56)
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The linear force law Equation 5.54 of modified gravity is stronger by a factor of

1
2
( y

y0
)3. For the force between two galaxies this factor would be about a million.

5.3 Remarks on our Calculation and Future Work

We have determined the gravitational response to a diffuse matter source in a

locally de Sitter background. Our result is the leading order result in the expansion

variable y, the fractional Hubble distance. Equation 5.54 clearly forces us to

disregard the class of theories considered here Equation 5.28 when compared to GR

with a cosmological constant (for example, the correction to the gravitational force

between the Milky Way and Andromeda increases by six orders of magnitude).

The two assumptions made in our analysis were:

• the matter distribution is gravitationally bound,

• the matter distribution has a mean stress energy |T | . µ2.

The second of these assumptions can be viewed rather flexibly if interested only in

phenomenological implications. Regardless of whether it is satisfied, we still would

expect a linearly growing response far from the source. To see this, recall that

the dominant piece of the solution, f0(y), from equation Equation 5.43 remains

constant and approximately equal to one for many orders of magnitude (for

instance, f0(10−8) − f0(10−3) ≈ 10−6). Therefore, although the exterior solution

would not be very reliable near the matter source, we can be confident that at

cosmic or even intergalactic scales perturbing about de Sitter becomes appropriate

and a growing solution would still be observed.

This analysis was performed for p = 1, but of course nothing restricts us from

considering arbitrary powers of the inverse Ricci scalar. To no surprise, however,

varying the power only changes the coefficient of the gravitational force leaving

its qualitative behavior alone. The instability found by Dolgov and Kawasaki [73]

and the growing solution calculated in this work seem to preclude all such theories

phenomenologically. The two problems seem to complement one another because
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either problem could be avoided by the addition of an R2 term, which would not

alter the cosmological solution [74]. However, avoiding the interior instability seems

to require the R2 term to have a large coefficient, whereas avoiding the exterior

growth requires a smaller value [77].

None of these issues diminishes the importance that should be placed on

considering novel approaches to understanding the dark energy problem. It is the

responsibility of both theorists and experimentalists to construct and constrain

candidate theories, and it is truly an exciting epoch of human investigation for

which we are just beginning to acquire these capabilities. Greater freedom can

be obtained by adding different powers of R. (Note that this generally alters the

cosmological solution.) Although such models seem epicyclic when considered as

modifications of gravity, the same would not be true if they were to arise from

fundamental theory. For example, it can be shown that the braneworld scenario

of Dvali, Gabadadze and Shifman [78] avoids both the interior instability and the

linearly growing force law [79].



CHAPTER 6
CONCLUSIONS

This thesis has examined alternative explanations to the dark matter and

dark energy problems. Each problem has been presented with an alternative that

modifies the Einstein-Hilbert action of gravity in four dimensions with a function of

the Ricci scalar,

Sg[g] = SEH [g] +
1

16πG

∫
d4x

√−gf(R) . (6.1)

The subsequent phenomenology has been discussed and used to make definitive

statements as to the standing of these theories and prospects for future investiga-

tion.

Dark matter’s successes — particularly a Λ-CDM scenario — leaves many with

the impression that its role in galactic rotation curves is a necessary feature. CDM

is able to explain galaxy formation by providing enough gravitational presence to

ensure luminous matter clumping on the scales we see today. If one takes seriously

the Peccei-Quinn mechanism as a solution to the strong-CP problem of QCD,

then the axion is a real particle and thus a prime candidate for dark matter. Big

bang nucleosynthesis also cannot do without dark matter. Baryonic matter alone

is unable to account for the density required to allow BBN to occur. We clearly

see that dark matter’s connection to the entire cosmology of the universe is too

intertwined for its existence to not be taken as a possible reality.

Nevertheless, new gravitational physics which occurs at different scales is

certainly not an impossibility. The evidence stated above is only gravitational

in nature. That is, it only serves to identify dark matter via its gravitational

interactions. Observing a particle gravitationally is an insufficient method of

75
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detection. This only serves to determine the metric in a fixed gauge, whence

one may then construct the Einstein tensor and then define the matter-stress

energy tensor so as to make the Einstein equation true. Therefore, flipping the

solution on its head: there currently exists modifications due to gravity which are

capable of accounting for the observed cosmology; and these modifications can be

interpreted as the presence of matter stress-energy we call dark matter (much like

the organizing principle of perturbation theory in classical general relativity).

The current dark matter profiles which have been studied suffer definite

problems which we have discussed in this work to some length. They are unable to

explain: the Tully-Fisher relation — the proportionality of the absolute luminosity

to the quartic power of the maximum rotational velocity; and Milgrom’s law — the

fact that dark matter needs to be evoked when satellites possess an acceleration

a . a0 ∼ 10−10m/s2. Additionally, their fine-tuning features (by virtue of their

three parameter fitting) all leave one to conclude that the rotation curves alone —

an amazingly consistent phenomenon — cannot presently enable one to say much

about the fundamental nature of dark matter.

MOND is purely gravitational at the nonrelativistic level, and by design is

constructed to satisfy Milgrom’s law. Therefore, at the empirical level, it is vastly

superior to dark matter halos. It is at the fundamental level where one properly

displays reservations as to its viability in light of the successes of dark matter

in several key physical processes. The need for a covariant metric formulation

of MOND becomes immediately evident — one which can be directly measured

alongside its dark matter competitor.

MOND’s relativistic extension has been treated in this thesis by considering

the two predominant approaches: the scalar-tensor theories of Milgrom, Bekenstein,

and Sanders, and the purely metric approach of Soussa and Woodard. At present,

it can be said conclusively that of the scalar-tensor varieties, the TeVeS theory of
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Bekenstein is the most viable candidate. Naturally, all approaches are constructed

to be able to reproduce the nonrelativistic version of MOND. However, the key

issues in extending MOND have been the lack of sufficient gravitational lensing

of light, the acausal propagation of dynamical fields, and inherent ambiguities in

regard to its cosmological impact.

Bekenstein’s TeVeS is the first relativistic version which is able to resolve

the first two of these three issues (under appropriate assumptions) and not be a

preferred-frame theory. As it is fully relativistic, one may see what it says about

cosmology. Presently, no definitive conclusions can be made and is the subject

for future work. TeVeS, however, it not without problems. Namely, the large

parameter space creates ambiguity and it is not overly clear which observables can

set or constrain these parameters. One possibility would be to take advantage of

the disparate travel times that gravitons and neutrinos would possess from distant

astrophysical sources. We found after a simple computation that the delay in

arrival times of a gravitational wave and a pulse of neutrinos could be on the order

of a few minutes under reasonable assumptions of the parameters. Therefore one

would ostensibly be able to constrain their values (or ratios thereof). Solar system

tests serve as good constraining tools in scalar-tensor theories (e.g. Brans Dicke

gravity), and therefore it is certainly not unreasonable to have a degree of optimism

in the falsifiability inherent to a theory like TeVeS.

The purely metric theory gains the advantage in overall “naturalness” –

that is, the purely metric degrees of freedom, if sufficient to describe MOND

in all regimes consistent with astrophysical observations, would follow Ockam’s

razor. Avoiding philosophical vicissitudes, we shall unabashedly assume the

preferential treatment of such a feature in the purely metric theory. The avoidance

of scalar and vector degrees of freedom results in fewer parameters. What we

discovered, unfortunately from the model builder’s perspective, is that, under
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conservative assumptions, any purely metric theory will never give enough lensing

due to the conformal invariance of the linearized MOND equations. However, this

result should be viewed in a positive light, as any predictive and ultra-restricting

statement in physics should. We may conclude that the most plausible way to

avoid the lensing disaster in a purely metric formulation of MOND is by foregoing

the notion of gravitational stability, a less pleasant but not unprecedented nor

unfathomable situation.

In similar fashion, we have surveyed the current landscape of the dark energy

problem. Like dark matter, many of the approaches have centered on adding a new

component to the universe such as a constant scalar field, a dynamical scalar field

designed to turn on at the appropriate time, charged scalars that exhibit long-range

forces, etc. By construction, all these models serve their purpose — they give rise

to late-time acceleration in the universe. Each, however, begs the question to their

detection at the level of new particles and fields.

Contrarily, modifications of the Einstein-Hilbert action interact with all

matter and energy, and there signatures are in the evolutions and dynamics of the

universe’s constituents. This thesis has considered specifically the modification

of Carroll et al. [69] in which an inverse power of the Ricci scalar is added to the

action. This type of term is shown to give rise to late-time acceleration under

appropriate assumptions.

The work of Carroll et al. [69] did not consider the effect this kind of term

would have on the force of gravity. This work presents this very calculation in a

locally de Sitter background for the case of a diffuse matter source. The result

clearly shows that this type of term can in no way be phenomenologically viable.

The solution possesses a term which grows linearly with distance, and therefore

even physics on the cluster scale completely rules out such a model. Further, the

lack of a Newtonian limit which surfaces as an instability in the inner regions
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of matter sources in Dolgov and Kawasaki’s work [73] seemingly dooms such a

proposal.

One may consider adding terms proportional to R2, and R3, and/or using the

Palatini formalism to remove the inherent instabilities of only having a 1/R term

in the action. Presently, it does not seem clear at all that one may both remove

the instability found by Dolgov and Kawasaki and the linearly growing solution

discussed here. Adding more and more terms to the action in the epicyclic spirit

seems counter to how we should seek solutions. However, upon doing so a larger

theory or a more fundamental gravitational principle may emerge — we may

find these terms to naturally arise from some larger theory, either as an effective

field theory, or perhaps from a string theory. Measurement, phenomenology, and

consistency are our guides to this end.

Dark energy and dark matter are without question the consensus — the

currently orthodox approach to explaining 96% of the universe’s energy. It is,

undoubtedly, extremely peculiar that we have not directly detected any of this 96%

— never once. The only means at our disposal to say anything empirically, the

sole fashion we may claim to have observed either of these two phenomena, is via

gravity. Simply stated: Einstein’s theory works. Therefore, changes to it at any

scale should and will meet resistance from the wealth of data that exists — not

to mention the theoretical challenges which must be overcome. That said, there is

serious reasons to believe that general relativity even at the classical level is unable

to account for all of the observed universe. The processes discussed here have

all been gravitational and their orthodox explanations can all be recast into the

form of a purely gravitational solution. This fact serves not only as an incentive

to search for alternatives, but almost obliges the physicist, in conformity with the

scientific spirit, to allow its possibilities.
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